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Abstract

In the present days, the demand for systems with extremely fast large-signal
torque responses is increasing. Emerging applications, like electrical test rigs
for automotive, can’t be implemented effectively with PID-like controllers.
In fact these types of controllers show good behaviour in quasi steady state
conditions, but perform poorly under great variations of torque, further more
if the current regulators are saturated. PID controllers aren’t optimized to
work in voltage saturation conditions.

A solution to the issue posed by these system in need of a fast response, has
already been proposed by Doc. Matteo Tommasini in his PhD thesis: "In-
novative control algorithms for electric drives", in which the author presents
two new strategies for fast motor control, the Time Optimal Current and
Torque Controls (toCc and toTc). In his paper Tommasini uses the Optimal
Control theory to derive both controls’ strategies. The followed procedure
will be also presented in this Master Thesis, first on the same IPM motor
used in Tommasini’s paper, and then it will be used together with a speed
control.



Sommario

Al giorno d’oggi, la domanda di sistemi con risposte di coppia estremamente
veloci per segnali di grandi dimensioni ¢ in aumento. Le applicazioni emer-
genti, come i banchi di prova elettrici per il settore automobilistico, non
possono essere implementate in modo efficace con controller di tipo PID.
Infatti questi tipi di controllori mostrano un buon comportamento in con-
dizioni quasi stazionarie, ma si comportano male con grandi variazioni di
coppia, tanto piu se i regolatori di corrente sono saturi. I controller PID non
sono ottimizzati per funzionare in condizioni di saturazione della tensione.
Una soluzione al problema posto da questi sistemi che necessitano di una rap-
ida risposta, é gia stata proposta dal doc. Matteo Tommasini nella sua tesi
di dottorato: "Algoritmi di controllo innovativi per azionamenti elettrici",
in cui 'autore presenta due nuove strategie per il controllo di motori veloci,
i controlli Time Optimal Current e Torque (f0Cc e toTc). Nel suo articolo
Tommasini utilizza la teoria del controllo ottimo per derivare le strategie di
entrambi i controlli. La procedura seguita sara presentata anche in questa
tesi di laurea, prima sullo stesso motore IPM utilizzato nell’articolo di Tom-
masini, e poi verra utilizzato insieme a un controllo di velocita.



Chapter 1

Introduction

On the first part of this thesis it will be summarized the procedure done by
Dr. Matteo Tommasini in his PhD Thesis to implement the time optimal
current control on an Internal Permanent Magnet Synchronous Motor. One
the second part instead it will be build a PI speed regulator for the same
motor which uses the toCc in the current loop control.

In this chapter it will be presented the motor used in the PhD thesis, to-
gether with a brief description of the convention used to describe the state
equations of the motor.

In the second chapter it will be presented the Maximum principle Theorem,
used to derive the Time Optimal Current Control (toCc), along with the
control implemented on Matlab and Simulink.

1.1 Motor Specs.

In order to better understand the methodology behind the time optimal con-
trol, it has been reproduce the work done in Tommasini’s thesis, using the
same motor typology and characteristics. In the table below it has been re-
ported the parameters of the motor used.



Parameter Value

Rated Voltage 230 V
Rated Standstill Current(100K) 3.9 A
Rated Standstill Torque(100K) 5.1 Nm
Phase Resistance(20°C) 4.85 2
Connection Y
Pole Number 4
Speed(max) 4000 rpm
Base Speed (motor) 1880 rpm
Base Speed (generator) 2540 rpm
id max Torque -4.04 A
iqg max Torque 3.75 Ay
PM flux linkage 0.194 Vs
d-axis inductance (unsaturated) 30 mH
g-axis inductance (unsaturated) 153 mH

Further more (differently to the reference thesis) it has been assumed the
IPMSMotor to be ideal, so its parameters are considered constant (and in
particular the inductance L,). As a result of that some of the parameters in
the table could differ from the ones found in the simulations.

1.2 Used Conventions and Motor model

To obtain the electrical quantities values along the conventional reference
frames (abe, af8, dq) it has been used the Peak Convention. As a result given
an arbitrary electrical quantity z,, z,, z.in the abc-frame, the passage to
the af-frame is carried out by means of the equations:

2 11
Lo = 3 Lq 25Eb QZL'C

:1r;—2 ﬁx—\/—gx’
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defining x5 = x4 + jz, on the stationary af-frame. The passage between
stationary frame and the rotating dg-frame becomes:

Tdqg = xaﬁe’ﬁme

with 6,,. being the electromechanical angle of the rotor with respect the
stationary af-frame.



Given the electrical quantities in the dg-frame it is now possible to give the
state equations of IPMSM. In this paper the control and motor will be studied
mostly in the dg-frame. In this plane the state equations are:

dXg

Ug = Rig+ — — Wne
d d dt q
\ (1.1)
uq = R’Lq -+ d—; + wme/\d
where:
R phase resistance
Ug, Ug voltage along d- and g¢-axis;
id, iq current along d- amd g-axis;
Ad, Ag flux linkage along d- and g-axis;
Wine = P+ Wiy electromechanical rotor velocity
(p pole pairs, w,, mechanical ro-
tor speed).

the state equations (1.1) can also be expressed differently by replacing the
flux linkage with its explicit formula:

AN = Lgig+ A,
>‘q = Lqiq

by carrying out said replacement the system (1.1) becomes:

y
ug = Rig + ﬁ[xd — wmeLqiq

. (1.2)
Ug = Rig + 22 Ly + wne(Laia + Ap)

dt

Both equations (1.1) and (1.2) will be used during the realization of the toCc
and PT regulators.

An other equation useful to the realization of the IPMSM control is the
Torque one, which, like system (1.1), can be expressed in two ways:

3 . .
T = 2P (Adiq — Agla) (1.3)
3 . .
T = Pl [(Lg — Ly) iqg + A (1.4)



Chapter 2

Optimal Control Theory

The “Optimal Control” deals with the problem of finding a control law for a
given system such that a certain optimality criterion is achieved. A control
problem includes a cost functional that is a function of state and control
variables. An optimal control is a set of differential equations describing the
paths of the control variables that minimize the cost function. If the function
to minimize is time than the control takes name of “Time Optimal Control”.
In this chapter will be presented the Mazimum Principle which will then
be applied to the model of the IPMSM to obtain its Time Optimal Current
Control (toCc)..

2.1 Maximum Principle for Time Optimality

Let’s now define the variables introduced in the Mazimum Principle defini-
tion:

e (r1,...,x,) = & € X are the variables which characterize the pro-
cess, and X is the set of space with coordinates x4, ..., z,, to which
belongs to;

e (uy,...,u,) =u € U indicates the control parameters which determine
the course of the process, while U is the control region, a set of space
with coordinates uq, ..., u,, to which « belongs to.

Both sets X and U are usually closed and bounded by physical limitations
of the system and control parameters (e.g., in electric motor drives, X could
be bounded by specific current limits, while U could be limited by the sup-
ply voltage of the motor). Let’s now consider a process described by an



autonomous system of ordinary differential equations:

dxl-
dt

= filz1,. ., Tp,ur, . u), T=1,...,n (2.1)
of which given the initial values
zi(to) =xo, i=1,...,n
and the control parameters in a certain time interval ¢ <t < ty:
uj =u;(t) =u(t), j=1,....r

the solution of equation (2.1) is uniquely determined. Let’s consider also the
integral functional:

J:/tlfo(a:,u)dt (2.2)

where fo(x,u) is a given function, defined and continuos together with its
partial derivatives 0fy/0x;, i = 1,...,n, on all X x U. The functional J
takes on a defined value for each control u(t).

The objective is to find the control set w(¢) that minimize the value J, in
particular when the function fy(x,u) = 1, which leaves J = ¢; — ty and
the problem takes name of time-optimal. In such case the admissible control
u(t) (defined as a control w € U which is continuos in the time interval
considered, with only first kind discontinuities allowed), which minimize the
time transition from x(tg) = @ to x(t1) = x; is called optimal control. The
corresponding trajectory x(t) is called optimal trajectory.

In order to understand the Mazimum Principle, it is useful to define a new
coordinate zg such that:

% = folz,u). (2.3)
Introducing & = (xo, 1, ..., x,) € X we can write:
de -
= = f(x,u) = (folz,u), fi(z,u),..., fulx,uw)) (2.4)

Defining &, = (0, x,), the solution of the system (2.4) with initial condition
x, at time ¢y and final condition z; at time ¢; becomes

Ty = /to fo(x(T),u(r))dr (2.5)
x = x(t)

10



for t = t; it results
ro=4J, *=x.

Let’s now define an auxiliary system as:

(dipy dfo(z,u) o Ofu(x, u)
E T 8:1:0 wO 8:60 wn
: (2.6)
dwn _ af()(w7u) L afn(wvu)
L dt ox,, Yo ox,, ¥

and let’s also define the function H as follows:
H<’lﬁ7 €, U) - H<w0a s 7wn>xla ey I, Uy 7u7‘) = Zwafa(ma u>' (27)
a=0

By observation of the systems (2.6) and (2.7) it is possible to extrapolate a
new system:

dt:(?wi 1=0,1,...,n
di; oH (2.8)
dt:_axi 1=0,1,...,n
By reasoning in the time-optimal problem it is possible to simplify the equa-
tions by remembering that in such case fy(x,u) = 1. A new function

H(v,x,u) can be defined:

H(p, @, w) = H(tpr, ., 01 Tt un) = Yty fo(@,u). (2.9)
v=1

while the system (2.8) becomes:

de v o (2.10)
di; 0H .
dt:_axi 1=1,...,n

By fixing the values of 1 and «, H becomes function of w. It is possible to
denote the superior of such function as:

M, x) = sup H(¢Y, z,u). (2.11)

ueU

The Mazimum Principle for Time Optimality lays down the necessary con-
ditions for time optimality and it is the following:

11



Let u(t), to < t < t;, be an admissible control which transfer
the phase point from x( to @1, and let x(¢) be the corresponding
trajectory, so that x(ty) = @y and x(t;) = @;. In order that
u(t) and x(t) be time optimal it is necessary that there exist
a nonzero, continuos vector function ¥ (t) = (Y1(t),..., ¥, (t))
corresponding to w(t) and x(t) such that:

1. for all ¢, tg < t < ty, the function H(v(t),x(t),u) of the
variable u € U attains its maximum at the point u = wu(t)

H((t),z(t), u(t) = M((t), z(t)); (2.12)
2. at the terminal time ¢; the relation
M(¥(t1),x(t1)) >0 (2.13)

is satisfied.

Further more, if 9(t), () and w(t) satisfy both condition 1 and
the system (2.10), the time function M (t(t), (t)) is constant.
Thus (2.13) may be verified at any time ¢, to < t < t;, and not
just at ;.

2.2 Time Optimal Current Control Theory

In this section the Mazimum Principle will be applied to a model of the
IPMSM, firstly considering a circular voltage limit, then in the real case
with an hexagonal one.

Since a current control is to be implemented it is known that the input of
the system will be the current reference vector, while the output will be
the voltage reference vector. The objective is to find the optimal voltage
vector which minimize the time transfer from a known initial state to also
known final condition. For simplicity the problem will be studied in the dg-
reference frame, working with the flux linkage (the phase resistance R will
be neglected).

Under such hypothesis the system (1.1) becomes:

N N I

A=F\+Gu (2.15)

The time optimality problem becomes the following:

or compacted:

12



For the process described by the system of equations (2.14), find
the optimal control uw € U able to change the state of the process
from Ag to Ay in the shortest time interval.

The set of voltage vectors that can be generated by the inverter correspond
to the U domain. Using a three-phase two level inverter vectors (uy, ..., u7)
as showcase in Figure 2.1. Such an inverter can ideally generate every voltage
vector in the area contained by the hexagon, if averaging over a PWM
period.

61\
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Figure 2.1: Voltage vectors generated by the inverter (the circle shows the
voltage amplitude reachable with an non-distorted symmetrical sinusoidal
output).

In the following paragraphs, the time optimal problem will be discussed
with two different limitations on the U domain: first with a circular one,
then with a hexagonal. For what concerns the X domain of flux linkage,
the limitation is given by a circle of radius Udc/(\/g\wme]), if Ag and A\, are
chosen inside said circle, the motor is guaranteed to work in steady state
condition.
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2.2.1 Circular voltage limit

The optimal control @(¢) must be searched among the admissible controls
with range in U. Once a certain admissible control is chosen, for any initial
condition Ag the trajectory A = A(t) is uniquely determined by the solution
of system (2.14), which is continuos and piecewise differentiable.

Being the system (2.14) linear and under time optimal scenario, the auxiliary
system becomes:

¥=-F' (2.16)
[Zj - {—z?)m i } [m (2.17)

1 = Acos(a — Wpet)
e = Asin(a — wppet)

or explicitly:

with general solution:
(2.18)

where A > 0 and « are real scalar constants. For w,,. > 0, @ describes a
clockwise circular trajectory at a constant speed w,.. From equation (2.10)
the function H becomes:

H(’L:bv )‘7 ’U,) = wme(¢1)\q - ¢2>\d) + wlud + @ZJQUQ (219)

By fixing the values of 1 and A, the function H (u) describes a plane whose
orientation is given by 1. M (1), X), the upper bound of the function H(u)

for w € U is:
Udc

V3

and it’s reached for w parallel to ¥ and belonging to the boundary of the
region U.

The first condition of the Maximum Principle (which states H (¢ (t), A(t),u) =
M(¥p(t), A(t)) Vt|ty <t < ty) is easily satisfy by choosing w(t) on the bound-
ary of U and parallel to 4 (t) for all ¢, tc < ¢ < t;. This implies that the
optimal control is a voltage vector belonging to the boundary of U and ro-
tating clockwise at speed w,,.. This translate to a constant voltage vector in
the stationary af-frame.

M(th, A) = Wi (V1A — 12)a) + A (2.20)

14



Figure 2.2: Graphical representation of the problem with circular voltage
limit.

In figure (2.2) the plane correspond to the function H(u) for a given value
of ¢ and A. The circumference is the boundary of domain U and the vector
inside it represent vector 1), which also points toward the maximum slope of
the plane. It can be easily seen that the maximum of H(w) for u € U is
obtained for u belonging to the boundary of U and oriented as .

The second condition has also to be verified:

M(1), A1) = e (1 — oha) + A 2| >0

\/§ t=t1 N

substituting equation (2.18) in the previous inequality, yields:

e g (11) 005(0r — Wrnet) — Aaltr) sin(a — wpnet)) > — AL

VA
Writing A4(¢1) and A, (¢1) of final state A, as (|[A1]| cos(ZA1)) and (|| A¢ || sin(ZAq))
respectively, yields:

3
wmeU£ SIn(/ZA; — (@ — wppetq)) > —1
dc

15



Therefore the inequality is satisfied for |wm6§H)\1H| < 1 (since sin() belong
to the set [—1,1]). Such condition is already part of the hypothesis of the
problem. Thus the requirement of the Maximum Principle are satisfied.

Under the above cited hypothesis, a voltage vector be-
longing to the boundary of a circular control region and
constant in the stationary aB-frame satisfy the neces-
sary conditions required by the Maximum Principle to
be time-optimal.

Let’s now analyse the problem from the stationary a/f-frame to verify that
the result found is really the time optimal one. Operating in such frame,
transforms the system (2.14) becomes:

d\

2.21
I} e
dt

= ug

and its solution for a generic voltage vector w,s(t):

)\ag(t) = )\ag(O) + /(; ’U,ag(’/')dT (2.22)

which means that the flux linkage variation in the time interval [0,¢] in the
stationary «af-frame is equals to the integral of the voltage applied in the
same time interval.

It is clear then that in order to move from a initial point A,3(0) in the fastest
way possible, the maximum tension vector must be applied during the time
interval, and it must be constant to maximise the integral which appears in
the solution of (2.21).

2.2.2 Hexagonal voltage limit

In this section it has been replace the circular boundary of U with a hexagonal
one, nearer to the real case.

By doing so the problem becomes slightly more difficult, since in the syn-
chronous dg-frame, there will be a hexagon rotating around the centre at
—wpe speed. To avoid the issue, it is possible to work in the stationary
af-frame. However, by doing so, the final point, which was stationary in
the synchronous frame, now becomes time-variant, as it rotates around the

16



centre of the frame with w,,. speed. In such case the first condition of the
Maximum Principle holds, while the second one becomes:

M(p(tr), z(tr), 1) > > by (t)gu (2.23)
v=1
where ;
_
(QI7q27"'7Q7L) — dt — (224)
=t1
Combining equations (2.9) and (2.21), the function H becomes:
H<¢7 )‘7 ua,@) = 7wbluoz + w2uﬂ (225)

with the vector ¢ being constant, as suggests the second equation of the
system (2.10). By the considerations made in the circular voltage limit case,
a constant voltage vector u,s in the stationary frame and belonging to the
boundary of control domain is likely to satisfy the time optimality criteria.
Since both 9 and w,g, for a given value of the first, H(u,z) will draw a time
invariant plane. To satisfy the first condition of the Maximum Principle,
must be chosen perpendicular to and pointing at the edge of the hexagonal
region, where u,g lies.

51\

Figure 2.3: Orientation of the co-state 1.

For the second condition it is necessary to rewrite the inequality. As men-
tion before A;(t) describes a circular trajectory at the w,. speed, therefore
its derivative respect time is:

{ql = Wyne||A1]| cos

(2 = Wpel|A1]| sin a

17



vectors 1 and u,p can be expressed as:

= [|9][ cos 5
by = ||| sin 3

Uo = ”uaﬂ” Ccos 7y
ug = [[Uagpl| siny

therefore inequality (2.23) can be written as:

||| |wapl| (cosy cos B+ sinysin B) > wpe||9||||A1]| (cos a cos 5 + sin asin 3)

Figure 2.4: Graphical representation of the problem with an hexagonal
voltage limit.

which has to be verified. After simplification, the inequality becomes:

[wagll cos(B = 7) = Wel| A ]| cos(a — )

The inequality written above is verified since its left hand side has minimum
value equal to Udc/\/§, in fact the vectors ¥ and u,s must be on the same

18



edge and the angle (8 —+) between the two has value in the interval [—%, %},

while for hypothesis | A1]| < Uge/V/3|wme| and cos(aw — 3) < 1. Therefore:

A voltage vector belonging to the boundary of a hexagonal
control region and constant in the stationary aS-frame
satisfies the necessary conditions required by the Max-
imum Principle to be time-optimal.

Equation (2.22) still holds and can be rewritten as:

t
AXap(t) = Xoalt) = Kasl0) = | was(r)ir (2.26)
0
If a constant voltage vector is applied in the time interval [0,¢] then:
A)\a6<t) = UupB * t (2.27)

so applying all constant voltage vectors on the boundary of the hexagonal
region at the time ¢;, then AX,3(¢1) will also have an hexagonal shape.

A

A

AN,

Figure 2.5: Flux linkage variation in a time invariant ¢; in the stationary
frame with all constant voltage vectors on the hexagonal voltage limit.

Let’s consider now an arbitrary point on the hexagon’s boundary of figure
2.5. Said point can also be reached in the same amount of time ¢;, using a
time-variable control vector w,s(t), provided it has the same average over
the same time interval of the correspondent constant vector, with exclusion
of the vertex, which can only be reached by in ¢; by applying a constant
vector u.g.

19



Let’s assume the desire to reach point A in figure 2.5 using a time variant
vector. The S-component of such control can be the same of the constant one
only if it belong to the top edge of the hexagonal control region U since it
limits the control vector. A right choice of the a-component makes possible
to obtain the same a-component as the constant control. The reasoning is
analogue with all reachability set’s edges. Thus it is not possible to change
the flux linkage in a fastest way than by applying a constant voltage vector
in the stationary frame. Therefore it is the optimal control.

So it is possible to say:

Let u,3 be the optimal constant control which moves
the state of the system from \; to A; in the time inter-
val [0,t;], with a hexagonal voltage limit U. Any other
time-variant voltage vector wu,s(t) which satisfies u,53 =
% Otl Uqp(t)dt is also time-optimal.

Moreover, it turns out that u,s and wu,s belong to the
same edge of the hexagon.

2.3 Finding the Optimal Control

In the previous section it has been found the optimal control’s features, but
not a way to compute it. It is already known that the optimal control consist
in a constant vector belonging to the boundary of U in the stationary frame,
what it’s not known is it’s phase. The problem is the following:

Given the initial state Ay and the desired state A\, find
the phase of the optimal voltage vector u,s which move
the state of the system from )\ to A; in the shortest time
interval.

If working in the synchronous frame, some other parameters are necessary,
such as the ones of the motor, the rotor speed and its position. Porting
equation (2.22) to the dg-frame yields the following result:

Aig(t1) = Xgg(0)e7Wmett 4 [TedVapt) eI (Fmeotwomets) (2.28)

where Ay (t1) and Agy(0) are respectively the desired and initial state, wy,e
is the rotor speed, assumed constant during the transient, 1J,,., is the elec-
tromechanical position of the rotor at ¢ = 0, U and 9,3 represent the amp-
litude and phase of the optimal voltage vector. The function U in particular

20



changes with the type of limitation on the voltage. In case of circular bound-

ary it becomes:

U(Uy) = 22 (2.29)

>

while in the hexagonal case:
Udc
. TR
V3 sin {%7? - [|19a5| — 3 fiw ( | W‘”)] }

U(User 9o) = (2.30)

250 T T \ T

hexagonal voltage limit
= = =circular voltage limit

[-frlr.' ([J r.\.i)

150 I I I L
0 £ 17" m 2T 2T 2

Figure 2.6: Voltage limit as a function of 9J,.

Combination of equation (2.28) and the appropriate expression for Ugy.(¥,p)
make up two systems of equations with two unknown: the phase of the voltage
vector ¥,5 and the transient time ¢;. Finding the transient time means to
identify the situation in which the target point belongs to the reachability
set, which represent the possible points reachable in a time ¢; from the ini-
tial point, and it is indicated with the expression R(Ag(0),%1). Finding the
phase of the voltage vector means to identify the specific trajectory passing
across the target point. The values of these two unknowns will be calculated
numerically.

Looking at equation (2.28) it is observable that Ut; is equal to the differ-
ence between the desired flux A4, and the free response of the initial point
Adqc = Adqoeijwmen:

ZMZWM—MmWHM—MmW (2.31)
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where

{)\dc(tl) = Ao COS(Wpet1) + Ago SIN(Wypety) (2.32)

Age(t1) = = Aao sin(Wiet1) + Ago COS(Winet1)

)\q A

)\dql

/\dqc

>\dq0

Figure 2.7: Graphical representation of equation 2.31.

In the circular case, the unknown ¢; will be calculated through the bisec-
tion method. Once t; is known the angle ¥,5 can be calculated by means of

the equation:
19&6 - Z(Aalql - Aalqc> + ﬁme() + wmetl (233)

With the hexagonal voltage limit, the problem is more complex, a solution
will be presented in a future paragraph.
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Figure 2.8: SIMULINK® model used for simulations.



Chapter 3

SIMULINK® TPMSM control
implementation

In this section it will be presented the control implemented via Matlab® and
SIMULINK® to test the time optimal control strategy. Figure 2.8 present
the complete scheme of the system. In the next paragraphs each block will
be addressed.

3.1 Motor Model

The first block analysed is the motor model. Starting from equations (1.1)
and (1.3) it is possible to realize the block that simulates the motor behaviour.
Applying the Fourier transform to the state and torque equations, yields:

<

(s) = RI4(s) + sLala(s) — wmeLgl,(s)
U6) = FI6) 4 5La1) + e Lalls) + )

T(s) = 5ply(s) [(Lg = La)la + An)]

The added flux linkage can be eliminated by applying a simple decoupling
strategy, which consist in subtracting and adding the flux along the block-
scheme. Defining the transfer function of the motor as H(s) = I(s)/U(s) it
is obtained:

1
Hd(S) = —R+5Ld
1
HQ(S) - R+3L
q

The motor scheme becomes the following:
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Figure 3.1: SIMULINK® model of the IPMSM.

The model computes current values from the input voltage given to the
motor together with the torque, which will be useful to the computation
of the rotor position. In this scheme it is also present the first part of the
dg-axes decoupling mentioned above, as the fluxes are subtracted from the
input voltage.

3.2 Mechanical Model and Speed Block

The objective of these two blocks is to generate the speed and rotor position
starting from two possible sources: the speed block, in fact, can compute
the electromechanical speed w,,. and rotor position, starting from a constant
value of speed (which impose the condition of constant speed during the
transient) or from the output of a mechanical model (in which case the speed
is no more constant). This last block in particular computes the mechanical
speed w from the torque value generated by the motor model, through the

transfer function: .

" B+ Js
where B is the friction and J is the inertia of the load. In the scheme presented
in figure (2.8) two blocks are present, both of which generate a constant

M(s) (3.1)
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signal, that can be set manually. The first one is the mechanical speed value
(in rpm) of the motor which can be selected through a manual switch if a
constant speed is to be imposed, otherwise it functions as a value of initial
rotor speed, if the mechanical model is selected. The second constant value
is the initial rotor position, which sums with the one computed by deriving
the electromechanical speed.

1

rpm0

Yy

rpm

1

-

Figure 3.2: SIMULINK® scheme of the Mechanical Model.
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Figure 3.3: Speed and rotor position computation.

3.3 Voltage limiter Block

The Voltage limiter block simulates the average voltage, in a PWM period,
that an inverter can output in order to supply a motor. Such block con-
fronts the voltage vector generated by the current controllers block with the
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hexagonal voltage limit of the inverter, if the input vector exceeds the limit-
ation than it is shrunk to match the voltage limit, maintaining its phase.
The code implementing the function is the following:

funct

Jalph

ion[ud_lim, uq_lim, sat] = fcn(ud, uq, thetha_me, Udc)

a,beta voltage coordinates, module and phase computation

u_ab_phase = thetha_me + atan2(uq,ud);

ua =
ub =

U = s
Uph =

U_lim

ud*cos (u_ab_phase) - ug#*sin(u_ab_phase);
ud*sin(u_ab_phase) + uq*cos(u_ab_phase);
qrt (ua~2+ub~2) ;

atan2 (ub,ua) ;

= Udcx*sqrt (2/3)/sin(2/3*pi - (abs(Uph) - pi/3*xfix (3*abs(Uph)

/pi))); JVoltage limit angle at angle Uph

if U_
ua
ub
ud_
uq_
sat

else
ud_
uq_
sat

end

in lines
voltage

lim < U

= U_lim*cos (Uph);

= U_lim*sin (Uph);

lim = ub*sin(u_ab_phase) + ua*cos(u_ab_phase);

lim = ub*cos(u_ab_phase) - ua*sin(u_ab_phase);

= 1; /Janti-windup enabled (woltage saturated)

lim = ud;

lim = uq;

=0;

17 and 21 it is also set a flag called “sat” which signals that the
saturated. Such flag enables the anti-wind-up system implemented

inside the PI current control.
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3.4 Current Controllers Block

J3jjonuo) |4

— <auw”m>
awm
<jes>
l«——bn 188 |4
bi <bi>
<pi>
P«
|013U0D BAIOIPBId l«——{pn b
_ |<ew™ms> <>
awm ™
<,bi>
b
UORaIpBIG JuBLIND Pue X4 oume
<Pl> _ E
«P! paid bl _ <owbn>
jowbn
_ <jow” pn>
paud by paud pi jow pn
br:
by <DI>
paidpi ——|paid b epquuey ol <pi>

Jojoejes ABejeng joauo)

b epque|
pasd p epque|
p_epquey

uogews3 Xnj4

b epque|
P epque|
b epquel

P epquie|

bi

p!

<bi>

<pi>

<,bi>

<pI>

900}=() ‘|EUOHUBAUOD=], <opMn>
opn
_ <owm> g T
£
paid b epque, ¢
pasd p
b7 T
P EPqUIE] (@ T
290}
<opn>
opn
_ <oW M>
l«——|bn aw -
— <awejay>
aw ejeyy
paid b
paid pepque|fe— —
je——|Pn b
1P

mEIEmSmE e

je———— (0D

Current2 8Controllers scheme.

Figure 3.4



The scheme, shown in figure (3.4), reports the structure of the Current_Controllers
Block. In this scheme there are 3 different control strategies implemented: a

PT control, a Predictive Control (which shows better performances than the

PT and helps the toCc) and the toCe, whom theory has been studied in the
previous chapter.

3.4.1 PI Control

A traditional PI control was firstly modelled, which will serve as a comparison
base to study the toCc strategy qualities.
The transfer function of the uncontrolled motor along d- and g¢-axis is:

1 k.

T(s) = .
() R+sL 1+ sT;

where L takes value Lg or L,, depending on the axis took into consideration,
T is the period of the PWM generated by the inverter (which coincide with
the sampling time of the system) at 100us (fs = 10kH z) and k. is the inverter
voltage gain, which it has been set at 1 for simplicity.

Starting from the function above it is possible to model the control, whose

formula is:
P(s) = klﬂ
s
where Tp; =k, /k;, and k,, and k;, are respectively the proportional and
integrative constants of the PI control. Placing the crossing frequency at

w,, = 3770rad/s(= 600H z) and Tp;, = L/R for simplicity, it is possible to

calculate the value of k;,, by imposing ||W (jw,,)|| = || P(jwe, )T (jw.,)|| = 1:
R
bi, = —we\/ 1+ (we, T,)? (3.2)

once found the value of k;;, it is possible to calculate k,,, since Tpy, = kp,k;,.
Therefore the values obtained are:

[ ] ki,id = ki,iq = ]., 837e4
o k,;, =113.3

= 577.83

p7iq

and the bode diagram of the open loop frequency response W (jw) is:
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Figure 3.6: Bode diagram of the open loop control along g-axis.
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as reported in the bode diagrams above, in both axis the phase margin
is ¢, = 86.6° and the crossing happens at a —20dB/dec slope, therefore the
system is stable at close loop, for the Bode Theorem. The control produces
the following transient:

e S e S S iS

02— 7 7T T T T T T

Time [s]

Figure 3.7: Current transient form 0 to 1 A.

To further improve the PI control is also possible to add an anti-wind-up
system which disengages the integrative part of the control in case of voltage
saturation, provided that the voltage reference w;/ uy and the current error of
the respective axis would have the same sign. Figure shows the improvement
in the transient overshot.
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Figure 3.8: Anti-windup performance.

However, if a bigger transient is applied the current step response becomes
atypical, an example can be seen in figure (3.9).
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Figure 3.9: i, current transient with Uy, = 230 V,s; (0 — T, ng = 1500 rpm).

Such anomaly in the transient is due to the low value of the U,c bus
voltage applied to the motor. If a great step is requested to the motor (for
example from 0 to the nominal torque value) only a low current can be
injected in the motor, thus deforming the transient as shown in figure (3.9).
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To improve the plot, the bus voltage could be increased to raise the available
power. Imposing a bus voltage Uj. = 380 V,eqr, yields the following result:

Figure 3.10: 44 current transient with Uy = 380 Vpeur (0 — T5,np =
1500 rpm).

It is clear by looking at figures 3.9 and 3.10 that the second one is better,
even if still not completely regular.

The scheme of the PI controller at the end becomes:
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3.4.2 Control strategy selector

Pivotal to the correct functioning of the control is the Control Strategy
selector. The toCc algorithm, in fact, performs badly in steady state region,
as shown in figure 3.12.

1Ce

s Plconitr

T Nm]

0.4 0.45 0.5 0.55 0.8 0.4 0.45 05 0.55 0.6 0.4 0.45 05 0.55 0.6
Time [s] Time [s] Time [s]

Figure 3.12: Torque and current chattering.

Looking at the pictures of the figure above it is clear the presence of a
great ripple in steady state which can arrive up to the 30% of their respective
rated value, which is not tolerable.

With such behaviour it becomes necessary to create a control strategy, which
can select the most suitable control for each working conditions that arise.
The overall performance of the current control strongly depends on the per-
formance of the current control selector. Unnecessary toCec actions have to be
avoided and a smooth and neat transition between the two control strategies
has to be guaranteed.

To carry out such tusk, a flux linkage error amplitude method was proposed.
Let us suppose that the motor current i4, is controlled by the conventional
current regulator. As long as the current reference i3, belongs to the reach-
ability set Ruy(i4q, Ts), where T is the sampling time, the current control
should be able to track the current reference with a small current error. As
soon as the current reference leaves the reachability set, the available voltage
is no longer enough to track the reference point, which means that the cur-
rent would be better controlled by the toCec. After the commutation from
the conventional control to the toCc, the latter must keep working as long as
the current reference doesn’t belong to the reachability set. To simplify the
problem it will be used a circular shaped reachability set.
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Figure 3.13: (toCc)/(conventional current control) selection.

The selection block in the scheme of figure 3.4 works in a slightly differ-
ent way, but it yields the same result. Instead of using the reachability set
Ru(Adq, Ts), it uses the controllability set Cy(Aaga, Ts), which is a circular
region of radius UT and centre )\dqlejwmeTS. The output of the toCc is selec-
ted when the actual flux linkage doesn’t belong to Cuy(Adqa, Ts), otherwise the
output of the traditional current control is selected. The code implemented
is the following:

function sel = fcn(lambda_d1, lambda_q1, lambda_d_pred,
lambda_q_pred, w_me, Udc)

pos = w_me/10e3;
lambda_dC = lambda_dl*cos (pos) - lambda_ql#*sin(pos);
lambda_qC = lambda_dil*sin(pos) + lambda_ql*cos(pos);
max_dist = Udc/sqrt (3/2)/10e3;
dist = sqrt((lambda_dC-lambda_d_pred)~2 + (lambda_qC-lambda_q_pred
)72);
if max_dist > dist
sel = 1;
else
sel = 0;

end
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Figure 3.14: Combined action of toCec and PI current control (in red is the
portion in which the toCec operates).

3.4.3 Predictive Control

To simulate the implementation on a digital control platform it has been
introduced a delay block at the output of the controllers block. Such a delay
unfortunately worsen the selection strategy.
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Figure 3.15: “Landing” without current/flux prediction (in red is marked the
portion of graph where the toCc is active).
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In figure 3.15 it is presented the flux linkage in the dg-frame during a

transient from 0 to negative rated torque at 1500 rpm, in the second image
it is presented a zoomed portion of the graph on the left. The cross represents
the target point A4, the circle corresponds to the controllability set of the
point A4y for a time equal to the sampling time T (100us). Each dot along
the plot correspond to a sample. The state of the system is moved by the
toCc algorithm toward the controllability set Cy(Agq1, T5), but, once reached
such region, the control takes an additional step instead of switching to the
PI control (additionally the simulation was truncated in order to improve the
reliability of the plot).
To compensate for the delay it is necessary to use a predictive control, to
replace the original one. Lets consider the generic quantity x(k) where k
represent the sample. Lets also indicate with T, the average quantity value
between sample k and k£ + 1. Figure 3.16 shows a graphical representation of
what has been described.

|
[

|

[
E—1 k k+1
PWM TR NZ N

Figure 3.16: Discrete time line.

Using this convention on the system 1.1 becomes:

A - A _ _
Uqg,, = dk+1T & wme/\% + Ridk
s 3.3
= 2 P SR o
a — T, me/\dy, ax

where T is the sampling time, k is the last acquired sample and %qu and
Adq, are approximated by the expression:
= ikoH + iqu 3 . Ad[]k+1 + Ad%

e T (3.4)

What is needed is to predict the state of the system Ay, , at sample k + 1.
By substituting @, = uy, and equations 3.4 into system 3.3 it is obtained:

Wine T RT; . Wme R

)‘dk+1 - 9 )‘Qk+1 + 9 tdpy = | Ug, 9 )\Qk - Ezdk) Ts + )\dk
Wine T s RT; . * Wime R

/\Qk+1 + T/\dkﬂ + TZQk+1 =\ Ug, — T/\dk - 51% Ts + )\Qk

(3.5)
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An other substitution must be applied on the current, since its value at
sample k& + 1 isn’t known. The substitution is the following:

. )‘dk+1 B Amg
i >‘Qk+1 ( : )
dk+1 Lq
System 3.5 becomes the following:
11\ dy i, T 12Ag, = D1 (3.7)
a21)\‘1k+1 + a22)\‘1k+1 = by
where
( 1y RT
a1 = 2L,
wmeTs
a1 = — 9
a21 = —a12
1+ i
Qa =
22 2L,
b= [+ 5o = g (i) | 7
Wine R
by = | uy, — ——Aa,, — Slg | Ts + Mg,
\ 2 2

It is now possible to calculate the value of Ay, ., and A, ., since system 3.7
is linear, with two equation in two unknown. Once they are found it is also
possible to calculate the predicted currents ig, ,, and iy, ,, by means of flux
linkage formula.
Once all the necessary values are known the predictive control calculates the
voltage to be applied by means of the system:
Uy = Ridpred + (Zjl - Z.dpred)% - wmeLqupred
S
(3.8)

: I L .
u; = RZQpred + (Zq - Z‘Zpred)Tq + Wme (Ldldpred + Amg)
which is the system 1.2 written using the Euler method. If the predicted flux
linkage is used in the toCec algorithm and in the control selection the result
is shown in figure (3.17). By comparing it with figure (3.15) it is clear that
the landing with the predictive control is neater.
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Figure 3.17: “Landing” with current/flux prediction (in red is marked the
portion of graph where the toCc is active).

3.4.4 Time Optimal Current Control (toCc)

Of particular relevance is the block which implements the toCc. As afore-
mentioned, the toCec algorithm works with the flux linkages. In light of that a
Flux Estimation block has been implemented which calculates the desired
flux linkage and the current one by means of the known relationship between
the currents and the flux linkages of the specific motor, which then is used to
calculate the predicted one through the Flux and Current Prediction block,
as specified in the previous paragraph.

The code which implements the toCc strategy is the sequent:

function [ud, uq] = fcn(lambda_dl, lambda_ql, lambda_d_pred,

lambda_q_pred, theta_me, w_me, Udc)

t_min = 0; % [s]

t_max = 15e-3; % [s]

t = 0.5%(t_min+t_max);

% bisection algorithm

for dummy=1:20
pos = w_mext;
lambda_dc lambda_d_pred*cos (pos)+lambda_q_pred*sin(pos);

lambda_qc -lambda_d_pred*sin(pos)+lambda_q_pred*cos (pos);
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delta_d = lambda_d1l-lambda_dc;
delta_q = lambda_ql-lambda_qc;
mod = sqrt(delta_d~2+delta_q~2);
u_phase_ab = atan2(delta_q, delta_d)+theta_me+pos;
Vhex = Udc/sqrt(3/2)/sin(2/3*pi-(abs(u_phase_ab)-pi/3*fix (3%
abs (u_phase_ab)/pi)));
max_mod = Vhexx*t;
if mod > max_mod
t_min = t;
else
t_max = t;
end
t = 0.5%x(t_min+t_max);
end

% phase of the voltage reference vector in the synchronous dq
frame
u_phase_dq = atan2(delta_q, delta_d)+pos;

% Amplitude of the voltage reference vector: its amplitude
% is shrunk by the voltage limiter block.

u_amp = 2/3*%Udc*sqrt (2);
ud = u_amp*cos (u_phase_dq); % d-axis voltage reference [V]
uq = u_amp*sin(u_phase_dq); % q-axis voltage reference [V]

where lambda_d1 is A4, lambda_do0 is Ay, lambda_dc is Ag.(t1) and t is ¢;.
Lines 3-4 set the range where the solution of equation (2.31) is sought. The
minimum time (t_min) is set to zero, and the maximum time (t_max) must
be greater than the length of the longest possible torque transient. Such value
can be calculated by knowing that the longest possible transient corresponds
to a diameter of a circle of radius 0.41 Vs (the largest flux linkage transient)
and the smallest voltage vector amplitude corresponds to Udc/+/(3) = 188 V.
With these data, the longest transient turns out to be 0.82/188 = 4.4 ms.
Taking a large safety factor, t_max can be set at 15 ms.

The bisection method was implemented with a for loop. Such loop guarantees
a constant and known execution time and does not give rise to possible
dangerous infinite loops. After n iterations ¢; is less than (00 —timin)/2n+1,
which is approximately 7 ns for the specific case. Once the transient time
t is known, the phase of the voltage vector can be computed from equation
(2.33).

In the figure below it has been reported the voltage amplitude and phase
during the transient from 0 Nm to the rated torque value at 1500 rpm. In
red it has been also emphasized the portion in which the toCc algorithm
is working. Noticeable is the phase of the voltage which remains almost
constant, as required by the toCec
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Figure 3.18: Amplitude and phase of voltage during transient.

3.5 Results

In this section will be presented a table where it will be reported the rise
time of a number of different transient. It will be also analysed some of the
behaviours and drawbacks of this control strategy.

To carry out the simulations the reference current vector was generated via

a MTPA (Maximum Torque Per Ampére) lookup table, calculated by using
the formula:

g 2y 8 (La = Ly)* 1)
A(Lq— LI

Y = arccos

where [ is the amplitude of the I current vector in the dg-frame and ~ is its
phase value necessary for the current vector to lay on the MTPA curve.
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3.5.1 Transient Time

Start Point | Target Point | Speed [rpm| | PI rise time [ms| | toCc rise time |ms]
0 T, 750 2.749 2.159
0 T, 1125 3.627 1.846
0 T, 1500 6.524 1.614
T, 0 750 1.392 1.345
T, 0 1125 1.033 1.016
T, 0 1500 0.770 0.772
0 T./2 750 1.765 1.430
0 T./2 1500 2.487 1.285

T./2 0 750 1.133 1.124
T./2 0 1500 0.930 0.901
0 T./5 750 0.977 0.929
0 T./5 1500 1.205 0.891
T./5 0 750 0.677 0.674
T./5 0 1500 0.601 0.587

Table 3.1: Transient rise time of PI and toCe controls.

In the table above it has been presented some possible Torque transients at
different rotor speeds. It is clear how the toCec algorithm implemented yields
the fastest transient. In particular the biggest time saved (equal to 4.910 ms)
can be seen in the third transient (7, — —T,, at 1500 rpm).

An other observation can be made about the variation of the rise time related
to speed. As the speed rises, the rise time becomes lower for the toCc. The
rotor speed explicitly appears in the electric equations of the motor. For this
reason, the torque transients are affected by the speed value.
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Figure 3.19: 4%, frame and torque. Transient: 0 <« 7},,n9 = 0.

At zero speed, as seen in figure (3.19), the d- and ¢- axis are decoupled
and both the controls produced roughly the same output.

Torque [Nm]

£ -4 -2 0 2 0.02 0.03 0.04 0.05 0.06
Al Time [s]

Figure 3.20: 47, frame and torque. Transient: 0 < T,,,n9 = 750 rpm.

Raising the speed to 750 rpm, as reported in figure (3.20), yields a vari-
ation of the currents paths in i4i, frame, resulting in the ZoCc transient
greater speed. Rising even more the rotor speed renders more pronounced

the divergence of the two controllers, as seen in the figure below.
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Figure 3.21: 447, frame and torque. Transient: 0 < T),,nyo = 1500 rpm.

Noticeable is the peak that forms in the current 7., which reaches a peak of
3 A over the target current. such high values of current can demagnetize the
internal permanent magnets in the rotor, if grater currents are to be imposed.
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Chapter 4

Speed control

In this chapter of the thesis it will be presented the attempt to combine the
toCc with a traditional speed control, in order to obtain a faster rotor speed
variation of the motor.

4.1 PI speed control

Using as base the control implemented in the previous two chapters, it has
been realized the speed control. The control about to be realized, must be
adapted to the current loop transfer function which in closed loop can be

approximated as:
1

S

Wi(s) =

- (4.1)
1+

We,

where w,, is the open loop zero crossing frequency of the open loop current
control (= 600 Hz). In light of this, the system to compensate has the
following open loop transfer function:

1 1
H(s) = . 4.2
(8) 1 + S B + SJ ( )
We,

where B and J are respectively the air friction and inertia coefficients, which
have value B = 3.3¢ — 2 Nms and J = 1.8¢ — 4 kg - m?.
As the PI current control, the speed regulator has the following transfer

function:
14 STp[w

w

Ry,(s) =k .
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To realize it, firstly it has been chosen the desired crossing frequency, which
has been set at w., = 62,83 rad/s (= 10 Hz). Then it has been set
Tpr, = B/J to compensate the pole introduced by the transfer function
of the mechanical model. With the same procedure used with the PI current
control it was obtain the following values:

ok =4.174
o k,, =0.0226

The bode diagram of the open loop transfer function L, (s) = R,(s) - H(s)
becomes:

L, (iw)
50 T T T
R \—-‘¥
e T e
] eeael L
g \
= =
g il s~ |
= ‘K\
]
100 1 ] ] 1
-80 = = — T T
System: Lw ;1“"*-,‘_\
Phase Margin (deg): 89
s Delay Margin (sec): 0.0247
a0 - H|
g -1 Alfrequency (rad/s): 62.8
= Closed loop stable? Yes
Eg R —————
a
=t
o -150 7
-180 o L I 1 \—_,
109 10’ 102 10° 107 10°

Frequency (rad/s)

Figure 4.1: Magnitude and phase of the impulsive response L, (jw).

As indicated in figure (4.1) the system has the desired cross frequency,
a phase margin ¢,, = 89° and, since it crosses the zero with a slope of
—20 dB/dec, the system is stable. If applied a step response from 0 to
500 rpm, the system yields the following response:
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Figure 4.3: System response to the transient 0 — n = 1000 rpm (Wpe

208 rad/s) with anti-wind-up and without.



4.2 PI regulator and toCc combination

After the speed regulator was implemented it has been tried together with
toCc. The control was tested on the transients from 0 rpm to the target
speeds: 500 rpm, 750 rpm, 1000 rpm, 1250 rpm and 1500 rpm. These are
the results:

! ! ! ! ! ! ! ' I
140 —— S T I E— —— N R PI, +1oCc ]
| | | | | | | | Pl +Pl_
e N M s s S S e o R
100 - —— — e ——— e e [ p—— —
i ED_____..____L____'_._______._______.____..____L____'_ _____
3
g
_ NP | SUSROE: SRS SO SUSIRUR WU S5 SSTUUINS SIS ORI SRR S,
E
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Figure 4.4: Speed transient 0 — n = 500 rpm (wy,. = 105 rad/s).
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Figure 4.5: Speed transient 0 — n = 750 rpm (W, = 157 rad/s).
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Figure 4.8: Speed transient 0 — n = 1500 rpm (wy,e = 314 rad/s).

Looking at the transients presented it can be seen that the effect of the
toCc is noticeable only at high speeds, while at lower ones its influence is
practically non-existent. This seems to be linked to the saturation of the
speed regulator’s output current.
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Figure 4.9: PI speed block view.

4.3 Speed control improvement

In this section will be discussed a way to improve the speed transient of the
system at lower rotor speeds.

4.3.1 FError range

The first expedient uses an error threshold around the target speed, outside
which it is forced the nominal current.

52



Saturation

B
¥

Figure 4.10: First attempt to improve speed transient.

In figure (4.10) it is highlighted the part that implements the control vari-
ation. The block Error_Range, in particular, outputs a logic value curr_sat
that is equal to 1 when the error speed is higher then 10 rad/s, which selects
I,, or —1I,, depending on the sign of the error.

The modification applied yielded the following results:
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Figure 4.12: Speed transient 0 — n = 750 rpm (Wpe
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Figure 4.13: Speed transient 0 — n = 1000 rpm (W, = 208 rad/s).

Looking at the plots above it can be noticed an improvement in the speed
transient, which becomes quicker if used with the toCec.
However the new control introduces an oscillation around lower limit of the
error range, which is caused by the too low value of k,, , and by the in-
tegrative part of the control which is too low, due to rapid transient. The
combination of the two, lowers the current output of the control, which lowers
the speed and increases the speed error. Once it becomes higher than the
limit imposed, the current is forced again to the nominal value. This cycle
continues until the integrative part is high enough to maintain the error in-
side the imposed limit.
The new control strategy didn’t provide the desired results.

4.3.2 Adaptive PI speed control

An other strategy was implemented to obtain a better transient. In the
previous attempt, when the error was grater than the assigned value, the
regulator didn’t control the output current. During such period it doesn’t
matter if the PI control is stable and this can be used as an advantage.
One problem of the speed regulator, in fact, is the too low value of £k, ,
which impresses a too low current to the current control. The value of the
proportional constant could be increased in order to force a greater current
out of the speed regulator, in order to increase the transient time where the
toCc control works. Then it should reduce in the proximity of the desired
speed.
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To realize such control it has been used an Adaptive PI speed control, which
varies the proportional constant with the value of the speed error, according

to the expression:
2
e'LU
14+ — 4.3
(%) ] (4.3

where e, is the speed error and ¢, is the error threshold, over which the
proportional constant retains its original value.

k.

Pw,mod w

=k,

w_me kp_wmod
kp_w »kp_w
= BF
Adaptive_kp

Saturation

Figure 4.14: PI speed regulator block view with adaptive &, .

Figure (4.14) shows the adaptive control implemented and in particular
the block Adaptive_kp contains the expression 4.3, in which ¢, was given
value 10 rad/s.

The graphs of the simulations are the following:
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Figure 4.15: Speed transient 0 — n = 500 rpm (wy,e = 105 rad/s).
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Figure 4.16: Speed transient 0 — n = 750 rpm (wye = 157 rad/s).

57



250 F T T T T T T T T T =
Pl +toCc
Pl only {\
200 —W:ne 3 i = . i) E —
150 % |
w
=
g
E 100 | L | . | | —
50 =0
0 =
1 | 1 1 1 1 1 1 1
] 0.02 0.04 0.06 0.08 01 012 014 016 0.18 0.2

Time [s]

Figure 4.17: Speed transient 0 — n = 1000 rpm (W, = 208 rad/s).

As can be seen in the graphs above, the transients are similar to the ones
shown in the previous paragraph, but without the oscillations around the
error threshold.

Thanks to this expedient, the speed transients are consistently shorter in
time than the ones which use the standard PI control on both speed and
current control loops.
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