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Abstract

Primordial black holes provide important information about the early Universe com-
plementary to large-scale cosmological observations.
In the standard picture, primordial black holes are formed, during the epoch of radiation
domination at early times, by (non-standard) enhancements in the power spectrum of pri-
mordial perturbations generated during inflation over some scale ranges. An alternative
mechanism for describing the generation of primordial black holes is currently under active
development. It is based on non-standard gravitational effects at sub-millimetre scales
in the early Universe, for which we expect deviations from general relativity to become
significant. In this approach to the primordial black hole formation, the power spectrum
of primordial fluctuations is assumed to be of the standard, nearly scale-invariant form set
by inflation, while the evolution of the fluctuations after inflation results in enhancements
of the power spectrum, providing a new mechanism for generating primordial black holes.
In this project we study the latter scenario: a non-inflationary mechanism for producing
primordial black holes. The aim of this work is to investigate the physical consequences
of this scenario in order to be able to set constraints on alternative theories of gravity. In
particular, we study the production of scalar-induced gravitational waves from primordial
black hole formation in this newly proposed framework for the production of primordial
black holes.

The study of the production of scalar-induced gravitational waves, which is the main
original contribution of this thesis work, could help to better understand and constrain
the non-inflationary mechanism proposed in a work in progress [1] to which I have been
exposed, for producing primordial black holes and, as a consequence, modifications of
general relativity on small scales and early times.
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Chapter 1

Introduction

Primordial black holes (PBHs) are black holes that are assumed to have been formed
in the primordial Universe. They could have been naturally formed from features in the
primordial curvature power spectrum and they may constitute today a dominant compo-
nent of dark matter in the Universe ([2]). PBHs are interesting, not only because they are
a cold dark matter candidate, but also because of their implications for astronomy. It has
been pointed out that primordial black holes can be taken as the possible source of some
astronomical events and some of the LIGO events [3]. Furthermore, as summarised in Ref.
[4], by studying their formation and evolution, we can place interesting constraints on the
early Universe. The primordial black hole formation requires non-standard enhancements
in the power spectrum of primordial curvature perturbations. Since measurements of the
cosmic microwave background (CMB) observations of the large-scale structure constrain
the curvature perturbations on large scales, in order to generate a sizable amount of pri-
mordial black holes we need to enhance the small-scale curvature perturbations, as shown
in Figure 1.1. When these enhanced curvature perturbations re-enter the horizon, if
they are large enough, they collapse and result in the formation of black holes. This
means that, by studying the observational constraints on the abundance of primordial
black hole, we can constrain the proposed formation model.
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Observational constraints on the amplitudes of primordial density and cur-
vature perturbations Pδ and PR at different scales. This figure is taken from Ref.[5].

We are particularly interested in this latter aspect of primordial black holes: the
formation mechanism. In this thesis work we study a new formation mechanism that ex-
plains the production of very large scalar metric perturbations during the post-inflationary
epoch. This non-standard enhancement of the power spectrum, proposed in Ref. [1], will
be called the new scenario, to be distinguished from the standard scenario for producing
primordial black holes.

In the standard scenario, primordial curvature perturbations are produced during the
inflation era. There are several possibilities to explain the formation of a peak-like fea-
ture in the curvature power spectrum during the inflationary phase. We could consider
a multi-field inflationary model, such that one of the fields acts like the inflaton and the
other one triggers either a phase transition or a fast evolution, resulting in an excess
in the spectrum of curvature fluctuations. Depending on when this phenomenon occurs
during inflation, we may have a narrow or a broad spectrum of masses for the primordial
black holes which form during the radiation domination era upon horizon re-entry. We
could also generate the same effect in a single-inflation model, by imposing an inflection
point in the inflaton potential. Thanks to a period of evolution during which the single
field slows down, we can achieve the enhancement of the curvature power spectrum as
in the multi-field inflation, as we will see in the next section. Alternatively, models exist
which that explain primordial black hole formation by studying phase transitions or the
reheating phase. However, the common point of these production mechanisms is that
the enhancement of the curvature power spectrum occurs before the radiation-dominated
epoch. In other words, as shown in Figure 1.2, the power spectrum is enhanced before
(or, at most, during) the reheating phase. It is then frozen in the super-horizon phase, and
in the radiation-dominated epoch, after the horizon re-entry, overdense regions become
causally connected and collapse to form primordial black holes.
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Figure 1.2: Evolution of the horizon scale as a function of time. At first, during the
inflationary epoch, the horizon decreases until the reheating phase, after which it starts
increasing during the radiation-dominated epoch. k shows a comoving scale of interest.

In the new scenario, the curvature perturbations sourced during the inflationary phase
are scale-invariant and are of the order of quantum fluctuations. The enhancement of
curvature perturbations needed for production of primordial black holes is achieved in
the post-inflationary epoch, due to hypothetical coupling of a dynamical scalar degree of
freedom to radiation. Thus, in reference to Figure 1.2, in the new scenario the power
spectrum is almost scale-invariant up to the reheating phase, and it is not frozen anymore
on super-horizon scales, during the radiation domination epoch. In other words, super-
horizon curvature perturbations are enhanced in this later phase of radiation domination
and they produce a broad peak in the power spectrum. In this way, after the horizon re-
entery, overdense regions are large enough to form primordial black holes. The formation
mechanism presented in this thesis work is indeed conceptually different from the previous
ones: we are modifying the evolution of density perturbations instead of modifying the
initial conditions.

As we will see in the next sections, this formation mechanism is well-motivated in the
context of extra-dimensional theories of gravity in which the dynamical scalar field is the
volume modulus of the compactified subspace. Thus, the discussion of this scenario can
be considered as an inevitable consequence of extra-dimensional theories of gravity.

In conclusion, the new scenario is interesting in the context of both primordial black
hole formation and alternative theories of gravity. In this thesis work after reviewing
this new model, we investigate in depth one of its important implications by studying
scalar-induced gravitational waves.

Scalar perturbations couple to tensor perturbations at second order in perturbation
theory, although they decouple to each other at the linear level. These second order
gravitational waves sourced by first order scalars perturbations are called scalar induced
gravitational waves. Inevitably, the large-scalar metric perturbations become a significant
source of gravitational waves and generate abundant gravitational waves signals via the
second-order effect. The study of the concomitant induced gravitational waves provides a
way to constrain, verify or rule out the proposed new scenario. Therefore, as we will see
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in the last section, the generated gravitational wave signals are expected to be strongly
constrained in the near future, thanks to the incoming gravitational waves surveys. Thus,
the detection of gravitational waves could provide a complementary way to constrain the
newly proposed model of primordial black hole formation, and consequently modifications
of gravity.

Goal

To study the production of gravitational waves in a newly proposed framework for the
production of primordial black holes.

Thesis structure

In Section 2 we review the main topics we will refer to during the thesis work. In Section
2.1 we review primordial black holes: we present an example of primordial black hole
formation mechanism in the standard scenario in Section 2.1.1, we explain the standard
procedure to link the curvature power spectrum to the primordial black hole abundance
and mass in 2.1.2 and we give an overview of the current observational constraints of
the primordial black hole abundance in Section 2.1.3. We then review the perturbation
theory in Section 2.2: we geometrically define the gauge problem in Section 2.2.1 and
we study the first order Einstein equations in Section 2.2.2. Finally, in Section 2.3 we
review the behaviour of first order tensor perturbations in the standard-inflationary model
to better understand the nature of stochastic gravitational waves.

In Section 3 we present the model that describes the new scenario and in Section 4 we
study the production of primordial black holes in this model. In Section 4.1 we explain
the formalism we use to study scalar perturbations, and in Section 4.2 we derive and
study first order scalars perturbtions equations of motion.

In Section 5 we study second order scalar-induced gravitational waves in the new
scenario. In Section 5.1 we go back to our discussion of the gauge problem: we specify
how to change the gauge up to the second order in Section 5.1.1 and in Section 5.1.2
we give an overview of the gauge dependence of second order gravitational waves. In
Section 5.2 we derive the main results of this thesis work: we obtain the scalar-induced
gravitational waves equation of motion in Section 5.2.1, using the Mathematica coding
reported in Appendix, and we study the power spectrum in Section 5.2.2.

We conclude and present possibles future directions in Sections 6 and 7, respectively.



Chapter 2

Preliminaries

In this section we review the basics of the main topics we will address in this thesis
work: PBHs, perturbation theory and stochastic gravitational waves. In Section 2.1 we
review the standard mechanism to produce PBHs and the ways we compute the PBH
abundance in the monochromatic case; we summarize current experimental constraints
on the PBH abundance. In Sections 2.2 and 2.3 we review the cosmological perturbation
theory and stochastic gravitational waves, respectively.

2.1 Primordial black holes

As mentioned in the introduction, PBHs are black holes that have been formed in the
primordial Universe. In contrast to black holes formed via astrophysical processes, that
could have been formed only if their mass is greater than ∼ 3M� (where the solar mass is
M� ≈ 2 · 1033 g), PBHs in principle can be arbitrarily light. There are no theoretical con-
straints on the mass of PBHs, but PBHs lighter than ∼ 1015 g cannot exist in the present
Universe: such light PBHs should have already evaporated due to Hawking mechanism.

In the following subsections we present the formation of PBHs via inflation (the stan-
dard scenario), how we can compute the abundance of PBHs as a function of their masses
and finally which experimental constraints we must satisfy if we want to introduce a new
mechanism that explains the PBH production.

2.1.1 PBH formation

The most frequently studied PBH formation scenario is the gravitational collapse of
overdense regions in the early Universe. During the radiation-dominated Universe, while
the Hubble horizon grows, overdense regions, generated by density fluctuations, enter the
Hubble horizon. If a density fluctuation is sufficiently large so that the gravitational force
is stronger than pressure forces, then the fluctuation collapses and forms a PBH with a
mass equal to the horizon mass.

In the simplest inflationary scenario, at the end of inflation a Harrison-Zel’dovich power
spectrum with a small tilt is generated. Such a power spectrum, which is in agreement
with CMB observations, does not allow PBHs to be formed. The generated overdense
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regions are not sufficiently large and massive to collapse. Thus, in order to produce
PBHs, we need to modify the simplest inflationary scenario by changing the potential of
the inflaton to both enhance density fluctuations and satisfy the CMB constraints. We
briefly present an example of how this can occur in the case of the single field inflation,
following [6]. This is just one example of how we can explain the enhancement of density
fluctuations during inflation, and there are several models that could produce this effect
(a few examples are: Higgs inflation [7], hybrid inflation [8], and reheating mechanism
[9]).

How it is possible to generate a peak in the curvature power spectrum of single-field
inflation is shown in [6]. The authors propose an inflation model where the potential of
the inflaton field φ is:

V (φ) =

(
1

2
m2φ2 − 1

3
αvφ3 +

1

4
λφ4

)(
1 + ξφ2

)−2
, (2.1)

where m, α, v, λ and ξ are free parameters (that must be tuned for the model to satisfy
the CMB constraints). The potential can be rewritten as

V (x) =
λv4

12

x2 (6− 4ax+ 3x2)

(1 + bx2)2 , (2.2)

where we define x = φ
v
, m2 = λv2, a = α

λ
and b = ξv2. The extrema of this potential are

given by some values of the parameters (a,b) which solve the third order equation

1− ax+ (1− b)x2 +
ab

3
x3 = 0. (2.3)

By studying this equation and the equation ∂V (φ)
∂φ

= 0, we find that the potential varies
as shown in Figure 2.1, where the model parameters are: a = 1, b = bc(1)− b̃, b̃ = 10−4

and v = 0.108. In particular, we see that the potential has an inflection point at a real
value of x whenever the parameter b acquires a critical value bc(a).
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Figure 2.1: The upper panel shows the potential of the inflaton V (φ) with an inflection
point at φ = 1.191v and an asymptotically flat plateau. The lower panel shows the exact
and approximated evolutions of the inflaton field in phase space. This figure is taken from
[6].

With this choice for the potential, the slow-roll parameter in the slow-roll approxima-
tion1 becomes

εSR =
1

2

(
V ′(φ)

V (φ)

)2

=
8

v2

(3− 3ax+ 3(1− b)x2 + abx3)
2

x2 (6− 4ax+ 3x2)2 (1 + bx2)2 (2.4)

and the number of e-foldings NSR is given by

NSR =

∫
dφ√
2εSR

=
v2

4

∫
x (6− 4ax+ 3x2) (1 + bx2)

(3− 3ax+ 3(1− b)x2 + abx3)
dx

=
v2

4ab

∫
x (6− 4ax+ 3x2) (1 + bx2)

(x− x1)
(
(x− x0)2 + y2

0

) dx, (2.5)

where we consider MPl = 1 for the Planck mass. We notice that if we choose the critical
parameters, dN

dx
diverges in the slow-roll approximation. However, if we select values

sufficiently close to the critical case, we avoid this problem of eternal inflation and the
potential has a near-inflection point. In such a case we can still produce a significant peak

1In the slow-roll approximation we assume that the potential is almost flat (φ̇ � V (φ), φ̈ � Hφ̇) so
that: ε � 1. Furthermore, plugging these conditions into Friedman equations and the inflaton equation
of motion we obtain H2 ≈ V (φ) and 3Hφ̇+ ∂V (φ)

∂φ = 0.
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in the power spectrum.
Once we choose the values of the free parameters we can find the evolution of the

inflaton field φ by integrating the system2 (Einstein equations and the inflaton equation
of motion):


φ̈+ 3Hφ̇+ ∂V (φ)

∂φ
= 0

H2 = κ2

3

(
1
2
φ̇2 + V (φ)

)
Ḣ = −1

2
φ̇2

(2.6)

Figure 2.1 shows the numerical result of equations (2.6) with a = 1, b = bc(1) − b̃,
b̃ = 10−4 and v = 0.108.

Now that we have the dynamic of the inflaton, we can compute the curvature power
spectrum.3 The exact expression of the primordial curvature power spectrum is given by

PR(k) =
H2(φ)

8π2ε(φ)
, (2.8)

which, in the slow-roll approximation, in our case results in

P SR
R (k) =

V (x)

24π2εSR(x)
=

λκ6v6

96× 24π2

(6− 4ax+ 3x2)
3
x4

(3− 3ax+ 3(1− b)x2 + abx3)2 . (2.9)

We observe that in order to produce a peak in PR(k) we need to choose a potential with
an inflection point, as anticipated. In that case, at the inflection point ε ∼ V ′ −→ 0 and
thus PR(k) −→∞.

Both the exact and approximated numerical results of the curvature power spectrum
are shown in Figure 2.2 with a = 1, b = bc(1)− b̃, b̃ = 10−4 and v = 0.108.

2We represent time derivatives with respect to conformal time as φ′ while we represent time derivatives
with respect to the cosmic time as φ̇.

3The power spectrum of a generic random field g(x, t) =
∫

d3k
(2π)3/2

eik·xgk(t, k) is defined as

〈
gk1

, g∗k2

〉
≡ 2π2

k3
Pg(k)δ

(3) (k1 − k2) , (2.7)

where angle brackets denote ensemble average.
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Figure 2.2: Curvature power spectrum as a function of k. The dashed red line shows the
result in the slow-roll approximation while the blue line is the exact solution. The figure
also shows the range of values allowed by CMB constraints (Plank 2015), mini-halos and
PBH abundance constraints. This figure is taken from [6].

Even without going through the analytical solution (see [6] for more details), we can
see from Figure 2.2 that thanks to the choice of V (φ) we obtain a peak in the power
spectrum. Furthermore, we notice that on the one hand we satisfy the CMB constraints
recovering an almost scale-invariant power spectrum at large scales, and on the other
hand we successfully enhance the power spectrum at small scales. We will see in the next
section that, given the curvature power spectrum, we can compute the PBH abundance.
Thus, an enhancement in the power spectrum for a specific scale becomes a peak in the
PBH abundance with a specific mass.

In conclusion, we underline that in this scenario we manage to modify the initial con-
ditions of curvature perturbations. Indeed, instead of having almost scale-invariant initial
curvature perturbations (which means an almost Harrison Zel’dovich power spectrum at
the end of inflation), we introduce a peak on the curvature power spectrum. This is how
we explain PBH formation in what we previously called the standard scenario: in this sce-
nario the goal is to find a mechanism which modifies the initial power spectrum. This is,
as we will see in detail in the next sections, different from the approach we have in the new
scenario. In the latter we start from an almost scale-invariant initial power spectrum and
modify the evolution of curvature perturbations during the radiation domination epoch.

2.1.2 PBH abundance

We now want to link the curvature power spectrum to PBH abundance. After in-
flation, the horizon starts growing4 and regions that were not causally connected during

4After inflation the Universe is radiation dominated, thus the horizon goes as RH ≡ H−1 ∼ t.
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inflation become so. Thus, we expect that sufficiently overdense regions, that correspond
to enhancements in PR(k), collapse and form PBHs. In order to link PR(k) to PBH abun-
dance we use the Press-Schechter formalism following [10]. For a different approach see
[11].

The Press-Schechter formalism, as shown in [12], provides a simple analytical descrip-
tion of the evolution of gravitational structures in a hierarchical universe. The core idea
is that, starting from perturbations in the mean density of the early Universe, as the
horizon grows a larger portion of the mass becomes bounded into larger and larger con-
densations. Furthermore, if these bounded regions are massive enough, the expansion of
the Universe will become negligible with respect to the gravitational attraction. These
regions will form galaxies, groups of galaxies, clusters, or, in our case, they will collapse
to form PBHs.

To form a PBH, a collapsing overdense region must be large enough to overcome the
pressure force resisting its collapse, as it falls within its Schwarzschild radius. Following
[13], we consider a spherically symmetric region with mean energy density ρ̃ greater than
that of the background. ρ̃ is governed by the positive curvature Friedman equation in a
matter-dominated Universe,

H̃2 =
8π

3M2
Pl

ρ̃− k

a2
, (2.10)

while the background ρb evolves in a radiation-dominated Universe with k ≈ 0: H2 =
8π

3M2
Pl
ρb. The perturbed region stops expanding at time tc when H̃ = 0. At this time the

region has a size of Rc ≈ δ
−1/2
i Ri, where Ri is the radius at some initial time and δi is the

initial density perturbation. If Rc ≥ RJeans = cstc, where cs = 1/
√

3 is the sound speed,
the perturbed region contains enough matter to overcome any pressure forces and it will
continue to contract. This condition can be seen as a lower bound on initial density fluc-
tuations that can form PBHs: only regions with δ ≥ δc will produce PBHs. The simplest
estimate for the critical density is δc = 1/3 but, as shown in [14], one could obtain better
estimates for this parameter.

When a perturbation satisfying the above condition crosses the horizon, a PBH will
be formed with mass equal to the horizon mass

Mf = γMH = γ
4π

3
ρfH

−3
f , (2.11)

where γ is a fixed number related to δc, MH is the horizon mass and the subscript f means
that the quantity is evaluated at the time of formation (i.e., at the horizon crossing). We
can make explicit the k = afHf dependence by rewriting equation (2.11) as

Mf = γMeq

(
ρf

ρeq

) 1
2
(
af

aeq

)2(
keq

k

)2

(2.12)

and using ρ ∼ g(T )T 4 and entropy conservation: g∗(T )T 3a3 = const, where g∗(T ) is the
temperature dependent effective number of degrees of freedom. In that way we find

Mf = γMeq

(
geq

gf

) 1
3
(

keq

k

)2

, (2.13)
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where we have assumed g∗(T ) ∼ g(T ). Thus, given the enhanced mode k in the curvature
power spectrum, we can estimate the mass of the generated PBHs with equation (2.13).
As an example,5 by enhancing the wavenumber k = 1.4 ·1014Mpc−1, corresponding to the
comoving scale λ = 4.5 · 10−14Mpc, we produce PBHs with mass ∼ 10−16M�.

To compute the abundance of PBHs we assume that the probability distribution of
density fluctuations is Gaussian and that its variance depends on the curvature power
spectrum (see [15] and [16] for constraining non-Gaussianity with PBHs). Furthermore, we
will assume a monochromatic production of PBHs (for examples in which this assumption
is relaxed see [17] or [18]). We then define the PBH abundance evaluated at time of
formation as the integral of the probability distribution of the fluctuations, over the
fluctuations greater than δc

β ≡ ρf,PBH

ρf,TOT

≈
∫ ∞
δc

p(δ)dδ, (2.14)

which, under the assumptions of Gaussian density fluctuations, becomes

β =

∫ ∞
δc

1√
2πσ

e−
δ2

2σ2 dδ. (2.15)

σ is the mass variance at horizon crossing of the fluctuations

σ2 =

∫ ∞
δc

δ2p(δ)dδ =
16

81

∫ ∞
0

(
k̃

k

)4

PR(k̃)W 2(k̃, R)
dk̃

k̃
, (2.16)

where the second equality is true for the Gaussian approximation and W 2(k, R) is the
Gaussian window function, W 2(k, R) = e−

k2R2

2 .
In conclusion, we underline that β grows until teq. Indeed, ρPBH ∼ a−3 and ρTOT ∼ a−4

so β ∼ a. Thus, at the end of the radiation era PBHs with low masses, formed earlier,
contribute more importantly to the total energy density than more massive ones, given
identical values of β at time time of formation.

2.1.3 Observational constraints on PBHs

In this section we briefly review the observational constraints on PBH abundance.
This overview is based on [4] and it is divided into two sections. In the first one we
present the way we can constrain the abundance of PBHs via electromagnetic signals. In
the second one we explain which improvements we gain with the detection of gravitational
signals. Indeed, the former are useful to place constraints on the PBH abundance, while
the latter could also give us an evidence for the existence of PBHs.

Electromagnetic signals

In this section we briefly recall some direct and indirect electromagnetic signals6 and
we show in Figure 2.3 some constraints produced by the non-observation of these signals.

5We take γ = 0.2, Meq = 1.3 ·1049 g
(Ω0h2)2 , geq = 3, gf = 106.75 and keq = 0.07 Ω0h

2

Mpc in equation (2.13).
6For more details we refer the reader to the literature for each described effect.
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First of all, let us define what we mean by direct/indirect constraints. Direct con-
straints are derived from investigating the effects that PBHs directly trigger by their
gravitational potential. These effects are independent from the mechanism that formed
PBHs and, because of the Hawking evaporation, these signals have to come from PBHs
with mass larger than ∼ 1015 g. Indirect constraints are those that can be obtained by
observational effects that are not caused directly by the PBHs’ gravitational field.

For each mentioned effect we specify a PBHs mass range. The reported mass range is
qualitatively the mass range for which the signal is observable. Thus, a few examples of
electromagnetic signals that constrain the PBH abundance are (see [4] for more examples)

• Gravitational lensing. If PBHs are present in the Universe, they cause gravita-
tional lensing on background objects such as stars. By the non-detection of lensing
effects we can put an upper limit on the PBHs fraction. Gravitational lensing is
a very powerful method to constrain PBHs. Indeed, it is based on gravitational
physics and thus it does not suffer from the uncertainties that exist in study-
ing electromagnetic signals. (millilensing [19] 106 M� < MPBH, microlensing [20]
10−13 M� < MPBH < 10−4 M�, femtolensing [21] 10−16 M� < MPBH < 10−13 M�).

• Disruption of white dwarfs. White dwarfs are compact objects that have a mass
of one solar mass, a size comparable to the size of the Earth and are supported
by electron degeneracy pressure. The passage of a PBH through a white dwarf
well below the Chandrasekhar limit, can ignite the thermonuclear runaway that
eventually makes the white dwarf explode. It is then possible to constrain the range
of PBHs masses by observing the abundance of white dwarfs of known masses:
if there are too many PBHs above a certain mass, then white dwarfs with the
corresponding mass should not exist in the present Universe. Thus, for the white
dwarf abundance, we can fix the “rareness” of heavier PBHs in order for white dwarfs
not to encounter many heavy PBHs. (white dwarfs disruption [22] 10−14 M� <
MPBH < 10−12 M�, neutron stars disruption [23] 10−14 M� < MPBH < 10−8 M�).

• Dynamical friction on PBHs. If we assume that the galactic halo is entirely or
partially composed of massive PBHs, some of them must be in the region near the
galactic centre. Such PBHs would receive strong dynamical friction from stars and
the dark matter in the form of lighter PBHs or elementary particles, they would
lose their kinetic energy, and spiral into the centre. Then, if this in-fall time scale is
shorter than the age of the Universe, accumulation of PBHs continues in the central
region. As a result, we will have that the galactic centre would be dominated by
a dense cluster of PBHs. Since we have an upper limit on the mass in the galactic
centre, we can translate this limit into the fraction of PBHs in the galactic halo for
some PBH mass range. ([24], 104 M� < MPBH).

• Disk heating. If we assume that PBHs are moving randomly in the galactic halo,
they will have a chance to pass through the galactic disk. Thus, the stars in the
disk are pulled by gravitational attraction, acquiring velocity. Assuming that the
direction of the velocity that a star gains for an individual PBH passage is random,
the time evolution of the velocity of the disk stars is described by a random walk. We
then expect that the variance of the star’s velocity increases and the disk becomes
hotter and hotter as a function of time. We can constrain the PBH abundance by
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requiring that the increase of the velocity due to the nearby passage of PBHs does
not exceed the observed velocity. ([25], 106 M� < MPBH).

• Accretion effects on the CMB. We can study the accretion of gas into PBHs
to constrain the abundance of PBH; however, we have to keep in mind that the
physics is much more involved in the case of the accretion constraint compared to
the lensing and dynamical constraints. In particular, we can use CMB to constrain
accretion effects that occur in the early Universe. The gravity of the PBHs attracts
the baryonic gas around PBHs. The gas falling into the central region is compressed,
it increases its density and temperature and so it can be fully ionized by internal
collisions of gas particles or by the outgoing radiation. The outward radiation due
to the ionized gas near the PBH horizon modifies the spectrum of the CMB photons
by heating or ionizing the gas filling the Universe. ([26], 102M� < MPBH < 104M�).

• CMB spectral distortions. We can constrain the PBH abundance using the fact
that we do not observe µ-distortion7 in the CMB spectrum. The µ-type distortion is
useful to quantify the energy injected into the CMB. Then, if PBHs exist, we should
see in the CMB distortion the sign of the PBH production mechanism. Indeed, when
perturbations re-enter the Hubble horizon they are damped by Silk damping8 and
their energy is transferred to the background homogeneous plasma. As a result, we
should observe µ-type distortion produced by the PBH formation mechanism. ([27],
104 M� < MPBH < 1013 M�).

• Big bang nucleosynthesis. The Silk damping does not leave any spectral feature
of small scales perturbations in the CMB. Thus, to constrain primordial perturba-
tions with k > 104Mpc−1, we can study the effects in the Big-Bang nucleosynthesis.
The energy injected due to the Silk damping results in the increase of the temper-
ature of the plasma and, because of the baryon number (nb) conservation, only the
photon number density (nγ) is increased by this process. Therefore η ≡ nb

nγ
decreases

through this effect. This means that the η at the Big-Bang nucleosynthesis is larger
than the η at the CMB formation (ηBBN > ηCMB). By measuring these two values of
η we are able to quantify the Silk damping and so we can constrain the abundance
of small perturbations. ([28], MPBH < 104 M�).

7We assume that in the early Universe the spectrum of photons is the Bose-Einstein spectrum and,
if the Compton interaction is effective, the equilibrium electron temperature Te is exactly equal to the
radiation temperature T . We can then expand the Bose-Einstein spectrum, nBE = 1

exp[µ+xT/Te]−1 , where
x = hν

kBT
, for small distortions of the chemical potential µ. In that way we obtain the µ-type distortion,

which, thanks to the fact that the chemical potential µ ∼ ∆E
E depends on the energy injected into the

CMB, is strongly correlated with the injected energy.
8The Silk damping, or diffusion damping, is due to the photon diffusion: the anisotropies of the

primordial plasma are damped by the photons diffused from the hot, overdense regions of plasma, to the
cold, underdense ones. Photons drag along the protons and electrons in the following way: by Compton
scattering photons push electrons which, thanks to the Coulomb force, pull on protons. This causes the
temperatures and densities of the hot and cold regions to be averaged and the Universe to become less
anisotropic.
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Figure 2.3: Upper limit on fPBH = ΩPBH

ΩDM
versus PBH mass. Blue curves represent

lensing constraints, black curves represent constraints by millilensing and femtolensing,
orange curves represent dynamical constraints obtained by requiring the existence of the
observed compact objects’ abundance, green curves represent constraints due to dynamical
friction on PBHs and red curves represent constraints due to the accretion onto the PBHs.
This figure is taken from [4].

To study the constraints on the PBH abundance, we introduce the quantity fPBH = ΩPBH

ΩDM
:

the fraction of PBHs compared to the total dark matter component. Indeed, by studying
the direct/indirect constraints, we can find some upper bounds on fPBH as a function of
the PBHs mass. The constraints derived from the signals discussed above are shown in
Figure 2.3.

Before ending this section, we briefly mention the constraints on PBHs lighter than
≈ 1015g that have already evaporated, or are in the final stage of evaporation, via Hawking
radiation [7]. Although those PBHs do not exist or are fading at the present epoch, high-
energy particles emitted from PBHs leave certain signals from which we can place upper
limits on the PBH abundance. These include production of the lightest supersymmetric
particles (if they exist) (104 g < MPBH < 109 g), entropy production in the early Universe
(106 g < MPBH < 109 g), change of the abundance of the light elements produced by
the big bang nucleosynthesis (109 g < MPBH < 1013 g), extragalactic photon background
(1014 g < MPBH < 1015 g), and damping of the CMB temperature anisotropies on small
scales by modifying the cosmic ionization history (1013 g < MPBH < 1013 g).
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Gravitational wave detection

In the previous section we briefly presented some of the currently known constraints
on the PBH abundance. As underlined, the detection of electromagnetic signals does
not give us an indisputable evidence for the existence or non-existence of PBHs. In this
section we want to focus on future gravitational wave detections which could eventually
demonstrate the existence of PBHs. This overview is based on [4].

First of all, we remark that in this section we discuss only one type of gravitational
wave signals: gravitational waves generated by merging events. There is another impor-
tant gravitational waves signal that we could detect to have an indisputable evidence for
the existence or non-existence of PBHs: stochastic gravitational waves. As we will see,
while the former is not always related to the PBH formation mechanism, the latter could
be an evidence to confirm a specific mechanism for PBH formation. We will discuss in
detail stochastic gravitational waves from primordial density fluctuations in Sections 2.3
and 5.

To understand how we can use the detection of merging events to constrain the exis-
tence of PBH we first briefly explain how we can model the formation of PBH binaries.
There are two possible ways by which we can explain the formation of PBH binaries:
PBH binary formation in the early Universe and PBH binary formation in the present
Universe.
The former occurs in the radiation-dominated epoch, when we assume that PBHs were
randomly distributed (Poisson distribution). In that way PBHs were sparsely distributed
just after their formation and the mean distance was larger than the Hubble horizon. In
the radiation-dominated epoch the mean distance between PBHs (lPBH(t)) grew as the
scale factor a(t) ∝ t1/2, while the Hubble horizon grew as H(t)−1 ∝ t. The mean distance
relative to the Hubble horizon decreases as t−1/2 and therefore there is a moment in the
radiation-dominated epoch at which we had more than one PBH in the Hubble horizon.
It is then possible for the binary formation to occur.

The latter, which is not in contrast with the binary formation in the early Universe, is
the result of an accidental near-miss. We can assume that a PBH that travels in the space,
accidentally becomes sufficiently close to another PBH so that it becomes gravitationally
bounded. Indeed, the condition that we have to impose in order to form a binary system,
is that the amount of the emitted gravitational waves is greater than the kinetic energy
of PBHs. In this case PBHs cannot escape to infinity anymore and so a binary system is
formed (see [29] for more details).

In conclusion, PBHs can be considered as a reasonable candidate scenario for the ob-
served black hole merging events and, in principle, we can explain some of the detected
LIGO events as merging of PBHs.

However, PBH binary merging is not the only possible option: we have to explain how
we can distinguish this scenario from the astrophysical one.

The first effect that could distinguish the PBH scenario from the astrophysical one is
the dependence of the merger rate on redshift. We know that, if they exist, PBHs were
formed in the radiation-dominated era while astrophysical black holes are the result of
the death of super-massive stars. This means that astrophysical black holes appear in
the low-redshift Universe. Because of this difference, the redshift evolution of the number
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density of PBHs will be different from the one of astrophysical black holes. We expect that
this difference will condition the merger rate. In a qualitative way, as shown in Figure
2.4, we expect that the merger rate of astrophysical black holes drops as z is bigger than
the formation redshift, while we expect that the merger rate of PBHs is not negligible
also at high-redshift (see [30] for a quantitative analysis of this effect).

Figure 2.4: Redshift evolution of the merger rate per unit source time and unit comoving
volume ( 1

Gpc3 yr
) as a function of redshift z. The black curve represents the merger rate of

astrophysical black holes, the orange curves show its upper and lower limits, the blue curve
represents the merger rate of PBH binaries formed in the present Universe with fPBH = 1
and the red curve represents the merger rate of PBH binaries formed in the early Universe
with fPBH = 10−3. This figure is taken from [30].

A second effect that could rule out the existence of PBHs is the mass distribution of
black holes that compose binary systems. If we plot the merger events in the 2D mass
plane we obviously expect that, with a greater statistic, we can reach some information
about the mass distribution of black holes that compose binary systems. We can then link
this information to the binary formation mechanism and so we can discriminate different
formation scenarios. In other words, if PBHs exist in the Universe, the merger events
that we detect will be a mixture of PBH binaries and the ones produced by astrophysical
effects. We expect that the 2D mass plane should be influenced by this eventuality.
However, the main problem of this approach is that we have a large number of uncertain-
ties at the theoretical level: we do not have well known physics that describes the PBH
abundance, the mass function and the formation of black hole binaries by astrophysical
processes.

In conclusion, testing the PBH scenario with gravitational waves detection opens a
large number of interesting and challenging questions both from the observational point of
view (we need a greater statistic to have meaningful constraints) and from the theoretical
point of view. Furthermore, gravitational waves detection could give us a smoking gun



2.2. THEORY OF COSMOLOGICAL PERTURBATIONS 17

for the existence of PBHs.

2.2 Theory of cosmological perturbations

In this section we give an overview of perturbation theory based on [31], [32], [33] and
[34]. We first introduce the gauge problem in Section 2.2.1, and then in Section 2.2.2
we go through the study of the first order Einstein equations in the case of a Universe
dominated by a single perfect fluid.

The Cosmological Principle is valid for large scales but we need to relax the assumption
of homogeneity and isotropy at small scales to explain the CMB anisotropies and the
cosmological structure formation. The present Universe is not homogeneous: we observe
clusters of matter and void. Furthermore, we know that the CMB radiation is not perfectly
isotropic: we observe small fluctuations in the temperature (∆T

T
≈ 10−5). Thus, to explain

this characteristic of the observed Universe, we need to go beyond the Cosmological
Principle and study the cosmological perturbation theory.

2.2.1 The gauge problem

Now that we explained the importance of studying the perturbed Einstein equations
to model the Universe, we need to adapt the invariance of general relativity (GR) under
diffeomorphism to the perturbation theory. Unfortunately, this invariance makes the def-
inition of perturbations gauge-dependent. This means that, in general, perturbation of a
tensor is not well defined.

To study the evolution of perturbations, we need to map the homogeneous and isotropic
background space-time M onto the physical perturbed space-time M̃ as represented in
Figure 2.5.

Figure 2.5: Two different gauge maps φ and ψ between the background space-time M
and the perturbed space-time M̃.

This identification between points of the background and perturbed space-times is
called gauge choice and in general perturbations are not invariant under gauge transfor-
mations.

To understand how to deal with this gauge problem, we need to geometrically define
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it. Then, once we formalize how a tensor field behaves under a change of gauge, we
can define gauge-independent quantities (see [35] for more details) or we can work with
gauge-dependent quantities being able to change our results from a gauge to another. If
we choose to work with gauge-dependent quantities we have to be aware that our results
would have been different if we had chosen a different the map betweenM and M̃.
We now formalize this problem from a geometrical point of view. Moreover, we will study
in deeper detail the gauge dependence of second order quantities and how to go change
the gauge in Section 5.

The main problem of perturbing a tensor is that a Taylor expansion is essentially a
convenient way to express the value of the function at a point p in terms of its value, as
well as the value of all its derivatives, at another point q. This is not anymore a convenient
way to express a tensor field T on the m dimensional manifoldM, because T (p) and T (q)
belong to different spaces Rm. Thus, to write a Taylor expansion, we need to introduce a
map between tensors at different points ofM. We follow [32] to understand the case in
which such a mapping arises from one-parameter family of diffeomorphisms ofM.

We start recalling by that taking a diffeomorphism between two manifoldsM and N
(ϕ : M −→ N ), for each point p in M, defines the push-forward between the tangent
spaces ϕ∗(p) : TpM −→ Tϕ(p)N and the pull-back between the cotangent spaces ϕ∗(p) :
T ∗ϕ(p)N −→ T ∗pM. We can also define a push-forward T ∗pM −→ T ∗ϕ(p)N and a pull-back
Tϕ(p)N −→ TpM using ϕ−1. In that way the pull-back and the push-forward are maps
that are well-defined for tensors of arbitrary type.

We can extend the previous definitions to tensors of higher rank. Indeed, (see [34] for
more details) the action of the pull-back and of the push-forward on a (0, l) tensor N on
N , and on a (k, 0) tensor M onM, is respectively given by:

(ϕ∗N)
(
V 1, .., V l

)
= N

(
ϕ∗V

1, ..., ϕ∗V
l
)
,

(ϕ∗M)
(
ω1, .., ωk

)
= M

(
ϕ∗ω1, ..., ϕ∗ωk

)
,

(2.17)

where V i are vectors onM and ωi are one-forms on N . Then, to define a gauge transfor-
mation, we need to introduce the flow φ : R × M −→M generated by the vector field
ξ on the manifold M. φ is defined such that φ(0, p) = p, ∀p ∈ M and for any λ ∈ R
we write φ(λ, p) := φλ(p), ∀p ∈ M. Thus, the pull-back of φ defines a new field φ∗λT on
M which is a function of λ. The pull-back φ∗λT can be expanded around λ = 0 and the
expansion results in (see [32] for the proof):

φ∗λT =
+∞∑
k=0

λk

k!

dk

dλk

∣∣∣∣∣
λ=0

φ∗λT =
+∞∑
k=0

λk

k!
£k
ξT, (2.18)

where £ξ is the Lie derivative along the vector field ξ, defined as:

fξT = lim
λ→0

1

λ
(φ∗λT − T ) =

d

dλ

∣∣∣∣
0

φ∗λT. (2.19)

Now we can geometrically define the perturbation of a tensor, a gauge transformation and
how to change a gauge, following [33].

The basic assumptions of perturbation theory are: the existence of a parametric family
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of solutions of the field equations and that the λ = 0 solution is the unperturbed back-
ground solutionM0. Thus, in cosmology, we are dealing with a one-parameter family of
models Mλ where on each Mλ we can define tensor fields Tλ representing the physical
and geometrical quantities (i.e., the metric and the stress-energy tensor). The aim of
perturbation theory is to construct an approximated solution forMλ.

However, we do not have a unique choice for the one-to-one correspondence between
points of the background fieldM0 and the physical fieldMλ. We can choose two flows
φλ, ψλ that link the unperturbed manifold and the physical manifold as shown in Figure
2.5. Then, if we take some coordinates xµ on M0, a one-to-one correspondence, φλ or
ψλ, carries these coordinates over Mλ. This defines a choice of gauge: we call the cor-
respondence itself a gauge and a change in this correspondence, keeping the background
fixed, is a gauge transformation.

Now that we geometrically defined a gauge, we want to understand how to change
a gauge and how this changing of the gauge influences the definition of the perturbed
tensors Tλ. Let p be a point onM0 where we defined the coordinates xµ, then the gauge
ψλ “evolves” this point to Mλ, mapping p to P = ψλ(p) ∈ Mλ. However, choosing a
different gauge φλ, the point P on the perturbed manifold could correspond to a different
point q on the backgroundM0, as shown in Figure 2.6.

Figure 2.6: Two different gauge maps φ and ψ between the background space-time M0

and the perturbed space-timeMλ and the action of Φλ :M0 −→M0.

Thus, the change of the correspondence, i.e., the gauge transformation, may actu-
ally be seen as a one-to-one correspondence between different points in the background
(yµ(xµ, λ)). This is indeed called an active coordinate transformation.

If we consider a tensor field Tλ on each Mλ, using φλ and ψλ we can define in two
different ways a representation of Tλ on the background manifoldM0. We denote these
two different representations by Tλ and T̃λ. These are tensor fields onM0 and thus they
can be compared to the background tensor field T0 to define the total perturbations

∆Tλ = Tλ − T0 in the first gauge,

∆T̃λ = T̃λ − T0 in the second gauge,
(2.20)

where Tλ and T̃λ are the pull-back of the tensor field onM0 using φ∗λ and ψ∗λ, respectively.
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The first term of the RHS of the above equations can be Taylor expanded to get

∆Tλ =
+∞∑
k=0

λk

k!
δkT,

∆T̃λ =
+∞∑
k=0

λk

k!
δkT̃ ,

(2.21)

where δkT =
dkφ∗λT

dλk

∣∣∣
λ=0

and δkT̃ =
dkψ∗λT̃

dλk

∣∣∣
λ=0

. This non–uniqueness of the definition of
∆T is the gauge dependence of the perturbations.

To understand how the representation of a tensor field Tλ on M0 behaves under a
gauge transformation, we notice that the one-to-one correspondence between the points
p and q in the background manifold can be seen as a gauge transformation itself. Indeed,
we can define the one-parameter diffeomorphism Φλ :M0 −→M0 as

Φλ = φ−1
λ (ψλ), (2.22)

so that q = Φλ(p) = φ−1
λ (ψλ(p)).

We then introduce the two vector fields that generate the gauge transformations φλ
and ψλ, X and Y , respectively. In that way we can use the expansion (2.18) to expand
the pull-back in the RHS of the definition (2.20). Using (2.18) we can write

TXλ = φ∗λT |λ=0 =
+∞∑
k=0

λk

k!
δkTX =

+∞∑
k=0

λk

k!
£k
XT

∣∣∣∣∣
λ=0

= T0 + ∆Tλ,

T Yλ = ψ∗λT |λ=0 =
+∞∑
k=0

λk

k!
δkT Y =

+∞∑
k=0

λk

k!
£k
Y T

∣∣∣∣∣
λ=0

= T0 + ∆T̃λ.

(2.23)

In conclusion, we can find a relation between TXλ and T Yλ using the map Φλ,

T Yλ = Φ∗λT
X
λ . (2.24)

Expanding the above relation and inserting the result in the definition (2.20) we can write
the relation between the first and the second order perturbations in the two different
gauges (see [32] for more details),

δT Y − δTX = £ξ1T0

δ2T Y − δ2TX = £ξ2T0 + £2
ξ1
T0 + 2£ξ1δT

X ,
(2.25)

where ξ1 and ξ2 are the associated vector fields with the one parameter diffeomorphism
Φλ: yµ ≈ xµ + λξµ1 + λ2

2
(∂νξ

µ
1 ξ

ν
1 + ξµ2 ).

We finally notice that from equation (2.25) we can say that Tλ is gauge-invariant
to first order iff £ξ1T0 = 0 for any vector field ξ on M (see [35] for more details on
gauge-invariant quantities).
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2.2.2 Cosmological perturbations

We now perturb the metric tensor and the stress-energy tensor and we study the first
order Einstein equations in the case in which the matter content of the Universe is a
perfect fluid. We follow [31] and [33].

To perturb Einstein equations we need to perturb the metric and the stress-energy
tensor. The perturbed metric can be written as:9

gµν = g(0)
µν + δgµν , (2.26)

where all the entries in δgµν have to be small with respect to the background metric
g

(0)
µν . We consider perturbations about the flat Friedmann–Lemaître–Robertson–Walker
(FLRW) metric

ds2 = g(0)
µν = a2(−dη2 + δijdx

idxj). (2.27)

The components of δgµν then are

g00 = −a2

(
1 + 2

∞∑
r=1

1

r!
Ψ(r)

)
,

g0i = a2

∞∑
r=1

1

r!
ω

(r)
i ,

gij = a2

[(
1− 2

∞∑
r=1

1

r!
Φ(r)

)
δij +

∞∑
r=1

1

r!
h

(r)
ij

]
,

(2.28)

where Ψ(r), ω(r)
i , Φ(r) and h

(r)
ij represent the r-th order perturbation of the metric. We

further split Ψ(r), ω(r)
i , Φ(r) and h

(r)
ij into the so-called scalar, vector and tensor parts.

Scalars are those related to a scalar potential, vectors are those related to transverse
(divergence-free) vector fields, and tensor parts to transverse and trace-free tensors. Thus
we write

ω
(r)
i = ∂iω

(r)‖ + ω
(r)⊥
i ,

h
(r)
ij = Dijh

(r)‖ + ∂ih
(r)⊥
j + ∂jh

(r)⊥
i + h

(r)>
ij ,

(2.29)

where ω
(r)⊥
i satisfies ∂iω(r)⊥

i = 0, ω(r)‖ and χ(r)‖ are scalar functions, h(r)⊥
j satisfies

∂ih
(r)⊥
j = 0, h(r)>

ij satisfies ∂ih(r)>
ij = 0 and the trace free operator Dij is defined as:

Dij = ∂i∂j −
1

3
∇k∇kδij. (2.30)

To perturb the stress-energy tensor Tµν we recall that it can be written as

Tµν = (ρ+ p)uµuν + pgµν + Πµν (2.31)

where ρ and p are the energy density and the pressure, respectively, uµ is the 4-velocity
normalized to one (uµuµ = −1) and Πµν is the anisotropic stress tensor. We consider

9Greek indices run from 0 to 3 while Latin indices from 1 to 3.
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Πµν = 0 as we want to study a perfect fluid. Thus, to perturb Tµν we need to perturb the
energy density, the pressure and the 4-velocity.

The perturbed energy density can be expressed as

ρ = ρ0 +
∞∑
r=1

1

r!
δρ(r), (2.32)

where ρ0 is the unperturbed energy density and it is a function of the only. To write the
perturbed pressure we assume that it is a function of the energy density only (adiabatic
perturbation),

δp =
∂p

∂ρ
δρ = c2

sδρ, (2.33)

where c2
s is the sound speed. Finally, the perturbed velocity can be written as

uµ =
1

a

(
δµ0 +

∞∑
r=1

1

r!
vµ(r)

)
, (2.34)

where the first term uµ = 1
a
δµ0 is the background velocity and the second term represents

the perturbation. In particular, the background velocity represents a motion comoving
with the cosmic expansion, while the peculiar velocity vµ(r) represents the motion with
respect to the general expansion. Imposing that equation (2.34) satisfies the constraint
uµuµ = −1, we find a relation between v0(r) and Ψ(r). At first order we have

v0(1) = −Ψ(1) (2.35)

so that the first order perturbed 4-velocity results in

uµ =

[
1

a
(1−Ψ(1)),

v(1)i

a

]
,

uµ =
[
−a(1 + Ψ(1)), av(1)i

]
.

(2.36)

Furthermore, as we did for δgµν , we can split the velocity perturbation into scalar and
vector parts

vi(r) = ∂iv
(r)‖ + v

(r)⊥
i , (2.37)

where v(r)⊥
i satisfies ∂iv(r)⊥

i = 0. In conclusion, the components of (2.31) are10

T 0
0 = − (ρ0 + δρ) ,

T 0
i = − (1 + w) ρ0vi,

T i0 = ρ0 (1 + w) (vi − ωi) ,
T ij = c2

sδρδ
i
j,

(2.38)

where we have used the equation of state p = wρ to express the pressure as a function of
the energy density.

10From now on we drop the notation (r) because in this section we always refer to first order perturbation
quantities.
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We now have both the perturbed tensors and we need to study the first order Einstein
equations

δRµ
ν −

1

2
δgµνR−

1

2
gµν δR = 8πGδT µν , (2.39)

where G is the Newtonian constant and Rµ
ν and R are the Ricci tensor and Ricci scalar,

respectively. However, as explained in the previous section, we first need to fix a gauge.
Indeed, both the metric and the stress-energy tensor are not gauge-invariant quantities.

We recall a few gauges used in cosmology before proceeding with the study of first-
order Einstein equations:

• Newtonian gauge. This gauge is defined by the choice ω‖ = h‖ = 0 and this is the
gauge that in general relativity has the most direct link with analogous quantities
appearing in Newtonian physics.

• Poisson gauge. This gauge is defined by the choice ω‖ = h‖ = h⊥i = 0 and
generalizes the aforementioned Newtonian gauge.

• Comoving gauge. This gauge is defined by the choice v‖ = v⊥i = 0. We are
then imposing that the 3-peculiar velocity of the fluid vanishes. If we also require
orthogonality of the time-constant hypersurfaces to the 4-velocity this gives v‖+ω‖ =
0.

• Synchronous gauge. This gauge is defined by the choice Ψ = 0 and it leaves the
freedom of choosing one further scalar or vector perturbation. If we also require
ω‖ = ω⊥i = 0, it is called Synchronous and time-orthogonal gauge. In this gauge the
proper time for observers at fixed spatial coordinates coincides with cosmic time in
the FLRW background.

• Uniform density gauge. This gauge is defined by the choice δρ = 0 and thus it
selects spatial hypersurfaces at η = const. Where the energy density of the fuid is
left unperturbed. Also this gauge choice leaves the freedom of choosing one further
scalar or vector perturbation.

We now go back to the study of equations (2.39). We note that at first order the
vector and tensor perturbations decouple completely from the scalar terms and thus ω⊥i
and h>ij can be treated separately. The terms which are intrinsically vectorial couple to
pure rotational modes, while tensorial terms represent gravitational waves, coupled to
matter only for anisotropic perturbations. Furthermore, it can be shown that if vorticity
modes are initially zero, they remain zero. Since we are now interested in studying the
scalar part of equations (2.39) for a perfect fluid, we will not further take into account
the contribution of ω⊥i and h>ij. We will study the behaviour of h>ij in the next section.

To fix the gauge we choose the Newtonian gauge. With this choice, the perturbed
metric becomes

ds2 = a2
[
−(1 + 2Ψ)dη2 + (1− 2Φ)δijdx

idxj
]
, (2.40)

so that the (00), (0i), (ij) and (ii) components of equations (2.39) result in11 (see [31] for

11H = a′(η)
a(η) = a(t)H is the Hubble constant in terms of conformal time.
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more details)

3H (HΨ + Φ′)−∇2Φ = −4πGa2δρ,

∇i∇i (Φ′ +HΨ) = −4πGa2(1 + w)ρ0θ,

Ψ = Φ,

Φ′′ + 2HΦ′ +HΨ′ +
(
H2 + 2H′

)
Ψ = 4πGa2c2

sδρ,

(2.41)

where θ is defined as: θ = ∇iv
i⊥. From the (0) and (i) components of the continuity

equation ∇µT
µν = 0, we obtain

(δρ)′ + 3Hδρ(1 + w) = −ρ(1 + w) (θ − 3Φ′) ,

δq′ + 3Hδq = −awδρ− aρ(1 + w)Ψ,
(2.42)

where δq = aρ(1 + w)v‖. Using the 0th order dynamics and defining δ = δρ
ρ
, equations

(2.42) become

δ′ + 3H
(
c2

s − w
)
δ = −(1 + w) (θ − 3Φ′) ,

θ′ +

[
H(1− 3w) +

w′

1 + w

]
θ = −∇i∇i

(
c2

s

1 + w
δ + Ψ

)
.

(2.43)

We now move to the Fourier space and we define all the perturbation quantities as the
Fourier expansions

Φ =

∫
eik·xΦkd3k,

Ψ =

∫
eik·xΨkd3k,

δ =

∫
eik·xδkd3k,

θ =

∫
eik·xθkd3k,

(2.44)

where subscript k represents a Fourier mode for each comoving wavenumber k; however,
in what follows we drop the subscript k. To solve equations (2.41) in Fourier space, we
assume that the modes k are decoupled. Furthermore, since we are just interested in
the direction-averaged equations (the equations that depend only on the modulus k), we
consider all variables of the form Ψk(η)eik·x. In practice, this means that we can substitute
in equations (2.41) and (2.43) the quantities

φ(x, η)→ eik·xφ(η),

∇φ(x, η)→ ieik·xkφ(η),

∇i∇iφ(x, η)→ −eik·xk2φ(η),

θ → ieik·xk · v⊥(η).

(2.45)
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Thus, equations (2.41) and (2.43) become

k2Φ + 3H (Φ′ +HΨ) = −4πGa2ρ0δ,

k2 (Φ′ +HΨ) = 4πGa2(1 + w)ρ0θ,

Ψ = Φ,

Φ′′ + 2HΦ′ +HΨ′ +
(
H2 + 2H′

)
Ψ = 4πGa2c2

sρ0δ,

δ′ + 3H
(
c2

s − w
)
δ = −(1 + w) (θ − 3Φ′) ,

θ′ +

[
H(1− 3w) +

w′

1 + w

]
θ = k2

(
c2

s

1 + w
δ + Ψ

)
.

(2.46)

Let us just remark that the above equations are not independent, they are valid just for
a universe composed of a single perfect fluid and the third equation reduces the scalars
perturbations of the metric to only one function. This last result will no longer be true
in the model we will present in Section 3.

We now follow [31] to briefly go through the solution of equations (2.46) in the limit
a′′

a
� k2 and assuming that w is a constant (valid for both matter and radiation). Indeed,

as we will see in Section 4.2, this behaviour is different from the one of the model presented
in Section 3.

We first find an equation for Φ and δ∗ = δ + 3H(w + 1) θ
k2 alone

Φ′′ + 3H
(
1 + c2

s

)
Φ′ +

(
c2

sk2 + 3H2c2
s + 2H′ +H2

)
Φ = 0,

(δ∗)′′ +H
(
1 + 3c2

s − 6w
)

(δ∗)′ −
[

3

2
H2
(
1− 6c2

s − 3w2 + 8w
)
− c2

sk2

]
δ∗ = 0.

(2.47)

Then, in order to solve the above equations in the super-horizon limit, we neglect those
terms that vary as k and we use the relation H′ = −1

2
(1 + 3w)H2. In that way the

equation for Φ reduces to
Φ′′ + 3H

(
1 + c2

s

)
Φ′ = 0 (2.48)

and it has a solution Φ′ = 0. Inserting this solution in the first equation of (2.46) we
obtain

3H2Φ = −4πGa2ρ0δ (2.49)

from which it follows that12

δ = −2Φ. (2.50)

In conclusion, in standard general relativity in the limit a′′

a
� k2 we have that Φ and δ

are frozen. It is indeed possible to show that the solution Φ′ = 0 is a growing mode (a
dominating solution) and thus that the gravitational potential and the density fluctuations
do not evolve on super-horizon scales.

2.3 Stochastic gravitational waves
In the previous section we showed that in order to describe the Universe as we ob-

serve it we need to perturb Einstein equations. In this section we focus our attention
12We need to use the background equation 3H2 = 8πGρ0a

2.
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on tensorial perturbations: space-produced fluctuations in the metric tensor result in a
stochastic background of relic gravitational waves. Indeed, the evolution of the first order
tensorial perturbation h(1)>

ij encodes an isotropic set of gravitational waves characterized
by a smoothly-varying power spectrum as a function of frequency.

This is particularly interesting in the study of PBH production: as we mentioned in
Section 2.1.3, in addition to gravitational waves produced by localized sources, we also
have the possibility of detecting stochastic gravitational-wave backgrounds. The detec-
tion of this background of gravitational waves could help us better understand the early
Universe cosmology.

In this section we follow [36] to review the dynamics of stochastic gravitational waves
predicted by the standard inflationary scenario.

In standard single-field slow-roll inflation, primordial tensor fluctuations of the metric
are characterized by a nearly scale-invariant power spectrum on super-horizon scales. The
action that describes the dynamics of the inflationary epoch is

S =
M2

Pl

2

∫
d4x
√
−gR−

∫
d4x
√
−g
[

1

2
gµν∇µζ∇νζ + V (ζ)

]
, (2.51)

where R is the Ricci scalar and ζ is the inflaton field. From the action (2.51) we can
see that tensor fluctuations are not constrained by equations derived from the stress-
energy continuity equation.13 Thus, the evolution of stochastic gravitational waves is
only regulated by the traceless spatial part of the perturbed Einstein equations.

By perturbing equation (2.51) up to second order14 in hij, we obtain the action for
the tensor perturbations15 hij,

Sh =
M2

Pl

8

∫
d4x a2(t)

[
hijhij −

1

a2
(∇khij)

2

]
. (2.53)

From the above action we can see that in the presence of perfect fluids the dynamics of
hij does not contain any direct influence from the energy content of the Universe, except
for the underlying background solution. This will no longer be true in the discussions of
Section 2.3 where we study the dynamics of second order gravitational waves.

hij is gauge-invariant, so we do not need to fix the gauge to study its dynamics (see
Section 5 for more details). Varying (2.53) with respect to hij we obtain the equation of
motion

∇2hij − a2ḧij − 3aȧhij = 0. (2.54)

13We recall that from the Lagrangian density L we can find the stress-energy tensor,

Tµν = −2 ∂L
∂gµν

+ gµνL, (2.52)

and that the scalar field ζ behaves like a perfect fluid.
14To study the dynamics of the first order tensor perturbations h(1)>

ij we need to expand the action
up to second order. However, this should not be confused with the study of second order tensorial
perturbations.

15From now on in this section we drop the notation h(1)>
ij and we simply use hij to label the first order

transverse and traceless tensorial perturbations.
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To solve the above equation we split the tensorial part of hij. Recalling that it is sym-
metric, transverse and traceless, we can rewrite hij as

hij(x, t) = h(t)e
(+,×)
ij (x), (2.55)

where e(+,×)
ij is the polarization tensor which satisfies the conditions: eij = eji, kieij = 0

and eii = 0, and (+,×) are the two gravitational waves polarization states. Thus, we can
solve equation (2.54) for the scalar field h(t) and then write the most general solution for
hij as

hij(x, t) =
∑

λ=(+,×)

h(λ)(t)e
(λ)
ij (x). (2.56)

To get the solution of the equation of motion it is useful to perform the transformation
vij = aMPl√

2
hij. Thus, going from cosmic time to conformal time and from h(t) to v(t), the

equation of motion of the scalar field v(λ)
k in Fourier space, reads

v
(λ)
k +

(
k2 − a′′

a

)
v

(λ)
k = 0. (2.57)

Equation (2.57) is a wave equation the qualitative behaviour of which can be split into
two main regimes depending on the relative magnitude of the second and third terms

• If a′′

a
� k2 (sub-horizon limit), we obtain that equation (2.57) is the equation of a

free harmonic oscillator. Thus, hij oscillates with a damping factor 1
a
due to the

expansion of the Universe.

• If a′′
a
� k2 (super-horizon limit), there are two possible solutions for equation (2.57):

v(η) ∝ a and v(η) ∝ 1
a2
. In terms of hij these solutions are h ∝ const. And a solution

decreasing in time, respectively.

To find the general solution of equation (2.57) we perform the standard quantization of
the field,

v
(λ)
k = vk(η)â

(λ)
k + v∗k(η)â

(λ)†
−k , (2.58)

where the modes are such that v∗kv′k − vkv
′∗
k = −i and â

(λ)†
−k and â

(λ)
k are the creation

and annihilation operators, respectively. Then, assuming the easiest initial conditions,
in which the Universe is in the vacuum state â(λ)

k | 0 >= 0, equation (2.57) is a Bessel
equation. In the case of a de Sitter Universe it has the exact solution (see [37] for more
details)

vk(η) =
√
−η
[
C1H

(1)
ν (−kη) + C2H

(2)
ν (−kη)

]
, (2.59)

where C1 and C2 are integration constants, H(1)
ν and H

(2)
ν are Hankel functions of first

and second order and ν ≈ 3
2

+ ε, where ε is the slow-roll parameter.
To choose the two constants, C1 and C2, we impose that the solution (2.59) matches

the plane-wave solution e−ikη/
√

2k in the a′′

a
� k2 limit. In this limit the Hankel functions

read

H(1)
ν (z � 1) ∼

√
2

πz
ei(z−

π
2
ν−π

4 ),

H(2)
ν (z � 1) ∼

√
2

πz
e−i(z−

π
2
ν−π

4 ),

(2.60)
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so that we have to impose C2 = 0 and C1 =
√
π

2
e
iπ
2

(ν+1/2). The exact solution of (2.59)
becomes

vk(η) =

√
π

2
e
iπ
2 (ν+ 1

2)√−ηH(1)
ν (−kη). (2.61)

In particular, taking the limit a′′

a
� k2 of the Hankel function H

(1)
ν , the solution in the

super-horizon limit becomes:

vk = ei(ν−
1
2)π2 2(ν− 3

2) Γ(ν)

Γ(3/2)

1√
2k

(−kη)
1
2
−ν , (2.62)

where Γ is the Euler function.

To find the power spectrum we can use the definition (2.58) to compute
〈
vij(k1), v∗ij(k2)

〉
.

Using [ak, ak′ ] = 0 and [ak, a
†
k′ ] = δ3 (k− k′) we obtain〈
vij(k1), v∗ij(k2)

〉
=
|vk|2

a2
δ(3) (k1 − k2) . (2.63)

Thus, the power spectrum of stochastic gravitational waves PT can be computed as

PT(k) =
k3

2π2

∑
λ

∣∣∣h(λ)
k

∣∣∣2 . (2.64)

In the case of the super-horizon limit the power spectrum becomes

PT(k) =
8

M2
Pl

(
H

2π

)2(
k

aH

)−2ε

, (2.65)

which, as anticipated, is almost scale-invariant. This means that the stochastic gravita-
tional waves produced in the standard inflationary scenario are almost frozen on super-
horizon scales. We will see that in Section 5 we obtain a different result for second order
gravitational waves.

Let us briefly mention that to observationally constrain the amplitude of the gravita-
tional waves signal, the tensor-to-scalar ratio r is normally used. We define r as the ratio
between the tensor and scalar power spectrum amplitudes, at a given pivot scale k∗,

r(k∗) =
AT(k∗)

AS(k∗)
. (2.66)

At present we have only an upper bound on r, r(0.05Mpc−1) < 0.07 at the 95% C.L. (see
[38] for more details). The important point is that different inflationary scenarios predict
different values for r. Thus, the study of observational signatures of primordial gravita-
tional waves provides us with a way not only to test the general inflationary paradigm,
but also to distinguish between specific models.

Furthermore, the detection of stochastic gravitational waves provides evidence for
what happened in the early Universe. It is not only strictly related to the inflationary
phase, but also more in general to what happened in the early times. Indeed, as we will
show in Section 5, the production mechanism for PBHs acts as a source of second order
gravitational waves which modifies the resulting power spectrum.



Chapter 3

The model

In this section we discuss the model presented in [1] and particularly go through the
compactification of the action following the computations of [39]. In this way we find the
action that describes the new scenario. We will use the results of this section to study
the production of PBHs and gravitational waves in Sections 4 and 5.

We start from a higher-dimensional gravity theory minimally coupled to higher-dimensional
radiation fluid. The latter is modeled with the help of a P (χ) theory which is explained
in more detail in Section 3.1. The higher dimensional theory under consideration is a 6D
manifold which has the topology R4 × S2. We therefore start with the action:

S =
M4

(6)

2

∫
d6X
√
GR(6) +

∫
d6X
√
G

(
−1

2
GAB∇Aχ∇Bχ

)2

, (3.1)

where M(6) and R(6) are respectively the Plank mass and the Ricci scalar in the 6-
dimensional space-time and

√
G is the determinant of the 6-dimensional metric.

In the 6-dimensional manifold we then take coordinates XA = {xµ, ya} where xµ are 4-
dimensional coordinates of a flat FLRW Universe and ya are coordinates on the 2-sphere.
The metric is parametrised as

ds2 = GABdX
AdXB = ĝµνdx

µdxν + b2γabdy
adyb, (3.2)

where b is the radius of the 2-sphere, ĝµν is the metric of the 4-dimensional manifold and
γab is the metric of the 2-sphere.

Now we perform the Kaluza-Klein reduction to obtain the dimensionally reduced 4-
dimensional action. Parameterising the 6-dimensional manifold as in (3.2) the action
becomes

S =
M4

(6)

2

∫
d4x
√
−ĝ
∫

d2yb2√γ
(
R(4)(ĝ) +R(2)(γ)

)
+

∫
d4x
√
−ĝ
∫

d2yb2√γ
(
−1

2
ĝµν∇µχ∇νχ

)2

,

(3.3)

where R(4)(ĝ) and R(2)(γ) are, respectively, the Ricci scalars of the 4-dimensional and
2-dimensional metrics.

29
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We assume that the radiation field does not depend on the extra dimensions and we inte-
grate equation (3.3) over the 2-sphere. Based on the results of [39], after the integrating
over the extra dimensions the action takes the form

S =

∫
d4x4πb2

√
−ĝ

{
M4

(6)

2

[
R(4)(ĝ)− 2

b2
ĝµν∇µb∇νb+

2

b2

]
− f 2

2

}

+

∫
d4x
√
−ĝ4πb2

(
−1

2
ĝµν∇µχ∇νχ

)2

.

(3.4)

The f -dependent term, as shown in [39], comes from the quantization of the extra-
dimensional magnetic flux which implies f = n

2eb2
with n an integer and e the gauge

coupling of the 6-dimensional abelian gauge field.
We defineM2

Pl = 4πM4
(6)b

2
∗ and the radius b = b∗e

φ
2MPl . In the latter definition the field

φ parametrises the radius of the compactified sub-manifold and b∗ denotes the radius at
some fiducial epoch (for example the present epoch). With these definitions the action
becomes

S =
M2

Pl

2

∫
d4x
√
−ĝe

φ
MPlR(4)(ĝ)− 1

4

∫
d4x
√
−ĝe

φ
MPl ĝµν∇µφ∇νφ

+

∫
d4x
√
−ĝ
(
M2

Pl

b2
∗
− 2πf 2b2

∗e
φ

MPl

)
+ 4πb2

∗

∫
d4x
√
−ĝe

φ
MPl

(
−1

2
ĝµν∇µχ∇νχ

)2

.

(3.5)
We then perform the conformal transformation: gµν = ĝµνe

φ
MPl to move to the Einstein

frame. In the Einstain frame we have
√
−g = e

2φ
MPl

√
−ĝ,

R(4)(g) = e
−φ
MPl

[
R(4)(ĝ)− 2(d− 1)

(
∇µ∇µ

φ

2M2
Pl

)
− (d− 1)(d− 2)

(
ĝµν∇µ

φ

2MPl

∇ν
φ

2MPl

)]
.

(3.6)
Thus, using ĝµν = gµνe

φ
MPl and neglecting the ∇µ∇µ

φ
2M2

Pl
term,16 we can substitute√

−ĝ = e
−2φ
MPl

√
−g,

R(4)(ĝ) = e
φ

MPlR(4)(g) +
6

4M2
Pl

e
φ

MPl (gµν∇µφ∇νφ) ,
(3.8)

in equation (3.5). In that way the action becomes

S =
M2

Pl

2

∫
d4x
√
−gR(4)(g) +

1

2

∫
d4x
√
−ggµν∇µφ∇νφ

+

∫
d4x
√
−g
(
M2

Pl

b2
∗
e
−2φ
MPl − 2πf 2b2

∗e
− φ
MPl

)
+ 4πb2

∗

∫
d4x
√
−ge

φ
MPl

(
−1

2
gµν∇µχ∇νχ

)2

.

(3.9)
16Replacing R(4)(ĝ) in S we obtain

[...] +
M2

Pl

2

∫
d4x
√
−ge

−φ
MPl

(
6e

φ
MPl gµν∇µ∇ν

φ

2M2
Pl

)
= [...] +

3

2

∫
d4x
√
−ggµν∇µ∇νφ, (3.7)

which, integrating by parts, gives a total derivative and the term: (∇µgµν) · (...).
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Finally, we define ψ ≡ (πb2
∗)

1/4χ and f ≡ f̂
b2

in order to find the result with the same
notation of [1],

S =
M2

Pl

2

∫
d4x
√
−gR(4)(g) +

1

2

∫
d4x
√
−g (gµν∇µφ∇νφ− V (φ))

+

∫
d4x
√
−ge

φ
MPl

(
−1

2
gµν∇µψ∇νψ

)2

,

(3.10)

where V (φ) = −M2
Pl

b2∗
e
−2φ
MPl + 2πf̂2

b2∗
e
−3φ
MPl .

3.1 P(χ) models
An essential ingredient of the extra-dimensional model presented above is the coupling

of the radion field φ to the radiation field ψ. This is easy to obtain with the help of a
P(χ) theory where the radiation is represented by the field ψ.

In our model we neglect dissipative phenomena so that we can approximate the matter
content as a sum of perfect fluids. As first shown in [40], the physics of a perfect fluid
can be derived from a unique scalar field. We will follow the notation of [41] in order to
better understand why we choose the above reported Lagrangian to describe radiation.

A perfect and barotropic fluid is defined to have a stress-energy tensor of the form:

Tµν = (ρ+ p(ρ))uµuν + p(ρ)gµν , (3.11)

where uµ is the 4-velocity of the fluid and the pressure p is a function only of the energy
density ρ. We will also assume that the fluid is irrotational. Indeed, it is possible to show
that if the initial vorticity is zero it does not evolve. While, if we assume a non zero
initial vorticity, it is diluted by the expansion of the Universe and thus it is set to zero
by inflation. Under these constraints the fluid is naturally described by a single scalar
function.

We then start by assuming that the scalar field σ describes a perfect fluid and we derive
the form of the Lagrangian that gives a stress-energy tensor of the form of equation (3.11).
We start with the Lagrangian density

L = P (χ), χ ≡ −∇µσ∇µσ, (3.12)

so that the stress-energy tensor of this field reads

Tµν = 2P ′(χ)∇µσ + P (χ)gµν∇µσ. (3.13)

In order to recover the form of (3.11) we need to identify

ρ = 2P ′(χ)χ− P (χ), p = P (χ), uµ =
∇µΨ
√
χ
, (3.14)

and we need to impose that ∇µΨ is everywhere timelike and future directed. Then, if
P (χ) satisfies the constraints (3.14), we have that the Lagrangian density (3.12) describes
the behaviour of a perfect fluid: we can recover the conservation of energy and the Euler
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equation, the number particle density and the adiabatic speed of sound as a function of
σ. As an example we explicitly find the particle number density n in the P (χ) formalism.
In order to find n we can start from the equation of motion

∇µ [P ′(χ)∇µ] = 0 (3.15)

to define the conserved current:17

Jµ = 2
√
χP ′(χ)uµ. (3.16)

Jµ can be interpreted as the conserved particle flux Jµ = nuµ. Thus, we can identify the
particle density as:

n = 2
√
χP ′(χ). (3.17)

Going back to our case, we can find the explicit form of P (χ): we want to use this
formalism to describe radiation. In our case the equation of state is p = wρ. Thus, solving
the first two equations in (3.14), we find

P (χ) = χ
1+w
2w . (3.18)

In order to find the Lagrangian density for the radiation fluid we only have to consider
w = 1/3. In that way L reduces to:

L = χ2 = (−∇µσ∇µσ)2 (3.19)

and, in an expanding flat FLRW background, the homogeneous solution satisfies

n = P ′(χ)σ′ ∝ a−3. (3.20)

In conclusion, with this formalism we are able to describe the dynamics of radiation in a
flat FLRW universe within a Lagrangian formalism. This formalism, as we will see in the
next sections, is useful for studies of cosmological perturbations and it allows the coupling
between radiation and extra dimensions to be introduced.

Furthermore, the recovered Lagrangian is a particular case of the so-called k-essence;
perturbation theory of k-essence models has already been studied extensively (as an ex-
ample see [42]).

17The conservation is a consequence (by Noether’s theorem) of the invariance of the action under shift
of σ.



Chapter 4

Primordial black hole formation in the
new scenario

Our objective in this chapter is to show that in the presence of extra dimensions,
super-horizon curvature perturbations can be sufficiently enhanced during radiation dom-
ination to produce PBHs.

Following the preliminary version of [1] in this chapter we study the new scenario:
we derive the evolution of first order scalar perturbations to show that in the new sce-
nario the super-horizon modes are not frozen anymore. The enhancement of curvature
perturbations is achieved during the post-inflationary epoch: even assuming an almost
Harrison-Zel’dovich initial power spectrum, we show that we can explain the PBH pro-
duction.
Here we use the ADM formalism, presented in Section 4.1. We derive and analyse the
dynamics of scalar perturbations in Section 4.2.

4.1 ADM decomposition of the metric

To study the evolution of scalar perturbations in the model presented in Section 3,
we will use the ADM formalism. In particular, this parametrisation of the metric has the
advantage of making explicit the true dynamical degrees of freedom of the system. To find
the ADM decomposition of the metric we need a parametrisation of the space-time metric
adapted to a given choice of foliation of the space-time by constant time hypersurfaces.
We go through the ADM decomposition of the metric following [43].

We first assume that the spatial hypersurfaces Σ of this foliation are hypersurfaces of
constant time. This means that Σ are the level sets of a time function τ(yα),

Στ0 = {yα s.t. τ(yα) = τ0}, (4.1)

with future-oriented normal vector ∇ατ .
We then define the coordinates (τ, xi) on the manifold via a coordinate transformation

yα = yα(τ, xi). (4.2)

33
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Given the choice of the foliation and time evolution yα = yα(τ, xi), we define the tangent
vector Eα

i of the spatial surface at time τ ,

Eα
i =

(
∂yα

∂xi

)
τ

. (4.3)

We then decompose ∂τ into a normal and a tangential part as

(∂τ )
α = NNα + Eα

i N i, (4.4)

where Nα is the normal vector, and the function N and the vector field N i are called
lapse function and shift vector field. The lapse function and shift vector field encode the
freedom in the choice of (∂τ )

α. Inserting this into the definition of the chosen coordinates
we have

dyα = (NNα + Eα
i N i)dτ + Eα

i dx
i. (4.5)

Finally, inserting equation (4.5) into the line element of the space-time metric, we find:

ds2 = gαβdy
αdyβ = −N2dτ 2 + hij(dx

i +N idt)(dxj +N jdτ), (4.6)

where hij = gαβE
α
i E

β
j is called induced metric. Equation (4.6) is the so-called ADM de-

composition of the metric.
This formalism is usually adopted for developing the Hamiltonian formulation of gen-

eral relativity and it is often useful to develop numerical solutions.
Before inserting the metric (4.6) into the action (3.10), we recall that in terms of these

variables the 4-dimensional volume element
√
−g takes the form

√
−g = N

√
h. We also

recall another useful definition: the extrinsic curvature. The extrinsic curvature tensor of
the surfaces of constant τ is defined as

Kij =
1

2N

(
ḣij − LNhij

)
, (4.7)

where ḣij = ∂τhij and the Lie derivative of hij can be written as

LNhij = ∇iNj +∇j,Ni (4.8)

where ∇i is the induced covariant derivative.

Now that we introduced the ADM formalism, we have all the tools we need to write
the action (3.10) in terms of the ADM decomposition. Inserting the metric (4.6) into the
action (3.10) we find:

S =

∫
d4x
√
h

[
M2

Pl

2
LG + Lφ + Lψ

]
, (4.9)

with
LG =

[
NR(3) +

1

N

(
EijEij − E2

)]
,

Lφ =

[
1

2N

(
φ̇−N i∇iφ

)2

− N

2
hij∇iφ∇jφ−NV (φ)

]
,

Lψ = Neφ/Mp1

[
1

N2

(
ψ̇ −N i∇iψ

)2

− hij∇iψ∇jψ

]2

.

(4.10)
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In (4.10) we have introduced the notation

Eij = NKij =
1

2

[
ḣij −∇iNj −∇jNi

]
,

E = Ei
i ,

(4.11)

and R(3) is the induced Ricci scalar.

4.2 First order scalar perturbation behaviour
In Section 3 we defined a specific 6-dimensional model of gravity in which the extra

dimensions are coupled to the radiation field. We now intend to study the dynamics
during radiation domination to show that, starting from a standard scale-invariant power
spectrum, we can enhance the curvature perturbations in the super-horizon modes. We
follow the computations of the preliminary version of [1].

We first study the background dynamics. Varying the action (4.9) we find the equa-
tions of motion

3H2 =
1

2

(
φ̇0

)2

+ 3eφ0
(
ψ̇0

)4

+ V (φ0) ,

φ̈0 = −3Hφ̇0 −
∂V (φ0)

∂φ
+ eφ0

(
ψ̇0

)4

,

ψ̈0 = −ψ̇0

(
H +

φ̇0

3

)
,

(4.12)

where φ0 and ψ0 are the background radion field, and the background radiation field
respectively. The last equation can be integrated to give the background evolution of the
radiation

ψ̇0 = ψ̇0 (t = tin) e
−φ0(t=tin)

3MPl

e −φ03MPl

a

 . (4.13)

Once we have the background dynamics, we can study the dynamics of scalar perturba-
tions.

To study the dynamics of first order scalars perturbations (see Section 2.2 for more
details about perturbation theory) we need to impose a gauge. In this section we work
with the so-called equipotential gauge which assumes a space-time foliation such that the
radiation fluctuations are gauged away

φ(t, x) = φ0(t) + ϕ(t, x),

ψ(t, x) = ψ0(t),

hij(t, x) = a2(t)e2R(t,x)δij.

(4.14)

Thus, in this gauge the first order scalar perturbations are the curvature perturbations
R and the radion perturbations ϕ. As usual, we assume a homogeneous and isotropic
background such that the background fields, φ0 and ψ0 are functions of time only.

Once we impose the gauge, we can solve the equation of motion for the shift function
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N and the lapse vector Ni and we substitute the solutions back into the action to obtain
the action for the perturbations to a given order. As shown in [44], it turns out that we
only need to solve the dynamics of N and Ni up to linear order in the perturbations to
obtain the action up to the cubic order. This is because the terms in the action that
come from solving the constraints to quadratic order multiply the zeroth order constraint
equations, which vanish by the background equations of motion.
In the equipotential gauge the momentum and Hamiltonian constraint equations (the
equations of motion for N and Ni) become

∇i

[
N−1

(
Ei
k − Eδik

)]
=

φ0

NM2
Pl

∇kϕ,

R(3)

2
− 1

2N2

(
EijEij − E2

)
− 1

M2
Pl

{
φ̇2

2N2
+ V (φ) +

3e
φ

MPI

N4
ψ4

0

}
= 0.

(4.15)

We solve equations (4.15) defining

N = 1 + α1,

N i = ∇iΘ +N i
T,

(4.16)

where α1, Θ and N i
T are all first order quantities. Integrating equations (4.15) we find

the solutions

α1 =
Ṙ
H

+
φ̇0

2HM2
Pl

ϕ,

∇i∇iΘ = −∇i∇iR
a2H

+
ε

c2
s

Ṙ+

(
−3 +

ε

c2
s

)
φ̇0

2M2
Pl

ϕ− 3eφ0/MPlψ̇4
0

2M2
PlH

ϕ

MPl

− φ̇0ϕ̇

2HM2
Pl

− ∂V

∂ϕ

ϕ

2HM2
Pl

,

N i
T = 0,

(4.17)
where c2

s is defined as

c2
s =

(
φ̇2

0

2H2M2
P1

+
2ψ̇4

0e
φ0/MPl

H2M2
Pl

)
/

(
φ2

0

2H2M2
P1

+
6ψ̇4

0e
φo/MPl

H2M2
P1

)
(4.18)

and the Hubble slow-roll parameter ε = − Ḣ
H2 is given via the background equations of

motion (4.12),

ε =
φ̇2

0

2H2M2
Pl

+
2ψ̇4

0e
φ0/MPl

H2M2
Pl

. (4.19)

Note that 1
3
≤ c2

s ≤ 1 as one goes from radiation domination to radion domination.
We can now insert the solution for the lapse N and the shift Ni back into the action

and expand the latter up to second order in perturbation variables. After integrating by
part, imposing the background equations of motion and switching to conformal time, the
quadratic action becomes

S(2) = S
(2)
1 + S

(2)
2 + S

(2)
3 , (4.20)
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where

S
(2)
1 = M2

Pl

∫
d4x a2ε

[
−R

′2

c2
s

− δij∇iR∇jR
]
,

S
(2)
2 =

∫
d4x

a2

2

[
ϕ′2 − δij∇iϕ∇jϕ− µ2ϕ2

]
,

S
(2)
3 =

∫
d4x a2

[
−φ

′
0

H
ϕ′R′ + φ′0

H
δij∇iR∇jϕ+ ω2R′ϕ

]
.

(4.21)

In the second order action (4.21) we defined ω and µ as

ω2(η) = φ′0

(
ε

c2
s

− 3

)
− a2

H
∂V

∂φ
− 3ψ′40 e

φ0/MPl1

a2HMPl

,

µ2(η) =
φ2

0

M2
Pl

(
3− ε

2c2
s

− ε

2

)
+ a2 ∂

2V

∂φ∂φ
+

2φ′0
H

(
a2

M2
Pl

∂V

∂φ
+
ψ′40 e

φ0/MPl

a2M3
Pl

)
− ψ′40 e

φ0/MPl

a2M2
Pl

.

(4.22)
From the second order action we then obtain the equations of motion for the perturbation
variables, which result in

R′′ +
(

2H +
ε′

ε
− 2c′s

cs

)
R′ − c2

s∇i∇iR =
c2

sφ
′
0

2HM2
Plε

[
ϕ′′ + 2Hϕ′ −∇i∇iϕ

]
− c2

s

2M2
Plε

[
ω2′ + 2Hω2

]
ϕ+

4c2
sψ
′4
0 e

φ0/MPl

a2εHM3
Pl

(
1− φ′0
HMPl

)
ϕ′,

ϕ′′ + 2Hϕ′ −∇i∇iϕ+ µ2ϕ =
φ′0
H
[
R′′ + 2HR′ −∇i∇iR

]
+R′

[
ω2 + φ′0(ε− 1) +

φ′′0
H

]
.

(4.23)
The above equations of motion describe how the curvature and radion perturbations
interact in a background where the radion motion is arbitrary, coupled to a thermal fluid.
Before solving equations (4.23) numerically, we simplify their form assuming that the
background radion evolution is stabilised by some potential whose value at the minimum
is vanishing. This means that there is no cosmological constant like contribution and thus
φ′0 = V (φ0) = ∂φ0V = 0. In this case ε, c2

s , ω, µ and the first equation of the background
equations of motion (4.12) become

H2 =
ψ′40

a2M2
Pl

e
φ0
MPl ,

ε = 2,

c2
s =

1

3
,

ω2 = −3HMPl,

µ2 = a2 ∂
2V

∂φ∂φ
−H2.

(4.24)

Furthermore, we find that during radiation domination a(η) ∝ η and H = 1
η
. With this



38CHAPTER 4. PRIMORDIAL BLACK HOLE FORMATION IN THE NEW SCENARIO

simplification the equations of motion in Fourier space simply become

R′′k +
2

η
R′k +

k2

3
Rk =

ϕ̃k

4η2
+
ϕ̃′k
3η
,

ϕ̃′′k +
2

η
ϕ̃′k +

(
µ2 + k2

)
ϕk = −3

η
R′k,

(4.25)

where ϕ̃ = ϕ
MPl

and we can identify the mass of the radion field m = ∂2V
∂φ∂φ

.
Now that we have the equations of motion that describe how the curvature and radion

perturbations evolve, we can numerically integrate them. Following the computations of
[1], in this section we show that it is possible to enhance super-horizon initially scale-
invariant perturbations.

We first rewrite the equations of motion in the form

d2R
dN2

− αβ d2ϕ

dN2
= SR

(
R, dR

dN
, ϕ,

dϕ

dN

)
,

d2ϕ

dN2
− βd2R

dN2
= Sϕ

(
ϕ,

dϕ

dN
,R, dR

dN

)
,

(4.26)

where we consider the e-foldings N as the time variable and we define α = c2s
2ε

and β = dφ0
dN

.
The introduced source terms are

SR = S
(1)
R R+ S(2)

R
dR
dN

+ S(3)
R ϕ+ S(4)

R
dϕ

dN
,

Sϕ = S(1)
ϕ ϕ+ S(2)

ϕ

dϕ

dN
+ S(3)

ϕ R+ S(4)
ϕ

dR
dN

,

(4.27)

with the individual terms

S(1)
R = −c2

s

k2

H2a2
R,

S(2)
R = −

(
(ε− 3)− 1

ε

dε

dN
+

2

cs

dcs

dN

)
,

S(3)
R =

k2

H2a2
αβ − 2

ω

aH
α

[
dω

dN
+ ω

]
,

S(4)
R = (3− ε)αβ + α

4
(
ψ̇0

)4

eφ0/MPl

H2
(1− β),

S(1)
ϕ = −k2 + µ2

H2a2
, S(2)

ϕ = ε− 3, S(3)
ϕ =

k2

H2a2
β,

S(4)
ϕ = (ε− 3)β +

ω2

aH
− 1

H2

∂V

∂φ
+

(
ψ̇0

)4

eφ0/MPl

H2MPl

.

(4.28)

Equations (4.26) are not explicitly in a form of a well-posed initial value problem. To
have a well-posed system we rewrite them in the form

d2R
dN2

=
1

1− αβ2
[βSR + Sϕ] ,

d2ϕ

dN2
=

1

1− αβ2
[SR + αβSϕ] .

(4.29)
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To solve equations (4.29) we first numerically solve the background dynamics (equations
(4.12)). Then we use the background solutions to integrate the system (4.29). The system
(4.29) can become singular if 1−αβ2 crosses zero but in [1] the authors have verified that
this does not occur in any point of the integration domain.

For the choice of the initial conditions we assume initial scale-invariant curvature
perturbations (Rini ≈ 10−5) and spiky initial values for the radion perturbations, enhanced
on a certain pivot scale k2

piv as shown in Figure 4.1.

Figure 4.1: Scale dependence of initial radion perturbations in Fourier space. Here it
is assumed that initially radion perturbations peak at a pivot scale kpiv with an amplitude
αpeak.

The initial value for the curvature perturbations Rini ≈ 10−5 is consistent with simple
inflationary predictions. As we assume the inflationary phase to be standard, we can take
Rini ≈ 10−5 and vanishing initial velocities for curvature perturbations. For the radion
perturbations initial conditions we take a spiky initial value, enhanced on a certain pivot
scale k2

piv as shown in Figure 4.1. The enhancement of the radion’s initial conditions
can be achieved by the coupling of the radion field φ to the inflaton field ζ, but this is an
aspect that is currently being developed by the authors of [1].

The results of numerical integration of the system (4.12) are shown in Figure 4.2
and Figure 4.3. We can see from these figures that for modes k close to kpiv, which is
the position of the peak in the ϕk initial conditions, we have a substantial super-horizon
growth of the curvature perturbations. Indeed, looking at the red line, we can see that R
is enhanced by a factor of 104 after 5 e-foldings.

This shows that the model described in Section 3 can produce an enhancement of cur-
vature perturbations required for generating PBHs even if we start with scale-invariant
initial conditions generated by standard inflationary scenarios. Furthermore, we can see
that the enhancement depends on k2

piv: by choosing k2
piv we can choose the modes we want

to enhance and thus we can set the mass of the produced PBHs.
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Figure 4.2: Time evolution for three different modes of the radion perturbations ϕk as a
function of the e-foldings N (k2

piv is the position of the peak in the ϕk initial conditions).
The vertical dotted lines indicate the horizon re-entry of the corresponding mode. This
figure is provided by Valeri Vardanyan, an author of [1].

Figure 4.3: Time evolution for three different modes of the curvature perturbations R as
a function of the e-foldings N (k2

piv is the position of the peak in the ϕk initial conditions).
The vertical dotted lines indicate the horizon re-entry of the corresponding mode. This
figure is provided by Valeri Vardanyan, an author of [1].

Now that we presented the numerical solution for the dynamics of first order scalar
perturbations (R and ϕ) we can estimate the fraction of the generated PBHs. We can
indeed compute the PBH abundance using the numerical solutions provided by [1].
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In order to estimate fPBH = ΩPBH

ΩDM
we refer to our discussions of Section 2.1.2. As

mentioned in Section 2.1.2, this is the most basic way to estimate the abundance of
PBH. Note that in Section 2.1.2 we assumed a monochromatic mass function while, as
shown in Figure 4.3, in our case we do not necessarily obtain a narrow peak in the
power spectrum. However, as a first approximation, we assume that the monochromatic
assumption is still valid. Thus, after computing the power spectrum:〈

R(k)R(k̃)
〉

= (2π)3PR(k)δ3
(

k− k̃
)

(4.30)

with the numerical evolution of R shown in Figure 4.3, we estimate σ with equation
(2.16),

σ2 =
16

81

∫ ∞
0

(
k̃

kpiv

)4

PR(k̃)W 2(k̃, R)
dk̃

k̃
. (4.31)

To estimate σ we take R = 1
kpiv

and we assume that W 2(k, R) is a Gaussian window
function.

Having obtained the variance we can compute the PBH abundance β using equation
(2.15) and finally compute fPBH

fPBH =
ΩPBH

ΩDM

= 2.7× 108
( γ

0.2

)1/2 (g∗, form

10.75

)−1/4
(
MPBH

M�

)−1/2

β, (4.32)

where MPBH is estimated using equation (2.13).
Due to the natural dependence of fPBH on the initial conditions of the radion, and thus

on kpiv and αpeak, we can choose to produce PBHs with masses within an unconstrained
range. This model can generate PBHs with arbitrarily small or arbitrarily large masses
by tuning the initial conditions of ϕk.
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Chapter 5

Gravitational wave production

In this section we present the main original contribution of this work: the study of
second order gravitational waves induced by scalar perturbations in the model presented
in Section 3.

Before presenting how we computed the gravitational waves equation of motion in
Section 5.2.1 and the resulting power spectrum in Section 5.2.2, we go back to the
gauge problem discussed in Section 2.2.1. In Section 5.1 we study in more detail how to
change the gauge at first and second orders, while in section 5.1.2 we review the gauge
dependence of second order tensor perturbations.

5.1 Gauge changing

In this section we review, following [33] and [45], the method with which we can change
the gauge in the perturbed metric up to second order. We then explicitly compute the
relation between the Newtonian gauge mentioned in Section 2.2.2 and the equipotential
gauge used in Section 4.2. Finally we discuss the gauge dependence of the second order
scalar-induced gravitational waves.

5.1.1 First and second order gauge changing

Up to now we did not need to use equation (2.25) to change the gauge choice. In the
study of the dynamics of scalar perturbations, both in the previous section and in Section
2.2.2, we fixed the gauge while being aware of the gauge dependence in our results. We
now explicitly adapt equation (2.25) for the metric and we find how to write the scalar
perturbations defined in the Newtonian gauge as a function of the perturbations in the
equipotential gauge (equation (4.14)).

From equation (2.25) it follows that in order to write the first and second order per-
turbation of the metric in a different gauge we need to find ξ1 and ξ2 such that

δg̃µν = δgµν + £ξ1g
(0)
µν ,

δ2g̃µν = δ2gµν + £ξ2g
(0)
µν + £2

ξ1
g(0)
µν + 2£ξ1δg

(0)
µν .

(5.1)

43
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Thus, extending the definition of the Lie derivative (2.19) for a generic tensor field T of
rank (k, l),

LξT µ1···µkν1···νl = ξσ∇σT
µ1···µkνν1···νl

+ (∇ν1ξ
α)T µ1···µkαα···νl + . . .+ (∇νlξ

α)T µ1···µkν1···α

− (∇αξ
µ1)Tα···µkν1···νl − . . .− (∇αξ

µk)T µ1···αν1···νl ,

(5.2)

we find that the quantities appearing in the definition (2.28) transform at first order as18

Ψ̃ = Ψ + α′1 +Hα1,

ω̃⊥i = ω⊥i + d′i,1,

ω̃‖ = ω‖ − α1 + β′1,

Φ̃ = Φ− 1

3
∇i∇iβ1 −Hα1,

h̃>ij = h>ij,

h̃⊥i = h⊥i + di,1,

h̃‖ = h‖+ 2β1.

(5.3)

In the above equations we split the temporal and spatial parts of ξ1 as

ξ0
r = αr,

ξir = ∇iβr + dir,
(5.4)

where di,r satisfies ∂idi,r. Moreover at second order they transform as

Ψ̃(2) = Ψ(2) + α1

[
2
(
Ψ′(1) + 2a

′

a
Ψ(1)

)
+ α′′1 + 5a

′

a
α′1 +

(
a′′

a
+ a′2

a2

)
α1

]
+ξi1

(
2Ψ

(1)
,i + α′,i1 + a′

a
α,i1

)
+ 2α′1

(
2Ψ(1) + α′1

)
+ξi′1

(
α,i1 − ξ′i1 − 2ω

(1)
i

)
+ α′2 + a′

a
α2,

ω̃
(2)
i = ω

(2)
i − 4Ψ(1)α,i1 + α1

[
2
(
ω

(1)′
i + 2a

′

a
ω

(1)
i

)
− α′,i1 + ξ′′i1 − 4a

′

a
(α,i1 − ξ′i1)

]
+ξj1

(
2ω

(1)
i,j − α,ij1 + ξ′i,j1

)
+ α′1

(
2ω

(1)
i − 3α,i1 + ξ′i1

)
+ξj

′

1

(
−4Φ(1)δij + 2h

(1)
ij + 2ξj,i1 + ξi,j1

)
+ ξj1,i

(
2ω

(1)
j − α,j1

)
− α,i2 + ξ′i2,

Φ̃(2) = Φ(2) + α1

[
2
(

Φ′(1) + 2a
′

a
Φ(1)

)
−
(
a′′

a
+ a′2

a2

)
α1 − a′

a
α′1

]
+ ξi1

(
2Φ

(1)
,i − a′

a
α

(1)
,i

)
−1

3

(
−4Φ(1) + α1∂0 + ξi(1)∂i + 4a

′

a
α1

)
∇i∇iβ1 − 1

3

(
2ωi(1) − αi1 + ξi′1

)
α,i1

−1
3

(
2h

(1)
ij + ξi,j1 + ξj,i1

)
ξj,i1 − a′

a
α2 − 1

3
∇i∇iβ2,

(5.5)

18In equation (5.5) we make explicit the order of perturbations as we mix the first and second order
perturbations, while in equation (5.3) we do not specify the order because we are only referring to first
order perturbation quantities.
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h̃
(2)
ij = h

(2)
ij + 2

(
h

(1)′
ij + 2a

′

a
h

(1)
ij

)
α1 + 2h

(1)
ij,kξ

k
1

+2
(
−4Φ(1) + α1∂0 + ξk1∂k + 4a

′

a
α1

) (
d(i,j)1 + Dijβ1

)
+2
[(

2ω
(1)
(i − α,(i1 + ξ′(i1

)
αjj1 − 1

3
δij

(
2ωk(1) − αk1 + ξk′1

)
α,k1

]
+2
[(

2h
(1)
(i|k| + ξk,(i1 + ξ

(1)
(i,|k|

)
ξk,j)1 −

1
3
δij

(
2h

(1)
lk + ξk,l1 + ξl,k1

)
ξk,l1

]]
+2
(
d(i,j)2 + Dijβ2

)
,

(5.6)

where, as we take this result from [33], we keep a consistent notation: Φ,µ = ∂µΦ, ξ(iωj) =
1
2
(ξiωj + ξjωi) and we do not split the quantities appearing in the the definition (2.28)

into scalar, vector and tensor parts as we did in (5.3).
It is interesting to notice that from (5.3) what we assumed in Section 2.3 automatically

follows: h>ij is a gauge-invariant quantity at first order. However, it is not true for the
first order scalar and vector perturbations and it is no longer true for the second order
tensor perturbations, as shown in equation (5.5).

We do not explicitly report the first and second order gauge transformations of the
stress-energy tensor because in the model presented in Section 3 we used the Lagrangian
formalism to describe the matter content of the Universe. Thus, in order to change the
gauge of the radiation field, we just need to adapt equation (2.25) to the case of a scalar
field. To see how the stress-energy tensor changes under gauge transformations see [45].

From Newtonian gauge to equipotential gauge

We now explicitly use equations (5.3) to link two different gauges. We want to find
the vector ξ1 such that the perturbed metric

ds2 = −a2(1 + 2Φ)dη2 + a2(1− 2Ψ)δijdx
idxj (5.7)

can be mapped onto the metric we used in Section 4.2,

ds2 = −N2dt2 + hij
(
dxi +N idt

) (
dxj +N jdt

)
. (5.8)

In the latter metric we recall that hij is defined as hij = a2e2Rδij, and N and Ni depend on
R and ϕ, as shown in equations (4.16) and (4.17). The perturbed metric (5.7) is written
in the Newtonian gauge: it is indeed equal to the metric (2.40) except that we change
the notation (Φ −→ Ψ and Ψ −→ Φ). This is because, as we will see in Section 5.2.1,
in this section we are maintaining the notation of the Mathematica package we used to
compute the equation of motion of the tensor perturbations. Furthermore, as we have
shown in Section 2.2.2, in standard general relativity we have Ψ = Φ, thus, in principle,
we cannot distinguish them. In addition, in (5.7) and (5.8) we are not considering tensor
perturbations, as we did in (2.40). However, in the latter case we justified this assumption
by saying that in order to study the dynamics of scalar perturbations we are allowed to
neglect tensor perturbations, while in this case we are neglecting h⊥ij because they do not
change under first order gauge transformations. In both (5.7) and (5.8) we assume that
vector perturbations are switched off (this is not a gauge choice, we just neglect them as
we did in Section 2.2.2).

To find ξ1, we need to solve (5.3) by inserting (5.7) and (5.8): the LHS refers to the
Newtonian gauge, Φ and Ψ, while in the RHS we have to insert the perturbations of (5.8),
R and ϕ. Solving the system for ξ = (α,∇iβ + di) we find that from tensor and vector
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gauge transformations we obtain that the vector part of ξ must be zero, while from scalars
transformations we find α, Ψ and Φ as functions of R and ϕ. The result is

di = β = 0,

α = aΘ,

Φ = α1 + 2a′Θ + aΘ′,

Ψ = −R− a′Θ,

(5.9)

where α1 and Θ are defined in equations (4.17).
This relation between Ψ, Φ and R, ϕ will be useful in the next section where we first

study the evolution of second order tensor perturbations in the Newtonian gauge and then
we intend to express our result in the equipotential gauge.

Let us also mention how to deal with gauge changing of radiation perturbations in
the P (χ) formalism. We first label the radiation field ψ in the action (3.10) as σ. This is
done to avoid confusion between the radiation field and the perturbation Ψ. In that way
the action becomes

S =
M2

Pl

2

∫
d4x
√
−gR(4)(g) +

1

2

∫
d4x
√
−g (gµν∇µφ∇νφ− V (φ))

+

∫
d4x
√
−ge

σ
MPl

(
−1

2
gµν∇µσ∇νσ

)2

.

(5.10)

Then we recall that in order to change the gauge for a generic scalar field Υ = Υ0 + δΥ
we have to find the α that satisfies

δΥ̃ = δΥ + Υ′0α. (5.11)

Thus, using (5.11), we find that the radiation perturbation in the Newtonian gauge σ =
σ0+ς as a function of the unperturbed radiation (4.14) in the equipotential gauge (σ = σ0)
becomes

ς = σ′0aΘ =
σ′0,in
a
e
−φ0
3MPl aΘ. (5.12)

In the second equality of (5.12) we use the background solution (4.13) and in this formal-
ism σ′0,in is the initial condition.

Before discussing in more detail the gauge invariance of second order perturbations,
we mention a substantial difference which is easily understood in the Newtonian gauge,
between our model and the general relativity case. In Section 2.2.2, from equation (2.46)
we can see that the traceless and transverse component of the Einstein equations yields
the so-called slip relation: Φ = Ψ [46]. This equality is not longer true in our model;
in fact, from (5.9) it is easy to see that Φ 6= Ψ. However, it is possible to show that in
the absence of the coupling between the radion and the radiation fluid we recover the
general relativity result Φ = Ψ. This difference in the slip relation is a general result for
modified gravity models and it is well-studied in the literature both from the theoretical
and observational points of view (see [47] for an overview of modified gravity theories and
observational constraints).
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5.1.2 Second order perturbations and gauge dependence

In this section we intend to study the gauge dependence of second order gravitational
waves induced by scalar perturbations. Even if, as previously shown, second order ten-
sor perturbations are not gauge-independent, in [48] and [49] the authors show that the
observed scalar-induced gravitational waves are identical in Newtonian, synchronous and
uniform curvature gauges.

We now briefly present how to calculate the energy density spectra of scalar-induced
gravitational waves in the Newtonian, synchronous and uniform curvature gauges follow-
ing [48]. Since in this section we are only interested in the results presented in [48] and
[49], we will present the full derivation and solution of the dynamics of scalar induced
tensor perturbations in the next section.

The energy density spectrum of scalar-induced gravitational waves Ωgw is defined as:

Ωgw(f) =
1

ρc

dρgw

d log(f)
, (5.13)

where ρc =
3H2

0

8πG
is the critical density, ρgw is the gravitational waves’ energy density and

f = 2πk is the frequency. ρgw can be expressed as a function of the gravitational waves
amplitude (see [50] for more details),

ρgw =
1

32πG

〈
ḣ

(2)>
ij ḣ

(2)>
ij

〉
. (5.14)

Then, using the same procedure we used in Section 2.3 and in particular equation (2.56),
we can write h(2)>

ij using spherical coordinates as (see [51] for more details)

h
(2)>
ij (x, t) =

∑
λ=(+,×)

∫ +∞

−∞
df

∫
S2

dΩ̂h
(2)>
(λ) (f, Ω̂)ei2πf(t−Ω̂·x)e

(λ)
ij (Ω̂). (5.15)

In that way ρgw becomes

ρgw =
32π5

G

∫ +∞

0

dff 2P (f), (5.16)

where we have used the definition of the power spectrum〈
h

(2)>
(λ) (f, Ω̂)h

(2)>
(λ) (f ′, Ω̂′)

〉
= (2π)3δ(f + f ′)δ(Ω̂, Ω̂′)P (f) (5.17)

to rewrite
〈
ḣ

(2)>
ij ḣ

(2)>
ij

〉
. Thus, Ωgw can now be written as a function of the power spec-

trum:
Ωgw(f) =

256π3

3H2
0

f 3P (f). (5.18)

In conclusion, in order to estimate Ωgw we need to find the amplitude of the induced
gravitational waves. As we will see in the next section, the evolution of gravitational
waves is governed by an equation of motion of the form:

(h
(2)>
ij )′′ + 2H(h

(2)>
ij )′ −∇k∇kh

(2)>
ij = −4T lmij Slm, (5.19)



48 CHAPTER 5. GRAVITATIONAL WAVE PRODUCTION

where Slm is a source term and it is a quadratic function of first order scalar perturbations
and T lmij is the projection operator onto transverse and traceless tensors.

As we will see in Section 5.2.2, in order to solve (5.19) we can use the Green’s function
method so that the amplitude becomes

h(2)>(η, k) =
1

a(η)

∫ η

0

gk (η; η′) a (η′)S (η′, k) dη′, (5.20)

where gk is the Green’s function and S (η′, k) the source term in Fourier space. Thus,
evaluating h(2)>(η, k) with the above equation, we can compute the power spectrum and
the resulting energy density spectra of scalar-induced gravitational waves Ωgw. This is the
procedure followed by C. Yuan et al. in [48] where they start from the source term written
in three different gauges, Newtonian, synchronous and uniform curvature and then they
compute Ωgw in the three different cases. The source terms become respectively,

SNij = 3Ψ∇i∇jΨ− 2
H∇iΨ∇jΨ− 1

H2∇iΨ∇jΨ,
SSij = −3Φ′∇i∇j(h

‖′ − ω‖) + Φ∇i∇jΦ− 1
H2 (∇iΦ

′) (∇jΦ
′)

+
(
∇k∇k(h‖′ − ω‖)

) (
∇i∇j(h

‖′ − ω‖)
)
−
(
∇k∇i(h

‖′ − ω‖)
) (
∇k∇j(h

‖′ − ω‖)
)
,

SUij =
(
∇k∇kω‖

) (
∇i∇jω

‖)− (∇j∇iω
‖) (∇i∇jω

‖)+ 4HΨ∇i∇jω
‖ + φ∇i∇jω

‖

+2Ψ∇i∇jω
‖′ + 2Ψ∇i∇jΨ,

(5.21)
where we keep the notation of the perturbed metric (2.28) defined in Section 2.2.2 as
we are working with standard general relativity and we drop the (1) as the perturbation
quantities on the RHS are all first order perturbations. The resulting Ωgw has the same
form in the three different cases,

Ωgw(k) =
1

24

(
k

H

)2

Ph(k)

=

(
k

H

)2
k3

48π2a(η)2

∫
dη̃1dη̃2gk (η; η̃1) gk′ (η; η̃2) a (η̃1) a (η̃2) 〈S (k, η̃1)S (k′, η̃2)〉

=
1

6

∫ ∞
0

du

∫ 1+u

|1−u|
dv
v2

u2

[
1−

(
1 + v2 − u2

2v

)2
]2

PΦ(uk)PΦ(vk)I2
S(u, v, x→∞),

(5.22)
where u and v are integration variables defined from the wavenumbers k and p that results
from the convolution of the source term, PΦ is the power spectrum of scalar perturbations,
the overline denotes the oscillating average and IS is defined in [48] and encodes the
evolution of the primordial power spectrum taking into account the evolution of scalar
perturbations through the radiation- and matter-dominated epochs.

We do not go through the full computations of [48] because in this section we just
want to stress the fact that, even if the source terms (5.21) are explicitly gauge-dependent,
the observable Ωgw is gauge-independent. This possibility of gauge invariance of Ωgw,
confirmed by [49], is an important result for the the computations presented in the next
section. In Section 5.2 we compute the power spectrum of scalar-induced gravitational
waves in the non-GR model presented in Section 3. The result is in principle gauge-
dependent, but, as mentioned in this section, it could be instead general and well defined.
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5.2 Gravitational wave production
In this section we study second order tensor perturbations in the model presented in Sec-
tion 3.

We essentially follow the procedure presented in Section 2.3. We start from the action
(3.10), we find the equations of motion for the metric and we perturb them up to second
order in the Newtonian gauge. We then isolate the equation of motion for second order
tensor perturbations and we solve them with the Green’s function method. However, the
resulting equation of motion, as we will see in Section 5.2.1, is different from (2.54). In
(2.54) we do not have any source term and the RHS is null. This is in general true at
first order because at first order the evolutions of scalar, vector and tensor perturbations
independent.

However, the most important phenomenon of second-order perturbation theory is
mode mixing: at second order the scalar perturbations couple to the tensor perturbations.
Thus, large scalar perturbations also produce the so-called scalar-induced gravitational
waves ([33]). In this section we study gravitational waves induced by the curvature and
radion perturbations studied in Section 4.2. We expect that the described enhancement
of curvature perturbations, not only allows the formation of PBHs, but also acts as a
source for tensor modes, producing a detectable gravitational waves power spectrum.

As mentioned in Section 5.1, the specific form of these waves is gauge-dependent, as
tensor modes are no longer gauge-invariant beyond the linear level. We will work in a
gauge different from the equipotential gauge, the gauge used in Section 4.2. Thus, before
proceeding with the computation of the power spectrum in Section 5.2.2, we will use
the results of Section 5.1.1 to change the gauge and work in the equipotential gauge.
However, as mentioned in the previous section, it is not clear whether the result is indeed
gauge-dependent.
Appendix

5.2.1 Equation of motion

To study the dynamics of second order tensor perturbations we do not start perturbing
directly the action, as we did for scalar perturbations; we first find the equation of motion.
Thus, varying the action (5.10),

S =
M2

Pl

2

∫
d4x
√
−gR(4)(g) +

1

2

∫
d4x
√
−g (gµν∇µφ∇νφ− V (φ))

+

∫
d4x
√
−ge

σ
MPl

(
−1

2
gµν∇µσ∇νσ

)2

,

(5.23)

we find the equation of motion

−1

2
M2

PlRµν +
1

4
M2

PlgµνR +
1

4
M2

Pl∇βφ∇βφgµν −
1

2
∇µφ∇νφ+

1

2
e

σ
MPl

(
∇βσ∇βσ

)2
gµν

− 2e
σ

MPl∇βσ∇βσ∇µσ∇νσ +

(
M2

Pl

2b2
∗
e
− 2σ
MPl − πf̂ 2

b2
∗
e
− 3σ
MPl

)
gµν = 0.

(5.24)
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Derivation of the above equation of motion and the following computations to expand the
equation of motion up to the second order in perturbation theory have been done with
Mathematica, using the xAct package19 (more precisely the application package ’xPand’).

We then choose the Newtonian gauge (ω(r)‖ = h(r)‖ = 0, r = (1, 2)) and neglect first
order vector and tensor perturbations. With these choices the perturbed metric takes the
form

ds2 = a2
[
−(1 + 2Φ(1) + 2Φ(2))dη2 − ω(2)⊥

i dηdxi + (1− 2Ψ(1) − 2Ψ(2))δijdx
idxj

+
1

2
h

(2)>
ij dxidxj

]
,

(5.25)

where we use the same notation of (5.7) for the scalars perturbations in order to be con-
sistent with the results in Appendix, while, for tensor and vector perturbations, we keep
the notation of (2.40) in order to be consistent with the results in the literature (i.e., [45]
and [53]). Indeed, in the perturbed metric given in Appendix we have h(2)>

ij = 4E
(2)
ij and

ω
(2)⊥
i = B

(2)
i .

We then expand the equation of motion (5.24) up to the second order, finding the
result called SecondOrdEqMotion reported in Appendix. Since we want to study the
dynamics of scalar induced second order tensor perturbations h(2)>

ij , the result Secon-
dOrdEqMotion can be simplified. Indeed, as we want to study h(2)>

ij , which is trans-
verse and traceless, we can neglect the trace part of the (i, j) components of the perturbed
equation of motion. Furthermore, we drop those terms that depend on second order per-
turbation quantities as we want to study the second order gravitational waves induced by
first order perturbation quantities. After these simplifications we obtain the result called
FinalResult in Appendix,

h′′ij + 2Hh′ij −∇k∇khij =− 4T̂ lmij
(

4Φ∇l∇mΦ− 4Ψ∇l∇mΦ + 8Ψ∇l∇mΨ + 2∇lΦ∇mΦ

− 2∇lΦ∇mΨ− 2∇lΨ∇mΦ + 6∇lΨ∇mΨ +
2

M2
Pl

∇lϕ∇mϕ

− 8

a2M2
Pl

e
φ0
MPl σ′20 ∇lς∇mς

)
,

(5.26)
where T lmij is the projection operator onto transverse and traceless tensors and from now
on we denote h(2)>

ij simply as hij.
In conclusion, the equation of motion of second order tensor perturbation is of the

form (5.19):
h′′ij + 2Hh′ij −∇k∇khij = −4T lmij Slm, (5.27)

as we anticipated in Section 5.1.2. In this case the source term Slm becomes

Slm =4Φ∇l∇mΦ− 4Ψ∇l∇mΦ + 8Ψ∇l∇mΨ + 2∇lΦ∇mΦ− 2∇lΦ∇mΨ− 2∇lΨ∇mΦ

+ 6∇lΨ∇mΨ +
2

M2
Pl

∇lϕ∇mϕ−
8

a2M2
Pl

e
φ0
MPl σ′20 ∇lς∇mς.

(5.28)
19http://www.xact.es/
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This result is in agreement with the source term presented in [45] up to a rescaling: the
first seven terms are the standard general relativity result reported in the literature, while
the last two terms are the new contributions due to the modifications of general relativity
introduced in Section 3.

5.2.2 Power spectrum

We now solve the equation of motion (5.26) in a radiation-dominated Universe and
estimate the power spectrum of scalar induced second order gravitational waves.

We start by defining the Fourier transform of second order tensor metric perturbations
as

hij(x, η) =

∫
d3k

(2π)3/2
eik·x

[
hk(η)eij(k) + h̄k(η)eij(k)

]
, (5.29)

where eij and eij are the two polarization tensors, and hk(η) and h̄k(η) are the amplitudes.
We then rewrite the RHS of equation (5.26) as

T̂ lmij Slm(x, η) =

∫
d3k

(2π)3/2
eik·x

[
eij(k)elm(k) + eij(k)elm(k)

]
Slm(k), (5.30)

where Slm(k) is the Fourier transformed source term

Slm(k) =

∫
d3x′

(2π)3/2
e−ik·x

′Slm (x′) . (5.31)

Thus, in Fourier space the equation of motion for the gravitational waves amplitude hk(η)
for both polarizations becomes

h′′(k, η) + 2Hh′(k, η) + k2h(k, η) = S(k, η). (5.32)

S(k, η) is the convolution of the two first-order scalar perturbations at different wavenum-
bers k and p,20:

S(k, η) =− 4elmSlm(k, η)

=4

∫
d3p

(2π)
3
2

elmplpm

[
2Φ(p, η)Φ(k− p, η) + 2Ψ(p, η)Ψ(k− p, η)

− 2

M2
Pl

ϕ(p, η)ϕ(k− p, η) +
8σ′20,in
a4M2

Pl

e
φ0(η)
3MPl ς(p, η)ς(k− p, η)

]
.

(5.33)

We notice that equation (5.33) is in agreement with the results of [53], where the authors
use the first order Einstein equations in order to rewrite the perturbation of radiation
ς as a function of the metric perturbations Φ and Ψ. Because of this substitution the
correspondence is not immediate; however, we have checked that the standard-GR terms
of (5.33) correspond to the known results. However, as specified in the equation of motion,
we have in addition the radion contribution that adds non-standard terms to the source
term (5.33).

20We recall that by definition kieij = 0.
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We can now easily solve (5.32) with the Green’s function method. We define gk such
that it solves

g′′k +

(
k2 − a′′

a

)
gk = δ(η − η̃). (5.34)

Then, multiplying both the RHS and the LHS by the source term (5.33), we find that the
amplitude becomes

h(kη) =
1

a(η)

∫
dη̃gk(η, η̃)[a(η̃)S(k, η̃)]. (5.35)

The solution of equation (5.34) in a radiation-dominated universe (where a ≈ η) results
in (see [45] for the full computations and the result in a matter-dominated universe)

gk(η, η̃) =
1

k
[sin(k, η) cos(k, η̃)− sin(k, η̃) cos(k, η)], η < ηeq. (5.36)

In conclusion, we can express the power spectrum of the second order gravitational waves21

as a function of first order quantities. Indeed, we obtain

〈h(k, η)h(K, η)〉 =
1

a2(η)

∫ η

η0

dη̄2

∫ η

η0

dη̄1a (η̄1) a (η̄2) gk (η, η̄1) gK (η, η̄2) 〈S (k, η̄1)S (K, η̄2)〉 .

(5.38)
To obtain a more explicit expression for the power spectrum we should know the analyti-
cal behaviour of first order scalar perturbations so that we are able to estimate the (k, η)
dependence of the source term in equation (5.38). As discussed in 4.2, up to now the
linear order is solved numerically.

However, even if we cannot proceed with the estimation of the power spectrum, we
now try to explicitly write the dependence of the power spectrum on dynamics and initial
conditions of first order scalar perturbations, so that once we obtain an analytical solution
of the first order equations of motion, we can easily estimate the power spectrum.

We start writing the source term (5.33) in the equipotential gauge. Thus, using the
relations found in Section 5.1.1

Φ = α1 + 2a′Θ + aΘ′,

Ψ = −R− a′Θ,

ς = σ′0aΘ =
σ′0,in
a
e
−φ0
3MPl aΘ,

(5.39)

21We recall that the power spectrum Ph(k, η) of h(k, η) is defined as

〈h(k, η)h(K, η)〉 = 2π2

k3
δ(k + K)Ph(k, η). (5.37)
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we find that (5.33) in the equipotential gauge becomes

S(k, η) = 4
∫

d3p

(2π)
3
2

elmplpm

[
2
H2R′(p, η)R′(k− p, η) + 2R(p, η)R(k− p, η)

+4a′R(p, η)Θ(k− p, η) +
2φ′0(η)

H2M2
Pl
R′(p, η)ϕ(k− p, η)

+
(

φ′20 (η)

2H2M4
Pl
− 2

M2
Pl

)
ϕ(p, η)ϕ(k− p, η) +

(
10a′2 +

8σ′40,in
a4M2

Pl
e
−φ0(η)
3MPl

)
Θ(p, η)Θ(k− p, η)

+2a2Θ′(p, η)Θ′(k− p, η) + 8aa′Θ(p, η)Θ′(k− p, η)

+4
(
R′(p,η)
H +

φ′0
2HM2

Pl
ϕ(p, η)

)(
aΘ′(k− p, η) + 2a′Θ(k− p, η)

)]
.

(5.40)
Then, we want to split the source term S(k, η) into a background part and a transfer func-
tion. In that way we explicitly have (5.38) depend on the primordial perturbations, and
the solution of the first order equation of motion (4.23). We write R(p, η) = R̃(p, η)Rpr

and ϕ(p, η) = ϕ̃(p, η)ϕpr. R̃(p, η) and ϕ̃(p, η) are the transfer functions of R and ϕ and
thus the solutions of (4.23). Rpr and ϕpr are the primordial perturbations. In that way
we can split the source term as

S(k, η) = SR(k, η) + Sϕ(k, η) + SRϕ(k, η), (5.41)

where

SR(k, η) =

∫
d3k̃e(k, k̃)fR̃(k, k̃, η)Rpr

k−k̃
Rpr

k̃
,

Sϕ(k, η) =

∫
d3k̃e(k, k̃)fϕ̃(k, k̃, η)ϕpr

k−k̃
ϕpr

k̃
,

SRϕ(k, η) =

∫
d3k̃e(k, k̃)fR̃,ϕ̃(k, k̃, η)Rpr

k−k̃
ϕpr

k̃

(5.42)

and e(k, k̃) ≡ eij(k)k̃ik̃j = k̃2 [1− µ2] , µ ≡ k·k̃
kk̃
.

In order to find the transfer functions fR̃(k, k̃, η), fϕ̃(k, k̃, η) and fR̃,ϕ̃(k, k̃, η) we use
the definition of Θ as given in (4.17) and we Fourier transform to obtain:

Θk = −Rk

aH
− ε

ak2c2
s

R′k−
(
−3 +

ε

c2
s

)
φ′0

2ak2M2
Pl

ϕk+
3eφ0/MPlσ′40
2k2M3

Pla
3H

ϕk+
φ′0

2ak2HM2
Pl

ϕ′k+
aV,ϕ

2k2HM2
Pl

ϕk.

(5.43)
We can now substitute this form for Θ into the source term to obtain

fR̃(k, k̃, η) = 2R̃k̃R̃k−k̃ + 2
HR̃

′
k̃
R̃′

k−k̃
−
(

4a′R̃k̃ + 8a′

H R̃
′
k̃

)(
R̃k−k̃

aH +
εR̃′

k−k̃

a(k−k̃)2c2s

)
− 4a
H R̃

′
k̃
×(

R̃k−k̃

aH +
εR̃′

k−k̃

a(k−k̃)2c2s

)′
+

(
10a′2 +

8σ′40,in
a4M2

Pl
e
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fϕ̃(k, k̃, η) =
(

φ′20 (η)

2H2M4
Pl
− 2

M2
Pl
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+
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V,ϕϕ̃k−k̃
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(5.45)

fR̃,ϕ̃(k, k̃, η) =

[
4a′R̃k̃ − 2

(
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+
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+
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(5.46)
where we do not express anymore the time dependence of the transfer functions.

Now that we have the first order quantities split into the contribution of the first
order dynamics and the primordial fluctuations, we can express Ph(k) as a function of the
primordial power spectrum of the curvature perturbations 〈RkRk̃〉 = 2π2

k3 PR(k)δ(k + k̃),
the primordial power spectrum of the radion 〈ϕkϕk̃〉 = 2π2

k3 Pϕ(k)δ(k + k̃) and a mixed
primordial power spectrum 〈Rkϕk̃〉 = 2π2

k3 PRϕ(k)δ(k+ k̃). The term of 〈S (k, η̄1)S (K, η̄2)〉
in equation (5.38) includes several contributions,

〈S (k, η̃1)S (K, η̃2)〉 = 〈SR (k, η̃1)SR (K, η̃2)〉+ 〈Sϕ (k, η̃1)Sϕ (K, η̃2)〉
+ 〈SRϕ (k, η̃1)SRϕ (K, η̃2)〉+ 2 〈SR (k, η̃1)SRϕ (K, η̃2)〉
+ 2 〈Sϕ (k, η̃1)SRϕ (K, η̃2)〉+ 2 〈SR (k, η̃1)Sϕ (K, η̃2)〉 ,

(5.47)
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and each contribution can be written as

〈Sα (k, η̃1)Sβ (K, η̃2)〉 =

∫
d3k̃e(k, k̃)fα

(
k, k̃, η̃1

)∫
d3K̃e(K, K̃)fβ

(
K, K̃, η̃2

) 〈
αk−k̃αk̃βK−K̃βK̃

〉
= δ(k + K)

∫
d3k̃e(k, k̃)2fα

(
k, k̃, η̃1

) [
fβ

(
k, k̃, η̃2

)
+ fβ

(
k, k− k̃, η̃2

)]
×

Pα(|k− k̃|)
|k− k̃|3

Pβ(k̃)

k̃3
,

(5.48)
where α and β can be R, ϕ or the mixed term. In conclusion, we can express the power
spectrum of scalar-induced gravitational waves as:

Ph(k, η) =
∑
α,β

∫ ∞
0

dk̃

∫ 1

−1

dµPα(|k− k̃|)Pβ(k̃)Fαβ(k, k̃, µ; η), (5.49)

where Fαβ is defined in terms of the Green’s function gk and the transfer functions R̃(p, η)
and ϕ̃(p, η). Ph is defined fully in terms of the Green’s function, the dynamics of first order
scalars perturbations and the primordial power spectrum of first order scalar fluctuations.

We now want to better understand the non-GR contributions to the source term in
terms of observable quantities. To do that, we compare our results to the general relativity
case. We first follow [53] and make the approximation that the generation of gravitational
waves induced by S(k, η) is instantaneous when the relevant mode enters the horizon.
In that way, we expect that especially those modes that enters the horizon during the
radiation-dominated epoch, and thus form PBHs, produce scalar-induced gravitational
waves that are influenced by non-GR contributions.
We define the transfer function for scalar-induced gravitational waves, t(k, η), as

hk(η) ≡ t(k, η)h
(i)
k , (5.50)

where h(i)
k is the value of the amplitude just after the instantaneous generation of gravi-

tational waves, after horizon entry. Then, given h(i)
k , we can estimate the power spectrum

of gravitational waves at horizon crossing

P
(i)
h (k, ηi(k)) ≡ k3

2π2

〈(
h

(i)
k

)2
〉
, (5.51)

where ηi ∼ k−1 is the conformal time at which a comoving scale k enters the horizon.
This means that in order to estimate the power spectrum, we need to find the form of the
transfer function t(k, η) and the amplitude just after horizon entry, h(i)

k .
We assume that our model is particularly effective in the super-horizon limit when

high energy corrections of general relativity become important for the evolution of scalar
perturbations, as shown in Section 4.2. Furthermore, we are especially interested in those
scales that enter the horizon during the radiation-dominated epoch because those scales
form PBHs. Under these assumptions we have that:

• The transfer function t(k, η) is the standard one, as it refers to the dynamics of
scalar perturbations in the sub-horizon limit.
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• The amplitude just after horizon entry h(i)
k is the standard one if the considered scale

re-enters the horizon during the matter-dominated epoch. It is different if horizon
re-entry happens during the radiation-dominated epoch.

Thus, the transfer function

t(k, η) =
h(k, η)

h
(i)
k

(5.52)

can be estimated following [53]. To estimate the amplitude h(k, η) in equation (5.52) we
need to estimate the time evolution of the standard-GR source term,

SGR(k, η) =4

∫
d3k̃

(2π)3/2
elm(k)k̃lk̃m

[{
7 + 3w

3(1 + w)
− 2c2

s

w

}
Φk̃(η)Φk−k̃(η)

+

(
1− 2c2

s k̃
2

3wH2

)
Ψk̃(η)Ψk−k̃(η) +

2c2
s

w

(
1 +

k̃2

3H2

)
Φk̃(η)Ψk−k̃(η)

+

{
8

3(1 + w)
+

2c2
s

w

}
1

H
Φk̃(η)Ψ′

k−k̃
(η)− 2c2

s

wH
Ψk̃(η)Ψ′

k−k̃
(η)

+
4

3(1 + w)H2
Ψ′

k̃
(η)Ψ′

k−k̃
(η)

]
,

(5.53)

where Φ = Ψ in the GR case. The time dependence of Φ can be evaluated by solving the
first order Einstein equations (2.41), which gives

Φ(kη) =

{
1

1+k2η2
η < ηeq

1
1+k2η2eq

η > ηeq
(5.54)

Thus, inserting this expression into the definition of the source term and then back into
the solution (5.35), we obtain the transfer function (5.52),

t(k, η) =

{
1 k < keq(

k
keq

)−γ
keq < k < kc(η)

(5.55)

where kc(η) is the horizon scale at the time η. Scales greater than the horizon will evolve
as a−1 and, considering that we want to evaluate the power spectrum at low redshift,
these scales will be too large for the simplifications considered above.

In order to estimate h(i)
k for those scales that re-enter the horizon during the matter-

dominated era we can again take the results of [53]. Having the analytical behaviour
of SGR(k, η), it is possible to estimate 〈h(k, η)h(K, η)〉 using (5.38). Then the power
spectrum becomes

P
(i)
h (k, ηi(k)) ∼ ∆4

R
k

∫ ∞
0

dk̃

∫ 1

−1

dµ
(
1− µ2

)2

[
k̃3

(k2 + k̃2 − 2kk̃µ)3/2

1

[1 + (k̃/keq)2]2

1

[1 + (k2 + k̃2 − 2kk̃µ)/k2
eq]2

]
.

(5.56)

To estimate h(i)
k for the scales that re-enter the horizon during radiation-dominated era we

consider our source term (5.41). In this case, as previously mentioned, we do not have the
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analogous of equation (5.54), thus we are not able to find the explicit (k, η) dependence
of h(i)

k as for the matter-dominated case. However, we estimate h(i)
k by simplifying the

general solution (5.38). We simplify the equation of motion (5.27) dropping the time
derivatives,22

h
(i)
k ∼

1

k2
S(i). (5.57)

We neglect in the transfer functions (5.44), (5.45) and (5.46) those terms that are time
derivatives and those terms that vary as 1

k2 . In this way the transfer functions become

fR̃(k, k̃, η) = −2R̃k̃R̃k−k̃ +

(
10a′2 +

8σ′40,in
a4M2

Pl

e
−φ0(η)
3MPl

)
R̃k̃R̃k−k̃

(aH)2
,

fϕ̃(k, k̃, η) =

(
φ′20 (η)

2H2M4
Pl

− 2

M2
Pl

)
ϕ̃k̃ϕ̃k−k̃,

fR̃,ϕ̃(k, k̃, η) = −4φ′20 (η)

HM2
Pl

R̃k̃ϕ̃k−k̃.

(5.58)

We notice that the assumptions we made to simplify the transfer functions, i.e., neglecting
time derivatives and terms that go as 1

k2 , are not both in agreement with the results of
Section 4.2. Indeed, if assuming that those terms varying as 1

k2 are negligible is a good
approximation for scales that enter the horizon during the radiation-dominated epoch, the
fact that we consider the time derivative of first order perturbation quantities equal to
zero is not justified in our model. In Section 4.2 we explicitly showed that in the model
described in Section 3 the scalar perturbations are not frozen on super-horizon scales.
Thus, the latter assumption is well justified only in the general relativity case where the
time derivative of scalar perturbations in the super-horizon limit is indeed zero. However,
we maintain this assumption as it does not cancel all the non-GR terms (we still have
radion dependent terms in (5.58)).

In conclusion, for scales that re-enter the horizon in a radiation-dominated universe
we have

h
(i)
k ∼

1

k2

∫
d3k̃e(k, k̃)

[
fR̃(k, k̃, η)Rk−k̃Rk̃ + fϕ̃(k, k̃, η)ϕk−k̃ϕk̃ + fR̃,ϕ̃(k, k̃, η)Rk−k̃ϕk̃

]
∼ 1

k2

∫
d3k̃e(k, k̃)

[(
−2R̃k̃R̃k−k̃ +

(
10a′2 +

8σ′40,in
a4M2

Pl

e
−φ0(η)
3MPl

)
R̃k̃R̃k−k̃

(aH)2

)
Rk−k̃Rk̃

+

(
φ′20 (η)

2H2M4
Pl

− 2

M2
Pl

)
ϕk−k̃ϕk̃ −

(
4φ′20 (η)

HM2
Pl

R̃k̃ϕ̃k−k̃

)
Rk−k̃ϕk̃

]
.

(5.59)
From this h(i)

k we then obtain a power spectrum of the form (5.49), which is again the
easiest form we can reach without knowing the analytical behaviour of the first order
scalar perturbations R̃ and ϕ̃.

In particular, this result should be compared to the standard power spectrum at

22After horizon entry kη > 1.
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horizon crossing during the radiation-dominated epoch (see [53] for more details),

P
(i)
h (k, ηi(k)) ∼ ∆4

R
k

∫ ∞
0

dk̃

∫ 1

−1

dµ
(
1− µ2

)2 k̃3(
k2 + k̃2 − 2kk̃µ

)3/2

1[
1 + (k̂/k)2

]2

× 1[
1 +

(
k2 + k̃2 − 2kk̃µ

)
/k2
]2 .

(5.60)

Finally, as mentioned in Section 5.1.2, we can process the two power spectra at the
horizon crossing, (5.56) and (5.59), using the transfer function t(k, η) in (5.55) in order
to compute the power spectrum of scalar-induced gravitational waves at any time. With
these results we can estimate the relative energy density of scalar-induced gravitational
waves,

Ω(2)
gw(k, η) =

1

6π2H2(η)
k2t2(k, η)P

(i)
h (k)

=
a(η)k2

aeqk2
eq

t2(k, η)P
(i)
h (k),

(5.61)

as a function of the first and zeroth order dynamics, the Green’s function and the primor-
dial power spectra of the curvature perturbations and the radion.

Even if up to now we have not been able to achieve the analytical behaviour of
Ω

(2)
gw(k, η), we expect that the enhancement of scalar perturbations shown in 4.2 will

enhance also the relative energy density of scalar-induced gravitational waves for a spe-
cific frequency range. This effect, modeled in this work for the first time, is particularly
relevant for the upcoming gravitational wave surveys such as LISA. As shown in Figure
5.1, in the standard-GR scenario we do not expect to detect a signal from scalar-induced
gravitational waves. On the contrary, in our model we could in principle properly set
the initial conditions in order to make Ω

(2)
gw(k, η) possible to be observed in any range of

frequencies. In other words, in case Ω
(2)
gw(k, η) will be detected by Laser Interferometer

Space Antenna (LISA) [52], this model will be a possible way to explain the observed
data.
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Figure 5.1: Observational prospects upcoming gravitational wave surveys. In this figure
we can see the theoretical predictions for the present value of relative energy density of
primordial inflationary first order gravitational waves (see 2.3) and scalar-induced grav-
itational waves in the standard-inflationary scenario, as well as current (solid bars) and
future (dashed bars) observational bounds. This figure is taken from [53].
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Chapter 6

Conclusions

In this thesis work we reviewed the new mechanism for generating PBHs proposed
in [1] and studied scalar-induced gravitational waves produced as a consequence of PBH
formation in this new scenario.

The main new feature of the higher-dimensional gravity model described in Section 3
is that it allows a different behaviour of scalar perturbations on super-horizon scales to
be described. As discussed in Section 4.2, an enhancement in the initial conditions of
the radion perturbations causes the curvature perturbations R to grow on super-horizon
scales for a specific range of k modes. This is different from the super-horizon behaviourin
the standard general relativity scenario where, as shown in Section 2.2.2, both scalar and
density perturbations are frozen on scales larger than the horizon. This difference in the
dynamics of super-horizon modes is the key element of this new model of PBH formation.
Indeed, even starting from almost scale-invariant primordial curvature perturbations, we
are able to produce enhancements in the density fluctuations required for generating
PBHs. This is a new approach in theoretical modeling of PBH formation: we do not
generate enhancements in the primordial power spectrum of curvature fluctuations in a
specific range of scales during the inflationary phase, we instead modify the evolution of
these curvature perturbations during the radiation-dominated epoch.

After studying scalar perturbations we presented the main original result of this work:
derivation of tensor perturbations, their properties and evolution in this newly proposed
mechanism for PBH formation. In Section 5 we studied the equation of motion and power
spectrum of scalar induced gravitational waves. We explicitly derived the second order
power spectrum as a function of first order perturbations quantities and initial conditions,
and studied the main differences from the general relativity case. Indeed, both in general
relativity and in our scenario we predict that at second order in perturbation theory we
have mode-mixing and therefore production of scalar-induced gravitational waves. How-
ever, in the case of general relativity we expect an almost scale-invariant relative energy
density at frequencies probed by upcoming gravitational wave surveys, whereas, due to
the scalar enhancement described in Section 4.2, we expect additional features in this
relative energy density that can potentially be detected by these surveys.
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Chapter 7

Future directions

A natural continuation of this work consists at least of three directions: modeling and
studying initial conditions, analytically solving first order Einstein equations andnumeri-
cally studying the relative energy density of scalar-induced gravitational waves.

Indeed, as have shown in Section 4.2, the mass and the abundance of the produced
PBHs are strongly dependent on the initial conditions of the radion perturbations. We
need to better understand, from both the theoretical and observational points of view, the
exact shape of radion’s initial conditions. We can proceed with the theoretical study, as in
Section 4.2, of the radion’s dynamics in the inflationary phase, or we can observationally
constrain the initial conditions using the constraints on the PBH abundance presented
in Section 2.1.3. Furthermore, we naturally expect the relative energy density of scalar-
induced gravitational waves to also depend on the radion’s initial conditions, thus, as
soon as we have more constraints from gravitational wave detections, we can use this
information to observationally constrain the initial conditions of radion perturbations.

We also need to better understand the analytical behaviour of first order curvature
and radion perturbations. This will help us to analytically estimate the (k, η) dependence
of the scalar induced power spectrum using the results of Section 5. However, in order to
better understand the implications of the super-horizon enhancement of curvature pertur-
bations for second order gravitational waves, we can proceed with the numerical analysis
of our results. Using the results of Sections 4.2 and 5.2.2 we can numerically estimate
the the relative energy density of scalar-induced gravitational waves.
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In[ ]:=

In[ ]:=

In[ ]:=

In[ ]:=

In[ ]:=

In[ ]:=
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In[ ]:=

In[ ]:=

In[ ]:=

In[ ]:=

Appendix - Mathematica codes
<< xAct`xPand`

DefManifold[M, 4, {α, β, χ, λ, μ, ν}]

** DefManifold: Defining manifold M.

** DefVBundle: Defining vbundle TangentM.

DefMetric-1, g[-α, -β], CD, ";", "", PrintAs → "g"

$PrePrint = ScreenDollarIndices;

$CovDFormat = "Prefix";

org[expr_] :=

NoScalar@Collect[ContractMetric[expr], $PerturbationParameter, 

ToCanonical] SetSlicingg, n, h, cd, "|", "∇", "FLFlat"

DefMetricFields[g, dg, h]

$FirstOrderTensorPerturbations = False;

$FirstOrderVectorPerturbations = False;

VisualizeTensor[dg[LI[1], α, β] /. SplitMetric[g, dg, h, "NewtonGauge"], h]

Out[ ]=

n h

n -2 
(1)

ϕ 0

h 0 -2 h
- αβ 

(1)
ψ

In[ ]:= VisualizeTensor[dg[LI[2], α, β] /. SplitMetric[g, dg, h, "NewtonGauge"], h]

Out[ ]=

n h

n -2 
(2)

ϕ -
(2)

Bβ

h -
(2)

Bα 2 
(2)

Eαβ  - 2 h
- αβ 

(2)
ψ

In[ ]:= DefConstantSymbol[Mplank, PrintAs → "Mpl"]

** DefConstantSymbol: Defining constant symbol Mplank.

In[ ]:= DefConstantSymbol[b, PrintAs → "b*"]

DefConstantSymbol[f, PrintAs → "f"]

** DefConstantSymbol: Defining constant symbol b.

** DefConstantSymbol: Defining constant symbol f.

In[ ]:= DefProjectedTensor[G[], h] (* this is the radion *)

** DefTensor: Defining tensor

GLIxAct`xPand`Private`p$5660, LIxAct`xPand`Private`q$5660.

In[ ]:= DefProjectedTensor[L[], h](* this is the radiation *)

** DefTensor: Defining tensor

LLIxAct`xPand`Private`p$5666, LIxAct`xPand`Private`q$5666.



In[ ]:= Lgr =
Mplank^2 Sqrt[-Detg[]]

2
RicciScalarCD[] +

Mplank^2 Sqrt[-Detg[]]

b^2
Exp-2 G[]  Mplank -

Sqrt[-Detg[]] 2 π f^2

b^2
Exp-3 G[]  Mplank +

1

2
-g


gαβ α G β G +

Sqrt[-Detg[]] g[α, β] × CD[-α][L[]] × CD[-β][L[]] ×

g[μ, ν] × CD[-μ][L[]] × CD[-ν][L[]] ExpG[]  Mplank

Out[ ]=

ⅇ
-
2 G

Mpl Mpl
2 -g



b*2
-
2 ⅇ

-
3 G

Mpl f2 π -g


b*2
+
1

2
Mpl

2 -g

R[] +

1

2
-g


gαβ α G β G + ⅇ
G

Mpl -g


gαβ gμν α L β L μ L ν L

In[ ]:= ExpandPerturbation@Perturbation[Lgr, 1] // org // Simplify;
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In[ ]:= ExpandPerturbation@Perturbation[Conformal[g, gah2][EqMotion], 2] // org // Simplify;

** DefTensor: Defining tensor ChristoffelCDCDah2[α, -β, -λ].
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