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Abstract

Parity symmetry is a fundamental property of the gravitational interaction in the description
provided by General Relativity. Therefore its breaking could be a signal of deviation from such a
standard model. Since inflation involves very high energy scales, it provides a unique window to
test fundamental physics. In this thesis we study inflation within new parity violating theories
of gravity that have been recently proposed. These theories generalize Chern-Simons gravity
by including in the action coupling terms to gravity involving first and second derivatives of
a scalar field (the inflaton field, in the context of inflation). Besides breaking parity, these
theories also break Lorentz invariance. Our purposes are to see whether the new couplings lead
to detectable parity breaking signatures in the power spectrum of primordial gravitational waves
and whether they modify the tensor power spectrum, possibly leading to a blue power spectrum
of primordial gravitational waves. Having a blue power spectrum means that the amplitude
of tensor perturbations increases going to lower scales. This could be an important feature,
because it could enhance the spectrum of primordial gravitational waves at scales relevant for
interferometers. We find that the two circular polarization states evolve following different
dynamical equations. Moreover, the speed of propagation of tensor modes is modified and
aquires different values for the two polarization states during inflation. In the case of the theory
with second derivatives of the scalar field we find that the term which corrects the tensor speed is
however highly suppressed, working in the regime where we avoid the production of ghost fields.
Hence the conclusions are analogous to the case with Chern-Simons gravity, both for the chirality
in the tensor power spectrum and for the tensor spectral index. In the case of the theory with
only first derivatives of the scalar field there is instead an additional contribution that modifies
the tensor speed and which can be relevant if the couplings of the new operators have large time
derivatives during inflation. We comment on possible interesting phenomenological signatures
arising from this feature.
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1.1 The Friedmann-Lemâıtre-Robertson-Walker metric . . . . . . . . . . . . . . . . . 4

1.2 The dynamics of the expanding Universe . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Brief thermal history of our Universe . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 The particle horizon and the Hubble radius . . . . . . . . . . . . . . . . . . . . . 11

1.5 The Hot Big-Bang shortcomings and the inflationary solutions . . . . . . . . . . 12

1.5.1 The horizon problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.2 The flatness problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.3 The “unwanted relics” problem . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.4 How much did the Universe inflate? . . . . . . . . . . . . . . . . . . . . . 18

1.5.5 The entropy problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5.6 A problem of initial conditions . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 The dynamics of inflation and the slow-roll approximation . . . . . . . . . . . . . 20

1.7 Single field slow-roll models of inflation . . . . . . . . . . . . . . . . . . . . . . . 24

1.7.1 Large-field and small-field models . . . . . . . . . . . . . . . . . . . . . . . 24

1.7.2 Hybrid models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.8 Reheating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.9 Cosmic no-hair “theorem” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.10 Towards the primordial perturbations from inflation . . . . . . . . . . . . . . . . 31

2 Cosmological perturbation theory 32

2.1 Some basics of differential geometry . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Gauge transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Perturbations of the metric tensor . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Perturbations of the stress-energy tensor . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Some of the most commonly used gauges in cosmology . . . . . . . . . . . . . . . 40

2.5.1 Poisson gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.2 Synchronous gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.3 Comoving gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.4 Spatially flat gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.5 Uniform energy density gauge . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Gauge-invariant scalar perturbations . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6.1 The curvature perturbation on uniform energy-density hypersurfaces . . . 44

2.7 ADM decomposition of the metric . . . . . . . . . . . . . . . . . . . . . . . . . . 45

i



Contents

3 The primordial perturbations from inflation 48

3.1 General argument for the production of primordial perturbations . . . . . . . . . 48

3.2 Gauge fixing at linear order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Constraint equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Scalar perturbations from inflation . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Sub-horizon and super-horizon limits . . . . . . . . . . . . . . . . . . . . . 55

3.4.2 Exact solution of the equation of motion . . . . . . . . . . . . . . . . . . . 56

3.5 Tensor perturbations from inflation . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Power spectrum of perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.1 Power spectrum of scalar perturbations . . . . . . . . . . . . . . . . . . . 61

3.6.2 Power spectrum of tensor perturbations . . . . . . . . . . . . . . . . . . . 62

3.7 Observable predictions from inflation . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 The importance of primordial gravitational waves . . . . . . . . . . . . . . . . . . 65

3.9 Adiabatic and isocurvature perturbations . . . . . . . . . . . . . . . . . . . . . . 66

4 Non-Gaussianity from inflation 68

4.1 Gaussian random fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Non-Gaussian statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Why studying non-Gaussianity? . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2 Primordial bispectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.3 Shapes of non-Gaussianity . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.4 Experimental constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 In-in formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Non-Gaussianity in single field slow-roll inflation . . . . . . . . . . . . . . . . . . 81

4.4.1 Gauge fixing at non-linear order . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.2 Bispectrum of scalar perturbations . . . . . . . . . . . . . . . . . . . . . . 82

4.4.3 Bispectrum of tensor perturbations . . . . . . . . . . . . . . . . . . . . . . 87

4.4.4 Mixed correlators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Summary of the predictions from single field slow-roll inflation . . . . . . . . . . 90

5 Parity violation in inflation with Chern-Simons gravity 91

5.1 Modified gravity and inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Modified gravity from an effective field theory approach . . . . . . . . . . . . . . 92

5.3 Inflation with Chern-Simons modified gravity . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Power spectrum of tensor perturbations . . . . . . . . . . . . . . . . . . . 95

5.3.2 Parity breaking signatures in the primordial bispectra . . . . . . . . . . . 99

5.3.2.1 Bispectrum of tensor perturbations . . . . . . . . . . . . . . . . 100

5.3.2.2 Two scalars and one tensor bispectrum . . . . . . . . . . . . . . 101

5.3.2.3 One scalar and two tensors bispectrum . . . . . . . . . . . . . . 101

5.4 Chirality of PGWs and observations . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Parity violation from more general chiral scalar-tensor theories 105

6.1 Chiral scalar-tensor theories and inflation . . . . . . . . . . . . . . . . . . . . . . 105

6.2 PGWs from chiral scalar-tensor theories . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 Action with only first derivatives of the scalar field . . . . . . . . . . . . . 107

6.2.2 Action with second derivatives of the scalar field . . . . . . . . . . . . . . 116

Conclusions 119

A De Sitter spacetime: symmetry under dilations and scale-invariance of the
power spectrum 122

ii



Contents

B Consistency relation for single-field models 123

C Polarization operators 125

D f(R) theories of gravity and non-Gaussianity from inflation 127

Bibliography 130

iii





Introduction

Inflation is a phase of accelerated expansion of the early Universe, originally introduced to
provide a solution to the shortcomings of the standard Friedmann-Lemâıtre-Robertson-Walker
(FLRW) cosmological model [1–4]. Indeed, the latter requires very fine-tuned initial conditions
to let the Universe evolve towards its current state. The inflationary phase provides a dynamical
mechanism that leads the Universe to these conditions when the standard radiation era begins.

Remarkably, it was soon realized that inflation can also produce the primordial perturba-
tions that represent the seeds for the subsequent formation of the Large Scale Structures in the
Universe [5–7]. These are produced by quantum fluctuations that are stretched to cosmological
sizes by the almost exponential expansion, thus freezing after horizon exit and becoming “classi-
cal” fluctuations. When these perturbations reenter the horizon, during the radiation or matter
era, they give rise to matter and temperature perturbations, that can be observed through the
Cosmic Microwave Background (CMB) [8, 9] and which then start growing to give rise to the
structures we observe today.

Another fundamental prediction of all inflationary models is the production of a stochastic
background of primordial gravitational waves (PGWs) [10] (see [11] for a review). These are
transverse and traceless tensor perturbations of the metric that are produced by the vacuum
fluctuations of the metric itself and which, as for scalar perturbations, are then amplified by the
inflationary expansion.

The simplest models of inflation consist of a scalar field, called the inflaton, which slowly rolls
on a very flat potential. During such a phase, the scalar field mimics a cosmological constant
and drives the almost exponential inflationary expansion. Then inflation ends when the inflaton
approaches the minimum of the potential, where it oscillates to decay into ultra-relativistic
particles. After this phase, called reheating, the standard radiation era begins.

In these single field slow-roll inflationary models both the spectra of scalar and tensor
perturbations are predicted to be almost scale-invariant [6, 7, 12], with a tiny level of non-
Gaussianity [13, 14]. The first statement means that the amplitude of the fluctuations varies
slightly with the cosmological scale and is a consequence of the slow-roll dynamics (see Subsec-
tion 3.6.1 for a discussion of this point). The amplitude of tensor perturbations can be directly
related to the Hubble parameter during inflation, which is a measure of the energy scale at
which inflation occurred [9, 11]. Moreover, in these models a consistecy relations holds: this
relates the so-called tensor-to-scalar perturbation ratio (that is, the ratio between the ampli-
tude of tensor and scalar perturbations) to the tensor spectral index. We have not observed
primordial gravitational waves yet, but we have an upper bound on the tensor-to-scalar ratio
coming from the measurements of the CMB made by the Planck satellite (and also other CMB
experiments) [9]. If the consistency relation really holds, given this limit it will be extremely
difficult to measure the scale dependence of tensor perturbations. Moreover, the spectrum of
the primordial gravitational waves produced in these models is below the range of the future
space interferometer LISA [15].

Given that inflation involves energy scales far beyond the ones that can be reached on Earth
(e.g. by particle accelerators), it provides a window into processes that could not be tested in
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Introduction

any other way, and thus also provides a powerful tool to constrain fundamental physics. In
this thesis we will focus on studying how inflation can be used to test whether the theory of
gravity deviates from General Relativity (GR). Modifying the theory of gravity in general can
leave some signatures in the primordial perturbations from inflation. In particular we will focus
on theories that modify GR by introducing parity breaking effects. The breaking of parity
symmetry manifests itself in the polarization of PGWs into left and right circular polarization
states, which have a different dynamical evolution during inflation and thus acquire different
power spectra on super-horizon scales. It is then also extremely interesting to study if the
spectrum of PGWs can be modified in such a way to obtain a blue power spectrum, where the
amplitude of the PGWs increases going to smaller cosmological scales. This could enahance the
spectrum of PGWs at scales possibly relevant for interferometers.

We will first review inflation with Chern-Simons modified gravity [16–18]. This predicts
a tiny level of chirality in the power spectrum of PGWs, and the spectral index of PGWs is
not modified with respect to the standard case, at leading order in slow-roll. The consistency
relation is modified by a contribution which is even more suppressed than the chirality itself. We
will study also the parity breaking effects in the primordial bispectra (i.e. the Fourier transform
of the three-point functions), both of tensor perturbations and mixed correlators. The only
correlator where the parity breaking signatures are not suppressed is the bispectrum between
one scalar and two tensor perturbations [17].

Then we will study inflation within new parity breaking theories of gravity that have been
recently proposed in the literature and which generalize Chern-Simons gravity [19]. These
include in the action new operators containing first and second derivatives of the scalar (inflaton)
field respectively (see Eqs. (6.1)-(6.3)). Besides the breaking of parity symmetry, it is important
to stress that these theories also break Lorentz invariance. First of all we will comment on the
fact that these theories do not modify the background dynamics of inflation and the power
spetcrum of scalar perturbations. We will then study how the dynamical evolution of PWGs
is modified by the new operators introduced in the action. With respect to the Chern-Simons
case, these introduce an additional contribution that modifies the speed of propagation of tensor
modes during inflation. The speed of tensor modes now varies with time during inflation and,
remarkably, one of the two polarization states acquires a superluminal speed, with the other one
propagating instead with a subluminal speed. The superluminal propagation of one of the two
polarization states is a phenomenological manifestation of the breaking of Lorentz invariance,
while the fact that one of the two states have superluminal speed and the other one subluminal
is a manifestation of the breaking of parity symmetry.

In the case of the theory with second derivatives of the scalar field (described by the action
(6.9)) there is only one term that modifies the tensor speed (see Eq. (6.88)). Working in the
regime where we avoid the production of ghost fields, this term is highly suppressed, hence we
can take the speed of tensor modes to be equal to the speed of light apart from tiny corrections.
This brings us back to an equation of motion for tensor modes analogous to the one which occurs
with Chern-Simons gravity. The conclusions, both for the chirality in the power spetcrum and
for the tensor spectral index, are therefore the same.

In the case of the theory with only first derivatives of the scalar field (described by the
action (6.8)) there is instead an additional contribution that modifies the tensor speed (see Eq.
(6.59)). This becomes relevant if the time derivative of the couplings of the new operators with
the inflaton are large during inflation, and could leave interesting signatures both at level of
chirality in the power spectrum of PGWs and at the level of the tensor spctral index (of one
or both of the polarization states). The study of these possible features, however, requires a
numerical study to solve the equation of motion of tensor modes and then compute the power
spectum. We leave this for a possile future work.

The thesis is organized as follows.
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Introduction

In Chapter 1 we review the standard cosmological (Hot Big Bang) model with its short-
comings, and introduce the concept of inflation as a solution for them. Then, we study the
background dynamics of the simplest models of inflation, namely single field slow-roll inflation-
ary models, and we briefly classify them into three different categories.

In Chapter 2 we introduce the theory of cosmological perturbations, which represents a
powerful tool in GR to go beyond the zero-order homogeneous and isotropic solution described
by the FLRW models. We explain the issues concerning the gauge transformations and we
outline the most common gauges used in cosmology. Finally, we explain how the metric and the
stress-energy tensors can be perturbed and we introduce the ADM decomposition of the metric
tensor.

In Chapter 3 we study the primordial perturbations produced during inflation. We char-
acterize both the scalar and tensor perturbations arising from single field slow-roll models in
terms of their power spectra, and then we comment on the resulting observable predictions with
the corresponding experimental constraints.

In Chapter 4 we introduce the concept of primordial non-Gaussianity, which is related to
the interactions between the field(s) present during inflation. We focus on the bispectrum of
primordial perturbations and we outline the main shapes of primordial non-Gaussianity, linking
them to the different inflationary models from which they can arise. Then we introduce the
in-in formalism and we exploit it to compute non-Gaussianities arising from single field slow-roll
inflationary models. At the end of the chapter we summarize the main predictions coming from
single field slow-roll models.

In Chapter 5 we study inflation with Chern-Simons modified gravity. We begin by studying
the parity breaking signatures in the power spectrum of primordial tensor perturbations. Then
we consider the bispectra, both of tensor perturbations and mixed correlators.

In Chapter 6 we introduce chiral scalar-tensor theories that generalize Chern-Simons grav-
ity. As the original contribution of this thesis, we study how the new operators affect the
evolution of primordial gravitational waves from inflation. New features arise in this regard,
which hint at possible interesting results that however require a further numerical analysis.
This leaves open the possibility for possible future works.
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Chapter 1

The paradigm of inflation

1.1 The Friedmann-Lemâıtre-Robertson-Walker metric

Cosmology is the study of the composition and the evolution of the Universe as a whole. The
Friedmann-Lemâıtre-Robertson-Walker (FLRW) cosmological model, also known as the Hot Big
Bang model, explains extraordinarily well the evolution of our Universe from its early stages
(corresponding to some fraction of a second) to its current state, about 13.8 billion years later.
The FLRW model is set within a theoretical framework based on General Relativity, while
from the observational side it is supported by three pillars: the first one is the observation of
the expansion of the Universe, discovered in 1929 by Hubble [20], who found that galaxies are
receding from us with a velocity proportional to their distance from us1. The second one is
the Big Bang Nucleosynthesis (BBN), namely the explanation of the relative abundance of light
elements made by Alpher, Bethe and Gamow in 1948 [21]. The third one is the detection of the
Cosmic Microwave Background (CMB) by Penzias and Wilson in 1965 [22]. This is an extremely
isotropic radiation emitted when the Universe, while cooling down, reached a temperature low
enough to allow the formation of neutral atoms; after that, photons decoupled from matter and
free-streamed to us.

In order to have success in the beautiful but complex task which cosmology proposes, we
need to make some simplifying assumptions. Usually in physics this is done by assuming that the
physical system under consideration obeys some particular symmetry. In the case of cosmology,
the FLRW model is based upon the so-called Cosmological Principle, which tells us that:

“Each comoving observer sees the Universe around him, at a fixed time, as homogeneous and
isotropic, on sufficiently large scales.”

Let us clarify what this sentence means. First of all, a comoving observer is one which has
no motion with respect to the cosmic fluid; in practice, a comoving observer sees the CMB as
isotropic, apart from its tiny anisotropies. Isotropy means that the space looks the same no
matter in what direction we look, namely we have rotational invariance. Homogeneity means
that the space looks the same at each point, namely it is independent of position and we have
translational invariance. When we say “large scales” we refer to distances bigger than about
100 Mpc.

Homogeneity and isotropy are not necessarily related to each other. Indeed, a manifold
can be homogeneous but nowhere isotropic, or it can be isotropic around a point without being
homogeneous. However, if it is isotropic around any point, then it is also homogeneous. Likewise,
if it is isotropic around a point and also homogeneous, then it is isotropic around any point. Since
we have ample observational evidence for isotropy around us, like the isotropy of the CMB [23]

1Actually, we are not the center from which the Universe is expanding. There is no center of the expansion,
each galaxy is receding from any other one with a velocity proportional to the relatve distance between them.
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1.1. The Friedmann-Lemâıtre-Robertson-Walker metric

and the isotropy in the statistical properties of clustering of galaxies, and we assume that we are
not in a special place in the Universe (the so-called Copernican principle), then it follows that
the Universe is homogeneous and isotropic around each point. Notice that homogeneity has to
be assumed and it cannot be verified if not on small distance scales.

Figure 1.1: 2dF Galaxy Redshift Survey: the distribution of galaxies becomes uniform on large scales (from [24]).

As we have already said, we know that our Universe is expanding. Thus, we can say that
the Universe is spatially homogeneous and isotropic, but it evolves with time. In General Rel-
ativity (GR) this translates into the statement that the Universe can be foliated into spacelike
slices, such that each three-dimensional slice is maximally symmetric. We therefore assume our
spacetime to be R× Σ, where R represents the time direction and Σ is a maximally symmetric
three-manifold. The FLRW metric can thus be written as2

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
, (1.1)

where (r, θ, φ) are comoving polar coordinates and a(t) is the scale factor, which determines
proper distances in terms of the comoving coordinates (see Fig. 1.2). By an appropriate rescaling
of the coordinates, k can be set equal to +1, -1, or 0 for spaces of constant positive, negative,
or zero spatial curvature respectively. In this case, r is dimensionless, while a(t) has dimensions
of length. The time coordinate t is called cosmic time and represents the proper time measured
by comoving observers.

Figure 1.2: The comoving distance between points on an imaginary coordinate grid remains constant as the Universe
expands. The physical distance, which is proportional to the comoving distance through the scale factor a(t), gets larger
as time evolves (from [25]).

2Here, and almost everything in the following, we work in units with c = 1.
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1.2. The dynamics of the expanding Universe

The FLRW metric can also be rewritten as

ds2 = −dt2 + a2(t)
[
dχ2 + S2

k(χ)dΩ2
]
, (1.2)

where

dΩ2 = dθ2 + sin2θdφ2 (1.3)

is the metric of a 2-sphere, and we have defined

dχ ≡ dr√
1− kr2

, Sk(χ) =


sinhχ k = −1

χ k = 0

sinχ k = +1.

(1.4)

We will mainly focus in the case with k = 0 since, by observations, our (observable) Universe is
practically indistinguishable from a Universe with vanishing spatial curvature [26].

In order to study the causal structure in a FLRW Universe it is useful to introduce the
conformal time τ , defined through the relation

dτ =
dt

a(t)
. (1.5)

Hence, the FLRW metric factorizes into a static Minkowski metric, multiplied by a time-
dependent conformal factor a(τ):

ds2 = a2(τ)
[
−dτ2 + dr2 + r2dΩ2

]
. (1.6)

1.2 The dynamics of the expanding Universe

The dynamics of the expansion of the Universe is encoded in the time dependence of the scale
factor a(t). In order to find it, we must resort to the Einstein’s equations

Rµν −
1

2
Rgµν = 8πGTµν , (1.7)

where on the left hand side we have the Einstein’s tensor, which is a measure of the curvature of
the spacetime and is constructed by the metric and its (second) derivatives, while on the right
hand side we have the stress-energy tensor, which is a measure of the matter/energy content of
the Universe.

To be consistent with the symmetries of the metric, the stress-energy tensor must be diagonal
and the spatial components must be equal, due to isotropy. The simplest realization of this is
given by the stress-energy tensor of a perfect fluid, which has the form

Tµν = (ρ+ p)uµuν + pδµν = diag(−ρ, p, p, p), (1.8)

where ρ is the energy density, p is the pressure, and uµ = (1, 0, 0, 0) is the four-velocity of the
fluid in comoving coordinates, with respect to which the fluid is at rest.

The stress-energy tensor satisfies a continuity equation

∇µTµν = 0, (1.9)

whose time component, in the case of a perfect fluid, yields

ρ̇ = −3H(ρ+ p), (1.10)
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1.2. The dynamics of the expanding Universe

where H = ȧ/a is the Hubble parameter. One usually refers also to Eq. (1.10) as the
continuity equation.

By specifying the Einstein’s equations to the case of a Universe described by a FLRW metric
and filled with a perfect fluid, one can obtain (from the 00- and the ij-components) the so-called
Friedmann equations:

H2 =
8πG

3
ρ− k

a2
, (1.11)

ä

a
= −4πG

3
(ρ+ 3p) , (1.12)

which have to be considered together with the continuity equation. However, because of the
Bianchi identities, these three equations are not independent; only two of them are so3.

As we will soon see, if we know from the continuity equation how the energy density ρ evolves
with the scale factor a during a given era, we can integrate the first Friedmann equation (1.11) to
obtain the dependence of the scale factor on the cosmic time t. The second Friedmann equation
(1.12) gives us the acceleration of the expansion. We will see that “ordinary components”, like
radiation and matter, give negative contributions to ä since ρ + 3p > 0, leading to attractive
gravity. A cosmological constant or a slowly-rolling scalar field (which is the simplest realization
of an inflationary phase) obeys instead ρ+ 3p < 0, hence leading to repulsive gravity and to an
accelerated expansion.

If we define the critical density

ρc =
3H2

8πG
(1.13)

and the density parameter

Ω =
ρ

ρc
, (1.14)

we can rewrite the first Friedmann equation as

Ω− 1 =
k

a2H2
. (1.15)

Since a2H2 > 0, it follows that the sign of k is equal to the sign of Ω−1. In particular, we have:

ρ < ρc ⇔ Ω < 1 ⇔ k < 0 ⇔ open Universe,

ρ = ρc ⇔ Ω = 1 ⇔ k = 0 ⇔ flat Universe,

ρ > ρc ⇔ Ω > 1 ⇔ k > 0 ⇔ closed Universe .

(1.16)

This means that the density parameter tells us which of the three possible geometries describes
our Universe.

Figure 1.3: The three possible geometries of our Universe in a 2-D analogy (from [27]).

3In Section 3.3 we will see that Eq. (1.11) is a (Hamiltonian) constraint, rather than a true dynamical equation.
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1.2. The dynamics of the expanding Universe

Since we have two independent equations in three variables, a(t), ρ(t) and p(t), we need to
introduce a third equation to close the system. This can be done by specifying the equation of
state of the cosmic fluid. We assume our cosmic fluid to be described by a barotropic equation
of state, which means that the pressure is a function only of the energy density, p = p(ρ).
Moreover, we assume this relation to be linear:

p = wρ, (1.17)

where w is a dimensionless constant. Plugging this ansatz into the continuity equation, it is
easy to solve it, finding

ρ ∝ a−3(1+w). (1.18)

Therefore we have a relation which tells us how the energy density varies with the scale factor.
Depending on the value of w, we can classify different sources:

� Matter: w=0. In this case p = 0, and consequently

ρ ∝ a−3. (1.19)

This is a simple consequence of the expansion of the Universe, which implies that volumes
scale as V ∝ a3. This is the case of Dark Matter and, in general, non relativistic matter.

� Radiaton: w = 1/3. In this case p = 1
3 ρ, and

ρ ∝ a−4. (1.20)

This is the case of radiation and, more generally, relativistic particles. In addition to
the a−3 factor due to the expansion of the Universe there is a contribution due to the
redshifting of the energy, E ∝ a−1.

� Cosmological Constant: w = −1. In this case p = −ρ, and

ρ = const. (1.21)

Since the energy density is constant, the energy has to increase while the Universe is
expanding. More in general, Dark Energy has w < −1/3. From the second Friedmann
equation (1.12), this last condition leads to an accelerated expansion of the Universe, ä > 0.

Figure 1.4: Evolution of the energy density with the scale factor for different components in a flat Universe (from [28]).
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1.3. Brief thermal history of our Universe

For a flat Universe we can integrate the Friedmann equation (1.11) together with the conti-
nuity equation, thus obtaining the time evolution of the scale factor

a(t) ∝

{
t2/3(1+w) w 6= −1,

eHt w = −1.
(1.22)

It follows that

a(t) ∝


t1/2 radiation domination,

t2/3 matter domination,

eHt cosmological constant.

(1.23)

We summarize the solutions for a flat FLRW Universe dominated by radiation, matter or a
cosmological constant in the box below, where we report also the evolution of the scale factor
in terms of the conformal time τ .

w ρ(t) a(t) a(τ)

RD 1/3 a−4 t1/2 τ

MD 0 a−3 t2/3 τ2

Λ -1 a0 eHt −τ−1

1.3 Brief thermal history of our Universe

We now want to briefly outline the main features of the thermal evolution of our Universe.
We know that, going back in time, the Universe becomes hotter and denser. If we push this
argument to the exterme, we reach a state of infinite density and temperature, a singularity,
which we identify as the initial time t = 0. However, when we go beyond the Planck epoch,
tPl ∼ 10−43 (corresponding to TPl ∼ 1019 GeV), the quantum gravity effects cannot be neglected
anymore and become relevant. Since we do not have any succesful theory of quantum gravity
yet, the first moments of life of our Universe are at the moment highly speculative. Therefore
we start our description well after the Planck time.

� Inflation and reheating: as we will soon see in detail, there are many reasons to believe
that the early Universe, at a time t ∼ 10−35 s, underwent a phase of almost exponential
expansion, called inflation, which provided the Universe with the primordial perturbations
that then led to the formation of the structures we can observe today. Inflation ended with
the so-called reheating phase, after which the standard radiaton era started.

� Baryogenesis: when we observe the Universe, we have a great number of evidences that
it is (almost) entirely composed of matter, with no antimatter. However, we would not
expect this from particle physics: indeed, the CPT theorem (valid for each local, relativistic
QFT) tells us that for any particle species there exist a corresponding antiparticle with
the same mass, decay width and opposite charge. Thus, we would expect the Universe to
be symmetric with respect to the content of matter and antimatter. Since particles and
(their respective) antiparticles annhilate between themselves, if the Universe was initially
filled with equal amounts of matter and antimatter then these annihilations should have
led to a Universe dominated by radiation. This means that we need to introduce in the
early Universe some mechanism that generates dinamically a baryon asymmetry starting
from an initially symmetric state. This is called baryogenesis. We do not know which is
this mechanism, and we do not know when it exactly occured, but it is plausible that it
happened during the reheating phase, when the ultra-relativistic particles that then filled
the Universe were created.
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1.3. Brief thermal history of our Universe

� Electroweak phase transition: at a temperature T ∼ 100 GeV (t ∼ 10−10 s) the
electroweak phase transitions occured and particles obtained their masses through the
Higgs mecchanism. The symmetry SU(2)L ⊗ U(1)Y of the electroweak interaction was
broken to U(1)EM and the weak interaction became short-range, since the gauge bosons
W± and Z0 became massive (mW ' 80 GeV, mZ ' 91 GeV).

� QCD phase transition: at T ∼ 100 MeV (t ∼ 10−5 s) a second phase transition occurred,
namely the QCD phase transition. After that, quarks were not “free” anymore, but formed
bound states of (color singlet) quarks triplets, called baryons, and quark-antiquark states,
called mesons.

� Neutrino decoupling: at T ∼ 2 MeV, the interaction rate of neutrinos became of order
of the expansion rate H. As a consequence, neutrinos decoupled from the primordial
plasma and from there on they freely-streamed through the Universe4.

� Big Bang Nucleosynthesis: at T ∼ 1 MeV, soon after neutrino decoupling, the light
elements (1H, 4He, with small amounts of 2H and 3He, and with a tiny component of
7Li) formed. This process is known as Big Bang Nucleosynthesis and it is the farthest
observational window we have in our Universe.

� Electron-positron annihilation: at T ∼ 511 KeV electrons and positrons became
non relativistic, hence their numerical density dropped due to annihilation processes like
e+e− → 2γ. Indeed, the energy of the thermal bath was not sufficient anymore to allow the
production of e−e+ couples via the inverse process from photons. The energy coming from
these annihlations was then transferred to the thermal plasma, but not to neutrinos, which
were already decoupled. As a consequence, the temperature of the neutrino background
today (Tν,0 =' 1.9 eV) is expected to be lower than the corresponding temperature of the
photons (Tγ,0 ' 2.7 eV)5.

� Radiation-matter equivalence: at T ∼ 0.75 eV the energy density of matter became
equal to that of radiation; after that, the matter era started.

� Recombination: at T ∼ 0.3 eV electrons and nuclei became bound to form the first
neutral atoms through the process e− + p → H + γ. This is called recombination (even
though they actually combined for the first time).

� Photon decoupling: soon after recombination, photons decoupled from the primordial
plasma and from there on they freely-streemed to us. Indeed, after recombinaton the
numerical density of free electrons rapidly decreased, and photons interact much less ef-
ficiently with neutral atoms. Today we can observe them as a background radiation (the
CMB) with a temperature Tγ,0 ' 2.7 eV. The energy density they had at the time of
decoupling has indeed been red-shifted by the expansion of the Universe.

� Structure formation: much later, the primordial perturbations generated during infla-
tion grew via gravitational instability to form the structures we can observe today.

4At sufficiently high temperatures in the early Universe neutrinos were in thermal equilibrium with the primor-
dial plasma. This was maintained by processes like neutrino scattering off electrons, positrons and themselves,
and neutrino-antineutrino annihilation into electron-positron pairs, plus inverse processes.

5The cosmic neutrino has not been observed yet, since neutrinos interact only weakly with ordinary matter.
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1.4. The particle horizon and the Hubble radius

Figure 1.5: Thermal history of the Universe (from [29]).

1.4 The particle horizon and the Hubble radius

In this section we introduce two important quantities, particularly useful when studying infla-
tionary cosmology. The particle horizon is defined as

dH(t) = a(t)

∫ t

0

c dt′

a(t′)
, (1.24)

where we have reintroduced for the moment the speed of light c. Let us consider a sphere of
radius dH(t) centered on us at the time t. This sphere contains all the points in the Universe
which have been in causal contact with us from the time t = 0 to the time t. Then, in general, if
two points are separated by a distance greater than the particle horizon, they have never been
in causal contact between each other. For standard FLRW models, in which

p = wρ, a(t) ∝ tα, with α =
2

3(1 + w)
, (1.25)

we have

dH(t) =
3(1 + w)

1 + 3w
ct ∼ 1

H(t)
. (1.26)

Notice that the integral (1.24) with the scale factor given in (1.25) converges only if α < 1. This
condition implies that w > −1/3 and hence, from the second Friedmann equation, ä < 0. If the
integral diverges it means that there is no horizon and we are in causal contact with each point
in the Universe. From what just said, this does not happen in the case of a Universe undergoing
a decelerated expansion, and we have a finite horizon.
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1.5. The Hot Big-Bang shortcomings and the inflationary solutions

Now let us define another important concept, namely that of the Hubble radius:

Rc(t) =
c

H(t)
. (1.27)

Since the Hubble time, τH = H−1(t), is the characteristic expansion time of the Universe, the
Hubble radius is a measure of the distance travelled by light in a Hubble time. For standard
FLRW models, we have

Rc(t) =
3(1 + w)

2
ct =

1 + 3w

2
dH(t) ∼ dH(t). (1.28)

Hence, for standard FLRW models the particle horizon and the Hubble radius are nearly equal,
up to some numerical factor. But there is a crucial difference between these two concepts which
is particularly important in the case of inflation. The particle horizon, as we have said, takes
into account all the past history of the observer, while the Hubble radius describes properties
of causal connections only related to a Hubble time. In other words, two particles which are
separated by a distance greater than the Hubble radius have not been in causal contact during
the last Hubble time, but it is possible that they were causally connected in the past; two
particles separated by a distance greater than the particle horizon have never been in causal
contact.

We can then define the comoving Hubble radius as

rH(t) =
Rc(t)

a(t)
=

1

aH
=

1

ȧ
, (1.29)

where we have set again c = 1. For FLRW models, we have:

Radiation dominated era: a(t) ∝ t1/2 ⇒ rH(t) ∝ t1/2, (1.30)

Matter dominated era: a(t) ∝ t2/3 ⇒ rH(t) ∝ t1/3. (1.31)

Notice that rH(t) is an increasing function of time both in a Universe dominated by radiation
and in a Universe dominated by matter. We can see more precisely the relation between the
particle horizon and the Hubble radius in the following way. The comoving particle horizon
(which is nothing else than the conformal time) is

τH(t) ≡ dH(t)

a(t)
=

∫ t

0

dt′

a(t′)
=

∫ a

0

da′

a′
1

ȧ′
=

∫ a

0
d ln a′rH . (1.32)

Thus, it is the logarithmic integral of the comoving Hubble radius. This means that, in order
to obtain τH , we need to integrate rH over the past interactions.

Our next aim is to see how these two concepts of the Hubble radius and the particle horizon
are crucial to understand what is known as the horizon problem, and how it can be solved by
introducing an inflationatory phase in the early stage of the Universe.

1.5 The Hot Big-Bang shortcomings and the inflationary solu-
tions

The role of physics is to predict the evolution of a system (in the case of cosmology, the whole
Universe) given some initial conditions. We will now see that the standard cosmological model
requires very fine-tuned initial conditions to let the Universe evolve to the one we observe today.
Inflation provides an attractor mechanism that brings dinamically the Universe towards these
conditions at the beginning of the standard radiation era.
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1.5. The Hot Big-Bang shortcomings and the inflationary solutions

1.5.1 The horizon problem

In the previous section we have introduced the crucial concept of the comoving particle hori-
zon τH , which is basically the comoving distance travelled by light since the beginning of the
Universe. Objects separated by a comoving distance greater than τH have never been in causal
contact. We have then seen that in standard FLRW models τH is an increasing function of time.
Let us now think at the implications of this statement. The comoving particle horizon increases
with the expansion of the Universe, but comoving wavelengths stays constant. This means that
all cosmological modes had comoving wavelengths λ much greater than τH in the past, hence no
causal physical processes could have affected them. At every instant of time new regions that
had never been in causal contact before come into contact for the first time. Hence, we should
expect them to be very different from each other, but this is not what we see: on the contrary,
the Universe appears extremely homogeneous, even if we look at those scales that have just
come into causal contact for the first time. How can this be possible?

This can be understood even more clearly if we think at the CMB. We know that the CMB
originated when the Universe had a temperature of about 0.3 eV, corresponding to a redshift
z ∼ 1100. At this epoch, photons decoupled from the primordial plasma and from there on they
free-streamed to us. Therefore the CMB is a snapshot of the Universe when it was only 380,000
years old. Since the conformal time (i.e. the comoving particle horizon) elapsed between ti = 0
and the time when the CMB formed trec is finite, this implies that most of the spots in the CMB
have non-overlapping past light cones, hence they have never been in causal contact (see Fig.
1.6). How is it possible that they have almost exactly the same temperature?

Figure 1.6: Conformal diagram for a standard FRW Universe and horizon problem (from [30]).

To see this “problem” more quantitatively, let us consider the comoving particle horizon at the
last scattering surface, which is given by

τ lsH = τ0 − τls. (1.33)

If we neglect curvature effects, the angular projection on the last-scattering surface of a given
comoving scale λ is

θ ' λ

τ0 − τls
. (1.34)

In particular we consider the comoving sound horizon at the time of last-scattering, namely
λ ∼ csτls, where cs ' 1/

√
3 is the sound speed at which photons propagate in the plasma at the
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1.5. The Hot Big-Bang shortcomings and the inflationary solutions

last scattering. This corresponds to

θhor '
csτls
τ0 − τls

' cs
τls
τ0
, (1.35)

where in the last step we have used the fact that τ0 � τls. Since the Universe is matter
dominated from the time of last scattering onwards, the scale factor grows like

a(τ) ∝ τ2, (1.36)

and we also know that a ∝ T−1. Using these relations, we find

θhor ' cs
(
T0

Tls

)1/2

∼ 1◦, (1.37)

where we have used Tls ' 0.3 eV and T0 ' 10−4 eV. In terms of multipoles, this corresponds to

lhor =
π

θhor
' 200. (1.38)

This means that two photons which on the last-scattering surface are separated by an angle
larger than θhor ∼ 1◦, corresponding to multipoles smaller than lhor ∼ 200, were not in causal
contact at decoupling. However, we know that the CMB is extremely isotropic, and moreover
its power spectrum (Fig. 1.7) shows us that tiny temperature anisotropies, of the same order of
magnitude δT/T ∼ 10−5, are present even at l� 200.

Figure 1.7: Power spectrum of temperature fluctuations in the CMB (from [8])

To understand a possible solution to the horizon problem, let us recall the relation between
the comoving particle horizon and the comoving Hubble radius, which is given by

τH(t) =

∫ a

0
d ln a′rH . (1.39)

The fact that rH is an increasing function of time in FLRW models implies that τH is dominated
by the contributions coming from late times. This means that, as we have already said, at every
instant of time new regions that had never been in causal contact before come into contact for
the first time.

However, if τH could be much greater than rH now, this would mean that particles which
cannot communicate today were instead in causal contact in the past. This happens if the
comoving Hubble radius was in the past much greater than it is now, so that τH gets the most
contributions from early times. This leads us to assume that the early Universe, before the
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1.5. The Hot Big-Bang shortcomings and the inflationary solutions

standard FLRW phases dominated by radiation and matter, underwent a phase during which
the comoving Hubble radius decreased. Thus, particles separated by many Hubble radii today
were instead in causal contact during this stage.

Figure 1.8: Left : The comoving Hubble radius shrinks during inflation and then increases. Hence, our entire observable
Universe is inside a region (the one indicated as “smooth patch”) which was well inside the Hubble radius at the beginning
of inflation. Right : The scales relevant to cosmological observations were in the early Universe smaller than the Hubble
radius. During inflation they “crossed” the Hubble radius and became causally disconnected. Eventually, they reentered
the Hubble radius in the radiation or in the matter era (from [30]. For a similar picture see also [31]).

How must the scale factor evolve to solve the horizon problem? The condition of decreasing
comoving Hubble radius means that

d

dt

(
1

aH

)
= − ä

ȧ2
< 0 ⇒ ä > 0. (1.40)

Therefore, the Universe must have gone through a phase of accelerated expansion: this is what
is called inflation. From the continuity equation, this translates into a condition on the equation
of state of the energy/matter sourcing inflation:

p < −1

3
ρ, (1.41)

meaing that we need a negative pressure to realize an inflationary phase.

Finally, we want to see how inflation solves the horizon problem in terms of the conformal
diagram shown in Fig. 1.6. For the moment we assume that inflation corresponds to an exact
de Sitter phase, were H = const. (in this case w = −1.), and hence the scale factor grows
exponentially with time. As a function of conformal time, the scale factor is given by

a(τ) = − 1

Hτ
, (1.42)

and we can see that the initial singularity a = 0, which in FLRW models is at τi = 0, is instead
pushed to the infinite far past, τi → −∞. At τ = 0 the scale factor instead diverges6. This
means that τ = 0 is not the initial singularity anymore; rather, it is the end of inflation (what
will be called reheating). Therefore the light cones can extend through the “apparent Big Bang”
at τ = 0, so that points which would be otherwise disconnected had instead enough conformal
time to get in causal contact before recombination. This is well described in the conformal
diagram shown in Fig. 1.9.

6This happens because a de Sitter phase is characterized by an exponential expansion which lasts forever.
However, since inflation has to end in order to let the structure in the Universe form, this can be an approximation
valid only at early times. We will come back soon to this point, but for the moment let us stick with this.
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1.5. The Hot Big-Bang shortcomings and the inflationary solutions

Figure 1.9: Conformal diagram on inflationary cosmology. Inflation extends conformal time to negative values, hence
light cones intersect in the past (from [30]).

1.5.2 The flatness problem

The second of the shortcomings of the Hot Big Bang model is the so-called flatness problem. To
understand what it concerns, let us recall the first Friedmann equation, which can be written as

|Ω(t)− 1| = |k|
a2H2

= |k| r2
H(t). (1.43)

If the Universe is perfectly flat, i.e. k = 0, then Ω = 1 at all times7. If this is not the case, the
situation is radically different. We know that in the case of standard FLRW models the Hubble
radius is an increasing function of time. This implies that the departure of Ω(t) from 1 also
increases with time and it must eventually diverge (see Fig. 1.10). In other words, Ω = 1 is
an unstable point. A small deviation of Ω from unity in the early Universe leads to a Unverse
rapidly recollapsing (in the case of a close geometry), or too rapidly expanding, resulting in an
empty Universe in which gravity doesn’t succeed in forming structures (in the case of a open
geometry). This requires an extreme fine-tuning of the value of Ω, which must be enormously
close to 1 in the early Universe. From the observed value of Ω today

|Ω(t0)− 1| < 0.005 (95% C.L.), (1.44)

it is possible to show that the deviation from Ω = 1 at the Planck epoch tPl (which corresponds
to a temperature of the Universe of TPl ∼ 1019 GeV) and at the epoch of nucleosynthesis tnuc
(Tnuc ∼ 1 MeV) must be given respectively by (see e.g. [31])

Ω(tPl) ' 1 + (Ω0 − 1) · 10−60, (1.45)

7Actually the case with k = 0 is represented by a set of zero measure, namely a point in the set of all possible
values of the curvature of the Universe. Thus, the probability of our Universe having exactly zero curvature
vanishes.
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Ω(tnuc) ' 1 + (Ω0 − 1) · 10−16. (1.46)

While this extremely flatness of the early Universe has no explanation and must be assumed
in standard FLRW models, inflation provides a solution for this fine-tuning problem, since the
exponential expansion leads dinamically the density parameter towards unity. Indeed, during
the inflationary phase the scale factor grows like a(t) ≈ eHt hence, from (??), we have

|Ω(t)− 1| ∝ e−2Ht. (1.47)

This means that, independently on the initial value of Ω, a (long enough) inflationary phase
drives its value towards unity, thus solving the flatness problem (see again Fig. 1.10).

Figure 1.10: Evolution of Ω(t) for an open Universe (a) and a closed Universe (b), characterized by three periods (0, ti),
(ti, tf ) and (tf , t0). The first and last phases are standard FLWR, while the second is an inflationary phase, during which
Ω(t) gets led towards one. If inflation lasts enough time, the later divergence from Ω = 1 can be delayed well beyond our
current time t0 (from [31]).

We want to stress that inflation does not change the global geometry of the spacetime. If the
Universe is flat, closed or open, it remains so with or without inflation. Inflation only increases
the radius of curvature, so that locally (i.e. in our observable patch) the Universe looks flat with
a great precision.

Figure 1.11: The exponential expansion during inflation magnifies the radius of curvature of the Universe, so that it
locally looks flat. Here we report the (3-dimensional) analogy with the surface of an inflating sphere (from [32]).

1.5.3 The “unwanted relics” problem

We briefly mention another problem of the standard cosmological model which is successfully
solved by inflation. Historically, this is the problem that initially led to the introduction of the
inflationary paradigm.
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It is likely that the early Universe underwent a series of phase transitions which, depending
on the broken symmetries, may have produced different topological defects like domain walls,
monopoles and cosmic strings. If produced, it is easy to see that their energy density tends to
become the dominant one in the Universe, leading to ΩTD � 1. This is obviously in contrast
with observations, which tell us that Ωtot ' 1.

Inflation naturally solves also this problem, since the accelerated expansion strongly dilutes
the energy density contribution of these topological defects.

1.5.4 How much did the Universe inflate?

Introducing an early stage of accelerated expansion is not sufficient to reproduce the Universe
we observe today. We need also to require for such a phase to last enough to solve the horizon
and the flatness problems. For the former, we have to impose that the inflationary phase was
long enough to allow a region initially smaller than the size of the horizon (and hence causally
connected) to grow and become larger than the observable Universe today. In practice, we need
to require that the comoving Hubble radius at the beginning of inflation was at least equal or
larger than its value today

rH(tin) ≥ rH(t0). (1.48)

This means that a comoving size which is entering the horizon today had already been sub-
horizon in the far past.

As regarding the flatness problem, we need to require that

1− Ω−1
i

1− Ω−1
0

≥ 1, (1.49)

which means that the density parameter differed from unity at the beginning of inflation much
than it does today.

These two requirements lead to a similar condition for the duration of inflation. This can be
expressed in terms of the number of e-folds N, which is defined as

Nλ ≡
∫ tf

tλ

Hdt = ln

[
a(tf )

a(tλ)

]
, (1.50)

where λ is a given scale which left the horizon during inflation at the time t = tλ, while tf
represents the time at which inflation ended. Thus, Nλ is a measure of the expansion of the
Universe during the time interval between tλ and tf . For the cosmological scales that we can
observe through the CMB anisotropies one finds (see e.g. [31])

NCMB ' 60, (1.51)

meaning that we need to require that inflation lasted for at least about 60 e-folds. Usually
inflationary models lead to N � NCMB, and it would not be natural to ask that inflation lasted
just long enough for a region with size equal to our observable Universe to start sub-horizon
during inflation. What we can say is that the cosmological scales which can be proved through
the CMB had to leave the horizon 60 e-folds before the end of inflation (this corresponds to the
so-called “observable window”, see Fig. 1.14).

1.5.5 The entropy problem

In this section we want to reformulate the flatness problem in a different way. This is useful since
it makes more clear which is the physical reason behind the extremely small numbers we have
obtained, and thus also suggests a possible solution, leading again to the idea of introducing an
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inflationary phase in the early Universe. In explaining this argument we follow the discussion
of [33].

The key point is that the flatness problem is related to the assumption of adiabatic expansion
of the Universe made in the FLRW model. To show this, let us rewrite Eq. (1.43) as

|Ω(t)− 1| =
|k|M2

Pl

T 2S2/3
, (1.52)

where S ∼ a3T 3 is the entropy in a comoving volume8. If our Universe undergoes an adiabatic
expansion, then S is constant and we can evaluate it at the present time. Hence, we have

|Ω(t)− 1| =
|k|M2

Pl

T 2S
2/3
0

, (1.53)

with S0 denoting the present value of the entropy, which can be estimated as

S0 ∼ T 3
0H
−3
0 ' 1090. (1.54)

Let us now evaluate the expression (1.53) at the Planck time:

|Ω(tPl)− 1| =
|k|M2

Pl

T 2
PlS

2/3
0

' 10−60. (1.55)

Notice that this value is of the same order of the one obtained when studying the flatness
problem (see (1.45)). However, this reformulation suggests us that the flatness problem is due
to the huge value of the entropy of our Universe or, equivalently, to the fact that our Universe
contains a huge number of particles.

Put in this way, we can see that a possible solution to this problem is to assume that our
Universe underwent a phase of non-adiabatic expansion during its early stage. This phase of
non-adiabatic expansion is the transition phase between inflation and the standard radiation
era9 (the so-called reheating phase) which, as we will see in more detail, produce a huge amount
of entropy and hence reheats the Universe. Let us thus assume that from the beginning to the
end of the inflationary+reheating phase the entropy changed by

Sf = Z3Si, (1.56)

where Z is a numercal factor. Let us also assume that at the beginning of inflation the entropy
in a comoving volume was of order unity, meaning that there was about one particle per horizon.
If the expansion of the Universe after this phase is adiabatic, it follows that Sf = S0 and hence
Z ∼ 1030. Since S ∼ a3T 3, from (1.56) we find

af
ai
≡ eN ' 1030 Ti

Tf
, (1.57)

where Ti and Tf are the temperature at the beginning and at the end of the inflationary+reheating
phase respectively. From the last expression we can find the value of N during such a phase,
which is given by

N ∼ 70, (1.58)

up to a factor ln(Ti/Tf ) which does not modify considerably the result. This is really similar to
the values of N required to solve also the horizon (and the flatness, in the previous formulation)
problem.

8In this estimation we are neglecting the effective number of relativistic degrees of freedom g∗s. In principle this
quantity varies during the expansion of the Universe, but for our purposes we can neglect it without commiting
any relevant error.

9Indeed, during the inflationary phase the Universe still expands adiabatically.
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1.5.6 A problem of initial conditions

It is important to stress that the Hot Big Bang “problems” are not inconsistencies within the
model itself. Indeed, if we assume an initial state of the Universe with Ω extremely close to
one and with homogeneity on super-horizon scales, but with just the tiny fluctuations required
to explain the formation of the large scale structures, the Universe will evolve towards the
state we can observe today. Rather, they are shortcomings in the predictive power of the
standard cosmological model, since the peculiar fine-tuned initial conditions we have seen must
be assumed without any kind of explanation. As we have seen, inflation provides instead a
dynamical mechanism which leads the Universe towards them when the radiation era begins.

1.6 The dynamics of inflation and the slow-roll approximation

We have seen that inflation is a phase of accelerated expansion sourced by a negative pressure,
w = p

ρ < −
1
3 . The simplest way to realize such an inflationary phase is through vacuum energy,

which is characterized by an equation of state with w = −1 and which can be introduced in the
Einstein’s equations through a cosmological constant. As we have already seen, vacuum energy
leads to a de Sitter phase, where the scale factor grows exponentially with time, a(t) ∝ eHt.
The problem with this realization is that vacuum energy does not provide any mechanism
through which inflation ends, and the exponential expansion never stops. However we know
that our Universe went through a long period of decelerated expansion, when first radiation and
then matter dominated its energy content. During such phases, the primordial perturbations
generated during inflation10 re-entered the horizon to give rise, via gravitational instability, to
the structures we can observe today. This can not happen in a Universe undergoing a never-
ending exponential expansion. Moreover, there are other important evidences supporting this
expansion history, like the CMB and the Big Bang Nucleosynthesis. For these reasons we need
to introduce some kind of “clock”, which regulates the amount of inflation and controls its end.
This can be simply realized by a slowly-rolling scalar field.

Let us consider a scalar field, which we call the inflaton, and slightly tilt (with respect to
a constant value) the potential under which it evolves. If the potential is sufficiently flat, the
scalar field can mimic an effective cosmological constant and drives inflation. Then, inflation
could be ended by adding some mechanism triggered by some particular value of the field. In
the case of the potential in Fig. 1.12, when the potential is no longer flat and the inflaton starts
seeing the minimum, it begins to oscillate and then decays into ultra-relativistic particles. This
is called the reheating phase. After that, it follows the standard radiation-dominated era.

Figure 1.12: Slowly-rolling scalar field (from [34]).

10We will talk about primordal perturbations from inflation in detail in the next chapters.
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1.6. The dynamics of inflation and the slow-roll approximation

The dynamics of a scalar field minimally coupled to gravity is encoded in the action

S = SEH + Sφ =

∫
d4x
√
−g
[
M2
Pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
, (1.59)

where M2
Pl ≡ (8πG)−1 is the (squared) reduced Planck mass, g = det(gµν) is the determinant

of the metric tensor and V (φ) is the potential term, which contains the self-interactions of the
scalar field. The first term is the Einstein-Hilbert action, while the second term describes a
scalar field minimally coupled to gravity through the metric gµν . By varying this action with
respect to the scalar field φ, one can obtain the equation of motion for the latter. This is given
by the Klein-Gordon equation

�φ ≡ 1√
−g

∂ν
(√
−ggµν∂µφ

)
= V ′(φ), (1.60)

where V ′(φ) = ∂V (φ)
∂φ . In the case of a Universe described by a FLRW metric, this becomes

φ̈+ 3Hφ̇− ∇
2φ

a2
+ V ′(φ) = 0. (1.61)

Notice in particular that the second term is a friction term which is due to the expansion of
the Universe (indeed, it vanishes if a(t) = const) and which leads to the red-shifting of the
momentum of the scalar field. One can then compute the stress-energy tensor Tµν of the scalar
field, which is given by

Tµν ≡ −
2√
−g

δS

δgµν
= ∂µφ∂νφ+ gµν

(
−1

2
gαβ∂αφ∂βφ− V (φ)

)
. (1.62)

We can then split the inflaton field as

φ(x, t) = φ0(t) + δφ(x, t), (1.63)

where φ0(t) is the “classical” value of the field, i.e. its vacuum expectation value (vev) on the
initial homogeneous and isotropic state, φ0(t) = 〈φ(x, t)〉, and δφ(x, t) are the quantum fluctu-
ations around it11. For the moment we focus only on φ0(t), namely we look at the background
dynamics of the classical field; in the next chapters we will study the perturbations on top of
this background solution. The components of the stress-energy tensor become

T 0
0 = −

[
1

2
φ̇2

0 + V (φ0)

]
, T ij =

1

2
φ̇2

0 − V (φ0). (1.64)

We can see that the stress-energy tensor of the scalar field is that of a perfect fluid with12

ρφ0 =
1

2
φ̇2

0 + V (φ0), (1.65)

pφ0 =
1

2
φ̇2

0 − V (φ0). (1.66)

11This splitting is justified since 〈δφ2〉 � 〈φ2
0〉. Notice that, by definition of fluctuation, 〈δφ〉 = 0.

12If we include also the inhomogeneities in the scalar field, we get:

ρφ =
1

2
φ̇2 + V (φ) +

1

2

(∇φ)2

a2
,

pφ =
1

2
φ̇2 − V (φ)− 1

6

(∇φ)2

a2
.

The inflationary expansion smooths out the spatial variations, since a−2 ∝ e−2Ht. Thus, this term becomes
quickly subdominant and the two previous expressions for ρφ and pφ reduce to (1.65) and (1.66).
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1.6. The dynamics of inflation and the slow-roll approximation

Therefore, the equation of state for the scalar field can be written as

wφ0 =
pφ0

ρφ0

=
1
2 φ̇

2
0 − V (φ0)

1
2 φ̇

2
0 + V (φ0)

. (1.67)

Now notice that, if the potential term dominates over the kinetic one

1

2
φ̇2

0 � V (φ0), (1.68)

the equation of state reduces to wφ0 ' −1, and the Universe undergoes a quasi-de Sitter phase,
a(t) ' aieHt. The condition (1.68) is known as the slow-roll condition, since it tells us that the
scalar field moves slowly with respect to its potential.

Notice also that, if before the flat plateau characterizing the slow-roll phase the Universe
starts kinetic energy dominated, from (1.67) it follows that wφ0 ' 1. Then, from the continuity
equation, we have that

ρφ0 ∝ a−3(1+wφ0
) ∝ a−6. (1.69)

This means that the kinetic energy of the inflaton field gets redshifted away quickly, and the
potential energy starts dominating. In this sense inflation is a dynamical attractor solution.

To formalize more precisely the slow-roll approximations, let us rewrite the equation of
motion for the (homogeneous) scalar field and the first Friedmann equation:

φ̈0 + 3Hφ̇0 + V ′(φ0) = 0, (1.70)

3M2
PlH

2 =
1

2
φ2

0 + V (φ0). (1.71)

The equation of motion for the scalar field is the same as the equation for a ball rolling down
its potential. As we have already said, the term 3Hφ̇0 is a friction term due to the expansion of
the Universe. Indeed, in the case V ′(φ0) = 0, the two solutions of the equation are φ0 = const
and φ0 ∝ a−3. The first one is the case in which the ball is at rest. The second solution means
that if there is no external driving force, the initial velocity decreases as a consequence of the
friction term.

The slow-roll approximation consists in requiring that the potential term dominates over
the kinetic term and that the potential is sufficiently flat so that the acceleration of the field is
negligible

1

2
φ̇2

0 � V (φ0), |φ̈0| � |3Hφ̇0|. (1.72)

The first condition leads to an inflationary phase since implies that wφ0 ' −1, as we have already
seen. The second condition requires φ̇0 to change slowly such that the first condition can be
satisfied for a long enough time. This corresponds to the attractor solution in which the friction
force balances the external force provided by the potential, so that the acceleration of the field
is nearly equal to zero13.

With these two conditions, we can rewrite the equations (1.71) and (1.70) respectively as

H '

√
V

3M2
Pl

, (1.73)

φ̇0 ' −
V ′

3H
. (1.74)

13To give an analogy, let us consider the case of a ball subjected to the force of gravity and a friction force. As
the ball accelerates, the friction term increases (being proportional to the velocity of the ball). At a certain time
this equates the external force and the ball undergoes a uniform motion with constant speed.

22



1.6. The dynamics of inflation and the slow-roll approximation

We can now use them to translate the conditions (1.72) into two conditions for the potential of
the inflaton field. Let us first define the so-called potential slow-roll parameters:

εV ≡
M2
Pl

2

(
V ′

V

)2

' 1

2

φ̇2
0

H2M2
Pl

, (1.75)

ηV ≡M2
Pl

V ′′

V
' − φ̈0

φ̇0H
+

1

2

φ̇2
0

M2
PlH

2
. (1.76)

The slow-roll conditions can now be written as

εV � 1, |ηV | � 1. (1.77)

At leading order in the slow-roll parameters, εV and ηV can be considered constant, since

ε̇V
H

= O(ε2V , η
2
V ),

η̇V
H

= O(ε2V , η
2
V ). (1.78)

We can also introduce another set of slow-roll parameters, which are not directly related to
the shape of the potential, but rather to the dynamics of the scale factor:

ε ≡ − Ḣ

H2
=

φ̇2
0

2H2M2
Pl

, (1.79)

η ≡ ε̇

εH
= 2ε+ 2

φ̈0

Hφ̇0

. (1.80)

These are called Hubble slow-roll parameters. The condition ε � 1 requires the energy driving
inflation to be dominated by the potential, exactly as the first of (1.77). The condition |η| � 1
requires that

φ̈0

Hφ̇0

= −ε+
η

2
� 1, (1.81)

namely tells us, analogously to the second condition of (1.77), that the (background) evolution
of the inflaton is determined by the attractor solution (1.74).

When the slow-roll conditions (1.77) are satisfied, the relations between the two sets of
slow-roll parameters are

ε = εV + O
(
ε2V , η

2
V

)
, η = 4εV − 2ηV + O

(
ε2V , η

2
V

)
. (1.82)

The conditions defined through the Hubble slow-roll parameters ε and η are more general than
the ones defined through εV and ηV . Indeed in some cases, while the first ones are still necessary
to ensure a prolonged enough inflationary phase, the other ones are not satisfied anymore. To
give an example, the shape of the potential can be steeper, therefore not satisfying the first of
(1.72), or the inflationary energy can be dominated by the kinetic energy, rather than by the
potential.

Notice that ε can also be regarded as a parameter that characterizes the departure from an
exact de Sitter phase, in which H is constant and therefore ε = 0. In particular

ä = (aH)· = a(H2 + Ḣ) = aH2(1− ε). (1.83)

Therefore an accelerated expansion, for which ä > 0, requires ε < 1. Inflation ends when ε ∼ 1,
namely when the inflaton begins to “feel” the potential well.
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1.7. Single field slow-roll models of inflation

1.7 Single field slow-roll models of inflation

Inflationary models are defined by specifying the action for the inflaton field. If one assumes a
canonical kinetic term (as it is the case for slow-roll models), X ≡ −1

2g
µν∂µφ∂νφ, and a minimal

coupling to gravity, the dynamics of inflation is then fully specified by the potential V (φ).

1.7.1 Large-field and small-field models

Single field slow-roll models are tipically divided in two different classes, depending on the
excursion of the scalar field during inflation:

1. Large-field models: these are characterized by an excursion of the inflaton field greater
than the Planck mass, ∆φ > MPl.

2. Small-field models: these are instead characterized by a field excursion lower than the
Planck mass, ∆φ < MPl.

As we will see later on, the fact of having a field excursion greater or lower than MPl has both
theoretical and phenomenological fundamental consequences. We now want to better clarify
what we mean by the field excursion ∆φ and provide some examples of models which fall into
both the two classes.

Large-field models

A tipical example of large-field model is provided by Chaotic Inflation, which is described by a
potential for the scalar field with a single polynomial term:

V (φ) = λp

(
φ

µ

)p
, with p > 0, µ < MPl. (1.84)

The scale µ is the relevant scale for the higher-dimensional terms in this effective potential,
and corresponds to the mass of heavy states which have been integrated out. See [35] for a
discussion of this point and to see why one needs to require the condition µ < MPl. To obtain a
small amplitude of density perturbations (consistently with the CMB observations) one needs to
require that λp � 1. This implies that the potential energy density is sub-Planckian, V �M4

Pl.

Figure 1.13: Large-field inflation (from [30]).

We can now compute the slow-roll parameters for this potential. These are given by

εV ≡
M2
Pl

2

(
V ′

V

)2

=
p2

2

(
MPl

φ

)2

, (1.85)

24



1.7. Single field slow-roll models of inflation

ηV ≡M2
Pl

(
V ′′

V

)
= p(p− 1)

(
MPl

φ

)2

. (1.86)

It is clear that, in order to have the slow-roll conditions satisfied, εV � 1 and |ηV | � 1, we must
require that

φ�MPl. (1.87)

Thus, to ensure a prolonged enough phase of inflation, the value of the inflaton field has to be
greater than the Planck mass.

It is also interesting to consider the field excursion during inflation. The excursion of the
field between two generic instants of time t1 and t2 is given by

∆φ =

∫ t2

t1

φ̇ dt. (1.88)

By taking H and φ̇ to be constant as a first approximation, this can be rewritten as

∆φ ≈ φ̇

H

∫ t2

t1

H dt ≈ ε1/2V MPlN1,2, (1.89)

where

N1,2 =

∫ t2

t1

H dt (1.90)

is the number of e-folds between the times t1 and t2. In particular, we are interested in the
value of ∆φ referring to the so-called “observable window”: this is the variation of φ between
the time instant when the present cosmological horizon (i.e., our observable Universe) went
above the horizon during inflation, and the time at which inflation ended. In other words, this
corresponds to the maximum cosmological scale observable through the CMB.

Figure 1.14: The “observable window”.

Large-field models tipically produce εV ∼ 1
NCMB

. From Eq. (1.89), this impies that

∆φ &MPl. (1.91)

This is why this model falls into the class of large-field models.
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Small-field models

A typical small-field potential has the following form

V (φ) = V0

[
1−

(
φ

µ

)p
+ . . .

]
, with φ < µ�MPl, p > 2. (1.92)

This is shown in Fig. 1.15. The requirement of having p > 2 is necessary to have a small-field
model; indeed, in the case p = 2 one recovers a large-field model. This is the prototype of a
potential arising from a spontaneous symmetry breaking. The dots represent higher-order terms
that become important at the end of inflation.

Figure 1.15: Small-field inflation (from [30]).

The slow-roll parameters in this case are given by

εV =
1

2
p2

(
MPl

φ

)2(φ
µ

)2p [
1−

(
φ

µ

)p]−2

, (1.93)

ηV = −p(p− 1)

(
MPl

φ

)2(φ
µ

)p [
1−

(
φ

µ

)p]−1

. (1.94)

For p > 2, if φ < µ � MPl the slow-roll conditions are satisified. Thus, the inflaton field
has sub-Planckian values and can assume also very small values. Notice that, for φ → 0, also
εV → 0. This means that, if the value of the inflaton field is sufficiently close to zero, also the
slow-roll parameter εV is very small. From (1.89), it follows that ∆φ → 0. More in general we
have ∆φ�MPl, which characterizes small-field models.

1.7.2 Hybrid models

There is also a third class of inflationary models. These are called Hybrid models, since they
share some features with both large and small-field models. Hybrid models are embedded in
high energy physics frameworks like supersymmetry and supegravity, and in the simplest version
are described by potentials with two fields, φ and ψ. A common example is given by

V (φ, ψ) =
1

2
m2φ2 +

λ

4
(ψ2 −M2)2 +

λ′

2
φ2ψ2. (1.95)
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Figure 1.16: Hybrid inflation (from [36]).

We have a large-field potential for the field φ and a small-field potential for the field ψ. During
the inflationary phase φ assumes large values and the minimum of the potential is for ψ = 0.
Thus, the field ψ is initially trapped at ψ = 0 (i.e., it is not dynamical) by the interactions with
φ, while the latter rolls in the false vacuum along the valley ψ = 0. During this phase therefore
we have a single field model with an effective (cahotic-like) potential for φ, given by

Veff(φ) ≡ V (φ, ψ = 0) =
1

2
m2φ2 +

λ

4
M4, (1.96)

where

V0 ≡
λ

4
M4 (1.97)

is the vacuum energy during inflation, which is provided by the field ψ. When the field φ reaches
the critical value14

φ = φc ≡
λ

λ′
M, (1.99)

then ψ = 0 becomes unstable and the fields roll towards one of the true minima of the system,
φ = 0 and ψ = ±M . The oscillations around the true minimum give rise to reheating.

These models are an hybrid between large-field and small-field models also because the field φ
starts from a high value, which is typical of large-field models, but then goes towards a minimum
of the potential where φ 6= 0, as occurs in small-field models (see again Fig. 1.15).

1.8 Reheating

The reheating phase represents the transition between inflation and the standard radiation-
dominated era. The discussion follows [37]. At the end of inflation the Universe is in a low-
entropy state with few degrees of freedom, very much unlike the Universe we see. We need then
to explain how the transition between the two phases might arise. Here the reheating phase
comes into play: when the inflaton reaches the minimum of the potential, it starts oscillating
and acquires a mass; then it decays into ultra-relativistic particles, producing entropy and hence
reheating the Universe.

14This can be simply obtained by

∂2V (φ, ψ)

∂ψ2

∣∣∣
ψ=0,φ=φc

= λ′φ2
c − λM2 = 0 ⇒ φc =

λ

λ′
M. (1.98)
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During the ocillations regime we have V ′′ � H2, and the inflaton evolves rapidly on the
expansion time scale. Once it reaches the minimum of the potential (φ = σ), it begins to
oscillate with a frequency ω2 = V ′′(σ). The equation describing the dynamics of the inflaton is

φ̈+ 3Hφ̇+ Γφφ̇ = −V ′(φ), (1.100)

where Γφ is the decay rate of φ into the other particles to which it couples, and represents an
additional damping term besides the one due to the expansion of the Universe. For simplicity of
notation we have neglected the subscript 0 to denote the background value of the inflaton field.
Since ρφ = 1

2 φ̇
2 + V (φ), Eq. (1.100) can be rewritten as

ρ̇φ + (3H + Γφ) φ̇2 = 0. (1.101)

As φ is rapidly oscillating around σ, φ̇2 can be replaced by its average over a period of oscillation:

φ̇2 → 〈φ̇2〉period = 2〈V 〉period = ρφ. (1.102)

Notice that this implies that 〈Pφ〉 = 〈φ̇2/2 − V (φ)〉 = 0, which means that, while oscillating
around the minimum, the inflaton behaves like non-relativistic matter. With the substitution
(1.102), Eq. (1.101) becomes

ρ̇φ + 3Hρφ = −Γφρφ. (1.103)

As expected from what just said, this is the equation describing the decay of a massive particle
species; if we neglect Γφ, it is exactly the continuity equation for non-relativistic matter. As-
suming that the decay products of φ are relativistic particles, the equations we need to describe
the reheating process are 

ρ̇φ + 3Hρφ = −Γφρφ,

ρ̇r + 4Hρr = +Γφρφ,

H2 = 8
3πG (ρφ + ρr) .

(1.104)

The solution of the equation for ρφ is

ρφ = M4

(
a

aosc

)−3

e−Γφ(t−tosc), (1.105)

where tosc labels the epoch when the oscillations begin and ρφ (tosc) = M4 is the vacuum energy
of the inflaton at that time. If we assume that from tosc to tdec ' Γ−1

φ the Universe is dominated

by non relativistic particles (a(t) ∝ t2/3), then H = 2
3t and we have{

tosc ' H−1
inf

H2
inf '

8
3

π
M2
Pl
V = 8

3
π

M2
Pl
V

⇒ tosc '
√

3

8π

MPl

M2
. (1.106)

By using these relations together with (1.105), the equation for ρR becomes

ρ̇r +
8

3

ρr
t

=
3

8π
ΓφM

2
Pl

1

t2
. (1.107)

The solution, with the initial condition ρr (tosc) = 0, is given by

ρr '
0.6√
π

ΓφMPlM
2

(
a

aosc

)−3/2
[

1−
(

a

aosc

)−5/2
]
. (1.108)

Thus ρr rapidly increases until a = aosc and reaches a maximum value of

ρmaxr ' ΓφMPlM
2. (1.109)
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Then it decreases as a−3/2 due to the expansion of the Universe, even though radiation gets
still created. Assuming that the radiation has yet thermalized, such that ρR = π2

30 g∗T
4, the

maximum temperature corresponding to (1.109) is given by

Tmax ' g−1/4
∗ M1/2 (ΓφMPl)

1/4 . (1.110)

Regarding the entropy, we have

s ∝ T 3 ∝ ρ3/4
r ⇒ S ∝ a3ρ3/4

r ∝ a15/8, (1.111)

where s is the entropy density and S the entropy, with S = a3s. Notice that, even though ρr is
decreasing, the entropy increases because the scalar field, while decaying, produces radiation.

Figure 1.17: Evolution of ρφ, ρr and S. Here a ≡ R (from [37]).

At the end of reheating, and then at the beginning of the radiation-dominated phase, the

temperature of the Universe is given by Trh = T
(
tdec = Γ−1

φ

)
. In order to find it, we make

a match with the radiation dominated phase, in which a(t) ∝ a1/2:

H2 =
1

4t2

∣∣∣
tdec

=
8

3

π

M2
Pl

ρr

∣∣∣
tdec

=
8

3

π

M2
Pl

g∗T
4
∣∣∣
tdec

. (1.112)

Since tdec = Γ−1
φ , we find

Trh ' 0.55 g
−1/4
∗ (ΓφMPl)

1/2 . (1.113)

Notice that Trh is determined by the decay rate Γφ of the inflaton field into the other particles
to which it couples, hence this mechanism depends on the specific model of particle physics
we adopt. This means also that the reheating temperature is not simply equal to the vacuum
energy the inflaton field has during inflation, but it depends on the efficiency with which it
decays into radiation; during the oscillations, indeed, much of the initial vacuum energy gets
red-shifted. Only if the inflaton decays as soon as inflation ends (Γφ � Hinf ), then the reheating
temperature is given by the vacuum energy of the inflaton field (Trh ∼M).

1.9 Cosmic no-hair “theorem”

We have seen that inflation is an attractive theory because it allows us to explain the current
state of the Universe without assuming any special, fine-tuned initial condition. But is it really
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1.9. Cosmic no-hair “theorem”

true that, starting from the most general initial conditions (e.g. with curvature and anisotropies),
the Universe tends towards an attractor solution and thus towards a FLRW metric? Indeed, it
is not obvious that cosmological models with non-FLRW initial conditions will even enter an
inflationary epoch; if this is the case, it is then also not obvious that the initial inhomogeneities
and anisotropies would be smoothed out. A complete proof of this fact, which is known as
cosmic no-hair theorem, does not exist, so we will consider a specifc example to show that this
idea is well motivated [37].

Let us consider a homogeneous but not isotropic Universe. These are known as Bianchi
models, where the metric has the form

ds2 = −dt2 + a2
1(t)dx2 + a2

2(t)dy2 + a3(t)2dz2. (1.114)

The scale factor is different along the three axes, which thus expand at different rates. One can
show that [37]

H̄2 ≡
(

˙̄a

ā

)2

=
8πG

3
ρ+ F (a1, a2, a3), (1.115)

where
ā ≡ (a1a2a3)1/3 (1.116)

is the mean scale factor, H̄ is the mean Hubble parameter and ρ is the total energy density, which
includes the scalar field φ and any other component present, like radiation and matter. The
function F accounts for the anisotropic expansion on the mean expansion rate. Its functional
form depends on the specific model and can be very complicated. However it has the crucial
property that for all the Bianchi models it decreases at least as ā−2. Once inflation starts, this
term gets exponentially suppressed, at most as F ∝ e−2Ht for H ' const. Thus the anisotropies
are smoothed out, like the curvature term, ρk ∝ e−2Ht, and the other contributions to the
energy density, ρm ∝ e−3Ht and ρr ∝ e−4Ht. This means that, if inflation starts, the only
component that gets not diluted after a while is the scalar field, which becomes the dominant
contribution to the energy density of the Universe. Therefore, starting with anisotropies in the
initial conditions, the Universe gets attracted towards an inflationary phase.

To demonstrate that this is still true in more general cases, one can start by exploiting the
so-called Wald theorem [38]: this tells us that, in the case of a Universe dominated by an exact
cosmological constant ρφ = Λ, the Universe rapidly reaches a homogeneous and isotropic state
with a de Sitter expansion. This is valid with the only exception of the Bianchi IX model, where
the Universe recollapses so rapidly that the vacuum energy has no enough time to become the
dominant component. One can then try to extend this to the case of a dynamcal (slowly-rolling)
scalar field. The question now is: does the Universe evolve into a (quasi) de Sitter state before
the scalar field reaches the minimum of its potential? Indeed, strong anisotropies could in
principle push the field rapidly towards the potential well. This is not what happens, rather the
field keeps on slowly-rolling. This occurs because the anisotropies lead to an increased expansion
rate and thus have the effect of increasing the friction term (3Hφ̇) in the equation of motion for
the scalar field. This ensures that the scalar field moves little during the time required for the
vacuum energy to become dominant, and consequently that the vacuum energy provided by the
scalar field during the slow-roll does not “disappear” before the Universe begins to inflate.

Analogous results are still valid if one starts even from more general initial conditons, like
negatively curved models with inhomogeneities [39], or models with inhomogeneous spacetimes
where the metric allows four compltely arbitrary functions of space and time to be specified [40].

To summarize, we have seen that many spacetimes with different initial conditions (of
anisotropies, inhomogeneities and curvature) will eventually inflate. This is an important fea-
ture, since we have introduced inflation to solve problems of fine-tuned initial conditions of the
standard FLRW model, hence it is a good feature that inflation does not require particular
conditions to begin.
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1.10 Towards the primordial perturbations from inflation

We have seen that inflation was initially introduced to solve the shortcomings of the standard
model of cosmology. Soon enough it became clear that an inflationary phase can do more than
that. Indeed the most important feature of inflation, which makes it a predictive theory, is that
it naturally provides a mechanism to generate the first primordial perturbations, which are the
seeds for the following formation of the large scale structures and which can be observed through
the temperature anisotropies in the CMB15 (see Fig. 1.18). These are an immediate consequence
of introducing quantum mechanics into the game. Indeed, the quantum fluctuations of the infla-
ton field are stretched outside the horizon by the exponential expansion (remember that during
inflation the comoving Hubble radius decreases) and hence the amplitude of the fluctuations
is “frozen” at a non-zero value, since no causal process can act anymore. These fluctuations
of the scalar field induce fluctuations in the energy density and hence in the curvature, which,
after the fluctuations reenter the horizon during the radiation or matter era (when the Hubble
radius increases faster than the scale factor), give rise to matter and temperature perturbations
through the Poisson equation.

Moreover, inflation also predicts the production (in a similar manner as for scalar perturba-
tions) of a stochastic background of gravitational waves. This is the “smoking gun” of inflation,
in a sense which will be clarified in the next chapters.

Figure 1.18: CMB map from Planck (from [41]).

15Note that when it was realized that inflation could source primordial perturbations, the CMB anisotropies
were not yet observed.
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Chapter 2

Cosmological perturbation theory

Until now we have described the properties and the dynamics of a spatially homogeneous and
isotropic Universe. Of course, this can not be the entire story. If we look around us we can see a
Universe which is neither homogeneous nor isotropic. A great complexity of different structures,
from planets and stars to galaxies and galaxy clusters, appears to us. If we want to understand
how these structures form and evolve we have to introduce some inhomogeneities on top of our
homogeneous and isotropic description of the Universe.

As we have seen, the theoretical framework of cosmology is strongly based on General Rel-
ativity (GR). It is well known that the Einstein’s field equations are really difficult to solve
because of their non-linearity, and the solutions are often based on too idealized assumptions
to represent in a proper way the physical phenomena. A fundamental method in GR to go
beyond the zero-order background solution is provided by the perturbative approach. The idea
underlying perturbation theory in GR is the same as in any perturbative approach: we try to
find approximate solutions of the field equations, treating them as “small” deviations from a
known exact background solution. In our case the background solution is given by the FLRW
metric. However, there is a fundamental difference between the perturbations in GR and the
perturbations in other field theories, where the underlying spacetime is fixed. In the latter case
one can define the perturbation of a given tensor field T as

∆T (x) = T (x)− T0(x), (2.1)

where T0 is the unperturbed field and x is any point in spacetime. In GR spacetime must also
be perturbed if matter is perturbed. In the context of inflation, for example, any perturbation
in the inflaton field translates into a perturbation in the stress-energy tensor which then implies,
through Einstein’s equations, a perturbation in the metric tensor. Moreover, the perturbations
in the metric enter the perturbed Klein-Gordon equation, thus affecting the evolution of the
inflaton fluctuations. Hence, the perturbations in the inflaton field and the perturbations in the
metric are tightly coupled and must be studied together. As a consequence, the unperturbed
field T0 and the perturbed field T are defined in different spacetimes, the background spacetime
M0 and the perturbed spacetime M. In order to compare the two fields we need a prescription to
identify points of M0 with points of M: this is a gauge choice, which is mathematically provided
by any diffeomorphism between the two spacetimes. A change of this diffeomorphism is what
is called a gauge transformation. Since GR is invariant under diffeomorphisms, that is, two
solutions of the Einstein’s field equations are physically equivalent if they are diffeomorphic to
each other, the definition of perturbations is in general gauge dependent (unless the tensor T is
gauge-invariant, as we will see). This is an extremely important issue, since it is possible that
some of the perturbations in a given quantity are not real physical perturbations, but rather
are gauge artefacts which can be removed by applying a gauge transformation. Likewise, it is
possible that a real perturbation in some physical quantity does not appear in a certain gauge.

32



2.1. Some basics of differential geometry

There are two approaches to face this problem: the first possibility is to fix a gauge from the
beginning and then perform all the calculations in this gauge; alternatively, one can work with
gauge invariant quantities. In the rest of this thesis we will follow the first approach.

Figure 2.1: Two different “gauge maps” between the background and the perturbed spacetime.

2.1 Some basics of differential geometry

To give a more formal and geometrical description of the gauge transformations, we start by
recalling some basic definitions of differential geometry. In our discussion in the next sections
we mainly follow [42]. Let us consider a diffeomorphism ϕ : M → N between two manifolds M

and N. For each p ∈M, ϕ naturally induces a map between the tangent space to M at the point
p and the tangent space to N at the point ϕ(p). This is called the push-forward:

ϕ∗|p : TpM→ Tϕ(p)N. (2.2)

Analogously, ϕ can also be used to define a map between the cotangent spaces, the so-called
pull-back:

ϕ∗|ϕ(p) : T ∗ϕ(p)N→ T ∗pM. (2.3)

We can extend the previous definitions to tensors of higher rank. For example, the action of the
pull-back and of the push-forward respectively on a (0, l) tensor W on N, and on a (k, 0) tensor
S on M, is given by (see [43])

(ϕ∗W )(V (1), ..., V (l)) = W (ϕ∗V
(1), ..., ϕ∗V

(l)), (2.4)

(ϕ∗S)(ω(1), ..., ω(k)) = S(ϕ∗ω(1), ..., ϕ∗ω(k)), (2.5)

where the V (i)’s are vectors on M and the ω(i)’s are one-forms on N. Since ϕ is a diffeomorphism,
we can also use ϕ−1 to define the push-forward of T ∗pM to T ∗ϕ(p)N, and the pull-back of Tϕ(p)N

to TpM. Thus, we can pull-back and push-forward tensors of arbitrary type. For example, the
push-forward of a (k, l) tensor on M is defined by

(ϕ∗T )(ω(1), ..., ω(k), V (1), ..., V (l)) = T (ϕ∗ω(1), ..., ϕ∗ω(k), [ϕ−1]∗V
(1), ..., [ϕ−1]∗V

(l)), (2.6)

where the V (i)’s and the ω(i)’s are respectively vectors and one-forms on N. We can then extend
the above definitions to tensor fields by requiring that, ∀p ∈M,

(ϕ∗T )(ϕ(p)) := ϕ∗|p(T (p)), (2.7)

(ϕ∗T )(p) := ϕ∗|ϕ(p)(T (ϕ(p))). (2.8)
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2.2. Gauge transformations

Let us consider a vector field ξ on M, which generates a flow φ : R×M→M, with φ(0, p) = p,
∀p ∈M. For any λ ∈ R, we define φλ(p) := φ(λ, p), ∀p ∈M. Intuitively, we start from the point
p and move along the integral curve of ξ for a value of the parameter which parametrizes the
integral curves equal to λ. The pull-back of the tensor field T by φλ, which is a function of λ,
can be expanded in the following way around λ = 0 (see [42] for the proof):

φ∗λT =
+∞∑
k=0

λk

k!

dk

dλk

∣∣∣
0
φ∗λT =

+∞∑
k=0

λk

k!
£k
ξT, (2.9)

where

£ξT := lim
λ→0

1

λ
(φ∗λT − T ) =

d

dλ

∣∣∣
0
φ∗λT (2.10)

is the Lie derivative of T with respect to ξ, which characterizes the variation of T along the
integral curves of ξ. Notice that φλ forms a one-parameter group, i.e. it satisfies φ−λ = φλ

−1

and φλ+σ = φλ ◦ φσ. The first condition just tells us that moving for a value equal to −λ along
an integral curve of ξ is equal to “moving back” by λ; the second condition tells us that moving
a first time by λ and then moving a second time by σ is equal to moving once by λ+ σ.

The Lie derivative of a tensor field T of rank (k, l) can be written as

£ξT
µ1···µk

ν1···νl = ξσ∇σTµ1···µk
ν1···νl+

− (∇αξµ1)Tα···µkν1···νl − . . .− (∇αξµk)Tµ1···α
ν1···νl+

+ (∇ν1ξ
α)Tµ1···µk

α···νl + . . .+ (∇νlξ
α)Tµ1···µk

ν1···α.

(2.11)

2.2 Gauge transformations

A basic assumption in perturbation theory is the existence of a parametric family of solutions
of the field equations, to which the background spacetime belongs. Thus, let us consider a one-
parameter family of spacetimes {(M, gλ, τλ)}, where M is a m-dimensional manifold, while the
metric gλ and the matter fields τλ satisfy the field equations

ε [gλ, τλ] ≡ R(λ)
µν −

1

2
R(λ)g(λ)

µν − 8πGT (λ)
µν = 0, (2.12)

with λ ∈ R. The case with λ = 0 corresponds to the background solution, and we assume that gλ
and τλ depend smoothly on the parameter λ, so that the latter can be regarded as a measure of
how much a particular solution Mλ ≡ (M, gλ, τλ) differs from the background M0 ≡ (M, g0, τ0).

In order to describe more naturally this situation, let us introduce a (m + 1)-dimensional
manifold N, foliated by submanifolds diffeomorphic to M, such that N = M × R. Both the
background spacetme M0 and the perturbed spacetimes Mλ (∀λ ∈ R) are 4-dimensional sub-
manifolds of N. By how it is defined, N has the differentiable structure which is the product of
those of M and R. Hence, we can introduce charts such that xµ, with µ = 0, 1, ...,m − 1, are
coordinates on each leave Mλ, and xm ≡ λ. We then define xA ≡ (xµ, λ). If a tensor field Tλ is
defined on each Mλ, we can also naturally define a tensor field T on N through T (p, λ) := Tλ(p),
∀p ∈ M. This is in particular also true for gλ and τλ, which are then defined on N. Also the
field equations (2.12), which are satisfied on each Mλ, are then extended to N.

We now come back to the issue of defining the perturbation of a generic tensor field T . As
we have said in the introduction, we need a prescription for identifying points of Mλ with points
of M0. To do so, let us introduce a diffeomorphism ϕλ : N→ N, such that

ϕλ|M0 : M0 →Mλ. (2.13)

We can also see ϕλ as the member of a flow ϕ on N, generated by some vector field X. The
points which lie on the same integral curve γ of X can be regarded as the same point.
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2.2. Gauge transformations

Figure 2.2: A vector field X generates a gauge map between M0 and Mλ.

From now on, we will refer also to such a vector field with the term “gauge”.
Now we have all the ingredients to define the perturbation of the tensor T as

∆Tλ ≡ ϕ∗λT |M0 − T0. (2.14)

Notice that ∆Tλ is defined in the background spacectime M0; this is what one refers to, when
saying that “perturbations are fields which live in the background”. We can make a Taylor
expansion (around λ = 0) of the first term on the rhs of (2.14), as in Eq. (2.9):

ϕ∗λT |M0 =

+∞∑
k=0

λk

k!

dk(ϕ∗λT )

dλk

∣∣∣
λ=0,M=0

. (2.15)

Plugging this in Eq. (2.14), we find

∆Tλ =

+∞∑
k=1

λk

k!

dk(ϕ∗λT )

dλk

∣∣∣
λ=0,M=0

. (2.16)

Since our main goal is to see how a generic tensor T transforms under a gauge transformation,
let us introduce another vector field Y , which generates a different gauge ψ. We can now use
both the fields X and Y to pull-back T and to define, on M0,

TXλ ≡ ϕ∗λT |0, T Yλ ≡ ψ∗λT |0, (2.17)

where with the suffix 0 we refer to the restriction to M0. These are the representations of the
perturbed tensor on M0 according to the two different gauges, ϕ and ψ respectively. Using
(2.15), we can rewrite them as

TXλ =

+∞∑
k=0

λk

k!

dk(ϕ∗λT )

dλk

∣∣∣
0

=

+∞∑
k=0

λk

k!
£k
X(T )|0, (2.18)

T Yλ =

+∞∑
k=0

λk

k!

dk(ψ∗λT )

dλk

∣∣∣
0

=
+∞∑
k=0

λk

k!
£k
Y (T )|0. (2.19)

If TXλ = T Yλ for any pair of gauges X and Y , then T is said to be totally gauge-invariant. From
(2.18) and (2.19), this implies that δTX = δT Y , so it is a very strong condition. Considering
perturbations to a fixed order n, one can weaken the previous definition, saying that T is
gauge-invariant to order n if and only if (iff) δkTX = δkT Y , for any two gauges X and Y , and
∀k ≤ n. Then, one can show (see [42]) that T is gauge-invariant to order n ≥ 1 iff £ξδ

kT = 0,
for any vector field ξ on M, and ∀k < n.
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2.2. Gauge transformations

If T is not gauge-invariant, we want to know how its representation on the background
spacetime M0 behaves under a gauge transformation. To this end notice that, correspondingly
to the two gauges X and Y , there are two different points in M0, P and Q, which are mapped
to the same point O in Mλ (see Fig. 2.3). Thus, the gauge transformation can also be seen
as one-to-one correspondence between different points in the background manifold. This is the
so-called active view. We then define, ∀λ ∈ R, the diffeomorphism Φλ : M0 →M0 as

Φλ := ϕ−λ ◦ ψλ, (2.20)

whose action is represented in Fig. 2.3.

Figure 2.3: The action of the gauge transformations Φλ.

Notice that Φλ is not a one-parameter group of diffeomorphisms on M0, even though ϕλ and ψλ
are so. This is due to the fact that Φλ 6= Φλ

−1 and Φλ+σ 6= Φλ ◦ Φσ, basically because X and
Y in general don’t commute.

The relation between TXλ and T Yλ is now easy to find:

T Yλ = ψ∗λT |0 = (ψ∗λφ
∗
−λφ

∗
λ)T |0 = Φ∗λ(φ∗λ)T |0 = Φ∗λT

X
λ . (2.21)

Therefore, the representation of the perturbed tensor T on M0 through the gauge ψ is given by
the representation of T through the gauge ϕ, pulled-back (to the point P ) by Φ. Expanding the
above equation (to third order), one finds [42]

T Yλ = TXλ + λ£ξ1T
X
λ +

λ2

2
(λ2
ξ1 + £ξ2)TXλ +

λ3

3!
(£3

ξ(1) + 3£ξ(1)£ξ(2) + £ξ(3))T
X
λ + O(λ4), (2.22)

where ξ1 and ξ2 are the first two generators of the gauge transformation. Finally, given the
tensor T , we can write the relation between the first, second, and third order perturbations in
the two different gauges:

δT Y − δTX = £ξ1T0, (2.23)

δ2T Y − δ2TX = (£ξ2 + £2
ξ1) + 2£ξ1δT

X , (2.24)

δ3T Y − δ3TX = (£3
ξ(1) + 3£ξ(1)£ξ(2) + £ξ(3))T0 + 3(£ξ(2) + £2

ξ(1))δT + 3£ξ(1)δ
2TX . (2.25)

Before proceeding to study the perturbations of the metric and of the stress-energy tensor,
we want to stress an important point: gauge transformations are not the same as coordinate
transformations! We have seen that a gauge is a map between the background and the perturbed
spacetime, M0 and M respectively. This assigns the coordinates of a point P in M0 to a point
Q in M; when we make a gauge transformation we assign the coordinates of the point P to
a different point Q′ in M (namely we change the coordinates on M), but the coordinates of

36



2.3. Perturbations of the metric tensor

the background spacetime are kept fixed. A coordinate transformation affects instead both the
background and the perturbed spacetime. Thus, fixing a gauge induces a coordinates fixing
(only) in the perturbed spacetime. A coordinate choice in GR defines:

� a threading of the spacetime into lines, corresponding to fixed spatial coordinates;

� a slicing of the spacetime into spatial hypersurfaces at τ = const.

Figure 2.4: Slicing and threading of the spacetime.

In un unperturbed spacetime there is a unique “preferred” threading and slicing. The preferred
threading consists in the worldlines of comoving observers, which move with the cosmic fluid.
These are geodesics and correspond to a uniform expansion with no shear and vorticity. The
preferred slicing is orthogonal to this threading. Within it, all the quantities like the energy
density and the spatial curvature are homogeneous. In particular the latter is assumed to vanish,
in accordance with the observations. We can thus say that the preferred slicing is comoving (i.e.,
orthogonal to the worldlines of comoving observers), flat and with uniform energy density.

In a perturbed spacetime there is instead no preferred slicing and threading. Fixing a gauge
means fixing the slicing and threading of the perturbed spacetime.

2.3 Perturbations of the metric tensor

The components of a perturbed spatially flat FLRW metric can be written as

g00 = −a2(τ)

(
1 + 2

∞∑
r=1

1

r!
Ψ(r)

)
, (2.26)

g0i = a2(τ)

∞∑
r=1

1

r!
ω

(r)
i , (2.27)

gij = a2(τ)

[(
1− 2

∞∑
r=1

1

r!
Φ(r)

)
δij +

∞∑
r=1

1

r!
h

(r)
ij

]
, (2.28)

where Ψ(r), ω
(r)
i , Φ(r) and h

(r)
ij are the rth-order perturbations of the metric, with h

(r)
ij being

traceless, i.e. h
(r)i
i = 0.
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2.3. Perturbations of the metric tensor

We can further decompose the perturbations in the so-called scalar (or longitudinal), vector

(solenoidal), and tensor parts, which are decoupled at linear order. Thus, the shift vector ω
(r)
i

can be decomposed as

ω
(r)
i = ∂iω

(r)‖ + ω⊥i , (2.29)

with ∂iω⊥i = 0. Analogously, the traceless part of the spatial metric can be decomposed as

h
(r)
ij = Dijh

(r)‖ + ∂ih
(r)⊥
j + ∂jh

(r)⊥
i + h

(r)T
ij , (2.30)

where

Dij := ∂i∂j −
1

3
δij∇2 (2.31)

is a trace-free operator, h(r) and h
(r)
i are respectively the scalar and vector part, and h

(r)T
ij is

the tensor part, which is symmetric, transverse and traceless:

∂ih
(r)T
ij = 0, h

(r)i T
i = 0. (2.32)

As we have seen, at linear order a gauge transformation is determined by a vector field ξ1.
Its time and space components can also be decomposed in scalar and vector parts as

ξ0
1 = α, ξi1 = ∂iβ1 + di1, (2.33)

with ∂id
i = 0. Therefore fixing a gauge is equivalent to fixing two scalar and one vector

perturbations. Moreover, since ξ does not contain any tensor component, it is clear that at
linear order in perturbation theory tensor perturbations are gauge-invariant.

The transverse, traceless tensor perturbations h
(r)T
ij are the gravitational waves, which carry

two degrees of freedom. Indeed, h
(r)T
ij has in principle six components, being symmetric; however,

the conditions (2.32) reduce the d.o.f. by four, leaving us with only two.

From Eq. (2.23) it follows that, at linear order, the perturbations of the metric tensor
transform under a gauge transformation as

δg̃µν = δgµν + £ξ1g
(0)
µν , (2.34)

where g
(0)
µν is the background FLRW metric. Using Eq. (2.11), it is easy to find that the

quantities appearing in Eqs. (2.26)-(2.28) transform as

Ψ̃ = Ψ + α′ +
a′

a
α, (2.35)

ω̃i = ωi − ∂iα+ ∂iβ
′ + d′i, (2.36)

Φ̃ = Φ− 1

3
∇2β − a′

a
α, (2.37)

h̃ij = hij + 2Dijβ + ∂jdi + ∂idj . (2.38)

where the prime denotes a derivative with respect to the conformal time and, for simplicity
of notation, we have neglected the superscripts denoting the first order perturbation of the
corresponding quantity.
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2.4. Perturbations of the stress-energy tensor

2.4 Perturbations of the stress-energy tensor

The stress-energy tensor for a fluid can be written as

Tµν = (ρ+ p)uµuν + pgµν + Πµν , (2.39)

where ρ is the energy density, p the (isotropic) pressure, uµ the 4-velocity and Πµν is the
anisotropic stress tensor. The latter vanishes in the case of a perfect fluid or a minimally
coupled scalar field, and is subjected to the constraints uvΠµν = 0 = Πµ

µ.

Let us now perturb the energy density, the isotropic pressure and the velocity:

� As regarding the energy density, we have

ρ = ρ0 +
∞∑
r=1

1

r!
δρ(r), (2.40)

where ρ0 = ρ0(t) is the unpertrubed energy density in FLRW.

� Viewing the pressure as a function of the energy density and the entropy through the
equation of state, p = p(ρ, S), we can perturb it as

δp =
∂p

∂ρ

∣∣∣∣∣
S

δρ+
∂p

∂S

∣∣∣∣∣
ρ

δS = c2
sδρ+

∂p

∂S

∣∣∣∣∣
ρ

δS, (2.41)

where in the second equality we have introduced the sound speed

c2
s =

∂p

∂ρ

∣∣∣∣∣
S

. (2.42)

The first term in (2.41) represents an adiabatic perturbation, while the second term is an
entropy perturbation.

� The velocity can be perturbed as

uµ =
1

a

(
δµ0 +

∞∑
r=1

1

r!
vµ(r)

)
, (2.43)

where the first term

ūµ ≡ 1

a
δµ0 (2.44)

is the background velocity in FLRW, which represents a motion comoving with the cosmic
expansion. The second term in (2.43) is instead a peculiar velocity. Since the velocity
obeys the constraint uµu

µ = −1, we can relate at each perturbative order v0
(r) to the scalar

perturbation Ψ(r) in the 0-0 component of the metric tensor (2.26). At first order, we have

v0
(1) = −Ψ(1). (2.45)

The spatial part of the velocity perturbation, vi(r), can be split into a scalar and a vector
perturbation:

vi(r) = ∂iv
‖
(r) + vi(r)⊥, (2.46)

with ∂iv
i
(r)⊥ = 0.
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The components of the stress-energy tensor (2.39) can now be perturbed at first order as

T 0
0 = −(ρ0 + δρ), (2.47)

T ii = 3(p0 + δp) = 3p0(1 + ΠL), (2.48)

T i0 = −(ρ0 + p0)vi, (2.49)

T0
i = (ρ0 + p0)(vi − ωi), (2.50)

T ij = p [(1 + ΠL)δij + ΠT i
j ], (2.51)

where ΠL is the amplitude of an isotropic pressure perturbation and ΠT
ij is the tensor part of the

anisotropic stress tensor. We neglect the T superscript on the latter for simplicity of notation.

At linear level, δρ. δp, v0 and vi transform under a gauge transformation following (2.23).
We obtain

δ̃ρ = δρ+ αρ′0, (2.52)

δ̃p = δp− αp′0, (2.53)

ṽ0 = v0 − a′

a
α− α′, (2.54)

ṽi = vi − ∂iβ′ − di′. (2.55)

2.5 Some of the most commonly used gauges in cosmology

We now give a brief overview of the main gauges used in cosmology, working at linear order
in perturbation theory. As we have seen, fixing a gauge is equivalent to fix two scalar and one
vector perturbations.

2.5.1 Poisson gauge

The Poisson gauge is defined by requiring

ω‖ = 0, h‖ = 0, h⊥i = 0. (2.56)

This is an extension of the longitudinal gauge (or conformal Newtonian gauge), which is defined
by ω‖ = 0 = h‖ and is the gauge that in GR has the more direct link with analogous quantities
appearing in Newtonian physics. The Poisson gauge is also known as orthogonal zero-shear
gauge for the reason we are now going to eplain. Let us introduce a unit time-like vector field
orthogonal to τ = const hypersurfaces. Within this gauge, this can be written as

nµ =
1

a
(1−Ψ,−ωi). (2.57)

It is possible to decompose the covariant derivative of nµ as (see e.g. [43])

∇νnµ =
1

3
θPµν + σµν + ωµν − aµNν , (2.58)

where:

� Pµν is the projector on hypersurfaces perpendicular to nµ, defined as

Pµν ≡ gµν + nµnν . (2.59)
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2.5. Some of the most commonly used gauges in cosmology

� θ defines the local expansion rate of the fluid and is defined as

θ ≡ ∇µnµ. (2.60)

In FLRW the expansion θ is given by the Hubble parameter, θ = H(t).

� σµν is the shear tensor:

σµν ≡
1

2
Pµ

αPν
β(∇βnα +∇αnβ)− 1

3
θPµν . (2.61)

This is symmetric and traceless, and represents the distorsion in the shape of a collection of
test particles from an initial sphere into an ellipsoid. The symmetry property means that
the elongation along the x-direction is the same as the elongation along the -x-direction.
The tracelessness property means that the volume is not changed.

� ωµν is the vorticity tensor:

ωµν ≡
1

2
Pµ

αPν
β(∇βnα −∇αnβ). (2.62)

This is antisymmetric and represent rotations; for example, the xy component describes a
rotation around the z-axis, while the yx component describes a rotation still around the
z-axis, but in the opposite sense (as a reflection of the antisymmetry property).

� aµ is the “acceleration”, and it is given by

aµ ≡ nν∇νnµ. (2.63)

This is different from zero if the integral curves of nµ are not geodesics.

From the expression of nµ given in (2.57) it follows that ωµν = 0. As regarding the scalar
perturbations in the shear tensor, we have

σ0µ = 0, σij = ∂i∂jσ −
1

3
δij∇2σ, σ ≡ −ω‖ +

1

2
h‖′. (2.64)

From the conditions (2.56) it follows that in the Poisson gauge σ = 0. Thus the Poisson gauge
is characterized by the fact that the shear of nµ vanishes for scaar perturbations. This is why it
is also called orthogonal zero-shear gauge.

2.5.2 Synchronous gauge

The synchronous gauge is defined by
Ψ = 0. (2.65)

If we require also the condition
ω‖ = 0 = ω⊥i , (2.66)

we have the so-called synchronous and time-orthogonal gauge. This second statement means
that in this gauge the vector orthogonal to space-like hypersurfaces at τ = const has only a time
component:

nµ =
1

a
(1, 0). (2.67)

Let us now consider the proper time of obervers at fixed spatial coordinates. This is given by1

dτ =
[
a2(1 + 2Ψ)dη2

]1/2 ' a(1 + Ψ)dη , (2.68)

1In this case, just not to make confusion, we label with τ the proper time and with η the conformal time.
We will immediately come back to our usual conventions, where τ denotes the conformal time and η one of the
slow-roll parameters.
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where in the second equality we have expanded for small values of Ψ. From the defining condition
of the comoving gauge, Ψ = 0, it follows that all the observers at fixed spatial coordinates have
the same proper time

dτ = a(η)dη = dt, (2.69)

which corresponds to the comsic time in a FLRW Universe. The synchronous gauge is thus the
gauge in which all the commoving observers have a proper time which coincides with the cosmic
time, exacctly as it happens in the unperturbed FLRW case.

Notice that the synchronous gauge is not uniquely fixed, there is still the freedom of fixing
one further scalar and vector perturbations (as it is done in (2.66)).

2.5.3 Comoving gauge

This is defined by requiring that the velocity of the fluid vanishes:

vi = 0 ⇒ v‖ = 0 = vi⊥. (2.70)

This means that we are comoving with the cosmic fluid. If we also require that space-like
hypersurfaces are orthogonal to the 4-velocity of the fluid, this yields

v‖ + ω‖ = 0. (2.71)

Indeed, from
uµ = a [−(1 + Ψ), vi + ωi] , nµ = −a(1 + Ψ, 0), (2.72)

it follows that, of for the scalar part we impose the condition (2.71), we identify uµ with the
vector orthogonal to space-like hypersurfaces at τ = const, nµ. In this case we refer to this
gauge as orthogonal comoving gauge.

2.5.4 Spatially flat gauge

This is defined by the condition of selecting spatial hypersurfaces at τ = const where the induced
metric is left unperturbed by scalar and vector pertrubations:

Φ = 0, h‖ = 0, h⊥i = 0. (2.73)

It can be shown that the Ricci scalar on space-like hypersurfaces at τ = const is given by

(3)R =
6k

a2
+

12k

a2
Φ̂ +

4

a2
∇2Φ̂, Φ̂ ≡ Φ +

1

6
∇2h‖, (2.74)

where k is the spatial curvature parameter in FLRW. If k = 0 we are left with

(3)R =
4

a2
∇2Φ̂. (2.75)

Due to this last relation, Φ̂ is known as the curvature perturbation. By imposing the conditions
(2.73) we obtain Φ̂ = 0, namely we select a gauge where the curvature perturbation vanishes.
For this reason this is also called uniform curvature gauge.

2.5.5 Uniform energy density gauge

This is defined by
δρ = 0. (2.76)

This selects spatial hypersurfaces at τ = const where the energy density of the fluid is left
unperturbed. Analogously to the synchronous gauge, also the uniform energy density gauge
leaves the freedom of choosing one further scalar and vector perturbation.
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2.6 Gauge-invariant scalar perturbations

In this section we will introduce some fundamental quantities that will be used throughout the
course of this thesis to describe scalar perturbations. We have seen that the intrinsic spatial
curvature on hypersurfaces of constant conformal time is given (at linear order) by

(3)R =
4

a2
∇2Φ̂, Φ̂ ≡ Φ +

1

6
∇2h‖. (2.77)

The curvature perturbation Φ̂ is however not gauge-invariant, since under a gauge transformation
it transforms as

Φ̂→ ˜̂
Φ = Φ̂− a′

a
α, (2.78)

as can be seen using Eqs. (2.37) and (2.38). Therefore we need a gauge-invariant scalar quantity
that reduces to the curvature perturbation in some particular gauge. To this end, let us introduce
the so-called curvature perturbation on uniform energy-density hypersurfaces, which is defined
as

ζ ≡ −Φ̂−H
δρ

ρ′0
, (2.79)

where H ≡ a′/a. Geometrically, ζ can be thought of as a measurement of the spatial curvature
of constant energy density (δρ = 0) hypersurfaces, given Eq. (2.77). This is a gauge-invariant
quantity, indeed from (2.78) and (2.52) we have

ζ → ζ̃ = − ˜̂
Φ−H

δ̃ρ

ρ′0
= −Φ̂ + Hα−H

(
δρ

ρ′0
+ α

)
= ζ (2.80)

A second important quantity which we introduce is the so-called comoving curvature pertur-
bation, which is defined as

R ≡ Φ̂ +
H

φ′0
δφ. (2.81)

Geometrically, R is a measurement of the spatial curvature of comoving (δφ = 0) hypersurfaces.
This is related to ζ by [11]

− ζ = R +
2ρ

9(ρ0 + p0)

(
k

aH

)2

Ψ. (2.82)

From this relation we can see that on super-horizon scales, k � aH, the comoving curvature
pertubation and the curvature perturbation on uniform energy-density hypersurfaces are equal,
R ' −ζ.

Another important gauge-invariant quantity is the so-called Sasaki-Mukhanov gauge-invariant
variable, defined as

Q ≡ δφ+
φ′0
H

Φ̂. (2.83)

This represents the inflaton perturbations on spatially flat slices, since

Q|Φ̂=0 = δφ, (2.84)

and can be related to R by

Q =
φ′0
H

R. (2.85)
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2.6.1 The curvature perturbation on uniform energy-density hypersurfaces

As we have seen, ζ is a gauge-invariant quantity. In the uniform energy density gauge it takes
the form

ζ|δρ=0 = −Φ̂. (2.86)

A crucial property of ζ, which makes it a fundamental quantity to relate what happens during
inflation to the post-inflationary evolution of the Universe, is that it is constant on super-horizon
scales in single field models with no non-adiabatic perturbations. This can be shown starting
from the perturbed continuity equation, which can be written as

δρ′ + 3H(δρ+ δp) = 3(ρ0 + p0)Φ̂′ − (ρ0 + p0)∇2(V + σ), (2.87)

where V = v‖ + ω‖ and σ is as in Eq. (2.64). In the uniform energy density gauge, where ζ has
the form given by Eq. (2.86) and δρ = 0, Eq. (2.87) becomes

3Hδp+ 3(ρ0 + p0)ζ ′ + (ρ0 + p0)∇2(V + σ) = 0. (2.88)

On super-horizon scales the term with the laplacian is negligible, hence we are left with

ζ ′ ' − H

ρ0 + p0
δp

∣∣∣∣∣
δρ=0

. (2.89)

Let us now recall that the perturbations in the isotropic pressure can be in generral written as
the sum of an adiabatic and an entropy perturbation:

δp = c2
sδρ+ δpnon-ad. (2.90)

Since we are in the comoving gauge, Eq. (2.89) reduces to

ζ ′|δρ=0 ' −
H

ρ0 + p0
δpnon-ad (2.91)

As we will explain in the next chapter, non-adiabatic perturbations arise when the energy
densities of the different components of the Universe are perturbed in a different way, but these
do not arise in single field slow-roll models (for more details on this, refer to Section 3.1 and
Section 3.9). In this case, from (2.91) it follows that

ζ ′ = 0 ⇒ ζ = const, (2.92)

which proves our previous assertion.

We know that a given mode k exits the horizon at a time t
(1)
H (k) during inflation and then

reenters the horizon at a time t
(2)
H (k) during the radiation or matter era. The constance of ζ

during the time when the mode is outside the horizon means that we can relate the perturbations
in the inflaton field during inflation to the perturbations in the energy density in the standard
(radiation or matter) era. For example, if the mode k reenters the horizon during radiation
dominance, we have

ζ
t
(2)
H (k)

= H
δρ

ρ̇0

∣∣∣∣∣
t
(2)
H (k)

=
1

4

δρ

ρ0

∣∣∣∣∣
t
(2)
H (k)

= ζ
t
(1)
H (k)

= H
δφ

φ̇0

∣∣∣∣∣
t
(1)
H (k)

, (2.93)

where the second equality follows since ρr ∝ a−4. Notice that this also allows us to relate the
perturbations in the inflaton field during inflation to the temperature fluctuations in the CMB,
since

ρ0γ ∝ T 4 ⇒ ∆T

T
=

1

4

δργ
ρ0γ

. (2.94)
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2.7 ADM decomposition of the metric

The aim of this section is to introduce a different way of parametrizing the spacetime metric, in
such a way that this parametrization is adapted to a given choice of foliation of the spacetime by
constant time, spacelike hypersurfaces. In particular, this parametrizaton of the metric has the
advantage of making it explicit which are the true dynamical degrees of freedom of the system.
In this discussion we mainly follow [44].

Before doing that, we only mention a few facts about which spacetimes admit a foliation,
following [45]; for a more detailed discussion see [46]. A Cauchy surface is a spacelike hypersur-
face Σ in the spacetime M such that each causal (i.e. timelike or null) curve without endpoints
intersect Σ only once. Not all spacetimes admit a Cauchy surface; for instance, those which
have closed timelike curves do not. A spacetime that admits a Cauchy surface is said to be
globally hyperbolic. Any globally hyperbolic spacetime can be foliated by a family of spacelike
hypersurfaces.

To achieve this we assume that the spatial hypersurfaces are level sets of some time function
t(xµ):

Σto = {xµ ; t(xµ) = t0}, (2.95)

with timelike and future-oriented normal vector nµ and nµ ∼ ∂µt. We can introduce coordinates
(t, yi) on M via

xµ = xµ(t, yi) (2.96)

in the following way:

� For any fixed t = t0,
xµt0(yi) := xµ(t0, y

i) (2.97)

provides us with the embedding of the hypersurface Σ with coordinates yi as the hyper-
surface Σt0 in M:

xt0 : Σ→ Σt0 ⊂M. (2.98)

� We define the curves
xµy0

(t) := xµ(t, yi0) (2.99)

that connect points on different hypersurfaces with the same values of the spatial coordi-
nates yi = yi0. These provide us with a notion of “time evolution” from one hypersurface
to the next.

The tangent vectors to the surfaces Σt (or, better, their components) are2:

Eµi =

(
∂xµ

∂yi

)
t

, (2.100)

while the components of the time-evolution vector field ∂t are

(∂t)
µ =

(
∂xµ

∂t

)
y

. (2.101)

We can think of the vectors defined in (2.101) as representing the “flow of time” throughout
spacetime. As we “move forward in time” by a parameter t from the t = 0 surface, Σt=0, we
reach the hypersurface Σt. Thus we reach Σt by following the integral curves generated by the
vector field (∂t)

µ, and we can think of “moving forward in time” as resulting in the changing
of the induced spatial metric on Σ from hij(0) to hij(t). This suggests us that we can view

2These are the pushforward of the vectors ∂yi from Σ to M by the embedding xµ. Thus, they are linearly
independent tangent vectors to the image of Σ in M.
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a globally hyperbolic spacetime (M, gµν) as representing the time evolution of a Riemannian
metric on a fixed three-dimensional manifold. Indeed, in a canonical formulation of General
Relativity one can see that the metric induced on a spacelike hypersurface is really a dynamical
variable. The canonical variables are in this case hij and its conjugate momentum, which is
related to the extrinsic curvature Kij of the embedded hypersurface. The dynamical equations
evolve the metric hij and the extrinsic curvature Kij forward in time from one hypersurface to
the next.

Coming back to our discussion, it is important to notice that ∂t is not necessarily normal to
the hypersurface. We can decompose it into normal and tangential components in the following
way

(∂t)
µ = Nnµ + Eµi N

i, (2.102)

where N is the so-called lapse function and N i is the shift vector field. The lapse function mea-
sures the proper time between adjacent hyperurfaces and captures the fact that the coordinate
time can pass more quickly in some regions of the spacetime than in others; the shift vector
measures the change of coordinates (relative to the normal) from one hypersurface to the sub-
sequent one, namely describes how spatial coordinates are propagated between two adjacent
hypersurfaces.

Figure 2.5: ADM decomposition of the spacetime (from [47]).

Using the previous decomposition, we have

dxµ = (Nnµ + Eµi N
i)dt+ Eµi dy

i = Nnµdt+ Eµi (dyi +N idt). (2.103)

Given that the normal vector is normalized and is a timelike vector, i.e. gµνn
µnν = −1, the line

element can be written as

ds2 = gµνdx
µdxν = −N2dt2 + hij(dy

i +N idt)(dyj +N jdt), (2.104)

where

hij = Eµi E
ν
j gµν (2.105)

is the induced metric, given by the pullback of the metric g. This is the ADM decomposition of
the metric.

We can now write the metric and its inverse as

gµν =

(
−N2 +N iNi Ni

Nj hij

)
, gµν =

(
−1/N2 N i/N2

N j/N2 hij −N iN j/N2

)
, (2.106)
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while the determinant of the metric is given by

√
−g = N

√
h. (2.107)

The normalized timelike normal vector field to the surfaces of constant t is

nµ = −N∂µt. (2.108)

Thus, in the coordinates (t, yi), one finds

nµ = (−N, 0, 0, 0), nµ = (1/N,−N i/N), (2.109)

and
Eti = 0, Eji = δji . (2.110)

From the decomposition (2.104) one can see that the lapse function N and the shift vector
Ni contain the same information as the metric perturbations Ψ and ωi in Eqs. (2.26)-(2.27), but
the former are chosen in such a way that they appear as non-dynamical Lagrange multipliers
in the action. This means that their equations of motion are purely algebraic, namely they
are constraints. The six degrees of freedom contained in the 3-dimensional metric hij are thus
reduced by the four contraints provided by the equations for the lapse function and the shift
vector. Therefore we are left with a total of two dynamical degrees of freedom.
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Chapter 3

The primordial perturbations from
inflation

3.1 General argument for the production of primordial pertur-
bations

In the first chapter we have studied the background dynamics of inflation, i.e. we have consid-
ered the dynamics associated with the homogeneous value of the scalar field driving inflation. It
is the purpose of this and the next chapters that of studying the effects of introducing quantum
fluctuations in the inflaton field. Before entering in the details, we want to give an intuitive
argument to understand how the quantum fluctuations can be transformed into curvature and
then density perturbations by the inflationary expansion. For the moment we consider only the
perturbations in the scalar field, neglecting those in the metric tensor. This is not strictly con-
sistent since, have we have already said, a perturbation in the scalar field induces a perturbation
in the stress-energy tensor which then implies, through Einstein’s equations, a pertubation in
the metric tensor. The perturbations in the metric tensor will be included in the next sections,
where we will compute the effect of the primordial perturbations in a rigorous way.

We have seen the inflaton can be split as

φ(x, t) = φ0(t) + δφ(x, t), (3.1)

and obeys the Klein-Gordon equation

φ̈(x, t) + 3Hφ̇(x, t)− ∇
2φ(x, t)

a2
= −V ′(φ). (3.2)

For the “classical” value of the field, φ0(t), the Klein-Gordon equation reduces to

φ̈0 + 3Hφ̇0 = −V ′(φ0). (3.3)

By perturbing the Klein-Gordon equation (3.2) around φ0(t) and then linearizing it, we can
obtain an equation for the fluctuations δφ, which reads

δφ̈+ 3Hδφ̇− ∇
2δφ

a2
= −V ′′(φ0)δφ. (3.4)

Now we notice that, if we take the time derivative of the equation for the classical field (here we
assume H to be constant), we get

(φ̇0)·· + 3H(φ̇0)· = −V ′′(φ0)φ̇0, (3.5)
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which is different from the equation obeyed by δφ due to the absence of the term ∇2δφ/a2.
Going to Fourier space, this last term takes the form

∇2δφ

a2

F.S.−−→ −k2 δφk(t)

a2
. (3.6)

If we focus on super-Hubble scales, corresponding to k/a� H, this last term is negligible, hence
φ̇0 and δφ obey the same equation, and we have{

(φ̇0)·· + 3H(φ̇0)· = −V ′′(φ0)φ̇0,

δφ̈+ 3Hδφ̇ = −V ′′(φ0)δφ.
(3.7)

To see whether the solutions are linearly dependent or not, let us consider the Wronskian, which
is defined in our case by

W (δφ, φ̇0) = δφ̇φ̇0 − δφφ̈0. (3.8)

If this is equal to zero, the solutions are linearly dependent. It is easy to find that Ẇ = −3HW ,
from which it follows that W ∝ e−3Ht. This implies that after a while the Wronskian goes to
zero, and the two solutions become related by a constant of proportionality which depends on
space only1:

δφ(x, t) = −δt(x)φ̇0(t). (3.9)

Then it follows that

φ(x, t) = φ0(t− δt(x)), (3.10)

as can be easily seen by expanding to first order the latter relation. The physical meaning of
this result can be understood in two equivalent ways:

� At a fixed time t, the inflaton assumes different values in different regions.

� The inflaton assumes the same value in different regions, but at slightly different times.

This means that the quantum fluctuations introduce a time shift in the evolution of the field with
respect to the classical value, and different regions in the Universe undergo the same history,
but at slightly different times2.

Let us consider two different regions R1 and R2 where the inflaton assumes two different
values, φ1 6= φ2, at the time t. If, for example, the value φ1 is a bit farther from the minimum of
the potential than the value φ2, this implies that in the region R1 the inflationary expansion ends
slightly later than in R2. As a result of this process, at the end of inflation regions with slightly
different energy densities emerge in the Universe. This is what then leads, via gravitational
instability, to the formation of the structures we can observe today.

3.2 Gauge fixing at linear order

Now we want to study in more detail the perturbations around the background solution. As
we have anticipated, if we perturb the inflaton field we are inevitably led to introduce also
perturbations in the metric tensor:

φ(t)→ φ(t) + δφ(x, t), (3.11)

1The constant of proportionality depends on x because we have neglected the gradient term. In other words,
neglecting that term, which can be done if we cosider regions which are outside the horizon, is like making
a smoothing, a coarse graining of the field. Thus, there is a spatial dependence when passing from a (coarse
grained) region to another one.

2This allows us to think once again at the inflaton as a kind of “clock”, which controls the amount of inflation.
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3.2. Gauge fixing at linear order

gµν(t)→ gµν(t) + δgµν(x, t). (3.12)

We expect to have three dynamical degrees of freedom, two coming from gravity and one from
the scalar field. In order to see that, we decompose the metric following the ADM formalism,
which has the nice property of making it clear which are the true dynamical degrees of freedom
of the theory. As we have seen in Section 2.7, the line element can be written as

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt). (3.13)

Let us recall the starting action, which is that of a scalar field minimally coupled to gravity

S =

∫
d4x
√
−g
[
M2
Pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
. (3.14)

Setting for the moment MPl = 1 and decomposing the metric as in (3.13), this action becomes
[13]

S =
1

2

∫
d3xdt

√
h
[
NR(3) − 2NV +N−1(EijE

ij − E2) +N−1(φ̇−N i∂iφ)2 −Nhij∂iφ∂jφ
]
,

(3.15)
with

Eij =
1

2
(ḣij −DiNj −DjNi) = NKij , E = hijEij , (3.16)

where hij is the metric on the three.dimensional spacelike hypersurfaces and Kij is the extrinsic
curvature, which is related with how the spatial hypersurfaces are embedded in the full spacetime.
We have denoted with R(3) and Di the Ricci scalar and the covariant derivative calculated using
the metric hij . Notice that in the action N i and N do not have any time derivative acting
on them, hence they are Lagrange multipliers instead of true dynamical variables. Varying the
action with respect to them, we obtain the so-called Hamiltonian and Momentum constraints. In
order to find the action for the dynamical degrees of freedom we need to solve these constraints
for N i and N and plug the solutions back into the action. Before doing that, however, we have
to fix a gauge, which allows us to eliminate some others unphysical gauge modes.

In this thesis we consider two different gauges: the comoving gauge and the spatially flat gauge.
In the former, at linear order we have

δφ = 0, hij = a2[(1 + 2ζ)δij + γij ], (3.17)

with
∂iγj

i = 0, γi
i = 0. (3.18)

This is a comoving gauge in the sense that the observer moves with the cosmic fluid and hence
measures no matter flux. Notice that in this gauge the inflaton field has no fluctuations, while
the metric tensor contains one scalar and one tensor perturbation. The transverse and trace-
less tensor perturbations γij in the spatial metric are the gravitational waves, which carry two
degrees of freedom. Indeed, γij is a 3× 3 symmetric tensor which in principle has six indepen-
dent components; the conditions (3.18) represent four constraints, which reduce the independent
components by four, hence leaving two physical degrees of freedom. This implies that, as antic-
ipated, we have three dynamical degrees of freedom, one coming from the scalar perturbation ζ
and two coming from γij .

The scalar perturbation ζ is the so-called curvature perturbation on uniform energy-density
hypersurfaces, which has been defined in the previous chapter. This tells us how much the
spatial directions have expanded and it is conserved above the horizon in the case of single field
inflationary models with adiabatic perturbations. For this reason, this quantity can be directly
connected with the fluctuations in the CMB and thus allows us to connect what happened during
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inflation to the standard FLRW phase3. Moreover, when studying super-Hubble processes it is
also more intuitive to think about the perturbations as ζ instead of δφ.

The spatially flat gauge is instead defined by the requirements

δφ(x, t) ≡ ϕ(x, t), hij = a2(δij + γij), (3.19)

with (3.18) still being satisfied. The spatial part of the scalar sector of the metric is flat, ζ = 0,
but we have fluctuations in the inflaton field. This implies that we still have three dynamical
degrees of freedom, but the scalar one has been transferred from the curvature perturbation in
the metric to the inflaton sector, ϕ. This gauge is particularly useful when considering sub-
Hubble processes, and has also the advantage that the calculations are much simpler than in
the comoving gauge.

From what just said, one can do the calculations in the comoving gauge to obtain directly
an equation for ζ (which is the conserved quantity above the horizon), or start in the spatially
flat gauge and then pass form ϕ to ζ after horizon crossing. The two are related at linear order
by (see [13,48])

ζ = −H
φ̇
ϕ. (3.20)

Here we choose the first of the two options. The Hamiltonian and momentum constraints in the
comoving gauge are

R(3) −N−2(EijE
ij − E2)−N−2φ̇− 2V = 0, (3.21)

Dj [N
−1(Ej i − δjiE)] = 0. (3.22)

3.3 Constraint equations

As we have seen, N i and N are non-dynamical fields, hence we can solve their equations of
motion in terms of the dynamical degrees of freedom and then plug the solutions back into
the action. Since these equations cannot be solved exactly, what we can do is to solve them
perturbatively order by order. We now want to show, following the discussion of [49], that by
solving the constraint equations to the n-th order we can obtain the action to the (2n + 1)-th
order. Thus, in order to find the action at the cubic order (which will be needed to compute the
bispectra), it will be sufficient to solve the constraint equations to first order.

Let us consider the Lagrangian L(h, N̄ , N̄i), where we have suppressed the indices in the
spatial metric for simplicity of notation. We can obtain N̄(h) and N̄i(h) by solving the equations

δL

δN
(h,N,Ni)

∣∣∣
N̄

=

[
∂L

∂N
− ∂i

∂L

∂(∂iN)

]
N̄

= 0, (3.23)

δL

δNi
(h,N,Ni)

∣∣∣
N̄

=

[
∂L

∂Ni
− ∂j

∂L

∂(∂jNi)

]
N̄

= 0. (3.24)

Notice that, since N and Ni are non-dynamical, there are no time derivatives acting on them.
Solving these equations to n-th order means obtaining

N̄ = N (n) + O(ζn+1), N̄i = N
(n)
i + O(ζn+1). (3.25)

3This is extremely important since we don’t know anything about the history of the Universe from the end of
inflation until the time at which Big Bang Nucleosynthesis occured, during the radiation era.
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Now let us Taylor expand the full action in terms of the approximate solutions (3.25) to the
constraint equations:∫

d4xL(h, N̄ , N̄i) =

∫
d4xL(h,N (n), N

(n)
i ) +

∫
d4x (N̄ −N (n))

δL

δN
(h,N (n), N

(n)
i )+

+

∫
d4x (N̄i −N (n)

i )
δL

δNi
(h,N (n), N

(n)
i )+

+

∫
d4x ∂j

[
(N̄ −N (n))

∂L

∂(∂jN)
(h,N (n), N

(n)
i )

]
+

+

∫
d4x ∂j

[
(N̄i −N (n)

i )
∂L

∂(∂jNi)
(h,N (n), N

(n)
i )

]
+

+ O
(

(N̄ −N (n))2, (N̄i −N (n)
i )2

)
.

(3.26)

The fourth and fifth terms are total derivatives, hence can be neglected. The second and third
terms are the constraint equations (3.23)-(3.24), which have been solved to the n-th order in
perturbation theory. Thus, the error in the Taylor expansion of the full action is of order 2(n+1):
one n+ 1 comes from the error in N̄ −N (n) and the second one from the error in δL/δN . The
last term in Eq. (3.26) gives an error of the same order. It follows that, using the n-th order
solutions to the constraint equations, we make an error of order 2(n+ 1) in the fluctuations in
the full action. This means that we can obtain a perturbative expansion of the action up to
order 2n+ 1.

Let us now expand the lapse function and the shift vector as

N = N (0) +N (1) +N (2) + . . . , Ni = N
(0)
i +N

(1)
i +N

(2)
i + . . . (3.27)

The shift vector can further be decomposed into a scalar and a vector perturbation

N
(n)
i = ∂iψ

(n) + β
(n)
i , (3.28)

with ∂iβ
(n)
i = 0. We can now solve the Hamiltonian and the momentum constarints order by

order and then plug the solutions back into the action.

At 0-th order, the solution is given by N (0) = 1 and N
(0)
i = 0. The momentum constaint

(3.22) vanishes, reflceting the isotropy of the background solution, while the Hamiltonian con-
straint (3.21) gives us the first Friedmann equation.

Now we go to the next order. We first concentrate on scalar perturbations, which are the
density perturbations that then grow to form the large scale structures in the Universe and we
can observe through the temperature anisotropies in the CMB. Then, we will study the tensor
perturbations, i.e. the primordial gravitational waves from inflation.

3.4 Scalar perturbations from inflation

Since we now focus on scalar peturbations, we can set γij = 0. Notice also that, for the same
reason, the vector perturbation βi in the shift vector can only be the gradient of a function F of
the scalar perturbation ζ itself and its derivatives, βi = ∂iF . Therefore the condition ∂iβi = 0
implies that ∂2F = 0. If we assume that F goes to zero at infinity, this is solved by F = 0.
Hence also βi = 0.

Neglecting tensor perturbations, the three-dimensional metric and its inverse reduce to

hij = a2e2ζδij , hij = a−2e−2ζδij , (3.29)

while their time derivatives are given by

ḣij = 2a2(H + ζ̇)e2ζδij , ḣij = −2a−2(H + ζ̇)e−2ζδij . (3.30)
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3.4. Scalar perturbations from inflation

The second relation in (3.30) comes from

himhjm = δij ⇒ ḣimhjm = −himḣjm ⇒ ḣik = −himhjkḣjm. (3.31)

Hence
ḣik = −himhjk2a2(H + ζ̇)e2ζδjm = −2a−2(H + ζ̇)e−2ζδik. (3.32)

From the metric we can then compute the connection coefficients, which are given by

Γkij =
1

2
hkl(∂ihjl + ∂jhil − ∂lhij) = δkl(∂iζδjl + ∂jζδil − ∂lζδij). (3.33)

As regarding the extrinsic curvature (remember that Eij = NKij), we have

Eij =
1

2
(ḣij −DiNj −DjNi) =

1

2

[
2a2(H + ζ̇)e2ζδij − 2∂(iNj) + 2ΓkijNk

]
= a2(H + ζ̇)e2ζδij − ∂(iNj) + 2N(i∂j)ζ −Nk∂kζδij ,

(3.34)

Eij = hikhjlEkl = a−4e−4ζδikδjlEkl, (3.35)

E = hijEij = a−2e−2ζδijEij = 3(H + ζ̇)− a−2e−2ζ(∂iNi +N i∂iζ). (3.36)

Thus, we find

EijEij − E2 =− 6(H + ζ̇)2 + 4e−2ζa−2(H + ζ̇)(∂iNi +N i∂iζ)+

− e−4ζa−4
{

(∂iNi)
2 + 2(∂iNiζ)2 −

[
∂(iNj) − (∂iNi +N i∂iζ)

]2 }
.

(3.37)

The three-dimensional Ricci scalar is instead given by

R(3) = hijRmimj = hij
(
∂mΓmij − ∂jΓmim + ΓmmkΓ

k
ij − ΓmjkΓ

k
im

)
= a−2e−2ζδij

{
∂m

[
δml(∂iζδjl + ∂jζδil − ∂lζδij)

]
− ∂j

[
δml(∂iζδml + ∂mζδil − ∂lζδim)

]
+

+ δml(∂mζδkl + ∂kζδml − ∂lζδmk)δkr(∂iζδjr + ∂jζδir − ∂rζδij)+

− δml(∂jζδkl + ∂kζδjl − ∂lζδjk)δkr(∂iζδmr + ∂mζδir − ∂rζδim)
}

= a−2e−2ζδij (−∂j∂iζ − ∂l∂lζδij − δij∂lζ∂lζ + ∂iζ∂jζ) = −2a−2e−2ζ
[
2∂2ζ + (∂iζ)2

]
.

(3.38)

Plugging these expressions into the Hamiltonian and momentum constraints we can solve them,
finding4

N (1) =
ζ̇

H
, ψ(1) = − ζ

H
+ χ, ∂2χ = a2 φ̇2

2H2
ζ̇, (3.39)

where we have used the background equations of motion to get rid of the zero-th order quantities.
We can then substitute these solutions into the action (3.15) and expand the latter to second

order. By using again the background equations of motion and integrating by parts some of the
terms, we finally get

S2 = εVM
2
Pl

∫
d4x

[
a3ζ̇2 − a (∂iζ)2

]
, (3.40)

where we have also reintroduced the Planck mass. We now make a field redefinition by defining
the so-called Mukhanov-Sasaki variable:

v ≡ zζ, with z ≡
√

2εV aMPl. (3.41)

4The solution of the momentum constraint is N (1) = ζ̇
H

+ const. We can then set the constant to zero in order
to recover the background metric once the perturbations are removed.
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3.4. Scalar perturbations from inflation

Switching to conformal time, the action (3.40) can be rewritten as

S2 =
1

2

∫
d3x dτ az2

[
a

(
1

a

d

dτ

v

z

)2

− 1

az2
(∂iv)2

]

=
1

2

∫
d3x dτ

[
(v′)2 + v2

(
z′

z

)2

− 2(v2)
′ z′

z
− (∂iv)2

]
,

(3.42)

where ′ ≡ d
dτ . Integrating by parts the third term, we get

S2 =
1

2

∫
d3x dτ

[
(v′)2 − (∂iv)2 +

z′′

z
v2

]
. (3.43)

If we then expand v in Fourier modes

v(x, τ) =

∫
d3k

(2π)3
vk(τ)eik·x, (3.44)

and vary the action (3.43), we find the equations of motion for vk, also known as the Mukhanov-
Sasaki equation:

v′′k +

(
k2 − z′′

z

)
vk = 0. (3.45)

This is the equation of an harmonic oscillator with a time-dependent frequency. This time
dependence of the frequency accounts for the interaction of the scalar field with the gravitational
background. In order to compute the second term, notice that

z′′

z
=

d

dτ

(
z′

z

)
+

(
z′

z

)2

, (3.46)

and

z′

z
=
a

2

(z2)·

z2
= ȧ+

a

2

ε̇V
εV

= aH

(
1 +

1

2

ε̇V
εVH

)
' − 1

τ(1− εV )
(1 + 2εV − ηV ) ' −(1 + 3εV − ηV )

τ
(3.47)

to lowest order in the slow-roll parameters. Therefore, using Eq. (3.46) we find

z′′

z
' 1 + 3εV − ηV

τ2
+

1 + 6εV − 2ηV
τ2

' 2 + 9εV − 3ηV
τ2

. (3.48)

The equationss of motion (3.45) can then be rewritten as

v′′k +

(
k2 −

ν2 − 1
4

τ2

)
vk = 0, (3.49)

with

ν2 =
9

4
+ 9εV − 3ηV . (3.50)

At leading order in the slow-roll parameters, this gives

ν ' 3

2
+ 3εV − ηV . (3.51)

We can now canonically quantize the fields vk by expanding them in terms of the creation
and annihilation operators as

v̂k(τ) = vk(τ)â(k) + v∗k(τ)â†(−k). (3.52)
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3.4. Scalar perturbations from inflation

The creation and annihilation operators satisfy the equal time commutation relations

[â(k), â†(k′)] = (2π)3δ(3)(k− k′), [â(k), â(k′)] = 0 = [â†(k), â†(k′)], (3.53)

and act on the vacuum state obeying

â|0〉 = 0, 〈0|â† = 0. (3.54)

The mode functions vk(τ) are instead normalized such that5

W [vk, v
∗
k] ≡ v′kv∗k − vkv∗′ = 2i, (3.55)

and, from (3.49), obey the equations of motion

v′′k +

(
k2 −

ν2 − 1
4

τ2

)
vk = 0. (3.56)

The normalization condition (3.55) provides one of the boundary conditions required to solve
Eq. (3.56). The second one required to fix the mode functions comes from the choice of the
vacuum state, as we will now see.

3.4.1 Sub-horizon and super-horizon limits

Before solving exactly the equations of motion, it is useful and instructive to consider the two
limits corresponding to sub-horizon and super-horizon scales.

Sub-horizon limit

In the limit −kτ → ∞ the modes have wavelengths much smaller than the horizon, and the
second term inside the parentheses in the equations of motion (3.56) is negligible with respect
to the first one. Thus we are left with

v′′k + k2vk = 0. (3.57)

This is exactly the same equation obeyed by a scalar field in Minkowski spacetime, and the
general solution is given by a linear combination of plane waves

vk = c1e
ikτ + c2e

−ikτ . (3.58)

This means that the fluctuations with wavelengths much smaller than the horizon oscillate, as
in a flat Minkowski spacetime. Physically we can think that, when the modes are well inside the
horizon, they are not affected by gravity (and they do not feel the expansion of the Universe),
and thus behave just like in a flat, static spacetime. This allows us to require that the solutions
of (3.56) reduce to the mode functions of Minkowski in the sub-horizon limit. In practice this
means that we have to solve the Mukhanov-Sasaki equation (3.56) with the initial condition

lim
−kτ→∞

vk(τ) =
e−ikτ√

2k
. (3.59)

This is the so-called Bunch-Davies vacuum6, and provides the second boundary condition re-
quired to solve Eq. (3.56).

5This normalization condition is required to make the commutation relations (3.53) compatible with the
canonical commutation relations between the field and its conjugate momentum. See [50] for more details on
these technical issues.

6Notice that in a time-varying background there is no unique way to define the vacuum state, since the
Hamiltonian of the system depends explicitly on time and thus does not possess time-independent eigenstates.
There are different possible mode functions that solve (3.56) still obeying (3.55) and these are related to each
other by the so-called Bogolyubov transformations. Defining the vacuum state allows us to completely fix the
solutions vk(τ). See again [50] for more details on this.
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3.4. Scalar perturbations from inflation

Super-horizon limit

In the limit −kτ → 0 the modes have instead wavelengths much larger than the horizon. In this
case the equation of motion reduces to

v′′k −
ν2 − 1

4

τ2
vk = 0, (3.60)

whose solution can be written as the linear combination of a growing and a decaying mode:

vk = B+(k)a+B−(k)a−2. (3.61)

When coming back to our original variable, ζk ∝ vka−1, the solution is given by a constant plus
the decaying mode that goes like a−1. The latter goes to zero since a−1 ∝ τ → 0, and we are left
only with the constant solution. This means that ζ becomes constant on super-horizon scales
and the amplitude of the fluctuations gets frozen. This happens because no causal process can
affect the evolution of the fluctuations when their wavelength is outside the horizon.

3.4.2 Exact solution of the equation of motion

Let us now solve exactly the equations of motion (3.56). In order to do that, we make a change
of variable by defining

vk ≡ (−τ)1/2y. (3.62)

The first and second derivatives of vk are given by

v′k = −1

2
(−τ)−1/2y + (−τ)1/2y′, (3.63)

v′′k = (−τ)1/2y′′ − (−τ)−1/2y′ − 1

4
(−τ)−3/2y. (3.64)

Substituting these results in the equations of motion (3.56), we find

τ2y′′ + τy′ +
(
k2τ2 − ν2

)
y = 0. (3.65)

In terms of the variable
x ≡ −kτ, (3.66)

this can be rewritten in the form of a Bessel equation:

x2 d
2y

dx2
+ x

dy

dx
+
(
x2 − ν2

)
y = 0. (3.67)

The general solution of the Bessel equation is given by

y(x) = c1H
(1)
ν (x) + c2H

(2)
ν (x), (3.68)

where H
(1)
ν (x) and H

(2)
ν (x) are the Hankel functions of first and second species, which satisfy

H(2)
ν (x) = H(1)

ν

∗
(x), (3.69)

while c1 and c2 are constants which have to be determined by imposing the initial condition.
Coming back to our original variables, we can rewrite the general solution of the equation of
motion as

vk(τ) =
√
−τ
[
c1(k)H(1)

ν (−kτ) + c2(k)H(2)
ν (−kτ)

]
. (3.70)

This solution of the Bessel equation is valid for constant values of ν. Since during inflation we
can consider εV and ηV to be constant at leading order in the slow-roll parameters, it follows
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from (3.51) that also ν can be taken constant. From the asymptotic expansion of the Hankel
functions

H(1)
ν (−kτ)

−kτ�1∼
√

2

π
(−kτ)−1/2ei(−kτ−

π
2
ν−π

4 ), (3.71)

H(2)
ν (−kτ)

−kτ�1∼
√

2

π
(−kτ)−1/2e−i(−kτ−

π
2
ν−π

4 ), (3.72)

and imposing the Bunch-Davies vacuum initial condition, we can fix the values of c1 and c2,
which then read

c2(k) = 0, c1(k) =

√
π

2
ei
π
2 (ν+ 1

2). (3.73)

Therefore the solution for the mode function of scalar perturbations is

vk(τ) =

√
π

2
ei
π
2 (ν+ 1

2)√−τ H(1)
ν (−kτ). (3.74)

3.5 Tensor perturbations from inflation

With a similar mechanism to that just seen for scalar perturbations, inflation generates also
transverse and traceless tensor perturbations of the metric, namely gravitational waves. As we
will discuss in detail in Section 3.8, this is one of the most important predictions of inflation.
Remarkably, the amplitude of primordial gravitational waves (PGWs) is uniquely determined
by the Hubble parameter H during inflation. This means that a measurement of PGWs would
give direct information about the most important inflationary parameter, namely the energy
scale at which inflation occurred.

As we know, scalar, vector and tensor perturbations are decoupled at linear order, hence,
when studying tensor perturbations, we can set the scalar and vector ones to zero. Therefore
we have

ζ = 0, Ni = 0, N = 1. (3.75)

By expanding the Einstein-Hilbert action at second order in tensor perturbations one finds

Sγγ =
M2
Pl

8

∫
dτd3xa2

[
(γ′ij)

2 − (∂lγij)
2
]
. (3.76)

Going to Fourier space we can expand the tensor perturbations in the +,× polarization basis
(see Appendix C) as

γij(x, τ) =

∫
d3k

(2π)3

∑
s=+,×

ε
(s)
ij (k)γs(k, τ)eik·x. (3.77)

The polarization tensor satisfies the following properties

εi
i = 0, kiεij = 0, ε

(s)
ij (k)ε(s

′)ij(k) = 2δss
′
. (3.78)

The fields γs(k, τ) are the two polarization modes of tensor perturbations, and each of them
behaves like a massless scalar field. Indeed, defining

A2
T ≡

M2
Pl

2
a2, (3.79)

we can rewrite the action (3.76) as

Sγγ =
1

2

∑
s=+,×

∫
d3k

(2π)3
dτA2

T

[
γ′2s (k, τ)− k2γ2

s (k, τ)
]
, (3.80)
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which is the action for two massless scalar fields. By making the field redefinition

µs ≡ ATγs, (3.81)

and integrating once by parts, the action (3.80) takes the following form

Sγγ =
1

2

∑
s=+,×

∫
d3k

(2π)3
dτA2

T

[
µ′2s (k, τ)− k2µ2

s(k, τ) +
A′′T
AT

µ2
s(k, τ)

]
. (3.82)

We can then obtain the equations of motion for the fields µs by varying the action with respect
to the fields themselves. These read

µ′′s +

(
k2 −

A′′T
AT

)
µs = 0. (3.83)

In order to calculate
A′′T
AT

, notice that

A′′T
AT

=
d

dτ

(
A′T
AT

)
+

(
A′T
AT

)2

, (3.84)

with
A′T
AT

=
a

2

(A2
T )·

A2
T

= aH = −1

τ
(1 + ε) + O(ε2). (3.85)

It follows from Eq. (3.84) that, at leading order in the slow-roll parameters, we have

A′′T
AT
' 2 + ε

τ2
. (3.86)

Therefore the equations of motion (3.83) become

µ′′s +

(
k2 −

ν2
T −

1
4

τ2

)
µs = 0, (3.87)

where we have introduced the parameter νT , defined through

ν2
T =

9

4
+ 3ε. (3.88)

At leading order in the slow-roll parameters, this leads to

νT '
3

2
+ ε. (3.89)

We can now canonically quantize the fields µs by expanding them in terms of the creation and
annihilation operators as

µ̂s(k, τ) = us(k, τ)âs(k) + u∗s(k, τ)â†s(−k). (3.90)

The creation and annihilation operators satisfy the equal time commutation relations

[âs(k), â†s′(k
′)] = (2π)3δ(3)(k− k′)δss′ , [â(k), â(k′)] = 0 = [â†(k), â†(k′)], (3.91)

and act on the vacuum state obeying

âs|0〉 = 0, 〈0|â†s = 0. (3.92)
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The mode functions us(k, τ) are normalized (as the scalar modes) such that

W [us(k), us(k)∗] ≡ u′s(k)us(k)∗ − us(k)us(k)∗′ = 2i, (3.93)

and obey the equations of motion

u′′s +

(
k2 −

ν2
T −

1
4

τ2

)
us = 0. (3.94)

Thus each of the two polarization states obeys the same equation of motion as the scalar modes,
as expected. The only difference between the two cases lies in the normalization factors present
in the field redefinitions (3.41) and (3.81), that have allowed us to rewrite the equations of
motion in the form of that of a free harmonic oscillator with a time-varying effective frequency.
Therefore, with the initial condition of the Bunch-Davies vacuum state

lim
−kτ→∞

us(k, τ) =
e−ikτ√

2k
, (3.95)

the solution of the equations of motion for tensor modes is given by

us(k, τ) =

√
π

2
ei
π
2 (νT+ 1

2)√−τ H(1)
νT

(−kτ). (3.96)

3.6 Power spectrum of perturbations

The power spectrum of a perturbation field is a measure of the amplitude of the fluctuations at
a given scale k. Given a certain random field f(x, t), we can expand it in Fourier space as

f(x, t) =

∫
d3k

(2π)3
fk(t)eik·x. (3.97)

The power spectrum P (k) is defined through the relation

〈fk1(t)fk2(t)〉 = (2π)3P (k1) δ(3)(k1 + k2), (3.98)

where the angular brackets denote an average over the statistical ensemble. Notice that the
power spectrum depends only on the modulus of k1 as a consequence of isotropy. Similarly, the
delta function comes from the assumption of homogeneity (i.e., invariance under translations),
and implies that different modes are uncorrelated. We can then show the validity of the following
theorem:

Wiener-Khinchin theorem
The power spectrum P (k) is the Fourier transform of the two-point correlation function.
Proof
From the definition of the two-point correlation function in the real space, we have:

ξ(r) ≡ 〈f(x)f(x + r)〉 =

∫
d3k

(2π)3

∫
d3k′

(2π)3
〈fkfk′〉eik·xeik

′·(x+r)

=

∫
d3k

(2π)3

∫
d3k′P (k)δ(3)(k + k′)eik·xeik

′·(x+r)

=

∫
d3k

(2π)3
P (k)e−ik·r,

(3.99)
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where to pass from the first to the second line we have used (3.98). Therefore, we find

P (k) =

∫
d3r

(2π)3
ξ(r)eik·r. (3.100)

�

If r = 0, the two-point function is the variance of the random field, namely

σ2 ≡ 〈f2(x, t)〉 =

∫
d3k

(2π)3
P (k) =

1

2π2

∫ +∞

0
dk k2P (k) =

∫ +∞

0

dk

k
∆(k), (3.101)

where

∆(k) ≡ k3

2π2
P (k) (3.102)

is the so-called dimensionless power spectrum. As can be seen from (3.101), this is the contri-
bution to the variance per unit logarithmic interval at the wavenumber k.

In the case of a scalar field we can canonically quantize the latter in the usual way:

f̂k(τ) = vk(τ)â(k) + v∗k(τ)â†(−k), (3.103)

where â and â† are the creation and annihilation operators, which satisfy the equal time com-
mutation relations

[â(k), â†(k′)] = (2π)3δ(3)(k− k′), [â(k), â(k′)] = 0 = [â†(k), â†(k′)], (3.104)

and act on the vacuum state obeying

â|0〉 = 0, 〈0|â† = 0. (3.105)

In order to evaluate the power spectrum we need to compute

〈fk1fk2〉 = 〈0|[vk1 â(k1) + v∗k1
â†(−k1)][vk2 â(k2) + v∗k2

â†(−k2)]|0〉
= vk1v

∗
k2
〈0|â(k1)â†(−k2)|0〉

= vk1v
∗
k2
〈0|
(
[â(k1), â†(−k2)] + â†(−k2)â(k1)

)
|0〉

= (2π)3|vk1 |2δ(3)(k1 + k2).

(3.106)

Combining this result with the definition of the power spectrum given in (3.98), it follows that

P (k1) = |vk1 |2. (3.107)

The dimensionless power spectrum can thus be written as

∆(k, τ) ≡ k3

2π2
|vk(τ)|2. (3.108)

In the case of tensor perturbations we can proceed in the same way, with the only difference
of an extra factor 2 coming from the contraction of the polarization tensors. With the notations
of the previous section, the dimensionless power spectrum is thus given by

∆T (k, τ) ≡ k3

π2
|u(k, τ)|2. (3.109)
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Another important quantity which we now define is the spectral index, which tells us how
∆(k) varies with the cosmological scale k ∼ 2π/λ. For scalar perturbations this is defined
through the relation

ns(k)− 1 ≡ d ln∆(k)

d lnk
. (3.110)

For a constant ns(k), the power spectrum is a power law

∆(k) = ∆(k0)

(
k

k0

)ns−1

, (3.111)

where k0 is a given pivot scale. In the particular case with ns = 1, the amplitude of the
perturbations does not depend on the cosmological scale, ∆(k) = const., and we have a scale-
invariant power spectrum. This is also known as the Harrison-Zel’dovich spectrum.

In the case of tensor perturbations the spectral index is instead defined as

nT (k) ≡ d ln∆T (k)

d lnk
. (3.112)

From this definition, a scale-invariant spectrum of tensor perturbations has nT = 0.

3.6.1 Power spectrum of scalar perturbations

We are now interested in computing the power spectrum of scalar perturbations on super-horizon
scales. To do so, we need to find the solution for the mode function vk given in (3.74) in the
limit −kτ � 1. In this limit, the Hankel function of first species has the asymptotic expression

H(1)
ν (−kτ)

−kτ�1∼
√

2

π
e−i

π
2 2ν−

3
2

Γ(ν)

Γ(3
2)

(−kτ)−ν , (3.113)

from which one finds that

vk(τ)|−kτ�1 = ei
π
2

(ν+ 1
2

)2ν−
3
2

Γ(ν)

Γ(3
2)

1√
2k

(−kτ)
1
2
−ν . (3.114)

By recalling the field redefinition (3.41), one can then compute the dimensionless power spectrum
of curvature perturbations at leading order in the slow-roll parameters. This reads

∆ζ(k) ' 1

π2ε

H2

M2
Pl

(
k

aH

)3−2ν

, (3.115)

with
3− 2ν ' 2η − 6ε. (3.116)

From this last relation it is immediate to compute the spectral index of scalar perturbations,
which is given by

ns − 1 =
d ln∆ζ(k)

d lnk
= 2η − 6ε. (3.117)

Since in slow-roll inflation ε, |η| � 1, the spectral index predicted by slow-roll inflationary
models is slightly lower than unity. This corresponds to an almost scale-invariant, red spectrum
(ns < 1), where the amplitude of the fluctuations decreases for decreasing cosmological scales.
This feature can be understood in the following way. We know that different modes leave
the horizon at different times, and after that they are frozen on super-horizon scales. The
amplitude of the fluctuation of a given mode k is roughly given by the Hubble parameter H
at the corresponding horizon-crossing time. Since the Hubble parameter is slightly decreasing
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3.7. Observable predictions from inflation

during slow-roll infation, the longest modes, which leave the horizon before the shortest ones,
have a slightly higher amplitude of fluctuations. On the contrary, in an exact de Sitter phase
the Hubble parameter is exactly constant, hence the amplitude of the fluctuations is the same
for each mode. This leads to an Harrison-Zel’dovich power spectrum.

The scale-invariance of the power spectrum of perturbations in de Sitter is related to the
symmetry of the de Sitter geometry under dilations. This is explained in Appendix A.

3.6.2 Power spectrum of tensor perturbations

By proceeding in the same way as for scalar perturbations, the mode function of tensor pertur-
bations on super-horizon scales takes the form

u(k, τ)|−kτ�1 = ei
π
2

(ν+ 1
2

)2ν−
3
2

Γ(ν)

Γ(3
2)

1√
2k

(−kτ)
1
2
−ν . (3.118)

By recalling the field redefinition (3.81), we can then obtain the power spectrum of tensor
perturbations at leading order in the slow-roll parameters, which is given by

∆T (k) ' 16

π

H2

M2
Pl

(
k

aH

)−2ε

. (3.119)

Therefore the spectral index of tensor perturbations is given by

nT = −2ε. (3.120)

This means that slow-roll inflationary models predict an almost scale-invariant, red (nT < 0)
spectrum of primordial gravitational waves, analogously to what happens for scalar perturba-
tions.

3.7 Observable predictions from inflation

As we have seen, the power spectra of scalar and tensor perturbations are respectively given by

∆ζ(k) =

(
H2

2πφ̇

)2(
k

aH

)3−2ν

, (3.121)

∆T (k) =
16H2

πM2
Pl

(
k

aH

)3−2νT

. (3.122)

These can be rewritten in terms of two amplitudes and two spectral indices as

∆ζ(k) = ∆ζ(k∗)

(
k

k∗

)ns−1

, ∆ζ(k∗) =

(
H2

2πφ̇

)2 ∣∣∣
t
(1)
H (k∗)

, ns − 1 = 2ηV − 6εV , (3.123)

∆T (k) = ∆T (k∗)

(
k

k∗

)nT
, ∆T (k∗) =

16

π

H2

M2
Pl

∣∣∣
t
(1)
H (k∗)

, nT = −2εV , (3.124)

where k∗ is a fixed pivot scale. This means that in principle we have four observables: ∆ζ(k∗),
∆T (k∗), ns and nT . However, one of the two amplitudes can be eliminated by measuring the
overall normalization of the angular spectrum of the CMB. We can then define the tensor-to-
scalar ratio

r(k∗) ≡
∆T (k∗)

∆ζ(k∗)
, (3.125)
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3.7. Observable predictions from inflation

which is a measure of the amplitude of tensor perturbations with respect to that of scalar
perturbations at the pivot scale k∗. The tensor-to-scalar ratio can be directly related to the
slow-roll parameter ε. Indeed, we have{

H2 = 8πG
3

[
V (φ) + 1

2 φ̇
2
]

φ̈+ 3Hφ̇ = −V ′(φ)
⇒ Ḣ = −4πGφ̇2 ⇒ ε ≡ − Ḣ

H2
= 4πG

φ̇2

H2
, (3.126)

and hence, from the two amplitudes in (3.123) and (3.124), the tensor-to-scalar ratio can be
written as

r =
∆T (k∗)

∆ζ(k∗)
=

16H2

πM2
Pl

/
H2

πM2
Plε

= 16ε. (3.127)

This relation tells us that single field slow-roll inflationary models produce gravitational waves
with an amplitude much smaller than the amplitude of scalar perturbations. Moreover, using
the expression of the tensor spectral index found in the previous section, nT = −2ε, one obtains
the so-called consistency relation:

r = −8nT . (3.128)

This relates the amplitude of tensor perturbations to their spectral index. It is a difficult relation
to check because it requires a measurement of the full tensor power spectrum, namely both its
amplitude and its spectral index. At the moment we have only an upper bound on r, from
measurements of the CMB temperature anisotropies by the Planck satellite combined with the
measurements by BICEP [9]:

r < 0.064 (95% C.L.). (3.129)

Notice that, if the consistency relation is really true, it will be very difficult to measure the scale
dependence of tensor perturbations, given the small upper bound we have on r.

If we assume the consistency relation to hold, we can remove one further observable, remain-
ing with only two of them: ns and r. Inflationary models are usually classified in the (r, ns)
plane (see [51] for more details), as shown in Fig. 3.1.

Figure 3.1: Inflationary models in the (r, ns) plane (from [51]).

Depending on the values of the slow-roll parameters, we can include single field slow-roll models
in the different classes we have introduced in the first chapter:

� Large-field models: 0 < ηV < 2εV . Typical examples are “Chaotic Inflation” [52] and
“Power-law Inflation” [53]. These models have V ′′(φ) > 0, which implies that ηV > 0.
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3.7. Observable predictions from inflation

� Small-field models: ηV < 0. These typically arise from spontaneous symmetry breaking,
such as the original models of “new” inflation, or from Nambu-Goldstone modes, like
“Natural Inflation” [54]. The condition ηV < 0 is due to the fact that small field models
are characterized by V ′′(φ) < 0.

� Hybrid models: ηV > 2εV . These consist in models which incorporate inflation into
supersymmetry and supergravity. In a typical hybrid inflationary model, the scalar field
responsible for inflation evolves toward a minimum with non zero vacuum energy and the
end of inflation arises as a result of the instability in a second field.

An important phenomenological (and also theoretical, as we will briefly comment in the next
section) difference between small-field and large-field models is that the latter produce a higher
tensor-to-scalar ratio, hence a higher amplitude of tensor perturbations. We will see the relation
between the excursion of the field during inflation and r in the next section, but for the moment
we can justify this assertion in the following way. From r = 16εV and ns − 1 = 2ηV − 6εV , one
can easily find that

r =
8

3
(1− ns) +

16

3
ηV . (3.130)

The first term is always positive, while the second one is negative for small-field models and
positive for large-field ones, which thus predict higher values of r (see Fig. 3.1).

It is then important to stress that constraining our observables means constraining the values
of the slow-roll parameters, and hence the shape of the potential. Ultimately, this means that
we can constrain the different inflationary models. Fig. 3.2 shows the predictions of various
slow-roll models for ns and r, as well as the latest constraints from the measurements made by
the Planck satellite.

Figure 3.2: Constraints on inflationary models from Planck [9]

As regarding the scalar spectral index, from the latest Planck data release we have [9]

ns = 0.9649± 0.0042 (68% C.L.). (3.131)

This rules out the possibility of having a scale-invariant (Harrison-Zel’dovich) spectrum of scalar
perturbations. As we have already discussed, this is consistent with slow-roll models.

The latest constraints on the slow-roll parameters are instead given by [9]

εV < 0.0097 (95% C.L.), ηV = −0.010+0.007
−0.011 (68% C.L.). (3.132)

These favour small-field models, which have concave potentials, V ′′(φ) < 0, resulting in ηV < 0.

64



3.8. The importance of primordial gravitational waves

3.8 The importance of primordial gravitational waves

Primordial gravitational waves (PGWs) are a fundamental tool to study the physics of the early
Universe and to constrain inflationary models. For a review of the subject, see [11]. PGWs are
often said to be the “smoking gun” of inflation. Indeed, they are a key and general prediction
of all inflationary models, while alternative models to inflation, which have been proposed in
the latest years, tend to produce an extremely small amplitude of PGWs, practically unobserv-
able. Thus, if observed, PGWs would represent a strong evidence supporting the inflationary
paradigm.

An extremely important property of PGWs is that their amplitude is directly related to the
energy scale of inflation, which instead cannot be determined uniquely from a measurement of
the amplitude of scalar perturbations. Indeed the latter depends also on the slow-roll parameter
εV , which depends on the specific model of inflation. A measurement of the amplitude of scalar
perturbations would provide a measurement of H in terms of εV . For tensor perturbations
instead we have ∆T = 16H2

πM2
Pl

H2 ' 8
3πGV (φ) ∼ V (φ)

M2
Pl

=⇒ ∆T ∝ V (φ), (3.133)

with V (φ) determining the energy scale of inflation, Einf = V 1/4. To give a more precise relation,
let us recall that the power spectrum of scalar perturbations is given by

∆ζ(k) =
1

2M2
PlεV

(
H∗
2π

)2( k

aH∗

)ns−1

. (3.134)

This is related to the Hubble parameter evaluated during inflation when the pivot scale k∗ leaves
the horizon and to the slow-roll parameter εV . By using the Friedmann equation in the slow-roll
approximation, H2 = V/3M2

Pl, we can relate the energy scale of inflation at the time when k∗
leaves the horizon directly to εV [11]:

V∗ = 24π2M4
Pl∆ζεV . (3.135)

Using the relation (3.127) between r and εV , this becomes

V∗ =
3

2
π2∆ζM

4
Pl r. (3.136)

Then, from the amplitude of scalar perturbations obtained by the Planck satellite [55], one gets
the following relation between the energy scale of inflation at the time when k∗ leaves the horizon
and the tensor-to-scalar ratio [11]:

V∗ =
(
1.88 · 1016 GeV

)4 r

0.10
. (3.137)

With the bound (3.129) on the tensor-to-scalar ratio, one can obtain an upper bound on V∗ [9]:

V∗ < (1.7 · 1016 GeV)4 (95% C.L.). (3.138)

Equivalently, this implies a bound on the Hubble parameter during inflation [9]:

H∗
MPl

< 2.7 · 10−5 (95% C.L.). (3.139)

Another important property of primordial gravitational waves is that there is a relation
between their amplitude and the excursion of the scalar field, ∆φ, during inflation. The latter
is given by

∆φ =

∫ φ(tf )

φ(t∗)
dφ =

∫ tf

t∗

φ̇ dt ' φ̇

H

∫ tf

t∗

Hdt, (3.140)
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3.9. Adiabatic and isocurvature perturbations

where t∗ = t
(1)
H (k∗) is the time when the pivot scale crosses the horizon, tf is the time corre-

sponding to the end of inflation and we have taken φ̇/H to be constant. If we take as a pivot
scale the one relevant for the CMB, then∫ tf

tCMB

Hdt ≡ NCMB ' 60. (3.141)

This corresponds to the observable window (see again Fig. 1.14). As can be seen from (3.126),
φ̇/H =

√
2MPl(εV )1/2, and thus, from (3.127) and (3.140), we can find the so-called Lyth bound:( r

0.01

)1/2
' ∆φ

MPl
. (3.142)

This explicitly relates the tensor-to-scalar ratio to the excursion of the inflaton field, and tells
us that:

Large-field models: ∆φ/MPl > 1 ⇒ r > 0.01,

Small-field models: ∆φ/MPl < 1 ⇒ r < 0.01.

As we have already seen in the previous section, large-field models produce a higher value of the
tensor-to-scalar ratio with respect to small-field ones, and hence a higher value of the amplitude
of tensor perturbations.

Knowing if the excursion of the inflaton field was sub-Planckian or super-Planckian is ex-
tremely important also from the point of view of fundamental physics. Indeed, the excursion of
the inflaton is sensitive to the symmetry properties of the UV completion of the theory of grav-
ity, and thus its measurement (via the measurement of r) could provide the first experimental
hint about the nature of quantum gravity [35].

3.9 Adiabatic and isocurvature perturbations

As we have seen in the first section of this chapter, the fluctuations of the inflaton field on large
scales can be identified with a local shift backwards or forwards along the trajectory of the homo-
geneous background field. This affects the total energy density in different parts of the Universe
after inflation, but cannot give rise to variations in the relative density between different com-
ponents. Hence, single field slow-roll inflationary models produce purely adiabatic primordial
density perturbations, characterized by an overall curvature perturbation. This means that all
the perturbations in the different components of the Universe (photons, neutrinos, baryons and
cold dark matter) originate from the same curvature perturbation and satisfy the adiabaticity
property, which can be defined as follows [56]. Let us consider a given species, labelled by the
subscript X, and define the perturbation in its number and energy densities as

δnX = n̄X − nX , δρX = ρ̄X − ρX , (3.143)

where the bar refers to the unperturbed background value of the corresponding quantity. Adia-
batic perturbations are defined as perturbations affecting all the cosmological species such that
the relative ratios in the number densities remain unperturbed:

δ

(
nX
nY

)
= 0, (3.144)

for any pair of species X and Y . Since these correspond to a global perturbation of the en-
ergy content, they are related to a perturbation in the intrinsic spatial curvature through the
Einstein’s equations. If we define

δX ≡
δρX
ρX

, (3.145)
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the condition (3.144) can be rewritten as

1

4
δγ =

1

4
δν =

1

3
δb =

1

3
δcdm, (3.146)

where the different numerical coefficients arise from the equation of state for the corresponding
species, and where the subsrcipt cdm labels cold dark matter.

It is also possible to perturb the different components without perturbing the underlying
geometry. These are known as isocurvature perturbations7 and are characterized by variations
in the particle number ratios but with vanishing curvature perturbation. The variation in the
relative particle number densities between two different species X and Y can be quantified by
introducing the so-called entropy perturbation

SX,Y =
δnX
nX
− δnY

nY
, (3.147)

which, by exploiting the equation of state p = wρ for the two species, can be written as

SX,Y =
δX

1 + wX
− δY

1 + wY
. (3.148)

One can also define the entropy perturbations relatively to a given species. Choosing photons
as a species of reference, we have

Sb ≡ δb −
3

4
δγ , Scdm ≡ δcdm −

3

4
δγ , Sν ≡

3

4
δν −

3

4
δγ . (3.149)

These are respectively the baryon, cold dark matter and neutrino isocurvature modes. In terms
of these entropy perturbations the adiabatic mode is characterized by Sb = Scdm = Sν = 0.

One can decompose a general perturbation into adiabatic and isocurvature modes. However,
this decomposition is not time-invariant since, e.g., one can have a primordial pure isocurvature
mode which then generates an adiabatic perturbation. This happens if the energy densities of
the various species evolve differently, so that the balance that provided an unperturbed total
energy density at the beginning is then lost.

The best way to study the isocurvature and adiabatic behaviour of primordial perturbations
is through the CMB, since the two different types of perturbations produce distinctive signatures
on the CMB anisotropies [56]. Whereas an adiabatic initial perturbation generates a cosine
oscillatory mode in the photon-baryon fluid, leading to an acoustic peak at l ' 220 (in the
case of a flat universe) in the angular power spectrum of the CMB, a pure isocurvature initial
perturbation generates a sine oscillatory mode, which leads to a first peak at l ' 330. From
the observation of the first peak at l ' 220 we know that the dominant component must be
adiabatic, even though subdominant isocurvature contributions may be present.

7Isocurvature perturbations are tipically generated in inflationary models with multiple fields.
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Chapter 4

Non-Gaussianity from inflation

4.1 Gaussian random fields

The time dependence of each perturbation is determined by the laws describing the dynamical
evolution of our physical system, as we have seen in the previous chapter. However, if we look
at the perturbations as a function of position at a fixed time, as it is the case when we make
cosmological observations, they have random distributions. Therefore, through observations we
aim to obtain information about the statistical properties of these distributions, while from
a theoretical point of view we want to relate them to a model which describes the origin of
the perturbations themselves. Dealing with statistical properties means that, e.g., rather than
trying to predict things like the precise location of a particular galaxy we should care about the
typical distance between galaxies.

To describe these stochastic properties we introduce the concept of a random field (see [57]).
Let us consider a generic perturbation at a fixed time, φ(x). Having a random field means that
there is a set of functions φn(x), each with an associated probability Pn. This set of functions
is called the ensemble, and each individual function is a realization of the ensemble. In practical
applications we have a continuous set of functions and a continuous probability distribution.

We can expand the field φ(x) in the Fourier space as

φ(x) =

∫
d3k

(2π)3
φ(k)eik·x (4.1)

and parametrize the Fourier coefficients with two real functions

φ(k) = ak + ibk, (4.2)

with amplitude |φ(k)| =
√
a2
k + b2k. Reality of φ(x) implies that φ∗(k) = φ(−k), hence ak = a−k

and bk = −b−k. This means that any given field configuration φ(x) in the real space is fully
described by a set of real numbers (ak, bk). In order to determine φ(x) is sufficient to assign a
probability distribution function (PDF) for the set (ak, bk).

Let us now focus on a single mode k. A Gaussian random field is such that the PDF is [58]

P (ak, bk) =
1

πσ2
k

exp

(
−
a2
k + b2k
σ2
k

)
. (4.3)

This distribution, which has zero mean, is normalized such that∫ ∞
−∞

dak

∫ ∞
−∞

dbk
1

πσ2
k

exp

(
−
a2
k + b2k
σ2
k

)
= 1. (4.4)

Notice that the integral is over all the possible values of ak and bk for the mode k.
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In order to generalize what we have just seen to all the modes, we define the PDF via the
functional

P [φ(k)] =
1

πσ2
k

exp

(
−|φ(k)|2

σ2
k

)
. (4.5)

This just tells us that all the fields φ(k) are drawn from a distribution that obeys (4.3). This
also means that in the case of a Gaussian random field there is no correlation between the
different modes, since each of them has an independent probability distribution. Thanks to the
central limit theorem, this implies that the PDF of φ(x) at any given point is Gaussian1. Notice
also that, in accordance with the cosmological principle, we have assumed that the variance σk
depends only on the modulus of k (statistical isotropy).

Coming back to what we have said at the beginning of this section, in order to compare
observations with theoretical predictions we have to consider the expectation value of some
observable Q, namely we have to average it over the ensemble of all the possible realizations.
Here come into play two fundamental concepts in cosmology, namely the fair sample assumption
and the Ergodic hypothesis. Since we have only one Universe to observe, which is just one
realization of the ensemble, we assume that samples from well separated part of the Universe
are independent realizations of the same physical phenomenon, and that, in the observable part
of the Universe, there are enough independent samples to be representative of the statistical
ensemble. Then the Ergodic hypothesis says that averaging over the different realizations of the
ensemble is equivalent to averaging over a large enough volume of the Universe [59].

The expectation value of a generic observable Q [φ(k)], functional of the field φ(k), is given
by

〈Q [φ(k)]〉 =

∫
DφQ [φ(k)]P [φ(k)] , (4.6)

where the integral is over all the possible field configurations in the k-space. In the case of a
Gaussian PDF, this becomes

〈Q [φ(k)]〉 =
∏
k

∫
dak

∫
dbkQ [φ(k)]

1

πσ2
k

exp

(
−
a2
k + b2k
σ2
k

)
, (4.7)

since ak and bk parametrize the different configurations.
Let us consider the simple example Q [φ(k)] = aqaq′ :

〈aqaq′〉 =
∏
k

∫
dak

∫
dbk aqaq′

1

πσ2
k

exp

(
−
a2
k + b2k
σ2
k

)
=
σq
2
δ(3)(q + q′). (4.8)

This comes from the fact that, since the Gaussian distribution is even under both ak and bk,
all odd products of a and b vanish; we have also used the condition ak = a−k. Having obtained
this result, we can then compute

〈φ(q)φ(q′)〉 = 〈aqaq′〉 − 〈bqbq′〉 = σ2
qδ

(3)(q + q′), (4.9)

since the cross terms (which are odd products of a and b) vanish, and bk = −b−k. This tells
us that the Fourier transform of the two-pont function is given by the variance of the Gaussian
distribution. This is a well known result; indeed, if we repeat a similar calculation in the
configuration space, we find

〈φ(x1)φ(x2)〉 =

∫
d3k1

(2π)3

d3k2

(2π)3
ei(k1·x1+k2·x2) (〈ak1ak2〉 − 〈bk1bk2〉)

=

∫
d3k1

(2π)3

d3k2

(2π)3
ei(k1·x1+k2·x2)σ2

k1
δ(3)(k1 + k2)

=

∫
d3k

(2π)3
eik·(x1−x2) σ2

k

(2π)3
.

(4.10)

1Equivalently, the Fourier transform of a Gaussian is still a Gaussian.
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This is nothing else than the two-point correlation function in real space, which we have seen in
Eq. (3.99), with P (k) ≡ σ2

k/(2π)3. Thus, σk is a measure of the amplitude of the correlations
at a given mode k.

Since the Gaussian PDF is even around the mean 0, any expectation value of an odd product
of fields vanishes, while any expectation value of an even product of fields can be written in terms
of two-point functions. Thus, for example, we have:

〈φ(k1)φ(k2)φ(k3)〉 = 0, (4.11)

〈φ(k1)φ(k2)φ(k3)φ(k4)〉 = σ2
k1
σ2
k3
δ(3)(k1 + k2)δ(3)(k3 + k4) + 1↔ 3 + 1↔ 4. (4.12)

This is an example of the Wick’s Theorem, which we will encounter again in a while. A Gaussian
distribution, as one can see from its definition, is fully characterized by its mean and its variance,
so these results are expected.

However, if φ(x) is non-Gaussian, then the odd correlation functions do not vanish. In this
case all the higher-order correlation functions are required to fully characterize the distrbution.
The lowest oder of non-Gaussianity is given by the 3-point correlation function or, equivalently,
by its Fourier transform, the bispectrum.

Before proceeding on characterizing non-Gaussianity, we want to stress that Gaussianity is
not a statement about two-point correlation functions. Indeed, let us consider the following
example [58]: if we take a Gaussian CMB map and rearrange the cold and hot spots in such a
way to create a clear distinguishable picture, then the map will be highly correlated in a specific
way, but it will still be completely Gaussian. In other words, what we have changed after the
rearrangement of the spots is the power spectrum, not the underlying distribution P [φ(k)].

4.2 Non-Gaussian statistics

4.2.1 Why studying non-Gaussianity?

Non-Gaussianity is an important tool to understand and constrain the physics of the early
Universe (see [60]). In order to make progress in our comprehension of inflation, we need to
understand how the quantum fields evolve and interact in the early stages of the Universe. As
we have seen in the previous chapters, the power spectrum is determined by the inflationary
expansion rate and its time dependence, hence it is related to the evolution of the energy density
which drives inflation. However, the power spectrum does not allow us to strongly constrain
the interactions of the field (or fields) associated with this energy density, being also strongly
constrained by the symmetries of the underlying background geometry (e.g., the scale invariance
of the power spectrum in the de Sitter case is due to the symmetry of the de Sitter geometry
under dilations). This means that models of inflation with different field interactions can lead
to very similar predictions for the power spectrum. Non-Gaussianity can help us to break
this degeneracy, since it is sensitive to the interactions between the field(s) driving inflation.
Moreover, as we will see, different classes of inflationary models lead to different and specific
imprints in the shape of non-Gaussianity. For these reasons, the role non-Gaussianity plays for
the early Universe is similar to the role colliders play for particle physics.

Another point we want to mention is that some potential scenarios which are studied as
alternatives to inflation tend to generate large non-Gaussianity (see e.g. [61]). A null or strongly
constrained detection of non-Gaussianity would then rule out all of these models.

4.2.2 Primordial bispectrum

The leading non-Gaussian signature is the three-point correlation function, or its Fourier trans-
form, the bispectrum:

〈ζ(k1), ζ(k2), ζ(k3)〉 ≡ Bζ(k1,k2,k3). (4.13)
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If we consider perturbations around a FLRW background, the momentum dependence of the
bispectrum is remarkably simplified by the symmetries of the underlying geometry. Because of
homogeneity (invariance under translations), the bispectrum is proportional to a delta function
of the sum of the momenta; in other words, the three momenta form a closed triangle in the
Fourier space. Because of isotropy (invariance under rotations), the bispectrum depends only
on the magnitude of the momenta. Thus, we have

Bζ(k1,k2,k3) = (2π)3δ(3)(k1 + k2 + k3)Bζ(k1, k2, k3). (4.14)

This implies that the bispectrum depends on three parameters only. This fact can be understood
also in the following way. In principle the bispectrum is a function of the three momenta k1,
k2 and k3, for a total of 9 parameters. The delta function due to homogeneity implies that
one of the three momenta is fixed by the other two, leaving us with 6 parameters. Rotational
invariance allows us to rotate the axes in the two dimensional plane defined by the remaining
two momenta, such that one of them is along one of the axes. This fixes other 3 parameters,
hence we are left with a total of 3 parameters. These can be chosen as two of the angles of
the triangle formed by the three momenta and the overall scale of this triangle. If the power
spectrum is scale invariant, as it is approximately the case in slow-roll inflationary models, the
bispectrum is a homogeneous function of degree -6, namely

Bζ(λk1, λk2, λk3) = λ−6Bζ(k1, k2, k3). (4.15)

This fixes how the bispectrum depends on the overall scale of the triangle, leaving only the
two angles as free parameters. Usually, one uses as the two parameters the ratios between the
magnitudes of the comoving momenta, as x2 ≡ k2/k1 and x3 ≡ k3/k1. In this case, a scale
invariant power spectrum leads to

Bζ(k1, k2, k3) = k−6
1 Bζ(1, x2, x3). (4.16)

More in general, the bispectrum can be parametrized as [62]

Bζ(k1, k2, k3) =
S(k1, k2, k3)

(k1k2k3)2
∆2
ζ(k∗), (4.17)

where ∆2
ζ(k∗) = k3

∗Pζ(k∗) is the dimensionless power spectrum at a pivot scale k∗. The function
S is dimensionless and, for scale-invariant bispectra, is invariant under rescaling of all the three
momenta. There are two types of dependence of S on momentum:

� the shape of the bispectrum is the dependence of S on the momentum ratios k2/k1 and
k3/k2, while keeping fixed the overall momentum K ≡ 1

3(k1 + k2 + k3);

� the running of the bispectrum is the dependence of S on the overall momentum K, while
keeping fixed the momentum ratios k2/k1 and k3/k2.

We can then define the amplitude of non-Gaussianity as the size of the bispectrum in the equi-
lateral configuration2

fNL(K) =
5

18
S(K,K,K). (4.18)

For scale invariant bispectra fNL is constant, and we can extract it from the shape function.
The bispectrum can then be rewritten as

Bζ(k1, k2, k3) =
18

5
fNL

S(k1, k2, k3)

(k1k2k3)2
∆2
ζ(k∗), (4.19)

having also normalized the shape function as S(K,K,K) = 1.

2The equilateral configuration correponds to the case in which the three momenta are equal (in absolute value).
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4.2.3 Shapes of non-Gaussianity

The shape of non-Gaussianity is an important tool to distinguish among different models of
inflation. Indeed, different inflationary models lead to different and specifc signatures in the
shape function S. The latter, which depends on two parameters only, contains however a lot
of information about the source of non-Gaussianity. In the following subsections we give a
brief overview of the main shape functions, and also shortly characterize the various models of
inflation depending on the shape where they give the maximum contribution. For more details
on this, see [62–66].

Figure 4.1: Momentum configurations of the bispectrum, with x2 ≡ k2/k1 and x3 ≡ k3/k1 (from [62]).

Local shape

One of the first ways introduced to parametrize non-Gaussianity was through a non-linear cor-
rection to a Gaussian perturbation:

ζ(x) = ζG(x) +
3

5
f locNL

[
ζG(x)2 − 〈ζG(x)2〉

]
, (4.20)

where the 3/5 factor is due the fact that (4.20) was initially defined for the Bardeen gravitational
potential Φ [67]:

Φ(x) = ΦG(x) + f locNL

[
ΦG(x)2 − 〈ΦG(x)2〉

]
. (4.21)

During the matter dominated era this is related to ζ by a factor of 3/5, Φ = 3
5ζ. In prac-

tice, we split the field into its linear Gaussian part and its non-linear part, which is the
square of the former minus its variance. This definition is local in real space, hence the name
local non-Gaussianity.

The local ansatz has the following physical meaning: we are assuming that non-Gaussianities
are generated independently at different spatial points. In the context of inflation, typically this
implies that non-Gaussianity is generated on super-Hubble scales. This happens for all the
models in which the fluctuations of an additional field contribute to the curvature perturbations
we observe. In this case non-linearities come from the evolution of this field outside the horizon
and from the conversion mechanism which transforms the fluctuations of this field into density
perturbations [64]. Indeed, as we have seen, we need ε � 1, |η| � 1 in order to have a
sufficiently long period of inflation, and this implies that self-interaction terms in the inflaton
potential (which are proportional to higher derivatives of V (φ)) and the gravitational coupling
must be very small. Hence, non-linearities are suppressed too. However, if there is another
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scalar field whose contribution to the total energy density is negligible, its self-interactions are
not constrained by any slow-roll conditions, and large non-Gaussianities can be generated. If
then this second scalar field is coupled to the inflaton field, it is possible that non-Gaussianities
are transferred to the latter.

In position space, we can characterize this non-Gaussianity by the probability distribution
function of ζ, which is plotted in Fig. 4.2. The tail at large and positive ζ indicates where
structures are formed in the Universe. Thus, positive f locNL means more galaxies are formed given
a fixed power spectrum. For the CMB map, positive f locNL means that there are more very cold
spots than very hot spots, and more modestly hot spots than modestly cold spots [34].

Figure 4.2: Probability distribution of ζ for different f locNL parameters (from [34]).

In momentum space, the bispectrum of local non-Gaussianity is3

Bζ(k1, k2, k3) =
6

5
f locNL [Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)]

=
6

5
f locNL

∆2
ζ

(k1k2k3)2

(
k2

1

k2k3
+

k2
2

k1k3
+

k2
3

k1k2

)
,

(4.22)

where, to obtain the second line, we have assumed a scale-invariant power spectrum, Pζ(k) =
∆ζk

−3. Then, the local shape function is

Sloc(k1, k2, k3) =
1

3

(
k2

3

k1k2
+ 2 perms.

)
. (4.23)

Let us now assume, without loss of generality, that k1 ≤ k2 ≤ k3. The bispectrum for local
non-Gaussianity is largest when k1 � k2 ∼ k3, where the momenta k2 and k3 are nearly equal
due to momentum conservation. This is the so-called squeezed limit (see Fig. 4.1). Physically,
when one of the momenta is much smaller than the other two, the longest mode (which is the
one with the smallest momentum) is already super-horizon, and hence is “frozen”, when the
other two modes cross the horizon. Thus we can consider this constant mode as a shift of the
background, which has the effect of antcipating the horizon exit of the short modes, and the
three point function reduces to the background shift of the two point function. From (4.23), the
local shape function in the squeezed limit is

lim
k1�k2∼k2

Sloc(k1, k2, k3) =
2

3

k2

k1
. (4.24)

3The 6/5 factor is responsible for the 5/18 in the definition of fNL given in (4.18).
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As we show in Appendix B, there is a consistency relation for the bispectrum of scalar
pertubations in the squeezed limit for single-field models (having a single dynamical field is
the only assumption made in deriving this result). This tells us that the bispectrum is very
suppressed in this configuration, hence a convincing detection of non-Gaussianity in the squeezed
limit would rule out all classes of single field inflationary models [68].

Figure 4.3: Local shape (from [62])

.

Equilateral shape

In the case of the equilateral shape the shape function peaks at the equilateral triangle limit,
k1 = k2 = k3. The template for the shape function used in the CMB analysis is [62]

Sequil(k1, k2, k3) =

(
k1

k2
+ 5 perms.

)
−
(

k2
1

k2k3
+ 2 perms.

)
− 2. (4.25)

Physically this means that the correlation is among modes with comparable wavelengths, which
go out of the horizon nearly at the same time. The equilateral shape is typically generated
when considering theories with higher-derivative corrections. This happens because derivative
interactions are suppressed when any individual mode is far outside the horizon, because both
time and spatial derivatives become small. This implies that the bispectrum is maximal when
all the three modes have wavelenghts approximately equal to the horizon size.

Figure 4.4: Equilateral shape (from [62])
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Folded shape

The folded shape has the maximum signal at the flattened configuration, k1 ∼ 2k2 ∼ 2k3, and
typically arises when one consider a non-Bunch-Davies vacuum state as initial state, i.e. when
the modes are deep inside the horizon. Without going into details we briefly explain why this
happens, for more details see [63] and [69]. The usual mode function of the Bunch-Davies vacuum
has the positive energy mode ∼ e−ikτ . Let us consider a non-Bunch-Davies vacuum by adding a
small component of the negative energy mode, which is instead proportional to eikτ . The three
point function, as we will see, involves an integration of the product of three mode functions
with momenta k1, k2 and k3. Hence, the leading correction to the Bunch-Davies results is to
replace one of the momentum, say k3, with −k3. The usual term kT = k1 + k2 + k3 present in
e−ikT τ becomes k̃ = k1 + k2− k3 (and its cyclic permutations). After the integration over τ this
term appears in the denominator as k̃−3, and the effect is to enhance non-Gaussianity in the
folded triangle limit, k̃ = 0. An ansatz for this shape has been proposed in [69]:

Sfold(k1, k2, k3) = 6

(
k2

1

k2k3
+ 2 perms.

)
− 6

(
k1

k2
+ 5 perms.

)
+ 18. (4.26)

Figure 4.5: Folded shape (from [63])

Orthogonal shape

The orthogonal shape is a phenomenological shape that is orthogonal to both the local and equi-
lateral templates, and which arises in in inflationary models with higher-derivative interactions.
A template for this shape function is [62]

Sortho(k1, k2, k3) = −3.84

(
k2

1

k2k3
+ 2 perms.

)
+ 3.94

(
k1

k2
+ 5 perms.

)
− 11.10. (4.27)

4.2.4 Experimental constraints

From the measurements of the CMB temperature anisotropies made by the Planck satellite, we
have the following constraints on the local, equilateral, and orthogonal bispectrum amplitudes
[55]:

f locNL = 2.5± 5.7 [68% C.L.],

fequilNL = −16± 70 [68% C.L.],

forthoNL = −34± 33 [68% C.L.].

(4.28)
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Combining temperature and polarization data, the constraints are [55]:

f locNL = 0.8± 5.0 [68% C.L.],

fequilNL = −4± 43 [68% C.L.],

forthoNL = −26± 21 [68% C.L.].

(4.29)

Thus, the Planck results on primordial non-Gaussianity are consistent with single field slow-roll
inflationary models, which, as we will see, predict almost Gaussian primordial fluctuations, with
a tiny deviation from Gaussianity.

4.3 In-in formalism

The in-in formalism is used to compute n-point correlation functions of cosmological perturba-
tions [58,63,70]. This issue is different from the corresponding analysis of QFT. In the latter case,
indeed, we are interested in calculating S-matrix elements describing the transition probability
from a state in the far past to a state in the far future, thus we impose asymptotic conditions
at both very early and very late times. These asymptotic states are assumed to correspond to
free (i.e., non interacting) fields, namely they are eigenstates of the free Hamiltonian, since the
particles involved in the process are assumed to be faraway from the interaction region.

In cosmology we are instead interested in evaluating expectation values of product of fields
at a fixed time. Hence, boundary conditions are not imposed on the fields at both very early
and very late times, but only at very early times, when the wavelength is well below the horizon
and, according to the Equivalence Principle, the interaction picture fields should have the same
form as in Minkowski spacetime.

Let us consider a generic system described by an action

S =

∫
d4xL(φa(x, t), φ̇a(x, t)) =

∫
dtL, (4.30)

where a ranges over all the fields in the theory (e.g. the metric, matter scalar fields, etc.). The
conjugate momenta are defined by

πa =
∂L

∂φ̇a
(4.31)

and the Hamiltonian is

H [φa(t), πa(t)] =

∫
d3x φ̇aπa − L. (4.32)

The fields satisfy the equal-time commutation relations

[φa(x, t), πb(y, t)] = iδab δ
(3)(x− y), [φa(x, t), φb(y, t)] = 0, [πa(x, t), πb(y, t)] = 0, (4.33)

and the Heisenberg equations of motion are given by{
φ̇a(x, t) = i [H [φ(t), π(t)] , φa(x, t)] ,

π̇a(x, t) = i [H [φ(t), π(t)] , πa(x, t)] .
(4.34)

Now we split the fields into a time-dependent “classical” background and spacetime-dependent
“quantum fluctuations”:

φa(x, t) = φ̄a(t) + δφa(x, t), πa(x, t) = π̄a(t) + δπa(x, t), (4.35)

where the classical parts obey the classical equations of motion

˙̄φa(x, t) =
δH
[
φ̄(t), π̄(t)

]
δπ̄a(x, t)

, ˙̄πa(x, t) = −
δH
[
φ̄(t), π̄(t)

]
δφ̄a(x, t)

. (4.36)
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Notice that what we are doing in eq. (4.36) is varying the Hamiltonian density, namely

˙̄φa(x, t) =

∫
d3y

δH
[
φ̄(y, t), π̄(y, t)

]
δπ̄(y, t)

δ(3)(x− y). (4.37)

Since the classical parts are just c-number valued functions, their commutator with everything
vanishes, hence the perturbations satisfy the same commutation relations as the total variables

[δφa(x, t), δπb(y, t)] = iδab δ
(3)(x− y). (4.38)

Thus, we can think of the system as a theory of quantized perturbations living on the classical
(time-dependent) background. In practice, we are assuming that the background fields are sitting
in their “vacuum expectation values”, 〈φa(x, t)〉 = φa(t), and then we consider fluctuations
around them.

The next step is to expand the Hamiltonian around the classical background as

H [φ(t), π(t)] =H
[
φ̄(t), π̄(t)

]
+
∑
a

δH
[
φ̄(t), π̄(t)

]
δφ̄a(x, t)

δφa(x, t)+

+
∑
a

δH
[
φ̄(t), π̄(t)

]
δπ̄a(x, t)

δπa(x, t) + H̃ [δφ(t), δπ(t); t] ,

(4.39)

where H̃ [δφ(t), δπ(t); t] contains all the terms of second and higher order in δφ(x, t) and/or
δπ(x, t), and has a time-dependence which arises both from the time dependence of the fluctu-
ations and from the explicit time-dependence of the background fields; the latter is denoted by
; t.

Plugging this expansion into the Heisenberg equations of motion (4.34), we get

˙̄φa(x, t) + δφa(x, t) = i

[
H
[
φ̄(t), π̄(t)

]
+
∑
b

∫
d3y

{
δH
[
φ̄(y, t), π̄(y, t)

]
δφ̄b(y, t)

δφb(y, t)+

+
δH
[
φ̄(y, t), π̄(y, t)

]
δπ̄b(y, t)

δπb(y, t)

}
+ H̃, φ̄a(x, t) + δφa(x, t)

]
.

(4.40)

Using the fact that the background quantities commute with everything, we find

˙̄φa(x, t) + δφa(x, t) = i

[∑
b

∫
d3y

{
δH
[
φ̄(y, t), π̄(y, t)

]
δφ̄b(y, t)

δφb(y, t)+

+
δH
[
φ̄(y, t), π̄(y, t)

]
δπ̄b(y, t)

δπb(y, t)

}
+ H̃, δφa(x, t)

]
.

(4.41)

Focusing on the first commutator in the rhs, we have [δφb(x, t), δφa(y, t)] = 0, and the second
contribution gives [∑

b

∫
d3y

δH

δπ̄b(y, t)
δπb(y, t), δφa(x, t)

]
= ˙̄φa(x, t), (4.42)

where we have used the background equations of motion and the commutation relations between
the perturbations. This term cancels out the equal term in the lhs of Eq. (4.41). Repeating an
analogous calculation for ˙δπa, we end up with

˙δφa(x, t) = i
[
H̃ [δφ(t), δπ(t); t] , δφa(x, t)

]
,

˙δπa(x, t) = i
[
H̃ [δφ(t), δπ(t); t] , δπa(x, t)

]
.

(4.43)
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Thus, we have shown that the perturbations evolve with the Hamiltonian H̃. The equations
(4.43) are solved by {

δφa(x, t) = U−1(t, t0)δφa(x, t0)U(t, t0),

δπa(x, t) = U−1(t, t0)δπa(x, t0)U(t, t0),
(4.44)

where the unitary operator U satisfies

d

dt
U(t, t0) = −iH̃ [δφ(t), δπ(t); t]U(t, t0), (4.45)

with the initial condition U(t0, t0) = 1.
To describe the time evolution of the perturbations in the presence of interactions, we split

the perturbed Hamiltonian into a quadratic part H0 and an interacting part Hint:

H̃ = H0 +Hint. (4.46)

The H0 piece corresponds to the “free” part of the theory, namely include those terms that are
quadratic in the fields and that contain no more than two derivatives. Hint contains everything
else, namely all of the higher order self-interactions and the interactions amongst (eventual)
different fields.

We then define the so-called interaction picture fields δφIa(x, t) and δπIa(x, t) by requiring
that, at some initial time t0, they equate the full theory fields

δφIa(x, t0) = δφa(x, t0), δπIa(x, t0) = δπa(x, t0), (4.47)

and such that they evolve with the free Hamiltonian H0:{
˙δφ
I
a(x, t) = i

[
H0

[
δφI(t), δπI(t); t

]
, δφIa(x, t)

]
,

˙δπ
I
a(x, t) = i

[
H0

[
δφI(t), δπI(t); t

]
, δπIa(x, t)

]
.

(4.48)

In these equations we can choose the time at which evaluate H0

[
δφI(t), δπI(t); t

]
. This is due to

the fact that of course H0 commutes with itself, hence we can evolve it anytime we want inside
the commutator. In particular, let us evolve it to t0, so that

H0

[
δφI(t), δπI(t); t

]
→ H0

[
δφI(t0), δπI(t0); t

]
. (4.49)

Notice that the intrinsic time-dependence due to the time evolution of the background still
remains.

The solution of Eqs. (4.48) can again be written as a unitary transformation{
δφI(x, t) = U−1

0 (t, t0)δφI(x, t0)U0(t, t0),

δπI(x, t) = U−1
0 (t, t0)δπI(x, t0)U0(t, t0),

(4.50)

where U0 satisfies
d

dt
U0(t, t0) = −iH [δφ(t0), δπ(t0); t]U0(t, t0), (4.51)

with the initial condition U0(t0, t0) = 1.
Now we have all the ingredients to understand how to calculate n-point correlation functions

like
〈Q(t)〉 ≡ 〈Ω|Q(t)|Ω〉, (4.52)

where Q(t) is an operator given by the product of field perturbations δφa and δπa evaluated at
a fixed time t, and |Ω〉 is the vacuum state of the interacting theory at some time t0 in the far
past. More precisely, we consider the time t0 at which the fluctuations are supposed to behave
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like free fields as t0 = −∞, which is appropriate for cosmology since at very early times the
fluctuation wavelengths are well below the horizon4. In order to evaluate 〈Q(t)〉, we first use
the operator U(t, t0) to evolve Q(t) back to Q(t0)

〈Q(t)〉 = 〈Ω|Q [δφa(t), δπa(t)] |Ω〉 = 〈Ω|U−1(t, t0)Q [δφa(t0), δπa(t0)]U(t, t0)|Ω〉. (4.53)

Then we insert the identity operator 1 = U0(t, t0)U−1
0 (t, t0), obtaining

〈Q(t)〉 = 〈Ω|F−1(t, t0)U−1
0 (t, t0)Q [δφa(t0), δπa(t0)]U0(t, t0)F (t, t0)|Ω〉, (4.54)

with F (t, t0) = U−1
0 (t, t0)U(t, t0). Since δφa(t0) = δφIa(t0), δπa(t0) = δπIa(t0) and U0(t, t0)

determines the time-evolution of the interaction picture fields, (4.54) becomes

〈Q(t)〉 = 〈Ω|F−1(t, t0)Q
[
δφIa(t), δπ

I
a(t)

]
F (t, t0)|Ω〉. (4.55)

Moreover, using (4.44) and (4.51), we find

d

dt
F (t, t0) =

d

dt

(
U−1

0 (t, t0)U(t, t0)
)

= −U−2
0

dU0

dt
U + U−1

0

dU

dt

= iU−1
0

(
H0 [δφ(t0), δπ(t0); t]− H̃ [δφ(t0), δπ(t0); t]

)
U

= −iU−1
0 Hint [δφ(t0), δπ(t0); t]U0U

−1
0 U

= −iHint

[
δφI(t), δπI(t); t

]
F (t, t0).

(4.56)

Thus, F (t, t0) satisfies

d

dt
F (t, t0) = −iHI

int

[
δφI(t), δπI(t); t

]
F (t, t0), (4.57)

with F (t0, t0) = 1. This tells us that F (t, t0) is the unitary evolution operator associated with
Hint, with the interaction Hamiltonian constructed out of the interaction picture fields. The
solution of (4.57) is

F (t, t0) = T exp

[
−i
∫ t

t0

dt′HI
int(t

′)

]
, (4.58)

where T is the time-ordering operator, defined by

T {χ(t)χ(t′)} =

{
χ(t)χ(t′) t > t′

χ(t′)χ(t) t′ > t.
(4.59)

Therefore, from (4.55) we have

〈Ω|Q(t)|Ω〉 = 〈Ω|
[
T̄ exp

(
i

∫ t

t0

dt′HI
int(t

′)

)]
QI(t)

[
T exp

(
−i
∫ t

t0

dt′HI
int(t

′)

)]
|Ω〉, (4.60)

where T̄ is the anti time-ordering operator.
We now turn to the issue of the vacuum state, following [71], [34]. As before we use |Ω〉 to

denote the vacuum state of the interacting theory and |0〉 for the one of the free theory. We start
by expanding |0〉 using a complete set of energy eigenstates of the full theory. In particular, we
consider the energy eigenstates at an initial time for the perturbation modes5. Strictly speaking,
this requires all the modes to be sub-horizon; however, during inflation there are horizon-crossing
and super-horizon modes. For t0 → −∞, we have

e−iH(t−t0)|0〉 =
∑
n

e−iH(t−t0)|n〉〈n||0〉 =
∑
n

e−iEn(t−t0)|n〉〈n||0〉, (4.61)

4Now we should interpret t as the conformal time, such that the limit t→ −∞ makes sense.
5Remember that we are in an expanding background, thus energy is not conserved.
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where En are the eigenvalues of H. We then assume that |Ω〉 has some overlap with |0〉, that is
〈Ω||0〉 6= 0, otherwise Hint would not be a small perturbation. We can then write

e−iH(t−t0)|0〉 = e−iEΩ(t−t0)|Ω〉〈Ω||0〉+
∑
n′

e−iEn′ (t−t0)|n′〉〈n′||0〉, (4.62)

where n′ denotes the states excluding the ground state, EΩ ≡ 〈Ω|H|Ω〉, and En > EΩ. Now we
add a small imaginary part to time

t→ t̃ = t(1− iε) (4.63)

For t0 → −∞, the iε factor introduces a term e−∞·εEn . Then e−iEΩ(t̃−t̃0) dies slower than
e−iEn′ (t̃−t̃0), and we can solve for |Ω〉

e−iH(t̃−t̃0)|Ω〉 =
e−iH(t̃−t̃0)|0〉
〈Ω|0〉

⇒ F (t̃, t̃0)|Ω〉 =
F (t̃, t̃0)|0〉
〈Ω|0〉

. (4.64)

In practice, we use the iε prescription to turn off the interactions in the infinitely far past, and
that brings us to identify the interacting vacuum with the free-field vacuum. From now on, we
will neglect the tilde on t, assuming that t includes the small imaginary part.

Using (4.64), the in-in expectation value can be rewritten as

〈Ω|Q(t)|Ω〉 =
〈0|
[
T̄ e

i
∫ t
t0
HI
int(t

′)dt′
]
QI(t)

[
Te
−i

∫ t
t0
HI
int(t

′)dt′
]
|0〉

|〈0|Ω〉|2
. (4.65)

Notice that in the anti time-ordering the iε comes with a minus sign; this is due to the fact that
the T̄ part is the Hermitian conjugate of the T part. In order to evaluate the denominator of
(4.65), we take Q(t) to be the identity matrix. Thus, we can write it as

|〈0|Ω〉|2 =
〈0|
[
T̄ e

i
∫ t
t0
HI
int(t

′)dt′
] [
Te
−i

∫ t
t0
HI
int(t

′)dt′
]
|0〉

〈Ω|Ω〉
= 1. (4.66)

To get the previous result, we have to require both the states |Ω〉 and |0〉 to be normalized. The
T̄ part cancels the T part because they are unitary operators and one is the Hermitian conjugate
of the other. Finally, we can write the in-in master formula:

〈Ω|Q(t)|Ω〉 = 〈0|
[
T̄ e

i
∫ t
t0
HI
int(t

′)dt′
]
QI(t)

[
Te
−i

∫ t
t0
HI
int(t

′)dt′
]
|0〉. (4.67)

In practice one expands the above formula order by order in perturbation theory. As pre-
viously said, the coordinate t is usually taken to be the conformal time and t0 = −∞. For
example, the time ordered exponential gives

Te
−i

∫ t
−∞−

HI
int(t

′)dt′
= 1−i

∫ t

−∞−
HI
int(t

′)dt′+
i2

2
+

∫ t

−∞−
dt′
∫ t′

−∞−
HI
int(t

′)HI
int(t

′′)dt′′+..., (4.68)

where −∞± = −∞(1 ± iε), and the anti-time ordered exponential is simply the conjugate.
Plugging these expansions in (4.67), one finds:

〈Ω|Q(t)|Ω〉 = 〈0|
(

1 + i

∫ t

−∞+

HI
int(t

′)dt′ + ...

)
QI(t)

(
1− i

∫ t

−∞−
HI
int(t

′)dt′ + ...

)
|0〉. (4.69)
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If we stop at first order and consider the case of the bispectrum (i.e. QI(t) is the product of
three fields), the first term in the above expression vanishes, since we have the product of an
odd number of creation and annihilation operators acting on the vacuum. Thus, we have:

〈Q(t)〉 = 〈0|
(
i

∫ t

−∞+

HI
int(t

′)dt′
)
QI(t)−QI(t)

(
i

∫ t

−∞−
HI
int(t

′)dt′
)
|0〉

= 2 Im

∫ t

−∞−
dt′ 〈0|QI(t)HI

int(t
′)|0〉.

(4.70)

The next step for calculating correlators is to expand QI(t) and Hint in terms of interaction
picture fields, and then contract them by using the Wick’s theorem.

4.4 Non-Gaussianity in single field slow-roll inflation

The in-in formalism introduced in the previous section is a powerful tool to compute non-
Gaussianities from inflationary models. In the rest of this chapter we will do this for single field
slow-roll models: we will compute explicitly the bispectra of scalar and tensor perturbations,
and then give the results for the mixed correlators. In doing so, we will follow [13]. See also [14]
for a different derivation of this result.

4.4.1 Gauge fixing at non-linear order

The first step needed to compute non-Gaussianities is to fix the gauge we are working in. We
can extend at the non-linear level the definitions (3.17) and (3.19) of the comoving and the
spatially flat gauge. These are respectively given by [13]:

φ(x, t) = φ(t), hij = a2e2ζ [exp γ]ij , γi
i = 0, ∂iγij = 0,

[exp γ]ij = δij + γij +
1

2!
γikγ

k
j + . . . , e2ζ = +2ζ +

1

2!
(4ζ2) + . . . ,

(4.71)

and

φ(x, t) = φ(t)+ϕ(x, t), hij = a2[exp γ̃]ij , γ̃ ii = 0, ∂iγ̃ij = 0,

[exp γ]ij = δij + γ̃ij +
1

2!
γ̃ikγ̃

k
j + . . . .

(4.72)

At linear level, we have seen that we can pass from ϕ to ζ through the linear relation

ζ1 = −H
φ̇
ϕ, (4.73)

while tensor perturbations are gauge-invariant. At the non-linear level this last assertion is not
true anymore, and we have to work out the transformations that relate both scalar and tensor
perturbations in the two different gauges. These are given by [13] (see also [48])

ζ =ζ1 +
1

2

φ̈

φ̇H
ζ2

1 +
1

4

φ̇2

H2
ζ2

1 +
1

H
ζ̇1ζ1 −

1

4

a−2

H2
(∂iζ1)(∂iζ1)− 1

4

a−2

H2
∂−2∂i∂j(∂

iζ1∂
jζ1)+

+
1

2H
∂iψ∂

iζ1 −
1

2H
∂−2∂i∂j(∂

iψ∂jζ1),

(4.74)

γij =γ̃ij +
1

H
˙̃γijζ1 −

a−2

H2
∂iζ1∂jζ1 +

1

H
(∂iψ∂jζ1 + ∂jψ∂iζ1) , (4.75)

where ψ is the scalar perturbation in the shift vector. On super-horizon scales only the first
three terms in (4.74) and the first one in (4.75) are non-vanshing. It is indeed possible to show
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that ζ and γ, defined via (4.71), are constant above the horizon. To show this fact we follow
the demonstration provided in [13]. We need to expand the action to all orders in powers of the
fields, but only to first order in the derivatives of the fields. It will be soon clear why this is
sufficient. We assume that N = 1 + δN , where δN has an expansion in derivatives that starts
with a first order term, while Ni is of zero-th order in derivatives, so that DiNj is of first order
in derivatives. By expanding the Hamiltonian constraint to first order in derivatives and solving
for δN , one obtains

2V δN = 2H(3ζ̇ −DiN
i). (4.76)

The action to first order in derivatives on a solution of the Hamiltonian constraint is given by

S =

∫
d3x dt

√
hN(R(3) − 2V ) =

∫
d3x dt

√
h(−2V − 2V δN)

=

∫
d3x dt a3e3ζ(−6H2 + φ̇2 − 6ζ̇H) = −2

∫
d3x dt ∂t(a

3e3ζH),

(4.77)

where we have neglected the contributions coming from R(3), which are of second order in the
derivatives, and we have used (4.76) and the equations of motion (1.70)-(1.71). Therefore, the
only contribution to the action (4.77) is given by a total derivative term, which can be neglected.
This result tells us that the action to all orders in powers of the fields contains no terms with
first derivatives of the fields themseleves. Since outside the horizon we can neglect all the spatial
derivatives, it follows that the only derivative terms present in the action are time derivative
terms of higher than the first order. This implies that ζ and γij are contant outside the horizon
to all orders. From the relation (4.75) between the tensor perturbations in the two gauges, γij
and γ̃ij , it follows that these have the same expression on super-horizon scales.

To compute the bispectra for single field slow-roll models we choose to work in the spatially
flat gauge. This is convenient since it prevents us from doing a lot of integrations by parts and
the calculations are much simpler. Moreover, working in this gauge makes it more clear which
are the terms dominant in the slow-roll parameters. In order to pass from the variable ϕ to ζ,
which is the one that stays constant above the horizon, we will then use the relation (4.74).

One can repeat the same steps we have done in the comoving gauge to find the first order
expressions of N and Ni in the spatially flat gauge, finding [13]:

N (1) =
φ̇2

2H
ϕ, N

(1)
i = ∂iψ, ∂2ψ = − φ̇2

2H2
∂t

(
H

φ̇
ϕ

)
, (4.78)

Notice that both N (1) and N
(1)
i are subleading in the slow-roll parameter εV with respect to ϕ,

since

N (1) ∼
√
εV ϕ, N

(1)
i ∼

√
εV ϕ. (4.79)

4.4.2 Bispectrum of scalar perturbations

To compute the bispectrum of scalar perturbations we need to expand the action (3.15) to cubic
order in scalar perturbations. This is given by [13]

S3 =

∫
d3x dt a3

[
− φ̇

4H
ϕϕ̇2 − a−2 φ̇

4H
ϕ(∂iϕ)(∂iϕ)− ϕ̇∂iψ∂iϕ+

+
3φ̇3

8H
ϕ3 − φ̇5

16H3
ϕ3 − φ̇V ′′

4H
ϕ3 − V ′′′

6
ϕ3 +

φ̇3

4H2
ϕ2ϕ̇+

φ̇2

4H
ϕ2∂2ψ+

+
φ̇

4H

(
−ϕ∂i∂jψ∂i∂jψ + ϕ∂2ψ∂2ψ

)]
.

(4.80)

82



4.4. Non-Gaussianity in single field slow-roll inflation

Only the first line contributes at leading order in slow-roll and, by using the first order relation
(4.73) between ϕ and ζ, it is easy to see that the leading order terms in ζ are of order ε2V . This
is another convenience of this gauge choice. What is instead not obvious in this gauge is that
there is some quantity which is constant outside the horizon, since the ϕ3 couplings could lead to
some evolution of the perturbations. To see that ζ stays indeed constant, it is more convenient
to work in the comoving gauge. See again [13] for a detailed discussion of this issue.

Keeping only the leading terms in the action (4.80) and using Eqs. (4.78), the cubic inter-
action Lagrangian can be written as

Lζ1ζ1ζ1int = ε2VM
2
Pl

∫
d3x

[
aζ1ζ

′ 2
1 + aζ1(∂iζ1)(∂iζ1)− 2aζ ′1(∂i∂

−2ζ ′1)(∂iζ1)
]
, (4.81)

where we have reintroduced the Planck mass by dimensional analysis. We have also switched
to the conformal time τ , with the prime denoting a derivative with respect to it. Our strategy
is to first compute the bispectrum of ζ1, and then find that of ζ by exploiting the non-linear
relation (4.74) between the two variables, where we have seen that only the first line contributes
on super-horizon scales. As regarding this point, it is useful to notice that we can rewrite the
super-horizon relation between ζ1 and ζ as

ζ = ζ1 + λζ2
1 , (4.82)

with

λ ≡ 1

2

φ̈

φ̇H
+

1

4

φ̇2

H2
' 1

4
η, (4.83)

where η is the Hubble slow-roll parameter, defined as η ≡ ε̇
εH . This introduces an additonal

contributon to the three-point function of ζ, since in real space we have [13]

〈ζ(x1)ζ(x2)ζ(x3)〉 = 〈ζ1(x1)ζ1(x2)ζ1(x3)〉+ 2λ[〈ζ(x1)ζ(x2)〉〈ζ(x1)ζ(x3)〉+ perm]. (4.84)

Let us now start the computation of the bispectrum of ζ1. As usual, we expand the field ζ1

in the Fourier space as

ζ1(x, τ) =

∫
d3k

(2π)3
ζ1(k, τ)eik·x. (4.85)

The interaction Lagrangian can then be written as

Lζ1ζ1ζ1int =
ε2VM

2
Pl

(2π)9

∫
d3x d3k d3p d3q

[
aζ1(k, τ)ζ ′1(p, τ)ζ ′1(q, τ)− a(p · q)ζ1(k, τ)ζ1(p, τ)ζ1(q, τ)+

−2a
(p · q)

p2
ζ ′1(k, τ)ζ ′1(p, τ)ζ1(q, τ)

]
ei(k+p+q)·x

=
ε2VM

2
Pl

(2π)6

∫
d3k d3p d3q δ(3)(k + p + q)

[
aζ1(k, τ)ζ ′1(p, τ)ζ ′1(q, τ)+

−a(p · q)ζ1(k, τ)ζ1(p, τ)ζ1(q, τ)− 2a
(p · q)

p2
ζ ′1(k, τ)ζ ′1(p, τ)ζ1(q, τ)

]
,

(4.86)

where in the second line we have integrated over x. We can now compute the bispectrum of
scalar perturbations by exploiting the in-in formalism introduced in the previous section. We
are interested in evaluating the bispectrum in the super-horizon limit, corresponding to τ → 0.
Since in our case

Hζ1ζ1ζ1
int = −Lζ1ζ1ζ1int , (4.87)
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we have

〈ζ1(k1, 0)ζ1(k2, 0)ζ1(k3, 0)〉 = −2
ε2VM

2
Pl

(2π)6
Im

{∫
d3k d3p d3q δ(3)(k + p + q)

∫ 0

−∞−
dτ ′a ·

·
[
S1(τ ′) + S2(τ ′) + S3(τ ′)

]}
,

(4.88)

where we have defined

S1(τ ′) ≡ a〈0|ζ1(k1, 0)ζ1(k2, 0)ζ1(k3, 0)ζ1(k, τ ′)ζ1(p, τ ′)ζ1(q, τ ′)|0〉, (4.89)

S2(τ ′) ≡ −a(p · q)〈0|ζ1(k1, 0)ζ1(k2, 0)ζ1(k3, 0)ζ1(k, τ ′)ζ1(p, τ ′)ζ1(q, τ ′)|0〉, (4.90)

S3(τ ′) ≡ −2a
(p · q)

p2
〈0|ζ1(k1, 0)ζ1(k2, 0)ζ1(k3, 0)ζ1(k, τ ′)ζ1(p, τ ′)ζ1(q, τ ′)|0〉. (4.91)

To evaluate these terms we can use the Wick theorem: this consists in contracting the couples
of fields evaluated at different times in all the possible ways, namely considering all the possible
permutations of the momenta. In doing so, we need to use the following relations

〈ζ1(k, τ)ζ1(k′, τ ′)〉 = (2π)3δ(3)(k + k′)u(k, τ)u∗(k′, τ ′), (4.92)

〈ζ1(k, τ)ζ ′1(k′, τ ′)〉 = (2π)3δ(3)(k + k′)u(k, τ)
d

dτ
u∗(k′, τ ′), (4.93)

which can be easily obtained by expanding the field ζ1 in terms of the creation and annihilation
operators, exactly as we have done in (3.106). Thus, we find

S1 = (2π)9a

[
δ(3)(k + k1)u(k1, 0)u∗(k, τ ′)δ(3)(p + k2)u(k2, 0)

d

dτ
u∗(p, τ ′)·

· δ(3)(q + k3)u(k3, 0)
d

dτ
u∗(q, τ ′)

]
+ perm(ki),

(4.94)

S2 = −(2π)9a(k1 · k2)
[
δ(3)(k + k1)u(k1, 0)u∗(k, τ ′)δ(3)(p + k2)u(k2, 0)u∗(p, τ ′)·

· δ(3)(q + k3)u(k3, 0)u∗(q, τ ′)
]

+ perm(ki),
(4.95)

S3 = −(2π)92a
(k1 · k2)

k2
1

(k1 · k2)

[
δ(3)(k + k1)u(k1, 0)

d

dτ
u∗(k, τ ′)δ(3)(p + k2)u(k2, 0)u∗(p, τ ′)·

· δ(3)(q + k3)u(k3, 0)
d

dτ
u∗(q, τ ′)

]
+ perm(ki).

(4.96)

Plugging these exprssions into Eq. (4.88), we find

〈ζ1(k1, 0)ζ1(k2, 0)ζ1(k3, 0)〉 =2ε2VM
2
Pl (2π)3δ(3)(k1 + k2 + k3)·

· Im

[
− I1 + (k1 · k2)I2 − 2

(k1 · k2)

k2
1

I3

]
+ perm(ki),

(4.97)

with

I1 ≡ u(k1, 0)u(k2, 0)u(k3, 0)

∫ 0

−∞−
dτ ′a2

[
u∗(k1, τ

′)

(
d

dτ
u∗(k2, τ

′)

)(
d

dτ
u∗(k3, τ

′)

)]
, (4.98)

I2 ≡ u(k1, 0)u(k2, 0)u(k3, 0)

∫ 0

−∞−
dτ ′a2

[
u∗(k1, τ

′)u∗(k2, τ
′)u∗(k3, τ

′)
]
, (4.99)

I3 ≡ u(k1, 0)u(k2, 0)u(k3, 0)

∫ 0

−∞−
dτ ′a2

[(
d

dτ
u∗(k1, τ

′)

)
u∗(k2, τ

′)

(
d

dτ
u∗(k3, τ

′)

)]
. (4.100)

84



4.4. Non-Gaussianity in single field slow-roll inflation

To compute these integrals we need the analytic expression of the mode function u(k, τ). From
the solution we have found in the previous chapter and taking the expression at leading order
in εV , we have (see e.g. [63])

u(k, τ) =
iH

MPl

√
4εV k3

(1 + ikτ)e−ikτ , (4.101)

d

dτ
u∗(k, τ) =

iH

MPl

√
4εV k3

k2τeikτ . (4.102)

To keep only the lowest order terms in slow-roll, we use the de Sitter expression for the scale
factor, a(τ) ' −1/Hτ , with H ' const. Indeed, keeping the time variation of the Hubble
parameter gives a contribution of order εV , as can be seen by expanding H around a constant
time value t∗:

H(t) = H(t∗) + Ḣ(t)|t=t∗(t− t∗) + . . . ' H(t∗)− εVH2(t∗)(t− t∗) + . . . (4.103)

We can minimize the error due to these approximations by taking the value of H at the horizon
crossing time of the total momentum kT = k1 +k2 +k3. We label this time as t∗ and H∗ ≡ H(t∗).
The first integral (4.98) thus gives

I1 = −H4
∗k

2
2k

2
3

(
3∏
i=1

1

4M2
PlεV k

3
i

)∫ 0

−∞−
dτ ′τ ′(1− k1τ

′)eikT τ
′
, (4.104)

and the integral in this last expression can be easily computed as∫ 0

−∞−
dτ ′τ ′(1− k1τ

′)eikT τ
′

=

∫ 0

−∞−
dτ ′eikT τ

′ − ik1

∫ 0

−∞−
dτ ′τ ′eikT τ

′

= − i

kT
eikT τ

′
∣∣∣0
−∞−

− ik1

[
− i

kT
τ ′eikT τ

′
∣∣∣0
−∞−

+
i

kT

∫ 0

−∞−
dτ ′eikT τ

′
]

= − i

kT
− i k1

k2
T

.

(4.105)

Notice that the iε prescription cancels out the contributions at far past infinity in the last step.
Thus, we have

I1 = iH4
∗

(
3∏
i=1

1

4M2
PlεV k

3
i

)(
k2

2k
2
3

kT
+
k2

2k
2
3k1

k2
T

)
. (4.106)

As regarding I2, we have

I2 = −H4
∗

(
3∏
i=1

1

4M2
PlεV k

3
i

)∫ 0

−∞−

dτ ′

τ ′2
(1− ik1τ

′)(1− ik2τ
′)(1− ik3τ

′)eikT τ
′
. (4.107)

The last integral can be written as∫ 0

−∞−

dτ ′

τ ′2
(1− ik1τ

′)(1− ik2τ
′)(1− ik3τ

′)eikT τ
′

=

∫ 0

−∞−

dτ ′

τ ′2
eikT τ

′ − ikT
∫ 0

−∞−

dτ ′

τ ′
eikT τ

′
+

−
∑
i 6=j

kikj

∫ 0

−∞−
dτ ′eikT τ

′
+ ik1k2k3

∫ 0

−∞−
dτ ′τ ′eikT τ

′
.

(4.108)
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The first term on the right hand side is given by∫ 0

−∞−

dτ ′

τ ′2
eikT τ

′
= − 1

τ ′
eikT τ

′
∣∣∣0
−∞−

+ ikT

∫ 0

−∞−

dτ ′

τ ′
eikT τ

′
, (4.109)

and the second term cancels out with the second one in the right hand side of (4.108). As
regarding the first term, we have

lim
τ ′→0

(
− 1

τ ′
eikT τ

′
)

= −ikT . (4.110)

The other two terms present in (4.108) can be evaluated analogously and yield∑
i 6=j

kikj

∫ 0

−∞−
dτ ′eikT τ

′
= −

∑
i 6=j

kikj
i

kT
, (4.111)

ik1k2k3

∫ 0

−∞−
dτ ′τ ′eikT τ

′
= i

k1k2k3

k2
T

. (4.112)

Putting all these results together, we find∫ 0

−∞−

dτ ′

τ ′2
(1− ik1τ

′)(1− ik2τ
′)(1− ik3τ

′)eikT τ
′

= i

(
−kT +

∑
i>j kikj

kT
+
k1k2k3

k2
T

)
. (4.113)

The final expression of I2 thus reads

I2 = iH4
∗

(
3∏
i=1

1

4M2
PlεV k

3
i

)(
kT −

∑
i>j kikj

kT
− k1k2k3

k2
T

)
. (4.114)

Finally we need to evaluate I3. The computation is exactly the same as for I1, and the final
result is

I3 = iH4
∗

(
3∏
i=1

1

4M2
PlεV k

3
i

)(
k2

1k
2
2

kT
+
k2k

2
1k

2
3

k2
T

)
. (4.115)

To compute the bispectrum we then need to add all the contributions just computed in the
expression (4.97), taking into account all the possible permutations of the ki. To this last end,
it is useful to notice that

(k1 + k2 + k3)2 = 0 = k2
1 + k2

2 + k2
3 + 2k1 · k2 + 2k1 · k3 + 2k2 · k3, (4.116)

which implies that

k1 · k2 + k1 · k3 + k2 · k3 = −1

2
(k2

1 + k2
2 + k2

3). (4.117)

When summing up all the permutations of the last term in (4.97), it is useful also the following
relation

k1 · k2

k2
1

+
k1 · k3

k2
1

+
k2 · k3

k2
2

+
k2 · k1

k2
2

+
k3 · k1

k2
3

+
k3 · k2

k2
3

= −1

2

(
k2

3

k2
1

+
k2

2

k2
1

+
k2

1

k2
2

+
k2

3

k2
2

+
k2

2

k2
3

+
k2

1

k2
3

)
.

(4.118)
Therefore, taking into account all the permutations in (4.97), we find (see [48] for more details
about the computation)

〈ζ1(k1, 0)ζ1(k2, 0)ζ1(k3, 0)〉 =(2π)3δ(3)(k1 + k2 + k3)
H4
∗

M4
Pl

1

(k1k2k3)3

1

32εV
·

·

∑
i

k3
i +

∑
i 6=j

kik
2
j +

8

kT

∑
i>j

k2
i k

2
j

 .

(4.119)
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The contribution coming from the non-linear relation between ζ1 and ζ gives

η

2
[〈ζ(k1)ζ(k2)〉〈ζ(k1)ζ(k3)〉+ perm] = (2π)3δ(3)(k1 + k2 + k3)

H4
∗

32ε2
η

(k1k2k3)3
(k2

1 + k2
2 + k2

3).

(4.120)
Thus, summing the two previous contributions, the final expression for the (super-horizon)
bispectrum of scalar perturbations reads [13]

〈ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)〉 =(2π)3δ(3)(k1 + k2 + k3)
H4
∗

M4
Pl

1

(k1k2k3)3

1

4ε2
·

·

η
8

∑
i

k3
i +

ε

8

∑
i

k3
i +

∑
i 6=j

kik
2
j +

8

kT

∑
i>j

k2
i k

2
j

 . (4.121)

In order to obtain the shape function S(k1, k2, k3) we have to normalize this result to the power
spectrum (see the definiton given in Subsection 4.2.2). This cancels out the ε−2 factor, and the
shape function can be written as the superposition of local and equilateral shapes [72]:

S(k1, k2, k3) ' (6ε− 2η)Slocal(k1, k2, k3) +
5

3
εSequil(k1, k2, k3). (4.122)

This expression tells us that non-Gaussianity of scalar perturbations in single field slow-roll
models is suppressed by the slow-roll parameters,

fNL ∼ O(ε, η). (4.123)

In [72] it has been shown that the dominant contribution to S(k1, k2, k3) comes from the local
shape. Therefore, like the local shape, the shape function of scalar perturbations in single field
slow-roll inflation peaks in the squeezed limit. This can also be seen directly from (4.121), since
the factor (k1k2k3)−3 gives its maximum contribution when one of the momenta goes to zero.

4.4.3 Bispectrum of tensor perturbations

To compute the bispectrum of primordial gravitational waves we need to expand the action at
third order in tensor perturbations. This is given by

Sγγγ =
M4
Pl

4

∫
dτ d3x a2

(
γikγjl −

1

2
γijγkl

)
∂k∂lγij . (4.124)

Then, as usual, we expand the tensor perturbations in the Fourier space as

γij(x, τ) =

∫
d3k

(2π)3

∑
λ′=+,×

ελ
′
ij (k)γλ

′
k (τ)eik·x. (4.125)

After integrating over x, the Lagrangian at third order in tensor perturbations takes the form

Lγγγint =
M4
Pl

4

∫
d3k d3p d3q

1

(2π)6
δ(3)(k + p + q) a2

[
−qkqlγ

λ′1
k γ

λ′2
p γ

λ′3
q ε

λ′1
ik (k)ε

λ′2
jl (p)ε

λ′3
ij (q)+

+
1

2
qkqlγ

λ′1
k γ

λ′2
p γ

λ′3
q ε

λ′1
ij (k)ε

λ′2
kl (p)ε

λ′3
ij (q)

]
,

(4.126)

where we have neglected the sum over the polarization indices for simplicity of notation. As
in the case of scalar perturbations, the interaction Hamiltonian is related to the interaction
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Lagrangian simply by Hγγγ
int = −Lγγγint , and the super-horizon (i.e. kτ → 0) bispectrum of tensor

perturbations can be written as

〈γλ1
k1

(0)γλ2
k2

(0)γλ3
k3

(0)〉 = 2Im

{
M4
Pl

4

1

(2π)6

∫
d3k d3p d3q δ(3)(k+p+q)

∫ 0

−∞−
dτ ′a2

[
T1(τ ′) + T2(τ ′)

]}
,

(4.127)
where we have defined

T1(τ ′) ≡ qkqlε
λ′1
ik (k)ε

λ′2
jl (p)ε

λ′3
ij (q) 〈0|γλ1

k1
(0)γλ2

k2
(0)γλ3

k3
(0)γ

λ′1
k (τ ′)γ

λ′2
p (τ ′)γ

λ′3
q (τ ′)|0〉, (4.128)

T2(τ ′) ≡ −1

2
qkqlε

λ′1
ij (k)ε

λ′2
kl (p)ε

λ′3
ij (q) 〈0|γλ1

k1
(0)γλ2

k2
(0)γλ3

k3
(0)γ

λ′1
k (τ ′)γ

λ′2
p (τ ′)γ

λ′3
q (τ ′)|0〉. (4.129)

In order to evaluate these two contributions we exploit the Wick’s theorem, exactly as we did
in the case of scalar perturbations. Since

〈γλ1
k1

(0)γ
λ′1
k (τ ′)〉 = (2π)3δ(3)(k1 + k)δλ1λ′1uλ1(k1, 0)u∗λ′1

(k, τ ′), (4.130)

we find

T1(τ ′) =(2π)9qkqlε
λ′1
ik (k)ε

λ′2
jl (p)ε

λ′3
ij (q)

[
δ(3)(k1 + k)δλ1λ′1uλ1(k1, 0)u∗λ′1

(k, τ ′)δ(3)(k2 + p)·

·δλ2λ′2uλ2(k2, 0)u∗λ′2
(p, τ ′)δ(3)(k3 + q)δλ3λ′3uλ3(k3, 0)u∗λ′3

(q, τ ′) + perm(ki)
]
,

(4.131)

T2(τ ′) =− (2π)9

2
qkqlε

λ′1
ij (k)ε

λ′2
kl (p)ε

λ′3
ij (q)

[
δ(3)(k1 + k)δλ1λ′1uλ1(k1, 0)u∗λ′1

(k, τ ′)δ(3)(k2 + p)·

·δλ2λ′2uλ2(k2, 0)u∗λ′2
(p, τ ′)δ(3)(k3 + q)δλ3λ′3uλ3(k3, 0)u∗λ′3

(q, τ ′) + perm(ki)
]
.

(4.132)

Plugging these expressions into (4.127), this becomes

〈γλ1
k1

(0)γλ2
k2

(0)γλ3
k3

(0)〉 =(2π)3M
2
Pl

2
δ(3)(k1 + k2 + k3) Im

{[
k3kk3lε

λ1
ik (k1)ελ2

jl (k2)ελ3
ij (k3)+

−1

2
k3kk3lε

λ1
ij (k1)ελ2

kl (k2)ελ3
ij (k3)

]
I + perm(ki)

}
,

(4.133)

with

I ≡ uλ1(k1, 0)uλ2(k2, 0)uλ3(k3, 0)

∫ 0

−∞−
dτ ′u∗λ1

(k1, τ
′)u∗λ2

(k2, τ
′)u∗λ3

(k3, τ
′). (4.134)

To compute explicitly the integral I we need the analytic expression of the mode function
uλ(k, τ). Since we are interested in obtaining the dominant contribution in the slow-roll param-
eters, we can take the zero-th order value of the mode function:

uλ(k, τ) =
iH

MPl

√
k3

(1 + ikτ)e−ikτ . (4.135)

For the same exact reason we also take

a(τ) ' − 1

Hτ
, (4.136)
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with H ' const. As we did for scalar perturbations, to minimize the error which comes from
taking the Hubble parameter as a constant, we evaluate it at the horizon crossing time of the
total momentum kT = k1 + k2 + k3, and denote it H∗. The integral I can now be written as

I =
H4
∗

M6
Pl

1

(k1k2k3)3

∫ 0

−∞−

dτ ′

τ ′2
(1− ik1τ

′)(1− ik2τ
′)(1− ik3τ

′)eikT τ
′
. (4.137)

This is the same integral as in (4.113), hence we find

I = i
H4
∗

M6
Pl

1

(k1k2k3)3

(
−kT +

∑
i>j kikj

kT
+
k1k2k3

k2
T

)
. (4.138)

We can then write the bispectrum (4.133) as

〈γλ1
k1

(0)γλ2
k2

(0)γλ3
k3

(0)〉 =(2π)3δ(3)(k1 + k2 + k3)

(
H∗
MPl

)4 1

2(k1k2k3)3

(
−kT +

∑
i>j kikj

kT
+
k1k2k3

k2
T

)
·

·
[
k3kk3lε

λ1
ik (k1)ελ2

jl (k2)ελ3
ij (k3)− 1

2
k3kk3lε

λ1
ij (k1)ελ2

kl (k2)ελ3
ij (k3) + perm(ki)

]
.

(4.139)

Taking into account all the possible permutations of the momenta, this can be written as [13]
(see also [73]):

〈γλ1
k1

(0)γλ2
k2

(0)γλ3
k3

(0)〉 =(2π)3δ(3)(k1 + k2 + k3)

(
H∗
MPl

)4 1

2(k1k2k3)3

(
−kT +

∑
i>j kikj

kT
+
k1k2k3

k2
T

)
·

·
(
−ελ1

ii′ (k1)ελ2
jj′(k2)ελ3

ll′ (k3)tijlti′j′l′
)
,

(4.140)

where tijl is given by
tijl = k1lδij + k2iδjl + k3jδil. (4.141)

Notice that the bispectrum of tensor modes is subdominant in the slow-roll parameters with
respect to the bispectrum of scalar perturbations (4.121). Analogously to the scalar case, how-
ever, also the tensor bispectrum peaks in the squeezed limit (k1 � k2, k3), where it takes the
form [13,74]

〈γλ1
k1

(0)γλ2
k2

(0)γλ3
k3

(0)〉k1�k2,k3 = (2π)3δ(3)(k1 + k2 + k3)
3

2
PT (k2)PT (k1)δλ2λ3

k2ik2jε
λ1
ij (k1)

k2
2

.

(4.142)

4.4.4 Mixed correlators

Analogously to what we have done for scalar and tensor perturbations, one can also compute
the mixed correlators between the primordial perturbations. Without entering in the details of
the calculations, we give the final results [13]:

〈γλk1
ζk2ζk3〉 = (2π)3δ(3)(k1+k2+k3)

(
H∗
MPl

)4 1

2(k1k2k3)3

1

ε

(
−kT +

∑
i>j kikj

kT
+
k1k2k3

k2
T

)
ελijk

i
2k
j
3,

(4.143)

〈ζk1γ
λ2
k2
γλ3
k3
〉 = (2π)3δ(3)(k1+k2+k3)

(
H∗
MPl

)4 1

2(k1k2k3)3

(
− 1

16
k3

1 +
1

8
k1(k2

2 + k2
3) +

k2
2k

2
3

kT

)
ελ2
ij ε

λ3
ij .

(4.144)
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The correlator between one tensor and two scalar perturbations is of the same order in the slow-
roll parameters as the correlator between scalar perturbations (4.121). The correlator between
one scalar and two tensor perturbations is instead subdominant in the slow-roll parameters, like
the correlator between tensor perturbations (4.140).

All the correlators are dominated by the squeezed limit, since all of them contain the factor
(k1k2k3)−3, which gives its maximum contribution when one of the momenta goes to zero.

The experimental constraints on the scalar bispectrum are those presented in Subsection
4.2.4, and come from the measurements of the temperature anisotropies and polarization of the
CMB made by the Planck satellite. Since we have not detected primordial gravitational waves
yet, we have no measurements of the other correlators.

4.5 Summary of the predictions from single field slow-roll infla-
tion

In the previous chapter we have studied the dynamics of the perturbations at the quadratic level
(namely, we have studied the evolution of the free fields) in single field slow-roll inflationary
models. Then, in this chapter we have studied non-Gaussianity, which is determined by the
interactions among the dynamical degrees of freedom of the theory. It is now time to summarize
which are the fundamental predictions arising in single field slow-roll models of inflation:

� The primordial perturbations are adiabatic: this is a consequence of the fact that the effect
of the quantum fluctuations is that of making different regions of the Universe inflate for
a slightly different amount of time. This produces curvature perturbations, which then
affect all the different components of the Universe in the same way and cannot give rise
to variations in the relative energy densities between them.

� The spectrum of the primordial perturbations is almost scale-invariant : this is due to
the fact that the Hubble parameter is a slowly decreasing function of time during slow-roll
inflation. We have seen that the amplitude of the fluctuations of a given mode k is roughly
given by the Hubble parameter at the horizon-crossing time of the corresponding mode.
Thus the shortest modes, which leave the horizon after the longest modes, have a slightly
lower ampltude. This results in a almost scale-invariant, red-tilted power spectrum.

� The primordial perturbations are very nearly Gaussian: this reflects the fact that in single
field slow-roll models the self-interaction terms for the inflaton field are suppressed by the
requirement of having a sufficiently flat potential to guarantee a long enough period of
inflation.

� Tensor perturbations of the metric (i.e., primordial gravitational waves) are produced:
like for the scalar perturbations, they have a red-tilted, almost scale-invariant and nearly
Gaussian spectrum. Their amplitude is directly related to the energy scale at which
inflation occurred.
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Chapter 5

Parity violation in inflation with
Chern-Simons gravity

5.1 Modified gravity and inflation

Standard slow-roll models of inflation are based on General Relativity (GR) as the theory of
gravity. There are however different reasons to believe that GR does not provide the full complete
description of the gravitational interaction. From the point of view of fundamental physics,
a quantum description of the gravitational interaction lacks, and cannot be included within
the framework of GR. From the cosmological side, we have seen in depth that the standard
cosmological model requires the introduction of (at least) an additional field to explain the
accelerated expansion of the early Universe, in order to solve the shortcomings of the FLRW
model. Likewise, there is solid observational evidence that our Universe is currently undergoing
a second phase of accelerated expansion. The most simple way to explain this feature is by
introducing the so-called Dark Energy through a cosmological constant in the field equations.
However, it is well known that the theoretical prediction for the vacuum energy is many order
of magnitudes greater than the value required by the observations. Moreover, the so-called
“coincidence problem” (“why do we live in the precise period of the cosmic history in which the
energy density of Dark Energy and Dark Matter are of the same order of magnitude?”) seems
to suggest a dynamical explanation which goes beyond a simple cosmological constant. For all
these reasons, many models which go beyond GR have been studied during the last years.

In GR the gravitational interaction is mediated by a rank-2 tensor field, which in the quantum
view is represented by a massless spin-2 particle. One common way to modify GR is to include
additional fields besides the metric tensor, like a scalar field in the case of scalar-tensor theories.

A second way to modify the theory of gravity is to include in the gravitational action higher-
order curvature invariants. Indeed, it is well known that the Einstein’s field equations with
a cosmological constant are the only second order equations for a pure metric theories in four
dimensions. These are obtained by a (diffeomorphism invariant) action constructed with only the
metric tensor and its second derivatives. Many theories that aim at unifying all the fundamental
interactions (including gravity), like string theory, lead to effective actions which contain non-
minimal coupling with the geometry or terms with higher-order curvature invariants. These
tipically lead to higher-order field equations.

Higher-order curvature invariants can be included in the action following an effective field
theory approach, as we will soon see. These new terms should become important at high energies,
but the theory of gravity should then reduce to GR in the limits where it is experimentally tested
and confirmed. Since inflation involves very high energy scales, it is possible that signatures of
modification to GR are left imprinted in the fluctuations coming from inflation. In this sense
inflation can be used to test and constrain fundamental physics.
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One of the most important features of inflationary models which include modifications to the
theory of gravity is the production of primordial non-Gaussianities which, as we have seen, are
highly suppressed in the “standard models” with GR. Modifying the theory of gravity usually
leads to the introduction of additional degrees of freedom in the theory and also new interaction
terms. Both of these can lead to an enhancement of non-Gaussianity. An example of this is
given in Appendix D, where a brief review of f(R) theories of gravity and their application to
inflation is presented.

A second interesting issue to consider when studying inflationary models within modified
theories of gravity is the possible modification to the spectrum of primordial gravitational waves.
This is particularly interesting in view of the future experiments with space interferometers,
like LISA. We have seen that PGWs are a fundamental prediction of all inflationary models;
however, single field slow-roll models of inflation predict a spectrum of PGWs below the range
of current ground-based GW detectors, and also below the range of future space interferometers
like LISA. Modifying the theory of gravity could vary the amplitude and the tilt of PGWs,
possibly enhancing their spectrum at scales accessible to LISA (see e.g. [15]).

Another important feature which can arise as a consequence of some modifications to the
theory of gravity is the breaking of parity symmetry. Also this feature is particularly impor-
tant because, if observed, would give indication of deviations from the standard models. The
breaking of parity manifests itself through the polarization of PGWs into left and right circular
polarization states. These propagate following different dynamical equations and thus acquire
different power spectra. This will be one of the main subject of study of the rest of this thesis.

5.2 Modified gravity from an effective field theory approach

The Einstein-Hilbert action is the most general diffeomorphism invariant action constructed
with covariant terms containing no more than two derivatives of the metric tensor. Thus, it is
built only through the Ricci scalar R, and the resulting Lagrangian density is

L =
√
−g
(
M2
Pl

2
R

)
, (5.1)

where g ≡ det gµν and M2
Pl = (8πG)−1 is the reduced Planck mass.

To modify Einstein’s theory of gravity we can assume that (5.1) is just the first term in a
generic effective field theory (EFT) and admit terms containing higher numbers of derivatives
of the metric tensor, such that they are suppressed by negative powers of some mass scale M
which characterizes whatever fundamental theory underlies this effective field theory [75]. The
first correction is constructed with the most general covariant terms built with four derivatives
of the metric, and can be written as

∆L =
√
−g
(
f1R

2 + f2RµνR
µν + f3RµνρσR

µνρσ
)

+ f4ε
µνρσRµν

αβRρσαβ, (5.2)

where fn are dimensionless coefficients and εµνρσ is the totally antisymmetric Levi-Civita tensor
density. It is useful (for reasons that we will see) to rewrite the Lagrangian (5.2) in terms of the
Weyl tensor Cµνρσ, which is defined by taking the Riemann tensor and removing from it all of
its contractions:

Cµνρσ = Rµνρσ −
1

2
(gµνRνσ − gµσRνρ − gνρRµσ + gνσRµρ) +

R

6
(gµρgνσ − gνρgµσ) . (5.3)

The Weyl tensor is defined so that all the possible contractions of Cµνρσ vanish and at the
same time the simmetries of the Riemann tensor still hold. An important property of the Weyl
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tensor, which will be used later on, is that it is conformally invariant, namely it is invariant
under conformal transformations. These act as a local rescaling of the metric:

gµν(x)→ g′µν(x) = ω(x)gµν(x). (5.4)

Moreover, using the definition (5.3), one can prove that the following relations hold [17]:

εµνρσCµν
αβCρσαβ = εµνρσRµν

αβRρσαβ, (5.5)

CµνρσC
µνρσ = CµνρσC

µνρσ − 2RµνR
µν +

1

3
R2. (5.6)

By using them, we can rewrite the Lagrangian (5.2) as

∆L =
√
−g
[
f1R

2 + f2RµνR
µν + f3

(
CµνρσC

µνρσ + 2RµνR
µν − 1

3
R2

)]
+ f4ε

µνρσCµν
αβCρσαβ.

(5.7)
If we now define

h1 ≡ f1 −
1

3
f3, h2 ≡ f2 + 2f3, h3 ≡ f3, (5.8)

the Lagrangian (5.7) becomes

∆L =
√
−g
(
h1R

2 + h2RµνR
µν + h3CµνρσC

µνρσ
)

+ f4ε
µνρσRµν

αβRρσαβ. (5.9)

Finally, renaming hn as fn, we have

∆L =
√
−g
(
f1R

2 + f2RµνR
µν + f3CµνρσC

µνρσ
)

+ f4ε
µνρσCµν

αβCρσαβ. (5.10)

The usefulness of rewriting the Lagrangian in terms of the Weyl tensor will become evident
when we will study inflation with Chern-Simons gravity in the next section. Indeed, this will
allow us to understand more easily some properties of the Chern-Simons operator and if/how it
modifies the dynamics (both of the background and of the perturbations) of inflation.

Until now we have included only gravity, namely only the metric tensor in the Lagrangian.
If we introduce an additional scalar field φ, which in the case of inflation is represented by the
inflaton itself, we have to include also all the covariant terms made with up to four spacetime
derivatives of φ. Therefore, we obtain the full Lagrangian density [17,75]

L =
√
−g
[

1

2
M2
PlR−

1

2
gµν∂µφ∂νφ− V (φ) + f1(φ) (gµν∂µφ∂νφ)2 + f2(φ)gµν∂µφ∂νφ�φ+

+ f3(φ) (�φ)2 + f4(φ)Rµν∂µφ∂νφ+ f5(φ)Rgµν∂µφ∂νφ+ f6(φ)R�φ+ f7(φ)R2+

+ f8(φ)RµνRµν + f9(φ)CµνρσCµνρσ

]
+ f10(φ)εµνρσCµν

αβCρσαβ,

(5.11)

where now the dimensionless coefficients fn depend on φ. In principle these coupling functions
must be fixed by the underlying fundamental theory of quantum gravity. However, since we
haven’t succeeded in constructing a theory of quantum gravity yet, we can treat them as free
parameters and try to fix or constrain them through cosmological observations.

5.3 Inflation with Chern-Simons modified gravity

From a phenomenological point of view it is particularly interesting to study which is the effect on
inflation of the last term in the Lagrangian (5.11). This is the so-called Chern-Simons term [76]
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and it is a parity-breaking term, being constructed with the Levi-Civita tensor. Has we have
already said, considering a theory that breaks parity has the effect of polarizing PGWs into left
and right circular polarization states. The “new” Chern-Simons term is coupled to the inflaton
field through a generic coupling function f(φ). Therefore our model is described by the following
Lagrangian:

L =
√
−g
[

1

2
M2
PlR−

1

2
gµν∂µφ∂νφ− V (φ)

]
+ f(φ)εµνρσCµν

αβCρσαβ. (5.12)

The first thing we want to emphasize is that the Chern-Simons term does not modify the
background dynamics of inflation, since it vanishes when computed on the background metric.
Indeed the background metric, which is the FLRW metric, is conformally flat, and the Weyl
tensor vanishes in Minkowski spacetime. Since the Weyl tensor is conformally invariant, this
implies that it has to vanish also when computed in FLRW.

Another important point is that one can prove that the Chern-Simons term is a total deriva-
tive term [77]. Therefore the coupling f(φ) with the inflaton field is fundamental, otherwise the
new operator would give a vanishing contribution at the level of the equations of motion.

In the following we work in the spatially-flat gauge, which leaves us with the 3-metric hij
that, at the non-linear level, has the form

hij = a2

[
δij + γij +

1

2
γikγ

k
j + . . .

]
, γi

i = 0, ∂iγij = 0, (5.13)

plus the scalar perturbation in the inflaton field δφ. In order to pass from the inflaton perturba-
tion to the curvature perturbation on comoving hypersurfaces ζ, which is conserved above the
horizon and directly related to the physics of the CMB, we will then use the non-linear relation
which we have used also in the previous chapter:

ζ =ζ1 +
1

2

φ̈

φ̇H
ζ2

1 +
1

4

φ̇2

H2
ζ2

1 +
1

H
ζ̇1ζ1 −

1

4

a−2

H2
∂−2∂i∂j(∂

iζ1∂
jζ1) +

1

2H
∂iψ∂

iζ1+

− 1

2H
∂−2∂i∂j(∂

iψ∂jζ1)− 1

4H
γ̇ij∂

i∂jζ1,

(5.14)

where φ is the background value of the inflaton, ψ is the scalar perturbation to the shift vector
and ζ1 is the value of ζ at linear level:

ζ1 = −H
φ̇
δφ. (5.15)

On super-horizon scales only the first three terms in Eq. (5.14) are non-vanishing.
Another issue one has to consider when introducing modifications to the theory of gravity

is that these can introduce additional degrees of freedom in theory, or make dynamical some of
the fields which were not in the theory with GR. We have seen that the lapse function N and
the shift vector Ni are auxiliary fields in standard gravity, so that their equations of motion are
actually constraints which can be solved order by order in perturbation theory. Then, plugging
back the solutions into the action, we can obtain the action for the dynamical degrees of freedom.
Introducing the Chern-Simons term in the Lagrangian certainly does not modify the behaviour
of N , which is a scalar field and hence does not receive contributions from parity breaking terms.
The same happens for the scalar perturbation in the shift vector. The vector perturbation of
the shift vector can instead in principle receive a contribution, possibly becoming a dynamical
field. In [19] it has indeed been shown that the Einstein-Hilbert action plus the Chern-Simons
term propagate 5 degrees of freedom. It is not our aim that of considering this additional degree
of freedom and its interactions with the degrees of freedom of the standard theory, hence we can
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set it to zero. In this case we are left with the ususal 3 degrees of freedom, 2 of which represent
the transverse and traceless tensor perturbations of the metric, i.e. the gravitational waves, and
with the other one represented by the inflaton field (in the spatially flat gauge).

We can now start to study the parity breaking signatures introduced by the Chern-Simons
coupling. The power spectrum of scalar perturbations does not receive any contributions by the
Chern-Simons term being a scalar quantity, as already explained for the scalar perturbations
in N and Ni. Therefore, we start our analysis by considering the power spectrum of tensor
perturbations; then we will study the parity breaking signatures in the primordial bispectra,
both tensor bispectrum and mixed correlators.

5.3.1 Power spectrum of tensor perturbations

When considering theories that break parity it is convenient to expand the tensor perturbations
in the Fourier space in the chiral polarization basis (see Appendix C) as

γij(x, t) =

∫
d3k

(2π)3

∑
s=L,R

ε
(s)
ij (k)γs(k, t)e

ik·x, (5.16)

where

εLij =
ε+ij − iε

×
ij√

2
, εRij =

ε+ij + iε×ij√
2

(5.17)

and

γR(k, t) ≡ γ+(k, t)− iγ×(k, t)√
2

, γL(k, t) ≡ γ+(k, t) + iγ×(k, t)√
2

. (5.18)

The usefulness of this decomposition lies in the fact that under a parity transformation the right
and the left modes get transformed into each other. The equations of motion for the two circular
polarization modes are decoupled, while parity-violating terms mix the + and × components1.
Then one can prove that the following relations hold (see e.g. [78]):

εLij(k)εijL (k) = 0 = εRij(k)εijR(k), (5.19)

εLij(k)εijR(k) = 2, (5.20)

εRij(−k) = εLij(k), (5.21)

γL(−k) = γ∗R(k), (5.22)

klε
mljε

(s)j
j (k) = −iλskε(s)im(k), (5.23)

where λR = +1 and λL = −1.
In order to calculate the power spectrum of PGWs we have to expand the Lagrangian (5.12)

at second order in tensor perturbations. To do so, we need to find the expressions of the lapse
function N and of the shift vector Ni only at first order. Since it is not possible to have first
order perturbations in N and Ni including only tensor perturbations, we are left solely with their
zero-order value, namely N = 1 and Ni = 0. Moreover, since the Weyl tensor vanishes on the
background, the contribution of the Chern-Simons term at second order in tensor perturbations

comes only from the term f(φ0)εµνρσCµν
αβ|(1)

T Cρσαβ|
(1)
T , where φ0 is the background value of

the inflaton field and the indices (1) and T refer to the fact that the corresponding terms are
evaluated at first order in tensor perturbations. The full action (GR+Chern-Simons) at second
order in tensor perturbations takes the form [17]

Sγγ =
∑
s=L,R

∫
dτ

d3k

(2π)3
A2
T,s

[
|γ′s(k, τ)|2 − k2|γs(k, τ)|2

]
, (5.24)

1Indeed, the + and × modes are not eigenstates of the parity transformation.
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where we have introduced the conformal time τ and

A2
T,s =

M2
Pl

2
a2

(
1− λs

kphys
MCS

)
, (5.25)

with

MCS ≡
M2
Pl

8ḟ(φ)
. (5.26)

The latter is the so-called Chern-Simons mass and it has been introduced for the following reason:
since λR = +1, the right modes which have a physical wavenumber kphys = k/a greater than the
Chern-Simons mass have a negative kinetic term, hence they are ghost fields (see e.g. [79, 80]).
In order to be safe in this sense, let us introduce a UV cut-off Λ in theory such that Λ�MCS .
If we require that kphys < Λ at the beginning of inflation, this condition continues to be valid
as inflation proceeds, given that kphys decreases, and we are free from ghost instabilities. We
have seen that an important feature of the inflationary expansion is that the modes started deep
inside the horizon, before crossing it and thus becoming “classical perturbations”. This means
that at the beginning of inflation kphys � H. From the two conditions kphys < Λ and kphys � H
taken together, it follows that MCS � H during inflation.

By making the field redefinition
µs ≡ AT,sγs, (5.27)

the action (5.24) becomes

Sγγ =
∑
s=L,R

∫
dτ

d3k

(2π)3

[
|µ′s(k, τ)|2 − k2|µs(k, τ)|2 +

A′′T,s
AT,s
|µs(k, τ)|2

]
, (5.28)

where we have performed an integration by parts and neglected the total derivative term, which
gives no contributions at the level of the equations of motion. By varying this action we find
the equations of motions for the fields µs, which read

µ′′s +

(
k2 −

A′′T,s
AT,s

)
µs = 0. (5.29)

Following [16], the second term inside the parentheses can be computed by exploiting the relation

A′′T,s
AT,s

=
d

dτ

(
A′T,s
AT,s

)
+

(
A′T,s
AT,s

)2

, (5.30)

with

A′T,s
AT,s

=
a

2

(A2
T,s)
·

A2
T,s

=
a

2

(
2H − λs ka

H
MCS

)
(

1− λs ka
1

MCS

) = −1 + ε

τ
+ λs

k

2

H

MCS
+ O

[
ε2,

(
H

MCS

)2

, ε
H

MCS

]
.

(5.31)
In this computation we have used

aH = − 1

(1− ε)τ
= −1 + ε

τ
+ O(ε2) (5.32)

and we have assumed that the Chern-Simons mass stays constant during inflation. To check
this last assumption, let us introduce a dimensionless parameter ξ which quantifies the rate of
time variation of the Chern-Simons mass in a Hubble time:

ξ ≡ ṀCS

HMCS
= ηV − εV −

√
2εVMPl

f ′′(φ)

f ′(φ)
. (5.33)
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In slow-roll inflation the slow-roll parameters are much smaller than unity. Thus, in order to
neglect the time variation of MCS during inflation, we need to require that

√
2εVMPl

f ′′(φ)

f ′(φ)
� 1. (5.34)

Coming back to the computation of the equations of motions, from Eq. (5.30) and (5.31) we
find

A′′T,s
AT,s

=
2 + 3εV
τ2

− λsk

τ

H

MCS
+ O

[
ε2V ,

(
H

MCS

)2

, εV
H

MCS

]
. (5.35)

The general expression for A′′T,s/AT,s, taking into account the time dependence of the Chern-
Simons mass, is given by [18]

A′′T,s
AT,s

=
2

τ2

(
1 +

λs
2

kphys
H

H

MCS
A

)
, (5.36)

with

A =
1

(1− λskphys/MCS)2

{[
1− ξ +

ω

2
− ξ

2Hτ

](
1− λs

kphys
MCS

)
− λs

kphys
2MCS

[
1

2
+ ξ +

ξ2

2

]}
,

(5.37)
where we have neglected some slow-corrections and

ω ≡ M̈CS

MCSH2
. (5.38)

If we neglect the time dependence of the Chern-Simons mass, ξ � 1 and ω � 1, and since we
have assumed kphys � MCS and H � MCS in order to prevent some modes of the fields from
becoming ghost fields, we recover A ' 1, which agrees with the result (5.35). With the previous
assumptions, we can obtain the equations of motion for the fields µs, which are given by

µ′′s +

(
k2 − 2 + 3εV

τ2
+
λsk

τ

H

MCS

)
µs = 0. (5.39)

If we introduce the parameter

ν2
T =

9

4
+ 3εV , (5.40)

we can rewrite the equations of motion (5.39) as

µ′′s +

(
k2 −

ν2
T −

1
4

τ2
+
λsk

τ

H

MCS

)
µs = 0, (5.41)

At leading order in the slow-roll parameters, from (5.40) we have

νT =
3

2
+ εV + O(ε2V ). (5.42)

As we have done also in the previous chapters, by redefining the fields we have been able to
reabsorb the damping term in the equations of motions, which have now the form of the equation
of an harmonic oscillator with a time-dependent frequency accounting for the dynamics of the
spacetime where the fields evolve. With respect to the standard slow-roll models of inflation, the
equations of motions (5.41) have an additional term in the effective mass, which is proportional
to τ−1 and depends on the polarization index λs. This means that the two polarization states
have a different dynamical evolution and this is a consequence of the fact that the Chern-Simons
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term is not invariant under a parity transformation. Therefore the dynamics of right and left-
circularly polarized gravitational waves is different and we expect also their power spectra to be
different.

We can now canonically quantize the perturbations by expanding the field µs in terms of the
creation and annihilation operators as

µ̂s(k, τ) = us(k, τ)âs(k) + u∗s(k, τ)â†s(−k). (5.43)

The creation and annihilation operators satisfy the equal time commutation relations

[âs(k), â†s′(k
′)] = (2π)3δ(3)(k− k′)δss′ , [â(k), â(k′)] = 0 = [â†(k), â†(k′)], (5.44)

and act on the vacuum state obeying

âs|0〉 = 0, 〈0|â†s = 0. (5.45)

From Eq. (5.41), the equations of motion for the mode functions us(k, τ) read

u′′s +

(
k2 −

ν2
T −

1
4

τ2
+
λsk

τ

H

MCS

)
us = 0. (5.46)

Assuming as initial condition the Bunch-Davies vacuum state

lim
−kτ→∞

us(k, τ) =
e−ikτ√

2k
, (5.47)

the solution of Eq. (5.46) is given by [17]

us(k, τ) = 2
√
−k2τ3 e−i(

π
4
−π

2
νT )e−ikτ U

(
1

2
+ νT − λs

H

MCS
, 1 + 2νT , 2ikτ

)
e
π
4
λs

H
MCS , (5.48)

where U is the confluent hypergeometric function. We are interested in the expression of us(k, τ)
on super-horizon scales, −kτ � 1, which can be written as

us(k, τ)|−kτ�1 =

√
1

2k3τ2
e−i(

π
4
−π

2
νT ) Γ(νT )

Γ(3/2)

(
−kτ

2

) 3
2
−νT

e
π
4
λs

H
MCS . (5.49)

We can now compute the power spectrum on super-horizon scales for both the polarization
states, namely

PLT = 2
|uL(z)z�1|2

A2
T,L

, (5.50)

PRT = 2
|uR(z)z�1|2

A2
T,R

, (5.51)

where we have defined z ≡ −kτ . At leading order in the slow-roll parameters, these are given
by [17]

PLT =
PT
2
e
−π

4
H

MCS , (5.52)

PRT =
PT
2
e

+π
4

H
MCS , (5.53)

where

PT =
4

k3

H2

M2
Pl

(z
2

)3−2νT
(5.54)
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is the total power spectrum of tensor modes in standard models with GR.

Let us now introduce a quantity which chacarterizes the level of parity-breaking in the power
spectrum. This is defined as the difference between the (super-horizon) power spectra of right
and left modes, normalized to the total power spectrum in order to have a dimensionless quantity.
Since the ratio H/MCS is much smaller than unity for the reasons already explained, we can
expand in series the exponentials in Eqs. (5.52)-(5.53), and we find

Θ ≡
PRT − PLT
PRT + PLT

=
π

2

H

MCS
. (5.55)

Therefore the signature of parity violation in the power spectrum of PGWs is suppressed by the
ratio H/MCS , namely it is suppressed by the requirement of avoiding the formation of ghost
instabilities during inflation.

We want to briefly comment about the possibilities of not neglecting the time variation of
the Chern-Simons mass, which has been studied in [18]. If one considers the case in which MCST

grows fastly with time during inflation2, then the factor H/MCS becomes even more suppressed
as inflation proceeds (independently on how much ξ and ω are large), and thus the same happens
for the parity breaking signatures both in (5.35) and in the tensor power spectrum. Moreover,
the time dependence of the Chern-Simons mass would lead to different equations of motion for
the fields µs.

From the power spectra (5.52)-(5.53) it is then possible to compute the correction arising in
the tensor-to-scalar ratio, given that the amplitude of scalar perturbations is not modified. This
is given by [17]

rCS = r

(
1 +

Θ2

4

)
, (5.56)

where r is the tensor-to-scalar ratio in the standard models with GR. Moreover, at leading order
in the slow-roll parameters and taking into account that H/MCST � 1, the tensor spectral
index is not modified with respect to the standard case, nT ' −2ε (see [17] for the complete
expression). Then, by using the consistency relation (3.128), which holds for standard models,
it is possible to obtain the modified consistency relation

rCS ' −8nT

(
1 +

Θ2

4

)
. (5.57)

Notice that the correction to the standard relation goes like Θ2, hence it is even more suppressed
than the chirality itself.

The conclusions of this analysis of the power spectrum of PGWs are that, both at level
of chirality and of the tensor-to-scalar ratio, the corrections introduced by the Chern-Simons
operator to the standard results are highly suppressed, and thus extremely difficult to observe.

5.3.2 Parity breaking signatures in the primordial bispectra

In the previous section we have seen that the chirality in the power spectrum of PGWs is
suppressed by the ratio H/MCS . It is the purpose of the rest of this chapter that of studying if
the new interaction terms coming from the Chern-Simons operator can lead to detectable parity
breaking signatures in the bispectra of primordial perturbations. This is particularly important
also because in [81] it has been shown (we will give more details about this in Section 5.4) that,
at the level of the power spectrum, the CMB can only weakly constrain the chirality Θ of PWGs.
Considering higher-order correlators, starting from the three-point function, is thus extremely

2If MCST decreased during inflation, at a certain time the condition kphys < MCST would not be satisfied
anymore and some of the modes of the field would acquire a negative kinetic energy, thus becoming ghost fields.
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important. Following the results of [17], we will see that the only unsuppressed contribution
comes from the mixed correlator between two tensor and one scalar perturbations. For the same
reason as for the power spectrum, the bispectrum of scalar perturbations does not get modified
by the Chern-Simons term and hence remains the same as in standard models with GR.

5.3.2.1 Bispectrum of tensor perturbations

To compute the bispectrum of tensor perturbations we need to expand the action at third order
in tensor perturbations. The contributions we are interseted in come from the Lagrangian

L
γγγ
int = f(φ)εµνρσ

[
Cµν

αβ|(2)
T Cρσαβ|

(1)
T + Cµν

αβ|(1)
T Cρσαβ|

(2)
T

]
. (5.58)

In Ref. [17] an estimate of this interaction vertex is given by using the fact that the Chern-Simons
term is a total derivative in the case of a constant coupling f . Therefore one has

L
γγγ
int = f(φ)∇µAµ, (5.59)

where Aµ depends only on γij and its derivatives. Evaluating the coupling f(φ) on the back-
ground, so that it depends only on time through the background inflaton field, we can integrate
(5.59) by parts, obtaining

L
γγγ
int = −f ′(φ)A0, (5.60)

where, as usual, we have neglected the total derivative term. By means of the in-in formalism
introduced in the previous chapter, the bispectrum of tensor modes can then be computed as

〈γs1(k1, 0)γs2(k2, 0)γs3(k3, 0)〉 = i

∫ 0

−∞
dτ ′aḟ(φ)〈0|

[
γs1(k1, 0)γs2(k2, 0)γs3(k3, 0), A0

]
|0〉.

(5.61)
In doing this computation one can take the mode function us(k, τ) with vanishing values of the
slow-roll parameters and of the ratio H/MCS ; this corresponds to the zero-th order value in a
series expansion of the exact solution (5.48). In such a way, the mode function has the same
expression as in standard models in a pure de Sitter phase, namely

us(k, τ) =
iH

MPl

√
k3

(1 + ikτ)e−ikτ . (5.62)

Thus, Eq. (5.61) gives [17]

〈γs1(k1, 0)γs2(k2, 0)γs3(k3, 0)〉 = iḟ∗

(
3∏
i=1

H2
∗

M2
Plk

3
i

)
1

H∗

∫ 0

−∞
dτ ′
(
−1

τ

)
f(ki, τ

′)eikT τ
′
, (5.63)

where kT = k1 + k2 + k3, f(ki, τ
′) is a polynomial function of its arguments, while H and ḟ(φ)

have been taken to be constant at leading order in slow-roll. In particular the latter have been
evaluated at the horizon crossing time (labelled by ∗) of the overall momentum kT . We have
also assumed that a(τ) = −1/Hτ , still neglecting a correction of order ε. From the definition
(5.26) of the Chern-Simons mass it follows that

ḟ(φ) =
M2
Pl

8MCS
, (5.64)

thus one can get the following estimate for the bispectrum of tensor modes [17]:

〈γs1(k1, 0)γs2(k2, 0)γs3(k3, 0)〉 ∼ H

MCS

∑
i 6=j

PT (ki)PT (kj)

M(ki), (5.65)
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where M(ki) is a dimensionless function of the momenta ki, which is of order 1 and gives the
shape of the bispectrum, while PT (ki) is the power spectrum of tensor perturbations given in
(5.54). Notice that, as anticipated, the parity breaking signature in the bispectrum of tensor
perturbations is still suppressed by the ratio H/MCS , as in the case of the power spectrum.

5.3.2.2 Two scalars and one tensor bispectrum

To compute the 〈δφδφγ〉 bispetrum we need to expand the action taking second order terms in
scalar perturbations and first order terms in tensor perturbations. These contributions come
from the following Lagrangian

L
δφδφγ
int = εµνρσ

[
∂f(φ)

∂φ
δφCµν

αβ|(1)
S Cρσαβ|

(1)
T +

∂f(φ)

∂φ
δφCµν

αβ|(1)
T Cρσαβ|

(1)
S +

+ f(φ)Cµν
αβ|(2)

S Cρσαβ|
(1)
T + f(φ)Cµν

αβ|(1)
T Cρσαβ|

(2)
S + f(φ)Cµν

αβ|(2)
STCρσαβ|

(1)
S +

+ f(φ)Cµν
αβ|(1)

S Cρσαβ|
(2)
ST

]
.

(5.66)

The scalar perturbations in the metric come from the (first-order) perturbations in the lapse
function N and in the shift vector Ni, which, in the spatially flat gauge, are roughly given by

N ∼
√
εV δφ, Ni ∼

√
εV δφ. (5.67)

This means that the scalar perturbations inN andNi are subdominant in the slow-roll parameter
εV with respect to those in the inflaton field, δφ. As a consequence, the terms in the second and
in the third row of the Lagrangian (5.66) are subdominant in εV with respect to the two terms
in the first row. These can be computed and give [17]

L
δφδφγ
int = −

M2
Pl

MCSφ̇

√
εV (∂lδφ)εijk

[
(∂kδφ)∂iγ

′
lj

]
, (5.68)

where it has been used, from the definition of the Chern-Simons mass (5.26), that

∂f(φ)

∂φ
=

M2
Pl

8MCSφ̇
. (5.69)

Analogously to the case of the bispectrum of tensor perturbations, an estimate of this mixed
correlator can be given as [17]

〈δφ(k1, 0), δφ(k2, 0), γs(k3, 0)〉 ∼ H

MCS

∑
i 6=j

PT (ki)PT (kj)

F (ki), (5.70)

where F (ki) is still dimensionless and of order of unity. Thus, also in this case the bispectrum,
and hence the parity breaking signature on it, are supprssed by the ratio H/MCS .

5.3.2.3 One scalar and two tensors bispectrum

To compute this correlator we need to expand the action at first order in scalar perturbations
and at second order in tensor perturbations. Thus, we are interested in the Lagrangian

L
δφγγ
int = εµνρσ

[
∂f(φ)

∂φ
δφCµν

αβ|(1)
T Cρσαβ|

(1)
T + f(φ)Cµν

αβ|(1)
S Cρσαβ|

(2)
T + f(φ)Cµν

αβ|(2)
T Cρσαβ|

(1)
S +

+ f(φ)Cµν
αβ|(1)

T Cρσαβ|
(2)
ST + f(φ)Cµν

αβ|(2)
STCρσαβ|

(1)
T

]
.

(5.71)
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The 〈δφγγ〉 bispectrum can be computed by exploiting the in-in formalism, exactly as we have
done in the previous chapter for the standard model with GR. The final result of this computation
is [17]

〈γR(k1, 0)γR(k2, 0)δφ(k3, 0)〉 =(2π)3δ(3)(k1 + k2 + k3)
π

64

φ̇

H

∑
i 6=j

∆T (ki)∆T (kj)

(H2∂
2f

∂φ2

)
·

· (k1 + k2)k1k2∑
i k

3
i

cos θ(1− cos θ)2,

(5.72)

〈γL(k1, 0)γL(k2, 0)δφ(k3, 0)〉 = −〈γR(k1, 0)γR(k2, 0)δφ(k3, 0)〉, (5.73)

where θ is the angle between the two momenta k1 and k2 in the Fourier space, with (see [17]
for more details)

cos θ =
k2

3 − k2
2 − k2

1

2k1k2
. (5.74)

The minus sign which differentiates the two correlators in (5.73) is again a consequence of the
breaking of parity symmetry induced by the Chern-Simons operator.

We can now pass to the variable ζ (which stays constant above the horizon) through the
relation (5.14). At leading order in slow-roll, we have

〈γR(k1, 0)γR(k2, 0)ζ(k3, 0)〉 ' − (2π)3δ(3)(k1 + k2 + k3)
π

64

∑
i 6=j

∆T (ki)∆T (kj)

(H2∂
2f

∂φ2

)
·

· (k1 + k2)k1k2∑
i k

3
i

cos θ(1− cos θ)2,

(5.75)

〈γL(k1, 0)γL(k2, 0)ζ(k3, 0)〉 = −〈γR(k1, 0)γR(k2, 0)ζ(k3, 0)〉. (5.76)

From the bispectrum (5.76) one can then obtain the shape function S(k1, k2, k3), which reads [17]

S(k1, k2, k3) =

∑
i 6=j

1

k3
i k

3
j

 (k1 + k2)k1k2∑
i k

3
i

cos θ(1− cos θ)2. (5.77)

This shape function peaks in the squeezed limit, where the momentum of the scalar perturbation
is much smaller than the momenta of the tensor perturbations, k3 � k1 ∼ k2.

The parity breaking signatures in the bispectrum (5.75) can be quantified by introducing a
parameter defined as [17]

Π ≡ 〈γR(k)γR(k)ζ(k)〉TOT − 〈γL(−k)γL(−k)ζ(−k)〉TOT
〈γR(k)γR(k)ζ(k)〉TOT + 〈γL(−k)γL(−k)ζ(−k)〉TOT

, (5.78)

where the bispectra are evaluated in the equilateral configuration and the subscript “TOT”
means that it is included also the contribution to the bispecrum coming from standard grav-
ity. From the results (5.75)-(5.76) and (4.144), with the latter being expressed in our present
conventions, one finds [17]

Π =
96π

25
H2∂

2f

∂φ2
. (5.79)

Therefore the strength of the parity breaking signatures in the 〈ζγγ〉 bispectrum depends on
the second derivative of the coupling function f(φ), whereas we have seen that the chirality Θ
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5.4. Chirality of PGWs and observations

at the level of the power spectrum depends only on the first derivative of f(φ) (through the
Chern-Simons mass, as can be seen in (5.69)). This means that only a non minimal coupling
of the Chern-Simons operator to the inflaton field (where f(φ) is not simply proportional to φ)
can leave such a parity-breaking signature in this correlator. Moreover, as we have already seen
from (5.33), the assumption of taking the Chern-Simons mass to be constant during inflation
constrains the values of the first and the second derivatives of f(φ). This implies that the parity
breaking signatures in the bispectrum 〈ζγγ〉 and in the tensor power spectrum are not really
independent from each other. In particular we have seen that, in order to neglect the time
variation of the Chern-Simons mass during inflation, we need to require that

√
2εVMPl

f ′′(φ)

f ′(φ)
� 1. (5.80)

From (5.55) and (5.69) we can then relate the first derivative of f(φ) to the chirality Θ and to
the slow-roll parameter εV as

f ′(φ) =
1

4
√

2π

M2
Pl

H2

Θ
√
εV
, (5.81)

where we have also used Eq. (1.75). Plugging (5.81) into the condition (5.80), this can be
rewritten as

H2f ′′(φ)� 1

8π

Θ

εV
. (5.82)

Therefore, even if the chirality Θ in the tensor power spectrum is suppressed, we can still have
a non-negligible value of Π if the ratio Θ/εV is sufficiently large, namely if εV is sufficiently
smaller than Θ. However, in [18] it has been shown that the constraint (5.82) on the value of
Π makes its detection not possible using the angular bispectra of the CMB. In the case of a
time-varying Chern-Simons mass, instead, Π can be enhanced beyond the minimum detectable
value. Indeed, it is possible to relate the parameter Π to the time variation of the Chern-Simons
mass (encoded in ξ) as [18]

ξ = − 25

96π

√
2εV

MPl

H

Π

H∂f(φ)/∂φ
, (5.83)

where this expression holds at leading order in the slow-roll parameters. If we leave uncon-
strained the time variation of MCS , and hence the parameter ξ, then also Π is not constrained
anymore and can be enhanced, becoming detectable. Notice that in this way we could also use
the observational constraints on Π to constrain the time variation of the Chern-Simons mass
during inflation (see again [18] for more details).

5.4 Chirality of PGWs and observations

We have seen that the distinctive signature of parity-violating theories of gravity during inflation
is the polarization of PGWs into left and right circular polarization states. These propagate
differently from each other and thus acquire different super-horizon power spectra. In this
section we want to give a brief summary about the possibilities of detecting such parity-violating
signatures.

It is well known that the primordial tensor perturbations generate a B-mode (i.e., curl-like)
polarization pattern in the CMB in addition to E-modes, which are also generated by scalar
perturbations. E-modes and B-modes behave differently under a parity transformation: indeed,
the former are even, as the temperature anisotropies T, while the latter are odd. Thus, if parity
is preserved, the cross-correlators between temperature anisotropies and B-mode polarization,
TB, and between E-modes and B-modes, EB, have to vanish. If these correlators could be
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5.4. Chirality of PGWs and observations

measured to be different from zero, this would be a signature of parity violation from chiral
gravitational waves. The possibility of testing chirality of PGWs with CMB data has been
investigated in [81]. The result of this analysis is that the power spectrum of the CMB can only
weakly constrain the chirality Θ. Indeed, this can be constrained only if the amplitude of PGWs
is such that the tensor-to-scalar ratio r is high enough to induce a detectable signature in the
cross-correlators TB and EB. Since we have not detected such effect, Θ cannot be constrained.
The authors of [81] have also provided some forecasts for possible future CMB experiments (like
COrE+). They have shown that even in the case in which r ∼ 0.05 (the current upper limit for
r is 0.064) the maximmal parity violation, Θ = ±1, could be detected with a significance of 1.5σ
at best. This tells us that it is not possible to constrain chirality with the two-point function.
For this reason it is important to study higher-order correlators, starting with the bispectrum.
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Chapter 6

Parity violation from more general
chiral scalar-tensor theories

6.1 Chiral scalar-tensor theories and inflation

Chern-Simons gravity is the simplest scalar-tensor theory which include parity violating effects.
As we have seen in the previous chapter, it can be considered as a low energy EFT in an
expansion (at second order) in the curvature invariants. However, since it leads to equations of
motion with higher order derivatives, it contains Ostrogradsky ghosts1. This has been shown
in [19], where the authors have performed an Hamiltonian analysis of the theory. In [19] new
parity-breaking theories which generalize the Chern-Simons action have been introduced, by
including in the action terms with first and second derivatives of the scalar field. Following the
original reference, we define φµ ≡ ∂µφ and φµν ≡ ∇µφν .

With only first derivatives of the scalar field one has to construct a Lagrangian that is at
least quadratic in the Riemann tensor. With two Riemann tensors there are four independent
terms that can be constructed [19]:

L1 ≡ εµναβRαβρσRµνρλφ
σφλ, L2 ≡ εµναβRαβρσRµλρσφνφλ,

L3 ≡ εµναβRαβρσRσνφρφµ, L4 ≡ XP,
(6.1)

where X ≡ φµφ
µ is the kinetic term and P ≡ εµνρσRρσαβR

αβ
µν is the Pontryagin term, with

which one constructs the Chern-Simons action.
If one includes also terms with second derivatives of the scalar field, there is only a Lagrangian

which is linear in both the Riemann tensor and the second derivatives of φ, while there are six
independent Lagrangians that are linear in the Riemann tensor but quadratic in the second
derivatives of φ (up to quadratic order in the first derivatives of the scalar field) [19]:

L̃1 ≡ εµναβRαβρσφρφµφσν , (6.2)

L̃2 ≡ εµναβRαβρσφρµφσν , L̃3 ≡ εµναβRαβρσφσφρµφλνφλ,
L̃4 ≡ εµναβRαβρσφνφρµφσλφλ, L̃5 ≡ εµναβRαρσλφρφβφσµφλν ,
L̃6 ≡ εµναβRβγφαφγµφλνφλ, L̃7 ≡ (�φ)L̃1.

(6.3)

For simplicity we do not consider Lagrangians with higher order terms in the derivatives of the
scalar field and in the Riemann tensor. Therefore, we have the two following actions:

S1 der =

4∑
A=1

∫
d4x
√
−g aALA, (6.4)

1See [80] for a review about Ostrogradsky ghosts.
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6.1. Chiral scalar-tensor theories and inflation

S2 der =
7∑

A=1

∫
d4x
√
−g bAL̃A, (6.5)

where a priori aA = aA(φ,X) and bA = bA(φ,X). Notice that now we are working in units with
MPl = 1; we will reintroduce the Planck mass later on by dimensional analysis.

In the reference [19] the authors have performed an Hamiltonian analysis of both of these
theories and have found that they are expected to contain Ostrogradsky ghosts in their fully
covariant version, as in the case of Chern-Simons gravity. One way to overcome this problem
is to restrict the actions (6.4) and (6.5) to the unitary gauge, where the scalar field depends on
time only. By tuning the functions aA and bA, which become functions of φ only, it is possible
to obtain two actions which are ghost-free, since they do not contain any higher order time
derivative of the metric anymore (from which the Ostrogradsky ghosts arise), but only higher
order space derivatives. Therefore in this form they can be considered as Lorentz-breaking
theories (like, e.g., Horava-Lifshitz gravity) with a parity violating sector2. These new theories
are described, within the ADM formalism, by the following actions [19]:

S1 der
UG =

2φ̇2

N
εijl
[
(4a1 + 2a2 + 8a4)

(
KKmiDlK

m
j + (3)RmiDlK

m
j −KmiK

mnDjKjn

)
+

−(a2 + a4)
(

2KmiK
n
j DnK

m
l + (3)Rjlm

nDnK
m
i

)]
,

(6.6)

S2 der
UG =

φ̇3

N4
εijl
{

2N
[
b1NKmiDkK

m
j + (b4 + b5 − b3)φ̇Kmik

n
jDnK

m
l

]
+

+ φ̇
[
b3

(3)Rjlm
nKm

i DnN − 2(b4 + b5) (3)RmlK
m
j DiN

]}
,

(6.7)

where Kij is the extrinsic curvature (see Eq. (3.16)), while Di,
(3)Rijkl, and (3)Rij are respec-

tively the covariant derivative, the Riemann tensor and the Ricci tensor calculated with the
three-dimensional metric hij . According to the analysis of [19], both these theories propagate 3
degrees of freedom, like the Einstein-Hilbert action plus the Chern-Simons term in the unitary
gauge, but, due to the presence of higher order derivatives of the scalar field, the action (6.7)
contains also space derivatives of the lapse function. Notice in particular that, like in standard
gravity, the lapse function and the shift vector are auxiliary fields, since the actions (6.6) and
(6.7) do not contain any time derivative of N and Ni. Therefore one can solve their equations
of motion, which are actually constraints, and plug the solutions back into the action, thus
obtaining an action for the dynamical degrees of freedom.

The operators introduced in these theories are constructed with a higher number of deriva-
tives. Indeed, it is well known that the action of GR contains two derivatives of the metric
tensor3, while the action of Chern-Simons gravity contains four derivatives, being constructed
by contracting the Levi-Civita tensor with two Riemann tensors. In this case, the action (6.6) is
made of terms constructed with six derivatives, while the action (6.7) contains also terms with
8 derivatives (actually, all the terms except the first one, which has six derivatives).

2At this point, one may ask: “how is it possible that, fixing a gauge, the conclusions about possible ghost
instabilities in the theory are changed?”. Indeed, if one performs an Hamiltonian analysis of the original “com-
plete” theory and finds that ghost instabilities are expected to be present, then the same conclusions shoud be
reached also repeating the Hamiltonian analysis after having fixed a gauge. In other words, the results of the
analysis should be gauge-independent. However, it turns out that by fixing the unitary gauge one is actually
introducing additional constraints in the theory, thanks to which the Ostrogradsky ghosts are removed. Anyway,
in our discussion we follow the approach of Ref. [19]: we “forget” about our starting actions (i.e., those in Eqs.
(6.4)-(6.5)) and take the actions in Eqs. (6.6)-(6.7) as desccribing “new”, Lorentz-breaking, different theories.

3The Ricci tensor is constructed with second derivatives of the metric tensor, hence the same is true also for
the Ricci scalar.
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6.2. PGWs from chiral scalar-tensor theories

In the rest of this thesis we want to study some features of inflation within these new theories.
In particular, we consider the two following actions:

S1 der
tot =

∫
d4x
√
−g
[
Lφ + LGR + L1 der

UG

]
, (6.8)

S2 der
tot =

∫
d4x
√
−g
[
Lφ + LGR + L2 der

UG

]
, (6.9)

where L1 der
UG and L2 der

UG are the Lagrangian densities corresponding to the actions (6.6) and (6.7),
while Lφ and LGR are respectively the Lagrangian density for the scalar (inflaton) field and the
Einstein-Hilbert Lagrangian density, which are given by

Lφ = −1

2
gµν∂µφ∂νφ− V (φ), LGR =

M2
Pl

2
R, (6.10)

where V (φ) is the potential for the scalar field (which includes its self interactions) and R is
the Ricci scalar. These are fundamental to ensure a background slow-roll inflationary phase.
In this regard, an important point we want to outline is that, like in the case of Chern-Simons
gravity, the operators introduced by these new theories in the actions (6.6) and (6.7) do not
modify the background dynamics of inflation. Indeed, due to the homogeneity property of the
FLRW solution, all the 3-dimensional derivatives present in each term of (6.6) and (6.7) (arising
from the covariant 3-dimensional derivatives) vanish when evaluated in correspondence with
the background quantities. The 3-dimensional Levi-Civita connection vanishes as well in the
background, and we are left with no background contributions.

What is interesting to study is how the dynamics of the perturbations is modified. First of all,
it is important to remark that the new operators do not provide any contribution to the scalar
perturbations in the inflaton field, since a scalar field is invariant under a parity transformation
and hence receives no contributions from parity-breaking terms. Thus the power spectrum of
scalar perturbations is not modified with respect to the standard case with only GR.

What is instead modified is the dynamics of tensor perturbations, i.e. the dynamics of
primordial gravitational waves. As we have seen in the case of Chern-Simons gravity, having
a theory that breaks parity implies that the two circular polarization states have a different
dynamical evolution, and therefore acquire different super-horizon power spectra.

6.2 PGWs from chiral scalar-tensor theories

In the rest of this thesis we want to study how the new operators introduced in the actions (6.6)
and (6.7) affect the propagation of primordial gravitational waves produced during inflation. A
first interesting aspect to study is whether these new terms lead to detectable parity breaking
signatures in the power spectrum of tensor perturbations, which, as we have seen in the previous
chapter, are suppressed in the case of inflation with Chern-Simons gravity. A second interesting
issue is to see whether these theories are able to modify the tensor spectral index with respect
to the standard models, possibly generating a blue power spectrum, where the amplitude of
PGWs increases with k and hence for smaller and smaller cosmological scales. This could be an
important feature in view of future experiments with space interferometers [15,82,83].

6.2.1 Action with only first derivatives of the scalar field

Let us consider first the action made up with only first derivatives of the scalar field, which in
the unitary gauge (and within the ADM formalism) takes the following form

S1 der
UG =

2φ̇2εijl

N

[
(4a1 + 2a2 + 8a4)

(
KKmiDlK

m
j + (3)RmiDlK

m
j −KmiK

mnDlKjn

)
+

−(a2 + 4a4)
(

2KmiK
n
j DnK

m
l + (3)Rjlm

nDnK
m
i

)]
.

(6.11)
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6.2. PGWs from chiral scalar-tensor theories

We now want to expand the previous action at second order in tensor perturbations. We know
that, if one is interested in expanding the action up to third order, it is sufficient to find the
expressions of N and Ni only at first order. However, being interested in expanding the action
in tensor perturbations and since it is not possible to have first order perturbations in N and
Ni including only tensor perturbations, we are left solely with their zero-order value, namely
N = 1 and Ni = 0. We also recall that

hij = a2

(
δij + γij +

1

2
γikγ

k
j + . . .

)
, hij = a−2

(
δij − γij +

1

2
γikγk

j + . . .

)
. (6.12)

The extrinsic curvature has the following expression up to second order

Kij =
1

2
ḣij = ȧaδij + ȧaγij +

1

2
a2γ̇ij +

1

2
ȧaγikγ

k
j +

1

2
a2γ̇ikγ

k
j +

1

2
a2γikγ̇

k
j , (6.13)

while its trace has only the zero-order value (since we are considering only tensor perturbations)

K = hijKij = 3
ȧ

a
. (6.14)

The extrinsic curvature with upper indices and with one upper and one lower index is

Kmn = hmphnrKpr =
ȧ

a3
δmn − ȧ

a3
γmn +

1

2
a−2γ̇mn +

1

2

ȧ

a3
γnkγk

m − 1

4
a−2γ̇mkγ

kn − 1

4
γmkγ̇

kn,

(6.15)

Km
j = hlmKjl =

ȧ

a
δmj +

1

2
γ̇ m
j +

1

4
γjkγ̇

km − 1

4
γ̇jkγ

km. (6.16)

The 3-dimensional connection coefficients are given by

(3)
Γijk =

1

2
(∂jγk

i + ∂kγj
i − ∂iγjk) +

1

2
γil(∂lγjk)−

1

4
γil(∂jγkl + ∂kγjl) +

1

4
γkr(∂jγ

ri)+

+
1

4
γjr(∂kγ

ri)− 1

4
(∂iγjr)γ

r
k −

1

4
γjr(∂

iγrk),

(6.17)

from which one can compute the 3-dimensional Riemann and Ricci tensors. The 3-dimensional
covariant derivative of the extrinsic curvature is

DlKjn =
1

2
a2(∂j γ̇jn) +

1

4
a2γkn(∂lγ̇jk) +

1

4
a2γjk(∂lγ̇

k
n) +

1

4
a2γ̇kn(∂kγlj) +

1

4
a2γ̇jk(∂

kγln)+

− 1

4
a2γ̇kn(∂jγl

k)− 1

4
a2γ̇jk(∂nγl

k),

(6.18)

DlK
m
j =

1

2
∂lγ̇

m
j +

1

4
γjk(∂lγ̇

km)− 1

4
(∂lγ̇jk)γ

km +
1

4
(∂kγl

m)γ̇ k
j −

1

4
(∂mγlk)γ̇

k
j −

1

4
(∂jγl

k)γ̇ m
k +

+
1

4
(∂kγlj)γ̇

m
k .

(6.19)

Putting all these results together we can compute the various terms in the action (6.11) up to
second order in tensor perturbations:

KKmiDlK
m
j =

3

2
ȧ2(∂lγ̇ij) +

3

4
ȧ2γjk(∂lγ̇

k
i) +

3

4
ȧ2γik(∂lγ̇

k
j) +

3

4
ȧ2γ̇ k

j (∂kγli)−
3

4
ȧ2γ̇ k

j (∂iγlk)+

− 3

4
ȧ2γ̇ki(∂jγl

k) +
3

4
ȧ2γ̇ki(∂

kγlj) +
3

4
ȧa(∂lγ̇

k
j )γ̇ki,

(6.20)
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(3)RmiDlK
m
j = −1

4
(∂k∂

kγim)(∂lγ̇
m
j ), (6.21)

KmiK
mnDlKjn =

1

2
ȧ2(∂lγ̇ji) +

1

4
ȧ2γki(∂lγ̇jk) +

1

4
ȧ2γjk(∂lγ̇

k
i)−

1

4
ȧ2γ̇ki(∂jγl

k)+

− 1

4
ȧ2γ̇jk(∂iγl

k) +
1

4
ȧ2γ̇ki(∂

kγlj) +
1

4
ȧ2γ̇jk(∂

kγli) +
1

2
ȧaγ̇ni(∂lγ̇jn),

(6.22)

KmiK
n
j DnK

m
l =

1

2
ȧ2(∂j γ̇li) +

1

4
ȧ2γlk(∂j γ̇

k
i) +

1

4
ȧ2γki(∂j γ̇lk) +

1

4
ȧ2γ̇ k

l (∂kγji)−
1

4
ȧ2γ̇ k

l (∂iγjk)+

− 1

4
ȧ2γ̇ki(∂lγj

k) +
1

4
ȧ2γki(∂

kγlj) +
1

4
ȧaγ̇ k

j (∂kγ̇li) +
1

4
ȧaγ̇ki(∂j γ̇

k
l ),

(6.23)

(3)Rjlm
nDnK

m
i =

1

4
(∂m∂lγ

n
j)(∂nγ̇

m
i )− 1

4
(∂m∂jγl

n)(∂nγ̇
m
i ) +

1

4
(∂n∂jγlm)(∂nγ̇

m
i )+

− 1

4
(∂n∂lγjm)(∂nγ̇

m
i ).

(6.24)

Therefore the action (6.11) can be written as

S1 der
γγ =

2φ̇2εijl

M4
Pl

[(
a1 +

a2

2
+ 2a4

)
ȧa(∂lγ̇jk)γ̇

k
i −
(
a1 +

a2

2
+ 2a4

)
(∂k∂

kγim)(∂lγ̇
m
j )+

−
(a2

2
+ 2a4

)
ȧaγ̇ik(∂j γ̇

k
l )−

(a2

4
+ a4

)
(∂k∂lγ

n
j)(∂nγ̇

k
i ) +

(a2

4
+ a4

)
(∂k∂jγl

n)(∂nγ̇
k
i )+

−
(a2

4
+ a4

)
(∂n∂jγlk)(∂nγ̇

k
i ) +

(a2

4
+ a4

)
(∂n∂lγjk)(∂nγ̇

k
i )
]
,

(6.25)

where we have reintroduced the Planck mass by dimensional analysis. The fourth and the fifth
terms give no contributions after integrating by parts, since ∂nγ

n
j = 0. The last two terms are

antisymmetric in j and l, hence they can be summed when contracted with εijl. Thus the action
(6.25) takes the form

S1 der
γγ =

2φ̇2εijl

M4
Pl

[
fȧa(∂lγ̇jk)γ̇

k
i − f (∂k∂

kγim)(∂lγ̇
m
j )− gȧaγ̇ik(∂j γ̇ k

l ) + g (∂n∂lγjk)(∂nγ̇
k
i )
]
,

(6.26)

where we have defined

f ≡ a1 +
a2

2
+ 2a4, g ≡ a2

2
+ 2a4. (6.27)

Let us now focus on the second term in the action. We have

2φ̇2

M4
Pl

fεijl(∂k∂
kγim)(∂lγ̇

m
j ) =

φ̇2

M4
Pl

fεijl
[
(∂k∂

kγim)(∂lγ̇
m
j ) + (∂k∂

kγim)(∂lγ̇
m
j )
]

=
φ̇2

M4
Pl

fεijl
[
(∂k∂

kγim)(∂lγ̇
m
j )− (∂lγim)(∂k∂

kγ̇ m
j )
]

=
φ̇2

M4
Pl

fεijl
[
(∂k∂

kγim)(∂lγ̇
m
j ) + (∂k∂

kγ̇im)(∂lγ
m
j )
]

=
2φ̇2

M4
Pl

f

2
εijl∂t

[
(∂k∂

kγim)(∂lγ
m
j )
]
.

(6.28)

To pass from the first to the second line we have integrated by parts three times in the spatial
derivatives and we have neglected the total derivative term (which gives no contributions at the
level of the equations of motion), while in the third equality we have used the antisymmetry
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property of the Levi-Civita tensor in i and j. We can repeat an analogous computation also for
the last term in the action (6.26), obtaining

2φ̇2

M4
Pl

gεijl(∂n∂lγjk)(∂nγ̇
k
i ) =

2φ̇2

M4
Pl

g

2
εijl∂t

[
(∂n∂lγjk)(∂nγ

k
i )
]
. (6.29)

If we then integrate by parts (in the time derivative) both these terms, the action (6.26) becomes

S1 der
γγ =

2φ̇2εijl

M4
Pl

[
fȧa(∂lγ̇jk)γ̇

k
i +

(
ḟ

2
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(∂k∂

kγim)(∂lγ
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2
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(∂n∂lγjk)(∂nγ

k
i )

]
.

(6.30)

The terms proportional to the second derivative of the scalar field are of higher order in the
slow-roll parameters. Indeed, from the definitions

ε ≡ − Ḣ

H2
' εV '

φ̇2

2H2M2
Pl

, (6.31)

η ≡ ε̇

εH
= 2ε+ 2

φ̈

Hφ̇
, (6.32)

it follows that
φ̇2

M2
Pl

φ̈

φ̇
' 2H3ε

(η
2
− ε
)
' O(ε2, η · ε). (6.33)

Since we work at leading order in the slow-roll parameters, we can neglect both these terms.
Hence we are left with the action

S1 der
γγ =

2φ̇2εijl

M4
Pl

[
fȧa(∂lγ̇jk)γ̇

k
i +

ḟ

2
(∂k∂

kγim)(∂lγ
m
j )− gȧaγ̇ik(∂j γ̇ k

l ) +
ġ

2
(∂n∂lγjk)(∂nγ

k
i )

]
.

(6.34)
Let us now expand the tensor perturbations in the Fourier space in the chiral polarization basis
as

γij(x, t) =

∫
d3k

(2π)3

∑
s=L,R

ε
(s)
ij (k)γsk(t)eik·x. (6.35)

As we have already seen, this decomposition into left and right modes is useful when considering
theories that break parity. We can now rewrite the action (6.34) in the Fourier space as

S1 der
γγ =

∑
s1,s2

2

M4
Pl

∫
d4x

∫
d3k

(2π)3

∫
d3q

(2π)3
φ̇2εijl

[
if ȧaklγ̇

s1
k γ̇

s2
q ε

(s1)
jk (k)ε

(s2)k
i (q)+

−i ḟ
2
k2qlγ

s1
k γ

s2
q ε

(s1)
im (k)ε

(s2)m
j (q)− igȧaqj γ̇s1k γ̇

s2
q ε

(s1)
ik (k)ε

(s2)k
l (q)+

+i
ġ

2
knklqnγ

s1
k γ̇

s2
q ε

(s1)
jk (k)ε

(s2)k
i (q)

]
ei(k+q)·x.

(6.36)

We can first integrate over x and q, obtaining

S1 der
γγ =

∑
s1,s2

2

M4
Pl

∫
dt

∫
d3k

(2π)3
φ̇2εijl

[
if ȧaklγ̇

s1
k γ̇

s2
−kε

(s1)
jk (k)ε

(s2)k
i (−k)+

+i
ḟ

2
k2klγ

s1
k γ

s2
−kε

(s1)
im (k)ε

(s2)m
j (−k) + igȧakj γ̇

s1
k γ̇

s2
−kε

(s1)
ik (k)ε

(s2)k
l (−k)+

−i ġ
2
k2klγ

s1
k γ̇

s2
−kε

(s1)
jk (k)ε

(s2)k
i (−k)

]
.

(6.37)
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For circular polarization modes we have seen that the following relation holds [78]

klε
mljε

(s)j
j (k) = −iλskε(s)im(k), (6.38)

where λR = +1 and λL = −1. In the case of the terms in the action (6.37), we have

εijlklε
(s1)
jk (k) = −εiljklε

(s1)
jk (k) = iλs1kε

(s1)i
k(k), (6.39)

εijlklε
(s1)
im (k) = εjliklε

(s1)
im (k) = −iλs1kε(s1)j

m(k), (6.40)

εijlkjε
(s1)
ik (k) = −εljikjε(s1)

ik (k) = iλs1kε
(s1)l

k(k), (6.41)

from which the action (6.37) becomes

S1 der
γγ =

∑
s1,s2

2

M4
Pl

∫
dt

∫
d3k

(2π)3
φ̇2εijl

[
− λs1fȧakγ̇

s1
k γ̇

s2
−kε

(s1)i
k(k)ε

(s2)k
i (−k)+

+λs1
ḟ

2
k3γs1k γ

s2
−kε

(s1)j
m(k)ε

(s2)m
j (−k)− λs1gȧakγ̇

s1
k γ̇

s2
−kε

(s1)l
k(k)ε

(s2)k
l (−k)+

+λs1
ġ

2
k3γs1k γ̇

s2
−kε

(s1)i
k(k)ε

(s2)k
i (−k)

]
=
∑
s=L,R

4

M4
Pl

∫
dt

∫
d3k

(2π)3
φ̇2

[
−(f + g)ȧaλsk|γ̇sk|2 +

(
ḟ + ġ

2

)
λsk

3|γsk|2
]
,

(6.42)

where we have also used

εLij(k)εijL (k) = 0 = εRij(k)εijR(k), εLij(k)εijR(k) = 2, γR−k = (γLk )∗, γL−k = (γRk )∗. (6.43)

Switching from the cosmic time to the conformal time, this becomes

S1 der
γγ =

∑
s=L,R

4

M4
Pl

∫
dτ

∫
d3k

(2π)3

φ′2

a

[
−(f + g)Hλsk|γs′k |2 +

(
f ′ + g′

2

)
λs

1

a
k3|γsk|2

]
. (6.44)

If we now add the contribution from standard gravity

SGR
γγ =

∑
s=L,R

M2
Pl

2

∫
dτ

∫
d3k

(2π)3
a2
[
|γs′k |2 − k2|γsk|2

]
, (6.45)

we can write the total action for the tensor perturbations as

Sγγ ≡ S1 der
γγ + SGR

γγ =
∑
s=L,R

∫
dτ

∫
d3k

(2π)3

[
A2
T,s|γs′k |2 −B2

T,sk
2|γsk|2

]
, (6.46)

where we have defined

A2
T,s ≡

M2
Pl

2
a2

[
1− 8

M6
Pl

φ′2

a3
(f + g)λsHk

]
=
M2
Pl

2
a2

(
1− λs

kphys
MCST

)
, (6.47)

with

MCST ≡
M6
Pl

8

a2

φ′2
1

(f + g)H
, (6.48)

and

B2
T,s ≡

M2
Pl

2
a2

[
1− 4

M6
Pl

φ′2

a4
(f ′ + g′)λsk

]
. (6.49)
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The right modes (λR = +1) with a physical wavenumber, kphys = k/a, larger than MCST have
a negative kinetic term, thus they are ghost fields4 [79]. From this we can see that MCST plays
the same role as the Chern-Simons mass in the case with Chern-Simons modified gravity [17].
Hence, in analogy with the Chern-Simons case, we introduce a UV cut-off Λ in the theory such
that Λ�MCST . If we then require that kphys < Λ at the beginning of inflation5, we work in a
regime where we are free from ghosts. We have also to require that at the beginning of inflation
the modes were deep inside the horizon, and this leads to the condition kphys � H. From these
two conditions taken together it follows that MCST � H. In the following we take MCST to be
constant. To justify this, in analogy with the Chern-Simons case we introduce a dimensionless
parameter which quantifies the rate of variation of MCST in a Hubble time:

ξ ≡ ṀCST

MCSTH
' 2η − ε− ḟ + ġ

H(f + g)
. (6.50)

If we assume that f and g depend “weakly” on the inflaton field6 φ, the last term in (6.50) gives
a negligible contribution. Since the slow-roll parameters obey ε � 1, |η| � 1, it follows that
ξ � 1.

Let us then rewrite the action (6.46) as

Sγγ =
∑
s=L,R

∫
dτ

∫
d3k

(2π)3
A2
T,s

[
|γs′k |2 − C2

T,sk
2|γsk|2

]
, (6.51)

where we have defined

C2
T,s ≡

B2
T,s

A2
T,s

. (6.52)

By making the field redefinition
µs ≡ AT,sγs, (6.53)

the action (6.51) becomes

Sγγ =
∑
s=L,R

∫
dτ

∫
d3k

(2π)3

[
|µ′s(k, τ)|2 − C2

T,sk
2|µs(k, τ)|2 +

A′′T,s
AT,s
|µs(k, τ)|2

]
. (6.54)

Varying this action yields the equations of motion for the fields µs, which read

µ′′s +

(
C2
T,sk

2 −
A′′T,s
AT,s

)
µs = 0. (6.55)

The second term inside the parentheses is given by

A′′T,s
AT,s

=
d

dτ

(
A′T,s
AT,s

)
+

(
A′T,s
AT,s

)2

=
2 + 3ε

τ2
− λsk

τ

H

MCST
+ O

(
ε2,

H2

M2
CST

, ε
H

MCST

)
. (6.56)

The first term is the usual term present also in the standard models (see Eq. (3.87)), while the
second term is analogous to the one which arises with the Chern-Simons coupling (see (5.39)),

4Here and in the following we assume that MCST is positive. If it was negative, as it could occur if f and g (or
even only one of them) were negative, we would reach the same conclusions, but the role of the right and the left
modes would be exchanged. For example, in this case the left modes with a physical wavenumber greater than
MCST would be ghost fields.

5Notice that if this condition is satisfied at the beginning of inflation it continues to be satisfied as inflation
proceeds, since kphys decreases during the inflationary expansion.

6This is equivalent to requiring that the same condition holds for the parameters a1, a2, a3, a4.
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with the Chern-Simons mass MCS being replaced by MCST . Thus the equations of motion for
the fields µs are

µ′′s +

(
C2
T,sk

2 −
ν2
T −

1
4

τ2
+ λs

k

τ

H

MCST

)
µs = 0, (6.57)

with

νT '
3

2
+ ε (6.58)

at leading order in the slow-roll parameters. From these equations of motion we can see that
the speed of propagation of tensor perturbations is modified in these theories with respect to
the standard GR case and to the Chern-Simons cases, since C2

T,s 6= 1. This is indeed already
evident in Eq. (6.51). Two additional interesting features are worth to note. Firstly, the two
circular polarization states propagate with a different speed during inflation, since this depends
on the polarization index s. Secondly, the speed of tensor perturbations varies during inflation.
We will comment about the possible phenomenological consequences of these later on. Now let
us write C2

T,s as

C2
T,s =

[
1− 4

M6
Pl

φ′2

a4
(f ′ + g′)λsk

](
1− λs

k

a

1

MCST

)−1

'
1 + 1

2λs
ḟ+ġ
f+g k

H
MCST

τ
H

1 + λsk
H

MCST
τ

, (6.59)

where to obtain the final expression we have used the definition of MCST and a(τ) ' −1/(Hτ).
Notice that the standard slow-roll models with GR are recovered by setting the couplings of
the new terms in the action to zero, namely f = g = 0. In this case MCST → ∞, as can be
seen from (6.48), and therefore we recover C2

T,s = 1, as expected. This is a consistency check of
our calculations, since it shows us that if we set to zero the new terms we recover the standard
results.

There is a further important feature which arises from the expression (6.59) of C2
T,s. Let us

rewrite this as

C2
T,s =

1 + λsa

1 + λsb
, (6.60)

where we have defined

b ≡ k H

MCST
τ, a ≡ 1

2H

ḟ + ġ

f + g
b. (6.61)

The UV cut-off we have introduced (to avoid ghosts) through the condition k/a�MCST implies
that

− 1� k
H

MCST
τ < 0 (6.62)

holds during inflation. This means that |b| � 1 in the regime where we avoid ghosts. From the
expression (6.60) of a, it follows that if the couplings f and g are slowly-varying functions7 of
time during inflation, then also a is much smaller than one. This implies that, apart from tiny
corrections, we can take the speed of tensor modes to be equal to 1 during inflation. In this case
the equations of motion reduce to the equations of motion we have with Chern-Simons gravity,
with the Chern-Simons mass MCS being replaced by MCST :

µ′′s +

(
k2 −

ν2
T −

1
4

τ2
+ λs

k

τ

H

MCST

)
µs = 0. (6.63)

Therefore the conclusions we reach are the same. The chirality in the tensor power spectrum
(at leading order in the slow-roll parameters) is given by

Θ ≡
PRT − PLT
PRT + PLT

=
π

2

H

MCST
, (6.64)

7Notice that the same considerations have allowed us to neglect the time variation of MCST .
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and it is suppressed since H/MCST � 1. As regarding the tensor spectral index, working at
leading order in the slow-roll parameters and taking into account that H/MCST � 1, we get
the same result as in the standard case with GR, namely

nT ' −2ε. (6.65)

More interesting features could instead arise by allowing the time derivatives of the couplings
f and g to be large during inflation. Let us consider the case with8∣∣∣∣∣ 1

2H

ḟ + ġ

f + g

∣∣∣∣∣ =

∣∣∣∣∣ab
∣∣∣∣∣ > 1, (6.66)

Notice that b is always negative during inflation, while the sign of a depends on the sign of the
ratio (ḟ + ġ)/(f + g), and hence on the fact that f and g are decreasing or increasing during
inflation. Therefore in principle we can consider two cases:

1. in the first case, both a and b are negative: this happens if ḟ+ġ
f+g > 0;

2. in the second case, b is negative, while a is positive: this instead happens if ḟ+ġ
f+g < 0.

In the first case, it is easy to see from (6.61) with (6.66) that the left modes (λL = −1)
acquire a superluminal speed during inflation, C2

T,L > 1. The right modes (λR = +1) have

instead C2
T,R < 1, hence they are subluminal. For both the polarization states C2

T,s > 0.
In the second case instead the right modes have a superluminal speed of propagation, while

the left modes are subluminal. The condition C2
T,s > 0 is still satisfied.

Therefore we can say that, depending on the sign of the ratio (ḟ + ġ)/(f + g), one of the two
polarization states of GWs is superlumianl during inflation, while the other one is subluminal.
The superluminal propagation of one of the two polarization states is a phenomenological man-
ifestation of the breaking of Lorentz invariance arising in these theories. It is also important
to note that in the super-horizon limit (−kτ → 0) we recover C2

T,s = 1 for both right and left
modes. All the terms in the action introduced by the new operators contribute in modifying the
tensor speed and thus having C2

T,s > 1 for one of the two modes during inflation, as can be seen
from (6.52) or (6.59). Since the new terms contain lower powers of the scale factor with respect
to the standard terms (see (6.47) and (6.49)), they become less and less important as inflation
proceeds (since the scale factor grows almost exponentially), and are eventually dominated by
the standard terms. This explains why we recover C2

T,s = 1 in the super-horizon limit.

The fact of having C2
T,s > 0 is also extremely important, since it tells us that we do not have

any gradient instability during inflation. A gradient instability occurs when the square of the
speed of propagation of the perturbations becomes negative. In this case we do not have any
wave-like solution, but rather the perturbations grow exponentially. This might be a problem
from an observational point of view, since we have a (small) upper bound on the amplitude
of primordial tensor perturbations (as we have seen in Chapter 3). An exponential growth of
tensor modes during inflation might probably produce a signal which we should have observed.
Notice that the fact of having C2

T,s > 0 follows from the condition required in the footnote 8 and
also from the UV cut-off that we have introduced to avoid ghosts. In the absence of the latter,
the terms a and b in C2

T,s would be in principle unconstrained (since the condition (6.62) would

not occur anymore), thus allowing the possibility of having C2
T,s < 0.

Let us recap the results we have found until now: the two polarization states propagate with
a different and time-varying speed from each other during inflation; depending on the sign of

8In the following we assume that the relation (6.66) holds but with |a| < 1, in order to prevent one of the two
polarization states from having C2

T,s < 0, leading to a gradient instability.
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(ḟ + ġ)/(f + g), one of the two polarization states propagates with a superluminal speed during
inflation, while the other one propagates with a subluminal speed9. In the super-horizon limit
the speed of tensor modes becomes again equal to the speed of light, for both left and right
modes. No gradient instabilities occur during inflation.

We can now canonically quantize the fields µs by expanding them in terms of the creation
and annihilation operators as

µ̂s(k, τ) = us(k, τ)âs(k) + u∗s(k, τ)â†s(−k). (6.67)

The creation and annihilation operators satisfy the equal time commutation relations

[âs(k), â†s′(k
′)] = (2π)3δ(3)(k− k′)δss′ , [â(k), â(k′)] = 0 = [â†(k), â†(k′)], (6.68)

and act on the vacuum state obeying

âs|0〉 = 0, 〈0|â†s = 0. (6.69)

The equations of motion for the mode functions us are then

u′′s +

(
C2
T,sk

2 −
ν2
T −

1
4

τ2
+ λs

k

τ

H

MCST

)
us = 0. (6.70)

In the sub-horizon limit, these reduce to

u′′s + C2
T,s|k�aH k2us ' 0, (6.71)

where10

C2
T,s|k�aH ≡ lim

−kτ→∞
C2
T,s. (6.72)

One can then impose the Bunch-Davies initial condition

lim
−kτ→∞

us(k, τ) =
1√

2CT,s|k�aHk
e−iCT,s|k�aHkτ . (6.73)

At this point we have to notice that the equations of motion (6.70) have in general no
analytical solutions, due to time variation of C2

T,s. Interesting features could arise from the time
variation of the tensor speed, which in this case would also be different from the speed of light
and different for the two helicity modes. Indeed, we know that the perturbations get frozen when
they cross the horizon corresponding to their speed of propagation, namely when kCT,s ' aH.
If the two helicity modes propagate with a different speed, they get frozen at different times
during inflation. This could enhance the chirality Θ in the power spetcrum of PGWs with
respect to the Chern-Simons case. A varying tensor speed could also modify the spectral index
of one or both of the polarization states, possibly leading to a blue power spectrum of tensor
perturbations. As we have said, having a blue power spectrum means that the amplitude of
PGWs increases going to lower scales. This could be an important feature because it could
enhance the spectrum of PGWs at scales accessible to interferometers, thus allowing us to test
experimentally the theoretical predictions .

9Notice that, since we have assumed (without loss of generality) that MCST is positive, this means that also
f + g is positive. Hence the sign of (ḟ + ġ)/(f + g) depends only on whether f(φ) and g(φ) are increasing or
decreasing during inflation.

10Actually, we never reach the limit kτ → −∞, due to the UV cut-off we have imposed in the theory to avoid
ghosts. Indeed, the cut-off in the physical wavenumber, kphys = k/a, induces a cut-off in the conformal time τ
(see e.g. (6.62)). Therefore with the limit in Eq. (6.72) we mean that we are going in the far past, but not far
enough to reach energies higher than our cut-off.
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In order to proceed in analysing these possible signatures, a numerical study of the equations
of motion (6.70) is required. We leave this for a potential future work, with the following
comment as a possible starting point. We have seen that, in order to have a non-negligible
contribution to the tensor speed, we need to require that the time derivatives of the couplings
f(φ) and g(φ) are large during inflation. In this regard, given the expression (6.48) of MCST it
is safer to assume that the couplings decrease during inflation. If they increased, MCST would
instead decrease, hence the condition kphys < MCST required to avoid ghosts could fail to be
satisfied as inflation proceeds.

6.2.2 Action with second derivatives of the scalar field

Now we want to repeat an analysis analogous to the one of the previous section for the action
which includes also second derivatives of the scalar field. Its expression is given by

S2 der
UG =

φ̇3

N4
εijl
{

2N
[
b1NKmiDlK

m
j + (b4 + b5 − b3)φ̇KmiK

n
j DnK

m
l

]
+

+ φ̇
[
b3

(3)Rjlm
nKm

i DnN − 2(b4 + b5) (3)RmlK
m
j DiN

]}
.

(6.74)

As we have done in the previous case, we expand this action at second order in tensor pertur-
bations. Since, as we have explained at the beginning, we take for the lapse function and the
shift vector the zero order values, N = 1 and Ni = 0, the terms in the second row of (6.74)
vanish. Reintroducing the Planck mass by dimensional analysis, the action at second order in
tensor perturbations can be written as

S2 der
γγ =

φ̇3

M5
Pl

εijl

[
1

2
ba2γ̇ki(∂lγ̇

k
j ) +

1

2
b̃
φ̇

M3
Pl

ȧaγ̇ki(∂j γ̇
k
l )

]
, (6.75)

where we have defined

b ≡ b1, b̃ ≡ b4 + b5 − b3. (6.76)

Notice that, with respect to the case with only first derivatives of the scalar field, we do not have
any term like the second and the fourth ones in (6.26), which were then integrated by parts,
thus leading to the contributions proportional to the derivatives of the couplings (f and g in the
previous case).

Repeating the same steps as in the previous case, we can write the total action (including
that of GR) for tensor perturbations as

S̃γγ =
∑
s=L,R

∫
dτ

∫
d3k

(2π)3

[
Ã2
T,s|γs′k |2 −

M2
Pl

2
a2k2|γsk|2

]
, (6.77)

where we have defined

Ã2
T,s ≡

M2
Pl

2
a2

[
1 + 2

φ′3

a4

k

M7
Pl

λs

(
φ′b̃a′

M3
Pla

3
− b

)]
=
M2
Pl

2
a2

(
1− λs

k

a

1

M̃CST

)
, (6.78)

with

M̃CST ≡
M7
Pla

3

2φ′3

(
b− φ′b̃a′

M3
Pla

3

)−1

. (6.79)

We have introduced M̃CST for the same reason as for MCST in the case with only first derivatives
of the scalar field. It represents the energy scale at which some modes of the fields acquire a
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negative kinetic term, thus becoming ghost fields11. Proceeding as in the previous case, we
introduce a UV cut-off Λ << M̃CST by requiring that kphys < Λ. By requiring also that the
modes started deep below the horizon, it follows that H/M̃CST � 1.

Let us now rewrite the action (6.77) as

S̃γγ =
∑
s=L,R

∫
dτ

∫
d3k

(2π)3
Ã2
T,s

[
|γs′k |2 − C̃2

T,sk
2|γsk|2

]
, (6.80)

with

C̃2
T,s ≡

M2
Pla

2

2Ã2
T,s

. (6.81)

Making the field redefinition

µs ≡ ÃT,sγs, (6.82)

the action (6.80) becomes

S̃γγ =
∑
s=L,R

∫
dτ

∫
d3k

(2π)3

[
|µ′s(k, τ)|2 − C̃2

T,sk
2|µs(k, τ)|2 +

Ã′′T,s

ÃT,s
|µs(k, τ)|2

]
. (6.83)

By varying this action we obtain the equations of motion for the fields µs

µ′′s +

(
C̃2
T,sk

2 −
Ã′′T,s

ÃT,s

)
µs = 0, (6.84)

where
Ã′′T,s

ÃT,s
' 2 + 3ε

τ2
− λs

k

τ

H

M̃CST

. (6.85)

at leading order in the slow-roll parameters and in the ratio H/M̃CST . The equations of motion
(6.84) can now be rewritten as

µ′′s +

(
C̃2
T,sk

2 −
ν2
T −

1
4

τ2
+ λs

k

τ

H

M̃CST

)
µs = 0, (6.86)

with

νT '
3

2
+ ε. (6.87)

As in the case with only first derivatives of the scalar field, the speed of propagation C̃T,s of
GWs is modified. At leading order in the slow-roll parameters and in the ratio H/M̃CST , we
have

C̃2
T,s '

1

1 + λsk
H

M̃CST
τ
, (6.88)

However, notice that with respect to the previous case we do not have (in the numerator) the
terms proportional to the time derivatives of the coupling functions (which are not present in the
action (6.75)), that can potentially lead to interesting signatures. The term in the denominator
is still suppressed since we work in a regime where we are free from ghost fields. Therefore,
apart from tiny corrections, we can take

C̃2
T,s ' 1 (6.89)

11In this regard, see again the footnote 4 at page 112.
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to hold during inflation.
We can now canonically quantize the fields µs by expanding them in terms of the creation

and annihilation operators as

µ̂s(k, τ) = us(k, τ)âs(k) + u∗s(k, τ)â†s(−k). (6.90)

The creation and annihilation operators satisfy the equal time commutation relations

[âs(k), â†s′(k
′)] = (2π)3δ(3)(k− k′)δss′ , [â(k), â(k′)] = 0 = [â†(k), â†(k′)], (6.91)

and act on the vacuum state obeying

âs|0〉 = 0, 〈0|â†s = 0. (6.92)

The equations of motion for the mode functions us are

u′′s +

(
k2 −

ν2
T −

1
4

τ2
+ λs

k

τ

H

M̃CST

)
us = 0. (6.93)

These are the same equations as in the Chern-Simons case, with the only difference that the
Chern-Simons mass is replaced by M̃CST . In the sub-horizon limit the equations of motion
(6.93) reduce to

u′′s + k2us ' 0. (6.94)

and we can impose the Bunch-Davies initial condition

lim
−kτ→∞

us(k, τ) =
1√
2k
e−ikτ . (6.95)

Therefore, as in the Chern-Simons case, the chirality in the power spectrum of PGWs is sup-
pressed by the ratio H/M̃CST , and the tensor spectral index remains the same as in standard
models, at leading order in the slow-roll parameters and using the fact that H/M̃CST � 1.
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The inflationary paradigm is the leading mechanism capable of solving the shortcomings of the
standard cosmological model, namely the horizon, the flatness and the unwanted relics problems
[1–4]. All the observations are in agreement with its basic predictions. As we have studied in
this thesis, the most important feature of the inflationary phase is that this provides also a
way of producing the primordial perturbations which are the seeds for the subsequent formation
of the Large Scale Structures of the Universe [5–7]. A stochastic background of gravitational
waves is another fundamental and general prediction of all inflationary models [11]. The simplest
models of inflation, namely single field slow-roll models, predict an almost scale-invariant power
spectrum of both scalar and tensor perturbations, with a tiny level of non-Gaussianity. For scalar
perturbations these predictions have been extraordinarily confirmed by the measurements of the
temperature anisotropies of the CMB made by the Planck sateltite [8,9,41,55], while primordial
gravitational waves have not been observed yet.

The main aim of this thesis was to study inflation within new parity violating theories of
gravity which have been recently proposed [19], and which generalize Chern-Simons gravity [16–
18,76] by including in the action coupling terms to gravity involving first and second derivatives
of a scalar field (the inflaton field, in the context of inflation). Our motivations for doing
this are at least twofold: from the point of view of fundamental physics, inflation allows us
to test physics at very high energies, far beyond the ones that can be reached on Earth. In
the context of our interest, modifying the theory of gravity could leave some signatures in the
primordial perturbations originated during the inflationary phase, thus possibly allowing us to
test whether the theory of gravity deviates from General Relativity. Moreover, it is well known
that primordial gravitational waves are the “smoking gun” of inflation, being a general prediction
of all inflationary models. However, they have not been observed yet. Modifying the theory
of gravity could enhance the spectrum of primordial gravitational waves at scales accessible
to interferometers, thus allowing us to detect them [15, 83]. This would be a strong evidence
supporting the inflationary paradigm.

First of all we have seen that the background dynamics of inflation is not modified with
respect to the standard models with GR. Also the power spectrum of scalar perturbations
remains the same, as can be seen by symmetry arguments. Then we have focused on studying
how the dynamics of primordial gravitational waves is modified.

In the case of the theory with only first derivatives of the scalar field, described by the action
(6.8), the resulting equations of motion (at leading order in slow-roll) for the two helicity modes
are

u′′s +

(
C2
T,sk

2 −
ν2
T −

1
4

τ2
+ λs

k

τ

H

MCST

)
us = 0, (6.96)

where MCST is the energy scale at which some modes of the fields become ghost fields, namely
it is the analogous of the Chern-Simons mass [17, 18] in these new theories. We have thus
introduced a UV cut-off Λ � MCST to avoid the presence of ghosts. Notice that, in deriving
Eq. (6.96), MCST has been assumed constant. If we compare Eqs. (6.96) with the corresponding
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equations of motion arising in the case with Chern-Simons gravity [16,17],

u′′s +

(
k2 −

ν2
T −

1
4

τ2
+ λs

k

τ

H

MCS

)
us = 0, (6.97)

we can see that the speed of propagation of tensor modes during inflation is modified, since
C2
T,s 6= 1. Its expression, at leading order in slow-roll, is now given by

C2
T,s =

1 + 1
2λs

ḟ+ġ
f+g k

H
MCST

τ
H

1 + λsk
H

MCST
τ

. (6.98)

Thus the speed of tensor modes varies with time during inflation and is different for the two
polarization states. In particular, one of the two polarization states propagates with a super-
luminal speed, while the other one is subluminal (which one is superluminal and which one is
subluminal depends on wheter the couplings f and g increase or decrease during inflation). As
can be seen from Eq. (6.98), in the super-horizon limit (kτ → 0) the tensor speed approaches
the speed of light for both the polarization states. The term in the denominator of (6.98) if
suppressed, k(H/MCST )τ � 1, if we work in a regime of energies where we avoid the presence
of ghost fields. The term in the numerator can instead give a non-negligible contribution if
the coupling functions f(φ) and g(φ) have large time derivatives during inflation. This could
leave some interesting phenomenological signatures both at the level of chirality in the power
spectrum and in the tensor spectral index. For the former, we recall that the chirality Θ is
defined as

Θ ≡
PRT − PLT
PRT + PLT

, (6.99)

where PRT and PLT are the super-horizon tensor power spectra for right and left modes respec-
tively. If the two helicity modes propagate with a different speed, they cross the horizon and
hence get frozen at different times during inflation. This could enhance the chirality Θ in the
power spectrum of primordial gravitational waves with respect to the Chern-Simons case. The
fact that the tensor speed varies during inflation and depends on the wavenumber k could also
modify the spectral index of one or both of the polarization states, possibly leading to a blue
power spectrum of tensor perturbations. This could be interesting beacause the spectrum of
PGWs could be enhanced at scales detectable by interferometers [15, 83]. In order to study
both these features we need to solve numerically the equations of motion (6.96), which have
no analytical solutions due to the time dependence of C2

T,s. We leave this for a possible future
work. Another possible interesting future work could involve the study of non-Gaussianities,
which could be unsuppressed due to some interaction terms introduced by the new operators in
the action, with the aim of seeing whether parity-breaking signatures could be detectable in the
bispectra of primordial perturbations [17,18,82].

In the case of the theory with second derivatives of the scalar field, described by the action
(6.9), the equations of motion for the two helicity modes are instead given by

u′′s +

(
C̃2
T,sk

2 −
ν2
T −

1
4

τ2
+ λs

k

τ

H

M̃CST

)
us = 0, (6.100)

where M̃CST has the same role in this theory as MCST in the previous one. The tensor speed is
now given by

C̃2
T,s '

1

1 + λsk
H

M̃CST
τ
. (6.101)

With respect to the previous case we do not have in the numerator the term proportional to the
time derivatives of the coupling functions, that can potentially lead to interesting signatures.
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The term in the denominator is still suppressed given that we work in a regime where we are free
from ghost fields, since k(H/M̃CTS)τ � 1. Therefore, apart from tiny corrections, the tensor
speed is equal to the speed of light during inflation,

C̃2
T,s ' 1. (6.102)

The equations of motion have now the same form of the ones which arise in the case with Chern-
Simons gravity, and the conclusions are therefore the same: the chirality in the power spectrum
is suppressed, since

Θ ∼ H

M̃CST

� 1, (6.103)

and the tensor spectral index is the same as in standard models with GR (nT ' −2ε), at
leading order in the slow-roll parameters and since H/M̃CST � 1. As for the other model,
an interesting extension of this work could be the study of non-Gaussianities, considering in
particular the parity-breaking signatures in the primordial bispectra.
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Appendix A

De Sitter spacetime: symmetry
under dilations and scale-invariance
of the power spectrum

Studying the symmetries of the inflating spacetime is important to better understand the prop-
erties of the perturbations from inflation. We now want to see that the scale-invariance of
the spectrum of the perturbations in a pure de Sitter phase is related to the symmetry of the
underlying geometry under dilations. In this discussion we follow [33], see also [84].

Dilations are transformations that act as

xµ → x′µ = λxµ ⇒

{
xi → x′i = λxi,

τ → τ ′ = λτ
(A.1)

and are a symmetry of the de Sitter geometry, together with spatial translations and rotations
on τ = const slicings. This transformation acts on a scalar field φ (in our case, the inflaton) as

φ(x)→ φλ(x) = φ(λx). (A.2)

In the Fourier space, we have

φ(λx) =

∫
d3k φ(k)eik·λx = λ−3

∫
d3p φ(p/λ)eip·x, (A.3)

where in the second equality we have changed the variable of integration from k to p = λk.
Thus, in the Fourier space dilations act on φ as

φk → φ′k = λ−3φk/λ. (A.4)

Due to the symmetry under dilations, the power spectrum of perturbations must have the form

〈φk1φk2〉 = (2π)3δ(3)(k1 + k2)
F (k1τ)

k3
1

, (A.5)

where F is a generic function. Indeed, in this way1

〈φk1φk2〉 → λ−6〈φk1/λφk2/λ〉 = λ−6(2π)3δ(3)

(
k1

λ
+

k2

λ

)
F (k1τ/λ)

(k1/λ)3
= (2π)3δ(3)(k1 + k2)

F (k1τ)

k3
1

.

(A.7)

If on super-Hubble scales the perturbations become time-independent, the function F must be
constant in this limit. This leads to a scale-invariant power spectrum.

1In the last step we have used the following property of the three-dimensional Dirac delta:

δ(3)(λx) = |λ|−3δ(3)(x). (A.6)

122



Appendix B

Consistency relation for single-field
models

In this Appendix we show the existence of a consistency relation for the three-point function of
scalar perturbations, with the unique assumption that the inflaton is the only dynamical field
during inflation. It is not based on any slow-roll approximation and it is independent on other
details like the shape of the potential, the form of the kinetic term and the initial vacuum state.
Therefore, if proved wrong by experimental results, this consistency relation would rule out in a
model independent way the possibility that the inflaton is the only dynamical field. The general
proof is given in [68]; see also [62]

This consistency relation relates the squeezed limit of the three-point function of curvature
perturbations to the power spectrum and the tilt of the two-point function:

lim
k1→0
〈ζk1ζk2ζk3〉 = (2π)3δ(3)(k1 + k2 + k3)(1− ns)Pζ(k1)Pζ(k3). (B.1)

The curvature perturbation ζ is such that the metric, once a mode is outside the horizon
and hence is frozen, can be written as

ds2 = −dt2 + a2(t) e2ζ(x,t)dx2. (B.2)

Hence ζ acts as a local rescaling of the spatial coordinates within a given Hubble patch. In
particular, we are considering the squeezed limit of the three-point function, which correlates
one long wavelength mode, which we take to be k1, to two short wavelength modes, k2 and
k3 (with k2 ≈ k3). Therefore, the long mode will be already frozen outside the horizon when
the shorter ones freeze and acts as a background field for them (it locally rescales the spatial
coordinates). It is then quite intuitive that, if the power spectrum of the short modes is scale
invariant, then there is no correlation with the long mode.

In order to show it explicitly, we start by calculating the power spectrum of the short modes;
then we will correlate this result with the long background mode. We define the long wavelength
mode as kL = k1 and the two short modes as kS = k2 ≈ k3. In position space, we can expand
the two-point function around its value when ζL → 0 (i.e., in the absence of the long mode):

〈ζSζS〉ζL(∆x) = 〈ζSζS〉0(∆x) + ζL
∂

∂ζL
〈ζSζS〉

∣∣∣
0

+ . . . (B.3)

For what said, the derivative with respect to the long mode is equal to the derivative with respect
to the logarithm of the distance ∆x between the points where the short modes are evaluated.
Hence, we have

〈ζSζS〉ζL = 〈ζSζS〉0 + ζL(1− ns)〈ζSζS〉0. (B.4)
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To get the three-point function we multiply by ζL and take the average, finding

〈〈ζSζS〉ζLζL〉 = (1− ns)〈ζLζL〉〈ζSζS〉0. (B.5)

Going to Fourier space, we find the final result:

B(kS , kS , kL → 0) = (1− ns)Pζ(kL)Pζ(kS). (B.6)
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Appendix C

Polarization operators

In this section we construct the two different polarization basis used within the thesis and discuss
their properties, following [82].

First of all, we expand the tensor perturbations in the Fourier space as

γij(x, t) =

∫
d3k

(2π)3

∑
s

ε
(s)
ij (k̂)γs(k, t)e

ik·x, (C.1)

where ε
(λ)
ij (k̂) is an arbitrary polarization basis. One of the most commonly used is the {+,×}

one. To construct it, we start by expressing k̂ in the {ê1, ê2, ê3} basis in polar coordinates:

k̂ = (sinθ cosφ, sinθ sinφ, cosθ), (C.2)

and then define the vectors

û = (sinφ,−cosφ, 0), v̂ = k̂ × û = (cosθ cosφ, cosθ sinφ,−sinθ), (C.3)

such that {k̂, û, v̂} form an orthonormal basis. Thus we define the +, × polarization tensors as

ε
(+)
ij =

ûiûj − v̂iv̂j√
2

, ε
(×)
ij =

ûiv̂j + v̂iûj√
2

, (C.4)

which are real and satisfy the properties

ε
(+)
ij ε

(+)
ij = ε

(×)
ij ε

(×)
ij = 1, ε

(+)
ij ε

(×)
ij = 0. (C.5)

We can then define the chiral polarization tensor basis as

ε
(R)
ij =

ε
(+)
ij + iε

(×)
ij√

2
, ε

(L)
ij =

ε
(+)
ij − iε

(×)
ij√

2
, (C.6)

which satisfy the properties

ε
(λ)∗
ij (k̂) = ε

(λ)
ij (−k̂), ε

(L)∗
ij (k̂) = ε

(R)
ij (k̂), ε

(R)∗
ij (k̂) = ε

(L)
ij (k̂), ε

(λ)∗
ij (k̂)ε

(λ′)∗
ij (k̂) = δλλ

′
. (C.7)

Since the orientation of the {û, v̂} vectors within the plane orthogonal to k̂ is arbitrary, we can
rotate them by an angle α around the axis defined by k̂, obtaining a new set {û(α), v̂(α), k̂},
where û(0) ≡ û and v̂(0) ≡ v̂: (

û(α)
v̂(α)

)
= R[α]

(
û
v̂

)
, (C.8)
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where

R[α] =

(
cosα sinα
−sinα cosα

)
(C.9)

is the rotation matrix around the k̂-axis. By expressing the components of new vectors û(α),
v̂(α) in terms of the basis {ê1, ê2, ê3} it is easy to show that

|û(α)|2 = 1 = |v̂(α)|2, û(α)× v̂(α) = k̂, (C.10)

meaning that the new set of vectors still form an orthonormal basis, as expected. We can then
construct the polarization tensors in the new basis, starting with

ε
(+)
ij (α) =

ûi(α)ûj(α)− v̂i(α)v̂j(α)√
2

, ε
(×)
ij (α) =

ûi(α)v̂j(α) + v̂i(α)ûj(α)√
2

. (C.11)

Using (C.8) we can easily show that the +,× polarization tensors transform as the basis vectors
themselves, namely ε(+)

ij (α)

ε
(×)
ij (α)

 = R[α]

ε(+)
ij

ε
(×)
ij

 . (C.12)

This means that if we want to expand the tensor perturbations in terms of the new polarization
tensors, also the tensor modes should be rotated by the same matrix R(

h(+)(α)

h(×)(α)

)
= R[α]

(
h(+)

h(×)

)
. (C.13)

If we then define the chiral polarization tensors in the new basis

ε
(R)
ij (α) =

ε
(+)
ij (α) + iε

(×)
ij (α)

√
2

, ε
(L)
ij (α) =

ε
(+)
ij (α)− iε(×)

ij (α)
√

2
, (C.14)

we can see that they are related to the ones in the old basis through the relation

ε
(R,L)
ij (α) = e∓i2αε

(R,L)
ij . (C.15)

Thus, if we want to expand the tensor perturbations in terms of the new chiral polarzation
tensors, the tensor modes have to be rescaled by an opposite phase, namely

γR,L(α) = e±i2αγR,L. (C.16)

This transformation law reflects the spin-2 nature of the tensor field γij .
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f (R) theories of gravity and
non-Gaussianity from inflation

The term with R2 in the expansion (5.11) is nothing else than the first term in an expansion
in powers of the Ricci scalar of a more general f(R) theory. Thus, we consider the Lagrangian
density

L =
√
−g
[
f(R)− 1

2
gµν∂µφ∂νφ− V (φ)

]
. (D.1)

We now want to show that the f(R) term brings to the introduction of an additional degree of
freedom in the theory. In other words, a f(R) theory plus a scalar field (which in our case is
the inflaton) is equivalent to a theory with two scalar fields with a specific metric, and a generic
potential for the two fields. To do so, we start by showing how our theory can be recast in the
form of a scalar-tensor theory; then, by applying a Weyl (conformal) transformation, we go from
the Jordan frame to the Einstein frame, obtaining the desired result.

We only mention that here we work in the so-called metric formalism, in which the connection
is assumed a priori to be the Levi-Civita connection. When studying theories of gravity, one
can use more general approaches: in the Palatini formalism the metric and the connection are
assumed to be independent variables and one varies the action with respect to both of them,
under the important assumption that the matter action does not depend on the connection1; in
the metric-affine formalism one abandons also the latter assumption. Clearly, this last one is
the most general of these theories (see [85,86] for more details).

Coming back to our problem, the first step is to rewriting the Lagrangian in the form

L =
√
−g
[
f(χ) + f ′(χ)(R− χ)− 1

2
gµν∂µφ∂νφ− V (φ)

]
, (D.2)

where χ is a new auxiliary (i.e., non dynamical) field, and the prime denotes the derivative with
respect to it. Setting the variation with respect to χ equal to zero, we find

f ′′(χ)(R− χ) = 0, (D.3)

so that χ = R, for each χ such that f ′′(χ) 6= 0. Substituting this result in (D.2) we recover the
original Lagrangian (D.1), showing that they are equivalent. Moreover, the case f ′′(χ) = 0 gives
us back the Einstein-Hilbert action.

Now, let us define a new scalar field

ψ ≡ 2

M2
Pl

f ′(χ), (D.4)

1In the case of Einstein gravity, the variation wrt to the connection gives the condition that the latter is the
Levi-Civita connection; hence, the two formalisms are equivalent.
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and, assuming that ψ(χ) is invertible, let us define the potential

Λ(ψ) ≡ f(χ(ψ))−
M2
Pl

2
ψχ(ψ). (D.5)

The Lagrangian (D.2) can then be rewritten as

L =
√
−g
[
M2
Pl

2
ψR+ Λ(ψ)− 1

2
gµν∂µφ∂νφ− V (φ)

]
, (D.6)

which is the Lagrangian of a scalar-tensor theory with vanishing kinetic term for ψ2.
The second step, as anticipated, is to perform a Weyl transformation to move from the Jordan

frame to the Einstein frame. In the Jordan frame there is a direct coupling between the scalar
field ψ and the Ricci scalar, and the matter action doesn’t depend on ψ; as a consequence, the
stress-energy tensor Tµν is still covariantly conserved and test particles follow geodesics of the
metric. In the Einstein frame the gravitational part of the Lagrangian becomes that of Einstein
gravity plus a kinetic term for ψ, and it is also present a direct coupling between the scalar
field ψ and the matter fields (the inflaton, in our case); this implies that Tµν is not covariantly
conserved anymore and test particles don’t follow geodesics of the metric.

Coming back to our discussion, let us now perform the conformal transformation

gµν → e−2ωgµν , (D.7)

with e2ω = ψ. By defining the fields

ϕ1 ≡
√

6MPlω, ϕ2 ≡ φ, (D.8)

the Lagrangian takes the form [87]

L̃ =
√
−g
[

1

2
M2
PlR−

1

2
gµνγab∂µϕ

a∂νϕ
b − U1(ϕ1)− e−4ϕ1/

√
6MPlU2(ϕ2)

]
=
√
−g
[

1

2
M2
PlR−

1

2
gµνγab∂µϕ

a∂νϕ
b − V (ϕ1, ϕ2)

]
,

(D.9)

where a, b = 1, 2 and we have defined

V (ϕ1, ϕ2) = U1(ϕ1) + e−4ϕ1/
√

6MPlU2(ϕ2), U1(ϕ1) = e−4ϕ1/
√

6MPlΛ(ψ(ω(ϕ1))) (D.10)

and the metric

γab =

(
1 0

0 e−2ϕ1/
√

6MPl

)
. (D.11)

This is the Lagrangian of a two-field model with a specific metric and the two-field potential
V (ϕ1, ϕ2).

Having one more degree of freedom, i.e. one more scalar field, it is possible that the in-
teractions between the two fields lead to some observable effects, possibly enhancing local non-
Gaussianity to an observable level. If both fields contribute to the background inflationary
dynamics, we have in principle to impose slow-roll conditions on both of them. However, if
the new scalar field is subdominant during inflation, we can relax this condition, leaving its
background dynamics unconstrained; then, it is possible for non-Gaussianity to be transferred
to the inflaton field.

2In the “language” of scalar-tensor theories, the so-called Brans-Dicke parameter ω0 is equal to zero. One
can show that the equivalence between f(R) theories and scalar-tensor theories still holds also in the Palatini
formalism; however, in this case ω0 = −3/2 [86].
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In [87] it has been considered the case

f(R) =
M2
Pl

2
R+

R2

12M2
, (D.12)

which is the leading-order expansion of a f(R) theory in powers of the Ricci scalar R. In this
case, the two-field potential is given by

V (ϕ1, ϕ2) =
3

4
M2M2

Pl

(
1− e−2ϕ1/

√
6MPl

)2
+ e−4ϕ1/

√
6MPlU(ϕ2). (D.13)

By expanding the Lagrangian at second order (neglecting the metric perturbations for simplic-
ity), one finds [87]

δL2 =
2√

6MPl

e−2ϕ̄G/
√

6MPl ˙̄ϕIδϕGδϕ̇I , (D.14)

where ϕI ≡ ϕ2 denotes the inflaton field, and ϕG ≡ ϕ1 the isocurvature field, which is those
that describes the modifcations of gravity. The bar refers to the background value of the corre-
sponding quantity. At third order one finds [87]

δL3 = −1

6
U ′′′1 (ϕ̄I)δϕ

3
G. (D.15)

As we have already said, since the field ϕG is subdominant during inflation, it is not subjected
to any slow-roll condition. Thus the isocurvature potential U ′′′1 is not negligible and gives a
contribution to δL3. In [87] an estimate of the level of non-Gaussianity has been obtained:

fNL ' α(ν)
(
δ̂L2

)3
δ̂L3P

−1/2
ζ , (D.16)

where δ̂L2 and δ̂L3 are the vertices of the interactions (namely the coefficients in) (D.14)-(D.15),
and α(ν) is a numerical factor (function of Meff/H, with Meff being the effectve mass of ϕI) which
can range from 0.2 to about 300. As shown in [87], it is possible to obtain fNL ≈ −1 to − 30,
with a characteristic shape of non-Gaussianity which is intermediate between an equilateral and
a local shape.

For further developements on primordial non-Gaussianities from modifications to the theory
of gravity, see also [88].
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