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Abstract

Scala as a candidate to address the problem of the always more complex management of
the cloud infrastructure

In the last decades the infrastructure used by companies changed deeply. Years
ago they were used to have on premise bare-metal servers, running their own applica-
tions, while now they rent cloud servers or applications and host their services in a
serverless fashion.
Such a modern approach granted enormous benefits to flexibility, but at the same time
greatly increased the complexity to manage the configuration of such infrastructures.
The current situation requires companies to resort to advanced tools for managing the
always more complex structure of the owned cloud resources. The critical aspects of
such tools are the range of cloud service providers (AWS, Azure, ecc.) supported and
the programming language offered to work with such tools.
Among all the tools that started to appear, Pulumi is the one that results to be the
most innovative. With its multi-cloud and multiple general programming languages
support, has all the features to address the high requirements imposed by the more
and more complex cloud scenario.
This thesis firstly shows why Scala represents an innovative addition to the Pulumi’s
current pool of supported languages. Second, it also presents how a partial support for
Scala has been smartly achieved using the Pulumi APIs of the already supported Java
language and the interoperability between the various languages of the JVM.
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Chapter 1

Introduction

1.1 Introduction to the problem

Many years ago, the system management was based on the manual configuration of
the company’s bare-metal servers. These machines were used to host the various
applications and services offered. The configuration of those servers was based on
custom shell scripts or even achieved through a manual setting based on variables’
values read from configuration documents printed on paper.
With virtualization, the decoupling between software and hardware allowed for scala-
bility of the software on the various bare-metal servers, but added complexity to the
configuration due to the virtualization layer that has been added.
Then the trend shifted towards solutions that granted companies the possibility to
rent bare-metal servers, from the cloud service providers (CSP), and host virtual
machines, internally running the company’s applications, on them. It is the birth of
the cloud. All this led to the need of having configuration files to ensure repeatability
and reproducibility of the operations done on the cloud.
The evolution continues with the advent of the containers, container orchestration, and
the virtualization of always smaller applications. This fragmentation of the virtualized
services required a further effort in the management of the configuration for the cre-
ation and maintenance of always smaller resources. With this the serverless computing
begins.
With the serverless model, the need for configuration management tools is made clear.
The configuration management tools based on a declarative approach that started to
appear are different from each other and can be more flexible on certain aspects, and
less on others. Among all the characteristics that we could take into consideration, we
shall focus on their possibility to support the management of the resources on multiple
cloud providers and if they support markups languages or general purpose languages
for the definition of the configuration of the resources. Since the competition of the
various cloud providers brought the companies to adopt multi-cloud solutions, picking
some services from a certain CSP and others from different CSPs, a tool that allows
multi-cloud support is preferable. This would ensure to have a single tool for the
management of the entire pool of services hosted on the various cloud providers.
At the same time, the increasing complexity of the cloud and the serverless approach
are requiring more and more robust and mature languages for the management of the
configuration files for the cloud resources. Amidst the various configuration manage-
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2 CHAPTER 1. INTRODUCTION

ment tools, Pulumi is the only one that provides a multi-cloud enabled solution and
at the same time supports many general purpose languages, instead of using the less
expressive markup languages.

1.2 The aim of the work

Every programming language has its own features and characteristics, that are making
it a better choice for some use cases, and a worse one for some others. Moreover,
when choosing a programming language we should also consider all the complementary
benefits or shortcomings that it is carrying over. With this I refer to the quality of
its building system, the maturity of the available IDEs, the available libraries, the
documentation available, and so on.
The aim of the work is to ensure if Scala could be a valuable addition to the current
pool of languages supported by Pulumi, that currently are: JavaScript, TypeScript,
Python, Go, .NET and (since 2022) Java. Scala has been chosen for two main reasons.
First, it is a mature and robust language, with a powerful building system, adopted
worldwide, with many libraries, with the interoperability with the JVM and all its
others languages, that can be used with excellent IDEs (such as IntelliJ IDEA and
Eclipse). Second, but not less important, its functional paradigm and its nature
prone to the definition of internal DSLs should allow to create an expressive syntactic

sugar that enables concise and readable solutions for the configuration files for the
management of the cloud resources.
To prove our thesis about the worth of adding a Scala support to Pulumi, a case
study based on AWS EC2 resources generation with Pulumi has been picked. First,
a TypeScript solution for the case study has been implemented. Then, the syntactic

sugar for the Scala support for Pulumi has been coded, to eventually implement the
Scala solution of the case study.
The TypeScript solution resulted to be very readable. This was expected since
TypeScript has a powerful declarative syntax thanks to its support for the JSON
format. Surprisingly, from the comparison between the two implementations, despite
the more verbose nature of the Scala language, the generation of a concise and readable
solution also for Scala has been achieved. Such readability is much appreciated in
the declarative approach of the management tools for the cloud resources. These
configuration files must be kept clear and must be easy to read to ensure to ease any
future management of the cloud resources.
Scala, differently from TypeScript, allows for an excellent management of the code
thanks to the packages and the development is supported by powerful IDEs. So it is
representing a cool addition that, with respect to TypeScript, can better exploit the
refactoring, reuse, and the logical organization in a maintainable structure of the code
for our code-based cloud resources configuration. And this is perfectly fitting the high
requirements coming from the always more complex serverless based cloud scenario.
Moreover, the work also shows how a partial Scala support for Pulumi has been
achieved in a smart way. In general, a laborious and long procedure is required to
officially add the support of a language to Pulumi. Instead, I managed to provide a
partial support of Scala using the Pulumi APIs of the already supported Java language
and the interoperability between the JVM languages. Such a support is provided as
autogenerated syntactic sugar that, thanks to its high expressivity, provides the user
the tools to achieve readable and concise solutions.



Chapter 2

Introduction to Infrastructure

as Code

An introduction to the Infrastructure as Code (IaC). The birth of the IaC is firstly presented,
then the possible approaches, the advantages of using IaC, its challenges, and the evo-
lution of the IaC with the second generation of tools. Finally, the related works are presented

2.1 How we arrived to the IaC

2.1.1 Bare-metal servers and manual configurations

Originally companies owned bare-metal servers on which hosted their own services.
Each server was capable to host a single service, that was being run on the server’s
operative system. The configuration of such servers was manually made using paper
sheet with information about the configuration parameters (such as IPs, environment
variables, etc.), or with shell scripts that had to be manually maintained as the in-
frastructure changed or had to be reconfigured. Some templates have been created to
slightly automate the process of reconfiguration of the servers.

2.1.2 The advent of the virtualization

The virtualization era began when the virtual machine concept was born. In this
period companies still had to own bare-metal servers, but the virtualization granted
the possibility to scale software services upon one or more hardware servers. This was
possible thanks to the decoupling between the hardware and the software. However,
to achieve this goal a further amount of configuration was required to be given and
maintained. The virtualization layer is having its own configuration, on top of the one
of the bare-metal server.

3



4 CHAPTER 2. INTRODUCTION TO INFRASTRUCTURE AS CODE

2.1.3 The cloud

For a company, buying its own hardware servers is extremely expensive at the beginning.
With the virtualization, the possibility to borrow hardware servers was made possible.
The virtual machines of the company are run on the rent servers thanks to the
virtualization. These operations were made possible by the management console offered
by the providers of the servers, that allowed to instantiate the application as a virtual
machine on their servers.
With this cloud service providers were born, offering the bare-metal server rental
service with a pay-as-you-go pricing. The more resources you use (or rent), the more
you pay. This mechanism led to the birth of the cloud.
Such an approach zeroes the initial costs to both buy, setup, and maintain a personal
infrastructure. Obviously this led to the need of having configuration files to ensure
repeatability and reproducibility of the operations done on the cloud. The engine that
interprets such files is host on the cloud itself.
At the same time, the APIs used from the management consoles have been exposed as
official automation APIs. We’ll see soon how such APIs have a critical role in the IaC
scenario.

2.1.4 Towards the serverless

A further step in the virtualization scenario has been achieved when the concept of
container was born. Before containers, whole virtual machines were being run on the
virtual servers. In most of the cases, the virtualization of the whole operative system
(OS) of the virtual machine was an extra useless overhead. The containers permitted
to instantiate a virtual instance of service or application without the extra overhead of
the OS.
Along with the concept of container also the container orchestration was born. Such
services allow containers to inter-operate. In fact, the fact that containers contain
single applications or services, they will likely need to communicate with each other.
Kubernetes for example, a container orchestration tool, is allowing to configure the
interfaces to let containers communicate to each other.

2.1.5 Serverless trend

The most common applications started to be directly provided by the cloud service
providers. At this point, the user didn’t have any more to take care of virtualizing
a virtual machine or a container on a specific server. He just had to request for the
desired resource to the cloud provider and it would have taken care to virtualize it on
an available machine (that could have been different any time the service was to be
made available).
With this trend, also smaller custom logic started to be executed on virtual servers,
such as custom lambdas, queues of messages, cache memory services, etc.
All this led to the serverless computing, which has put even more pressure on the
configuration required for the infrastructure.

2.1.6 The advent of the Infrastructure as Code

We notice from the previous paragraphs that, over time, the amount of configuration
required has kept increasing over time, reaching its peak with the current serverless
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cloud scenario. The necessity of configuration management tools to keep up with the
increasing complexity of the cloud structure and functioning was becoming real.
With the advent of such tools, the Infrastructure as Code was born.

2.2 Infrastructure as Code

2.2.1 What is IaC

The evolution we have seen before has brought to an engineering of the system
administration operations. The management of configuration files for the infrastructure
as code is at the base of the Infrastructure as Code (and here is why it is called
so). In other words, we could call Infrastructure as Code the process of managing
and provisioning IaaS through machine-readable definition files, rather than physical
hardware configuration or interactive configuration tools.
The IT infrastructure managed by this process comprises, as we have seen in the previous
section, both physical equipment, such as bare-metal servers, and also virtual machines,
virtualized applications and services, and the associated configuration resources.
The definitions may be in a version control system. The code in the definition files may
use either scripts or declarative definitions, rather than maintaining the code through
manual processes, but IaC more often employs declarative approaches.

Types of approaches

There are generally two approaches to IaC: declarative (functional) vs imperative
(procedural). The difference between the declarative and the imperative approach is
essentially what versus how. The declarative approach focuses on what the eventual
target configuration should be; the imperative focuses on how the infrastructure is
to be changed to meet this. The declarative approach defines the desired state and
the system executes what needs to happen to achieve that desired state. Imperative
defines specific commands that need to be executed in the appropriate order to end
with the desired result.
In the How we arrived to the IaC section we have seen how first the APIs of the cloud
service providers have been exposed, and only after that the configuration management
tools were born. The exposed APIs are by nature imperative. In fact their usage
is cumbersome and the user must be aware of what he is actually doing, otherwise
configuration errors might happen.
The configuration management tools that were born after the advent of the serverless
scenario are instead using a declarative approach.

Methods

There are two methods of IaC: push and pull. The main difference is the manner in
which the servers are told how to be configured. In the pull method, the server to be
configured will pull its configuration from the controlling server. In the push method,
the controlling server pushes the configuration to the destination system.
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2.2.2 Infrastructure as Code tools’ main parts and their func-

tioning

From now on, for the aim of this thesis, with IaC tools (or configuration management
tools) we’ll be referring to set of the following technologies: GCP, Azure, CloudForma-
tion, Terraform, CDK, and Pulumi.
The various existing IaC tools have a different architectures and functioning, but at
their base they share the same abstract structure:

declarative APIs for the user these APIs let the user declare the resources that
would like to instantiate on a certain cloud service provider

backend engine this engine will look at the resources declared by the user through
the user APIs and will convert such declarations to REST API calls to the cloud
service provider to instantiate them

Obviously each tool has its own much deeper functioning. We’ll see how Pulumi works
in the Pulumi functioning section.

2.2.3 Advantages of IaC

The value of IaC can be broken down into three measurable categories: cost, speed,
and risk. Cost reduction aims at helping not only the enterprise financially, but also in
terms of people and effort, meaning that by removing the manual component, people
are able to refocus their efforts on other enterprise tasks. Infrastructure automation
enables speed through faster execution when configuring your infrastructure and aims
at providing visibility to help other teams across the enterprise work quickly and more
efficiently. Automation removes the risk associated with human error, like manual
misconfiguration; removing this can decrease downtime and increase reliability.
Related to the risk, we could highlight the importance of the consistency of such
an approach. Through the manual modifications to the infrastructure achieved in a
solution without IaC, at some point will be extremely hard to reproduce an exact
configuration since some ad-hoc steps were required whilst some others were executed
in a different order. Infrastructure as Code enforces consistency by allowing users
to represent infrastructure environments using code. Therefore, the deployment and
modification of resources will always be consistent and idempotent (i.e. every time a
specific operation gets executed, the same result will be generated).
Furthermore, IaC tools usually offer mechanisms to enhance reusability. Being code,
infrastructure prototypes can be programmed and shared across the various teams of
the company, boosting speed and reducing costs even more. This feature makes your
code base less verbose and more readable while at the same time team members are
encouraged to apply best practices.
Moreover, another big advantage of IaC is collaboration. Since the infrastructure
resources are defined in configuration files it means that these files can be version
controlled. At any given time, the team is able to collaborate together in order to
modify an environment and even be able to see the history (from commits) of an
infrastructure resource. This also makes debugging much easier and accurate.
Related to this, if we create all the resources of the infrastructure using a program,
we can always know what are the resources that we have on the cloud. On the other
hand, before IaC, once the administrators created the desired resources on the service
providers, there was no way to know which resources were actually present. Tools
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to inspect the state of the cloud providers were created, but their reliability is not
bulletproof. The modern IaC approach, and especially with advanced tools as Pulumi,
addressed this problem masterfully since the entire declaration of the infrastructure is
coded in single and a well-structured project.
Finally, when automation functionalities are provided with the considered IaC tool,
we are given the possibility to define various branches (develop, stage, production,
etc.). This was not possible without IaC, the infrastructure was one and only one.
The chance to have different branches let us test and experiment the changes of our
infrastructure before actually bringing them on stage and eventually on production.

2.2.4 Challenges of IaC

While IaC offers numerous benefits, there are also several challenges that organizations
must address when implementing this approach.
One of the major challenges is the adoption discrepancies that arise when integrating
new frameworks with existing technology. This requires careful coordination with other
teams, particularly those responsible for security and compliance, and can result in
difficulties in determining where resources are being delivered, controlled, and managed.
To address these issues, organizations must continually communicate and audit their
IaC adoption to minimize infrastructure drift and ensure that security measures remain
up to date.
Another challenge is the need for security assessment tools that can effectively evaluate
the dynamic nature of IaC. Traditional security measures may require significant cycles
to be integrated with IaC, and there may be a need for human checks to ensure
that resources are operating correctly and being used by the appropriate applications.
Organizations may need to invest in new tools or capabilities to ensure proper control
and monitoring.
The implementation of IaC also requires a high degree of technical competence, which
can result in the need for new human capital. Senior executives may face challenges in
continually investing in employee skills, particularly if the organization is in the early
adoption phase. Outsourcing IaC services may be a viable option for organizations to
improve automation processes in terms of cost and overall IT infrastructure quality.
Versioning and traceability of settings can also be a challenge when IaC is utilized
widely across an organization with various teams. As IaC becomes more complex,
it can be difficult to keep track of infrastructure and identify infra-drift, making it
essential to implement effective version control and tracking mechanisms.

2.2.5 Evolution of IaC tools

Tools designed for Serverless Applications - the first wave

The foundation of IaC in the public clouds is these three cloud vendor-specific IaC
tools: CloudFormation in AWS, Azure Resource Manager (ARM) in Azure, and Cloud
Deployment Manager in GCP. These are YAML or JSON based declarative tools and
have been in cloud toolboxes for a long time and require a fair amount of markup
code. Tools with shortcuts or “conventions over configuration” were developed to
boost productivity and make distributed microservice applications seem more like a
traditional monolithic application or a framework. These tools enable building and
testing your serverless applications locally on your machine.
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Some of these tools made a further step by supporting multiple cloud service providers
in a single solutions, like Terraform.

Serverless Infrastructure as programming language code - the second wave

Declarative languages have some limitations when there is the need to do more complex
business logic than what parameters, conditions, mappings, and loops (Terraform only)
allow to do. Sometimes, there is the need to use external scripting to have the work
done. A programming language could address such a problem and let us get around
these boundaries and limitations. This second generation tools generate the declarative
markup code with the aid of a programming language, or bypass it and utilizes cloud
APIs. These kind of tools with programming language support is a rising and trending
approach in IaC at the moment.

2.3 Related works

Pulumi is quite new as IaC platform, how did it manage to emerge in a scenario where
many other IaC technologies were already present? Let’s first introduce the scenario
present when Pulumi showed up.

2.3.1 Pulumi and the other solutions

The two main aspects of IaC tools: supported languages and cloud providers

An IaC tool can have its own scripting language to define the resources, or, it can let
the user choose from many general purpose programming languages.
The scripting languages, as we already mentioned, are a distinctive feature of all
the first generation IaC tools. These tools comprehend for example Terraform and
CloudFormation.
New tools then showed up, allowing the user to pick from a pool of general purpose
programming languages when interacting with such a technology. For these case we’ll
mention AWS CDK and Pulumi.

Another distinctive trait among the various technologies is the range of supported
cloud providers.
The cloud providers developed their own IaC tool to manage the cloud resources they
were offering.
Then, some innovative IaC tools have been able to manage resources on different
cloud providers. This is clearly a convenient functionality since it let’s the user have a
single tool to manage all the cloud resources coming from various different providers.
Both Pulumi and CDK let the user choose from many commonly used programming
languages.

For how we have seen in the How we arrived to the IaC section, the increasing
complexity of the infrastructure with the advent of the cloud and the serverless requires
more and more robust tools and programming languages to exploit at the best the
refactoring, reuse, and the logical organization of the code in well defined structures or
packets.
Moreover, the competition that is involving all the various providers is bringing the
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companies to choose multi-cloud solutions. Because of this, IaC tools that support
multiple clouds are preferable to the ones supporting a single cloud service provider.
Let’s now see how Pulumi and the other various available tools are satisfying these
two main aspects.

CloudFormation: scripting languages and a single cloud provider supported

As a first wave IaC tool we have CloudFormation. It’s one of the founders of IaC but
being based on JSON/YAML files for defining resources and working only with AWS
has a limited flexibility.

Terraform: scripting languages and multiple cloud providers supported

Terraform proposed as a solution to manage multiple resources coming from different
cloud providers with just one tool. The effort made from companies to adopt many
different IaC tools, one for each cloud provider, was not negligible. Such a solution allows
to cut costs and efforts to manage the cloud resources of the various infrastructures.
Anyway Terraform is based on the HTC scripting language, limiting its expressiveness
in the possible IaC solutions.

CDK: general purpose programming languages support for AWS

Orthogonal to Terraform we have CDK. This technology, with respect to TerraForm,
traded the multi-cloud support for a multi-language support. The rich pool of supported
languages (TypeScript, JavaScript, Python, Java, C#/.Net, and Go) allows the user to
choose the favorite programming language. All the features of the selected programming
language can boost the offered solutions for the infrastructures, but at the price of
sticking to the AWS cloud provider.

Pulumi: general purpose programming languages and multiple cloud

providers supported

Pulumi doesn’t want to give up on anything. It succeeded in offering a solution that is
flexible under both of the two aspects. Pulumi managed to achieve what the other
IaC tools and platforms did not, and because of this is bringing on the table some
innovation and added value with respect to the competitors.
Pulumi successfully abstracted from the problem in order to find a smart solution to
achieve both the multi-programming language support and the multi-cloud service
provider support. It decoupled the REST APIs offered from the various cloud service
providers (to create the resources) from the user APIs of Pulumi (that are used from
the user to inform Pulumi about what resources should be created on the various CSPs).
Pulumi’s backend engine converts the code written from the user to effective REST
API calls to the various cloud service providers, and eventually create the resources.
This workflow is the major innovation brought by Pulumi, and for sure the key that
allowed it to don’t give up neither on the flexibility of the supported programming
languages and nor on the supported cloud providers.
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2.3.2 Java addition to Pulumi’s pool of languages

All the hidden advantages of the Java support for Pulumi

Java support has been added to Pulumi during the 2022. The large amount of work
done by the Pulumi’s team has brought advantages from various points of view.
When we choose what language to use from the various opportunities offered by Pulumi,
we cannot limit our choice to the features offered by the language and our tastes. We
shall also consider the robustness of the building system, the available libraries, the
code management, the documentation, the user base, and the available IDEs for that
language.
For example, nodejs (TypeScript’s building system) is less mature and robust with
respect to the Java’s one.
Moreover, the Java development features a good amount of mature and complete IDEs.
IntelliJ IDEA and Eclipse, to mention the most famous ones, are powerful IDEs that
allow the user to do effective refactoring, inspection, reverts, and more on the code.
The features of the language sometimes are also affecting what characteristics an IDE
can have. For example, TypeScript’s duck typing is not of help to the IDEs when it
comes to code inspection and refactoring. On the other hand, the much more robust
and well defined type system in Java is granting IntelliJ and Eclipse amazing tools to
manage the code at our please.
We could mention also how Python and Java have many libraries to choose from to
enrich our solution. TypeScript instead is having much less.
Furthermore, Java has a much better management of the code with respect to Type-
Script. The Java packages are useful when the solution grows in size, while TypeScript’s
one will eventually start to ”creak” due to its poor code management features. An
IaC architecture will keep growing in size as time passes, so the possibility to use a
programming language that offers good tools to manage the codebase, such as Java, is
a valuable feature to keep in mind when choosing the programming language.
Last but not least, with the addition of Java to Pulumi, all the languages based on the
JVM can actually work with Pulumi. In fact the great effort made from Pulumi is
actually opening the doors to many more languages such as: Scala, Kotlin, Groovy,
Clojure, etc. In fact, my Scala solution has been made possible exactly because of this
fact, since I defined my Scala APIs for Pulumi on top of the official Java APIs.

The onerous work to officially support a new language in Pulumi

The Pulumi team is clear on the official way to add the support of a new language for
Pulumi, and the procedure is long and laborious. The full procedure can be found on
New Language Bring Up.

https://github.com/pulumi/pulumi/wiki/New-Language-Bring-up


Chapter 3

Pulumi, an IaC platform

An introduction to Pulumi, to its advantages and its core functioning

3.1 Introduction to Pulumi

Pulumi is a cloud engineering platform that enables developers and infrastructure
teams to build, deploy, and manage cloud-native applications and infrastructure across
multiple cloud providers, including AWS, Azure, Google Cloud, and Kubernetes.
Pulumi provides a programming model that allows developers to use familiar languages,
such as Python, JavaScript, TypeScript, Go, and (partially) Java to define their IaC
and manage it as software. In fact, it belongs to the second generation tools of the IaC.
As already mentioned in the Introduction to Infrastructure as Code chapter, such an
approach, makes it easier to automate the deployment and management of infrastructure
and applications, as well as to collaborate across teams and projects.
Pulumi is innovative because, differently from most of all the other second generation
IaC tools, has been able to abstract the problem of having many different cloud
providers, and also of really different natures (such as Kubernetes vs AWS), while
supporting many general purpose languages at the same time. Its solution is letting
the user rely on a single IaC platform to manage any kind of resource on any cloud
provider. Potentially, Pulumi could support any technolgy that is showing REST APIs.
This feature is making Pulumi an innovative IaC platform that rise IaC on a new level.
Pulumi offers a range of tools and features to simplify the development and management
of cloud infrastructure, including version control, testing, monitoring, and security. It
also provides templates, examples, and libraries for common infrastructure patterns
and services, such as containers, serverless functions, databases, and networking.
Overall, Pulumi aims to streamline the process of building and managing modern cloud-
native applications and infrastructure, while providing a flexible and developer-friendly
experience.

11
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3.1.1 The great advantages of Pulumi as a second generation

IaC tool

First of all, as mentioned in the Serverless Infrastructure as programming language code
- the second wave paragraph, all the functionalities that comes along a programming
language are letting us achieve more robust and powerful solutions for our infrastructure,
rather than what we could achieve with the expressive power of a markup language
(like the one used with Terraform).
Furthermore, as aforementioned, Pulumi is a multi-cloud tool. Thanks to this we can
rely on a single IaC tool for managing resources across different cloud platforms.
Moreover, Pulumi lets the user choose its favorite programming language, or the one
that in its opinion is a best-fit for the need to be addressed. In other words, such
a choice can both reduce the requirements placed on the user’s knowledge, since it
can choose among many different programming languages, and at the same time offer
different programming paradigms to choose from, so that for any need there is a
programming language that is addressing such a need better than the others.
Finally, Pulumi comes with a range of integrated tools and features, such as automatic
parallelism, drift detection, and stack references, making it easier to manage complex
infrastructure and deployments.

3.2 Pulumi functioning

3.2.1 Overview of the functioning

Pulumi functioning is based on the interoperation of three main parts:

Source code is used to declare the resources to be created on the respective cloud
service provider

Backend engine such engine could run on the Pulumi server or locally on the machine.
When the pulumi up command is executed, a state file is created and stored in
the backend engine. Such a file is representing a ”screenshot” of the resources
declared in the user’s project. The engine then uses such a file to create the
descripted resources on the cloud providers, thanks to the REST APIs that they
are exposing

Resources of the providers are the actual resources on the cloud providers

This image, taken from the official site of Pulumi, is representing the aforementioned
architecture.

https://www.pulumi.com/docs/intro/concepts/how-pulumi-works/
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Image 3.1: Pulumi architecture

The resources on the cloud providers could drift and their state might get different
from the logical description in the state file of the backend engine. This could happen if
an administrator manually modifies the resources without passing through the Pulumi
project, or also if the cloud provider changes the APIs on an update. The pulumi

refresh command is telling the engine to check if the states on the cloud providers
are corresponding to the logical representation of the state file. If it is not the case,
the resources are modified in order to be aligned with the state file.

3.2.2 Pulumi project

The interesting part for the user is the Pulumi project. Such a project, that can be
created with the pulumi new command, can be any folder that contains a Pulumi.yaml
file. This file specifies the runtime to be used (nodejs, pyhton, Java, etc.) and where
to look for the program that should be executed during deployments.
The execution of the program will, through the Pulumi APIs, call the Pulumi engine
to create the desired resources on the respective cloud providers.

3.2.3 The stack

When creating a new Pulumi application, the first step is to define a stack. A stack

represents a set of cloud resources that can be managed as a cohesive unit.
Each stack is associated with an environment. Tipically, we have a stack for the
develop, one for the stage and one for the production. This is granting us the chance
to safely test our infrastructure before pushing the changes on production.
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The stack definition typically includes information such as the provider, the region in
which the resources should be created, and any required configuration settings. This
information is used by Pulumi to provision and manage the resources on the stack.

3.2.4 APIs to define the resources to be created

Once the stack is defined, you write code that implements the resource management
logic. Pulumi provides libraries for several programming languages, including Type-
Script, Python, Go, .NET, and partially Java. You use these libraries to create and
configure cloud resources.
In Pulumi, you define resources using the respective resource constructor functions.
This function takes in the configuration for the resource as input, and returns a refer-
ence to the resource to be created.
Pulumi code can also contain logic for managing relationships between resources. For
example, you can specify that one resource depends on another, so that Pulumi knows
to create the dependent resource first. Anyway, Pulumi’s backend already knows the
dependencies between the resources to be created, so in any case he will manage to
reorder their creation in a proper way.

3.2.5 Creating and updating resources with Pulumi commands

Once the code is written, you use Pulumi to create the cloud resources specified in the
stack definition. Pulumi uses the exposed cloud provider REST APIs to create the
resources and their corresponding configurations. When a change is detected, Pulumi
compares the desired state (based on your code) to the current state (based on the
resources on the cloud) and makes any necessary change to bring the resources into
compliance with the desired state. As we mentioned before, this feature is achieved
through the state file that the backend owns.

3.2.6 Viewing resources state

Pulumi provides a command to view the state of the resources managed by the appli-
cation: pulumi stack. This command shows the created resources, their properties,
and their current state. This information can be used to debug issues and ensure that
resources are configured correctly.
The state of a resource is maintained by Pulumi in a ”state file”. This file contains
information about the resources that have been created, as well as their current config-
uration and state. The state file is automatically updated by Pulumi as resources are
created, updated, or deleted.

3.2.7 Restoring resources state

In case of issues or errors during resource creation or management, you can use Pulumi
to restore the resource state to the last known good state. This ensures that cloud
resources are always consistent with the code and stack definition.
Pulumi uses the state file to track the current state of the resources it manages. If
the state of a resource becomes inconsistent with the desired state (for example, if a
resource is accidentally deleted) you can use Pulumi to recreate the resource based
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on the information in the state file. This restores the resource to its last known good
state and brings it back into compliance with the stack definition.

3.3 Pulumi’s Output

In an IaC context, and therefore with Pulumi, the creation of the resources is not
immediate. Hence, in our code when we call a constructor for a certain resource, we are
not actually creating it in that exact moment, but we are rather requesting Pulumi to
instantiate such a resource on the given cloud provider. So, the usage of that resource
is not available until Pulumi will have completed its creation on the cloud provider.
How can we perform operations on a resource when we do not know when it will
become available? Pulumi addresses such a problem with the Output type.
In Pulumi, Output values are typically computed asynchronously, so that they can
represent resources that are being provisioned by cloud providers. Like a Future in
Java, or a Promise in TypeScript, an Output can be used to chain operations that
depend on the completion of other operations. This feature will come handy to chain
the definition of resources that depends on other resources.
We’ll see how to create a Monad out of the Output type so that we’ll be able to boost
our syntactic sugar in the Scala version of the case study.





Chapter 4

Scala: modern, functional and

object-oriented

Scala brief overview. First the language paradigms are introduced, and then the functional-
ities used for the thesis are presented and explained

4.1 Introduction to Scala

4.1.1 Scala, a modern functional and object oriented program-

ming language

Scala is a modern multi-paradigm programming language designed to express common
programming patterns in a concise, elegant, and type-safe way. It seamlessly integrates
features of object-oriented and functional languages.

4.1.2 Object-orientation

Scala is a pure object-oriented language in the sense that every value is an object.
Types and behaviors of objects are described by classes and traits. Classes can be
extended by subclassing, and by using a flexible mixin-based composition mechanism
as a clean replacement for multiple inheritance.

4.1.3 Functional paradigm

Scala is also a functional language in the sense that every function is a value. Scala
provides a lightweight syntax for defining anonymous functions, it supports higher-
order functions, it allows functions to be nested, and it supports currying. Scala’s
case classes and its built-in support for pattern matching provide the functionality of
algebraic types, which are used in many functional languages. Moreover, singleton
objects provide a convenient way to group functions that aren’t members of a class.

17
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4.1.4 Scala functionalities related to the work of the thesis

For the work of the thesis, Scala 3 has been used.

Higher order functions and currying

Thanks to the functional paradigm of Scala, I used the higher order functions and the
currying feature to create a powerful syntactic sugar for the declaration of AWS EC2
IaC resources in a concise and elegant way.

Higher order functions An higher order function is a function that either takes
one or more functions as arguments or returns a function as return value, or both of
them. Such a feature is at the base of the functional programming paradigm since
it lets concatenate functions and create more complex and more powerful abstract
constructs, such as functors, applicatives, and monads, to eventually work on data in
an immutable and safe way. We’ll see more about functors and monads in the Functor
and monads paragraph.

Currying Currying is the transformation of a function with multiple arguments into
a sequence of single-argument functions. That means, converting a function like f(a,
b, c, ...) into a function like f(a)(b)(c)....
To give a more detailed example let’s consider the following function in Scala:

def sum(a: Int, b: Int) : Int =

a + b

Such a function, takes two Int parameters as input and returns the sum of them.
Therefore, if we call sum(1, 2) we get 3 as result. Now let’s instead consider the
following function:

def csum(a: Int)(b: Int) : Int =

a + b

Here we can call the function writing csum(1)(2) and we’ll get 3, but we could also
write csum(1) and get, as output, a function that takes a single Int in input and
sums it to 1 (the Int we passed to csum previously). The returned function will be
analogous to this function:

def csum1(b: Int) : Int =

1 + b

So the currying is letting us define and use partial functions, and this feature, combined
with the chance of taking functions as parameters, will be a key ingredient for the highly
expressive and readable solution achieved and proposed in the AWS EC2 resources
generation with Pulumi chapter.
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Pattern matching

Pattern matching is a mechanism for checking a value against a pattern. A successful
match can also deconstruct a value into its constituent parts. It is a more powerful
version of the switch statement in Java and it can likewise be used in place of a series
of if/else statements. Let’s now consider the following example, taken from Tour of
Scala - Pattern Matching, to have a better idea of the expressiveness of such a feature:

sealed trait Device

case class Phone(model: String) extends Device:

def screenOff = "Turning screen off"

case class Computer(model: String) extends Device:

def screenSaverOn = "Turning screen saver on..."

def goIdle(device: Device): String = device match

case p: Phone => p.screenOff

case c: Computer => c.screenSaverOn

We can notice how we are applying the pattern matching on the variable device to
have a different behavior on the base of its actual type. This is useful when the case
needs to call a method on the pattern. In fact, we’ll see in the AWS EC2 resources
generation with Pulumi chapter how this feature of Scala will be used to achieve our
solution.
Obviously, in such an example, the right-hand side of the various cases must have
a valid return type with respect to the return type given in the declaration of the
method, that in this case is String.

Extension methods

Extension methods let us add methods to a type after the type is defined, i.e., they let
us add new methods to closed classes. Let’s consider an example from Scala 3 Book -
Extension Methods about the calculation of the circumference of a circle.
In a file we may have:

case class Circle(x: Double, y: Double, radius: Double)

And in another:

extension (c: Circle)

def circumference: Double = c.radius * math.Pi * 2

Then we could have this code in our main method:

val aCircle = Circle(2, 3, 5)

aCircle.circumference

We shall notice that such extension methods are letting us extend types without relying

https://docs.scala-lang.org/tour/pattern-matching.html
https://docs.scala-lang.org/tour/pattern-matching.html
https://docs.scala-lang.org/scala3/book/ca-extension-methods.html
https://docs.scala-lang.org/scala3/book/ca-extension-methods.html
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on helper classes, letting us elegantly invoke methods on instances of the closed classes
or objects we are referring to.

Given and using keywords

given has different usages, but we are interested into its capability to automatically
construct an instance of a certain type and make it available to contexts in which we
are expecting an implicit parameter. To mark a parameter as implicit we have to use
the keyword using. Doing so, a given variable with a type matching to the implicit
parameter’s one, if present in the scope, will be automatically injected in at compile

time.
Let’s consider an example taken from Given and Using Clauses in Scala 3 - Rock the
JVM to better understand such concepts:

given personOrdering: Ordering[Person] with {

override def compare(x: Person, y: Person): Int =

x.surname.compareTo(y.surname)

}

Here we are creating an instance of Ordering for the Person type. Now let’s consider
the following function declaration:

def listPeople(persons: Seq[Person])(using ordering: Ordering[Person]) = ...

We can notice how the ordering parameter has been marked with the using keyword.
Now, when we’ll have to call such a function, it’ll require us to just pass the persons
parameter, since the implicit one (ordering) will be automatically injected:

// the compiler will inject the ordering at the end of following function call

listPeople(List(Person("Weasley", "Ron", 15), Person("Potter", "Harry", 15)))

This is a key functionality that, among with other Scala features, will let us achieve a
more concise and readable solution.

Traits

Traits are used to share interfaces and fields between classes. They are similar to Java
8’s interfaces. Classes and objects can extend traits, but traits cannot be instantiated.
Here is a simple example of the traits usage:

trait Mighty:

def roar(): Unit

abstract class Animal:

def name(): Unit

class Lion extends Animal, Mighty:

override def name(): Unit = println("Lion")

override def roar(): Unit = println("The mighty Lion roars!")

https://blog.rockthejvm.com/scala-3-given-using/
https://blog.rockthejvm.com/scala-3-given-using/
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class Cat extends Animal:

override def name(): Unit = println("Cat")

The Lion class is extending the abstract class Animal and also the Mighty trait. This
is providing the lion the extra roar() function.
In Scala is possible to extend from 0 or 1 abstract classes and as many traits as we
desire.

Functors and monads

Functors A Functor for a type provides the ability for its values to be ”mapped
over”, i.e., apply a function that transforms the value contained in a given context

while remembering its shape. We can represent all types that can be ”mapped over”
with F.
F it’s a type constructor: the type of its values becomes concrete when provided a type
argument. Therefore we write it F[ ], hinting that the type F takes another type as
argument. The definition of a generic Functor would thus be written as:

trait Functor[F[_]]:

extension [A](x: F[A])

def map[B](f: A => B): F[B]

The instance Functor to List is:

given Functor[List] with

extension [A](xs: List[A])

def map[B](f: A => B): List[B] =

xs.map(f)

Here we can notice, as previously mentioned in the Given and using keywords paragraph,
that the given keyword is letting us create an instance of the Functor class for the
List type.
Let’s consider now the following usage of the map extension method on a list:

val l: List[Int] = List(1, 2, 3)

l.map(x => x * 2) // the output is List(2, 4, 6)

The map method is now directly used on l. It is available as an extension method
since l’s type is List[Int] and a given instance for Functor[List], which defines
map, is in scope (thanks to the given keyword).

Monads A Monad provides the ability to sequence operations on values of a given
type while maintaining the context of each operation. It is a generalization of the
Functor concept, which allows us to apply a function to a value in a context. Such a
generalization is letting us achieve a new level of expressiveness, that can be summarized
as the chance to chain operations on a monadic value.
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Like Functors, Monads can be represented by a type constructor M[ ] that takes
another type as an argument. The definition of a Monad is typically given in terms
of two operations: pure, which lifts a value into the monadic context, and flatMap,
which sequences operations on values in the context.
A generic Monad can be defined as follows:

trait Monad[M[_]] extends Functor[M] {

def pure[A](a: A): M[A]

extension [A, B](ma: M[A])

def flatMap[B](f: A => M[B]): M[B]

}

And if we want to instantiate a given instance for the List Monad we shall write:

given Monad[List] with {

def pure[A](a: A): List[A] = List(a)

extension [A, B](xs: List[A])

def flatMap[B](f: A => List[B]): List[B] = xs.flatMap(f)

}

To conclude consider this example on Lists:

val xs = List(1, 2, 3)

val ys = List(4, 5, 6)

xs.flatMap(x => ys.map(y => x + y))

// List(5, 6, 7, 6, 7, 8, 7, 8, 9)

The fact we got a List[Int] as return type from the flatMap operation is letting us
the chance to apply immediately after another operation on such a value. Differently,
if we use map on xs, we will obtain the following result:

val xs = List(1, 2, 3)

val ys = List(4, 5, 6)

xs.map(x => ys.map(y => x + y))

// List(List(5, 6, 7), List(6, 7, 8), List(7, 8, 9))

that is of type List[List(Int)]. With this new type, we might have troubles in
chaining operations since the data structure has changed.

For comprehension

Scala offers a lightweight notation for expressing sequence comprehensions. Compre-
hensions have the form for (enumerators) yield e, where enumerators refers to a
semicolon-separated list of enumerators. An enumerator is either a generator which
introduces new variables, or it is a filter. A comprehension evaluates the body e for
each binding generated by the enumerators and returns a sequence of these values.
The for yield construct in Scala requires up to four functions to be defined on the type
we are iterating on to work: map, flatMap, foreach, withFilter. For our purpose, we
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will be satisfied if we define the map and the flatMap. In fact, it is not a coincidence
that we previously introduced the concept of Functor and Monad and map and flatMap

functions. To better understand how the for comprehension concept works let’s consider
a brief example:

val xs = List("foo", "bar", "baz")

val ys = List("hello", "world")

for {

x <- xs

y <- ys

} yield s"$x $y"

// List("foo hello", "foo world", "bar hello",

"bar world", "baz hello", "baz world")

We can notice how we are iterating on the two lists to generate a List of string as
result, made of the combinations of the two lists’ elements.
The for yield construct, in combination with the Monads, will be a key feature to
improve our Scala solution.

Union type

Scala has also the so called ”union types”. Used on types, the | operator let us define
these kind of types. The type A | B represents values that are either of the type A or
of the type B.
So, the function declaration def foo(a: Int | String) : Unit is a function that
takes as input either an Int parameter or a String parameter. Now we can write
both the following function calls:

∗ foo(5)

∗ foo("bar")

and both will compile (if a valid function body has been provided obviously).





Chapter 5

AWS EC2 resources

generation with Pulumi

The implementation of a TypeScript solution and a Scala solution of a case study are here
presented. Following, we have the implementation of the Scala syntactic sugar created for
supporting Pulumi and how I managed to automate its generation

5.1 Amazon Web Services

AWS is a wide collection of services with many different purposes and characteristics
including computation, storage, databases, analytics, networking, mobile, developer
tools, management tools, IoT, security, and enterprise applications. All these services
are on-demand, available in seconds, with pay-as-you-go pricing. Anyway, for the
purpose of the thesis we’ll focus only on the EC2 module.

5.1.1 AWS’s EC2 module

EC2 (Elastic Computing 2) provides scalable computing capacity in the Amazon Web
Services (AWS) Cloud. Amazon EC2 eliminates the need to invest in hardware up
front, so that the development and deployment of the applications is faster.
It includes networking tools, container services, tools to manage scalability, and more.

5.2 Case study infrastructure overview

For the thesis, only few components of the vast EC2 module have been selected to
create a working infrastructure.

5.2.1 Components of the infrastructure

The infrastructure I created for the case study of the thesis is an AWS EC2 VPC
hosting 3 private subnets, 3 public subnets, an internet gateway to let the public
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subnets connect to the internet and a routing table to map the public subnets to the
internet gateway. The architecture looks like this:

Image 5.1: Infrastrutcture Architecture
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AWS is divided into regions, like us-east-1, eu-central-1, eu-south-1, etc. For the
purpose of our thesis eu-south-1 as a region has been chosen. The servers of such a
region are located in Milan. Each region can have multiple availability zones, eu-south-1
has 3 different availability zones, and because of this I chose to create 3 couples of
public/private subnets (A-A, B-B, C-C). One couple on each availability zone. The
purpose of the availability zones is mainly for robustness. If an availability zone
becomes temporary unavailable, we can rely on the others to keep our services up.

VPC

The VPC is our ”container” for all the other infrastructure resources. We’ll define the
subnets, the internet gateway, and the routing table within such a VPC.
The most important setting of our AWS EC2 VPC is the CIDR (Classless Inter-Domain
Routing) block. It represents the range of private IP addresses that the VPC can use
to create and manage resources within the VPC.

CIDR The CIDR block is used to define the range of IP addresses that the VPC
can use. In our case the CIDR block is 10.136.0.0/24, which means that the VPC
has access to all IP addresses from 10.136.0.0 to 10.136.0.255. The 24 in the CIDR
block is the prefix length, aka the subnet mask, that is used to identify the VPC. The
remaining 8 bits of the IP address will be used to identify the hosts in the VPC.
We’ll assign a name as well to our VPC so that will be easier to recognize it when we’ll
inspect the AWS Management Console, that is the GUI version of the AWS CLI.

Subnet

The subnets will require the ID of the VPC and the CIDR block that defines their IP
scope. For the subnets we’ll use the following CIDR blocks:

∗ Private Subnet A: 10.136.0.0/27

∗ Private Subnet B: 10.136.0.32/27

∗ Private Subnet C: 10.136.0.64/27

∗ Public Subnet A: 10.136.0.96/27

∗ Public Subnet B: 10.136.0.128/27

∗ Public Subnet C: 10.136.0.160/27

3 of the 8 bits left out for the hosts identification have been used to identify the subnets.
In fact we shall notice that now the subnet mask is not 24 anymore, but 27. Hence, we
are left with 5 bits to identify the hosts within each subnet, giving us 32 possible IPs.
From such IPs 2 are reserved for the network address and the broadcast address, so we
have 30 possible IPs. We won’t discuss this topic any further since it isn’t essential for
the final objective of the thesis.
Moreover, we’ll define also the availability zone for each subnet.

InternetGateway

The definition of the internet gateway is actually quite straight forward. The mandatory
parameter to assign is the ID of the VPC.
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RouteTable

The definition of a route table is required in order to bind the public subnets to the
internet gateway, so that they can send and receive data over the internet.
Here, along with the VPC ID, we assign the routes of such routing table. In order to
do this we have to provide a CIDR and a target resource to which the packet will be
forwarded to, that can be a subnet or the internet gateway in our case. The internet
gateway is mapped with the CIDR block 0.0.0.0/0. Obviously also the ID of the
internet gateway is required in order to bind it to the routing table.
In a nutshell this means that every packet not directed to a host within the VPC will
be routed to the internet gateway and then to the internet.
The association of the public subnets to the routing table will be achieved using the
route table association resource. Such a resource will require us to provide the ID of
the subnet and the ID of the routing table to establish a connection. The private
subnets will not be associated to such a routing table, since we want to keep them
private. In fact, without explicitly associating them to a given routing table, AWS will
automatically associate them to a default routing table that, being not bound to an
internet gateway, will keep them private.

5.3 TypeScript implementation of the case study

The first version of the implementation of the previously defined architecture is written
using the TypeScript APIs of Pulumi. The structure of the project, and this holds for
the Scala version as well, is trivial. We have a simple index.ts file that defines the
entry point for our TypeScript project, and it is just a couple of lines long:

1 import { VPC } from ’./VPC/VPC ’;

2

3 const vpc = new MyVPC(" Custom VPC");
✆

The interesting part relies on the MyVPC class. Such a class extends the ComponentResource
class of Pulumi. In our TypeScript implementation, we use the constructor of the
user-defined MyVPC class to call all its class methods, that are responsible for the
creation of the resources. We won’t discuss this section further since the interesting
part of the code are the actual methods that are responsible for the creation of the
resources.

5.3.1 VPC resource creation

The call to the VPC resource creation API of Pulumi is done in this method of the
MyVPC class:
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1 protected createVPC () {

2 this.vpc = new Vpc(" vpc_res", {

3 cidrBlock: "10.136.0.0/24" ,

4 tags: {Name: "myVPC -typescript "},

5 },

6 {

7 parent: this ,

8 });

9 }
✆

vpc res is the name that will be given by Pulumi at this resource once on the stack.
We can notice how the various parameters are given in a declarative style within the
curly brackets. Such a syntax is syntactic sugar for a Map definition.
At line 9 the parent of this resource is set. With this specification, we are telling to
the stack of Pulumi that the VPC resource vpc res that we are creating is a child
resource of the resource identified by the MyVPC class, that in practice is nothing but a
container for the other resources.

5.3.2 Internet gateway creation

To create the internet gateway resource we can use the following code:

1 protected createIGW (){

2 this.gw = new InternetGateway ("gw", {

3 vpcId: this.vpc?.id ,

4 tags: {

5 Name: "myIGW -typescript",

6 },

7 },

8 {

9 parent: this.vpc ,

10 });

11 }
✆

It is really simple since it requires just the ID of the VPC in which it has to be created
and optionally a name and a parent for the Pulumi’s stack representation.

5.3.3 Subnets creation

To create the private and the public subnets we require a more complex logic. The
function that has been used is protected createAZsSubnets(isPvt: Boolean). It
is called twice, once with a true value to create the private subnets, and another
one with false to instantiate the public ones (and connect them to the routing table
bound with the internet gateway).
In the body of the function, first we want to get all the availability zones present
in the AWS region we are working on. To achieve this, we will use such a function
this.availableZones = aws.getAvailabilityZonesOutput().
Second, we want to create both a private and public subnet in each availability zone
acquired with the aforementioned method. The pulumi.all function, in combination
with the apply function will help us in achieving such a goal.
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pulumi.all

pulumi.all is a utility function in Pulumi that allows you to combine multiple Outputs
into a single Output. So if we consider the following code:

1 pulumi.all([this.availableZones.names , this.vpc!.id])
✆

Such a call returns us an Output<[string[], string]>. The array of strings is the
list of the availability zones names, while the second string represents the ID of our
VPC on AWS EC2. Now we have a new Output type that is more suitable to create
the subnets based on our VPC ID, because the function apply is letting us ”open” an
Output value and access its content.

.apply

Let’s extend our code in this way:

1 pulumi.all([this.availableZones.names , this.vpc!.id]).apply (([

azNames , vpcId]) => {

2 // lambda ’s body to create the subnets here

3 })
✆

The apply function is letting us access Output<[string[], string]> and apply some
logic on the inner values.

The apply’s lambda Now that we have the access to the list of availability zones
and the VPC ID, we can iterate over the availability zones and create the subnets for
our VPC. Here is the complete code of the function:
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1 protected createAZsSubnets(isPvt: Boolean) : Output <Subnet []>{

2 this.availableZones = aws.getAvailabilityZonesOutput ()

3 return pulumi.all([this.availableZones.names , this.vpc!.id]).

apply (([ azNames , vpcId]) => {

4 let i = 0

5 let listToPushInto: Subnet [] = Array <aws.ec2.Subnet >()

6 azNames.forEach(azName => {

7 let fullName = azName + (isPvt ? "-pvt" : "-pub") + "-

subnet -typescript"

8 listToPushInto.push(new Subnet(fullName , {

9 vpcId: vpcId ,

10 availabilityZone: azName ,

11 cidrBlock: isPvt ? this.pvtSubnetsCidrs[i] : this.

pubSubnetsCidrs[i],

12 tags: {

13 Name: fullName ,

14 },

15 },{

16 parent: this.vpc

17 }));

18 i++;

19 });

20 return listToPushInto

21 });

22 }
✆

In the code we instantiate private or public public subnets basing on the isPvt passed
in the createAZsSubnets. We can notice that for the creation of a subnet we pass
arguments such as vpcId, the availability zone name, the CIDR block, and a name
(that is a tag) to better identify it on the stack.
Each newly created subnet is then pushed into the class field this.prvSubNets or
this.pubSubNets (that are arrays of subnets), basing on the nature of the subnet.
The creation of a subnet requires us to provide both the availability zone name and
the ID of the VPC. Since these two pieces of information are contained in two separate
Outputs (Output<String[]> and Output<String> respectively) we must first use the
pulumi.all to wrap them in a single Output<String[], String>. This due to the
fact that .apply can accept a single Output<A>, for any A type, value as input and not
a pair. Then, we can use the .apply to unbox from the Output<String[], String>

its inner value. Now that we have both the pieces of information out of the context

value, we can use them to create the subnets.
We can notice that the .apply function is, at the end of its lambda, returning a list
of the created subnets. Since the apply function wraps any returned value inside an
Output context, its actual return type is Output<Subnet[]>. Such a return value is
also the whole functions’s one.
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5.3.4 Routing table creation

This is the code to create the routing table resource:

1 protected createRouteTable () {

2 this.routeTable = new RouteTable (" example", {

3 vpcId: this.vpc!.id ,

4 routes: [

5 {

6 cidrBlock: "0.0.0.0/0" ,

7 gatewayId: this.gw!.id ,

8 },

9 ],

10 tags: {

11 Name: "myRouteTable -typescript",

12 },

13 },

14 {

15 parent: this.vpc ,

16 });

17 }
✆

On top of the classic VPC ID we are assigning here the routes. As we mentioned
before in the Routetable paragraph, we are defining the route with CIDR 0.0.0.0/0 to
redirect all the packets coming from the public subnets, and not having as destination
an IP internal to our VPC, to the internet gateway.
We are also giving a name to the routing table and assigning its parent.

5.3.5 Attaching the public subnets to the internet gateway

As we mentioned previously, we use the this.attachRouteTableToPubSubnets()

function to attach the public subnets to the internet gateway. Here is the code of the
function:

1 protected attachRouteTableToPubSubnets (){

2 let i = 0

3 this.pubSubNets.apply(subNets => {

4 subNets.forEach(sn => {

5 new aws.ec2.RouteTableAssociation(‘✩{i}-

routeTableAssociation -typescript ‘, {

6 subnetId: sn.id,

7 routeTableId: this.routeTable !.id,

8 },

9 {

10 parent: this.vpc

11 });

12 i++

13 })

14 });

15 }
✆

Here we used once more, as for the subnets creation, a combination of apply and the
foreach to iterate over all the subnets ”unboxed” from the Output context. Also here,
we unbox the Subnet[] value from the Output with the aid of the apply function, and
then we iterate over the subnet array with the foreach.
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Inside the foreach’s lambda we are defining a new RouteTableAssociation AWS
EC2 resource that requires just the ID of the subnet and the ID of the routing table
to which we want to attach the subnet to.

5.4 Creating the resources with Pulumi

After having seen all the code to create the resources, we’ll see what the Pulumi
command pulumi up will do. The command checks if all the resources that we want
to create have valid parameters and there are not circular dependencies among the
resources on their creation. If everything is nice and neat, it will shows us the preview
of the changes that we are about to get:

Image 5.2: pulumi up preview

If we press yes this is the output:
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Image 5.3: pulumi up confirmed

We can notice how the resources created are nested into each other thanks to the
parent option that we used. This is helping us in keeping our resources on the stack

nicely ordered and tied up. Moreover, we can notice how they are neatly nested thanks
to the usage of the parent extra option.

5.5 Destroying the resources with Pulumi

Now let’s use the pulumi destroy command to destroy the resources on our Pulumi’s
stack. The preview of the changes that we are about to get looks like this:
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Image 5.4: pulumi destroy preview

If we confirm the changes this is the result:

Image 5.5: pulumi destroy confirmed
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5.6 My Scala implementation of the case study

Since Scala is not supported by Pulumi, I had to get around this somehow. As I
mentioned in the The onerous work to officially support a new language in Pulumi
section, an official support of Scala for Pulumi was unfeasible, hence a custom and
partial support of Scala has been achieved. The idea behind the adopted solution is
to exploit the compatibility of Scala with the Java libraries to write custom syntactic

sugar. Such syntactic sugar will be based on the Pulumi Java’s APIs and will provide
to the user cool constructs to write readable and expressive code to interact with
Pulumi.
The steps of the work done have been the followings:

1. manually write the sugared Pulumi API functions to create the Pulumi resources
using Scala

2. use such APIs to recreate the stack obtained with the TypeScript solution shown
before in the Creating the resources with Pulumi section

3. create an automatic code generator for our syntactic sugar functions, so that we
can quickly create a library for Scala’s Pulumi APIs

Obviously, the third step is quite wide, and if fact with my work I had generated only
the functions for a part of the Scala’s Pulumi APIs for the AWS EC2 module.
The just defined steps will be now more accurately presented.

5.6.1 Structure of the Java APIs for the constructors of the

resources in Pulumi

To understand the syntactic sugar functions that I defined, let’s first consider the
general structure of the Java APIs for the constructors of the resources.
The constructor of a resource, in general accepts a name and an instance of the
corresponding Args class of the resource we are creating. Let’s consider for example
the Vpc resource. In Java, to instantiate such a resource we’d call:

1 protected Vpc vpc = new Vpc("my -vpc -java", VpcArgs.builder ()

2 .cidrBlock ("10.136.0.0/24")

3 .tags(Map.of("Name", "main"))

4 .build(),

5 CustomResourceOptions.builder ()

6 .parent(this)

7 .build());
✆

We can see that along with the name to be assigned to the VPC ”my-vpc-java”, a
VpcArgs builder and a CustomResourceOptions builder are passed by. These builders
will create an instance of the respective classes that will be used to set respectively
the parameters and the parent of the Vpc resource. So, for our case study we need to
consider: the name to be assigned to the created resource on the Pulumi stack, the
builder of the respective Args class of the resource, and the CustomResourceOptions
builder.
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5.6.2 syntactic sugar usage

Our syntactic sugar is split in 2 categories of functions. The first is about the functions
that represent the constructors of the resources. The second is for the methods available
within the builders of the Args classes and for the CustomResourceOptions builder’s
functions. The idea to create a resource is to call the sugared function that represent
the constructor of that resource, and then call the Builder’s methods to assign the
various parameters to the resource.

Vpc creation

This is how a Vpc resource can be created with my syntactic sugar :

1 val myVpc = vpc("scala -main") ({

2 cidrBlock ("10.136.0.0/24")

3 tags("Name" -> "myVpcScala ")

4 },{

5 parent(this)

6 })
✆

At line 1, the vpc function is the actual sugared function for the VPC resource
constructor. We can notice that we have a curried function. The first parentheses
are taking the parameter for the resource name on the Pulumi stack, while the
second ones contain two lambdas (defined by the curly brackets). These lambdas
are respectively used to call all the builder methods of the VcpArgs class and the
CustomResourceOptions’s ones.
We can notice that we didn’t explicitly define an instance of the builders of such classes.
We will soon see how we achieved such a syntactic sugar trick.
cidrBlock and tags are the generated methods are the generated methods for the
builder of the VpcArgs class.
parent is instead the generated method for the builder of the CustomResourceOptions
class.
Moreover, we can also notice that inside tags, that expects a Map[String, String]

type, the explicit call to the Map builder for the instantiation of a Map[String, String]

containing a single element isn’t required. This other trick will be explained later as
well.

Internet gateway creation

Much similar to the VPC resource, we have this code for the internet gateway creation:

1 val myIGW = internetGateway ("gw") ({

2 vpcId(myVpc.getId())

3 tags("Name" -> "myIGWScala ")

4 },{

5 parent(myVpc)

6 })
✆

The code won’t be commented since is analogous to the VPC case.
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Routing table creation

The code to create a routing table:

1 val myRouteTable = routeTable (" myRouteTable ") ({

2 vpcId(myVpc.getId())

3 routes(

4 routeTableRouteArgs (){

5 cidrBlock ("0.0.0.0/0")

6 gatewayId(myIGW.getId())

7 })

8 tags("Name" -> "myRouteTableScala ")

9 },{

10 parent(myVpc)

11 })
✆

The only thing that is worth to mention here is that the routes function, at line 3, ex-
pects a List[RouteTableRouteArgs], but we are providing only a RouteTableRouteArgs.
As for the case of the Map[String, String] with the parent method mentioned above,
the same trick has been used to provide the syntactic sugar that lifts us from the need
of instantiate a singleton List[RouteTableRouteArgs] manually.

Subnets creation

Much different from the other resources is the function to create the subnets:

1 def createAzSubnets(isPvt: Boolean) =

2 for

3 azRes <- availabilityZonesNames ()

4 myVpcId <- myVpc.id()

5 tuples = azRes.names ().zip(if isPvt then pvtSubnetsCidrs else

pubSubnetsCidrs)

6 yield

7 tuples.map((name , cidr) => {

8 val fullName = name + "-" + (if isPvt then "pvt" else "pub") +

"-subnet -scala"

9 subnet(fullName) ({

10 vpcId(myVpcId)

11 availabilityZone(name)

12 cidrBlock(cidr)

13 tags("Name" -> fullName)

14 },{

15 parent(myVpc)

16 })

17 })
✆

We can notice how we achieved to get a solution that is relying only on the for yield
construct thanks to the monad for the Output type, that we will soon see how it is
actually implemented.
The azRes enumerator is extracting a GetAvailabilityZonesResult object out from
the Output[GetAvailabilityZonesResult] object returned by availabilityZonesNames().
Similarly, the myVpcId enumerator is instead extracting the ID of the VPC from the
Output[String] value coming from myVpc.id(). These two enumerators are the

replacement of the pulumi.all function in the TypeScript solution. These
extractions are possible only thanks to the mondadic implementation of the Otput
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type. In fact this syntactic sugar of the for yield is, behind the scenes, implemented as
a concatenation of the map and flatMap functions. So, the fact that our for yield is
able to work on Output types is possible only because of the monadic implementation
of the Output type that is exposing the map and flatMap methods to be used by the
for yield behind the scenes.
At line 4 we have the definition of the tuple value as a zipping of the availabil-
ity zone names (extracted with the .names() function) and the respective CIDR
blocks. The tuples are mapped with a lambda that declares the various subnets to
be created. Now, the yield is concatenating the various declared subnets in a single
Output[Iterable[Subnet]], that is the return type of the for yield and of the whole
function.

Attaching the subnets to the routing table

1 def attachRouteTableToPubSubnets () = // Output[Iterable[

RouteTableAssociation ]]

2 for

3 subnets <- pubSubnets

4 tuples = subnets.zipWithIndex

5 yield

6 tuples.map((ps, idx) => routeTableAssociation(idx + "-

assoc -scala ") ({

7 subnetId(ps.getId ())

8 routeTableId(myRouteTable.getId ())

9 }, {

10 parent(myVpc)

11 }))
✆

Similarly to the subnet creation function, also here we use the for enumerators to
”unbox” an Output[Iterable[Subnet]] value. After having zipped the subnets to
the indexes, whose only purpose is to give a custom name to the created associations,
we iterate over the tuples to declare the associations with the aid of a map function.
Since the logic is analogous to the createAzSubnets function we won’t comment this
code further.

Resources creation with pulumi up

Now let’s make sure that the stack created with pulumi up is the same of the one
created with the TypeScript implementation. From this image we can see that they
are equivalent to the ones shown in Resources creation with pulumi up in TypeScript:
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Image 5.6: pulumi up result with the scala implementation

5.6.3 syntactic sugar for the constructors of the resources

All the methods that we just used for creating the Pulumi resources in Scala (vpc,
internetGateway, etc.), behind the scenes are implemented following a common
pattern. Consider the vpc function of the syntactic sugar defined inside the ”Pulu-
miUtilFunctionsForScala.scala” file:
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1 def vpc(param: String)

2 (init: VpcArgs.Builder ?=> Unit ,

3 initOpt: (CustomResourceOptions.Builder ?=> Unit) =

baseOpts): Vpc =

4 given b: VpcArgs.Builder= VpcArgs.builder ()

5 init

6 given bo: CustomResourceOptions.Builder =

CustomResourceOptions.builder ()

7 initOpt

8 new Vpc(param , b.build(), bo.build())
✆

Let’s analyze the function by steps. First of all we can see that the function declaration
is curried, we have 2 parentheses with different input parameters.
The first parentheses take simply a String parameter, that is used to set the name of
the Vpc resource on the Pulumi stack.
The second parentheses are taking two lambdas as parameters: a VpcArgs.Builder

?=> Unit and a CustomResourceOptions.Builder ?=> Unit with default parameter
baseOpts. We’ll see in a moment what baseOpts is.
In Scala, a lambda that takes an Int and returns a String has this type notation:
Int => String, so does that ’?’ in front of the ’=>’ mean?
Such ’?=>’ is denoting a context function, that is a function with (only) context param-
eters. In the given and using keywords paragraph we introduced the using keyword.
Such ’?’ is quite analogous to a using keyword used to mark a function input parameter
as an implicit parameter. This is, in part, what let us call the builder methods like
cidrBlock("10.136.0.0/24") and tags("Name" -> "myVpcScala") without having
to call them on a specific builder instance (as shown in the code shown in the Vpc
creation in Scala paragraph). We will get the whole picture of this trick when we’ll
talk about the syntactic sugar for the builders’ methods in the syntactic sugar for the
builders’ methods paragraph.
To conclude, in the function body we have the instantiation of the builders for the
VpcArgs and CustomResourceOptions classes as given context parameters. The init
and initOpt lambdas, thanks to the ’?=>’ notation, are expecting a compatible context
parameter to be taken in input. Such lambdas will set the parameters of the respective
given builders. The function ends with the call to the Pulumi’s Java API for the
declaration of a Vpc resource, passing in the name of the VPC and the instances of the
VpcArgs and CustomResourceOptions classes built using the respective builders.

Correspondence between the input parameters and the user defined code

used to create the VPC

To have a better idea to what these parameters refer in our VCP creation case, consider
this image:
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Image 5.7: Parameters correspondence in the VPC declaration in Scala

The red box represents the name for our VPC resource on the Pulumi stack.
The green one, with the curly brackets, is the lambda that takes a given VpcArgs.Builder

as an implicit parameter from the context. In fact we are not providing any explicitly.
The given b defined in the first line of the body of the vpc function is the instantiation
of a given instance of such a builder, that will be automatically injected by the compiler
in the init lambda represented by the green box.
Analogous is the concept for the blue box.

The baseOpts function

The baseOpts function that we mentioned before as a default lambda for our vpc

function is the following:

1 def baseOpts(using o: CustomResourceOptions.Builder) : Unit =

{}
✆

In practice, it is a vacuous lambda that does nothing on the CustomResourceOptions
builder. The question here is: why do we need such a default function? To answer the
question let’s consider one more time the code to create a VPC with out syntactic

sugar :

1 val myVpc: Vpc = vpc("scala -main") ({

2 cidrBlock ("10.136.0.0/24")

3 tags("Name" -> "myVpcScala ")

4 },{

5 parent(this)

6 })
✆

We can see that we passed both the lambdas for the VpcArgs builder and for the
CustomResourceOptions builder, but what if we want to simply use the VpcArgs

builder and not set the parent? We can do the following:

1 val myVpc: Vpc = vpc("scala -main") {

2 cidrBlock ("10.136.0.0/24")

3 tags("Name" -> "myVpcScala ")

4 }
✆

This code compiles, and we can notice that we even got rid of the parentheses around
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the curly brackets for the lambda. If this compiles is only thanks to the default
parameter that is automatically injected in by the compiler, as we didn’t give an
explicit one.

Another question might now arise: why didn’t we change the signature of the function

in the following way?

1 def vpc(param: String)(using initOpt: (CustomResourceOptions.

Builder ?=> Unit), init: VpcArgs.Builder ?=> Unit) : etc.
✆

Here we have set the initOpt as an implicit parameter with the using keyword. The
main problems that we face with this solution are mainly two: we have to swap the
order of the parameters and we will be forced to explicitly type the using keyword if
we want to pass custom lambda for the CustomResourceOptions builder.
The first problem leads to a sort of awkwardness while defining the VPC resource,
since we have to define first the parent and then the actual parameters of the VPC
resource.
Moreover, these problems are due to the functioning of the Scala language. An implicit
parameter must come before all the explicit parameters and when trying to use an
explicit parameter in place of an implicit one we must use the using keyword. So, the
original solution with the default parameter is the best one since it doesn’t require us
to swap the order of the parameters and we are totally free to choose whether to pass
or not the explicit lambda for the CustomResourceOptions builder without worsening
our syntactic sugar.
Anyway, what if we modify the just presented alternative like this? Would it be better

despite the fact that we would still require the using keyword if we want to provide an

explicit parameter?

1 def vpc(param: String)(init: VpcArgs.Builder ?=> Unit)(using

initOpt: CustomResourceOptions.Builder ?=> Unit) : etc.
✆

Here we can notice that we set moved the implicit initOpt parameter in a new set of
parentheses with the currying, granting us the chance to define first the VPC settings,
and only then the custom options (i.e. setting the parent). Anyway, we have a third
problem that is affecting both this and the previous solution. The implicit initOpt
parameter requires us to provide a visible given instance for the implicit parameter
in the site of call of the function. In other words, leads to the awkward necessity to
create, or import, a given instance of the baseOpts vacuous lambda in our VPC.scala
file to have this solution work. Otherwise, the compiler would complain that there is
no a given instance for the implicit parameter in scope.
With this extra constraint, the first proposed solution is, in my opinion, the one that
is performing the best.

5.6.4 syntactic sugar for the builders’ methods

What we have shown up to now is not enough to have our syntactic sugar working,
we are missing a subtle point to get the work done. Let’s pay attention to how the
VpcArgs.Builder parameters are set inside the vpc function call. To be precise we
are referring to the methods at line 2 and 3 of this code:
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1 val myVpc = vpc("scala -main") ({

2 cidrBlock ("10.136.0.0/24")

3 tags("Name" -> "myVpcScala ")

4 },{

5 parent(this)

6 })
✆

Once the enclosing lambda will be invoked inside the vpc function, these methods will
be executed, but on which builder?
We already mentioned the fact that inside the vpc function a context instance of
the VpcArgs.Builder is initialized and the init lambda is able to use it as input
parameter thanks to the ’?=>’ operator. But how can the actual cidrBlock and tags

methods know on which builder they are being invoked?
We shall consider that those two methods are not the plain Pulumi’s Java APIs, but
are my own sugarized Scala versions of such methods. And without surprise, those
functions take the VpcArgs.Builder builder as an implicit parameter with the using
keyword.
This is the signature for the cidrBlock method in the syntactic sugar file named
”PulumiBuilderUtilFunctionsForScala.scala”:

1 def cidrBlock(param: String | Output[String ]) (using b: cidrBlockOwners)

: Unit
✆

We can notice that we have once again a curried function. Anyway, from how we have
seen before, the cidrBlock, and this holds for all the other builder methods, is called
with just a single set of parentheses. This is due to the fact that the second parentheses
here are taking an implicit parameter, properly marked with the using keyword.
The param parameter is, as we have seen in the Union type paragraph, a union type.
The String | Output[String] type is defined so since the Pulumi Java APIs for the
builders’ methods accept either a String or an Output[String]. Actually, in the Java
implementation multiple overloaded methods are given since the union type of Scala is
not available.
The second parentheses are taking an implicit parameter b of the type cidrBlockOwners,
that is defined as follows:

1 type cidrBlockOwners = RouteTableRouteArgs.Builder | SubnetArgs.Builder

| VpcArgs.Builder
✆

This is a user defined type that I defined to match the builders of all the Args classes
that are interested in having such a cidrBlock parameter to be assigned on their
builder instance. In fact in the Java APIs of Pulumi we have many different Args
classes’ builders that want to assign the same parameter (aka. cidrBlock) to their
own builder.
I remind that in the AWS EC2 module there are much more builders of the Args classes
that define a cidrBlock method, but my syntactic sugar has created the methods
for only the classes that I used in the case study. This choice has been made also for
simplicity in presenting the work done, otherwise the cidrBlockOwners type would
have been featuring many tens of types. The fact I used a union type to define this
function has two main motivations. The first is a Scala language constraint that I
came across. Let’s say that we wanted to define a function to assign the CIDR block
working exclusively for VpcArgs.Builder class. A definition of such a function would
look like:
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1 def cidrBlock(param: String | Output[String ]) (using b: VpcArgs.Builder)

: Unit =

2 param match

3 case x: String => builder.cidrBlock(x)

4 case x: Output[String] => builder.cidrBlock(x)
✆

And now let’s define another function that is working for the RouteTableRouteArgs.Builder:

1 def cidrBlock(param: String | Output[String ]) (using b:

RouteTableRouteArgs.Builder): Unit =

2 param match

3 case x: String => builder.cidrBlock(x)

4 case x: Output[String] => builder.cidrBlock(x)
✆

First, we can notice that they are actually the same, except for the signature, but such a
solution is not going to compile if we try to call the method cidrBlock("10.136.0.0/24")
here:

1 val myVpc: Vpc = vpc("scala -main") ({

2 cidrBlock ("10.136.0.0/24") \\ ERROR

3 tags("Name" -> "myVpcScala ")

4 },{

5 parent(this)

6 })
✆

The compiler will tell us that an ambiguous function call is present at the line 2 of this
block of code. This is due to the fact that the functions we defined are curried and
their types are (String | Output[String]) => (VpcArgs.Builder => Unit) and
(String | Output[String]) => (RouteTableRouteArgs.Builder => Unit) respec-
tively. When we call cidrBlock("10.136.0.0/24") on the line 2 of the code showed
above, we are partially applying the curried function and so the compiler doesn’t know
which function we are trying to call, since it can’t infer the exact function call basing
only on a different return type (that is the only difference in the two returned partially
applied functions).
The second reason is that our all-in-one solution is reducing the size of the generated
sugared code, since we have just one single method instead of having as many as the
builders of the Args classes that require that methods are.

Now we are ready to present the entire cidrBlock method:
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1 def cidrBlock(param: String | Output[String ]) (using b: cidrBlockOwners)

: Unit =

2 b match

3 case builder: RouteTableRouteArgs.Builder =>

4 param match

5 case x: String => builder.cidrBlock(x)

6 case x: Output[String] => builder.cidrBlock(x)

7 case builder: SubnetArgs.Builder =>

8 param match

9 case x: String => builder.cidrBlock(x)

10 case x: Output[String] => builder.cidrBlock(x)

11 case builder: VpcArgs.Builder =>

12 param match

13 case x: String => builder.cidrBlock(x)

14 case x: Output[String] => builder.cidrBlock(x)
✆

The body of the function is quite simple in its functioning. It uses the pattern matching
to match the correct builder type and then uses pattern matching once more to match
the param parameter to a String or an Ouput[String]. Finally it calls the Java API
of Pulumi to set the cidrBlock parameter on the builder instance b.
The fact we have duplicated code here is inevitable. This is the only solution since
if we try to split the duplicated code into a helper function, we would fall again in
the ’ambiguous call’ compiler error presented above. But since this is automatically
generated code, it is not a real problem to have some duplicated code.

To have the final picture of all the functioning let’s consider this image:
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Image 5.8: Function calls flow and parameters passing for the VPC declaration

We can see how the lambda with the calls to our defined methods cidrBlock and tags

is passed as the init parameter of the sugared vpc function. Inside the vpc function
we execute that lambda and so, the cidrBlock method is invoked.
In blue we can see from where the parameters of the cidrBlock method are coming
from. The String representing the CIDR block is coming directly from the explicit
parameter that we passed, while the VpcArgs builder is implicitly injected from the
compiler since a given instance is defined inside the vpc function and the b parameter
of the cidrBlock method is marked with using.

Implicit conversion functions

On top of this, to boost our syntactic sugar I defined also two extra functions:
tupleToMap and elemToList. The purpose of these functions is to achieve the tricks
that I mentioned previously (in the Vpc creation in Scala and in the Routetable
creation in Scala) about not needing to explicitly instantiate a singleton Map and a
singleton List while passing a single argument to the tags or the routes methods.
The tupleToMap function is implemented like this:
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1 given tupleToMap[A, B]: Conversion [(A, B), Map[A, B]] =

2 (tuple: (A, B)) => Map(tuple)
✆

We can notice that the function that converts our tuple into a singleton Map is based
on the Converion class of Scala. When a suitable argument for the conversion of type
(A, B) is found in the code, and a Map[A, B] type is expected, then the compiler will
apply the conversion to that type. This is exactly what happens with our tuple as a
single parameter passed to the tags method.
The elemToList function is defined in this way instead:

1 given elemToList[A <: ResourceArgs ]: Conversion[A, List[A]] =

2 (elem: A) => List(elem)
✆

The functioning is analogous to tupleToMap, but here we added the extra constraint
that A must be a subtype of the ResourceArgs type. This will prevent too generic
undesired conversions that could create problems in the compilation of our program.

5.6.5 Functor and Monad implementation for the Output type

After having introduced the concept of functor and monad in the Functors and monads
section, it is here shown how the implementation of the monad for the Ouput type has
been achieved.
Since a monad is also a functor, let’s see how Functor[Output] has been implemented.

Functor implementation

First a Functor trait has been defined:

1 trait Functor[F[_]]:

2 extension [A](x: F[A])

3 def map[B](f: A => B): F[B]
✆

A type Output to be a functor has to implement a map method, that as we have already
seen is provided as an extension method.
The functor for the Output type is implemented like this:

1 given Functor[Output] with

2 extension [A](oa: Output[A])

3 def map[B](f: A => B): Output[B] =

4 oa.applyValue(f.asJava)
✆

The implementation of the map method relies on the Java APIs of Pulumi, where the
applyValue method from the Output class is provided.
The signature of the given method is:

default <U> Output<U> applyValue(Function<T, U> func)

We are interested in observing that this method takes a function that transforms a
value of a type T in a value of type U, and then it returns an Output[U] value as result.
This signature is exactly the same of the one of our map method.
In fact it is sufficient to pass the function f taken in input from the map function and
pass it directly to applyValue. To be precise, being applyValue a Java function that
expects another Java fucntion as input parameter, we have to first convert our Scala
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function f to a Java function. We achieve this by using the .asJava method from the
scala.jdk.FunctionConverters. conversion library for Scala.

Monad implementation

As for the Functor, the Monad trait has been defined:

1 trait Monad[F[_]] extends Functor[F]:

2 // The unit value for a monad

3 def pure[A](x: A): F[A]

4

5 extension [A](x: F[A])

6 // The fundamental composition operation

7 def flatMap[B](f: A => F[B]): F[B]

8 // The ‘map ‘ operation can now be defined in terms of ‘flatMap ‘

9 def map[B](f: A => B) = x.flatMap(f.andThen(pure))
✆

A monad, to be called so, must define a pure function. I remind that such a method
puts a value inside a context.
Then the faltMap, that is the other method required from a monad, is defined as an
extension method.
The map method can now be redefined using flatMap. This is letting us not depend
any more on the .applyValue from the Pulumi libraries for Java, because we can now
use flatMap to achieve the desired result.
The monad for the Output type is implemented in this way:

1 given Monad[Output] with

2 def pure[A](x: A): Output[A] = Output.of(x)

3 extension [A](oa: Output[A])

4 def flatMap[B](f: A => Output[B]): Output[B] = oa.apply(f.asJava)
✆

The pure method is defined with the Java’s Pulumi method of. It simply boxes the
value in an Output context.
The flatMap function for the Output[A] type is implemented using the .apply func-
tion offered from the Pulumi’s Java Output class. The apply function has a different
type from the applyValue one. As we have seen above, applyValue is matching with
the type of map, while the apply has the following signature:

<U> Output<U> apply(Function<T, Output<U>> func)

Since the function passed to apply takes a type T as input and returns a type Output<U>
as result, and the whole apply returns an Output<U>, we have a perfect type match
with the flatMap signature. In fact it will suffice us to use apply.(f.asSJava) to get
the work done.
Thanks to this implementation we are able, as we have seen in the Subnets creation in
Scala paragraph, to use map inside the for yield construct to unbox the inner values
of the Output types and achieve the desired results. With all this, we succeeded in
both getting rid of the .pulumiall method while having an even more readable and
expressive syntax.

5.6.6 Automatic code generation for the syntactic sugar

The generation of the syntactic sugar code required the following 2 passages:
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∗ Analyze the source code of Pulumi’s Java APIs for AWS EC2 in order to infer
some information about their structure. To be precise, we want to understand
which resources constructors and which builders’ methods are present

∗ Use the extracted information to automatically generate the sugared code
for the PulumiUtilFunctionsForScala.scala and PulumiBuilderUtilFunctions-
ForScala.scala files

The first step has been quite straight forward with the aid of the JavaParser library.
The second step has been more problematic.
I’ll introduce now the failed approaches for the second step and, in the next section,
the details about the final solutions will be presented.

Scala 3 macros

As a first attempt for the automatic generation of the syntactic sugar, I tried to use
the metaprogramming features offered from the new Scala 3 macros to represent the
autogenerated code in the form of an abstract syntax tree (AST). This solution was
potentially promising, since Scala also offers the opportunity to convert these ASTs
in code and vice versa at compile time, and so telling us about any error at compile
time. The problem encountered was that once we defined the macro for a new type
(like the cidrBlockOwners union type), such a type wasn’t available at compile time
for the other code. In other words, the types generated through the macro, can’t be
referenced in the same project since the whole compilation must be finished before
having the chance to use the brand-new types.
I’ll report here the work done, that is the attempt to define a custom type to be later
used in the same project. In particular, the type definition was trying to address the
generation of the custom types, like cidrBlockOwners. These types were to be used
later, in the same project, with other macros that would have represented the builders’
methods and the constructors for the resources.

What is a macro Thanks to the useful introduction provided by Pawel L. on
Medium, I’ll report here the key concepts of the Scala 3 macros. A Scala 3 macro is a
piece of code executed by the compiler. With the macros, it is possible to analyze
and generate code. If an expression of type T should be used by the macro, it needs to
be converted to Expr[T] — the representation suitable for the macro. This process is
called quotation. The code representation created in the macro is converted back and
embedded in the program in the process of splicing.
Scala 3 macros manage the code as an AST. To be precise the Scala 3 implementation
of the AST is used, that is called Typed Abstract Syntax Tree (TASTy).
A macro in general is defined by two functions. One is used to call the macro in the
code and the other is used define its implementation.
Now let’s consider a macro to define a new type with a custom name that represents
the String | Boolean union type. The function that implements the macro is the
following one:

1 def defineNewTypeImpl(name: Expr[String], types:

2 Expr[Seq[String ]])(using ctx: Quotes) : Expr[Any] =

3 ’{ type ✩name = String | Boolean }
✆

The quoting, identified by the ’{...} syntax, is encapsulating the code contained

https://medium.com/codex/scala-3-macros-without-pain-ce54d116880a
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within the curly brackets in a TASTy representation. We can also note the ✩name

syntax within the curly brackets. In fact, since the name parameter is of type Expr,
and hence is represented as a TASTy, we have to convert it to code in order to use it
inside the curly brackets along with the rest of the code. To achieve this we used the
splicing: ✩.
Now let’s consider instead the function that we’ll use to call the macro:

1 inline def defineNewType(inline name: String , inline types:

String *): Any =

2 ✩{ TypeGenMacroImpl.defineNewTypeImpl(’name , ’types) }
✆

The first thing we can notice from such a function is the presence of the inline

keyword. The inlining, in Scala, is the replacement of the code in the place of the
usage instead of its reference.
So when we’ll call this function, its body will be replaced by the compiler at the site
of the function call. Since the body of this function is the splicing of the call to the
macro implementation, the code that will is going to be replaced will be, in truth, the
one returned by the definition of the macro.
We evince that the key to work with macros is the combo between the inlining and
the quoting/splicing. As a final result we’ll have the compilation of the code defined
within the body of the macro implementation in the place of the macro call.

What I wanted to achieve with all this was the possibility to define a new type
through a macro and reference that type somewhere else in the project. So I created
this object for the definition of a new type:

1 object NewTypeDefinition {

2 defineNewType (" MyType", "")

3 }
✆

With this code we are actually asking the compiler to replace the code of the
defineNewTypeImpl macro function, with "MyType" as input parameter in place
of the function call at line 2 of the block of code just presented.
The next step was to reference the newly created type somewhere else in the code, in
this way:

1 @main def hello: Unit =

2 val x: MyType = "MyString value" \\ comp. error
✆

Sadly this is not possible because of the problem that has been explained at the begin-
ning of this section. The MyType type generated through the macro is not available
for us until the compilation of the whole project is complete. Hence, where we are
trying to define the value x of type MyType, the compiler complains with the error
”Not found: type MyType”.
This problem caused the whole macro approach to fail.

Scalameta

Another option was represented by Scalameta: a library to read, analyze, transform
and generate Scala programs. Sadly, it isn’t compatible with Scala 3, and so I had
no chance to use it. If the support for Scala 3 will be added to Scalameta, it should
be considered a better approach for the generation of the syntactic sugar code in the
future.
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A näıve approach as solution

In the end, for the second step, a standard näıve approach has been adopted. The auto-
generated code is created with a program that inserts the piece of information extracted
from the analysis of the Java APIs into a template for the PulumiBuilderUtilFunctions-
ForScala.scala and the PulumiUtilFunctionsForScala.scala files. The generated code
can then be exported as a library and included into the dependencies of the building
system used in the Pulumi Scala project.

5.6.7 Pulumi Java APIs libraries inspection with JavaParser

Since the code of the project for the inspection is quite verbose (JavaParser is a Java
library) and not particularly interesting for the final objective of the thesis, I won’t
report any code here. I’ll limit to describe the steps that are done to infer the required
information from the Java libraries for Pulumi.

Non Args and Args classes

In the Java APIs of Pulumi we have two kind of files (and so classes). The firsts are
the non ...Args files, that are those files that contain the API for the constructors of a
given resource. The second kind of files are represented by the Args files. These classes
contain the Builder definition of the respective class and the APIs of the respective
builder methods. For example, we have the Vpc.java file and the VpcArgs.java files.

DirExplorer

The first class that I defined is DirExplorer. This class has the objective to find all
the files in a given directory (and the files in the subdirectories), letting us apply some
extra logic during its traverse. We’ll be using such a class in a InferInformation

class to extract all the names of the files of our interest.

InferInformation

In the InferInformation class we have 3 methods:

listBuilderMethods is the function that opens every ...Args.java file and, after
having parsed an AST of such file, will save all the methods of its builder in a
data structure that we’ll introduce soon

listConstructorMethods is the function that opens every non ...Args.java and,
after having parsed the corresponding AST, checks if a public constructor for
the given resource is available. In such a case it will add the name of the class
to a List that represents all the constructors that should be generated for our
syntactic sugar code

listFiles is an helper function for the other two methods that just provides the file
names of the classes inspected

The data structure used to store the builders’ method has the type Map[String,

(String, LinkedList[String])]. The key of this Map is the name of every different
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builder method encountered during the parsing of the files. The value of the Map

is a list of all the ...Args classes that contain such a method. In other worlds, for
each method we map all the classes that define such a function. The entry for the
cidrBlock method on the Map (parsing all the AWS EC2 Java files) looks like this:

cidrBlock: [

DefaultNetworkAclEgressArgs,

DefaultNetworkAclIngressArgs,

DefaultRouteTableRouteArgs,

GetSubnetArgs,

GetSubnetPlainArgs,

GetVpcArgs,

GetVpcPeeringConnectionArgs,

GetVpcPeeringConnectionPlainArgs,

GetVpcPlainArgs,

NetworkAclEgressArgs,

NetworkAclIngressArgs,

RouteTableRouteArgs,

NetworkAclRuleArgs,

SubnetArgs,

SubnetCidrReservationArgs,

VpcArgs,

VpcIpv4CidrBlockAssociationArgs

]

Among all this values, we can find the VpcArgs, RouteTableRouteArgs and SubnetArgs
that we used in our implementation, and to which we passed a CIDR block using the
cidrBlock method.
With the information achieved we are now ready to fill in the templates and generate
the syntactic sugar for the Scala APIs of Pulumi.

5.6.8 Raw automatic syntactic sugar code generation

The class that generates all the code is quite simple. A Java FileWriter will take
care of writing all the strings that represent our code in the PulumiBuilderUtilFunc-
tionsForScala.scala and PulumiUtilFunctionsForScala.scala files.
We have two functions, named writeContentForBuilders and writeContentForConstructors
that will write all the various pieces of generated code into the files using the
FileWriter. With various pieces I refer to the generated types for the methods
of the builders, the imports, the conversion functions, etc.
Finally we have a bunch of functions that fill the various templates to generate the var-

ious pieces of code. These functions are: generateTypes, generateBuilderMethods,
generateConstructors, and generateImplicitConversionFunctions. To have an
idea of how the filling of a template works let’s consider the generateConstructors
function:
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Image 5.9: Code for automatic generation of the resources constructors

The template is filled with the variables that represent the name of the constructors,
and this is done for each constructor that has been found.
Since also the other functions are similar to this one, they won’t be reported here.

5.6.9 The automatically generated syntactic sugar code

Since the generated files contain many hundreds of lines of code, I’ll report here only
some samples of each file.

PulumiBuilderUtilFunctionsForScala

First we have some default imports:

1 package com.cisotto.myvpc.builder

2

3 import com.pulumi.Context

4 import com.pulumi.Pulumi

5 import com.pulumi.core.Output

6 import com.pulumi.resources .{ CustomResourceOptions , Resource}

7 import scala.collection.JavaConverters._

8 import collection.convert.ImplicitConversionsToScala.‘

collection AsScalaIterable ‘

9 import scala.compiletime.ops.boolean

10 import scala.compiletime.ops.string

11 import scala.language.implicitConversions

12 import com.pulumi.resources.CustomResourceOptions

13 import com.pulumi.resources.ResourceArgs
✆

Then, we have all the generated union types, that look like this:
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1 ...

2 type vpcIdOwners = InternetGatewayArgs.Builder |

RouteTableArgs.Builder | SubnetArgs.Builder

3 type gatewayIdOwners = RouteTableRouteArgs.Builder |

RouteTableAssociationArgs.Builder

4 type localGatewayIdOwners = RouteTableRouteArgs.Builder

5 type tagsOwners = InternetGatewayArgs.Builder |

RouteTableArgs.Builder | ubnetArgs.Builder | VpcArgs.

Builder

6 ...
✆

The implicit conversion functions are then printed:

1 given tupleToMap[A, B]: Conversion [(A, B), Map[A, B]] =

2 (tuple: (A, B)) => Map(tuple)

3

4 given elemToList[A <: ResourceArgs ]: Conversion[A, List[A]] =

5 (elem: A) => List(elem)
✆

Finally, we have all the builders’ methods that we encountered during our visit of the
files with the JavaParser project:

1 ...

2 def egressOnlyGatewayId(param: String | Output[String ])(using b

: egressOnlyGatewayIdOwners): Unit =

3 b match

4 case builder: RouteTableRouteArgs.Builder =>

5 param match

6 case x: String => builder.egressOnlyGatewayId(x)

7 case x: Output[String] => builder.egressOnlyGatewayId(x

)

8

9

10 def ipv6IpamPoolId(param: String | Output[String ])(using b:

ipv6IpamPoolIdOwners): Unit =

11 b match

12 case builder: VpcArgs.Builder =>

13 param match

14 case x: String => builder.ipv6IpamPoolId(x)

15 case x: Output[String] => builder.ipv6IpamPoolId(x)

16

17

18 def cidrBlock(param: String | Output[String ])(using b:

cidrBlockOwners): Unit =

19 b match

20 case builder: RouteTableRouteArgs.Builder =>

21 param match

22 case x: String => builder.cidrBlock(x)

23 case x: Output[String] => builder.cidrBlock(x)

24 case builder: SubnetArgs.Builder =>

25 param match

26 case x: String => builder.cidrBlock(x)

27 case x: Output[String] => builder.cidrBlock(x)

28 case builder: VpcArgs.Builder =>
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29 param match

30 case x: String => builder.cidrBlock(x)

31 case x: Output[String] => builder.cidrBlock(x)

32 ...
✆

PulumiUtilFunctionsForScala

Also here we start with some default imports, then we have the baseOpts function
and then all the constructors for the various resources. The constructors look like this:

1 def baseOpts(using o: CustomResourceOptions.Builder) : Unit =

{}

2

3 def ami(param: String) (init: AmiArgs.Builder ?=> Unit ,

4 initOpt: (CustomResourceOptions.Builder ?=> Unit) =

baseOpts): Ami =

5 given b = com.pulumi.aws.ec2.AmiArgs.builder ()

6 init

7 given bo = CustomResourceOptions.builder ()

8 initOpt

9 new Ami(param , b.build(), bo.build())

10

11 def amiCopy(param: String)(init: AmiCopyArgs.Builder ?=> Unit

,

12 initOpt: (CustomResourceOptions.Builder ?=> Unit) =

baseOpts): AmiCopy =

13 given b = AmiCopyArgs.builder ()

14 init

15 given bo = CustomResourceOptions.builder ()

16 initOpt

17 new AmiCopy(param , b.build(), bo.build())

18

19 def amiFromInstance(param: String)(init: AmiFromInstanceArgs.

Builder ?=> Unit ,

20 initOpt: (CustomResourceOptions.Builder ?=> Unit) =

baseOpts): AmiFromInstance =

21 given b = AmiFromInstanceArgs.builder ()

22 init

23 given bo = CustomResourceOptions.builder ()

24 initOpt

25 new AmiFromInstance(param , b.build(), bo.build())
✆

Final observations on the generated code

The builders’ methods are really similar to each other, but they are not all following
the same exact pattern across the whole AWS EC2 module. Due to this fact, the
generation of the code was affordable for the resources used in the case study, but
to cover some corner cases for the rest of the resources some extra work both for
the parser and for the algorithm that fills in the template would have been required.
Because of the lack of time and since was not the final aim of the thesis to develop a
complete support of Scala for all the AWS EC2 module, only the support for the used
resources has been generated.
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The constructors, instead, are all similar to each other and a complete support for
AWS EC2 has been generated.





Chapter 6

Comparisons of the solutions

Here all the observations detected while using Typecript and Scala for our case study will
be presented

6.1 Code readability in TypeScript vs in Scala

6.1.1 Readability in TypeScript

TypeScript’s programs have a really readable code. In the implementation we can
appreciate how the passing of the builders methods’ parameters have been achieved
in a concise way using the JSON format. This is fitting very well in a declarative
approach, granting compact code solutions. On the other hand, some shortcomings of
the language caused the code to lose part of the readability and conciseness.

Less readable code with pulumi.all and .apply

Let’s consider once again the TypeScript version of the function that is responsible for
creating the subnets across the various availability zones:

59
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1 protected createAZsSubnets(isPvt: Boolean) : Output <Subnet []>{

2 this.availableZones = aws.getAvailabilityZonesOutput ()

3 return pulumi.all([this.availableZones.names , this.vpc!.id]).apply

(([ azNames , vpcId]) => {

4 let i = 0

5 let listToPushInto: Subnet [] = Array <aws.ec2.Subnet >()

6 azNames.forEach(azName => {

7 let fullName = azName + (isPvt ? "-pvt" : "-pub") + "-subnet -

typescript"

8 listToPushInto.push(new Subnet(fullName , {

9 vpcId: vpcId ,

10 availabilityZone: azName ,

11 cidrBlock: isPvt ? this.pvtSubnetsCidrs[i] : this.

pubSubnetsCidrs[i],

12 tags: {

13 Name: fullName ,

14 },

15 },{

16 parent: this.vpc

17 }));

18 i++;

19 });

20 return listToPushInto

21 });

22 }
✆

When talking about readability, the pulumi.all and the apply functions are quite
cryptic. It takes us a little time to understand what are the return types of the
pulumi.all and of the apply functions. I remind here that the types of these two
functions are fully explained in the The apply’s lambda paragraph.
We’ll make further considerations on this function in the Readability of the Scala’s
for-yield vs pulumi.all and .apply paragraph.

6.1.2 Readability in Scala

Scala is in general more verbose than TypeScript, but the extreme flexibility of
the language let us define a powerful syntactic sugar that allowed for a even more
readable and concise solution compared to the TypeScript one. The combination of
the various features, among which we can find currying, using and given keywords,
and the monads, grant Scala the possibility to define internal DSLs. Thanks to this
characteristic, also in Scala I achieved a surprisingly readable code while defining the
resources to be created on our Pulumi stack.

Function currying

The currying of Scala used to define our sugared functions granted us the possibility
to declare the resources with this syntax:

val resourceName = sugaredResourceConstructor("res-name") {

firstParameter(...)

secondParameter(...)

...
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}

This code is really readable (it resembles to a function definition) and is perfectly
fitting in a declarative approach since we can have a straight list of the parameters we
want to set for our resource.

Hidden builders

Thanks to the given and using keywords, builders aren’t manually instantiated and
we don’t require to explicitly say on which builder instance we are calling the builders’
methods. This is letting us have an even more lightweight code that is really just
focusing on what we need to instantiate instead of how we could instantiate it. Let’s
consider the VPC creation in our Scala solution and how would it be created instead
in a Java solution.
Scala solution:

1 val myVpc = vpc("scala -main") {

2 cidrBlock ("10.136.0.0/24")

3 tags("Name" -> "myVpcScala ")

4 }
✆

Java solution:

1 protected Vpc vpc = new Vpc("my -vpc -java", VpcArgs.builder ()

2 .cidrBlock ("10.136.0.0/24")

3 .instanceTenancy (" default ")

4 .tags(Map.of("Name", "myVpcJava "))

5 .build (),

6 CustomResourceOptions.builder ()

7 .parent(this)

8 .build());
✆

Even if our syntactic sugar is using the very same APIs used from the Java’s solution,
the readability and the conciseness are entirely on another level.

Implicit conversion functions to get rid of Map and List constructors while

passing a single value

The implicit conversion functions presented in the Implicit conversion functions para-
graph let us get rid of the constructor of the Map and of the List if we’re interested in
passing a single value.
It is common, while declaring a new resource, to pass a single parameter to a builder’s
method that is, in truth, expecting a List or a Map parameter. In such cases syntax
at line 3 of the following block of code could be annoying:

1 val myVpc = vpc("scala -main") ({

2 cidrBlock ("10.136.0.0/24")

3 tags(Map("Name" -> "myVpcScala "))

4 },{

5 parent(this)

6 })
✆

But thanks to the implicit conversion functions the final result, as we have seen, is the
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desired one:

1 val myVpc = vpc("scala -main") ({

2 cidrBlock ("10.136.0.0/24")

3 tags("Name" -> "myVpcScala ")

4 },{

5 parent(this)

6 })
✆

For a single parameter the difference of effort in explicitly writing the Map constructor
can be negligible, but when it comes to define many resources that use multiple methods
that accept collections as input parameters, such a feature can really save us a lot of
keystrokes, while keeping our code more readable and simple.

Readability of the Scala’s for yield vs pulumi.all and apply

Let’s consider the function that creates the subnets. With respect to the TypeScript
solution, the Scala one is more readable:

1 def createAzSubnets(isPvt: Boolean) =

2 for

3 azRes <- availabilityZonesNames ()

4 myVpcId <- myVpc.id()

5 tuples = azRes.names ().zip(if isPvt then pvtSubnetsCidrs

else pubSubnetsCidrs)

6 yield

7 tuples.map((name , cidr) => {

8 val fullName = name + "-" + (if isPvt then "pvt" else "

pub") + "-subnet -scala"

9 subnet(fullName) ({

10 vpcId(myVpcId)

11 availabilityZone(name)

12 cidrBlock(cidr)

13 tags("Name" -> fullName)

14 },{

15 parent(myVpc)

16 })

17 })
✆

All the logic to unbox the Output values in order to execute some operations on them
is neatly hidden behind the transparent monadic implementation of the Output type.
This enables a more elegant and concise solution based just on well known constructs
such as the for loop and the map function. This allowed getting rid of the cryptic
pulumi.all function and let us successfully hid the apply function in the monadic
implementation, without requiring the user to explicitly use it.
TypeScript needed for us to rely on the pulumi.all function in order to craft a single
Output value out of two, so that the apply function, that is capable to work on a
single Output value, could be used to get the work done.
Here instead we are separately unboxing the Output values with the combination of
the expressiveness of the Scala for yield’s enumerators and the unboxing operation
granted by the Output[Monad].
Furthermore, TypeScript implementation requires us to explicitly insert the generated
subnets in a variable as a side effect of the foreach, while Scala is automatically
achieving it with the for yield construct.
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With TypeScript, we also have to explicitly return the list at the end of the apply’s
lambda, that would otherwise return an Output<void> value.
All this is making the TypeScript solution for the subnets creation much more cumber-
some than the Scala counterpart.

6.2 Expressiveness in TypeScript vs in Scala

Are here better expressed the observations made during the Readability of the Scala’s
for yield vs pulumi.all and .apply paragraph.

6.2.1 pulumi.all and .apply vs for comprehension and monads

TypeScript compensate for its lack of expressiveness with the pulumi.all

function

In the pulumi.all paragraph of the subnets’ creation section, we have seen how the
concatenation of apply to the pulumi.all function let us create the subnets across
the various availability zones. Anyway, The process of wrapping two different Ouptut
values in a single Output using the pulumi.all function, and then extract that newly
created value from the Output context is verbose and complex.
The pulumi.all function is effective but its existence is required to compensate for
the lack of expressiveness of the TypeScript language.

Scala’s expressiveness let us get rid of pulumi.all

The functional nature of the Scala language let us get rid of the pulumi.all function
thanks to the monad implementation for the Output type. The for yield, exploiting
the monadic type of Output, is letting us unbox the single Outputs separately, in a
flexible and intuitive way.
Furthermore, the apply function that we had to explicitly invoke in the TypeScript
solution, became in Scala the actual implementation of the flatMap function for the
Output[Monad], being totally invisible to the user. This achievement is perfectly
depicting how the expressiveness of Scala permitted us to satisfy our need of applying
functions on multiple separated Output values without resorting to an ad-hoc function
created only for that specific purpose (pulumi.all). In fact, we would be able to
implement a monad for any context type, while pulumi.all is working exclusively
with the Output type. Moreover, the for loop is much more intuitive to a user rather
than the pulumi.all and the explicit apply functions combination.
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Conclusions

7.1 The potential of Scala for Pulumi

The infrastructure scenario kept evolving in the last decades allowing for more and
more flexible solutions. By the way this change didn’t come for free. The complexity
and amount of configuration required grew along with the increasing flexibility. The
tools for the management of the configuration evolved as well, reaching their peak
with Pulumi. It is capable to offer a single solution to manage all the desired cloud
resources offered by many cloud providers. This feature meets the requirements of many
companies that, due to the cloud providers competition, often opt for a multi-cloud
solution of their infrastructure. Moreover, Pulumi supports many general purpose
programming languages instead of relying on less expressive markup languages. With
this feature, Pulumi can keep up with the always more demanding requisites posed
from the configuration management increasing complexity.

Some languages are more expressive than others, and sometimes they are carry-
ing over some extra complementary benefits or shortcomings. We have already seen
how TypeScript’s limited expressiveness had us resort on the pulumi.all function
and we already discussed how the building system of TypeScript is not as mature as
the java one, how the duck typing represents a limitation for the refactoring tools
offered from the IDEs, and more. Scala, on top of having more expressive constructs
that allowed for a better expressiveness, is also carrying over many complementary
benefits, such as: many libraries, interoperability with the other JVM languages, a
powerful building system, great IDEs to support the refactoring of the code, and a
better management of the logical structure of the code as packets.
TypeScript’s high readability is a really appreciated feature when it comes to define
resources with Pulumi. On the other hand Scala, by nature, is more verbose. Anyway,
the functional paradigm of Scala and its nature prone to the definition of internal
DSLs, granted me the possibility to define a powerful syntactic sugar. Such sugared

functions let me achieve a very readable solution that, in some cases, was even more
concise with respect to the TypeScript’s one.
So, all the heavy machinery that Scala was bringing over, turned out to be the solution
to achieve a both robust, expressive, concise, and readable solution.

The main successes of the work are mainly two. First, it has been shown that
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Scala is offering the chance to achieve very readable and concise IaC solutions while
not giving up on solid complementary tools and benefits.
Second, we proved how the support of a such an interesting language can be added to
Pulumi exploiting the already supported Java APIs of Pulumi and the interoperability
between the JVM languages (like Scala and Java), greatly reducing the effort needed
to develop a Scala support for Pulumi.

7.2 Future improvements

The work done with my thesis was able to analyze only some of the many challenges
that Pulumi has to offer to the various programming languages while defining a solution
for a given use case. Yet, the results obtained wanted to show that the flexibility of
Scala can potentially address any kind of difficulty encountered. Therefore, a further
extension of the work done with the aim to investigate which other supplementary
possibilities Scala has to offer with Pulumi would be indeed interesting.
If possible, an official and complete support of Scala for Pulumi would be, in my
opinion, a fantastic addition to the roster of languages of Pulumi.



Glossary

AST In computer science, an abstract syntax tree (AST), or just syntax tree, is a
tree representation of the abstract syntactic structure of text (often source code)
written in a formal language. Each node of the tree denotes a construct occurring
in the text. 50, 67

aws AWS stands for Amazon Web Services. It is a comprehensive, evolving cloud
computing platform provided by Amazon that includes a mixture of infrastructure-
as-a-service (IaaS), platform-as-a-service (PaaS) and packaged-software-as-a-
service (SaaS) offerings. AWS services can offer an organization tools such as
compute power, database storage and content delivery services. 7, 67

azure Microsoft Azure, formerly known as Windows Azure, is Microsoft’s public
cloud computing platform. It provides a broad range of cloud services, including
compute, analytics, storage and networking. 6, 7, 67

Azure Resource Manager Azure Resource Manager is the deployment and man-
agement service for Azure. It provides a management layer that enables you to
create, update, and delete resources in your Azure account . 7, 67

CDK The AWS Cloud Development Kit (AWS CDK) is an open-source software
development framework for defining cloud infrastructure as code with modern
programming languages and deploying it through AWS CloudFormation. 6, 67

Cloud Deployment Manager Google Cloud Deployment Manager is an infrastruc-
ture deployment service that automates the creation and management of Google
Cloud resources. Write flexible template and configuration files and use them to
create deployments that have a variety of Google Cloud services, such as Cloud
Storage, Compute Engine, and Cloud SQL, configured to work together. 7, 67

CloudFormation CloudFormation is an AWS managed service that provisions AWS
cloud resources using templates written in JSON or YAML. With CloudForma-
tion, configuration code is written in template files describing the desired cloud
resources, then the code is uploaded to the CloudFormation service for evaluation
and deployment.. 6, 7, 67

gcp Google Cloud Platform (GCP), offered by Google, is a suite of cloud computing
services that runs on the same infrastructure that Google uses internally for its
end-user products, such as Google Search, Gmail, Google Drive, and YouTube.
Alongside a set of management tools, it provides a series of modular cloud services
including computing, data storage, data analytics and machine learning. 6, 7, 67

67
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IaaS Infrastructure as a Service. It’s a set of raw IT resources offered to the user by
the cloud service provider. They can be used to virtualise an infrastructure, or
for resource-intensive projects — i.e. machine learning, big data, hosting, etc. 5,
68

internal DSL DSL stands for Domain Specific Language. It’s a language which is
built for a specific domain. A DSL is said to be internal if it is build basing on
another programming language. 2, 60, 68

internet gateway An internet gateway is a network component that serves as the
entry and exit point between a private network, such as a Virtual Private Cloud
(VPC) in the cloud, and the public internet.
An internet gateway is responsible for translating the private IP addresses used
within a private network to public IP addresses used on the internet, and vice
versa. It enables instances within a VPC to communicate with the internet, and
allows external users and resources to communicate with instances within the
VPC.
An internet gateway typically includes two network interfaces - one that connects
to the VPC, and another that connects to the public internet. It forwards traffic
between the VPC and the internet, and routes traffic between the different
subnets within the VPC. 25, 68

mixin-based composition In scala, trait mixins means you can extend any number
of traits with a class or abstract class. You can extend only traits or combination
of traits and class or traits and abstract class, Traits are used to share interfaces
and fields between classes. They are similar to Java 8’s interfaces . 17, 68

REST API A RESTful API is an architectural style for an application program
interface (API) that uses HTTP requests to access and use data. That data
can be used to GET, PUT, POST and DELETE data types, which refers to the
reading, updating, creating and deleting of operations concerning resource. 11,
68

routing table In computer networking, a routing table, or routing information base
(RIB), is a data table stored in a router or a network host that lists the routes to
particular network destinations, and in some cases, metrics (distances) associated
with those routes. The routing table contains information about the topology of
the network immediately around it.
In our case, the routing table has been used to bind the public subnets to the
internet gateway, so that they can receive and send packets over the internet. 26,
68

sequence comprehension In Scala, a sequence comprehension is a syntactic con-
struct that allows you to create new sequences by transforming and filtering
existing ones. It’s similar to a for loop in other languages, but with a more
concise and functional syntax . 22, 68

Subnet In computer networking, a subnet is a smaller network within a larger network.
It is created by dividing a larger network into smaller segments, with each segment
having its own unique network address.
A subnet is identified by its subnet mask, which is a 32-bit number used to divide
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an IP address into two parts - the network address and the host address. The
subnet mask determines which bits in the IP address are used to identify the
network and which bits are used to identify the hosts.
Subnets are commonly used to improve network performance and security. By
dividing a larger network into smaller subnets, network traffic can be reduced
and more efficiently managed. Additionally, subnets can be used to isolate
different parts of a network for security purposes, preventing unauthorized access
to sensitive data or resources. 25, 68

Terraform Terraform is an open-source infrastructure as code (IaC) tool developed by
HashiCorp. It let’s define both cloud and on-prem resources in human-readable
configuration files that you can version, reuse, and share. Developers to automate
the creation, modification, and deletion of cloud resources in a scalable and
efficient way. 6, 12, 69

vpc A virtual private cloud (VPC) is a secure, isolated private cloud hosted within a
public cloud. VPC customers can run code, store data, host websites, and do
anything else they could do in an ordinary private cloud, but the private cloud is
hosted remotely by a public cloud provider. (Not all private clouds are hosted
in this fashion.) VPCs combine the scalability and convenience of public cloud
computing with the data isolation of private cloud computing. 25, 69





Bibliography

Consulted web sites

10 years of cloud infrastructure as code - history and trends. url: https://www.
nordhero.com/posts/10-years-iac/.

Context functions. url: https://docs.scala- lang.org/scala3/reference/
contextual/context-functions.html.

Currying. url: https : / / towardsdatascience . com / what - is - currying - in -

programming-56fd57103431.

For Comprehension. url: https://docs.scala-lang.org/tour/for-comprehensions.
html.

Functors and Monads. url: https://docs.scala-lang.org/scala3/reference/
contextual/type-classes.html.

Infrastructure as Code. url: https://en.wikipedia.org/wiki/Infrastructure_
as_code.

Infrastructure as Code - Managing infrastructure resources with code. url: https:
//towardsdatascience.com/infrastructure-as-code-f153d810428b.

Medium - Macros 3 without pain. url: https://medium.com/codex/scala- 3-
macros-without-pain-ce54d116880a.

Pattern matching. url: https://docs.scala-lang.org/tour/pattern-matching.
html#.

Pulumi. url: https://www.pulumi.com/.

Pulumi architecture. url: https://www.pulumi.com/docs/intro/concepts/how-
pulumi-works/.

Scala trait. url: https://docs.scala-lang.org/tour/traits.html.

Union type. url: https://docs.scala-lang.org/scala3/book/types-union.html.

Using and Given. url: https://blog.rockthejvm.com/scala-3-given-using/.

71

https://www.nordhero.com/posts/10-years-iac/
https://www.nordhero.com/posts/10-years-iac/
https://docs.scala-lang.org/scala3/reference/contextual/context-functions.html
https://docs.scala-lang.org/scala3/reference/contextual/context-functions.html
https://towardsdatascience.com/what-is-currying-in-programming-56fd57103431
https://towardsdatascience.com/what-is-currying-in-programming-56fd57103431
https://docs.scala-lang.org/tour/for-comprehensions.html
https://docs.scala-lang.org/tour/for-comprehensions.html
https://docs.scala-lang.org/scala3/reference/contextual/type-classes.html
https://docs.scala-lang.org/scala3/reference/contextual/type-classes.html
https://en.wikipedia.org/wiki/Infrastructure_as_code
https://en.wikipedia.org/wiki/Infrastructure_as_code
https://towardsdatascience.com/infrastructure-as-code-f153d810428b
https://towardsdatascience.com/infrastructure-as-code-f153d810428b
https://medium.com/codex/scala-3-macros-without-pain-ce54d116880a
https://medium.com/codex/scala-3-macros-without-pain-ce54d116880a
https://docs.scala-lang.org/tour/pattern-matching.html#
https://docs.scala-lang.org/tour/pattern-matching.html#
https://www.pulumi.com/
https://www.pulumi.com/docs/intro/concepts/how-pulumi-works/
https://www.pulumi.com/docs/intro/concepts/how-pulumi-works/
https://docs.scala-lang.org/tour/traits.html
https://docs.scala-lang.org/scala3/book/types-union.html
https://blog.rockthejvm.com/scala-3-given-using/

