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Introduction

In this thesis we deal with a class of McKean-Vlasov Stochastic Differential
Equations (MV-SDEs).
MV-SDEs are more involved than classical SDEs as their coefficients depend
on the law of the solution itself. They are sometimes referred to as mean-field
SDEs and were first studied by McKean in A class of Markov Process associ-
ated with non linear parabolic equations (1966). These equations describe the
limiting behaviour of individual particles having diffusive dynamics and which
interact with each other in a ”mean field” sense.
In this thesis, we are interested in showing existence and uniqueness of solu-
tions for a class of MV-SDEs that arise in the study of the Large Deviation
Principle for weakly interacting Itô diffusions. One way of proving limit theo-
rems of this type is through the so-called weak convergence approach, which
requires, besides tightness and identification of the limit, uniqueness of solu-
tions for a controlled version of the limit model.

Let T > 0 be a time horizon and d, d1 ∈ N. Let P(Rd) be the space of
probability measures on Rd and let P1(Rd) be the space of probability mea-
sures on Rd with finite moment of first order.
Let ((Ω,F ,P), (Ft)t∈[0,T ]) be a stochastic basis satisfying the usual hypotheses
endowed with a d1-dimensional (Ft)-Wiener Process (Wt)t∈[0,T ].
The aim of this work is to investigate the cases in which the SDE has the
following form:

dX(t) =b(t,X,Law(X(t)))dt+ σ(t,X,Law(X(t)))u(t)dt

+ σ(t,X,Law(X(t)))dWt,
(0.1)

with initial condition X(0) = X0 fixed and u ∈ U , where U is the space of all
(Ft)-progressively measurable functions w : [0, T ]× Ω→ Rd1 such that:

E

[∫ T

0

|w(s)|2ds

]
<∞.

Equation (0.1) is called controlled McKean-Vlasov stochastic differential equa-
tion. It is sometimes referred to as (controlled) non-linear SDE. This denomi-
nation is due to the non-linearity of its infinitesimal generator.
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The complications in such an expression are not only due to the non-linear
nature of the equation but also to the presence of the control u(·). We think of
u as a control, although we are not selecting u. It is simply a given stochastic
process with finite integral moment of second order.

There are different ways to deal with both the problem of Existence and that of
Uniqueness of solutions. The approach depends on the assumptions we make
on the various coefficients appearing in the equation.
In particular, the case in which the coefficients are globally Lipschitz and the
control is not present, or it is present but bounded, has already been discussed
in several works and one can quite easily show that the solution in this case
exists and is unique.
The presence of an unbounded control complicates quite a bit our problem, at
least for the Uniqueness problem. In fact, the introduction of an unbounded
control, u, makes the actual drift coefficient only locally Lipschitz. As opposed
to ordinary stochastic differential equations, for MV-SDEs it is possible to find
counterexamples to uniqueness when the coefficients are only locally Lipschitz,
see [13].

In order to deal with the problem of Existence of solutions for the equa-
tions above, we introduce a functional Ψ that associates to an element θ =
(θt)t∈[0,T ] ∈ C([0, T ],P1(Rd)) the flow of measures corresponding to the marginal
laws of the solution of the SDE:

dX(t) = b(t,X, θ(t))dt+ σ(t,X, θ(t))u(t)dt+ σ(t,X, θ(t))dWt.

Then Ψ is well defined under quite general assumptions on the coefficients b
and σ and with initial condition X(0) = X0 fixed.
A fixed point for Ψ(·) is the flow of measures associated to a solution for the
Equation (0.1).
We exploit Brouwer-Schauder-Tychonoff Theorem to show that Ψ(·) admits at
least one fixed point. We need to restrict ourself to consider a convex compact
subset of C([0, T ],P1(Rd)) to be in the hypotheses of the theorem. The key
tool to obtain compactness is a version of Ascoli Arzelà Theorem.
Furthermore we need to show that the functional Ψ(·) is continuous.
In the case in which the coefficients b and σ are globally Lipschitz the conti-
nuity of Ψ(·) can be showed directly. When the coefficients b and σ are simply
uniformly continuous, we are still able to show the continuity of Ψ(·) but we
need to exploit the Martingale Problem.

Secondly, we develop the Uniqueness topic.
We obtain some positive results, imposing stronger assumptions on coefficients
or controls.
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In particular, we are able to show uniqueness in the case of finite moments of
exponential order of the control u(·), that is: there exists a positive c > 0 such
that

E
[
ec

∫ T
0 |u(t)|2dt

]
= D <∞.

We also show Uniqueness of solutions in the case of ”delayed volatility coef-
ficients”, that is: there exists δ > 0 such that for all t ∈ [0, T ], all φ, ψ ∈
C([0, T ],Rd), all µ ∈ P(Rd):

σ(t, φ, µ) = σ(t, ψ, µ), once φ(s) = ψ(s) ∀s ∈ [0, t− δ].
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Chapter 1

Existence of solutions

1.1 Relative Compactness

Let us consider a Polish space∗, E, and a complete metric r(·, ·) on it.
We define C = C([0, T ], E), the space of continuous functions from the interval
[0, T ] to E, and define the distance between two points x and y in C as :

ρ(x, y) := sup
t∈[0,T ]

r(x(t), y(t)).

We introduce the concept of modulus of continuity :

Definition 1.1. Let x ∈ C([0, T ], E), we define the modulus of continuity
of x as:

wx(δ) = w(x, δ) = sup
|s−t|≤δ

r(x(s), x(t)), 0 < δ ≤ T.

Remark 1.2. The definition of modulus of continuity given above let us deduce
a necessary and sufficient condition for an x to be uniformly continuous on
[0, T ]:

lim
δ→0

wx(δ) = 0. (1.1)

Any x ∈ C satisfies (1.1).

Remark 1.3. We can notice, exploiting the property of the sup of a difference

∗A Polish space is a separable completely metrizable topological space; that is, a space
homeomorphic to a complete metric space that has a countable dense subset.
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1.1. RELATIVE COMPACTNESS

and triangle inequality, that:

|wx(δ)− wy(δ)| = | sup
|s−t|≤δ

r(x(s), x(t))− sup
|s−t|≤δ

r(y(s), y(t))|

≤ sup
|s−t|≤δ

|r(x(s), x(t))− r(y(s), y(t))|

≤ sup
|s−t|≤δ

|r(x(s), x(t))− r(x(t), y(s)) + r(x(t), y(s))− r(y(s), y(t))|

≤ sup
|s−t|≤δ

{
|r(x(s), x(t))− r(x(t), y(s))|+ |r(x(t), y(s))− r(y(s), y(t))|

}
≤ sup
|s−t|≤δ

{
r(x(s), y(s)) + r(x(t), y(t))

}
≤ 2ρ(x, y),

which means that w(x, δ) is continuous in x for a fixed δ.

We recall the definition of relative compactness.

Definition 1.4. A set A is relatively compact if Ā, the closure of A, is
compact. This fact is equivalent to the condition that each sequence in A
contains a convergent subsequence (which may not lie in A)

Here we present a generalized version of Ascoli-Arzelà Theorem, Theorem
A2.1 in [9], which completely characterizes relative compactness in C([0, T ], E).

Theorem 1.5 (Ascoli -Arzelà ). Fix two metric spaces [0, T ] and E, where the
interval [0, T ] is, obviously, compact and E is complete, and let D be dense in
[0, T ]. Then, the set A ⊂ C([0, T ], E) is relatively compact if and only if:

πtA is relatively compact in E, for every t ∈ D (1.2)

and

lim
δ→0

sup
x∈A

wx(δ) = 0. (1.3)

In that case, even
⋃
t∈[0,T ] πtA is relatively compact in E.

Remark 1.6. Let us notice that the functions in A are by definition equicon-
tinuous at the point t0 ∈ [0, T ] if, as t→ t0, supx∈A r(x(t), x(t0))→ 0; and the
condition (1.3) defines uniform equicontinuity over [0, T ] of the functions in
A.

Proof: If Ā is compact, (1.2) follows easily.
Let us recall a result.

Lemma 1.7. If fn ↘ 0 for each x and if each fn is everywhere upper semi-
continuous the convergence is uniform on each compact set.
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CHAPTER 1. EXISTENCE OF SOLUTIONS

Since w(x, n−1) is continuous in x and non increasing in n, if Ā is compact
exploiting the theorem above we have that limδ→0wx(δ) = 0 holds uniformly
on A, that is (1.3).
Now suppose that (1.2) and (1.3) hold.
The idea now is to exploit (1.2) and (1.3) to prove that A is totally bounded.
In fact, C = C([0, T ], E) is complete, because of the completeness of E, and so
A totally bounded is a condition equivalent to Ā compact.
Given ε > 0, by hypothesis (1.3), we can choose k ∈ N large enough that
wx(Tk

−1) < ε, for all x ∈ A.
D ⊂ [0, T ] is a dense subset of [0, T ]. We can consider a finite set Ik =
{t1, . . . , tm} ⊂ D such that ∀t ∈ [0, T ]: ∃tj ∈ Ik such that |t− tj| ≤ Tk−1.
By hypothesis (1.2), we know that, for any tj ∈ Ik ⊂ D, πtjA is relatively
compact. Because of the completeness of E and the result quoted above, πtjA
is totally bounded, ∀tj ∈ Ik. Hence, for all tj ∈ Ik, we can define a finite ε-net,
Hj, on πtjA.
Define H as H =

⊗m
j=1 Hj.

Consider y ∈ H.
Choose an element xy in A such that supj∈{1,...,m} r(xy(tj), y(tj)) ≤ ε, if it ex-
ists, and otherwise select arbitrarily an element in C([0, T ], E) that satisfies the
same condition and set it to be xy. We build the set B as B = {xy : y ∈ H}.
B is finite, since #B = #H =

∏
j∈{1,...,m}#Hj <∞. We want to show that B

is a finite ε̃-net for A.
Let z be a generic element in A.
∀tj ∈ Ik there must be yj ∈ Hj, such that r(yj, z(tj)) ≤ ε. Hence, there exists
y ∈ H: supj∈{1,...,m} r(yj, z(tj)) ≤ ε.
Let xy ∈ B be the element in A such that supj∈{1,...,m} r(yj, xy(tj)) ≤ ε.
We have, for all t ∈ [0, T ]:

r(xy(t), z(t)) ≤ r(xy(t), xy(ti)) + r(xy(ti), y(ti)) + r(y(ti), z(ti)) + r(z(ti), z(t))

≤ wxy(Tk
−1) + ε+ ε+ wz(Tk

−1) ≤ 4ε,

where ti ∈ Ik is such that |t− ti| ≤ Tk−1.
Hence we have that:

ρ(xy, z) = sup
t∈[0,T ]

r(xy(t), z(t)) ≤ 4ε.

Thus B is a finite 4ε−net for A and, since ε is arbitrarily small, we can deduce
that A is totally bounded as desired.

Theorem 1.8. Suppose that 0 = t0 < t1 < · · · < tv = T and

min
1<i<v

(ti − ti−1) ≥ δ. (1.4)
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1.1. RELATIVE COMPACTNESS

Then, for arbitrary x,

wx(δ) ≤ 3 max
1≤i≤v

sup
ti−1≤s≤ti

r(x(s), x(ti−1)). (1.5)

Remark 1.9. We underline that (1.4) does not require ti − ti−1 ≥ δ for the
extremals i = 1 or i = v.

Proof: Let m be the maximum in (1.5) that is
m = max1≤i≤v supti−1≤s≤ti r(x(s), x(ti−1)).
Let us notice that if |s − t| ≤ δ, then s and t must lie in the same interval
[ti−1, ti] or at least in adjacent ones. In the first case, if for example s and t
are in the same interval [tl−1, tl], then:

r(x(t), x(s)) ≤ r(x(t), x(tl−1)) + r(x(tl−1), x(s)) ≤ 2m.

In the second one, if s and t are in adjacent intervals, [ti−1, ti] and [ti, ti+1]
respectively, then

r(x(s), x(t)) ≤ r(x(s), x(ti−1)) + r(x(ti−1), x(ti)) + r(x(ti), x(t)) ≤ 3m.

This implies that
wx(δ) = sup

|s−t|≤δ
r(x(s), x(t)) ≤ 3m,

that is (1.5).
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CHAPTER 1. EXISTENCE OF SOLUTIONS

1.2 Fixed-point Theorems

Here we give a few definitions and results that are necessary to the fixed-point
theorems we would like to exploit. For this part we refer to chapter 17 in [1].

Definition 1.10. A correspondence φ from a set X to a set Y assigns to
each x in X a subset φ(x) of Y .
We write φ : X � Y to distinguish a correspondence from a function from X
to Y .

We wish to denote restrictions on the values of a correspondence.

A correspondence φ : X � Y is said to be non-empty-valued if, for each
x ∈ X, φ(x) is a non-empty subset of Y .
If Y is a topological space, then we say that the correspondence φ : X � Y
is closed-valued or has closed values if φ(x) is a closed set for each x ∈ X
and analogously we say that φ is convex-valued if for each x ∈ X φ(x) is a
convex subset of Y .

Just as functions have inverses, so do correspondences.

Definition 1.11. The upper inverse φu (also called the strong inverse ) of
a subset A of Y is defined by

φu(A) = {x ∈ X : φ(x) ⊂ A}

Definition 1.12. A correspondence, φ : X � Y , from a topological space to
a topological vector space is upper demicontinuous if the upper inverse of
every open half space in Y is open in X.

Definition 1.13. A correspondence, φ : X � Y , between topological spaces
has closed graph, if its graph Gr(φ) = {(x, y) ∈ X×Y ; y ∈ φ(x)} is a closed
subset of X × Y .

Definition 1.14. Let A be a subset of a set X. A fixed point of a function
f : A → X is a point x ∈ A satisfying f(x) = x. A fixed point of a
correspondence φ : A� X is a point x ∈ A satisfying x ∈ φ(x).

Definition 1.15. Let A be a subset of a vector space X. A correspondence
φ : A� X is inward pointing if, for each x ∈ A, there exists some y ∈ φ(x)
and λ > 0 satisfying x+ λ(y − x) ∈ A.

We are now ready to state the following theorems.

Theorem 1.16 (Halpern-Bergman). Let K be a non empty compact convex
subset of a locally convex Hausdorff space X, and let φ : K � K be an inward
pointing upper hemicontinuous correspondence with non-empty closed convex
values. Then, φ has a fixed point.
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1.2. FIXED-POINT THEOREMS

Theorem 1.17 (Kakutani-Fan-Glicksberg). Let K be a non-empty compact
convex subset of a locally convex Hausdorff space, and let the correspondence
φ : K � K have closed graph and non-empty convex values. Then, the set of
fixed points of φ is compact and non empty.

The next fixed point theorem is immediate from the fact that continuous
function define upper hemicontinuous correspondences, but is stated separately
for historical reasons. This is the result we will use.

Corollario 1.18 (Brouwer-Schauder-Tychonoff). Let K be a non-empty com-
pact convex subset of a locally convex Hausdorff space, and let f : K −→ K
be a continuous function. Then, the set of fixed points of f is compact and
non-empty.
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CHAPTER 1. EXISTENCE OF SOLUTIONS

1.3 Existence in Wasserstein-1 metric

The topic of existence of solutions can be developed considering different met-
rics on the space P1(Rd), which is the space of probability measures on Rd

with finite moments of first order.
We focus our interest on the Wasserstein-1 metric.

Definition 1.19. Let µ, ν ∈ P1(Rd), we define the distance in Wasserstein-1
metric between µ and ν as:

W1(µ, ν) := inf
γ∈Γ(µ,ν)

∫
Rd×Rd

|x− y|dγ(x, y),

where Γ(µ, ν) denotes the set of all measures on Rd×Rd with marginals µ and
ν on the first and the second factor respectively.

According to Kantorovich-Rubistein Theorem, for example Theorem 1.14
in [15], this metric can also be rewritten as:

W1(µ, ν) = sup

{∫
Rd
f(x)µ(dx)−

∫
Rd
f(x)ν(dx) : Lip(f) ≤ 1

}
,

where Lip(f) denotes the Lipschitz constant of f .
In particular, this definition justifies the following:

Proposition 1.20. Setting µ and ν ∈ P1(Rd), let Xµ (resp. Xν) be a stochas-
tic variable whose law is µ (resp. ν). It is true that:

W1(µ, ν) ≤ E
[
|Xµ −Xν |

]
.

Proof. Let f : Rd −→ R be a Lipschitz function such that its Lipschitz constant
Lip(f) ≤ 1. This implies that ∀x, y ∈ Rd, it holds:

|f(x)− f(y)| ≤ Lip(f)|x− y| ≤ |x− y|.

Hence, we have:∫
Rd
f(x)µ(dx)−

∫
Rd
f(y)ν(dy) = E[f(Xµ)]− E[f(Xν)] ≤ |E[f(Xµ)− f(Xν)]|

≤ E
[
|f(Xµ)− f(Xν)|

]
≤ E

[
|Xµ −Xν |

]
.

This means that:

W1(µ, ν) = sup

{∫
Rd
f(x)µ(dx)−

∫
Rd
f(x)ν(dx) : Lip(f) ≤ 1

}
≤ E

[
|Xµ−Xν |

]
.
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1.3. EXISTENCE IN WASSERSTEIN-1 METRIC

Remark 1.21. Let us highlight that we have the natural inclusion P1(Rd) ⊂ X ,
where X denotes the space of finite signed measures endowed with the topology
of weak convergence.†

Furthermore, we can notice that, if (ηn)n∈N is a convergent sequence in (P1(Rd),W1),
it converges also in (X , dbL). The converse is not true. Let (γn)n∈N ⊂ P1(Rd)
be a convergent sequence in (X , dbL). In general, this sequence does not con-
verge in (P1(Rd),W1). In fact, convergence in (P1(Rd),W1) is stronger than
the one in (X , dbL), because it requires the convergence of the first moments.

We introduce the space of continuous functions on P1(Rd), C([0, T ],P1(Rd)),
equipped with the following metric, induced by Wasserstein-1:

Definition 1.22. Let µ, ν ∈ C([0, T ],P1(Rd)), we define the metric ρ1(·, ·) as:

ρ1(µ, ν) := sup
t∈[0,T ]

W1(µt, νt)

Remark 1.23. Let C([0, T ],X ) be the space of continuous functions on the
space of finite signed measures, X , equipped with the following metric:

ρbL(µ, ν) := sup
t∈[0,T ]

dbL(µt, νt), µ, ν ∈ X .

C([0, T ],X ) is a locally convex Hausdorff topological vector space.
There is a natural inclusion: C([0, T ],P1(Rd)) ⊂ C([0, T ],X ).
Furthermore, the topologies, induced by the metrics ρ1, ρbL, are compatible.
Let (fn)n∈N be a convergent sequence in (C([0, T ],P1(Rd)), ρ1). This sequence
does converge in (C([0, T ],X ), ρbL). The converse is not true.
This implies that any compact subset of C([0, T ],P1(Rd)) is a compact subset
of C([0, T ],X ). These facts will be helpful in the future.

Now, we have to recall the background of our problem.

Let T > 0 be the time horizon and d, d1 ∈ N.
Let U be the set of all quadruples ((Ω,F ,P), (Ft)t∈[0,T ], u,W ) such that the
pair ((Ω,F ,P), (Ft)t∈[0,T ]) forms a stochastic basis satisfying the usual hy-
potheses, W is a d1-dimensional (Ft)-Wiener process and u is an Rd1-valued,
(Ft)-progressively measurable process such that:

E
[ ∫ T

0

|u(t)|2dt
]

= Q <∞.

For simplicity, we may write u ∈ U instead of ((Ω,F ,P), (Ft)t∈[0,T ], u,W ) ∈ U .
Let b, σ be predictable functionals on [0, T ]×C([0, T ],Rd)×P1(Rd), with values

†Let us recall that the metric dbL induces on X the topology of weak convergence. As a
reference on can see Theorem (11.3.3) in [6].
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CHAPTER 1. EXISTENCE OF SOLUTIONS

in Rd and Rd×d1 , respectively.
Given u ∈ U , we would like to study the following non-linear controlled SDE :

dXt =b(t,X,Law(Xt))dt+ σ(t,X,Law(Xt))u(t)dt

+ σ(t,X,Law(Xt))dWt,
(1.6)

where the initial condition is X(0) = X0, with E[|X0|2] <∞.
A solution of (1.6) under u ∈ U is a continuous Rd-valued process X defined
on the given stochastic basis and adapted to the given filtration such that the
integral version of (1.6) holds with probability one. A solution is said to be
strong when it is adapted to the filtration (F̄B,X0

t ), i.e. the filtration gener-
ated by W and X0, completed with respect to P. We say that for Equation
(1.6) there is trajectorial uniqueness (we simply write uniqueness) if, given a
couple of solutions X and X ′, defined on the same filtered probability space
(Ω,F , (Ft),P) with the same Wiener process W , the processes X,X ′ are in-
distinguishable, that is P(X(t) = X ′(t),∀t ∈ [0, T ]) = 1.

Consider the following Lipschitz and growth conditions on b and σ.

(L) There exists L such that for all t ∈ [0, T ], all φ, ψ ∈ C([0, T ],Rd) all
µ, ν ∈ P1(Rd)

|b(t, φ, µ)−b(t, ψ, ν)|+|σ(t, φ, µ)−σ(t, ψ, ν)| ≤ L
(

sup
s∈[0,t]

|φ(s)−ψ(s)|+W1(µ, ν)
)
.

(G) There exists a constant K > 0 such that for all t ∈ [0, T ], all φ ∈
C([0, T ],Rd), all µ ∈ P1(Rd)

|b(t, φ, µ)| ≤ K
(

1 + sup
s∈[0,t]

|φ(s)|
)
, |σ(t, φ, µ)| ≤ K.

Remark 1.24. We want to underline that these conditions are sufficient to
guarantee that, for any fixed θ ∈ C([0, T ],P1(Rd)), the following SDE has a
unique strong solution, whose moment of second order is bounded by a constant
that does not depend on the specific θ:‡

dXt = b(t,X, θt)dt+ σ(t,X, θt)u(t)dt+ σ(t,X, θt)dWt

X(0) = X0.
(1.7)

As we have anticipated in the Introduction, we will deduce Existence of solu-
tions for the Equation (1.6) with a fixed point argument.
To this purpose, we introduce the following functional:

Ψ : C([0, T ],P1(Rd)) −→ C([0, T ],P1(Rd))

‡See the Appendix B for the proof, in particular Theorem B.1.
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1.3. EXISTENCE IN WASSERSTEIN-1 METRIC

that associates to ν ∈ C([0, T ],P1(Rd)) Ψ(ν) = (Ψ(ν)t)t∈[0,T ] ∈ C([0, T ],P1(Rd)),
such that Ψ(ν)t = Law(Xν(t)),∀t ∈ [0, T ], where Xν is the unique solution of
the SDE (1.7), with θ = ν.
Thanks to Remark 1.24, we already know that this functional is well defined.
A fixed point for the application Ψ is a µ ∈ C([0, T ],P1(Rd)) such that Ψ(µ) =
µ, that is equivalent to the fact that µ(t) = Law(Xµ(t)),∀t ∈ [0, T ], where Xµ

is the solution of the SDE:

dXt = b(t,X, µt)dt+ σ(t,X, µt)u(t)dt+ σ(t,X, µt)dWt

X(0) = X0,
(1.8)

hence µ is the law of a solution of McKean-Vlasov SDE.
In particular, µ is the law of the solution of Equation (1.8), namely Xµ.
By hypothesis, Equation (1.7), for a fixed flux of measures µ, has a unique
strong solution. Hence, we are able to deduce the existence of a strong solution
for McKean-Vlasov SDE.

Remark 1.25. The argument that we will develop is not sufficient to have
the uniqueness of solution. In fact, the fixed-point theorem that we will exploit
guarantees the existence of at least a fixed point, not its uniqueness.

To show that the function Ψ admits at least a fixed-point, we would like
to exploit Brouwer-Schauder-Tychonoff Theorem.
We need to prove that the hypotheses of the theorem are satisfied.

First of all, we need to focus our attention on a non-empty, compact con-
vex subset of the space C([0, T ],P1(Rd)), in order to restrict Ψ(·) to this set.
Let us notice that, according to the Remark 1.23, we only need to find such a
compact subset in C([0, T ],P1(Rd)); it will then naturally be a compact subset
of the locally convex Hausdorff space C([0, T ],X ).

Define A ⊂ C([0, T ],P1(Rd)) as:

A := {µ ∈ C([0, T ],P1(Rd)) : µ(t) = Law(X(t)),∀t ∈ [0, T ],

where X = (X(t))t∈[0,T ] is the solution to the following equation:

dXt = b(t,X, θt)dt+ σ(t,X, θt)u(t)dt+ σ(t,X, θt)dWt,

with initial condition X(0) = X0, fixed, and θ ∈ C([0, T ],P1(Rd))}.

Obviously, A is non-empty and, thanks to Remark 1.24, we have already no-
ticed that each µ ∈ A is the law of a process (Xt)t∈[0,T ], such that:

E
[

sup
t∈[0,T ]

|Xt|2
]
≤ Re8K2T 2

= R′,

14



CHAPTER 1. EXISTENCE OF SOLUTIONS

with R = 4(E[|X0|2] + TK2E[
∫ T

0
|u(t)|2dt] + 4TK2 + 2K2T 2).

Now, consider B ⊂ C([0, T ],P1(Rd)).

B := {µ ∈ C([0, T ],P1(Rd)) : µ(t) = Law(Y (t)), t ∈ [0, T ], with

Y (t) = X0 +

∫ t

0

b̂sds+

∫ t

0

σ̂sdWs,

where b̂s is a Rd-valued, Ft-progressively measurable process, such that:

E[

∫ t

s

|b̂r|dr] ≤ C
√
t− s, 0 ≤ s ≤ t ≤ T,

σ̂s is a Rd×d1-valued, Ft-progressively measurable process, bounded by

the constant K and

E
[

sup
t∈[0,T ]

|Y (t)|2
]
≤ R′},

where C = K((2T + 2TR′)
1
2 + E[

∫ T
0
|u(t)|2dt] 12 ) <∞.

Furthermore, we can prove the following.

Proposition 1.26. Consider the subsets of C([0, T ],P1(Rd)), A and B defined
above. Then the following inclusion holds:

A ⊂ B.

Proof. We have to show that any µ ∈ A is in B.
Consider a µ ∈ A. It must be µ(t) = Law(Xθ(t)),∀t ∈ [0, T ], where Xθ is the
solution of Equation (1.7), for a fixed θ ∈ C([0, T ],P1(Rd)).
We must check that drift and volatility coefficients, in this case, satisfy the
hypotheses to let µ be in B. Certainly, b, σ and u take values in the right
space and are Ft-progressively measurable, by hypothesis.
By Remark 1.24 we already know that

E
[

sup
t∈[0,T ]

|Xθ|2
]
≤ R′.

Furthermore, by hypothesis (G) on σ, we know that: |σ(t, φ, µ)| ≤ K, for any
φ ∈ C([0, T ],Rd), µ ∈ P1(Rd) and t ∈ [0, T ].
To conclude that A ⊂ B, we have only to show the hypothesis on the drift
term.

15



1.3. EXISTENCE IN WASSERSTEIN-1 METRIC

Exploiting triangle inequality and Hölder inequality, we can deduce:

E
[ ∫ t

s

|b(r,Xθ, θ(r)) + σ(r,Xθ, θ(r))u(r)|dr
]

≤ E
[ ∫ t

s

|b(r,Xθ, θ(r))|+ |σ(r,Xθ, θ(r))u(r)|dr
]

≤ E
[ ∫ t

s

|b(r,Xθ, θ(r))|dr
]

+ E
[ ∫ t

s

|σ(r,Xθ, θ(r))u(r)|dr
]

≤ E
[
|
∫ t

s

|b(r,Xθ, θ(r))|dr|2
] 1

2
+ E

[
|
∫ t

s

|σ(r,Xθ, θ(r))u(r)|dr|2
] 1

2
= 4.

Exploiting (G) hypotheses on b and σ and Hölder inequality, we have:

4 ≤ E
[
|
∫ t

s

K(1 + sup
w∈[0,r]

|Xθ(w)|)dr|2
] 1

2
+ E

[
|
∫ t

s

K|u(r)|dr|2
] 1

2

≤ KE
[
(t− s)

∫ t

s

(1 + sup
w∈[0,r]

|Xθ(w)|)2dr
] 1

2
+KE

[
(t− s)

∫ t

s

|u(r)|2dr
] 1

2

≤
√

2K
√
t− sE

[ ∫ t

s

1 + sup
w∈[0,r]

|Xθ(w)|2dr
] 1

2
+K
√
t− sE

[ ∫ T

0

|u(r)|2dr
] 1

2

≤ K
√
t− s

((
2T + 2

∫ T

0

E

[
sup
w∈[0,r]

|Xθ(w)|2
]
dr

) 1
2

+ E
[ ∫ T

0

|u(r)|2dr
] 1

2

)

≤ K
√
t− s

((
2T + 2TR′

) 1
2

+ E
[ ∫ T

0

|u(r)|2dr
] 1

2

)
= C
√
t− s.

Hence, we can conclude that A ⊂ B.

Remark 1.27. In particular, this implies the following chain of inclusions
Im(Ψ) = A ⊂ B ⊂ B̄.
Hence, the following restriction of Ψ is well defined:

Ψ : B̄ −→ B̄.

Furthermore, we can notice that B is non-empty. In fact, A is non-empty and
A ⊂ B.

We will prove that B̄, the closure of B, is the non-empty, compact, convex
subset of C([0, T ],P1(Rd)), which we have to restrict Ψ to, in order to be in
the hypothesis of Brouwer-Schauder-Tychonoff Theorem.

Proposition 1.28. Consider the non-empty set B, which is defined as:

16
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B := {µ ∈ C([0, T ],P1(Rd)) : µ(t) = Law(Y (t)), t ∈ [0, T ], with

Y (t) = X0 +

∫ t

0

b̂sds+

∫ t

0

σ̂sdWs,

where b̂s is a Rd-valued, Ft-progressively measurable process, such that:

E[

∫ t

s

|b̂r|dr] ≤ C
√
t− s, 0 ≤ s ≤ t ≤ T,

σ̂s is a Rd×d1-valued, Ft-progressively measurable process, bounded by

the constant K and

E
[

sup
t∈[0,T ]

|Y (t)|2
]
≤ R′},

where C = K((2T + 2TR′)
1
2 + E[

∫ T
0
|u(t)|2dt] 12 ) <∞.

Then, B̄, the closure of B, is compact in C([0, T ],P1(Rd)).

Proof. The statement of the proposition is equivalent to the relative compact-
ness of B.
In order to show that B is relatively compact, we would like to exploit a gen-
eral version of Ascoli-Arzelà Theorem, namely Theorem 1.5.
First, we would like to show that there exists a set D dense in [0, T ] such
that ∀t ∈ D: πt(B) is relatively compact in P1(Rd). Actually, in this case
we will have D = [0, T ]. By definition of B, we already know that there
exists a positive constant, R′ < ∞, such that for any process Y such that
µY ∈ B : E[supt∈[0,T ] |Y (t)|2] ≤ R′.
Let us notice that for any process Y such that µY ∈ B, exploiting Markov
inequality, we have, ∀t ∈ [0, T ]:

P(|Y (t)| > ε) = P(|Y (t)|2 > ε2) ≤ E[|Y (t)|2]

ε2
≤ R′

ε2

Hence, we can deduce that, for any fixed t ∈ [0, T ] :

sup
µY (t)∈πt(B)

P(|Y (t)| ∈ B̄ε(0)) ≥ 1− R′

ε2
.

So, ∀t ∈ [0, T ], the set πt(B) is tight.
By Prokhorov Theorem, we have that πt(B) is relatively compact in P(Rd).
Now, we would like to show that ∀t ∈ [0, T ] πt(B) is relatively compact in
P1(Rd). In order to do this, we will exploit the notion of sequential com-
pactness. Let us consider a sequence (µn)n∈N ⊂ cl(πt(B)). Since cl(πt(B)) is
compact in P(Rd), there must be a subsequence (µnk)k∈N of (µn)n∈N such that:

µnk −→k→∞ µ, in P(Rd). (1.9)

17



1.3. EXISTENCE IN WASSERSTEIN-1 METRIC

We would like to show that

µnk −→k→∞ µ, in P1(Rd), (1.10)

in order to deduce that cl(πt(B)) is compact in (P1(Rd),W1), and so that πt(B)
is relatively compact in (P1(Rd),W1).§

By Dominated Convergence Theorem, for instance Lemma 3.11 in [9], we have
that (1.9) implies (1.10), once the sequence (Xnk)k∈N, with µnk = Law(Xnk),
is uniformly integrable.
Uniform integrability is a condition equivalent to supk∈N E[|Xnk | · I{|Xnk |>M}]→ 0,
as M →∞.
∀k ∈ N, exploiting Hölder inequality and finiteness of moments of second order
of the elements of the sequence, we have:

E[|Xnk | · I{|Xnk |>M}] ≤
√
E[|Xnk |2] ·

√
E[I{|Xnk |>M}] ≤

√
R′
√
P(|Xnk | > M)

≤
√
R′
√

P(|Xnk |2 > M2) ≤
√
R′

√
E[|Xnk |2]

M2
≤
√
R′

√
R′

M2
=
R′

M
,

that clearly goes to zero as M goes to infinity.
We proved the first hypothesis of Ascoli-Arzelà Theorem.

In order to deduce our thesis, we have to prove the following:

lim
δ→0

sup
µ∈B

wµ(δ) = 0,

where wµ(·) denotes the modulus of continuity of µ, that, in this case, is defined
as:

wµ(δ) = sup
|s−t|≤δ

W1(µ(s), µ(t)), with δ ∈ (0, T ].

Now, fix µ ∈ B and δ ∈ (0, T ]. Let 0 ≤ s < t ≤ T such that |s − t| ≤ δ.
Suppose that µ is the law of a certain process (Y (t))t∈[0,T ], whose coefficients
satisfy the hypotheses to let µ be in B.

Exploiting Proposition 1.20, the hypotheses on Y and Hölder inequality,
we have that:

W1(µ(s), µ(t)) ≤ E
[
|Y (s)− Y (t)|

]
= E

[
|
∫ t

s

b̂rdr +

∫ t

s

σ̂rdWr|
]

≤ E
[
|
∫ t

s

b̂rdr|
]

+ E
[
|
∫ t

s

σ̂rdWr|
]
≤ E

[ ∫ t

s

|b̂r|dr
]

+ E
[
|
∫ t

s

σ̂rdWr|2
] 1

2
= 4.

§Here we exploited the fact that Wasserstein-1 metric corresponds to weak convergence
plus convergence of the first moments topology, see Theorem 7.12 in [15].
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Exploiting the hypotheses on b̂ and σ̂ and Itô Isometry, we can deduce:

4 ≤ C
√
t− s+ E

[ ∫ t

s

|σ̂r|2dr
] 1

2 ≤ C
√
t− s+ E

[ ∫ t

s

K2dr
] 1

2 ≤ (C +K)
√
t− s.

This estimation does not depend on the specific t and s, but only on their
difference, namely δ = |t− s|. Furthermore, it is valid for each µ ∈ B.

Hence, we can deduce the following estimation:

sup
µ∈B

wµ(δ) = sup
µ∈B

sup
|t−s|≤δ

W1(µ(t), µ(s)) ≤ sup
µ∈B

sup
|t−s|≤δ

(C +K)
√
t− s

≤ sup
µ∈B

(C +K)
√
δ = (C +K)

√
δ.

This shows that:

0 ≤ lim
δ→0

sup
µ∈B

wµ(δ) ≤ lim
δ→0

(C +K)
√
δ = 0,

and this ends our proof.

In the second place, we need to show that the closure of B is convex.
In general, the convexity of B implies the convexity of its closure. We can
limit ourself to show that B is convex.

Proposition 1.29. Consider the non-empty set B, which is defined as:

B := {µ ∈ C([0, T ],P1(Rd)) : µ(t) = Law(Y (t)), t ∈ [0, T ], with

Y (t) = X0 +

∫ t

0

b̂sds+

∫ t

0

σ̂sdWs,

where b̂s is a Rd-valued, Ft-progressively measurable process, such that:

E[

∫ t

s

|b̂r|dr] ≤ C
√
t− s, 0 ≤ s ≤ t ≤ T

σ̂s is a Rd×d1-valued, Ft-progressively measurable process, bounded by

the constant K and

E
[

sup
t∈[0,T ]

|Y (t)|2
]
≤ R′},

where C = K((2T + 2TR′)
1
2 + E[

∫ T
0
|u(t)|2dt] 12 ) ≤ ∞.

Then, B is convex.

Proof. Let µ and ν be a couple of elements in B. Suppose that, ∀t ∈ [0, T ],
µ(t) =Law(Y (t)) and ν(t) =Law(Z(t)), respectively, with:

Y (t) = X0 +

∫ t

0

b̂sds+

∫ t

0

σ̂sdWs,

Z(t) = X0 +

∫ t

0

b̆sds+

∫ t

0

σ̆sdWs,
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with suitable hypotheses on coefficients.
Our purpose is to show that any convex combination of the type ηλ = λµ+ (1− λ)ν,
for λ ∈ [0, 1] is an element of B.
Let ξλ be a Bernoullian variable of parameter λ, independent from the pro-
cesses in B and F0-measurable.¶ For any t ∈ [0, T ], ηλt is the law of the process
Wλ(t) = ξλ · Y (t) + (1− ξλ) · Z(t). In fact, for any D ∈ F , for any t ∈ [0, T ],
we have:

ηλt(D) = P(Wλ(t) ∈ D) = P(ξλ · Y (t) + (1− ξλ) · Z(t) ∈ D)

= P(ξλ · Y (t) + (1− ξλ) · Z(t) ∈ D|ξλ = 1) · P(ξλ = 1)

+ P(ξλ · Y (t) + (1− ξλ) · Z(t) ∈ D|ξλ = 0) · P(ξλ = 0)

= P(Y (t) ∈ D) · λ+ P(Z(t) ∈ D) · (1− λ) = λµt(D) + (1− λ)νt(D).

We have to check the hypotheses on drift and volatility coefficients of Wλ, in
order to conclude that ηλ ∈ B. We can rewrite Wλ(t), for t ∈ [0, T ] as:

Wλ(t) = ξλ · Y (t) + (1− ξλ) · Z(t)

= ξλ ·
(
X0 +

∫ t

0

b̂sds+

∫ t

0

σ̂sdWs

)
+ (1− ξλ) ·

(
X0 +

∫ t

0

b̆sds+

∫ t

0

σ̆sdWs

)
= X0 +

∫ t

0

ξλ · b̂s + (1− ξλ) · b̆sds+

∫ t

0

ξλ · σ̂s + (1− ξλ) · σ̆sdWs

= X0 +

∫ t

0

ḃsds+

∫ t

0

σ̇sdWs

Naturally, ḃs and σ̇s take values in the right spaces and are both Ft-progressively
measurable. Furthermore, ∀s ∈ [0, T ], we have that

|σ̇s| = |ξλ · σ̂s + (1− ξλ) · σ̆s| ≤ |ξλ| · |σ̂s|+ |(1− ξλ)| · |σ̆s|
≤ |ξλ| ·K + |(1− ξλ)| ·K = ξλ ·K + (1− ξλ) ·K = K

and that

E
[ ∫ t

s

|ḃr|dr
]

= E
[ ∫ t

s

|ξλ · b̂r + (1− ξλ) · b̆r|dr
]

= E
[ ∫ t

s

|ξλ · b̂r + (1− ξλ) · b̆r|dr
∣∣∣ξλ = 1

]
· P(ξλ = 1)

+ E
[ ∫ t

s

|ξλ · b̂r + (1− ξλ) · b̆r|dr
∣∣∣ξλ = 0

]
· P(ξλ = 0)

= E
[ ∫ t

s

|b̂r|dr
]
· λ+ E

[ ∫ t

s

|b̆r|dr
]
· (1− λ) ≤ C

√
t− s · λ+ C

√
t− s · (1− λ)

= C
√
t− s.

¶If it is not possible to define such a variable ξλ, we can extend the sample space Ω in
order to make it feasible.
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Finally, we have:

E
[

sup
t∈[0,T ]

|W (t)|2
]

= E
[

sup
t∈[0,T ]

|ξλ · Y (t) + (1− ξλ) · Z(t)|2
]

= E
[

sup
t∈[0,T ]

|Y (t)|2
]
P(ξλ = 1) + E

[
sup
t∈[0,T ]

|Z(t)|2
]
P(ξλ = 0)

≤ λR′ + (1− λ)R′ = R′.

This ends the proof that ηλ ∈ B. Hence, B is convex.

There is one last step to end our proof of the existence of solutions for
Equation (1.6).
Once we prove the continuity of the functional Ψ, we are in the hypotheses of
Brouwer-Schauder-Tychonoff Theorem and we get the existence of solutions.

Proposition 1.30. The functional Ψ, introduced previously, is continuous
with respect to the metric on C([0, T ],P1(Rd)), defined by:

ρ1(µ, ν) = supt∈[0,T ] W1(µt, νt).

Proof: Let µ be a fixed element in C([0, T ],P1(Rd)) and in the same space
consider a sequence (µn)n∈N such that limn→∞ ρ1(µ, µn) = 0.
We have to prove that this implies that limn→∞ ρ1(Ψ(µ),Ψ(µn)) = 0, in order
to deduce the continuity of Ψ.
Exploiting the definition of ρ1(·, ·) and Proposition 1.20, we have that:

ρ1(Ψ(µ),Ψ(µn)) = sup
t∈[0,T ]

W1(Ψ(µ)t,Ψ(µn)t) ≤ sup
t∈[0,T ]

E[|Xµ
t −X

µn
t |]

≤ E[ sup
t∈[0,T ]

|Xµ
t −X

µn
t |] = ?,

where (Xµ
t )t∈[0,T ] (resp.(Xµn

t )t∈[0,T ] ) denotes the solution to the SDE
dXt = b(t,X, µt)dt+ σ(t,X, µt))u(t)dt+ σ(t,X, µt)dWt, X(0) = X0

(resp. dXt = b(t,X, µn(t))dt+ σ(t,X, µn(t))u(t)dt+ σ(t,X, µn(t))dWt ).
We would like to show that the right term (?) goes to zero, as n goes to infinity,
to infer our thesis.

For M ∈ N, define an (Ft)-stopping time τM by

τM(ω) = inf{t ∈ [0, T ] :

∫ t

0

|u(s, ω)|2ds ≥M}

with inf ∅ =∞. Observe that P(τM ≤ T ) −→ 0, as M →∞,

since E[
∫ T

0
|u(t)|2dt] <∞.
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Using Hölder’s inequality, Doob’s maximal inequality, Itô Isometry we obtain
for M ∈ N and all t ∈ [0, T ] :

E

[
sup
s∈[0,t]

|Xµ
s∧τM −X

µn
s∧τM |

2

]
≤ 4TE

[∫ t∧τM

0

|b(r,Xµ, µ(r))− b(r,Xµn , µn(r))|2dr

]

+ 4E

[∫ t∧τM

0

|σ(r,Xµ, µ(r))− σ(r,Xµn , µn(r))|2dr.
∫ t∧τM

0

|u(r)|2dr

]

+ 16E

[∫ t∧τM

0

|σ(r,Xµ, µ(r))− σ(r,Xµn , µn(r))|2dr

]

≤ 4TE

[∫ t∧τM

0

|b(r,Xµ, µ(r))− b(r,Xµn , µn(r))|2dr

]

+ (4M + 16)E

[∫ t∧τM

0

|σ(r,Xµ, µ(r))− σ(r,Xµn , µn(r))|2dr

]
= 4.

Now, we exploit hypothesis (L) to deduce the following:

4 ≤ 8L2(T +M + 4)E

[∫ t∧τM

0

sup
s∈[0,r]

|Xµ
s −Xµn

s |2 +W1(µ(r), µn(r))2dr

]

≤ 8L2(T +M + 4)
(
E
[ ∫ t∧τM

0

sup
s∈[0,r]

|Xµ
s −Xµn

s |2dr
]

+ sup
r∈[0,T ]

W1(µ(r), µn(r))2
)

≤ 8L2(T +M + 4)

∫ t

0

E
[

sup
s∈[0,r]

|Xµ
s∧τM −X

µn
s∧τM |

2
]
dr + 8L2(T +M + 4)Tρ1(µ, µn).

Applying Gronwall Lemma we have:

E

[
sup
s∈[0,t]

|Xµ
s∧τM −X

µn
s∧τM |

2

]
≤ 8L2(T +M + 4)Tρ1(µ, µn)e8L2(T+M+4)t,

and we can deduce that ∀M ∈ N:

E

[
sup
s∈[0,T ]

|Xµ
s∧τM −X

µn
s∧τM |

2

]
≤ 8L2(T +M + 4)Tρ1(µ, µn)e8L2(T+M+4)T .

Now, we go back to our first case.
Exploiting Cauchy-Schwarz inequality, linearity of expected values, Hölder in-
equality and the fact that:

sup

{
E
[

supt∈[0,T ] |Xµ
s |2
]
, supn∈N E

[
supt∈[0,T ] |Xµn

s |2
]}

= R′ < ∞, for any
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M ∈ N we have that:

E

[
sup
s∈[0,T ]

|Xµ
s −Xµn

s |

]
= E

[
sup
s∈[0,T ]

|Xµ
s −Xµn

s |(IτM>T + IτM≤T )

]

= E

[
sup
s∈[0,T ]

|Xµ
s −Xµn

s | · IτM>T

]
+ E

[
sup
s∈[0,T ]

|Xµ
s −Xµn

s | · IτM≤T

]

≤ E

[
sup
s∈[0,T ]

|Xµ
s∧τM −X

µn
s∧τM |

]
+ E

[
sup
s∈[0,T ]

|Xµ
s −Xµn

s | · IτM≤T

]

≤ E

[
sup
s∈[0,T ]

|Xµ
s∧τM −X

µn
s∧τM |

2

] 1
2

+ E

[
sup
s∈[0,T ]

|Xµ
s −Xµn

s |2
] 1

2

P
(
τM ≤ T

) 1
2

≤ 2L
√

2(T +M + 4)Tρ1(µ, µn)e4L2(T+M+4)T + 2
√
R′P

(
τM ≤ T

) 1
2

Since limM→∞ P(τM ≤ T ) = 0, we can choose M̄ ∈ N such that
P(τM̄ < T ) ≤ ε2

16R′
.

Placing M̄ in the inequality above, we can deduce:

E

[
sup
s∈[0,T ]

|Xµ
s −Xµn

s |

]
≤ 2L

√
2(T + M̄ + 4)Tρ1(µ, µn)e4L2(T+M̄+4)T +

ε

2
.

Hence, for any ε > 0, we can find an ñ ∈ N such that ∀n ≥ ñ:

ρ1(µ, µn) ≤ 1

32L2(T + M̄ + 4)T
e−8L2(T+M̄+4)T ε2,

and we have that:

ρ1(Ψ(µ),Ψ(µn)) ≤ E

[
sup
s∈[0,T ]

|Xµ
s −Xµn

s |

]
≤ ε

2
+
ε

2
≤ ε.

Finally, we would like to show that for a sequence (µn)n∈N ⊂ B, µn →n→∞ µ
in C([0, T ],P(Rd)) (w.r.t. ρbL) implies µn →n→∞ µ in C([0, T ],P1(Rd)) (w.r.t.
ρ1).
This fact allows us to deduce that the continuity of the functional Ψ|B w.r.t.
ρ1 implies its continuity w.r.t. ρbL.

We have the following conditions:

i)
ρbL(µn, µ) = sup

t∈[0,T ]

dbL(µn(t), µ(t)) −→n→∞ 0,
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which implies that

sup
t∈[0,T ]

∣∣∣ ∫ M ∧ |x|µn(t, dx)−
∫
M ∧ |x|µ(t, dx)

∣∣∣ −→n→∞ 0,∀M ∈ N.

ii)

sup
{

sup
n∈N

sup
t∈[0,T ]

∫
|x|2µn(t, dx), sup

t∈[0,T ]

∫
|x|2µ(t, dx)

}
≤ R′ <∞.

To deduce our thesis we need to show the uniform convergence of the first
moments, that is:

sup
t∈[0,T ]

∣∣∣ ∫ |x|µn(t, dx)−
∫
|x|µ(t, dx)

∣∣∣ −→n→∞ 0.

We can write:

sup
t∈[0,T ]

∣∣∣ ∫ |x|µn(t, dx)−
∫
|x|µ(t, dx)

∣∣∣ = sup
t∈[0,T ]

∣∣∣ ∫ |x|(µn(t, dx)− µ(t, dx))
∣∣∣

= sup
t∈[0,T ]

∣∣∣ ∫
|x|>M

|x|(µn(t, dx)− µ(t, dx))
∣∣∣+ sup

t∈[0,T ]

∣∣∣ ∫
|x|≤M

|x|(µn(t, dx)− µ(t, dx))
∣∣∣

= A+B.

Exploiting Hölder inequality, Markov inequality and condition ii), we can write:

A ≤ sup
t∈[0,T ]

∫
|x|>M

|x|µn(t, dx) + sup
t∈[0,T ]

∫
|x|>M

|x|µ(t, dx)

≤ sup
t∈[0,T ]

∫
|x|>M

µn(t, dx)
1
2

∫
|x|2µn(t, dx)

1
2 + sup

t∈[0,T ]

∫
|x|>M

µ(t, dx)
1
2

∫
|x|2µ(t, dx)

1
2

≤
√
R′

(
sup
t∈[0,T ]

∫
|x|>M

µn(t, dx)
1
2 + sup

t∈[0,T ]

∫
|x|>M

µ(t, dx)
1
2

)
≤ 2R′

M
,

that could be made smaller than ε
3

choosing M̄ ≥ 6R′

ε
.
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Analogously, we have that

B = sup
t∈[0,T ]

∣∣∣ ∫
|x|≤M

|x| ∧M(µn(t, dx)− µ(t, dx))
∣∣∣

≤ sup
t∈[0,T ]

∣∣∣ ∫ |x| ∧M(µn(t, dx)− µ(t, dx))
∣∣∣

+ sup
t∈[0,T ]

∣∣∣ ∫
|x|>M

|x| ∧M(µn(t, dx)− µ(t, dx))
∣∣∣

≤ sup
t∈[0,T ]

∣∣∣ ∫ |x| ∧M(µn(t, dx)− µ(t, dx))
∣∣∣

+M sup
t∈[0,T ]

∣∣∣ ∫
|x|>M

(µn(t, dx)− µ(t, dx))
∣∣∣

≤ sup
t∈[0,T ]

∣∣∣ ∫ |x| ∧M(µn(t, dx)− µ(t, dx))
∣∣∣

+M sup
t∈[0,T ]

(∫
|x|>M

µn(t, dx) +

∫
|x|>M

µ(t, dx))
)

≤ sup
t∈[0,T ]

∣∣∣ ∫ |x| ∧M(µn(t, dx)− µ(t, dx))
∣∣∣+ 2M

R′

M2
.

Now, we can make +2M R′

M2 = 2R′

M
smaller than ε

3
by a proper choice of M̄ ,

as above. Furthermore, by hypothesis i) for a fixed M̄ we can choose n̄ such

that: ∀n ≥ n̄ supt∈[0,T ]

∣∣∣ ∫ |x| ∧ M̄(µn(t, dx) − µ(t, dx))
∣∣∣ ≤ ε

3
. Hence, we have

that ∀n ≥ n̄:

sup
t∈[0,T ]

∣∣∣ ∫ |x|µn(t, dx)−
∫
|x|µ(t, dx)

∣∣∣ ≤ ε

3
+
ε

3
+
ε

3
= ε,

and, since ε > 0 is arbitrary, we can conclude.
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1.4 Existence under relaxed hypotheses

Looking at the proof of Existence of solutions for Equation (1.6) in previous
section, we can notice that we used hypothesis (L) only in the proof of the
continuity of the functional Ψ(·) and to guarantee that Equation (1.7) has a
unique strong solution for all fixed θ ∈ C([0, T ],P1(Rd)).
In this section we will show that hypothesis (L) can be relaxed and that we
are able to guarantee Existence of solutions for Equation (1.6) under the hy-
potheses that b(·) and σ(·) are uniformly continuous and that the SDE (1.7)
has a unique strong solution for θ ∈ C([0, T ],P1(Rd)), with finite moments of
second order.

As above, let T > 0 be the time horizon and d, d1 ∈ N.
Let U be the set of all quadruples ((Ω,F ,P), (Ft)t∈[0,T ], u,W ) such that the
pair ((Ω,F ,P), (Ft)t∈[0,T ]) forms a stochastic basis satisfying the usual hy-
pothesis, W is a d1-dimensional (Ft)-Wiener process and u is an Rd1-valued,
(Ft)-progressively measurable process such that:

E
[ ∫ T

0

|u(t)|2dt
]

= Q <∞.

For simplicity, we may write u ∈ U instead of ((Ω,F ,P), (Ft)t∈[0,T ], u,W ) ∈ U .
Let b, σ be predictable functionals on [0, T ]×C([0, T ],Rd)×P1(Rd), with values
in Rd and Rd×d1 , respectively.
Given u ∈ U , we consider the non-linear controlled SDE :

dXt =b(t,X,Law(Xt))dt+ σ(t,X,Law(Xt))u(t)dt

+ σ(t,X,Law(Xt))dWt,
(1.11)

where the initial condition is X(0) = X0, with E
[
|X0|2

]
<∞.

In this section we establish the following conditions on the coefficients b and
σ and on the control u:

(UC) The functions b(t, ·, ·) and σ(t, ·, ·) are continuous, uniformly in t ∈ [0, T ].

(G) There exists a constant K > 0 such that for all t ∈ [0, T ], all φ ∈
C([0, T ],Rd), all µ ∈ P1(Rd)

|b(t, φ, µ)| ≤ K
(

1 + sup
s∈[0,t]

|φ(s)|
)
, |σ(t, φ, µ)| ≤ K.

(U) The coefficients b, σ and the control u are such that for all θ ∈ C([0, T ],P1(Rd))
the Equation below admits a unique strong solution with moments of sec-
ond order bounded by the constant R′ > 0, i.e. E[supt∈[0,T ] |Xt|2] ≤ R′.

dXt = b(t,X, θt)dt+ σ(t,X, θt)u(t)dt+ σ(t,X, θt)dWt

X(0) = X0.
(1.12)

27



1.4. EXISTENCE UNDER RELAXED HYPOTHESES

Remark 1.31. We want to underline that the conditions (UC) and (G) are
not sufficient to guarantee existence and uniqueness of solution for the equation
above for any fixed θ ∈ C([0, T ],P1(Rd)). Hence, to exploit the same results
used in the previous section it is necessary to add hypothesis (U).

As anticipated above, the only part that needs to be changed because of this
new set of hypotheses is the proof of the continuity of the functional Ψ(·).
Let us recall that the functional, Ψ : C([0, T ],P1(Rd)) → C([0, T ],P1(Rd)),
associates to θ ∈ C([0, T ],P1(Rd)) Ψ(θ) ∈ C([0, T ],P1(Rd)), such that Ψ(θ)t =
Law(Xθ(t)), ∀t ∈ [0, T ], where Xθ is the unique strong solution of the SDE
(1.12).
Thanks to the hypothesis (U), we already know that this functional is well
defined.
We will exploit the Martingale Problem to deduce that Ψ(·) is a continuous
functional.

First, we need to enlarge the space where our solutions live.
It will be advantageous to have a path space which is Polish for the control
process u ∈ U . We decide to work with the space of deterministic relaxed
controls on Rd1 × [0, T ] with finite first moments. Let us first recall some facts
about deterministic relaxed controls (see, e.g.,[3]). Let R denote the space of
all deterministic relaxed controls on Rd1× [0, T ], that is, R is the set of all pos-
itive measures r on B(Rd1× [0, T ]) such that r(Rd1× [0, t]) = t for all t ∈ [0, T ].
Let r ∈ R and B ∈ B(Rd1). Then, the mapping [0, T ] 3 t 7→ r(B × [0, t]) is
absolutely continuous, hence differentiable almost everywhere.
B(Rd1) is countably generated. Hence, the time derivative of r exists almost
everywhere and is a measurable mapping rt : [0, T ] → P(Rd1) such that
r(dy × dt) = rt(dy)dt . Let R1 denote the space of deterministic relaxed
controls with finite first moments, that is,

R1 :=

{
r ∈ R :

∫
Rd1×[0,T ]

|y|r(dy × dt) <∞

}
.

By definition, R1 ⊂ R. R endowed with the topology of weak convergence of
measures is a Polish space (not compact in our case). We equip R1 with the
topology of weak convergence of measures plus convergence of first moments.
This topology turns R1 into a Polish space (cf.[3] ). We can notice that,
for T = 1 (else one has to renormalize), the topology coincides with that
induced by the Kantorovich–Rubinstein distance or Wasserstein distance of
order one. Since the controls appear in an unbounded (but affine) fashion
in the dynamics, ordinary weak convergence will not imply convergence of
corresponding integrals, but convergence in R1 will.
Any Rd1-valued process v defined on some probability space (Ω′,F ′,P′) induces
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an R-valued random variable ς according to

ςω(B × I) :=

∫
I

δv(t,ω)(B)dt, B ∈ B(Rd1), I ⊂ [0, T ], ω ∈ Ω′.

If v is such that
∫ T

0
|v(t, ω)|dt < ∞ for all ω ∈ Ω′, then the induced random

variable ς takes values in R1. If v is progressively measurable with respect
to a filtration (F ′t) in F , then ς is adapted in the sense that the mapping
t 7→ ς(B × [0, t]) is (F ′t)-adapted for all B ∈ B(Rd1).

Given an adapted (in the above sense) R1-valued random variable ς, which
corresponds to the control u ∈ U , and a ν ∈ C([0, T ],P1(Rd)), we will consider
the controlled SDE

dXt = b(t,X, νt)dt+

(∫
Rd1

σ(t,X, νt)yςt(dy)

)
dt+ σ(t,X, νt)dWt

X(0) = X0,

(1.13)

where W is a d1-dimensional (F ′t)-adapted standard Wiener process.
We deal with weak solutions of (1.13) or, equivalently, with certain probability
measures on B(Z), where

Z = C([0, T ],Rd)×R1 × C([0, T ],Rd1).

For a typical element in Z let us write (ϕ, r, w) with the understanding that
ϕ ∈ C([0, T ],Rd), r ∈ R1, w ∈ C([0, T ],Rd1).
The inclusion of W as a component of our canonical space Z will allow
identification of the joint distribution of the control and driving Wiener pro-
cess. Indeed, if the triple (X, ς,W ) defined on some filtered probability space
(Ω′,F ′,P′, (F ′t)) solves (1.13) for some continuous ν : [0, T ] → P1(Rd), then
the distribution of (X, ς,W ) under P′ is an element of P(Z).
Hence, P(Z) is the space we will focus on.

In fact, the question whether a probability measure Θ ∈ P(Z) corresponds
to a weak solution of the Equation (1.13), for a fixed flow of measures µ, can
be conveniently phrased in terms of an associated local martingale problem.
Given f ∈ C2(Rd × Rd1), define a real valued process (M∞

f (t))t∈[0,T ] on the
probability space (Z,B(Z),Θ) by

M∞
f (t, (ϕ, r, w)) = f(ϕ(t), w(t))−f(ϕ(0), w(0))−

∫ t

0

∫
Rd1
A∞s (f)(ϕ, r, w(s))rs(dy)ds,

(1.14)
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where for s ∈ [0, T ], ϕ ∈ C([0, T ],Rd) and y, z ∈ Rd1 ,

A∞s (f)(ϕ, y, z) =〈b(s, ϕ, µs) + σ(s, ϕ, µs)y,∇xf(ϕ(s), z)〉

+
1

2

d∑
j,k=1

(σσT )jk(s, ϕ, µs)
∂2f

∂xj∂xk
(ϕ(s), z)

+
1

2

d1∑
l=1

∂2f

∂z2
l

(ϕ(s), z)

+
1

2

d∑
k=1

d1∑
l=1

σkl(s, ϕ, µs)
∂2f

∂xk∂zl
(ϕ(s), z)

(1.15)

The expression involving A∞s (f) in (1.14) is integrated against time and the
time derivative measures rs of any relaxed control r. Since we may use
r(dy × dt) in place of rs(dy)ds, the measures rs are not actually needed.

The key tool is a one-to-one correspondence between weak solutions of (1.13),
with ν = µ, and a local martingale problem.

Proposition 1.32. Let Θ ∈ P(Z) be such that Θ({(ϕ, r, w) ∈ Z : w(0) = 0}) = 1.
Then Θ corresponds to a weak solution of (1.13), with ν = µ, if and only if
M∞

f is a local martingale under Θ with respect to the canonical filtration (Gt)
for all f ∈ C2(Rd × Rd1).

Proof. As in [3], we refer to the proof of Proposition 5.4.6 in [10], page 315.
There is no need to extend the probability space (Z,B(Z),Θ) even if the
diffusion coefficient σ is degenerate. In fact, the canonical process on the
sample space (Z,B(Z)) includes a component which corresponds to the driving
Wiener process.

Remark 1.33. The canonical filtration (Gt) in B(Z) is not necessarily Θ −
complete or right continuous, while in the literature solutions to SDEs are
usually defined with respect to filtrations satisfying the usual conditions (i.e.,
being right continuous and containing all sets contained in a set of measure
zero). This is not a problem. In fact, it is possible to show that the local
martingale property of the processes M∞

f under Θ with respect to the canonical
filtration (Gt) implies that the canonical process on (Z,B(Z)) solves (1.13),
with ν = µ, under Θ, with respect to the filtration (GΘ

t+) which satisfies the
usual conditions. See [3].

Let us recall that we are supposing that

E
[ ∫ T

0

|u(t)|2dt
]

= Q <∞, (1.16)
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This implies, in particular, that
∫ T

0
|u(t, ω)|2dt < ∞, for P-almost all ω ∈ Ω.

Since we are working with weak solutions, modifying u on a set of P-measure
zero has no impact on our proof. Thus we may assume

∫ T
0
|u(t, ω)|dt <∞, for

all ω ∈ Ω.

Let’s go back to our proof. In order to show the continuity of the functional
Ψ(·), we need to prove that, given a sequence (µn)n∈N ⊂ C([0, T ],P1(Rd)) con-
vergent w.r.t. ρ1 metric to µ ∈ C([0, T ],P1(Rd)), (Ψ(µn))n∈N must converge to
Ψ(µ), as n→∞, w.r.t. ρ1.

∀n ∈ N, we define Θn ∈ P(Z) as the weak solution of equation

dXt = b(t,X, µn(t))dt+

∫
Rd1

σ(t,X, µn(t))yςt(dy)dt+ σ(t,X, µn(t))dWt

X(0) = X0,

(1.17)

and define Θµ as the weak solution of equation

dXt = b(t,X, µ(t))dt+

∫
Rd1

σ(t,X, µ(t))yςt(dy)dt+ σ(t,X, µ(t))dWt

X(0) = X0,

(1.18)

where ς is the relaxed control corresponding to u ∈ U . We can notice that Θn

(resp. Θµ) corresponds to the law of the process (Xn, ς,W ) (resp. (Xµ, ς,W )),
where (Xn(t))t∈[0,T ] (resp. (Xµ(t))t∈[0,T ]) is the unique strong solution of the
SDE (1.17) (resp. (1.18)).

We will show that Θn →n→∞ Θµ in P(Z).
By Mapping Theorem and the continuity of projections we get that the se-
quence of first marginals of (Θn) converges to the first marginal of Θµ in
P(C([0, T ],Rd)). Again, by Mapping Theorem and the continuity of the pro-
jections, this implies that Ψ(µn) → Ψ(µ), in C([0, T ],P(Rd)). This last fact,
together with the fact, that we will show, that the sequence (Xn)n∈N has finite
moments of first order convergent to the first moment of the solution of the
SDE (1.13) with ν = µ, implies that Ψ(µn) →n→∞ Ψ(µ), in C([0, T ],P1(Rd)),
w.r.t. ρ1 metric, as desired.‖

So, once we have proved Θn →n→∞ Θµ weakly, we can conclude.
First of all, we want to show that the sequence (Θn)n∈N is tight in P(Z). Since,

‖Here we have exploited the fact that Wasserstein metric, and so ρ1, corresponds to the
topology induced by weak convergence plus the convergence of first moments. See Theorem
7.12 in [15].
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∀n ∈ N, Θn corresponds to the law of the process (Xn, ς,W ), it is sufficient
to prove tightness of the sequence (Law(Xn))n∈N in P(C([0, T ],Rd)), in order
to prove the tightness of (Θn). In order to prove that this sequence of laws is
tight we will exploit Aldous’s tightness criterion(Theorem 16.10 in [2]).

Theorem 1.34 (Aldous’s tightness criterion). Consider a sequence of C([0, T ],Rd)-
valued random variables (Xn)n∈N. If the sequence satisfies the two conditions
that follows then the sequence of their laws is tight.

i)

lim
a→∞

lim sup
n

P
(

sup
s∈[0,T ]

|Xn(s)| ≥ a
)

= 0 (1.19)

ii) For each ε, η > 0, there exist a δ0 > 0 and a n0 ∈ N such that, if δ ≤ δ0

and n ≥ n0 and if τ is a discrete Xn−stopping time such that τ ≤ T ,
then

P(|Xn((τ + δ) ∧ T )−Xn(τ)| ≥ ε) ≤ η. (1.20)

We can start by proving that condition i) holds.
Fix a ∈ R. Exploiting (U) hypothesis and Markov inequality, we have ∀n ∈ N:

P
(

sup
s∈[0,T ]

|Xn(s)| ≥ a
)
≤

E
[

sups∈[0,T ] |Xn(s)|2
]

a2
≤ R′

a2
.

This estimation does not depend on n and let us deduce that

0 ≤ lim
a→∞

lim sup
n

P
(

sup
s∈[0,T ]

|Xn(s)| ≥ a
)
≤ lim

a→∞

R′

a2
= 0,

that ends our proof on condition i).
Now, we have to prove condition ii). Fix arbitrarily ε, η > 0 and let τ be a
discrete Xn- stopping time such that τ ≤ T . Exploiting triangle inequality,
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Hölder inequality, Itô isometry and Markov inequality, we get:

P(|Xn((τ + δ) ∧ T )−Xn(τ)| ≥ ε)

= P
(∣∣∣ ∫ (τ+δ)∧T

τ

b(t,Xn, µn(t))dt+

∫ (τ+δ)∧T

τ

σ(t,Xn, µn(t))u(t)dt

+

∫ (τ+δ)∧T

τ

σ(t,Xn, µn(t))dWt

∣∣∣ ≥ ε
)

≤ P
(∫ (τ+δ)∧T

τ

|b(t,Xn, µn(t))|dt+
∣∣∣ ∫ (τ+δ)∧T

τ

σ(t,Xn, µn(t))u(t)dt
∣∣∣

+
∣∣∣ ∫ (τ+δ)∧T

τ

σ(t,Xn, µn(t))dWt

∣∣∣ ≥ ε
)

≤ P
(∫ (τ+δ)∧T

τ

|b(t,Xn, µn(t))|dt+

∫ (τ+δ)∧T

τ

|σ(t,Xn, µn(t))|2dt
1
2

×
∫ (τ+δ)∧T

τ

|u(t)|2dt
1
2 ≥ ε

2

)
+ P

(∣∣∣ ∫ (τ+δ)∧T

τ

σ(t,Xn, µn(t))dWt

∣∣∣ ≥ ε

2

)
≤ P

(∫ (τ+δ)∧T

τ

K(1 + sup
s∈[0,t]

|Xn(s)|)dt+K
√
δ
(∫ (τ+δ)∧T

τ

|u(t)|2dt
) 1

2 ≥ ε

2

)

+ 4
E
[ ∫ (τ+δ)∧T

τ
|σ(t,Xn, µn(t))|2dt

]
ε2

≤ P
(∫ (τ+δ)∧T

τ

K(1 + sup
s∈[0,T ]

|Xn(s)|)dt+K
√
δ
(∫ T

0

|u(t)|2dt
) 1

2 ≥ ε

2

)
+ 4

K2δ

ε2

≤ P
(
δK(1 + sup

s∈[0,T ]

|Xn(s)|) +K
√
δ
(∫ T

0

|u(t)|2dt
) 1

2 ≥ ε

2

)
+ 4

K2δ

ε2

≤ 2
E
[
δK(1 + sups∈[0,T ] |Xn(s)|)

]
+K
√
δE
[ ∫ T

0
|u(t)|2dt

] 1
2

ε
+ 4

K2δ

ε2

≤ 2
K(1 +

√
R′)δ +K

√
δ
√
Q

ε
+ 4

K2δ

ε2

≤ 2
K(1 +

√
R′)δ0 +K

√
δ0

√
Q

ε
+ 4

K2δ0

ε2
,

which is clearly less than η with a good choice of δ0, small enough.
Hence, (Law(Xn))n∈N is tight.

We have shown that (Θn)n∈N ⊂ P(Z), Θn = Law((Xn, ς,W )) ∀n ∈ N, is
tight.

By Prokhorov’s Theorem, we know that any subsequence of (Θn) possesses
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convergent sub-subsequence.
In the next lemma we identify the limit points of (Θn)n∈N as being weak solu-
tions of Equation (1.18). By trajectorial uniqueness of solutions for Equation
(1.13) for a fixed flux of measures θ, they must equal Θµ. This implies that
Θn → Θµ, in P(Z), as n→∞.

Lemma 1.35. Let (ΘNj)j∈N be a weakly convergent subsequence of (Θn)n∈N .
Let Ξ be an element of P(Z) such that ΘNj → Ξ, as j →∞, weakly. Then Ξ
is a weak solution of Equation (1.18). Hence, Ξ = Θµ.

Proof. Set I = {Nj, j ∈ N}, and write (Θn)n∈I for (ΘNj)j∈N. By hypothesis
Θn → Ξ, weakly. Recall from Proposition 1.32 that a probability measure
Θ ∈ P(Z) with Θ({(φ, r, w) ∈ Z : w(0) = 0}) = 1, corresponds to a weak
solution of (1.13), with θ = µ, if (and only if), for all f ∈ C2(Rd×Rd1), M∞

f is
a local martingale under Θ with respect to the canonical filtration (Gt), where
M∞

f is defined in (1.14).
In verifying the local martingale property of M∞

f when Θ = Ξ, we will work
with randomized stopping times. Those stopping times live on an extension,
(Ẑ,B(Ẑ)), of the measurable space (Z,B(Z)) and are adapted to a filtration
(Ĝt) in B(Ẑ), where

Ẑ := Z × [0, 1], Ĝt := Gt × B([0, 1]), t ∈ [0, T ],

and (Gt) is the canonical filtration in B(Z). Any random object defined on
(Z,B(Z)) also lives on (Ẑ,B(Ẑ)), and no notational distinction will be made.
Let λ denote the uniform distribution on B([0, 1]). Any probability measure Θ
on B(Z) induces a probability measure on B(Ẑ) given by Θ̂ := Θ×λ. For each
k ∈ N, define a stopping time τk on (Ẑ,B(Ẑ)), with respect to the filtration
(Ĝt) by setting for (z, a) ∈ Z × [0, 1],

τk(z, a) := inf{t ∈ [0, T ] : v(t, z) ≥ k + a} ∧ T,

where

v((ϕ, r, w), t) :=

∫
Rd1×[0,t]

|y|r(dy × ds) + sup
s∈[0,t]

|ϕ(s)|+ sup
s∈[0,t]

|w(s)|.

Note that the mapping that associates to t ∈ [0, T ] v((ϕ, r, w), t) is monotonic
for all (ϕ, r, w) ∈ Z. Hence, the stopping times have the following properties.
The boundedness of ϕ and w (being continuous functions on a compact in-
terval) and the boundedness of

∫
Rd1×[0,T ]

|y|r(dy × ds) imply that τk → T as

k →∞. The second property of note is that the mapping

Z × [0, 1] 3 (z, a) 7→ τk(z, a) ∈ [0, T ]
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is continuous with probability one under Θ̂ = Θ× λ, ∀Θ ∈ P(Z). To see this,
note that for every z ∈ Z the set

Az := {c ∈ R+ : v(z, s) = c for all s ∈ [t, t+ δ], some t ∈ [0, T ], some δ > 0}

is at most countable. However, ẑ 7→ τk(ẑ) fails to be continuous at (z, a) only
when k + a ∈ Az. Therefore, by Fubini’s Theorem,

Θ̂({(z, a) ∈ Ẑ : τk discontinuous at (z, a)})

=

∫
Ẑ
IAz(k + a)Θ̂(dz × da) =

∫
Z

∫
[0,1]

IAz(k + a)λ(da)Θ(dz) = 0

Notice that if M∞
f is a local martingale with respect to (Ĝt) under Θ̂ = Θ× λ

with localizing sequence of stopping times (τk)k∈N, then M∞
f is also a local

martingale with respect to (Gt) under Θ with localizing sequence of stopping
times (τk(·, 0))k∈N, see the Appendix in [3]. Thus, it suffices to prove the
martingale property of M∞

f up till time τk with respect to filtration (Ĝt) and

probability measure Θ̂.
Clearly, the process M∞

f (· ∧ τk) is a (Ĝt)-martingale under Θ̂ if and only if

EΘ×λ

[
ψ · (M∞

f (t1 ∧ τk)−M∞
f (t0 ∧ τk))

]
= 0 (1.21)

for all t0, t1 ∈ [0, T ] with t0 ≤ t1, and Ĝt0-measurable ψ ∈ Cb(Ẑ).

Let (k, t0, t1, ψ, f) ∈ N × [0, T ]2 × Cb(Ẑ) × C(Rd × Rd1). For all n ∈ N, Θn

is a weak solution of Equation (1.13), with ν = µn. Proposition 1.32 implies

that, ∀f ∈ C2(Rd × Rd1), M
(n)
f is a local martingale on (Z,B(Z),Θn), where

M
(n)
f is defined by:

M
(n)
f (t, (ϕ, r, w)) = f(ϕ(t), w(t))−f(ϕ(0), w(0))−

∫ t

0

∫
Rd1
A(n)
s (f)(ϕ, r, w(s))rs(dy)ds,

(1.22)
where for s ∈ [0, T ], ϕ ∈ C([0, T ],Rd) and y, z ∈ Rd1 ,

A(n)
s (f)(ϕ, y, z) =〈b(s, ϕ, µn(s)) + σ(s, ϕ, µn(s))y,∇xf(ϕ(s), z)〉

+
1

2

d∑
j,k=1

(σσT )jk(s, ϕ, µn(s))
∂2f

∂xj∂xk
(ϕ(s), z)

+
1

2

d1∑
l=1

∂2f

∂z2
l

(ϕ(s), z)

+
1

2

d∑
k=1

d1∑
l=1

σkl(s, ϕ, µn(s))
∂2f

∂xk∂zl
(ϕ(s), z).

(1.23)
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Hence, it must be true that:

EΘn×λ

[
ψ · (M (n)

f (t1 ∧ τk)−M (n)
f (t0 ∧ τk))

]
= 0. (1.24)

As a consequence of assumption (UC) and by construction of the stopping
time τk, the integrand in (1.21) is bounded; thanks to assumption (UC) and
the almost sure continuity of τk, it is continuous with probability one under
Ξ̂ = Ξ × λ. By weak convergence and the Mapping Theorem, for instance
Theorem 2.7 in [2], it follows that

EΘn×λ

[
ψ · (M∞

f (t1 ∧ τk)−M∞
f (t0 ∧ τk))

]
−→n→∞ EΞ×λ

[
ψ · (M∞

f (t1 ∧ τk)−M∞
f (t0 ∧ τk))

]
.

(1.25)

Recall that, by hypothesis, we have µn → µ in ρ1 metric.

We claim that this fact, together with the hypothesis (UC) and the construc-
tion of τk, implies that

sup
t∈[0,T ]

sup
ẑ∈Ẑ

∣∣∣M (n)
f (t ∧ τk(ẑ), ẑ)− |M∞

f (t ∧ τk(ẑ), ẑ)|
∣∣∣ −→n→∞ 0.

In fact, if we consider, for example the integral, corresponding to the first term
in the drift , which is∫ t∧τk(ẑ)

0

〈b(s, ϕ, µn(s)),∇xf(ϕ(s), w(s))〉ds.

By the assumed uniform continuity properties of b, this converges uniformly
in t ∈ [0, T ], ẑ ∈ Ẑ to∫ t∧τk(ẑ)

0

〈b(s, ϕ, µ(s)),∇xf(ϕ(s), w(s))〉ds.

We can prove a similar result for all the other terms. Since ψ is bounded, it
follows that∣∣∣EΘn×λ

[
ψ · (M∞

f (t1 ∧ τk)−M∞
f (t0 ∧ τk))

]
− EΘn×λ

[
ψ · (M (n)

f (t1 ∧ τk)−M (n)
f (t0 ∧ τk))

]∣∣∣→n→∞ 0.
(1.26)

Remembering (1.24) and exploiting results (1.25) and (1.26) and triangle in-
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equality , we have∣∣∣EΞ×λ

[
ψ · (M∞

f (t1 ∧ τk)−M∞
f (t0 ∧ τk))

]∣∣∣
=
∣∣∣EΞ×λ

[
ψ · (M∞

f (t1 ∧ τk)−M∞
f (t0 ∧ τk))

]
− EΘn×λ

[
ψ · (M (n)

f (t1 ∧ τk)−M (n)
f (t0 ∧ τk))

]∣∣∣
≤
∣∣∣EΞ×λ

[
ψ · (M∞

f (t1 ∧ τk)−M∞
f (t0 ∧ τk))

]
− EΘn×λ

[
ψ · (M∞

f (t1 ∧ τk)−M∞
f (t0 ∧ τk))

]∣∣∣
+
∣∣∣EΘn×λ

[
ψ · (M∞

f (t1 ∧ τk)−M∞
f (t0 ∧ τk))

]
− EΘn×λ

[
ψ · (M (n)

f (t1 ∧ τk)−M (n)
f (t0 ∧ τk))

]∣∣∣ −→n→∞ 0.

We have showed that

EΞ×λ

[
ψ · (M∞

f (t1 ∧ τk)−M∞
f (t0 ∧ τk))

]
= 0.

Hence, Ξ = Θµ, unique weak solution of SDE (1.18).

Consider the sequence (Xn)n∈N, where, ∀n ∈ N, Xn is the unique strong
solution of Equation (1.17). This sequence takes values in the Polish space
C([0, T ],Rd). We must check the uniform convergence of the moments of first
order of Xn to the moment of first order of Xµ, unique strong solution of the
SDE (1.18). Namely, we should check that :

sup
t∈[0,T ]

∣∣∣E[|Xn(t)|]− E[|Xµ(t)|]
∣∣∣ −→n→∞ 0.

We have already showed that the two following statements hold:

i) Xn −→ Xµ, in distribution.

ii) sup
{

supn∈N E
[

supt∈[0,T ] |Xn(t)|2
]
,E
[

supt∈[0,T ] |Xµ(t)|2
]}
≤ R′ <∞.

We claim that i) and ii) imply that

sup
t∈[0,T ]

∣∣∣E[|Xn(t)|]− E[|Xµ(t)|]
∣∣∣ −→n→∞ 0.

Exploiting triangle inequality, we can write

sup
t∈[0,T ]

∣∣∣E[|Xn(t)|]− E[|Xµ(t)|]
∣∣∣

≤ sup
t∈[0,T ]

∣∣∣E[|Xn(t)| · I|Xn(t)|≤M − |Xµ(t)| · I|Xµ(t)|≤M

]∣∣∣
+ sup

t∈[0,T ]

∣∣∣E[|Xn(t)| · I|Xn(t)|>M − |Xµ(t)| · I|Xµ(t)|>M

]∣∣∣ = A+B.
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Exploiting Hölder inequality, Markov inequality and condition ii), we have:

B ≤ sup
t∈[0,T ]

E
[
|Xn(t)| · I|Xn(t)|>M

]
+ sup

t∈[0,T ]

E
[
|Xµ(t)| · I|Xµ(t)|>M

]
≤ sup

t∈[0,T ]

E
[
|Xn(t)|2

] 1
2P
(
|Xn(t)| > M

) 1
2

+ sup
t∈[0,T ]

E
[
|Xµ(t)|2

] 1
2P
(
|Xµ(t)| > M

) 1
2

≤
√
R′
(

sup
t∈[0,T ]

P
(
|Xn(t)| > M

) 1
2

+ sup
t∈[0,T ]

P
(
|Xµ(t)| > M

) 1
2
)
≤ 2

R′

M
,

which can be made smaller than ε
3

for a suitable choice of M ≥ 6R′

ε
.

Analogously, we get:

A = sup
t∈[0,T ]

∣∣∣E[|Xn(t)| ∧M · I|Xn(t)|≤M − |Xµ(t)| ∧M · I|Xµ(t)|≤M

]∣∣∣
≤ sup

t∈[0,T ]

∣∣∣E[|Xn(t)| ∧M − |Xµ(t)| ∧M
]∣∣∣

+ sup
t∈[0,T ]

∣∣∣E[|Xn(t)| ∧M · I|Xn(t)|>M − |Xµ(t)| ∧M · I|Xµ(t)|>M

]∣∣∣
≤ sup

t∈[0,T ]

∣∣∣E[|Xn(t)| ∧M − |Xµ(t)| ∧M
]∣∣∣

+M
(

sup
t∈[0,T ]

P
(
|Xn(t)| > M

)
+ sup

t∈[0,T ]

P
(
|Xµ(t)| > M

))
≤ sup

t∈[0,T ]

∣∣∣E[|Xn(t)| ∧M − |Xµ(t)| ∧M
]∣∣∣+ 2M

R′

M2

As above, 2M R′

M2 = 2R′

M
can be made smaller than ε

3
choosing M big enough.

Furthermore, hypothesis i) guarantees that, for every M fixed,

supt∈[0,T ]

∣∣∣E[|Xn(t)| ∧M − |Xµ(t)| ∧M
]∣∣∣ ≤ ε

3
for n ≥ nM .

Hence, we have

sup
t∈[0,T ]

∣∣∣E[|Xn(t)|]− E[|Xµ(t)|]
∣∣∣ ≤ ε,∀n ≥ nM ,

which let us conclude by the arbitrariness of ε > 0.

This ends our proof of the continuity of functional Ψ(·) and proves the Exis-
tence of solutions for MV-SDEs under relaxed hypotheses.

Remark 1.36. We would like to underline that the hypothesis of uniqueness
of solutions in (U) is not strictly necessary. Removing that condition we will
get a Ψ(·) which is no more a function but a correspondence. In this case to
show Existence of solutions for our SDEs we could exploit Theorem 1.17 and
limit points must be included in the set of weak solutions for SDE (1.18).
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Uniqueness of solutions

2.1 Control with finite exponential moments

Let T > 0 be a time horizon and d, d1 ∈ N. Equip C([0, T ],Rd) with the
supremum-norm topology. Let P(Rd) be the space of probability measures on
Rd.
Let ((Ω,F ,P), (Ft)t∈[0,T ]) be a stochastic basis satisfying the usual hypotheses
and carrying a d1-dimensional (F)t-Wiener process (Wt)t∈[0,T ].
Let dbL be the bounded Lipschitz metric on P(Rd), that is, given µ, ν ∈ P(Rd),

dbL(µ, ν) = sup

{∫
Rd
f(x)µ(dx)−

∫
Rd
f(x)ν(dx) : ‖f‖bL ≤ 1

}
,

where ‖.‖bL is defined for bounded Lipschitz functions f : Rd −→ R by

‖f‖bL = sup
x∈Rd
|f(x)|+ sup

x6=y∈Rd

|f(x)− f(y)|
|x− y|

.

Remark 2.1. Let us recall that this metric induces the topology of weak con-
vergence. See, for instance, chapter 11.3 in [6].

It possible to show the following estimations.

Theorem 2.2. If X, Y are two Rd-valued random variables on the same prob-
ability space and A is in F , both the following are true:

dbL(Law(X),Law(Y )) ≤ E[|X − Y |], (2.1)

dbL(Law(X),Law(Y )) ≤ E[|X − Y | · IA] + 2P(AC). (2.2)

Proof. Let X, Y be two Rd-valued random variables on the same probability
space. Consider f : Rd −→ R, such that ‖f‖bL ≤ 1. This means that, ∀x, y ∈

39



2.1. CONTROL WITH FINITE EXPONENTIAL MOMENTS

Rd, we have:

|f(x)− f(y)| = |f(x)− f(y)|
|x− y|

|x− y| ≤ sup
v 6=w

|f(v)− f(w)|
|v − w|

|x− y| ≤ ‖f‖bL|x− y|

≤ |x− y|.

We are now able to show the first result:

dbL(Law(X),Law(Y ))

= sup
{∫

Rd
f(x)Law(X)(dx)−

∫
Rd
f(x)Law(Y )(dx) : ‖f‖bL ≤ 1

}
= sup

{
E[f(X)]− E[f(Y )] : ‖f‖bL ≤ 1

}
≤ sup

{
E[|f(X)− f(Y )|] : ‖f‖bL ≤ 1

}
≤ E

[
|X − Y |

]
.

In order to prove Property (2.2), consider A ∈ F , we have that:

dbL(Law(X),Law(Y )) = sup
{
E[f(X)]− E[f(Y )] : ‖f‖bL ≤ 1

}
≤ sup

{
E[|f(X)− f(Y )|] : ‖f‖bL ≤ 1

}
≤ sup

{
E[|f(X)− f(Y )| · IA] + E[|f(X)− f(Y )| · IAC ] : ‖f‖bL ≤ 1

}
≤ sup

{
E[|f(X)− f(Y )| · IA] + E[2‖f‖∞IAC ] : ‖f‖bL ≤ 1

}
≤ sup

{
E[|X − Y | · IA] + 2‖f‖bLP(AC) : ‖f‖bL ≤ 1

}
≤ E

[
|X − Y |IA

]
+ 2P(AC).

This ends our proof.

Let b, σ be predictable functionals on [0, T ] × C([0, T ],Rd) × P(Rd) with
values in Rd and Rd×d1 respectively.
Now, consider the following non-linear SDE:

dXt =b(t,X,Law(X(t)))dt+ σ(t,X,Law(X(t)))u(t)dt

+ σ(t,X,Law(X(t)))dWt,
(2.3)

with X(0) = X0 fixed, such that E
[
|X0|2

]
< ∞, and u a Rd1-valued (Ft)-

progressively measurable process such that

E

[∫ T

0

|u(t)|2dt

]
<∞.

Consider the following Lipschitz and growth conditions on b and σ.
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(L) There exists L such that for all t ∈ [0, T ], all φ, ψ ∈ C([0, T ],Rd) all
µ, ν ∈ P(Rd)

|b(t, φ, µ)−b(t, ψ, ν)|+|σ(t, φ, µ)−σ(t, ψ, ν)| ≤ L
(

sup
s∈[0,t]

|φ(s)−ψ(s)|+dbL(µ, ν)
)
.

(G) There exists a constant K > 0 such that for all t ∈ [0, T ], all φ ∈
C([0, T ],Rd), all µ ∈ P(Rd)

|b(t, φ, µ)| ≤ K
(

1 + sup
s∈[0,t]

|φ(s)|
)
, |σ(t, φ, µ)| ≤ K.

Let us notice that these conditions are sufficient to guarantee the finiteness of
the moments of second order of the solutions of the SDE.∗

Proposition 2.3. Grant conditions (L) and (G). Let ((Ω,F ,P), (Ft)t∈[0,T ]) be
a stochastic basis satisfying the usual hypotheses and carrying a d1-dimensional
(F)t-Wiener process (Wt)t∈[0,T ] and let u be a Rd1-valued (Ft)-progressively
measurable process such that

E

[∫ T

0

|u(t)|2dt

]
= Q <∞.

Suppose that X, X̃ are solutions of (2.3) over the time interval [0, T ], under
the control u, with initial condition X(0) = X0 = X̃(0), P-almost surely.
Then, for all M ∈ N, we have:

dbL(Law(X(t)),Law(X̃(t)))2 ≤ 8Q(t)2

M2
+ 2KM

∫ t

0

e2KM (t−s) 8Q(s)2

M2
ds,

where Q(t) = E
[ ∫ t

0
|u(s)|2ds

]
≤ E

[ ∫ T
0
|u(s)|2ds

]
= Q <∞ and

KM = BM + (BM)2eBMTT , with BM = 8L2(T +M + 4).

Proof. For M ∈ N, define a (Ft)-stopping time τM by:

τM(ω) = inf{t ∈ [0, T ] :

∫ t

0

|u(s, ω)|2ds ≥M},

with the obvious assumption inf(∅) = ∞. Observe that P(τM ≤ T ) → 0 as

M →∞, thanks to the fact that E
[ ∫ T

0
|u(t)|2dt

]
<∞.

Set θ(t) = Law(X(t)), θ̃(t) = Law(X̃(t)), t ∈ [0, T ].

∗See Appendix B, in particular Remark B.3.
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Using Hölder’s inequality, Doob’s maximal inequality, the Itô isometry and
condition (L), we obtain for M ∈ N, all t ∈ [0, T ],

E

[
sup
s∈[0,t]

|X(s ∧ τM)− X̃(s ∧ τM)|2
]
≤ 4TE

[∫ t∧τM

0

|b(r,X, θ(r))− b(r, X̃, θ̃(r))|2dr

]

+ 4E

[∫ t∧τM

0

|σ(r,X, θ(r))− σ(r, X̃, θ̃(r))|2dr ·
∫ t∧τM

0

|u(r)|2dr

]

+ 16E

[∫ t∧τM

0

|σ(r,X, θ(r))− σ(r, X̃, θ̃(r))|2dr

]

≤ 4TE

[∫ t∧τM

0

|b(r,X, θ(r))− b(r, X̃, θ̃(r))|2dr

]

+ (4M + 16)E

[∫ t∧τM

0

|σ(r,X, θ(r))− σ(r, X̃, θ̃(r))|2dr

]

≤ 8L2(T +M + 4)E

[∫ t∧τM

0

(
sup
s∈[0,r]

|X(s)− X̃(s)|2 + dbL(θ(r), θ̃(r))2
)
dr

]

≤ 8L2(T +M + 4)

∫ t

0

E[ sup
s∈[0,r]

|X(s ∧ τM)− X̃(s ∧ τM)|2]dr

+ 8L2(T +M + 4)

∫ t

0

dbL(θ(r), θ̃(r))2dr.

We recall the following generalized version of Bellman-Gronwall’s Lemma.

Lemma 2.4. Let I denote an interval of the real line of the form [a,∞) or
[a, b] or [a, b), with a < b. Let α, b and u be real-valued functions defined on
I. Assume that b and u are continuous and that the negative part of α is
integrable on every closed and bounded subinterval of I. Furthermore, assume
that b is non-negative and u satisfies the integral inequality:

u(t) ≤ α(t) +

∫ t

a

b(s)u(s)ds, ∀t ∈ I.

Then

u(t) ≤ α(t) +

∫ t

a

α(s)b(s) exp(

∫ t

s

b(r)dr)ds t ∈ I.

Applying that Lemma with

b(s) = +8L2(T +M + 4)(= BM),

α(s) = +8L2(T +M + 4)

∫ s

0

dbL(θ(r), θ̃(r))2dr = BM

∫ s

0

dbL(θ(r), θ̃(r))2dr,
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we can deduce the following estimation:

E

[
sup
s∈[0,t]

|X(s ∧ τM)− X̃(s ∧ τM)|2
]
≤ α(t) +BM

∫ t

0

α(s)eBM (t−s)ds =

= BM

∫ t

0

dbL(θ(r), θ̃(r))2dr +BM

∫ t

0

BM

∫ s

0

dbL(θ(r), θ̃(r))2dreBM (t−s)ds

≤ KM

∫ t

0

dbL(θ(r), θ̃(r))2dr,

with KM = BM + (BM)2eBMTT .
Furthermore, using property (2.2), Cauchy-Schwarz inequality and the well-
known fact that (a+ b)2 ≤ 2(a2 + b2), we have that

dbL(θ(t), θ̃(t))2 ≤ 2E[|X(t)− X̃(t)|2It<τM ] + 8P(t ≥ τM)2

≤ 2E[|X(t ∧ τM)− X̃(t ∧ τM)|2] + 8P

(∫ t

0

|u(s)|2ds ≥M

)2

.

Exploiting what we have shown above and Markov inequality, we have that

dbL(θ(t), θ̃(t))2 ≤ 2KM

∫ t

0

dbL(θ(s), θ̃(s))2ds+ 8
(E(

∫ t
0
|u(s)|2ds)
M

)2

≤ 2KM

∫ t

0

dbL(θ(s), θ̃(s))2ds+
8Q(t)2

M2
,

where Q(t) = E(
∫ t

0
|u(s)|2ds).

Now applying Lemma (2.4) a second time, we get:

dbL(θ(t), θ̃(t))2 ≤ 8Q(t)2

M2
+ 2KM

∫ t

0

e2KM (t−s) 8Q(s)2

M2
ds.

We get a stronger result if we improve our hypotheses.

Proposition 2.5. Grant conditions (L) and (G). Let ((Ω,F ,P), (Ft)t∈[0,T ]) be
a stochastic basis satisfying the usual hypotheses and carrying a d1-dimensional
(F)t-Wiener process (Wt)t∈[0,T ] and let u be a Rd1-valued (Ft)-progressively
measurable process such that there exists a positive constant, c > 0, such that :

E

[
ec

∫ T
0 |u(t)|2dt

]
<∞.

Suppose that X, X̃ are solutions of (2.3), over the time interval [0, T ], under
the control u, with initial condition X(0) = X0 = X̃(0), P-almost surely. Then
X, X̃ are indistinguishable, that is :

P(X(t) = X̃(t),∀t ∈ [0, T ]) = 1.
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Proof. For M ∈ N, define a (Ft)-stopping time τM by:

τM(ω) = inf{t ∈ [0, T ] :

∫ t

0

|u(s, ω)|2ds ≥M},

with the obvious assumption inf(∅) = ∞. Observe that P(τM ≤ T ) → 0 as

M →∞, thanks to the fact that E
[ ∫ T

0
|u(t)|2dt

]
<∞.

Set θ(t) = Law(X(t)), θ̃(t) = Law(X̃(t)), t ∈ [0, T ].

Choose δ ∈
(

0, c
12L2

)
such that T = lδ, for some l ∈ N. We get a finite covering

of the compact interval [0, T ] of the type
⋃l−1
k=0[kδ, (k + 1)δ] = [0, T ].

Consider the first subinterval of time [0, δ] and let t ≤ δ. Using Hölder’s
inequality, Doob’s maximal inequality, the Itô isometry and condition (L), we
obtain, for M ∈ N:

E

[
sup
s∈[0,t]

|X(s ∧ τM)− X̃(s ∧ τM)|2
]
≤ 4δE

[∫ t∧τM

0

|b(r,X, θ(r))− b(r, X̃, θ̃(r))|2dr

]

+ 4E

[∫ t∧τM

0

|σ(r,X, θ(r))− σ(r, X̃, θ̃(r))|2dr ·
∫ t∧τM

0

|u(r)|2dr

]

+ 16E

[∫ t∧τM

0

|σ(r,X, θ(r))− σ(r, X̃, θ̃(r))|2dr

]

≤ 4δE

[∫ t∧τM

0

|b(r,X, θ(r))− b(r, X̃, θ̃(r))|2dr

]

+ (4M + 16)E

[∫ t∧τM

0

|σ(r,X, θ(r))− σ(r, X̃, θ̃(r))|2dr

]

≤ 8L2(δ +M + 4)E

[∫ t∧τM

0

(
sup
s∈[0,r]

|X(s)− X̃(s)|2 + dbL(θ(r), θ̃(r))2
)
dr

]
.

Exploiting the property (2.2) of dbL(·, ·) and the fact that (a+ b)2 ≤ 2(a2 + b2),
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we deduce:

E

[
sup
s∈[0,t]

|X(s ∧ τM)− X̃(s ∧ τM)|2
]

≤ 8L2(δ +M + 4)E

[∫ t

0

sup
s∈[0,r]

|X(s ∧ τM)− X̃(s ∧ τM)|2dr

]

+ 8L2(δ +M + 4)E

[∫ t∧τM

0

(
E[|X(r)− X̃(r)|It<τM ] + 2P(t ≥ τM)

)2

dr

]

= 8L2(δ +M + 4)

(∫ t

0

E[ sup
s∈[0,r]

|X(s ∧ τM)− X̃(s ∧ τM)|2]dr

+ E

[∫ t∧τM

0

2E
[
|X(r ∧ τM)− X̃(r ∧ τM)|2

]
+ 8P

(∫ t

0

|u(v)|2dv ≥M
)2

dr

])

≤ 24L2(δ +M + 4)E

[∫ t

0

sup
s∈[0,r]

|X(s ∧ τM)− X̃(s ∧ τM)|2dr

]

+ 64L2(δ +M + 4)

∫ t

0

P
(∫ t

0

|u(v)|2dv ≥M
)2

dr

≤ 24L2(δ +M + 4)E

[∫ t

0

sup
s∈[0,r]

|X(s ∧ τM)− X̃(s ∧ τM)|2dr

]

+ 64L2(δ +M + 4)δP
(∫ T

0

|u(v)|2dv ≥M
)2

.

Exploiting the assumptions on the finiteness of the moments of exponential
order of u together with the fact that

P
[ ∫ T

0
|u(v)|2dv ≥M

]
= P

[
ec

∫ T
0 |u(v)|2dv ≥ ecM

]
,

using Markov inequality, we can rewrite the previous as:

E

[
sup
s∈[0,t]

|X(s ∧ τM)− X̃(s ∧ τM)|2
]

≤ 24L2(δ +M + 4)E

[∫ t

0

sup
s∈[0,r]

|X(s ∧ τM)− X̃(s ∧ τM)|2dr

]

+ 64L2(δ +M + 4)δ
E
[
ec

∫ T
0 |u(v)|2dv

]2

e2cM

≤ 3BME

[∫ t

0

sup
s∈[0,r]

|X(s ∧ τM)− X̃(s ∧ τM)|2dr

]
+ 8BMδ

V 2

e2cM
,

where BM as above and V = E
[
ec

∫ T
0 |u(v)|2dv

]
.
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Now, applying Gronwall Lemma to the previous, we get the estimation:

E

[
sup
s∈[0,t]

|X(s ∧ τM)− X̃(s ∧ τM)|2
]
≤ 8BMδ

V 2

e2cM
e3BM t.

Hence, for every t ∈ [0, δ] we have the following

E

[
sup
s∈[0,t]

|X(s ∧ τM)− X̃(s ∧ τM)|2
]
≤ 8BMδV

2e−2cM+3BM δ.

Since c > 12δL2 and BM = 8L2(δ+M + 4), at the limit for M →∞, applying
the monotone convergence Theorem, we have:

E

[
sup
s∈[0,δ]

|X(s)− X̃(s)|2
]

= lim
M→∞

E

[
sup
s∈[0,δ]

|X(s ∧ τM)− X̃(s ∧ τM)|2
]

≤ lim
M→∞

8BMδV
2e−2cM+3BM δ = 0,

and so P(X(t) = X̃(t), 0 ≤ t ≤ δ) = 1.
Now, we can repeat the same argument for the time interval [0, 2δ], exploiting
that we know that is X(s) = X̃(s) ,∀s ∈ [0, δ], P− a.s..
Let us notice that, in particular, this implies that :

sup
s∈[0,t]

|X(s)− X̃(s)| = sup
s∈[δ,t]

|X(s)− X̃(s)|, P− a.s., for t ∈ [δ, 2δ],

sup
s∈[0,t]

|X(s)− X̃(s)| = 0, P− a.s., for t ∈ [0, δ].

Furthermore, we have that:

dbL(θ(t), ˜θ(t)) = 0, t ∈ [0, δ].

For M ∈ N, we recall the definition of the (Ft)-stopping time τM :

τM(ω) = inf{t ∈ [0, T ] :

∫ t

0

|u(s, ω)|2ds ≥M}.

Let t ∈ [δ, 2δ].
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Exploiting the definitions of X and X̃ and the triangle inequality, we have:

E

[
sup
s∈[0,t]

|X(s ∧ τM)− X̃(s ∧ τM)|2
]

= E

[
sup
s∈[0,t]

|
∫ s∧τM

0

(σ(r,X, θ(r))− σ(r, X̃, θ̃(r)))dWr

+

∫ s∧τM

0

(b(r,X, θ(r))− b(r, X̃, θ̃(r))) + (σ(r,X, θ(r))− σ(r, X̃, θ̃(r)))u(r)dr|2
]

≤ 4E

[
sup
s∈[0,t]

|
∫ s∧τM

0

|b(r,X, θ(r))− b(r, X̃, θ̃(r))|dr|2
]

+ 4E

[
sup
s∈[0,t]

|
∫ s∧τM

0

|σ(r,X, θ(r))− σ(r, X̃, θ̃(r))||u(r)|dr|2
]

+ 4E

[
sup
s∈[0,t]

|
∫ s∧τM

0

(σ(r,X, θ(r))− σ(r, X̃, θ̃(r)))dWr|2
]

= 4.

Applyng hypothesis (L) to the first term, Hölder’s inequality to the second
and Doob’s maximal inequality, we can write:

4 ≤ 4L2E

[
sup
s∈[0,t]

|
∫ s∧τM

0

sup
w∈[0,r]

|Xw − X̃w|+ dbL(θ(r), ˜θ(r))dr|2
]

+ 4E

[
sup
s∈[0,t]

∫ s∧τM

0

|σ(r,X, θ(r))− σ(r, X̃, θ̃(r))|2dr ·
∫ s∧τM

0

|u(r)|2dr

]

+ 4
( 2

2− 1

)2

E

[
|
∫ t∧τM

0

(σ(r,X, θ(r))− σ(r, X̃, θ̃(r)))dWr|2
]

= 5.

Exploiting the fact that
∫ s∧τM

0
|u(r)|2dr ≤M and Itô isometry, we have that:

5 ≤ 4L2E

[
sup
s∈[0,t]

|
∫ s∧τM

0

sup
w∈[0,r]

|Xw − X̃w|+ dbL(θ(r), ˜θ(r))dr|2
]

+ 4ME

[
sup
s∈[0,t]

∫ s∧τM

0

|σ(r,X, θ(r))− σ(r, X̃, θ̃(r))|2dr

]

+ 16E

[∫ t∧τM

0

|σ(r,X, θ(r))− σ(r, X̃, θ̃(r))|2dr

]
=©.
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Using the sup properties and hypothesis (L) once more, we can deduce:

© ≤ 4L2E

[
sup
s∈[0,t]

|
∫ s∧τM

0

sup
w∈[0,r]

|Xw − X̃w|+ dbL(θ(r), ˜θ(r))dr|2
]

+ (4M + 16)E

[∫ t∧τM

0

|σ(r,X, θ(r))− σ(r, X̃, θ̃(r))|2dr

]

≤ 4L2E

[
|
∫ t∧τM

0

sup
w∈[0,r]

|Xw − X̃w|+ dbL(θ(r), ˜θ(r))dr|2
]

+ (4M + 16)E

[∫ t∧τM

0

|σ(r,X, θ(r))− σ(r, X̃, θ̃(r))|2dr

]

≤ 4L2E

[
|
∫ t∧τM

0

sup
w∈[0,r]

|Xw − X̃w|+ dbL(θ(r), ˜θ(r))dr|2
]

+ (4M + 16)L2E

[∫ t∧τM

0

sup
w∈[0,r]

|Xw − X̃w|+ dbL(θ(r), ˜θ(r))|2dr

]
= ♦.

Furthermore, remembering that

sup
s∈[0,t]

|X(s)− X̃(s)| = 0, for t ∈ [0, δ], P− a.s.

sup
s∈[0,t]

|X(s)− X̃(s)| = sup
s∈[δ,t]

|X(s)− X̃(s)|, for t ∈ [δ, 2δ], P− a.s.

dbL(θ(t), ˜θ(t)) = 0, t ∈ [0, δ],

we can write:

♦ ≤ 4L2E

[
|
∫ t∧τM

δ∧τM
sup
w∈[δ,r]

|Xw − X̃w|+ dbL(θ(r), ˜θ(r))dr|2
]

+ (4M + 16)L2E

[∫ t∧τM

δ∧τM
| sup
w∈[δ,r]

|Xw − X̃w|+ dbL(θ(r), ˜θ(r))|2dr

]
= ♠.

Exploiting Hölder inequality applied to the first term, we get:

♠ ≤ 4L2δE

[∫ t∧τM

δ∧τM

(
sup
w∈[δ,r]

|Xw − X̃w|+ dbL(θ(r), ˜θ(r))
)2

dr

]

+ (4M + 16)L2E

[∫ t∧τM

δ∧τM

(
sup
w∈[δ,r]

|Xw − X̃w|+ dbL(θ(r), ˜θ(r))
)2

dr

]

≤ 4L2(δ +M + 4)E

[∫ t∧τM

δ∧τM

(
sup
w∈[δ,r]

|Xw − X̃w|+ dbL(θ(r), ˜θ(r))
)2

dr

]
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≤ 8L2(δ +M + 4)E

[∫ t∧τM

δ∧τM
sup
w∈[δ,r]

|Xw − X̃w|2 + dbL(θ(r), ˜θ(r))2dr

]

≤ 8L2(δ +M + 4)E

[∫ t

δ

sup
w∈[0,r]

|Xw∧τM − X̃w∧τM |2 + dbL(θ(r), ˜θ(r))2dr

]

≤ 8L2(δ +M + 4)

(∫ t

δ

E

[
sup
w∈[0,r]

|Xw∧τM − X̃w∧τM |2
]
dr +

∫ t

δ

dbL(θ(r), ˜θ(r))2dr

)
.

Exploiting the Property (2.2) of dbL(·, ·), the fact that (a + b)2 ≤ 2(a2 + b2)
and Cauchy-Schwarz inequality, we deduce:

E

[
sup
s∈[0,t]

|X(s ∧ τM)− X̃(s ∧ τM)|2
]

≤ 8L2(δ +M + 4)

∫ t

δ

E

[
sup
w∈[0,r]

|X(w ∧ τM)− X̃(w ∧ τM)|2
]
dr

+ 8L2(δ +M + 4)

∫ t

δ

(
E[|X(r)− X̃(r)|It<τM ] + 2P(t ≥ τM)

)2
dr

≤ 8L2(δ +M + 4)

∫ t

δ

E

[
sup
w∈[0,r]

|X(w ∧ τM)− X̃(w ∧ τM)|2
]
dr

+ 8L2(δ +M + 4)

∫ t

δ

2E[|X(r)− X̃(r)|2It<τM ] + 8P(t ≥ τM)2dr

≤ 24L2(δ +M + 4)

∫ t

δ

E

[
sup
w∈[0,r]

|X(w ∧ τM)− X̃(w ∧ τM)|2
]
dr

+ 64L2(δ +M + 4)

∫ t

δ

P(t ≥ τM)2dr

≤ 24L2(δ +M + 4)

∫ t

0

E

[
sup
w∈[0,r]

|X(w ∧ τM)− X̃(w ∧ τM)|2
]
dr

+ 64L2(δ +M + 4)

∫ t

δ

P
(∫ t

0

|u(v)|2dv ≥M
)2

dr

≤ 24L2(δ +M + 4)

∫ t

0

E

[
sup
w∈[0,r]

|X(w ∧ τM)− X̃(w ∧ τM)|2
]
dr

+ 64L2(δ +M + 4)δP
(∫ T

0

|u(v)|2dv ≥M
)2

.

Exploiting the assumptions on the finiteness of the moments of exponential
order of u together with the fact that

P
[ ∫ T

0
|u(v)|2dv ≥M

]
= P

[
ec

∫ T
0 |u(v)|2dv ≥ ecM

]
,
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using Markov inequality, we can rewrite the previous as:

E

[
sup
s∈[0,t]

|X(s ∧ τM)− X̃(s ∧ τM)|2
]

≤ 24L2(δ +M + 4)

∫ t

0

E

[
sup
w∈[0,r]

|X(w ∧ τM)− X̃(w ∧ τM)|2
]
dr

+ 64L2(δ +M + 4)δ
E
[
ec

∫ T
0 |u(v)|2dv

]2

e2cM

≤ 3BM

∫ t

0

E

[
sup
w∈[0,r]

|X(w ∧ τM)− X̃(w ∧ τM)|2
]
dr + 8BMδ

V 2

e2cM
,

where BM = 8L2(δ +M + 4) as above and V = E
[
ec

∫ T
0 |u(v)|2dv

]
.

Now applying to the previous Gronwall Lemma, we get the estimation:

E

[
sup
s∈[0,t]

|X(s ∧ τM)− X̃(s ∧ τM)|2
]
≤ 8BMδ

V 2

e2cM
e3BM t.

Hence, for every t ∈ [0, 2δ] we have the following

E

[
sup
s∈[0,t]

|X(s ∧ τM)− X̃(s ∧ τM)|2
]
≤ 8BMδV

2e−2cM+3BM δ.

That, for c > 12δL2, thanks to monotone convergence theorem, at the limit
for M →∞ gives:

E

[
sup

s∈[0,2δ]

|X(s)− X̃(s)|2
]
≤ 0,

and so P(X(t) = X̃(t), 0 ≤ t ≤ 2δ).
Reasoning by induction repeating iteratively what we have done above, ex-
ploiting each time what we have found in the previous passage, we are able to
show:
P(X(t) = X̃(t), 0 ≤ t ≤ T ) = 1.

Remark 2.6. We can notice that the constant c > 0, appearing in the con-
straint on the control, namely

E

[
ec

∫ T
0 |u(t)|2dt

]
<∞,

is arbitrary. In fact, we can opportunely modify the proof by a suitable choice
of δ > 0.
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2.2 Delayed volatility coefficients

In order to prove Uniqueness of solutions, we can alternatively operate strength-
ening the hypothesis on the volatility coefficients .
As in the previous case, suppose to be interested in studying the non-linear
SDE:

dXt =b(t,X,Law(X(t)))dt+ σ(t,X,Law(X(t)))u(t)dt

+ σ(t,X,Law(X(t)))dWt,
(2.4)

where b, σ are predictable functionals on [0, T ] × C([0, T ],Rd) × P(Rd) with
values in Rd and Rd×d1 respectively, X(0) = X0 fixed, such that E[|X0|2] <∞,
and u a Rd1-valued (Ft)-progressively measurable process such that

E

[∫ T

0

|u(t)|2dt

]
= Q <∞.

As previously, we consider the following Lipschitz and growth conditions
on b and σ :

(L) There exists L > 0 such that for all t ∈ [0, T ], all φ, ψ ∈ C([0, T ],Rd) all
µ, ν ∈ P(Rd)

|b(t, φ, µ)−b(t, ψ, ν)|+|σ(t, φ, µ)−σ(t, ψ, ν)| ≤ L
(

sup
s∈[0,t]

|φ(s)−ψ(s)|+dbL(µ, ν)
)
.

(G) There exists a constant K > 0 such that for all t ∈ [0, T ], all φ ∈
C([0, T ],Rd), all µ ∈ P(Rd)

|b(t, φ, µ)| ≤ K
(

1 + sup
s∈[0,t]

|φ(s)|
)
, |σ(t, φ, µ)| ≤ K.

In addition, we suppose a condition of ”delay” on σ:

(A) There exists δ > 0, fixed, such that, for all t ∈ [0, T ], all φ, ψ ∈
C([0, T ],Rd), all µ ∈ P(Rd)

σ(t, φ, µ) = σ(t, ψ, µ), once φ(s) = ψ(s) ∀s ∈ [0, t− δ].

Let us notice that these conditions are sufficient to guarantee the finiteness of
the moments of second order of the solutions of the SDE.†

†See Appendix B, in particular Remark B.3.
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Remark 2.7. We would like to underline that if t ∈ [0, δ) we will assume

σ(t, φ, µ) = σ(t, ψ, µ) iff φ(0) = ψ(0).

Proposition 2.8. Grant conditions (L),(G) and(A). Let ((Ω,F ,P), (Ft)t∈[0,T ])
be a stochastic basis satisfying the usual hypothesis and carrying a d1-dimensional
(F)t-Wiener process (Wt)t∈[0,T ] and let u be a Rd1-valued (Ft)-progressively
measurable process such that

E

[∫ T

0

|u(t)|2dt

]
<∞.

Suppose that X, X̃ are solutions of (2.4), over the time interval [0, T ], under
the control u, with initial condition X(0) = X0 = X̃(0) P-almost surely. Then
X, X̃ are indistinguishable, that is

P(X(s) = X̃(s), ∀s ∈ [0, T ]) = 1.

Proof. The proof works in an inductive way. We exploit Property (A) on a
sequence of intervals of amplitude δ to show that on each of them we have
Uniqueness of solutions.
Set θ(t) = Law(X(t)), θ̃(t) = Law(X̃(t)), t ∈ [0, T ].
Let’s start by considering the first time interval [0, δ]. Suppose that 0 ≤ t < δ.
Using Hölder’s inequality, Doob’s maximal inequality and Itô isometry, we
obtain for all t ∈ [0, δ],

E

[
sup
s∈[0,t]

|X(s)− X̃(s)|2
]
≤ 4TE

[∫ t

0

|b(r,X, θ(r))− b(r, X̃, θ̃(r))|2dr

]

+ 4E

[∫ t

0

|σ(r,X, θ(r))− σ(r, X̃, θ̃(r))|2dr ·
∫ t

0

|u(r)|2dr

]

+ 16E

[∫ t

0

|σ(r,X, θ(r))− σ(r, X̃, θ̃(r))|2dr

]
.

Thanks to hypothesis (L), applied to the first term on the right, and triangle
inequality, we deduce:

≤ 8TL2E

[∫ t

0

(
sup
s∈[0,r]

|X(s)− X̃(s)|2 + dbL(θ(r), θ̃(r))2
)
dr

]

+ 4E

[∫ t

0
(|σ(r,X, θ(r))− σ(r, X̃, θ(r))|+ |σ(r, X̃, θ(r))− σ(r, X̃, θ̃(r))|)2dr ·

∫ t

0
|u(r)|2dr

]

+ 16E

[∫ t

0
(|σ(r,X, θ(r))− σ(r, X̃, θ(r))|+ |σ(r, X̃, θ(r))− σ(r, X̃, θ̃(r))|)2dr

]
= ♦.
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Exploiting hypothesis (A), in particular with regard to the Remark 2.7, and
the fact that by hypothesis X(0) = X0 = X̃(0),P-a.s., we have that:

|σ(r,X, θ(r))− σ(r, X̃, θ(r))| = 0, ∀r ∈ [0, t], ∀t ∈ [0, δ], P− a.s.,

and so we are allowed to write:

♦ = 8TL2E

[∫ t

0

(
sup
s∈[0,r]

|X(s)− X̃(s)|2 + dbL(θ(r), θ̃(r))2
)
dr

]

+ 4E

[∫ t

0

dbL(θ(r), θ̃(r))2dr

∫ t

0

|u(r)|2dr

]
+ 16E

[∫ t

0

dbL(θ(r), θ̃(r))2dr

]

= 8TL2E

[∫ t

0

sup
s∈[0,r]

|X(s)− X̃(s)|2dr

]
+ 8TL2

∫ t

0

dbL(θ(r), θ̃(r))2dr

+ 4E

[∫ t

0

|u(r)|2dr

]∫ t

0

dbL(θ(r), θ̃(r))2dr + 16

∫ t

0

dbL(θ(r), θ̃(r))2dr

= 8TL2E

[∫ t

0

sup
s∈[0,r]

|X(s)− X̃(s)|2dr

]
+ (8TL2 + 4Q+ 16)

∫ t

0

dbL(θ(r), θ̃(r))2dr,

with the notation E

[ ∫ δ
0
|u(r)|2dr

]
≤ E

[ ∫ T
0
|u(r)|2dr

]
= Q <∞.

Now, thanks to Property (2.1) of bounded Lipschitz metric and Cauchy-
Schwarz inequality, we have:

dbL(θ(r), θ̃(r))2 ≤ E

[
|Xr − X̃r|

]2

≤ E

[
|Xr − X̃r|2

]
,

and, naturally, we have:

E

[
|Xr − X̃r|2

]
≤ E

[
sup
s∈[0,r]

|Xs − X̃s|2
]
.

Hence, we deduce that:

E

[
sup
s∈[0,t]

|X(s)− X̃(s)|2
]
≤ (16 + 16TL2 + 4Q)

∫ t

0

E

[
sup
s∈[0,r]

|X(s)− X̃(s)|2
]
dr.

Applying Gronwall’s Lemma, we finally get:

∀t ∈ [0, δ], E

[
sup
s∈[0,t]

|X(s)− X̃(s)|2
]
≤ 0,
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that is P(X(s) = X̃(s), ∀s ∈ [0, δ]) = 1.
Now, we would like to extend the reasoning above to the time interval [δ, 2δ].
We exploit the fact that X(s) = X̃(s), ∀s ∈ [0, δ] P-a.s..
Let t ∈ [δ, 2δ]. We use in sequence Hölder’s inequality, Doob’s maximal in-
equality and Itô isometry, in order to obtain:

E

[
sup
s∈[0,t]

|X(s)− X̃(s)|2
]
≤ 4TE

[∫ t

0

|b(r,X, θ(r))− b(r, X̃, θ̃(r))|2dr

]

+ 4E

[∫ t

0

|σ(r,X, θ(r))− σ(r, X̃, θ̃(r))|2dr ·
∫ t

0

|u(r)|2dr

]

+ 16E

[∫ t

0

|σ(r,X, θ(r))− σ(r, X̃, θ̃(r))|2dr

]
= 4.

Applying the hypothesis (L) to the first term and triangle inequality to the
second and third

4 ≤ 8TL2E

[∫ t

0

(
sup
s∈[0,r]

|X(s)− X̃(s)|2 + dbL(θ(r), θ̃(r))2
)
dr

]

+ 4E

[∫ t

0
(|σ(r,X, θ(r))− σ(r, X̃, θ(r))|+ |σ(r, X̃, θ(r))− σ(r, X̃, θ̃(r))|)2dr ·

∫ t

0
|u(r)|2dr

]

+ 16E

[∫ t

0
(|σ(r,X, θ(r))− σ(r, X̃, θ(r))|+ |σ(r, X̃, θ(r))− σ(r, X̃, θ̃(r))|)2dr

]
= ♦.

Since δ < t < 2δ and remembering the previous step‡, applying hypothesis
(A), we can deduce: σ(r,X, θ(r)) = σ(r, X̃, θ(r)), ∀r ∈ [0, t].
Furthermore, applying (L) we have: |σ(r, X̃, θ(r))−σ(r, X̃, θ̃(r))|2 ≤ dbL(θ(r), θ̃(r))2,
∀r ∈ [0, t]. We are able to write:

♦ ≤ 8TL2E

[∫ t

0

sup
s∈[0,r]

|X(s)− X̃(s)|2 + dbL(θ(r), θ̃(r))2dr

]

+ 4E

[∫ t

0

|u(r)|2dr

]∫ t

0

dbL(θ(r), θ̃(r))2dr + 16

∫ t

0

dbL(θ(r), θ̃(r))2dr

= 8TL2

∫ t

0

E

[
sup
s∈[0,r]

|X(s)− X̃(s)|2
]
dr + (8TL2 + 4Q+ 16)

∫ t

0

dbL(θ(r), θ̃(r))2dr

= (16TL2 + 4Q+ 16)

∫ t

0

E

[
sup
s∈[0,r]

|X(s)− X̃(s)|2
]
dr,

‡X̃(s) = X(s),∀s ∈ [0, δ], P− a.s.
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where in the last passage we have exploited the fact, previously shown, that

dbL(θ(r), θ̃(r))2 ≤ E

[
sups∈[0,r] |X(s)− X̃(s)|2

]
.

Applying Gronwall’s Lemma to: ∀t ∈ [0, 2δ]

E

[
sup
s∈[0,t]

|X(s)− X̃(s)|2
]
≤ (16TL2 + 4Q+ 16)

∫ t

0

E

[
sup
s∈[0,r]

|X(s)− X̃(s)|2
]
dr.

We get:

E

[
sup
s∈[0,t]

|X(s)− X̃(s)|2
]
≤ 0, 0 ≤ t ≤ 2δ,

that is:
P(X(s) = X̃(s), ∀s ∈ [0, 2δ]) = 1.

Reasoning iteratively on the various time interval of the type [kδ, (k + 1)δ],
untill we cover the whole time interval [0, T ], we are able to show that:
∀k ∈ {0, . . . , l − 1}

P(X(s) = X̃(s), ∀s ∈ [kδ, (k + 1)δ]) = 1,

that is X(s) = X̃(s) ∀s ∈ [0, T ] P-a.s., once
⋃l−1
k=0[kδ, (k + 1)δ] ⊃ [0, T ].
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Appendix A

McKean Example of Interacting
Diffusions

In this chapter we present an example which justifies the introduction of MV-
SDEs.
Let’s use a probabilistic method to study McKean’s example of interacting
diffusions. For this chapter we refer to [14].
Let b : Rd × Rd → Rd be a bounded Lipschitz functional. Let u be a proba-
bility on Rd and denote with B the standard Rd-Wiener measure. Construct
on (Rd × C0(R+,Rd))N

∗
, with product measure (u ⊗ W )⊗N

∗
, the processes

X i,N , i = 1, . . . , N , satisfying:

dX i,N
t = dwit +

1

N

N∑
j=1

b(X i,N
t , Xj,N

t )dt, i = 1, . . . , N ;

X i,N(0) = xi0,

(A.1)

where xi0, (w
i), i ≥ 1, are the canonical coordinates on the product space (Rd×

C0)N
∗
. We will show that, when N goes to infinity, each X i,N , has a natural

limit X̄ i. Each X̄ i will be independent copy of a new object: ”the non-linear
process”.
Let’s give a brief description of the non-linear process.
Consider a filtered probability space, (Ω,F ,Ft, (Wt)t≥0, X0,P), endowed with
an Rd-valued Wiener process (Wt)t≥0, and an u-distributed, F0-measurable
Rd-valued random variable X0. We study the equation:

dXt =

∫
Rd
b(Xt, y)ut(dy)dt+ dWt,

X(0) = X0, ut(dy) is the law of Xt.

(A.2)

Theorem A.1. There is existence and uniqueness, trajectorial and in law, for
the solution of SDE (A.2).
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Remark A.2. We can notice that the non-linear process has time marginals
which satisfy in a weak sense the non-linear equation:

∂tu =
1

2
∆u− div

(∫
b(·, y)ut(dy)u

)
.

Indeed, for f ∈ C2
c (Rd), applying Itô’s formula, we have:

f(Xt)−f(X0) =

∫ t

0

∇f(Xs)dWs+

∫ t

0

(1

2
∆f(Xs)+

∫
Rd
b(Xs, y)us(dy)∇f(Xs)

)
ds.

Integrating this, we get:∫
Rd
f(x)(ut(x)−u(x))dx = 0+

∫
Rd

∫ t

0

(1

2
∆f(x)+

∫
Rd
, b(x, y)us(dy)∇f(x)

)
us(x)dsdx,

that can be rewritten as:∫
Rd

∫ t

0

f(x)∂us(x)dsdx =

∫
Rd

∫ t

0

(1

2
∆f(x)+

∫
Rd
b(x, y)us(dy)∇f(x)

)
us(x)dsdx.

Now, exploiting Divergence Theorem and the facts:

• div(gX) = ∇gX + g div(X)

• div(fg) = f div(g) + g div(f) + 2∇f∇g

together with the fact that f has compact support, we obtain:∫ ∫ t

0

f(x)∂us(x)dsdx =

∫ ∫ t

0

1

2
∆us(x)f(x)−div

(∫
Rd
b(x, y)us(dy)us(x)

)
f(x)dsdx

That is clearly a weak version of the equation above.

Let us now turn to the proof of Theorem A.1 .

Proof. We introduce the Kantorovitch-Rubinstein or Wasserstein metric on
the set P(C) of probability measures on C = C([0, T ],Rd), defined by

DT (m1,m2) = inf
{∫

(sup
s≤T
|Xs(ω1)−Xs(ω2)| ∧ 1)dm(ω1, ω2),

m ∈ P(C × C), p1 ◦m = m1, p2 ◦m = m2

}
,

(A.3)

where (Xs)s∈[0,T ] is simply the canonical process on C.
DT (·, ·) is a complete metric on P(C) , which gives to P(C) the topology of
weak convergence. The proof of this fact can be found in [5].
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Let T > 0. Define Φ the map which associates to m ∈ P(C) the law of
the solution of:

Xt = X0 +Wt +

∫ t

0

(∫
C
b(Xs, ws)dm(w)

)
ds, t ≤ T. (A.4)

Observe that this law does not depend on the specific choice of space Ω, we
use.
If m ∈ P(C) is a fixed point of Φ, (A.4) defines a solution of (A.2), up to time T ,
and conversely, if Xt, t ≤ T , is a solution of (A.2), then its law on C([0, T ],R),
is a fixed point of Φ. There is a correspondence between our problem and a
fixed point problem for Φ. We can exploit the following contraction lemma:

Lemma A.3. For t ≤ T ,

DT (Φ(m1),Φ(m2)) ≤ cT

∫ T

0

Du(m1,m2)du, m1,m2 ∈ P(C),

where cT is a constant and, Du(m1,m2) (≤ DT (m1,m2)) is the distance be-
tween the images of m1, and m2 on C([0, u],Rd).

Proof. Define the processes X1 and X2, as follows.

X1
t = X0 +Wt +

∫ t

0

(∫
C
b(X1

s , ws)dm1(w)
)
ds, t ≤ T,

X2
t = X0 +Wt +

∫ t

0

(∫
C
b(X2

s , ws)dm2(w)
)
ds, t ≤ T.

We have that

sup
s≤t
|X1

s −X2
s |

≤ sup
s≤t

∣∣∣X0 +Ws +

∫ s

0

(∫
C
b(X1

u, wu)dm1(w)
)
du−

[
X0 +Ws

+

∫ s

0

(∫
C
b(X2

u, wu)dm2(w)
)
du
]∣∣∣

≤ sup
s≤t

∫ s

0

∣∣∣ ∫
C
b(X1

u, wu)dm1(w)−
∫
C
b(X2

u, wu)dm2(w)
∣∣∣du

≤
∫ t

0

∣∣∣ ∫
C
b(X1

u, wu)dm1(w)−
∫
C
b(X2

u, wu)dm2(w)
∣∣∣du.

Since b(·, ·) is bounded and Lipschitz, exploiting triangle inequality, we can
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write∣∣∣ ∫
C
b(x,wu)dm1(w)−

∫
C
b(y, wu)dm2(w)

∣∣∣
≤
∣∣∣ ∫
C
b(x,wu)dm1(w)±

∫
C
b(y, wu)dm1(w)−

∫
C
b(y, wu)dm2(w)

∣∣∣
≤
∣∣∣ ∫
C
b(x,wu)− b(y, wu)dm1(w)|+ |

∫
C
b(y, wu)d(m1 −m2)(w)

∣∣∣
≤
∫
C

∣∣∣b(x,wu)− b(y, wu)|dm1(w) +

∫
|b(y, w1

u)− b(y, w2
u)|dm(w1, w2)

≤ K(|x− y| ∧ 1) +K

∫
|w1

u − w2
u| ∧ 1dm(w1, w2),

where m is any coupling of m1,m2 on C([0, u],Rd).
From this fact, we get

sup
s≤t
|X1

s −X2
s | ≤ K

∫ t

0

|X1
s (ω)−X2

s (ω)| ∧ 1 +K

∫ t

0

Ds(m1,m2)ds.

Using Gronwall’s Lemma, we have

sup
s≤t
|X1

s −X2
s | ∧ 1 ≤ KeKT

∫ t

0

Ds(m1,m2)ds,

from which we can deduce

DT (Φ(m1),Φ(m2)) = inf{
∫ (

sup
s≤t
|X1

s −X2
s | ∧ 1

)
dm(w1, w2)

m ∈ P(C × C), p1 ◦m = Φ(m1), p2 ◦m = Φ(m2)}

≤ inf{
∫
KeKT

∫ t

0

Ds(m1,m2)dsdm(w1, w2)

m ∈ P(C × C), p1 ◦m = Φ(m1), p2 ◦m = Φ(m2)}

≤ KeKT
∫ t

0

Ds(m1,m2)ds,

and so the Lemma follows.

From Lemma A.3, we can immediately deduce weak and strong uniqueness
for the solutions of (A.2).
The existence part can be proved exploiting a standard contraction argument.
Namely, for T > 0, and m ∈ P(C), iterating the lemma, we get:

DT (Φk+1(m),Φk(m)) ≤ cT
T k

k!
DT (Φ(m),m)
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Hence, (Φk(m))k∈N is a Cauchy sequence, and converges to a fixed point of Φ:
PT . Now, if T ′ < T , the image of PT on C([0, T ′],Rd) is still a fixed point, so
the PT are a consistent family, yielding a P on C([0,∞],Rd). This provides the
required solution.

Using Theorem A.1, we now introduce on (Rd×C0)N
∗
, where we have con-

structed in (A.1) our interacting diffusions X i,N , i = 1, . . . , N , the processes
X̄ i, i ≥ 1, solution of:

X̄ i
t = xi0 + wit +

∫ t

0

∫
Rd
b(X̄ i

s, y)us(dy)ds,

us(dy) = Law(X̄ i
s)

(A.5)

Theorem A.4. For any i ≥ 1, T > 0 :

sup
N

√
NE[sup

t≤T
|X i,N

t − X̄ i
t |] <∞. (A.6)

Proof. We drop the superscript N for notational simplicity. We have:

X i
t − X̄ i

t =

∫ t

0

( 1

N

N∑
j=1

b(X i
s, X

j
s )−

∫
Rd
b(X̄ i

s, y)us(dy)
)
ds

=

∫ t

0

1

N

N∑
j=1

{(b(X i
s, X

j
s )− b(X̄ i

s, X
j
s ) + b(X̄ i

s, X
j
s )− b(X̄ i

s, X̄
j
s ))

+ (b(X̄ i
s, X̄

j
s )−

∫
Rd
b(X̄ i

s, y)us(dy))}ds.

Introducing the notation

bs(x, x
′) = b(x, x′)−

∫
Rd
b(x, y)us(dy),

we see that:

E[ sup
0≤t≤T

|X i
t−X̄ i

t |] ≤ K

∫ T

0

(
E[|X i

s−X̄ i
s|]+

1

N

N∑
j=1

E[|Xj
s−X̄j

s |]+E[| 1
N

N∑
j=1

bs(X̄
i
s, X̄

j
s )|]
)
ds.

Summing the previous inequality over i = 1, . . . , N and using symmetry, we
find:

NE[ sup
0≤t≤T

|X i
t − X̄ i

t |] =
N∑
i=1

E[ sup
0≤t≤T

|X i
t − X̄ i

t|]

≤ K ′
∫ T

0

N∑
i=1

(
E[|X i

s − X̄ i
s|] + E[| 1

N

N∑
j=1

bs(X̄
i
s, X̄

j
s )|]
)
ds.
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Applying Gronwall’s lemma, and symmetry, we find:

E[ sup
0≤t≤T

|X i
t − X̄ i

t |] ≤ K(T )

∫ T

0

(
E[| 1

N

N∑
j=1

bs(X̄
i
s, X̄

j
s )|]
)
ds.

Our claim will follow provided that we can show:

E
[
| 1
N

N∑
j=1

bs(X̄
i
s, X̄

j
s )|
]
≤ C(T )√

N
.

We can notice that

E
[( 1

N

N∑
j=1

bs(X̄
i
s, X̄

j
s )
)2
]

=
1

N2
E
[ N∑
j,k=1

bs(X̄
i
s, X̄

j
s )bs(X̄

i
s, X̄

k
s )
]

and, for j 6= k, we have:

E
[
bs(X̄

i
s, X̄

j
s )bs(X̄

i
s, X̄

k
s )
]

= E
[(
b(X̄ i

s, X̄
j
s )−

∫
Rd
b(X̄ i

s, y)us(dy)
)(
b(X̄ i

s, X̄
k
s )−

∫
Rd
b(X̄ i

s, y)us(dy)
)]

= E
[
b(X̄ i

s, X̄
j
s )b(X̄

i
s, X̄

k
s )−

∫
Rd
b(X̄ i

s, y)us(dy)(b(X̄ i
s, X̄

j
s ) + b(X̄ i

s, X̄
k
s ))

+ (

∫
Rd
b(X̄ i

s, y)us(dy))2
]

= 0,

and so we get:

E
[( 1

N

N∑
j=1

bs(X̄
i
s, X̄

j
s )
)2
]

=
1

N2
E
[ N∑
j=1

bs(X̄
i
s, X̄

j
s )

2
]
≤ 1

N
E
[
bs(X̄

i
s, X̄

j
s )

2
]

=
χ2

N
.

Hence, we can deduce that:

E
[
| 1
N

N∑
j=1

bs(X̄
i
s, X̄

j
s )|
]
≤ E

[( 1

N

N∑
j=1

bs(X̄
i
s, X̄

j
s )
)2
] 1

2 ≤
(χ2

N

) 1
2

=
χ√
N
,

from which our claim follows.

P(E) denotes, here, the set of probability measures on E, where E is a
separable metric space.

Definition A.5. Let E a separable metric space, uN a sequence of symmetric
probabilities on EN . We say that uN is u−chaotic, u probability on E, if for
φ1, . . . , φk ∈ Cb(E), k ≥ 1,

lim
N→∞

〈uN , φ1 ⊗ · · · ⊗ φk ⊗ 1 · · · ⊗ 1〉 =
k∏
i=1

〈u, φi〉. (A.7)
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The notion of u−chaotic means that the empirical measures of the coor-
dinate variables of EN , under uN tend to concentrate near u, as the next
proposition shows. This is a type of law of large numbers.
Condition (A.7) can also be restated as the convergence of the projection of uN
as Ek to u⊗k when N goes to infinity. In the coming proposition we suppose
uN symmetric.

Proposition A.6.

i) uN is u-chaotic is equivalent to X̄N = 1
N

∑N
1 δXi ( P(E)-valued random

variables on (EN , uN), Xi canonical coordinates on EN) converges in law
to the constant random variable u.
It is also equivalent to condition (A.7), with k = 2.

ii) When E is a Polish space, the P(E)-valued variables X̄N are tight if and
only if the laws on E of X1 under uN are tight.

Proof. Let’s start by proving i).
First, suppose uN satisfies (A.7) with k = 2, and consequently with k = 1 as
well. Take φ ∈ Cb(E) , we want to compute E[〈X̄N − u, φ〉2]. By definition, we
have:

〈X̄N − u, φ〉 = 〈 1

N

N∑
i=1

δXi − u, φ〉 =
1

N

N∑
i=1

φ(Xi)− 〈u, φ〉

Hence, we get:

E[〈X̄N − u, φ〉2] = E
[( 1

N

N∑
i=1

φ(Xi)− 〈u, φ〉
)2]

= E
[ 1

N2

N∑
i,j=1

φ(Xi)φ(Xj)− 2〈u, φ〉 1

N

N∑
i=1

φ(Xi)
]

+ 〈u, φ〉2

=
1

N2

N∑
i,j=1

E[φ(Xi)φ(Xj)]− 2〈u, φ〉 1

N

N∑
i=1

E[φ(Xi)] + 〈u, φ〉2 = 4.

Now, exploiting the symmetry and the fact that {Xi}i are i.d., we have:

4 ≤ 1

N2

N∑
i=1

E[φ(Xi)
2] +

1

N2

N∑
i,j=1,(i 6=j)

E[φ(Xi)φ(Xj)]− 2〈u, φ〉 1

N

N∑
i=1

E[φ(Xi)] + 〈u, φ〉2

=
1

N
E[φ(X1)2] +

N − 1

N
E[φ(X1)φ(X2)]− 2〈u, φ〉E[φ(X1)] + 〈u, φ〉2.

Now, we can write:

E[φ(X1)2] = 〈uN , φ2 ⊗ 1 · · · ⊗ 1〉 −→ 〈u, φ2〉 by (A.7) with k = 1,
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and so we get
1

N
E[φ(X1)2] −→ 0.

Moreover, we have:

E[φ(X1)] = 〈uN , φ⊗ 1 · · · ⊗ 1〉 −→ 〈u, φ〉 by (A.7) with k = 1,

and

E[φ(X1)φ(X2)] = 〈uN , φ⊗ φ⊗ 1 · · · ⊗ 1〉 −→ 〈u, φ〉2 by (A.7) with k = 2.

This implies that X̄N converges in law to the constant random variable equal
to u.
Conversely, suppose X̄N converges in law to the constant u. Exploiting triangle
inequality, we can write:

|〈uN , φ1 ⊗ · · · ⊗ φk ⊗ 1 · · · ⊗ 1〉 −
k∏
i=1

〈u, φi〉|

≤ |〈uN , φ1 ⊗ · · · ⊗ φk ⊗ 1 · · · ⊗ 1〉 − 〈uN ,
k∏
i=1

〈X̄N , φi〉〉|

+ |〈uN ,
k∏
i=1

〈X̄N , φi〉〉 −
k∏
i=1

〈u, φi〉|

(A.8)

The second term of the previous inequality goes to zero, since by hypothesis
X̄N converges in law to the constant u.
The first term, using symmetry, can be rewritten as:

|〈uN ,
1

N !

∑
σ∈SN

φ1(Xσ(1)) . . . φk(Xσ(k))−
k∏
i=1

〈X̄N , φi〉〉|

Observe now that, if M ≥‖ φi ‖∞, 1 ≤ i ≤ k, we have:

sup
EN

∣∣∣ 1

N !

∑
σ∈SN

φ1(Xσ(1)) . . . φk(Xσ(k))−
k∏
i=1

〈X̄N , φi〉
∣∣∣

≤Mk
[((N − k)!

N !
− 1

Nk

)
· N !

(N − k)!
+

1

Nk

(
Nk − N !

(N − k)!

)]
= 2Mk

(
1− N !

Nk(N − k)!

)
−→ 0

Here we simply used that there are N !/(N−k)! injections from {1, . . . , k} into
{1, . . . , N} each of them has weight (N − k)!/N ! in the first sum and 1/Nk in
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the second sum, and in the second sum there are also Nk−N !/(N − k)! terms
where repetitions of coordinates occur. So we see that the first term of (A.8)
goes to zero, and this proves i).
Let’s prove ii) .

Definition A.7. For a probability Q(dm) on P(E), define the intensity,
I(Q), as the probability measure:

〈I(Q), f〉 =

∫
P(E)

〈m, f〉dQ(m) =

∫
P(E)

∫
E

f(x)dm(x)dQ(m), (A.9)

for f ∈ B(E), the space of bounded functions on E.

We would like to show a more general fact.

Proposition A.8. Tightness for a family of measure Q on P(E) is equivalent
to the tightness of their intensity measures I(Q) on E.

Our claim ii) follows directly from the proposition above. In fact, in our
situation of ii), by symmetry, the intensity measure of the law of X̄N is just
the law of X1, under EN .
Indeed, with QX̄N law of X̄N , we have :

〈I(QX̄N ), f〉 =

∫
P(E)

〈m, f〉dQX̄N (m) =

∫
P(E)

〈m, f〉 1

N

N∑
i=1

δXi(m)

=
1

N

N∑
i=1

∫
P(E)

∫
E

f(x)dm(x)δXi(m) =
1

N

N∑
i=1

∫
E

f(x)dmX1(x)

=

∫
E

f(x)dmX1(x) = E[f(X1)] = 〈P ◦ (X1)−1, f〉,

where P ◦ (X1)−1 stands for the law of the projection on the first coordinates
of uN .

Let’s prove Proposition A.8.

Proof. The map that associates to a Q ∈ P(P(E)) its intensity, I(Q), is clearly
continuous for the respective weak convergence topologies. So, the statement
above will follow if we prove that whenever (In)n∈N, In = I(Qn), is tight, then
(Qn)n∈N is tight.
For each ε > 0, denote by Kε a compact subset of E, with In(Kc

ε ) ≤ ε, for
every n ∈ N.
Now for ε, η > 0, and any n ∈ N, exploiting Markov inequality, we get:

Qn({m ∈ P(E)/m(Kc
εη) ≥ η}) ≤ 1

η
In(Kc

εη) ≤ ε.
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It follows that :

Qn

(⋃
k≥1

{
m ∈ P(E)/m(Kc

ε 2
−k
k

) ≥ 1

k

})
≤

∞∑
k≥1

ε2−k ≤ ε.

This means that Qn puts a mass greater or equal to 1 − ε on the compact
subset of P(E),

⋂
k≥1{m ∈ P(E)/m(Kc

ε 2
−k
k

) ≥ 1
k
}.

This proves the (Qn)n∈N are tight.

We are now interested in studying the relation between weak convergence
of a sequence of measures on P(E), namely (Qn)n∈N, and the weak convergence
of the sequence of their intensities: (In)n = (I(Qn))n.
Let (Qn)n∈N be a sequence of probability measures on P(E).
We say that (Qn)n∈N converges weakly to Q ,

Qn −→weakly
n→∞ Q if ∀f ∈ Cb(P(E),R)

〈Qn, f〉 =

∫
P(E)

f(m)dQn(m) −→n→∞ 〈Q, f〉 =

∫
P(E)

f(m)dQ(m).

Considering the sequence of the intensities, (In)n = (I(Qn))n, which is a se-
quence of probability measure on E, we say that (I(Qn))n∈N converges weakly
to I(Q) ,

I(Qn) −→weakly
n→∞ I(Q) if ∀g ∈ Cb(E,R)

〈I(Qn), g〉 =

∫
P(E)

〈m, g〉dQn(m) −→n→∞ 〈I(Q), g〉 =

∫
P(E)

〈m, g〉dQ(m).

It is clear that Qn −→weakly
n→∞ Q implies that I(Qn) −→weakly

n→∞ I(Q).
In fact ∀g ∈ Cb(E,R) we have:

〈I(Qn), g〉 =

∫
P(E)

〈m, g〉dQn(m) =

∫
P(E)

G(m)dQn(m) −→n→∞ 〈I(Q), G〉

=

∫
P(E)

〈m,G〉dQ(m),

where we have exploited the fact that for g ∈ Cb(E,R), G defined by
G(m) = 〈m, g〉 =

∫
E
g(x)m(dx) is in Cb(P(E),R).

We want to check if it is true that:
I(Qn) −→weakly

n→∞ I(Q) implies Qn −→weakly
n→∞ Q.
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Under the hypothesis that (I(Qn))n∈N converges weakly to I(Q) , hence
∀g ∈ Cb(E,R)

〈I(Qn), g〉 =

∫
P(E)

〈m, g〉dQn(m) −→n→∞ 〈I(Q), g〉 =

∫
P(E)

〈m, g〉dQ(m)

we can deduce that (In)n∈N is tight.
Exploiting Proposition A.8 we have that also the sequence (Qn)n is tight.
Now we consider an arbitrary sub-sequence of (Qn)n, (Qnk)k.
(Qnk)k is tight because of the tightness of (Qn)n. By Prokhorov Theorem
there exists a sub-sub-sequence (Qnkl

)l weakly converging to some probability
B. Because of the hypothesis: (I(Qn))n∈N converges weakly to I(Q) , it must
be necessarily I(B) = I(Q).
The problem lays in the fact that I(B) = I(Q), does not imply that B = Q.

We can check this in simpler case. Suppose E = {0, 1}.
In this case P(E) = {mα = (mα(0),mα(1)) = (α, 1− α) : α ∈ [0, 1]}.
Let Q be a probability measure on P(E), we define its intensity by:
∀f ∈ B(E)

〈I(Q), f〉 =

∫
P(E)

αf(0) + (1− α)f(1)Q(dmα)

=

∫
P(E)

f(1) + α(f(0)− f(1))Q(dmα).

Considering two probability measure on P(E), respectively Q1 = δm 1
2

and

Q2 = 1
2
(δm0 + δm1), have that:

〈I(Q1), f〉 =

∫
P(E)

f(1) + α(f(0)− f(1))δm 1
2

(dmα) = f(1) +
1

2
(f(0)− f(1))

=
1

2
(f(0) + f(1)),

〈I(Q2), f〉 =

∫
P(E)

f(1) + α(f(0)− f(1))
1

2
(δm0 + δm1)(dmα)

=
1

2
(f(1) + f(1) + (f(0)− f(1)))

=
1

2
(f(0) + f(1)),

that is ∀f ∈ B(E) : 〈I(Q1), f〉 = 〈I(Q2), f〉 and so I(Q1) = I(Q2).
Nevertheless, clearly, we have Q1 6= Q2. In fact, if we consider
g : P(E) −→ R, g ∈ Cb(E), g ≥ 0, g(m0) = 1, supp(g) ⊂ {mα : α ∈ [0, 1/4]},
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〈Q1, g〉 = 0,

〈Q2, g〉 =
1

2
,

that is 〈Q1, g〉 6= 〈Q2, g〉, and so Q1 6= Q2.
The argument can be simply extended to any E finite and let us think that
I(Q) is a sort of ”mean” of Q.

Exploiting the example given above we can formulate a counterexample for
the Proposition:
I(Qn) −→weakly

n→∞ I(Q) implies Qn −→weakly
n→∞ Q.

Consider the sequence of probability measures on P(E) , (Qn)n∈N, given by:

Q2k = δm 1
2

Q2k+1 =
1

2
(δm0 + δm1), k = 0, 1, 2, . . .

We have that clearly (Qn)n∈N can not converge weakly to any Q ∈ P(P(E)).
As we have seen above, it is true that I(Qn) = I(Q),∀n ∈ N, and so
I(Qn) −→weakly

n→∞ I(Q), with Q = δm 1
2

.

We have found the counterexample we were looking for:
A sequence in P(P(E)) for which we have: I(Qn) −→weakly

n→∞ I(Q), but not
Qn −→weakly

n→∞ Q.
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Appendix B

Some notes on SDEs

We want to recall some well-known results related to linear SDEs. We need
to exploit them in order to show existence and uniqueness of solutions in our
non-linear environment.

Let T > 0 be a time horizon and d, d1 ∈ N.
Let ((Ω,F ,P), (Ft)t∈[0,T ]) be a stochastic basis satisfying the usual hypotheses
and carrying a d1-dimensional (F)t-Wiener process (Wt)t∈[0,T ].

Theorem B.1. Consider the following SDE:

dXt = b(t,X, θt)dt+ σ(t,X, θt)u(t)dt+ σ(t,X, θt)dWt, (B.1)

with the initial condition X(0) = X0, such that E[|X0|2] <∞, θ ∈ C([0, T ],P1(Rd))
fixed and u a Rd1-valued (Ft)-progressively measurable process such that

E

[∫ T

0

|u(t)|2dt

]
= Q <∞.

Under hypotheses (L) and (G) on b and σ, we have that Equation (B.1) has a
unique strong solution, whose moment of second order satisfies the following:

E
[

sup
t∈[0,T ]

|Xt|2
]
≤ Re8K2T 2

= R′ <∞, (B.2)

with R = 4
(
E[|X0|2] + TK2E[

∫ T
0
|ur|2dr] + 4TK2 + 2K2T 2

)
.

Remark B.2. We can notice that the constant R′ does not depend on the
specific θ ∈ C([0, T ],P1(Rd)), that is involved in the equation.

Proof. Let’s start by proving the uniqueness of solutions. Let X = (Xt)t∈[0,T ]

and X̃ = (X̃t)t∈[0,T ] be strong solutions of Equation (B.1) for a fixed θ ∈
P1(Rd). For M ∈ N, define an (Ft)-stopping time τM by

τM(ω) := inf{t ∈ [0, T ] : |X(t, ω)| ∧ |X̃(t, ω)| ∧
∫ t

0

|u(s, ω)|2ds ≥M},
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with inf ∅ = ∞. Observe that P(τM ≤ T ) → 0 as M → ∞, since X, X̃ are

continuous processes and E[
∫ T

0
|u(s)|2ds] < Q.

Using Hölder’s inequality, Doob’s maximal inequality, the Itô isometry, and
condition (L), we obtain for M ∈ N, all t ∈ [0, T ]:

E
[

sup
s∈[0,t]

|Xs∧τM − X̃s∧τM |2
]
≤ 4TE

[∫ t∧τM

0

|b(r,X, θr)− b(r, X̃, θr)|2dr

]

+ 4E

[∫ t∧τM

0

|σ(r,X, θr)− σ(r, X̃, θr)|2dr
∫ t∧τM

0

|u(r)|2dr

]

+ 16E

[∫ t∧τM

0

|σ(r,X, θr)− σ(r, X̃, θr)|2dr

]

≤ 4TE

[∫ t∧τM

0

|b(r,X, θr)− b(r, X̃, θr)|2dr

]

+ (4M + 16)E

[∫ t∧τM

0

|σ(r,X, θr)− σ(r, X̃, θr)|2dr

]

≤ (4T + 4M + 16)E

[∫ t∧τM

0

sup
s∈[0,r]

|Xs − X̃s|2dr

]

≤ (4T + 4M + 16)

∫ t

0

E

[
sup
s∈[0,r]

|Xs∧τM − X̃s∧τM |2
]
dr.

An application of Gronwall’s lemma yields that

E
[

sup
s∈[0,T ]

|Xs∧τM − X̃s∧τM |2
]

= 0,

hence P(X(t) = X̃(t), for all t < τM) = 1 for all M ∈ N. This implies the
assertion since τM ↗∞ as M →∞ P-almost surely.

Now, we are interested in showing the existence of solutions for Equation
(B.1) for a fixed θ ∈ P1(Rd).
Denote with M2[0, T ] the vector space of Rd-valued, progressively measurable
processes Y = (Yt)t∈[0,T ], such that: E[supt∈[0,T ] |Xt|2] < ∞. On this space we
consider the following metric

‖X − Y ‖M2 :=

√
E
[

sup
t∈[0,T ]

|Xt − Yt|2
]
, X, Y ∈M2[0, T ].
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For M ∈ N, define an (Ft)−stopping time τM by

τ0(ω) := 0,

τM(ω) := inf{t ∈ [0, T ] :

∫ t

0

|u(s, ω)|2ds ≥M}, M ≥ 1,

with inf ∅ =∞. Observe that τM is P−a.s. increasing in M and that P(τM ≤
T )→ 0 as M →∞, since E[

∫ T
0
|u(s)|2ds] = Q <∞.

For M ∈ N, we define the control uM as:

uM(t, ω) := I[0,τM (ω)](t)u(t, ω).

Hence, for all M ∈ N, we can define a new SDE:

dXt = b(t,X, θt)dt+ σ(t,X, θt)uM(t)dt+ σ(t,X, θt)dWt,

X(0) = X0.
(B.3)

We are going to show that, for all M ∈ N, the Equation (B.3) has a unique
strong solution XM = (XM

t )t∈[0,T ].
Let’s start by proving the uniqueness part.
Consider XM = (XM

t )t∈[0,T ] and X̃M = (X̃M
t )t∈[0,T ] strong solutions of (B.3).

For L ∈ N, define an (Ft)-stopping time τL by

τL(ω) := inf{t ∈ [0, T ] : |XM(t, ω)| ∧ |X̃M(t, ω)| ≥ L},

with inf ∅ = ∞. Observe that P(τL ≤ T ) → 0 as L → ∞ since XM , X̃M are
continuous processes.
Using Hölder’s inequality, Doob’s maximal inequality, the Itô isometry, and
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condition (L), we obtain for M ∈ N, all t ∈ [0, T ]:

E
[

sup
s∈[0,t]

|XM
s∧τL − X̃

M
s∧τL|

2
]
≤ 4TE

[∫ t∧τL

0

|b(r,XM , θr)− b(r, X̃M , θr)|2dr

]

+ 4E

[∫ t∧τL

0

|σ(r,XM , θr)− σ(r, X̃M , θr)|2dr
∫ t∧τL

0

|uM(r)|2dr

]

+ 16E

[∫ t∧τL

0

|σ(r,XM , θr)− σ(r, X̃M , θr)|2dr

]

≤ 4TE

[∫ t∧τL

0

|b(r,XM , θr)− b(r, X̃M , θr)|2dr

]

+ (4M + 16)E

[∫ t∧τL

0

|σ(r,XM , θr)− σ(r, X̃M , θr)|2dr

]

≤ (4T + 4M + 16)E

[∫ t∧τL

0

sup
s∈[0,r]

|XM
s − X̃M

s |2dr

]

≤ (4T + 4M + 16)

∫ t

0

E

[
sup
s∈[0,r]

|XM
s∧τL − X̃

M
s∧τL|

2

]
dr.

An application of Gronwall’s lemma yields that

E
[

sup
s∈[0,T ]

|XM
s∧τL − X̃

M
s∧τL|

2
]

= 0,

hence, ∀M ∈ N, P(XM(t) = X̃M(t), for all t < τL) = 1 for all L ∈ N. This
implies the assertion since τL ↗∞ as L→∞ P-almost surely.

Now, we can prove the existence part.
Fix the initial condition X0 and a probability space (Ω,F ,P), where it is de-
fined a Rd1-valued Wiener process, W = (Wt)t∈[0,T ]. Choose the standard
expansion (Ḡt+)t∈[0,T ] of the natural filtration generated by the Brownian Mo-
tion and the initial condition X0. On this space, for each M ∈ N, we will
build a process XM continuous and adapted which is a strong solution of the
SDE (B.3) and we will show that XM ∈M2[0, T ]. We will get the process XM ,
through an iterative process. Our procedure produce a solution XM adapted
to (Ḡt+)t∈[0,T ]. Since (Ḡt+) ⊂ (Ft), XM must be adapted to (Ft)t∈[0,T ], too. We
have already shown uniqueness of solutions for (B.3). This implies that every
solution Y defined on Ω, a priori adapted to (Ft)t∈[0,T ], is indistinguishable
from XM , hence, it is adapted to (Ḡt+)t∈[0,T ],too.
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For Y ∈M2[0, T ], we define the process JM(Y ) = (JMt (Y ))t∈[0,T ] as:

JMt (Y ) := X0 +

∫ t

0

σ(s, Y, θs)dWs +

∫ t

0

b(s, Y, θs)ds+

∫ t

0

σ(s, Y, θs)uM(s)ds.

Thanks to hypothesis (G), it follows immediately that drift and volatility
terms are in M2[0, T ], too. Exploiting Doob’s maximal inequality, Itô isometry,
Hölder’ inequality and condition (G), we are able to write:

E
[

sup
t∈[0,T ]

|JMt (Y )|2
]
≤ 4

(
E[|X0|2] + 4E

[ ∫ T

0

|σ(s, Y, θs)|2ds
]

+ TE
[ ∫ T

0

|b(s, Y, θs)|2ds
]

+ E
[ ∫ T

0

|σ(s, Y, θs)|2ds
∫ T

0

|uM(s)|2ds
])

≤ 4

(
E[|X0|2] + 4TK2 + TE

[ ∫ T

0

|K(1 + sup
r∈[0,s]

|Yr|)|2ds
]

+K2TE
[ ∫ T

0

|u(s)|2ds
])

≤ 4

(
E[|X0|2] + 4TK2 + 2K2T 2

(
E
[

sup
r∈[0,T ]

|Yr|2
]

+ 1

)
+K2TQ

)
<∞.

This fact proves that JM(Y ) ∈ M2[0, T ], for all Y ∈ M2[0, T ], and so that
JM(·) is a functional from M2[0, T ] in itself.
Let Y, Y ′ ∈ M2[0, T ]. Exploiting Doob’s maximal inequality, Itô isometry,
Hölder’s inequality and condition (L), we can show:

E

[
sup
t∈[0,T ]

|JMt (Y )− JMt (Y ′)|2
]
≤ 4TE

[∫ T

0

|b(r, Y, θr)− b(r, Y ′, θr)|2dr

]

+ 4E

[∫ T

0

|σ(r, Y, θr)− σ(r, Y ′, θr)|2dr
∫ T

0

|uM(r)|2dr

]

+ 16E

[∫ T

0

|σ(r, Y, θr)− σ(r, Y ′, θr)|2dr

]

≤ 4TE

[∫ T

0

|b(r, Y, θr)− b(r, Y ′, θr)|2dr

]

+ (4M + 16)E

[∫ T

0

|σ(r, Y, θr)− σ(r, Y ′, θr)|2dr

]

≤ (4T + 4M + 16)E

[∫ T

0

sup
s∈[0,r]

|Ys − Y ′s |2dr

]

≤ (4T + 4M + 16)

∫ T

0

E

[
sup
s∈[0,r]

|Ys − Y ′s |2
]
dr.
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Hence, we have the following:

E

[
sup
t∈[0,T ]

|JMt (Y )− JMt (Y ′)|2
]
≤ (4T + 4M + 16)

∫ T

0

E

[
sup
s∈[0,r]

|Ys − Y ′s |2
]
dr

= CM

∫ T

0

E

[
sup
s∈[0,r]

|Ys − Y ′s |2
]
dr.

(B.4)

This fact naturally yields that

E

[
sup
t∈[0,T ]

|JMt (Y )− JMt (Y ′)|2
]
≤ CMTE

[
sup
s∈[0,T ]

|Ys − Y ′s |2
]
.

Hence, JM : M2[0, T ] −→M2[0, T ] is a continuous functional.

Now, we define iteratively a sequence of processes X(M,n) = (X
(M,n)
t )t∈[0,T ] ∈

M2[0, T ], as X(M,1) ≡ X0 and X(M,n+1) = JM(X(M,n)), n ∈ N.
To be more precise, for t ∈ [0, T ] and n ∈ N, we define:

X
(M,1)
t = X0,

X
(M,n+1)
t = JMt (X(M,n)) = X0 +

∫ t

0

σ(s,X(M,n), θs)dWs

+

∫ t

0

b(s,X(M,n), θs)ds+

∫ t

0

σ(s,X(M,n), θs)uM(s)ds.

Exploiting the relation (B.4), for all n ≥ 2 and t ∈ [0, T ], we have:

E

[
sup
t∈[0,T ]

|X(M,n+1)
t −X(M,n)

t |2
]
≤ CM

∫ T

0

E

[
sup
t∈[0,r]

|X(M,n)
t −X(M,n−1)

t |2
]
dr.

(B.5)

For n = 1, using Itô isometry, Cauchy-Schwarz inequality, Doob’s maximal
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inequality and (G) hypothesis, we have:

E

[
sup
t∈[0,T ]

|X(M,2)
t −X(M,1)

t |2
]

= E

[
sup
t∈[0,T ]

|X0 +

∫ t

0

σ(s,X0, θs)dWs

+

∫ t

0

b(s,X0, θs)ds+

∫ t

0

σ(s,X0, θs)uM(s)ds−X0|2
]

≤ 12E

[∫ T

0

|σ(s,X0, θs)|2ds

]
+ 3TE

[∫ T

0

|b(s,X0, θs)|2ds

]

+ 3E

[∫ T

0

|σ(s,X0, θs)|2ds
∫ T

0

|uM(s)|2ds

]

≤ 12K2T + 3TE

[∫ T

0

K2(1 + sup
r∈[0,s]

|X0|)2ds

]
+ 3K2TQ

≤ 12K2T + 6T 2K2(1 + E[|X0|2]) + 3K2TQ.

Hence, we get:

E

[
sup
t∈[0,T ]

|X(M,2)
t −X(M,1)

t |2
]
≤ 12K2T + 6T 2K2(1 + E[|X0|2]) + 3K2TQ = S.

(B.6)

Exploiting the relations (B.5) and (B.6), we can show by induction the follow-
ing estimation for all t ∈ [0, T ] and n ∈ N :

E

[
sup
t∈[0,T ]

|X(M,n+1)
t −X(M,n)

t |2
]
≤ SCn−1

M

T n−1

(n− 1)!
. (B.7)

This relation shows that the sequence of processes (X(M,n))n∈N is a Cauchy-
sequence in M2[0, T ]. In fact, for m > n, we can write:√√√√E

[
sup
t∈[0,T ]

|X(M,m)
t −X(M,n)

t |2
]
≤

m−1∑
k=n

√√√√E

[
sup
t∈[0,T ]

|X(M,k+1)
t −X(M,k)

t |2
]

≤
m−1∑
k=n

√
SCk−1

M

T k−1

(k − 1)!

This sequence can be made, arbitrarily, small, choosing n big enough, since
it is a convergent sequence. M2[0, T ], with the metric introduced above, is
a complete metric space.∗ Hence, there must exist a process XM ∈ M2[0, T ]

∗The proof of this fact follows immediately exploiting Lemma 4.6 in [9].
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such that X(M,n) →n→∞ XM in M2[0, T ].
Finally, let’s show that XM is a solution for equation (B.3).
By construction, we have X(M,n+1) = JM(X(M,n)), for all n ∈ N. Since
X(M,n) → XM in M2[0, T ], taking the limit for n → ∞ and exploiting the
fact that JM : M2[0, T ] → M2[0, T ] is a continuous operator, we get the rela-
tion XM = JM(XM), that is:

XM
t = X0+

∫ t

0

b(s,XM , θs)ds+

∫ t

0

σ(s,XM , θs)uM(s)ds+

∫ t

0

σ(s,XM , θs)dWs,

(B.8)
which is the integral form of equation (B.3).
By construction, XM has been determined as an element of M2[0, T ], namely as
an equivalence class of processes. We need to show that it is possible to choose
a real process XM , so an element in the equivalence class, that is continuous.
The expression (B.8) shows that XM is the sum of a stochastic integral and
of two ordinary integral, hence, there must be a continuous version of it: this
version of XM is a solution for equation (B.3). This must be a strong solution
of (B.3), since at the beginning we decided to work with the completion of the
natural filtration of the Brownian motion, (Ḡt+)t∈[0,T ].
We have shown that ∀M ∈ N there exists a unique strong solution XM of
equation (B.3).
We can define the process X = (Xt)t∈[0,T ] as:

X(t, ω) =

{
XM(t, ω) if t ∈ (τM−1(ω), τM(ω)], ∀M ∈ N0

X0(ω) if t = 0

The process X is well defined since, for t ∈ [0, τM ], we have XM(t) = XM+1(t),
P − a.s.. In fact, for t ∈ [0, τM ], uM(t) = uM+1(t) = u(t) and so the two
processes solve the same SDE that has a unique strong solution and therefore
they must be indistinguishable.
Now, we need to show that X is a solution of equation (B.1).
Exploiting the fact that for s ∈ [0, τM ] XM

s = Xs, ∀M ∈ N,∀t ∈ [0, T ], we
have

X(t ∧ τM) = XM(t ∧ τM)

= X0 +

∫ t∧τM

0

b(s,XM , θs)ds+

∫ t∧τM

0

σ(s,XM , θs)u(s)I[0,τM ](s)ds

+

∫ t∧τM

0

σ(s,XM , θs)dWs

= X0 +

∫ t∧τM

0

b(s,X, θs)ds+

∫ t∧τM

0

σ(s,X, θs)u(s)ds

+

∫ t∧τM

0

σ(s,X, θs)dWs.

76



APPENDIX B. SOME NOTES ON SDES

Since τM →∞, as M →∞, in the limit we get:

X(t) = X0 +

∫ t

0

b(s,X, θs)ds+

∫ t

0

σ(s,X, θs)u(s)ds

+

∫ t

0

σ(s,X, θs)dWs,

which is an integral version of equation (B.1).
By the uniqueness of solution for equation (B.1), we can conclude that X is
the strong solution of (B.1) we were looking for.

Finally we can show the estimation (B.2).
Suppose that (Xt)t∈[0,T ] is a solution for the equation (B.1), with θ ∈ C([0, T ],P1(Rd))
fixed. For M ∈ N, define a (Ft)−stopping time τM , by:

τM(ω) := inf{t ∈ [0, T ] : |X(t, ω)| ≥M},

with inf ∅ = +∞.
Let t ∈ [0, T ], exploiting in order Hölder’s inequality, Itô’s isometry and Doob’s
maximal inequality, we have:

E
[

sup
s∈[0,t]

|Xs∧τM |2
]
≤ 4E

[
|X0|2

]
+ 4E

[∫ t∧τM

0

|σ(r,X, θr)|2dr
∫ t∧τM

0

|u(r)|2dr

]

+ 4TE

[∫ t∧τM

0

|b(r,X, θr)|2dr

]
+ 16E

[
|
∫ t∧τM

0

σ(r,X, θr)dWr|2
]

≤ 4E
[
|X0|2

]
+ 4E

[∫ t∧τM

0

|σ(r,X, θr)|2dr
∫ t

0

|u(r)|2dr

]

+ 4TE

[∫ t∧τM

0

|b(r,X, θr)|2dr

]
+ 16E

[∫ t∧τM

0

|σ(r,X, θr)|2dr

]
= ♦
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Exploiting (G) hypotheses on b and σ:

♦ ≤ 4E
[
|X0|2

]
+ 4TE

[∫ t∧τM

0

K2(1 + sup
s∈[0,r]

|Xs|)2dr

]
+ 4K2TE

[∫ t

0

|u(r)|2dr

]
+ 16K2T

≤ 4E
[
|X0|2

]
+ 4TE

[∫ t∧τM

0

2K2(1 + sup
s∈[0,r]

|Xs|2)dr

]
+ 4K2TE

[∫ t

0

|u(r)|2dr

]
+ 16K2T

≤ 4E
[
|X0|2

]
+ 8TK2

∫ t

0

E

[
sup
s∈[0,r]

|Xs∧τM |2
]
dr + 8T 2K2 + 4K2TE

[∫ t

0

|u(r)|2dr

]
+ 16K2T

= R + 8TK2

∫ t

0

E

[
sup
s∈[0,r]

|Xs∧τM |2
]
dr.

Now, applying Gronwall Lemma, we have that for each M ∈ N, for each
t ∈ [0, T ] :

E
[

sup
s∈[0,t]

|Xs∧τM |2
]
≤ Re8TK2t.

In particular, for t = T , we have:

E
[

sup
s∈[0,T ]

|Xs∧τM |2
]
≤ Re8(TK)2 = R′ <∞.

Finally, exploiting monotone convergence theorem, we get:

E
[

sup
s∈[0,T ]

|Xs|2
]

= lim
M→∞

E
[

sup
s∈[0,T ]

|Xs∧τM |2
]
≤ Re8(TK)2 = R′ <∞.

Remark B.3. Now, consider the McKean-Vlasov Equation:

dXt = b(t,X,Law(X(t)))dt+ σ(t,X,Law(X(t)))u(t)dt+ σ(t,X,Law(X(t)))dWt,

X(0) = X0

(B.9)

with the same hypotheses on coefficients and control as in the Theorem (B.1).
If X̃ is a solution of Equation (B.9), i.e. a solution of Equation (B.1) with

θt = Law(Xt), we are able to show the finiteness of E
[

supt∈[0,T ] |X̃t|2
]
, with

the same arguments used in the proof above.
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