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Introduction

The two primary means by which alternative medical or surgical treatments

are assessed is through the use of randomized controlled trials (RCTs) or

observational studies (OS) (Hannan 2008). In RCTs, participants are ran-

domly assigned to a treatment or control group (or to multiple treatment

groups) so as to reduce bias by making the groups as equal as possible with

respect to all patient characteristics that may have an impact on outcomes.

Thus, in theory, the only difference between the groups is the treatment

assignment and any differences that are identified. In contrast, OS do not

randomize treatment but ‘observe’ differences in outcomes that occur after

treatment decisions have been made, without regard to ensuring that patients

in different treatment arms have similar characteristic related to outcomes.

Treatments may be diagnostic, preventive or therapeutic and may include

drugs, biologics, medical advices or methods of screenings. Treatments may

also include procedures whose aim is to improve quality of life or to bet-

ter understand how the intervention works in partecipants (Peace and Chen

2011).

Clinical trials and observational studies usually generate both longitudi-

nal measurement data, with repeated measurements of one or more response

variables at a number of time points for each participant, and event his-

tory data, in which times to recurrence or terminating events are recorded

(Henderson et al. 2000). A widely used example is in AIDS research where

a biomarker called CD4 lymphocyte count is measured intermittently and

both its progression and relationship with time to seroconversion or death
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is of interest (e.g. DeGruttola et alt., 1993; Tsiatis et al., 1995; Wulfsohn

and Tsiatis, 1997). Another example comes from studies following men who

have been treated with definitive local therapy (i.e. radical prostatectomy

or radiation therapy) for localized prostate cancer. Despite the shift to ear-

lier treatment due to a recent widespread use of early detection programs, a

substantial percentage of these patients shows evidence of biochemical recur-

rence within 10 years after treatment (Taylor et al., 2005). Prostate-specific

antigen (PSA) is the covariate commonly used to monitor patients after they

have been treated. In fact, several studies have shown that a rise of post-

treatment PSA is highly predictive of clinical recurrence (Ali et al. 2006).

Thus, at the end of studies similar to those described above, we often

have the following situations (Wu 2010):

• “the main focus is on modeling the survival data, with modeling lon-

gitudinal data being secondary”. For example, our attention is direct

to the event outcome and we wish to account for the effect of the lon-

gitudinal outcome as a time-dependent covariate.

• “the main focus is on modeling longitudinal data, with modeling sur-

vival being secondary”. We could be in this situation when we analyze

longitudinal data where dropouts are informative so that the survival

data could be only used to account for the informative dropouts.

• “the main focus is on modeling both the longitudinal data and the sur-

vival data, with goal of understanding the association between the two

processes”. This situation arises, for instance, when we wish to charac-

terize the relationship between features of a time-dependent covariate’s

trajectory and the survival endpoint in order to assess the prognostic

value of the longitudinal covariate and, in presence of treatment, to

verify the possibility to use it as a ‘surrogate marker’ (Fitzmaurice et

al. 2008).

In all three situations, traditional approaches used to analyze survival or lon-

gitudinal data are not applicable without incurring in biased results. Taking

II



in consideration the first situation, several problems are present. First, stan-

dard time-to-event models (e.g. proportional hazard models (Cox 1972))

require that time-dependent covariates are external: although the value of

this covariate at time point u “influence the rate of failures over time, its

future path up to time t > u is not affected by the occurrence of a failure

at time u” (Kalbfleisch and Prentice 2002, Section 6.3). However, most of

the time-dependent variables observed in longitudinal studies are internal so

that they do not satisfy this condition. Internal variables, in fact, are usu-

ally the output of a stochastic process generated by the subject under study.

Consequently, they are only observed as long as the subject is alive and un-

censored and therefore they implicitly carry information about the failure

time. Second, to apply Cox’s methods for the estimation of the model pa-

rameters, it is necessary to have complete knowledge of the covariate history

for all individuals while on study (Tsiatis 1995). In most studies, however,

the time-dependent covariate is collected only intermittently on each indi-

vidual during medical examinations whose frequency can change from once

a day to once a year according to the study protocol. Third, to optimally

estimate the parameter models, we would need to know the covariate value

without measurement error (Wulfsohn and Tsiatis 1997). Prentice (1982)

established that the presence of the measurement error (i.e. a random error)

in a measured covariate causes the estimated parameters to be biased to-

wards the null. Also Tsiatis (1995) stressed that the maximum explanatory

power of the time-dependent covariate on the hazard can only be achieved

after adjustment of measurement error. Using the observed value, the pos-

sible relationship between the covariate and the time-to-event or between

the covariate and the treatment effect could not be detected. In the second

situation there is the need to deal with informative dropout. Dropout hap-

pens when, during the follow-up, a subject ‘drops out’ or is withdraw from

the study before the study is completed. The dropout mechanism is said to

be informative when the probability of dropout is related to specific values

that should have been obtained, have the subject not left the study. If an
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analysis is conducted without taking informative dropout into account, its

results could be potentially biased. Obviously, the third situation presents

all those problems together.

In order to avoid all these problems and obtain valid inferences, joint

models for longitudinal and survival data have been proposed. Wulfsohn

and Tsiatis (1997) develop a methodology whereby a joint maximization of

the likelihood from both the covariate process and the survival data occurs.

In particular, their method uses not only the observed covariate data but

also survival information to estimate the true covariate value at any time.

Therefore the authors expects more precise and accurate estimates of the

strength of the relationship between the covariate risk and the risk of failure

than those obtained from previous methods such as the ‘Last value of Last

Observation Carried Forward’ or the ‘Two-Step’ approach.

In the last decade, joint models have been mainly applied in medical

studies to correctly estimate the association between a time-dependent co-

variate, usually a biomarker, and baseline covariates with the event outcome,

verifying candidate risk factors and testing treatments’ effect in prolonging

survival. A biomarker indicates a change in expression or state of a biological

measurement (e.g. concentration of a protein or an antigen in serum or other

tissues, aneurysm diameter, blood pressure, . . . ) at a given time point. A

biomarker, if validated, could be used as a surrogate for subsequent survival.

Buyse et al. (2000) distinguish two different types of surrogacy: trial-level

and individual-level surrogacy. The trial-level surrogacy coincides with the

surrogacy also described by Prentice (1989). He defines a surrogate endpoint

to be “a response variable for which a test of the null hypothesis of no re-

lationship to the treatment groups under comparison is also a valid test of

the corresponding null hypothesis based on the true endpoint”. This means

that a biomarker that is influenced by the tested treatment if and only if the

treatment has a significant effect on survival is a good surrogate endpoint.

On the other hand, at the individual level, a biomarker would be a useful

surrogate endpoint if the trajectory of irregularly observed values available
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at any time for a single subject provides helpful prognostic information on

subsequent survival of that subject (Henderson et al. 2000).

Indeed, one aspect of joint models that has recently gained some increas-

ing interest is to obtain subject-specific predictions for either the longitu-

dinal or survival outcomes (Sweeting and Thompson 2011, Yu and Taylor

2008, Proust-lima and Taylor 2009). The ability of incorporating the whole

biomarker’s trajectory over time gives to joint models the possibility to pro-

duce dynamic prognostic tools that could more accurately guide clinical de-

cision making. For example, the complete post-treatment PSA pattern of

a patient can be used to predict the probability of biochemical recurrence

within two years from the last visit time. If the PSA pattern is suggestive of

an increase risk of clinical recurrence, the physician may decide to put the

patient on hormone therapy to slow progression of the disease or to perform

a prostatectomy.

The aim of this thesis is to compare the predicted individual survival

probabilities estimated by models where different types of association be-

tween the longitudinal biomarker and the survival outcome are considered.

In fact, although it is often assumed that the risk for an event at a partic-

ular time point t depends on the true level of the longitudinal marker at

the same time point, it is not realistic to expect that this parameterization

will always be the most appropriate in expressing the correct relationship

between the two processes. This is in line with the more challenging nature

of time-dependent covariates with respect to baseline covariates. Since the

true functional form of a time-dependent covariate is often not self-evident

and that the choice of how to model it can considerably influence the derived

results, the researcher should not always rely on the standard formulation but

rather prudently face the problem and investigate different parameterizations

and possibly their combinations. In addition to what just said, Henderson

(2002) also found that different models, even if they fit average characteristics

equally well, may give quite different predictions for individual patients.

In Chapter 1 we will underline the importance of prognosis in everyday

V



medical practice and the necessity of having accurate survival predictions

in order to properly program patients’ therapy. Moreover we will show how

some selected biomarkers could be used to increase the precision of prognosis.

In Chapter 2 we will describe the traditional approach used to analysis

survival data where time-dependent covariates are involved and we will point

out the problems arising from such approach. Thus, in Chapter 3, we will

present the joint model approach which solves, or at least greatly reduce,

those problems.

In Chapter 4 we will present how survival predictions can be computed

within the joint modeling framework and we will indicate the different asso-

ciation structures which could be used as an alternative to the usual one.

In Chapter 5 we will show how the use of different association structures

can substantially influence survival predictions. In our analysis we used a

dataset based on a clinical trial involving subjects affected by primary biliary

cirrhosis (PBC).
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Chapter 1

Prognostic models in medicine

1.1 The meaning of prognosis

The word prognosis comes from the Greek πρóγνωσις. It is composed by the

prefix πρo- (“before”) + γνω̃σις (gnosis, “inquiry, investigation, knowing”).

Thus literary it means “to know beforehand” or, as a noun, foreknowledge.

Prognosis is the prediction of what is judged likely to happen in the future,

especially in connection with a particular situation and relative to the infor-

mation available at the time of prediction.

A field where prognostication is a daily practice is medicine. According to

Abu-Hanna and Lucas (2001), medical prognosis is defined as “the prediction

of the future course and outcome of disease processes, which may either con-

cern their natural course or their outcome after treatment”. Thus a prognosis

is made every time a patient is diagnosed with a disease and its importance

increases whether the disease can lead to a significant decrement in the pa-

tient’s quality of life or to death. Indeed, physicians specialized in cardiology,

neurology, intensive care medicine and oncology, from newly diagnosed to ter-

minally ill patients, are especially required to be able to prognosticate and

this does not only imply making survival predictions. Physicians are required

to be able to indicate disease evolution, possible disabilities that the patient

would be facing, response and side effects associated with different treatment
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options and, eventually, costs of health care (Glare et al. 2008). Prognosis

is interlaced with other tasks of clinical management of the patient such as

diagnosis, therapy selection and planning. Information obtained at diagno-

sis and knowledge about feasible medical actions, with therapy in the first

place, have a strong influence on prognosis. Therefore, prognosis could be

considered a comprehensive decision tool that, according to all the informa-

tion available at the time of diagnosis, allows clinicians to choose the most

appropriate way to tackle the specific disease.

From now on, the aspect of prognosis that will be considered is the pre-

diction of survival time, in the sense of time elapsed before disease recurrence

or death.

Since prognosis has such a deep influence on patients’ future, it is uni-

versally recognized that prognosis has to be as much accurate as possible.

For cancer patients, for example, Mackillop and Quirt (1997) individuated

three reasons why accurate predictions are required. These reasons can eas-

ily be generalized to other types of disease. First, physician’s prognosis has

an influence in the choice of treatment. The probability of cure associated

with each potential treatment and the patient’s expected survival have to be

carefully assessed since many cancer treatments (e.g. biological therapy, ra-

diation therapy, chemiotherapy, . . . ) have important side-effects which may

initially decrease the quality of life and may only be considered acceptable if

the patient is likely to live long enough to experience any subsequent treat-

ment’s benefit. Patients with an incurable cancer or at the latest stages

should be advised on palliative care programs. Second, accurate prognostic

judgment contributes to the efficient use of health care resources since treat-

ing patients with expensive therapies that will not give any benefit not only

submits the patient to useless toxicity, but also waste important resources

that could be spent elsewhere. Third, good predictions may help patients

and their families to make appropriate plans for the remaining time in order

to take advantage of every day.

Also national and local Health Authorities are particularly interested in
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the fact that survival predictions are as much accurate as possible since

patients may qualify for specific financial benefits if their life expectancy is

below a specified threshold. For instance, Henderson et al. (2001) refer that

“in U.K., a patient can claim additional financial support without the usual

waiting time if a doctor certifies that the patient has ‘progressive disease’

and it is not expected to live longer than six months”. In the U.S.A., the

Medicare insurance programme1 introduced hospice care for its beneficiaries.

In order to be eligible for Medicare hospice benefits, the patient’s doctor and

the hospice medical director have to certify that the patient is terminally

ill and probably have less than six months to live (Medicare). These two

examples are enough to further underline the importance of giving accurate

prognosis, both for patients’ interest and health programs’ efficiency.

1.2 Accuracy in survival predictions

In most of the cases, patients diagnosed with life-threatening diseases want

a high level prognostic information. A study involving 126 patients with in-

curable metastatic cancer found that 95% of them wanted information about

side effects, symptoms, and treatment options and the 98% indicated that

the doctor should be realistic, provide an opportunity to ask questions, and

acknowledge the patient as an individual when discussing prognosis (Hagerty

et al. 2005). Although patients clearly want prognostic information, doctors

feel this task stressful and difficult. Christakis and Iwashyna (1998) in a

study involving 697 American internists investigating attitude and practice

about prognostication found that doctors “believed that patients expect too

much certainty and that both patients and (to a lesser extent) colleagues will

judge them adversely for prognostic errors”. Those doctors believed also that

1Medicare is a social insurance program administered by the United States govern-

ment (CMS), providing health insurance coverage to people who are aged 65 and over; to

those who are under 65 and are permanently physically disabled or who have a congen-

ital physical disability; or to those who meet other special criteria such as terminally ill

patients.
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“they should accentuate the positive in making predictions and avoid being

too specific” and that it is better not to volunteer prognostic assessments.

One of the possible reasons that make clinicians so uncomfortable when they

are asked for a prognosis is the intrinsic uncertainty that characterizes the

course of the disease. The probability of error will never be completely re-

moved when predicting future outcomes, especially when considering the

complex dynamic of the human body and the multiple interactions between

the human body and illness (Glarea et al. 2008). Nevertheless, the im-

possibility to formulate 100% accurate prognosis does not have to stop the

research of tools that could improve clinicians’ prognostications.

The two approaches used in order to formulate the prognosis are: clinical

prediction of survival (CPS) and use of statistical tools such as prognostic

models. CPS is a procedure in which the judge puts clinical data together

using informal, subjective methods. Thus, CPS is essentially based upon

physicians’ experience. Even though, as it has been said before, prognosis,

and hence CPS, does have a decisive impact on many aspects, the studies

assessing accuracy in physicians’ survival predictions are few and most of

them are based on data from terminally ill patients. It is not easy to com-

pare the results from these studies since there is not a worldwide definition of

prediction accuracy. Nevertheless, in most of the cases, the conclusions are

the same. Probably, the very first study about this subject was published by

Parkes in 1972. The research was conducted in a hospice in Sydenham (close

to London) where the author asked general practitioners or hospital medical

staff to state the expectation of life in weeks for all those patients with a

diagnosis of cancer who were admitted to the hospice during 1970-1. At the

end of the study, there were 293 predictions of survival made on 168 cancer

patients. In order to analyse the data, Parkes used his own definition of

accuracy: prediction is in ‘serious error’ if it differs from the actual survival

(AS) by a multiplicative factor of two, that is, if AS>2CPS or AS<0.5CPS.

Using this criterion, overall the rate of error was 53% with a 83% of them in

an optimistic direction. More recently, Christakis and Lamont (2000) con-
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ducted a large, prospective cohort study of terminally ill patients to evaluate

the extent and determinants of prognostic error. In the end, the study had

information from 343 physicians caring for 468 patients and both CPS and

AS were made in days. In order to verify prognostic error, the authors “di-

vided the observed by the predicted survival and deemed prognoses accurate

if this quotient was between 0.67 and 1.33”. Hence, CPSs’ values with quo-

tients between 0.67 and 1.33 times the AS were accurate, values less than

0.67 were optimistic prognostic errors, and values greater than 1.33 were pes-

simistic. The authors found that 92 (19.7%) of 468 predictions were accurate,

295 (63.0%) were optimistic, and 81 (17.3%) were pessimistic. Whereas us-

ing Parker’s definition of prognostic error, 159 (34.0%) of 468 predictions

were accurate, 256 (54.7%) were optimistic, and 53 (11.3%) were pessimistic.

Moreover, the authors reported that “physicians in the upper quartile of

practice experience were the most accurate” and that “as the duration of the

doctor-patient relationship increased and time since last contact decreased,

prognostic accuracy decreased”.

Given the importance of accurate prediction and the evidence that CPS

is a not so precise tool in this sense, an interesting question arises as to

whether the use of objective methods based on statistical models can replace

or inform subjective clinical judgment. Survival analysis is a widespread

tool used to determine covariate effects, to compare different groups (e.g.

treatment groups), and to form prognostic indices. However, as Henderson

et al. (2000) states, these models are not often used to make individual

point or interval lifetime predictions. They claim that a possible answer “is

that statistical methods have not convincingly been demonstrated to lead

to accurate and thus helpful predictions”. Indeed their study showed that

the point predictions from four different survival models were generally quite

similar. Moreover, for all models and all individuals the probability of being

in ‘serious error’ using Parker’s criterion was around 50%.

The studies presented so far were all based on point predictions. There-

fore, it may seem appropriate to present some type of reliability measure
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as well. One option is represented by predictive intervals (Henderson and

Keideng, 2005). Predictive intervals can be obtained from survival curves,

and they give to each patient a range of outcomes within which AS will lie

with a specified probability. Nevertheless, the authors correctly recall that,

although interval estimates accurately quantify the uncertainty in prognosis,

intervals are often as wide as to be of little practical use.

In conclusion, multivariate regression models, such as survival models,

have been proven to be good tools in individuating risk factors and in com-

paring groups of patients. In particular, they are often used in distinguishing

patients with a high risk from patients with a moderate or low risk. Moreover,

even though physician’s prognostic estimates are not accurate enough to be

reliable at the patient level, they still provide valuable prognostic information

that can be used to improve statistical models. Muers et al. (1996), in a study

of advanced non-small-lung cancer patients, found that the Cox’s propor-

tional hazard model incorporating, among prognostic factors, the physician’s

point prediction of survival, was the best model discriminating between poor

and moderate/good prognosis groups. This improvement made the authors

suggest that physicians not necessarily use the same information included

in the model to predict survival and thus they might be using additional

elements on which to base their prognostic judgement. Notwithstanding the

great usefulness these models have at the population level (e.g. knowing the

modifiable risk factors linked to cardiovascular pathologies such as hyperten-

sion, diabetes, obesity and smoke, governments can promote health programs

with the aim of reducing the exposition of those risk factors and thus the

incidence of such diseases), their prediction ability at the patient level is,

in most of the cases, useless. The main point that Henderson and Keideng

(2005) wanted to underline with their work was that “in all realistic scenarios

we can imagine, the intrinsic statistical variations in life times are so large

that predictions based on statistical models and indices are of little use for

individual patients. This applies even when the prognostic model is known

to be true and there is no statistical uncertainty in parameter estimation”.
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The fact that both physicians and prognostic models are not able to give

accurate individual point prognosis, certainly will not stop patients from

asking “How long do I have, doctor?”. If clinicians do not want to base

their answer only on their subjective judgment, the only alternative is to

rely on epidemiological results. Nonetheless, as indicated by Scuchter (1996)

and Hollnagel (1999), the physician must carefully distinguish prediction of

the outcome for a population of patients from that for a singular patient.

In particular, Hollnagel highlights two important points which any clinician

should be aware of. “The first is that epidemiological research can only

incorporate factors which can be measured quantitatively”. For example,

patients’ important features such as life experience, lifestyle, physical capa-

bilities, hopes and fears about the future and, even more, attitude matter

so much (Gould, 1986). But, as these factors are not usually measured and

not easily amenable to epidemiological analyses, they are largely ignored and

thus results do not account for them. “Second, epidemiological knowledge

about risk factors is group-based as opposed to individualised knowledge”.

This is a cornerstone issue that has to be tackled by every physician when

he/she is in the consulting room with a patient. The physician could be

able to assign the patient to the correct risk group and thus inform him/her

about the median survival time, treatment efficacy and so on. Nevertheless,

since the variability between patients belonging to the same risk group is

often not null, the possibility that this patient would behave in a different

way should not be ignored. Mackillop (2006), in his paper The importance

of prognosis in cancer medicine states that, in the future, “the challenge will

be to increase the ‘particularizability’ of medical knowledge in such a way

that the individual characteristics of the patient and the tumor are appro-

priately factored into treatment decisions. This will require characterizing

patients, not only in terms of the diagnostic group to which they belong,

but also in terms of all those individual characteristics that may influence

the outcome of treatment”. This sentence is referred to prognosis in oncol-

ogy but it is undoubtedly valid in other medical branches where accurate
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individualised prognosis are fundamental in supporting both physicians’ and

patients’ decision making.

Returning to the point prediction issue, what has emerged so far is opti-

mally summarized by Schumacher et al. (2003). Examining the difficulties

with the use of point predictions, the authors pointed out two key features.

First, the duration of survival or time to the event of interest itself cannot

be predicted adequately. Second, there seems to be no widely agreed statis-

tical methodology to assess the accuracy of predictions derived from expert

opinion or from a survival model. Consequentely, the authors suggest to

abandon predictions on the time axis and to consider only predictions on the

probability axis. Although Henderson et al. (2000) argues that the time axis

is the most natural measure, statements like ‘the chance of surviving 5 years

is 70%’ seem to be quite understandable and reveal the uncertainty about

the exact moment of death. Second, the commonly used survival models

allow to obtain individual survival probability curves which can be used as

predictions. Such curves could provide confidence intervals to account for un-

certainty as well. Moreover, physicians could find easier to make predictions

on the probability axis and give more accurate judgments. Indeed, Weeks

et al. (1998) found that physicians’ estimates of 6-year survival of cancer

patients was not so poor. For example, among patients with more than 90%

probability of surviving 6 months, 71% (41 patients over 58) actually sur-

vived, while among those with a less than 10% probability, only 11% (17

patients over 158) survived.

Albeit probabilistic predictions have been found to be more accurate than

temporal predictions, it has to be noted that they are not immune from uncer-

tainty (e.g. confidence intervals of individual survival curves can be so wide

to make probabilistic predictions pointless). Traditionally, statistical survival

models used prognostic factors such as performance status, symptoms and

simple laboratory results. Even though they are often highly statistically

significant prognostic factors, they might explain a small fraction of the vari-

ation between individuals. Thus, in the recent years, the research’s attention
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has been directed to the discovery of new prognostic factors, strongly linked

to disease progression and/or outcome, easily measurable with non-invasive

techniques, and that may be of help to clinicians for more individualised

prognosis. Easily measurable prognostic factors would also respond to the

necessity of having constantly updated prognosis. Glare et al. (2008) specify

that “prognosis is often misunderstood as a static phenomenon, reinforced

by the research studies focusing on one point in time (e.g. survival after

admission to hospital or referral to hospice, survival after the surgery, etc).

The illness trajectory changes over time, so that, as the illness evolves, new

issues must be considered and the prognosis should be revised”.

1.3 Biomarkers

From Section 1.2 it can be inferred that there is an increasing interest in

variables that could be used alone, or in more complex statistical models, in

order to provide objective information to be used by clinicians in deciding

which treatment would be better for the individual patient. Indeed, decision

making would be a lot easier if specific measurements of the patients’ clinical

status could predict the risk of progression to death. This necessity made

research to focus its attention on biomarkers. In 2001, a working group, be-

longing to the National Institute of Health, gave this standardized definition

of biomarker (NIH Definitions Working Group, 2001): “a characteristic that

is objectively measured and evaluated as an indicator of normal biological

processes, pathogenic processes, or pharmacologic responses to a therapeutic

intervention”. According to this definition, a biomarker may be measured

on a biosample (e.g. blood, urine, sample of tissue), it may be measured

directly from a person (e.g. blood pressure, electrocardiogram, spirometry),

or it may be an imaging test (computed tomography, ecography, magnetic

resonance spectroscopy) (Vasan 2006).

Biomarkers can be involved in several clinical activities whose aim is to

assess patients’ health or disease characteristics. According to their applica-
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tion, biomarkers can be classified as follow (Vasan 2006):

• antecedent biomarkers : they identify the risk of developing an illness;

usually they are genetic markers that can indicate the genetic predispo-

sition of an individual to develop a specific disease. An example comes

from the Huntington’s disease, “a neurodegenerative genetic disorder

that affects muscle coordination and leads to cognitive decline and de-

mentia. The disease is caused by an autosomal dominant mutation in

either of an individual’s two copies of a gene called Huntington, which

means any child of an affected parent has a 50% risk of inheriting the

disease” (Wikipedia 2012). Since genetic test can be performed even

before the symptoms’ onset, a person can know in advance if he/she

will develop the disease in the future;

• screening biomarkers : they are biomarkers that indicate the presence

of a disease in asymptomatic people. For instance, the prostate-specific

antigen is a biomarker for prostate cancer used in prostate cancer

screening in an attempt to identify individuals at the early stages of

the disease;

• diagnostic markers : they are used to confirm the presence of the dis-

ease among symptomatic people. An example is given by the celiac

disease. It can be diagnosed in individuals having sign or symptoms of

malabsorption or malnutrition. However, since other diseases manifest

the same symptoms, it is important to confirm the disease with specific

tests: small intestinal biopsy and antibody tests are suggested;

• staging biomarkers : they are used to characterized disease severity;

• prognostic biomarkers : they are useful in predicting disease progression,

including recurrence and response to therapy. They are also used in

monitoring efficacy of therapy. For example, PSA is used to monitor

biological recurrence in prostate cancer patients after radiation therapy

or radical prostatectomy while serum bilirubin level is used to monitor
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disease progression in patients affected by primary biliary cirrhosis. An

example of biomarkers used to predict treatment efficacy are genetic

mutations that cause drug resistance in cancer patients. From the

analysis of cancer tissue, genetic mutations, that cause specific drugs

to be ineffective, can be found. Consequently, the physician will have

to choose other drugs, if possible, in order to fight the cancer.

It is important to notice that the same biomarker can be used with different

purposes. PSA gives a clear example: it can be a screening, diagnostic or

prognostic biomarker.

Biomarkers may also serve as surrogate endpoints. A surrogate endpoint

is a biomarker that is used instead of the clinical endpoint (e.g. death,

biochemical recurrence, stroke or other specific events of interest) to evaluate

safety and effectiveness of new treatments in clinical trials. In a seminal work,

Prentice (1989) gave the guidelines for studying surrogate endpoints and a

formal definition of conditions that the biomarker should satisfy to be used

as a valid surrogate endpoint in a specific trial. More specifically, the three

conditions where the following (Tsiatis 1995, Taylor 2002):

1. The biomarker should be associated to the clinical endpoint;

2. The treatment should have an effect on the biomarker;

3. The effects of the treatment should be mediated though its effect on the

marker. That is, patients with the same value of the biomarker should

have the same survival probability, independently of the treatment they

are receiving.

The great attention shown in surrogate endpoints is due to several features

which they usually possess. First, candidate surrogate points are cheaper and

easier to measure than clinical endpoint. As Aronson et al. (2005) state “it

is easier to measure a patient’s blood pressure than to use echocardiography

to measure left ventricular function, and it is much easier to do echocardio-

graphy than to measure morbidity and mortality from hypertension in the
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long term”. Second, they can be measured more quickly and earlier. In fact,

blood pressure can be measured every day, whereas it usually takes several

years to collect mortality data. Third, surrogate endpoints need smaller sam-

ple sizes and can avoid ethical problems associated with measuring clinical

endpoints (Aronson et al. 2005).

However, surrogate endpoints come with disadvantages as well. In prac-

tice, it is rare to find biomarkers satisfying all Prentice’s three conditions.

The main reason is that it is difficult for a single biomarker to completely

account for all treatment effects and often it is not reasonable to think that

the clinical outcome of interest is influenced by that biomarker only. That is

why, recently, some studies have focused their attention on multiple biomark-

ers that could capture various components of complex disease evolutions thus

giving a more comprehensive assessment of treatment effect (NHI 2001). For

example, a recent study tested the use of multiple biomarkers to improve the

prediction of death from cardiovascular disease (Zethelius et al. 2008). The

authors concluded that “the incorporation of a combination of biomarkers

that reflect myocardial cell damage, ventricular function, renal function, and

inflammation to a model with established risk factors improved the risk strat-

ification for death from cardiovascular causes”. Another study reviewed by

many researches focused on the simultaneous examination of multiple mark-

ers in order to increase the sensitivity of the screening test for early detection

of ovarian cancer (Yurkovetsky et al. 2006). The authors concluded that “a

multimarker approach for the generation of a prototype assay for early de-

tection of ovarian cancer has a great potential to lead to the development of

a screening test for this disease”.

Regardless of the purpose of its use, a new biomarker will be of clinical

value only if it is strongly associated with the outcome of interest, it can easily

be obtained (i.e. with no harm for the patient), it has a clear interpretation

for the clinicians, it explains, despite the presence of already established risk

factors, a reasonable proportion of the outcome variability when tested in

several studies, and least, but not last, the information based on its knowledge

12



have a direct impact in patient’s management.

1.4 The use of biomarkers as predictors

In this section, prostate-specific antigen (PSA) will be used to show its poten-

tiality for individualised predictions of disease progression following therapy

(i.e. radical prostatectomy or radiation therapy) for localized prostate cancer.

Then, the statistical techniques used for the analysis of similar biomarkers

will be mentioned. A more exhaustive description will be given in Chapter

3.

Patients treated for prostate cancer are usually followed for several years

in order to monitor their response to the treatment. Every patient is asked

to do medical check-ups every few months and at each visit a blood test is

performed in order to measure PSA levels. In fact, usually, after prostate

removal surgery, PSA level in the blood decreases and it eventually becomes

almost undetectable. After radiation therapy, PSA levels usually drop to

a stable and low level (WebMD). The correlation between changes in PSA

with time and prostate biochemical recurrence (i.e. local recurrence or dis-

tant metastases) has been long recognised (Oesterling 1991). However, a

widely accepted definition of biochemical recurrence based on a series of PSA

measurements has been a problematic and controversial topic. For instance,

there is considerable variability in the amount by which PSA is reduced by

radiation therapy, and the time interval before it starts to rise, if it does rise,

and the rate at which it rises are very diverse (Zagars and Pollack 1993).

Carter and Pearson in 1993 suggested to use PSA velocity, and, in particu-

lar, PSA doubling time, to identify men with prostate cancer that is destined

to progress. Pollack et al. (1994) conducted a study on patients showing a

rising PSA profile after radiation therapy and they confirmed PSA doubling

time (PSADT) as a strong prognostic factor for patient with biological re-

currence. They also found that “the timing of the progression from a rising

PSA to clinical disease relapse [...] is estimated to be 40 months on average”.
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This means that when a rapid increase of PSA levels is detected, there is still

time for the physician to choose a proper treatment.

Since detecting early signs of a recurrence is of major importance for pa-

tient’s care and may guide the physician’s decision to start further therapies,

such as salvage androgen deprivation therapy, it is important to be able to use

all the available information from PSA monitoring after treatment. In fact,

it is believed that methods based on the pathway of prognostic biomarkers

such as PSA could enhance their prognostic ability, hopefully giving more ac-

curate survival probabilities at the individual level. Moreover, those models

should allow to update their survival predictions after each new measurement

of the biomarker reflecting, in this way, the dynamic nature of disease.

The methods that were able to answer all the needs described above,

and solve all the problems arising from dealing with internal time-dependent

covariates characterized by a great variability, are known as joint models.
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Chapter 2

Handling time-dependent

covariates

2.1 Introduction

Longitudinal studies such as clinical trials or observational studies often

record two different kinds of data from each individual: a longitudinal se-

quence of repeated measurements at pre-specified measurement times and

one or more time-to event outcomes such as death, development of a dis-

ease, clinical recurrence or dropout from the study. Two typical examples

of this setting are HIV and cancer studies. In HIV studies, measures of im-

munological and virological status, such as CD4 T-cell count and viral RNA

copy number (also known as viral load) are gathered longitudinally on each

individual along with time to progression to AIDS or death. Likewise, in can-

cer studies, the event of interest is death or cancer recurrence and patients

provide longitudinal measurements of antibody levels or of other biomarkers

of carcinogenesis, such as PSA levels for prostate cancer, during follow-up

visits. Obviously, also several time-independent covariates, which are often

referred to as baseline covariates, are recorded, usually at the beginning of

the study.

With these types of data available, a variety of questions may be of in-
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terest, depending on the application. According to the research’s interest,

three types of setting can be defined:

1. The interest could be on the event outcome and we wish to account for

the effect of the longitudinal outcome as a time-dependent covariate.

In Chapter 1 it has been shown how PSA is a widely used biomarker to

predict biochemical recurrence in patients treated for prostate cancer.

Similarly, serum bilirubin is used to monitor primary biliary cirrhosis

progression.

2. The interest may be on the longitudinal outcome but this is compli-

cated by potentially informative dropout, which may be viewed as a

time-to-event outcome. For example, in a study where the goal is to

compare different treatments, participants may dropout from the study

since they feel much better or, on the contrary, they do not see any im-

provement from the therapy. Thus, dropout is nonrandom, but linked

to treatment effect;

3. The interest may be on the relationship between the longitudinal and

the time-to-event outcome so that both types of outcome are of pri-

marily interest. This setting often arise when the association between

the biomarker trajectory and the time-to-event outcome needs to be

assessed. For example, the goal may be to verify if hemoglobin level

can predict renal graft failure.

The first setting is the one that will be considered in this thesis from now

on. More specifically, our interest will be in predicting survival probabilities

using models which exploit all the information available from longitudinal

measurements of a specific biomarker. In Section 2.2, the traditional ap-

proach for the analysis of survival data will be presented along with the

problems arising from the necessity to incorporate the information from a

time-dependent covariate,i.e. the longitudinal response, measured intermit-

tently and possibly with error. In Section 2.3, the three methods developed

to solve these problems are presented.
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2.2 The traditional approach for analyse time-

to-event data

The traditionally used survival model for the analysis of time-to-event data

is the relative risk (Cox) model (Cox 1972). As other survival regression

models, it is used to find any possible relationship between survival times

and important covariates. The main reason why standard regression models

(e.g. linear regression model, logistic regression model, etc.) will often be

inappropriate is that survival times may be censored. Censoring occurs when

incomplete information is available about the survival time of some individ-

uals. There are three types of cesoring: left censoring, interval censoring,

and right censoring. When the event of interest already occurred before the

beginning of the study, the event time is said to be left censored. When the

event occurred in a time interval but we do not know the exact time point,

the event time is interval censored. Finally, when the event did not occur

while the subject was under study, the event time is right censored. This

last type of censoring happens, for example, because the medical study ends

before each patient experiences the event, or because the patient drops out

of the study prematurely. In both cases, we only know that the patient will

possibly experience the event in the future but we do not know exactly when.

Since right censoring is the most common type of censoring in clinical trials

and observational studies, we assume survival data to be subjected to right

censoring.

Let Ti be the time to an event of interest, called survival time, for the

i-th subject (i = 1, 2, ..., n). Ti is taken as the minimum of the true event

time T ∗

i and the censoring time Ci. Therefore, we observe Ti = min(T ∗

i , Ci).

Furthermore, we define the event indicator as δi = I(T ∗

i ≤ Ci), where I(·)

is the indicator function that takes the value 1 if the event is observed (i.e.

T ∗

i ≤ Ci), and 0 otherwise. Moreover, let zi be the vector of baseline (time =

0) covariates (e.g. gender, height, ethnicity, treatment indicator, etc.), mea-

sured before or at the beginning of the study. For the longitudinal outcome,
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we consider only the case of a single covariate which is measured repeatedly

over time. Let yi(t) denote the value of the longitudinal outcome at the time

point t for the i-th subject. It is important to emphasize that we do not

actually observe yi(t) at all time points, but only intermittently, at specific

time points tij at which the measurements were taken. Moreover, although

visit times usually follow a time schedule, some participants could not follow

it perfectly so that the times at which the longitudinal covariate is collected

and the final number of covariate values can be different for each individ-

ual. Therefore, the observed longitudinal data consist of the measurements

yi = {yi(tij), j = 1, 2, ..., ni}, where ni is the number of measurements avail-

able for subject i. Overall, the observed data available for each individual is

(Ti, δi, zi, yi). We assume that censoring is non-informative in that, given zi

and yi, the event and censoring time for the i-th patient are independent.

In survival regression models, the common approach is to model the haz-

ard function rather than the means functions as in classical regression models.

The hazard function, also called risk function, is defined as (Wu 2010)

h(t) = lim
∆t→0

P (t ≤ T ∗ < t+∆t | T ∗ ≥ t)

∆t
, t > 0,

which is the risk or hazard of death (or event) at time t, i.e., the probability

that an individual experiences the event at time t given that he/she has

survived to time t. Another essential function in survival analysis is the

survival function, which is defined as

S(t) = P (T ∗ ≥ t) = 1− F (t), t > 0,

where F (t) = P (T ∗ < t) is the usual cumulative distribution function (cdf).

Survival at time t, i.e. S(t), is the probability that an individual survives at

least to time t. This two functions are strongly linked as it can be seen from

the following formula:
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h(t) = −
d

dt
log(S(t)), t > 0,

The probability density function can be defined as

f(t) = h(t)S(t), t > 0,

Therefore, the probability distribution of the observed data (Ti, δi) is given

by

f(Ti, δi) ∝ f(Ti)
δiS(Ti)

1−δi = hi(Ti)
δiSi(Ti), Ti > 0,

In order to quantify the effect of yi(t) and zi on the risk for an event, we may

use a relative risk model of the form (Thernau and Grambsch 2000)

hi(t | Yi(t), zi) = lim
dt→0

Pr(t ≤ T ∗

i < t+ dt | T ∗

i ≥ t,Yi(t), zi)/dt

= h0(t) exp
{
γT zi + αyi(t)

}
, (2.1)

where Yi(t) = {yi(u), 0 ≤ u < t} denotes the history of the longitudinal pro-

cess up to time point t, h0(t) denotes the baseline hazard function (i.e. the

hazard function of a hypothetical individual with all covariates equal to zero),

γ is a vector of regression coefficients related to the vector zi, and α is the

regression coefficient which quantifies the effect of the longitudinal outcome

on the risk for an event. In the classical relative risk Cox model (Cox 1972),

the baseline hazard function h0(t) is left unspecified. This is due to the fact

that a hazard function may be too complicated to be modeled parametri-

cally so that we can avoid a parametric assumption about its distribution

and model it flexibly though nonparametric estimators. For this reason, the
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relative risk Cox model is a semiparametric model: while a parametric form

is assumed for the covariate effect, the baseline hazard function is treated

nonparametrically.

In order to estimate parameters γ and α, statistical inference can be based

on the likelihood method. In particular, Cox (1975) suggested to maximize

not the entire likelihood function, but the part of it that contains all and

only the regression parameters. This part is called partial likelihood and is

defined as

L(γ, α) =
n∏

i=1

[
exp(γT zi + αyi(Ti))∑n

j=1 exp(γ
T zi + αyi(Ti))I(Tj > Ti

]δi

(2.2)

This is treated as a usual likelihood, and inference is carried out as usual.

Nevertheless, it should be remember that it is not a likelihood in the ordinary

sense of the word. It can be used for parameter estimation but any probability

interpretation should be avoided (Kalbfleisch and Prentice 2002). Looking

at (2.2) it can be noted that, thanks to the event indicator δi, the numerator

depends only on the information from the individual who experienced the

event, while the denominator uses all the information from individuals who

had not experienced the event yet. This formula is only valid when there are

no ties between the event times, that is, there are no events which happened

at the same time. Indeed, it is usually assumed that the events actually

happen in a continuous time so that two event times cannot happen at the

same time. In real datasets, however, due to grouping and rounding, the

recorded event times may coincide. Thus, several suggestions for handling

ties in the partial likelihood can be found in the literature. The two most

used belong to Breslow (1974) and Efron (1977) (see Klein and Moeschberger

2003 for more details).

It should be noted that, in order to be able to implement (2.2), several

problems need to be solved. Fist, we need to know the value of y(t) for

each individual still alive at each observed event time. In practice, as al-

ready said, y(t) is only available intermittently for each subjects. In fact, if
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we think about post-treatment PSA value, it could be measured at approx-

imately 6-months intervals or even once a year. This leads to missing data

in time-dependent covariates in the survival model. Second, longitudinal

covariates may be measured with error, such as PSA level, blood pressure,

CD4 count, or viral load. The consequence is that the observed covariate

values, i.e. yi, are not their true values but mis-measured one. If covariate

measurement errors are ignored in regression models, parameter estimates

may be biased, hypothesis testing may lose power, and important features

in the data may be masked. In our case, if covariate measurement errors are

not taken into account, true covariate effects may not be correctly estimated

or even detected. In fact, assessing the effect of measurement error in a lon-

gitudinal covariate on the parameter estimates of the Cox model, Prentice

(1982) showed that the presence of measurement error causes the estimated

parameters to be biased towards the null. Therefore, covariates with a strong

prognostic effect could be considered of low importance and be discarded.

Let mi(t) denote the true and unobserved value of the longitudinal out-

come at time t. Then, if we need to account for measurement error, the

correct hazard function and partial likelihood on which statistical inference

should be based are

hi(t | Mi(t), zi) = lim
dt→0

Pr(t ≤ T ∗

i < t+ dt | T ∗

i ≥ t,Mi(t), zi)/dt

= h0(t) exp (γ
T zi + αmi(t)), (2.3)

where Mi(t) = {mi(u), 0 ≤ u < t} denotes the true unobserved longitudinal

process up to time point t; and

L(γ, α) =
n∏

i=1

[
exp(γT zi + αmi(Ti))∑n

j=1 exp(γ
T zj + αmj(Ti))I(Tj > Ti)

]δi

In Section 2.3, the most widespread methods proposed to address missing
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data in the longitudinal outcome and to take into account measurement error

are presented.

2.3 Methods for missing values and measure-

ment error

2.3.1 Last Value or Last Observation Carried Forward

(LVCF or LOCF)

This method is well described by Molenberghs and Kenward (2007) and it

consists in replacing the missing value with the last available value. In our

case, the missing value of the longitudinal outcome would be substituted by

the value measured during the nearest preceding visit time. However, the

simplicity of this approach cannot overcome its disadvantages. In fact, to

ensure the validity of this method, very strong and often unrealistic assump-

tions have to be made. Fist, it has to be assumed that the subject’s value of

the covariate between two measurements times is constant. Clearly, this as-

sumption is not biologically plausible since it is difficult to think that highly

variable measures, such as CD4 counts for HIV patients, stay unchanged be-

tween two visit times (Bycott and Taylor 1998). Second, it treats observed

values and imputed ones on the same level. Third, it does not consider the

measurement error issue at all.

2.3.2 Two-stage approach

The subsequent approach proposed to reduce bias in parameter estimates

was the two-stage approach. In the first stage, a model for the longitudinal

process is fitted ignoring the survival outcome. Usually, a linear mixed effect

model (LME) is used. Then, in the second stage, a survival model, often

the relative risk model, is fitted using the subject-specific predictions of the

time-dependent covariate based on the longitudinal model. This approach
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showed to reduce bias compared to the simpler LVCF without completely

eliminating it. Wu (2010, Chapter 8) reports two sources of bias character-

izing this approach. First, the longitudinal outcome does not consider the

possibility that the covariate trajectories of subjects who experienced the

event or dropped out from the study may be different from those who were

still alive at the end of the study. In this case the bias is due to the informa-

tive dropout, and may depend “on the strength of the association between

the longitudinal process and the survival process”. Second, since the infer-

ence in the second stage completely ignores the estimation uncertainty in the

first stage, the standard errors may be under-estimated.

2.3.3 Joint models

The persistent bias characterizing parameter estimates of the two previous

methods conducted researchers to focus their study on an approach based

on the joint likelihood of all observed longitudinal and survival data. Since

all parameters in the longitudinal and survival models are simultaneously

estimated, the joint likelihood method avoids much of the bias in the previous

two methods and provides the most efficient estimation if the assumed models

are correct. Wulfsohn and Tsiatis (1997) were the first authors who proposed

this approach assuming a relative risk model for the survival times with an

unspecified baseline risk function. After them, many other researchers tried

to extend their work by testing different model formulations (Proust-Lima

and Taylor 2009; Yu, Taylor, and Sandler 2008; Henderson, Diggle, and

Dobson 2000), assumptions validity (Rizopoulos and Verbeke 2008; Hsieh,

Tseng and Wang 2006; Brown, Ibrahim, and DeGruttola 2005; Tsiatis and

Davidian 2004), and suggesting improved estimation techniques (Rizopoulos,

Verbeke, and Lesaffre 2009; Tsiatis and Davidian 2001).

In Chapter 3, the joint modeling approach will be formally presented and

discussed in detail.
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Chapter 3

Joint modeling of longitudinal

and survival data

3.1 Introduction

Joint models were developed in order to properly answer the three principal

interests already presented in 2.1. In summary, when emphinternal1 time-

dependent covariates are involved in survival analises, we need to account

for their special characteristics in order to obtain valid inferences. Similarly,

when the interest is on the longitudinal outcome, ignoring a possible non-

random dropout process, may lead to biased estimates. In both cases, the

class of joint models for longitudinal and time-to-event data constitutes a

promising modeling paradigm to resolve these issues.

Tsiatis and Davidian (2004) state that a joint model is comprised by

two linked sub-models, one for the ‘true’ longitudinal process mi(t) and one

for the event time T ∗

i , along with additional specifications and assumptions,

which allow ultimately a full representation of the joint distribution of the

1An internal covariate is “typically the output of a stochastic process which is generated

by the individual under study and in many instances is observed as long as the individual

survives and is uncensored” (Kalbfleisch and Prentice 2002). Thus, biomarkers such as

blood pressure, PSA level, CD4 count are examples of internal variables. The difference

between internal and external covariates will be further discussed in Section 4.2.

25



observed data {Ti, δi, yi, ti, zi}, where ti = (ti1, . . . , tini
)T .

At the end of Chapter 2, it was mentioned that a variety of models has

been considered in the joint modeling literature. Therefore a choice needs to

be made. For the remainder of this work, we will adopt those models firstly

suggested by Wulfsohn and Tsiatis (1997) for joint models: a Gaussian linear

mixed effect model for the longitudinal response and a relative risk model

for the event times. The survival sub-model has already been described in

Section 2.2 and is defined by the hazard function (2.3), but a modification

has to be introduced. So far the baseline hazard function h0(t) has been

left unspecified and thus estimated nonparametrically. However, for reasons

which will be explained in Section 3.3.2, within the joint modeling framework,

a parametric function should be employed. We could opt for a standard

survival distribution such as the Weibull or Gamma distributions, or for

more flexible solutions such as step functions or splines. In the following,

ω will be the vector containing the parameters describing the parametric

hazard function h0(t).

In Section 3.2, the problem of how to properly model the longitudinal pro-

cess is addressed, while in Section 3.3, likelihood formulation and estimation

will be described.

3.2 The measurement error model

In order to obtain non biased parameter estimates for γ and α in (2.3), it is

crucial to estimate mi(t) and successfully reconstruct the complete longitudi-

nal history, using the available measurements. It is considered appropriate to

use the model known as classical measurement error model (Wu 2010, Chap-

ter 5). Let yi(tij) be the observed covariate value for the i-th individual at

time tij, i = 1, ..., n, j = 1, ..., ni, and let mi(tij) be the corresponding unob-

served true covariate value. The classical measurement error model assumes

that
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yi(tij) = mi(tij) + ei(tij), E(ei(tij)|mi(tij)) = 0, i = 1, ..., n; j = 1, ..., ni

where ei(tij) represents the measurement error (and the possible biological

variation) at time tij.

To model the true time-dependent covariatemi(t), it is common to assume

that the covariate values change smoothly over time and thus a linear mixed

effect model (LME) is the standard choice (Tsiatis and Davidian 2004). A

LME model allows to take into account between-individual variation and

within-individual correlation. In fact, Diggle et al. (2007) state that “when

the goal is to understand the joint evolution of measurement and time-to-

event at the level of an individual subject, we would favor random effects

models”, to whom LME belongs. More specifically, the chosen LME has the

form

yi(t) = mi(t) + ei(t) = ui(t)
Tβ + vi(t)

T bi + ei(t), i = 1, . . . , n,

where ui(t) and vi(t) are known row vectors of the design matrices for the

fixed and random effects, respectively, β is the vector containing unknown

fixed parameters, bi is the vector containing the random effects, and ei(t) is

the measurement error term. We assume that bi and ei(t) are independent,

and ei(t) ∼ N(0, σ2) so that the within-individual covariate measurements

are assumed to be conditionally independent given the random effects. This

assumption is reasonable if the measurement times are sufficiently far apart

that within-subject autocorrelation among observed values is essentially ig-

norable, or if the measurement error is large in comparison with biological

fluctuations (Tsiatis and Davidian 2004). Therefore, at any given time tij,

the unobserved true covariate value can be taken as

mi(tij) = ui(tij)
Tβ + vi(tij)

T bi, i = 1, . . . , n; j = 1, . . . , ni.
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One of the most discussed distributional assumptions is that of the ran-

dom effects bi with the multivariate normal distribution with mean zero and

covariance matrix D, i.e. bi ∼ N(0, D) being the usual choice. Verbeke et al.

(2010, Chapter 2) underline two reasons causing the concern that relying on

standard distributions, within the joint modeling framework, may influence

the derived inferences. “First, the random effects have a more prominent role

in joint models, because on the one hand they capture the correlations be-

tween repeated measurements in the longitudinal outcome and on the other,

they associate the longitudinal outcome with the event process. Second, joint

models belong to the general class of shared parameter models, and corre-

spond to a non-random dropout mechanism. [...] As it is known from the

missing data literature, handling dropout can be highly sensitive to modeling

assumptions”. Studies comparing estimates from models with normal ran-

dom effects and with a more flexible distribution suggest a sort of robustness

of the joint likelihood approach with normal random effects to departures

from this assumption (Song et al. 2002, Davidian and Tsiatis 2004). Such

robustness is seen both in parameter estimates and standard errors. This

empirical conclusion has been recently corroborated from a theoretical point

of view by Rizopoulos et al. (2008). They showed that, as the number of

repeated measurements per subject ni increases, misspecification of the ran-

dom effects’ distribution has a minimal influence in parameter estimators and

standard errors. In order to obtain good estimates of mi(t), it is important

to adequately specify ui(t) and vi(t) so that interesting features of the each

subject’s longitudinal trajectory can be captured. More specifically, when

the interest is in modeling the longitudinal component only and not to make

inference from it, and the covariate shows highly non-linear longitudinal tra-

jectories, a linear mixed model where ui(t) and vi(t) are expressed in terms

of high-order polynomials or splines2 is strongly recommended. Particularly,

2In mathematics a spline is a sufficiently smooth piecewise-polynomial function. In the

context of longitudinal data analysis, they are used to fit curves with a flexible but smooth

form that is determined by the data. A detailed description about the use of splines in

linear mixed effect models is given by Fitzmaurice et al. (2008, Chapter 11).
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the use of splines allows researchers not to make rigid assumptions about

the path of the biomarker over time and thanks to the subject specific ran-

dom effects can well describe individuals’ profiles across time. Indeed, Brown

et. al (2005) affirm that, since “the model is able to change rapidly to re-

flect changes in the biomarkers over time, it may be preferable to parametric

models for many types of data”. The most used type of spline is the cubic

B-spline. In comparison with other B-splines with a higher degree, the cubic

B-splines ensures a great flexibility with a restricted number of parameters.

3.3 Likelihood formulation and estimation

The main estimation methods that have been proposed for joint models are

based on a likelihood approach (Hsieh et al. 2006, Henderson et al. 2000,

Wulfsohn and Tsiatis 1997) and a Bayesian approach developed via Markov

chain Monte Carlo techniques (Hanson et al. 2011, Chi and Ibrahim 2006,

Brown and Ibrahim 2003). In this work, we use the classical maximum

likelihood method to obtain parameter estimates for the joint model.

3.3.1 Likelihood formulation

In the following part, according to the context, f(·) will be used as generic

notation for distributions, densities, or likelihood contributions.

First of all, we need to define the joint distribution of the time-to-event

and longitudinal outcomes {Ti, δi, yi}. Before doing that, however, there are

two assumptions which need to be made:

1. It is assumed that “the vector of time-independent random effects bi

underlies both the longitudinal and survival processes. This means that

these random effects account for both the association between the lon-

gitudinal and event outcomes, and the correlation between the repeated

measurements in the longitudinal process”, i.e. corr {ei(ts), ei(tk)} = 0,

for ts 6= tk (Rizopoulos 2010). This assumption is also known as the
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conditional independence assumption and, omitting covariates in the

notation, can be formalised as

f(Ti, δi, yi|bi; θ) = f(Ti, δi|bi; θ)f(yi|bi; θ) (3.1)

f(yi|bi; θ) =

ni∏

j=1

f {yi(tij)|bi; θ} , (3.2)

where θT = (θTt , θ
T
y , θ

T
b ) denotes the parameter vector, with θt denot-

ing the parameters for the survival outcome, θy the parameters for the

longitudinal outcomes and θb the parameters of the random effect co-

variance matrix D, yi is the row vector containing the ni longitudinal

responses of the i-th subject. As it can be seen from (3.1) and (3.2), the

conditional independence assumption allows the definition of separate

models for the longitudinal and the survival outcomes by conditioning

on the shared random effects bi.

2. “Both the censoring mechanism and the visiting process (i.e., the stochas-

tic mechanism that generates the time points at which the longitudinal

measurements are collected) are non-informative, and thus they can be

ignored” (Verbeke et al. 2010). If we define the observed longitudi-

nal history as all the information available for the longitudinal process

prior to time point t, i.e., Yi(t) = {yi(u), 0 ≤ u < t}, this assumption

implies that the decision on whether a subject drops out from the study

or appears at the study center for the scheduled visit depends only on

Yi(t) (and possibly on baseline covariates) and there is no further de-

pendence on future measurements or on other subjects characteristics

associated with the survival outcome but not taken into account.

We can now formulate the joint likelihood contribution for the i-th subject

as

f(Ti, δi, yi; θ) =

∫
f(Ti, δi|bi; θt, β)

[
ni∏

j=1

f {yi(tij)|bi; θy}

]
f(bi; θb)dbi, (3.3)
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where the likelihood of the survival part has the following form

f(Ti, δi|bi; θt, β) = {hi(Ti|Mi(Ti); θt, β)}
δi Si(Ti|Mi(Ti); θt, β), (3.4)

with hi(·) given by (2.3), and

Si(Ti|Mi(Ti), zi; θt, β) = Pr(T ∗

i > t|Mi(t), zi; θt, β)

= exp

{
−

∫ t

0

hi(s|Mi(s); θt, β)ds

}
, (3.5)

f {yi(tij)|bi; θy} is the univariate normal density for the longitudinal re-

sponses, and f(bi; θb) is the multivariate normal density for the random ef-

fects.

An important feature about the relative risk model considered here is

underlined by (3.5): the risk for an event at time t is assumed to depend

on the longitudinal history Mi(t) only through the current value of the

time-dependent covariate mi(t), whereas the survival function depends on

the whole history. This is another reason why, in order to obtain accurate

predicted survival probabilities, it is important to properly model the longi-

tudinal outcome.

3.3.2 Maximum likelihood estimation

Maximization of the likelihood function (3.3) with respect to θ is a compu-

tationally challenging task and it is the major drawback that prevented a

higher diffusion of joint models. In particular, both the integrals with re-

spect to the random effects in (3.3), and the integral in the definition of the

survival function (3.5) do not usually have an analytical solution.

Tsiatis and Davidian (1997) were the first who proposed to use the

expectation-maximization (EM) algorithm to maximize the joint likelihood

of the observed data and thus obtain parameter estimates. The EM algo-

rithm is an iterative method used to find maximum likelihood estimates of

parameters when in the likelihood unobserved variables are present. The EM

algorithm alternates between an E-step, which computes the expectation of
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the log-likelihood using the current parameter estimates, and an M-step,

where new parameter estimates are computed by maximizing the expected

log-likelihood found with the E-step. These new parameter estimates are

then used to determine the distribution of the latent variables in the next

E-step. Fitzmaurice et al. (2008, Chapter 15) give a simple presentation of

the EM algorithm applied in the joint modeling framework where the random

effects are treated as unobserved variables (all parameters are combined into

in the vector θ:

• Step 1: obtain initial parameter estimates through separate analyses of

the longitudinal and survival data. Thus, the required random effects

are included in the longitudinal model but not in the survival model.

The parameter association between the longitudinal covariate and the

event time, i.e. α, is set to zero.

• Step 2: write down the combined conditional log-likelihood l(θ; yi, Ti, δi, bi)

of the observed data given random effects bi.

• Step 3: obtain the conditional expectation of each function of bi, i.e.

g(bi), appearing in l(θ; yi, Ti, δi, bi), given (yi, Ti, δi) and using the cur-

rent estimates of θ.

• Step 4: replace each function of bi appearing in l(θ; yi, Ti, δi, bi) by

its conditional expectation. Maximize the obtained log-likelihood to

update the estimate of θ.

• Step 5: Iterate step 3 and 4 until convergence.

Steps 3 and 4 are the E-step and the M-step, respectively. In the E-step,

the conditional expectations of several functions of the non observed random

effects, i.e. g(·), often involve intractable integrals of the form

E
{
g(bi)|yi, Ti, δi; θ̂

}
=

∫
g(bi)f(bi|yi, Ti, δi; θ̂)dbi
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where θ̂ is the value from the M-step of the previous iteration. In order to

make the computation of feasible, Wulfsohn and Tsiatis (1997) noticed that

f(Ti, δi|yi, bi) = f(Ti, δi|bi) and used two integrals instead of one:

E
{
g(bi)|yi, Ti, δi; θ̂

}
=

∫
g(bi)f(bi|yi, Ti, δi; θ̂)dbi

=

∫
g(bi)f(yi, δi|bi; θ̂)f(bi|yi; θ̂)dbi∫
f(yi, δi|bi; θ̂)f(bi|yi; θ̂)dbi

(3.6)

At this point we can take advantage of the last form (3.6) and use numerical

integration to solve both integrals. Standard numerical integration tech-

niques such as Gaussian quadrature and Monte Carlo methods are usually

applied (Wulfsohn and Tsiatis 1997, Henderson et al. 2000, Wu 2010). The

use of Laplace approximations has recently been discussed by Rizopoulos et

al. (2009) in situations where a large number of random effects is involved

(e.g., when splines are used in the random effects design matrix).

The M-step is more straightforward since closed-form maximum likeli-

hood estimates for parameters D and σ2 are available. On the contrary,

maximum likelihood estimates for parameters β, γ, and α do not have a

closed-form solution and therefore are computed using the Newton-Raphson

method (see Rizopoulos et al. (2009) for more details).

We wish to go back for a moment to the choice made at the end of Sec-

tion 3.1 about the risk function h0(t). Although this function is typically left

unspecified, in the joint modeling framework Hsieh et al. (2006) warned re-

searchers from using the Fisher Information to obtain parameters’ standard

errors since their values would be underestimated. According to the au-

thors, this problem arises from the fact that “the nonparametric maximum

likelihood for h0(t) cannot be solved explicitly under the random effect struc-

ture”. Furthermore, this causes the maximum profile likelihood estimates of

the other parameters to be implicit as well since they depend on h0(t). Con-

sequently, the authors suggested to use the bootstrap technique to compute

the standard errors but its validity has not been proven yet. We choose then

to estimate parametrically the risk function h0(t) so that the usual para-
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metric asymptotic arguments for the maximum likelihood estimates can be

applied.
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Chapter 4

Individual survival probability

estimation

4.1 Introduction

In Chapter 1 we have shown how the need of accurate prognoses has increased

in the last decades in everyday medical practice. In particular, the possibility

of obtaining survival probabilities based on characteristics of the specific

patient would greatly help physicians in their decision making and patient

counseling, thus improving clinical output.

In the joint modeling framework, the interest on subject-specific predic-

tions for either the longitudinal or survival outcomes has increased in recent

years (Sweeting and Thompson 2011; Proust-Lima and Taylor 2009; Yu, Tay-

lor and Sandler 2008; Taylor, Yu, and Sandler 2005). In these studies, the

prognostic information contained in longitudinal measurements of covariates,

such as biomarkers, has been used to make predictions about patients’ sur-

vival probabilities. However, this aspect needs to be further analysed and

tested in order to be safely used in clinical practice.

Using the joint modeling formulation presented in Chapter 3, Rizopoulos

(2011) proposed a Monte Carlo approach to estimate survival probabilities

and their standard errors based on the output of a fitted joint model. In par-
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ticular, the author considered dynamic subject-specific predictions, and il-

lustrated how survival probabilities are updated as additional measurements

of the longitudinal outcome are available. In Section 4.2 we will formally

present this approach and then, in Chapter 5, we will use it to predict pa-

tients’ survival.

4.2 Expected survival probabilities

The interest lies in predicting survival probabilities for a new subject i which

has provided a set of longitudinal measurements Yi(t) = {yi(s); 0 ≤ s ≤ t}

(dependence on baseline covariates is assumed but suppressed for ease of

exposition).

Before going any further, it is important to carefully take into account

the already mentioned feature typical of covariates such as, for example, PSA

level, blood pressure and serum bilirubin level. In our framework, yi(t) repre-

sents an internal time-dependent covariate. More specifically, Kalbfleisch and

Prentice (2002) identify two kinds of time-dependent covariates: external and

internal. The condition which is needed to be satisfy by a time-dependent

covariate x(t) in order to be external is

Pr(x(t) | x(u), T ≥ u) = Pr(x(t) | x(u), T = u), 0 < u ≤ t. (4.1)

The direct consequence is that, whereas the covariate x(·) may influence

the event mechanism over time, its future path up to any time t > u is not

affected by the occurrence of an event at time u. A type of external covariate

is the baseline covariate for which x(t) = x. Its value is measured at the

beginning of the study and it will not change over time. Other examples of

external time-dependent covariates are treatment, air pollution, atmospheric

temperature. Those time-dependent covariates which do not satisfy condition

(4.1) are called internal. This type of covariates have the property that,

in order to be measured, the individual has to be alive and uncensored.
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Their path, thus, carries information on the time of dropout. Since the

covariate yi(t) considered here is internal, a subject who provides longitudinal

measurements up to time t gives also the information that he/she was alive

and uncensored at that time.

Hence, it is more appropriate to focus on the conditional probability of

surviving time u > t given survival up to time t, that is,

πi(u | t) = Pr(T ∗

i ≥ u | T ∗

i > t,Yi(t),n ; θ), (4.2)

where n = {Ti, δi, yi; i = 1, . . . , n} denotes the sample on which the joint

model was fitted and on which we wish to base our predictions. Using the

assumption that the vector of random effects bi undelies both the longitudinal

and survival process (assumption formalized by (3.1)), Rizopoulos (2011)

observed that (4.2) can be written as

Pr(T ∗

i ≥ u | T ∗

i > t,Yi(t); θ)

=

∫
Pr(T ∗

i ≥ u | T ∗

i > t,Yi(t), bi; θ)f(bi | T
∗

i > t,Yi(t); θ) dbi

=

∫
Pr(T ∗

i ≥ u | T ∗

i > t, bi; θ)f(bi | T
∗

i > t,Yi(t); θ) dbi

=

∫
Si {u | Mi(u, bi, θ); θ}

Si {t | Mi(t, bi, θ); θ}
f(bi | T

∗

i > t,Yi(t); θ) dbi, (4.3)

where Si(·) is given by (3.5). It is important to notice that the longitudinal

history Mi(·), approximated by the measurement error model presented in

Section 3.2, is a function of both the random effects and the parameters.

At this point, a first order estimate of πi(u | t) can be obtained using

the empirical Bayes estimate of bi. However, the derivation of its standard

error and or confidence interval is rather difficult since we need to take into

account the variability of both the maximum likelihood and empirical Bayes

estimates. To overcome this problem and produce a valid standard error for

the estimate of πi(u | t), Rizopoulos (2011) proposes to follow an asymptotic
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Bayesian formulation of the joint model and therefore derive the posterior

expectation of (4.2), which can be written as

πi(u | t) = Pr(T ∗

i ≥ u | T ∗

i > t,Yi(t),n )

=

∫
Pr(T ∗

i ≥ u | T ∗

i > t,Yi(t); θ)p(θ | n) dθ. (4.4)

The first part of the integrand is given by (4.3). The second part is the

posterior distribution of the parameters given the observed data. The author,

using arguments of the standard asymptotic Bayesian theory, assumes that

the sample size n is large enough such that {θ | n} can be well approximated

by N(θ̂, V̂ar), with V̂ar = v̂ar(θ̂). Then, in order to obtain a Monte Carlo

estimate of πi(u | t), he proposes the following simulation scheme:

• Step 1: Draw θ(l) ∼ N(θ̂, V̂ar).

• Step 2: Draw b
(l)
i ∼

{
bi | T

∗

i > t,Yi(t), θ
(l)
}
.

• Step 3: Compute

π
(l)
i (u | t) =

Si

{
u | Mi(u, b

(l)
i , θ(l)); θ(l)

}

Si

{
t | Mi(t, b

(l)
i , θ(l)); θ(l)

} . (4.5)

• Step 4: Repeat Steps 1-3 for each subject i, l = 1, . . . , L times, where

L denotes the number of Monte Carlo samples.

If Steps 1 and 3 are straightforward to perform, the posterior distribution

of the random effects given the observed data in Step 2 is not of standard

form. Thus, the author proposes to use the Metropolis-Hastings algorithm1

1The Metropolis-Hastings algorithm is a Markov chain Monte Carlo method used to

simulate complex, nonstandard multivariate distributions. The M-H algorithm is based on

proposing values sampled from an instrumental distribution, which are then accepted with

a certain probability that reflects how likely it is that they are from the target distribution

(Chib and Greenberg 1995). In our case, the instrumental distribution coincides with the

multivariate t distribution while the target distribution is the multivariate distribution of

bi.
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with independent proposals from a multivariate t distribution centered at the

empirical Bayes estimated b̂i, with scale matrix

v̂ar(b̂i) =

{
−

∂2

∂bT∂b
log f(T ∗

i > t,Yi(t), b; θ̂)
∣∣∣
b=b̂i

}
−1

,

and four degrees of freedom. The author chooses a multivariate t pro-

posal for two reasons. First, with other two collegues, he has recently

shown that, as ni increases, the leading term of the log posterior distri-

bution of the random effects is the logarithm of the density of the LMM

model log f
{
Yi(t) | bi; θ

(l)
}
=

∑
j log f

{
yi(tij) | bi; θ

(l)
}
, which is quadratic

in bi and will resemble the shape of a multivariate normal distribution (Ri-

zopoulos, Verbeke and Molenberghs 2008). Second, if ni is small, the heavier

tails of the t distribution will ensure sufficient coverage.

Once the realizations π
(l)
i (u | t), l = 1, . . . , L are available, we can derive

estimates of πi(u | t), such as

π̂i(u | t) = median
{
π
(l)
i (u | t), l = 1, . . . , L

}
(4.6)

or

π̂i(u | t) =
1

L

L∑

i=1

π
(l)
i (u | t). (4.7)

The standard error of π̂i(u | t) can be computed using the sample variance

over the Monte Carlo samples, while its confidence interval can be obtained

using the Monte Carlo sample percentiles.

Both (4.2) and (4.5) formally show how the expected survival probability

is forced to be equal to 1 while u ≤ t and then, when u > t, is allowed to

decrease. Moreover, the estimates of πi(u | t) can easily be updated when

new covariate measures are available. In fact, in Step 2, the multivariate t

distribution of the random effects bi is based on the whole individual covariate

history Yi(t).
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4.3 Considering alternative association struc-

tures

So far we have used the standard association structure for the joint model

formulation, that is, the risk for an event at a specific time point t depends

on the true level of the longitudinal covariate at the same time point. Its

hazard function is defined as

hi(t) = h0(t) exp
{
γT zi + α1mi(t)

}

where the parameter α1 incorporates the strength of the association between

the current level of the covariate and the risk. However, as Fisher and Lin

(1999) noticed, “the choice of a time dependent covariate involves the choice

of a functional form for the time-dependence of the covariate. This choice

is usually not self-evident but may be suggested by biological understanding

or biological hypothesis”. The functional form issue needs to be properly

tackled since choosing the wrong covariate functional form may substantially

influence the derived results. The aim of this work is exactly that of verify

whether different association structures (which can be practically considered

as functional forms) actually influence individual survival probabilities and

to individuate possible patterns characterizing these differences.

In the following we present seven alternative parameterizations to the

standard parameterization which can be use to model the association be-

tween the covariate and the risk.

Slope parameterization

As we have seen in Chapter 1, the CD4 cell counts is a good longitudinal

covariate which helps to monitor HIV progression. A decreasing CD4 count

over time indicates a worsening of patient health. On the contrary, in pa-

tients with PBC, an increasing serum bilirubin level indicates a worsening of

patient condition since it means that the liver is failing. In both cases, the

slope could be a good prognostic factor since it indicates the rate at which
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CD4 count and serum bilirubin level is respectively decreasing or increasing.

In general, the slope of the longitudinal trajectory can be a good indicator of

the velocity with which the disease is progressing. The relative risk survival

sub-model takes the form

hi(t) = h0(t) exp
{
γT zi + α2m

′

i(t)
}

where

m
′

i(t) =
d

dt
mi(t) =

d

dt

{
uT
i (t)β + vTi (t)bi

}
.

Parameter α2 measures how strongly associated is the value of the slope of

the true longitudinal trajectory at time t with the risk for an event at the

same time point.

Current value + Slope parameterization

This parameterization incorporates into the model both the information

about the value of the true covariate at time t and the value of the slope at

the same time point. With this parameterization we can distinguish between

patients with similar mi(t) values but with different slopes. The relative risk

survival sub-model takes the form

hi(t) = h0(t) exp
{
γT zi + α3mi(t) + α3.sm

′

i(t)
}
.

Parameter α3 measures the strength of the association between the true

value of the longitudinal covariate at time point t with the risk for an event

at the same time point, given that m
′

i(t) stays constant. Similarly, α3.s mea-

sures how strongly associated is the value of the slope of the true covariate

trajectory at time t with the risk for an event at the same time point, pro-

vided that mi(t) remains constant.

Cumulative effect parameterization

The two previous parameterizations assume that the risk for an event at a

specific time point t depends on the true covariate level and/or slope value at

the same time point. However, this assumption may not be always realistic.
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Consider, for example, the effect of smoking on the risk of heart attack. The

risk at time t of a patient who used to smoke 30 cigarettes per day and only

in the last period has started to smoke only 3 cigarettes per day may be

much higher than the risk of a patient who has always smoked 3 cigarettes

per day, being equal all the other covariates.

One method to account for the cumulative effect of the longitudinal co-

variate to time point t is to use the integral of the true longitudinal trajectory

up to that time point. The relative risk survival sub-model takes the form

hi(t) = h0(t) exp

{
γT zi + α4

∫ t

0

mi(s)ds

}
.

The parameter α4 measures the strength of the association between the risk

for an event at time point t and the area under the true longitudinal trajec-

tory up to the same time point, which is obtained through the integral value.

Weighted cumulative effect parameterization

The cumulative effect parameterization places the same weight for all past

values of the true longitudinal covariate. In situations where more recent

values have a stronger influence on the risk than previous values, this type of

parameterization may not be completely appropriate. In order to overcome

this problem, we could multiply mi(t) with a weight function that places

different weights at different time points and then compute the integrand of

the adjusted covariate. In this case, the relative risk survival sub-model takes

the form

hi(t) = h0(t) exp

{
γT zi + α5

∫ t

0

g(t− s)mi(s)ds

}
,

where g(·) denotes the weight function. In this work, we have chosen to use

as weight function the standard normal density g(x) = exp(−x2/2). Since

the variance is equal to 1, in practice, the three most recent years of the true

covariate historyMi(t) are associated with the risk for death. The parameter

α5 measures the strength of the association between the risk for an event at

time point t and the area under the longitudinal trajectory of g(t− s)mi(s),

42



0 ≤ s ≤ t.

Lagged value parameterization

There are situations where the risk for an event at time point t is mainly

influenced by the covariate value at a previous time point. For example,

Cavender et al. (1992) analysed data from a study on patients with coronary

artery disease. Each patient was interviewed every 6 months and, among

other variables, his/her smoking status was recorder. Surprisingly, the au-

thors found that the estimated effect of the current smoking was positive

although not statistically significant. From the analysis of the individual pa-

tient smoking histories, it turned out that most of those who had died were

smokers, but many of them had stopped smoking at the last follow-up before

their death. The consequence was that many of the patients who died have

just quit smoking, whereas some of the patients who were still alive were

smoking. This explains why the model gave that unexpected result.

One way to address this problem is to use time-lagged covariates. In this

case, the relative risk survival sub-model takes the form

hi(t) = h0(t) exp
{
γT zi + α6mi [max(t− c, 0)]

}
.

With this parameterization we assume that the risk at time point t depends

on the true value of the longitudinal covariate at time t− c, where c specifies

the time lag of interest. Parameter α6 measures how strongly associated is

the value of the true longitudinal covariate at time t− c with the risk for an

event at time point t.

Lagged slope parameterization

Similarly to what happen for the current slope parameterization, we can con-

sider the effect of the slope value at time t − c on the risk at time t. The

relative risk survival sub-model takes the form

hi(t) = h0(t) exp
{
γT zi + α7m

′

i [max(t− c, 0)]
}
.

Parameter α7 measures how strongly associated is the value of the slope of
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the true longitudinal trajectory at time t − c with the risk for an event at

time point t.

Lagged value + lagged slope parameterization

The last parameterization which will be considered here involves both the

value of the true covariate and the slope of the true longitudinal trajectory

at time point t− c. The relative risk survival sub-model has the form

hi(t) = h0(t) exp
{
γT zi + α8mi [max(t− c, 0)] + α8.sm

′

i [max(t− c, 0)]
}
.

Parameter α8 measures the strength of the association between the true

value of the longitudinal covariate at time point t − c with the risk for an

event at time point t, given that m
′

i(t−c) stays constant. Similarly, α8.s mea-

sures how strongly associated is the value of the slope of the true covariate

trajectory at time t − c with the risk for an event at time point t, provided

that mi(t− c) remains constant.

In Chapter 5 we will use a dataset based on a study involving patients diag-

nosed with primary biliary cirrhosis. We will compare the individual expected

survival probabilities given by the model using the standard parameterization

with those compute by the models using the other seven parameterizations.

However, the eight models will not contain any of the baseline covariates

zi. In fact, each model has its own estimates of the parameters contained

in the vector γ and this affects models’ prediction. Since we want to study

the influence of the association structure on the expected survival proba-

bilities, the presence of the baseline covariates zi in the survival sub-model

would make it difficult to distinguish between their effect and that of the

association structure.

Furthermore, the reader could notice that also the values of the param-

eters defining the parametric baseline hazard function h0(t) and the true

covariate trajectory are not usually the same. However, the influence of this

differences is small in most of the cases, although it should not be ignored a

priori, as we will see in Chapter 5.
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Chapter 5

Comparing expected survival

probabilities: the PBC dataset

5.1 Primary biliary cirrhosis: the disease

The Mayo Clinic website reports that “primary biliary cirrhosis is a disease in

which the bile ducts in your liver are slowly destroyed. Bile, a fluid produced

in your liver, plays a role in digesting food and helps rid your body of worn-

out red blood cells, cholesterol and toxins. When bile ducts are damaged,

as in primary biliary cirrhosis, harmful substances can build up in your liver

and sometimes lead to irreversible scarring of liver tissue (cirrhosis)”(Mayo

Clinic). At the moment, it is not clear what triggers this disease and it is

believed to have an autoimmune etiology.

The typical patient is a middle-aged women who reports fatigue and itch-

ing or who has no symptoms but has been found to have unexplained hep-

atomegaly or abnormal serum liver tests. The natural history of untreated

primary biliary cirrhosis (PBC) is one of gradual progression through four

phases: preclinical, asymptomatic, symptomatic (including systemic and por-

tal hypertensive), and liver insufficiency (Mayo 2008). Despite extensive

studies, medical therapy has not been shown to have a significant impact

in slowing the progression of PBC so that the only truly effective treatment
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is liver transplantation (Markus et al. 1989). Consequently, there has been

considerable interest in developing models which could accurately predict

patients’ survival probabilities in order to better individuate those who are

going to strongly need a new liver within a couple of years. In fact, it has

been found that, from diagnosis to liver failure, can pass more then 20 years

in asymptomatic patients (Pares and Rodes 2003).

Although the four phases are usually respected by most of the patients

(i.e. it is rare that a patient skips one phase), the velocity of disease pro-

gression can significantly change from patient to patient: some patients will

have a relatively slow, benign clinical course whereas others will progress

more rapidly to portal hypertension and liver insufficiency. Thus, the ability

to identify surrogate markers of disease progression is extremely important.

Of the serum tests widely available, serum bilirubin is the single most use-

ful predictor of clinical outcome, although it does not become elevated until

later in the disease process (Mayo 2008).

Serum bilirubin level is the prognostic factor used in our analysis.

5.2 Description of the PBC dataset

This dataset contains information of 312 patients who were enrolled in two

clinical trials evaluating the use of D-penicillamine for treating PBC. Pa-

tients were followed from January 1974 through May 1984. The first visit

was made at the study entry, the second after six months, the third after

one year and then at approximately 1 year intervals. However, as often hap-

pens in longitudinal studies, the visit schedule was not precisely followed. No

treatment benefit in prolonging survival was found so that the follow up was

extended to April 30, 1988 in order to study the natural history of the PBC

disease, i.e. how the disease progresses in time and which factors may influ-

ence such progression. By 1988, 140 (44.9%) patients died, 29 (9.3%) were

transplanted and the other 143 (45.8%) survived. As happened in previous

studies, transplanted patients were censored at the time of transplantation.
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At the end of the study, there were 1945 total visits. The median number of

serum bilirubin values per patient was 5, with a minimum of 1 and a max-

imum of 16 measurements. The median number of years in the study was

6.296, with a minimum of 0.1123 (i.e. 41 days) and a maximum of 14.31

years. Some baseline covariates, such as gender and age, were recorded at

the beginning of the study. Laboratory test results, such as serum biliribin,

albumin and alkaline phosphatase, were measured at each visit.

5.3 Description of the models

The analysis were done using the statistical software R. In particular, Ri-

zopoulos (2010a) presented the R package JM that can be used to fit joint

models with the formulation proposed in this work. Before this package, only

a separate analysis of longitudinal and event time data was possible. The

procedure followed here to fit the eight joint models is composed by three

steps:

• Step 1: fit a proper mixed effect model for the longitudinal covariate

(R package used: lme).

• Step 2: fit a relative risk model for the survival part without using any

covariate (R package used: survival).

• Step 3: fit the joint model using the parameterization that defines the

chosen association structure (R package used: JM).

• Step 4: repeat Step 3 for each of the remaining parameterizations.

In Step 1, we concentrate our attention on modeling the longitudinal tra-

jectory. Since serum bilirubin exhibits a right skewed shape distribution, its

logarithm is preferred (Fleming and Harrington 1991). For the remainder of

this work, our longitudinal covariate will be log(serBilir), where serBilir is

the label given to the original serum bilirubin covariate in the PBC dataset.
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A measurement error model with a quadratic trend was chosen to model

the longitudinal trajectory of log(serBilir). Therefore the model takes the

form

log(serBilir)i(t) = mi(t) + ei(t)

= (β0 + bi0) + (β1 + bi1)t+ (β2 + bi2)t
2 + ei(t), (5.1)

where ei(t) ∼ N(0, σ2) and



b0i

b1i

b2i


 ∼ N






0

0

0


 ,




σ2
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1 σ12
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It should be kept in mind that, in this step, the parameter estimates are only

temporary. Their final values will be calculated in Step 3, where also the

information from the survival part is taken into account. However, the non

significance of the parameter β2 found in this temporary model persists in

all the final longitudinal models (see Table 5.2). Nevertheless, we chose to

keep the fixed quadratic term to preserve interpretability.

Step 2 is only a technical step used to create objects used by the JM package

in Step 3.

In Step 3, all the parameters are estimated simultaneously. Therefore, the

estimates of the survival part are also based on the information contained in

the longitudinal part, and vice versa. We used a piecewise constant function

to model baseline risk function h0(t). More specifically,

h0(t) =

Q∑

q=1

ωqI(rq−1 < t ≤ rq),

where 0 = r0 < r1 < . . . < rQ denotes the split of the time scale, with rQ

being larger that the largest observed time, and ωq denotes the value of the
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hazard in the interval (rq−1, rq]. In our case, Q = 7 and the six time points

that divide the time interval (0, rQ) are the quantiles of the observed event

times (Rizopoulos 2010b).

About the three models containing lagged covariate values and/or lagged

slopes, we used a lag equal to 2 years. In fact, in a separate analysis testing

for different lag times where also baseline covariates were involved, the joint

model with a lag of 2 years was the best model, according to both the Akaike’s

Information Criterion (AIC) and Bayesian Information Criterion (BIC)1.

For ease of exposition, we have labeled with a short name the eight mod-

els corresponding to the eight different parameterizations. See Table 5.1.

Furthermore, when not otherwise specified, we will use the noun ‘covariate’

to indicate the longitudinal variable log(serBilir) without the measurement

error, which coincides with mi(t) in (5.1).

Table 5.2 contains the estimates of the parameters belonging to the longi-

tudinal part of the joint model for each of the eight models. Similarly, Table

5.3 contains the estimates of the parameters of the survival part.

Observing the estimates of the fixed effect parameters in Table 5.2 we

see that they are quite similar. As already announced, the quadratic term is

practically null. Moreover, from the values of the estimates of the covariances

σ01 and σ12, we can see that those patients with a high intercept tend to have

an increasing trend, and that those with an increasing trend have a concave

trajectory.

1Both AIC and BIC are measures of the relative goodness of fit of a statistical model.

They are used when we need to compare models that are not nested so that the classical

likelihood ratio test (LRT) cannot be applied. The AIC and BIC are defined as

AIC = 2p− 2l(θ̂)

BIC = p log(N)− 2l(θ̂),

where −2l(θ̂) is the maximized log-likelihood under the fitted model, θ̂ is the maximum

likelihood estimate of θ, p is the number of parameters in the model, and N is the total

number of observations used to fit the model (Wu 2010). When comparing different

models, the model with the smaller AIC or BIC is to be preferred.
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Model name Parameterization

J1 current value

J2 current slope

J3 current value + current slope

J4 cumulative effect

J5 weighted cumulative effect

J6 lagged value

J7 lagged slope

J8 lagged value + lagged slope

Table 5.1: Model name and corresponding parameterization

Model Model Model Model Model Model Model Model

J1 J2 J3 J4 J5 J6 J7 J8

β0 0.515 0.451 0.500 0.512 0.514 0.516 0.485 0.509

(s.e.) (0.057) (0.043) (0.048) (0.058) 0.058 (0.058) (0.044) (0.053)

β1 0.167 0.172 0.180 0.164 0.162 0.164 0.197 0.186

(s.e.) (0.023) (0.019) (0.022) (0.023) (0.023) (0.022) (0.020) (0.023)

β2 0.001 0.003 0.001 0.001 0.001 0.001 0 0

(s.e.) (0.003) (0.002) (0.002) (0.003) (0.003) (0.003) (0.002) (0.003)

σ2

0
1.001 0.976 0.996 1.001 1.000 1.002 0.960 0.995

σ2

1
0.301 0.295 0.319 0.302 0.304 0.297 0.313 0.315

σ2

2
0.025 0.020 0.025 0.025 0.025 0.024 0.022 0.025

σ01 0.198 0.421 0.275 0.168 0.173 0.185 0.5067 0.286

σ02 0.002 0.019 -0.049 0.017 0.022 -0.004 -0.309 -0.091

σ12 -0.867 -0.739 -0.853 -0.883 -0.873 -0.880 -0.842 -0.869

σ2 0.303 0.311 0.303 0.305 0.304 0.306 0.311 0.304

Table 5.2: Parameter estimates of the longitudinal part of the eight joint

models

Considering the estimates of the survival part in Table 5.3, we notice

that all the parameters are highly significant (p-value < 0.0001). This means

that serum bilirubin, independently of the parameterization used, is strongly

related with the risk for death. For example, according to model J1, each unit

increase of the current value of the covariate is associated with a exp(1.314)

= 3.72-fold increase (95% CI: 3.37; 4.11) in a patient’s risk. According to

model J8, being m
′

i(t − c) fixed, each unit increase of the lagged value of

the covariate is associated with a exp(1.106) = 3.02-fold increase (95% CI:

2.72; 3.36) in the patient’s current risk. Similarly, being mi(t− c) fixed, each

unit increase of the lagged slope is associated with a exp(3.740) = 42.10-fold
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Model Model Model Model Model Model Model Model

J1 J2 J3 J4 J5 J6 J7 J8

αj 1.314 7.241 1.237 0.184 2.435 1.216 6.943 1.106

(s.e.) (0.099) (0.777) (0.115) (0.020) (0.183) (0.092) (0.770) (0.106)

αj.s - - 3.006 - - - - 3.740

(s.e.) - - (0.624) - - - - (0.582)

log(ω1) -4.573 -5.620 -5.641 -2.907 -3.698 -4.026 -5.883 -5.313

(s.e.) (0.258) (0.433) (0.409) (0.155) (0.193) (0.217) (0.479) (0.380)

log(ω2) -4.429 -4.344 -5.211 -2.928 -3.954 -3.607 -4.448 -4.554

(s.e.) (0.274) (0.318) (0.361) (0.180) (0.236) (0.214) (0.334) (0.304)

log(ω3) -4.710 -4.360 -5.352 -3.456 -4.281 -3.960 -4.214 -4.752

(s.e.) (0.318) (0.329) (0.383) (0.257) (0.290) (0.273) (0.319) (0.331)

log(ω4) -4.672 -4.304 -5.257 -3.608 -4.266 -3.976 -3.991 -4.651

(s.e.) (0.370) (0.376) (0.424) (0.331) (0.347) (0.334) (0.354) (0.376)

log(ω5) -4.396 -4.198 -4.973 -3.533 -4.012 -3.748 -3.686 -4.313

(s.e.) (0.343) (0.356) (0.394) (0.315) (0.319) (0.306) (0.315) (0.342)

log(ω6) -4.021 -3.919 -4.729 -3.486 -3.633 -3.420 -3.310 -3.878

(s.e.) (0.353) (0.388) (0.431) (0.379) (0.329) (0.321) (0.333) (0.347)

log(ω7) -4.549 -3.865 -4.752 -5.162 -4.302 -4.235 -3.559 -4.318

(s.e.) (0.477) (0.478) (0.507) (0.605) (0.463) (0.459) (0.450) (0.472)

Table 5.3: Parameter estimates of the survival part of the eight joint models

increase (95% CI: 23.52; 75.34) in the patient’s current risk. Interestingly,

comparing the estimates of α1 and α6 with those of α3 and α8, we see that

the latter are slightly smaller that the former. This suggests that indeed the

trajectory slope adds some information in the model, however, the covariate

value still keeps its importance. The small value of the parameter α4 should

be kept in mind since it will have an important role in understanding the

peculiar behavior characterizing the differences between model J1 and model

J2 survival predictions.

5.4 Expected survival probabilities compari-

son

For each of the eight models, we computed the following expected survival

probabilities (ESPs), which we remind are conditional probabilities: S(t +

∆t | t), where t = 2, 4, 6, 8 years and ∆t = 1, 2, 4 years. Comparing the ESPs

of the eight considered models we found that, indeed, there are differences

which can be attributed to the specific association structure assumed in the

survival sub-model. The ESPs are obtained using the estimator defined by

(4.7). Conclusions would not have changed if we had used the estimator
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defined by (4.6).

We compared the ESPs of the standard joint model, i.e. model J1, with

those of the other seven models. The number of comparisons that can be

made is rather high: there are 12 types of S(t+∆t | t), and 7 ESP comparisons

for each of them. Thus, in total, we analysed 84 comparisons. We noticed

that the reasoning behind the 7 ESP comparisons for one type of S(t+∆t | t)

is also applicable in the other 11 cases. Thus, we have chosen to concentrate

our attention on S(4 | 2). Our choice is base on the fact that, at year 2, the

majority of the patients are still alive and uncensored. Moreover, a ∆t equal

to 2 gives enough time to the ESPs to decrease and thus leave the usually

high values typical of time points immediately after t. We remind, indeed,

that, independently of the risk level of the patient and of the model, ESPs

at time t are always equal to 1 and then start to decrease with a rate which

depends on the risk level attribute to the patient by the model. This first

part of the analysis will be discussed in detail in Section 5.4.1. We will show

how different association structures substantially change survival predictions

using S(4 | 2) as example.

In Section 5.4.2, we will consider another aspect charaterizing the differ-

ences between ESPs. Concentrating on only those patients who were still

alive and uncensored at year 6, we will show how the difference between the

ESP of model J1 with respect to that of the other seven models can change

as ∆t increases.

For ease of exposition, the expected survival probability estimated by

model Ji, i = 1, . . . , 8, will be indicated with ESPi. For example, the ESP

computed by model J1 will be indicated with ESP1.

Finally, before starting with the description of our findings, we wish to

point out one aspect that characterizes the longitudinal part of the models we

are considering here. At the end of Chapter 4, we mentioned that the values

of the parameters defining the longitudinal trajectory differ from model to

model. Observing the trajectories predicted by model J1 with those predicted

by the other models, we noticed that the ‘biggest’ differences belong to model
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J2. The first row of Figure 1 contains the trajectories for patients 180, 133,

and 93 based on the serum bilirubin measurements collected in the first 2

years of study. Likewise, those plotted in the second row are based on the

measurements collected in the first 6 years. Each plot contains the trajectory

predicted by model J1 (solid line) and by model J2 (dashed line). Usually,

the differences between the two curves become more evident in later years.

Moreover, the addiction of new bilirubin values does not always guarantee a

reduction of these differences (for instance, compare the plots of patient 133).

Also the curves predicted by model J7 are sometimes different from those of

model J1, but are closer to them than those predicted by model J2 (results

not shown). About the other models, their curves are, if not coincident, very

close to those of model J1 so that the differences are imperceptible. Having

said that, in order to correctly understand the mechanism underlying the

possible differences between ESP1 and ESP2, it is important to have both

the curve predicted by model J1 and the one predicted by model J2. This

would also help the comparison of ESP2s among different patients.

5.4.1 Comparing ESPs for S(4 | 2)

The probability of surviving year 4, given survival up to year 2, is computed

only for those patients who were still in the study at year 2. These patients

were 278 (89%) of the 312 study participants. Between year 2 and year 4,

53 patients dropped out from the study: 42 actually died whereas 11 were

censored.

ESP1 vs ESP2

The left plot of Figure 5.2 shows the scatter plot of the ESP1 (x-axis) and

ESP2 (y-axis). We see that the disagreement is more evident for those pa-

tients with a low ESP value. For these patients, model J1 tends to be more

pessimist than model J2. The departure from the 1:1 line is due to the 43

patients with difference between ESP1 and ESP2 lower than -0.10. These
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Figure 5.1: Observed log(serBilir) values (black circles) and longitudinal

trajectories predicted by model J1 (solid line) and model J2 (dashed line).

The trajectories of the first row are based on the measurements collected in

the first 2 years of study whereas those in the second row on the measure-

ments collected in the first 6 years.

patients are usually characterized by high serum bilirubin levels at baseline

and low slopes. Thus, for model J1, these patients are high risk patients

while for model J2 are low risk patients. A clear example is given in Figure

5.3 and Table 5.4. Patient 130 presents high covariate levels from the begin-

ning of the study whereas patients 205 and 51 have much lower initial values.

The slopes of patients 130 and 205 are slightly increasing over time whereas

the slope of patient 50 is markedly decreasing. Since model J2 considers only

the trajectory’s slope, the ESP2 of patient 130 is very high in comparison to

the corresponding ESP1. On the other hand, model J1 and model J2 agree

on patient 205: the covariate initial levels are above 1 and the slope is not

ignorable so that both models predict a slight worsening of patient’s health

conditions between year 2 and year 4. Finally, patient 50 is characterized by
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rather low initial covariate values and this strongly affects model J1’s judge-

ment: there is a 90% chance of surviving up to year 4, given that patient 50

survived year 2.

If ESP1 seems not to be so influenced by the rapid increment of the

covariate over time, ESP2 does not ignore it. In this case, model J2 is more

pessimist than model J1 because of the high, although decreasing, slope. The

histogram in Figure 1 shows that most of the differences (66.5%) between

ESP1 and ESP2 are contained in the interval [0, 1) and the 88.6% of them

are smaller than 0.05. The scatter plot nearby displays a tenuous curvature

of the loess curve towards positive values for ESPs closed to 1. These little

positive differences belong to patients with low covariate values, mostly below

1, and a weak increasing trend. This last feature causes model J2 to be a

little more pessimist than model J1.
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Figure 5.2: Scatter plot of ESP1 and ESP2 and histogram of ESP1-ESP2
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Subject ESP1 ESP2 ESP1-ESP2

130 0.31 0.70 0.39

205 0.83 0.84 0.01

51 0.90 0.76 0.14

Table 5.4: Comparison of ESP1 and ESP2 for three patients
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Figure 5.3: Longitudinal trajectories predicted by model J1 (solid line) and

model J2 (dashed line), and observed log(serBilir) (black circles)
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ESP1 vs ESP3

The 95% of the differences between ESP1 and ESP3 belong to the interval

[−0.10, 0.10) meaning that model J1 and model J3 produce very close sur-

vival predictions (see Figure 5.4). Patients 156, 260 and 90 can help us to

understand what happens when the information from the slope is added to

that from the current value. The results are presented in Table 5.5 and Figure

5.5. The covariate trajectory of patient 156 is characterized by covariate val-

ues which are already high at the beginning of the study and slightly increase

over time. The very optimistic prediction made by model J2 is corrected by

model J3. Patient 260 presents a better health condition in comparison to

patient 156, however, the reasoning is the same. On the contrary, model J3

is more pessimist about the future of patient 90 than are models J1 and J2.

Model J3, in fact, combines the effect of the covariate value, which becomes

higher than 2 between year 2 and 4, with that of a slope which, although

decreasing, is still highly positive.
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Figure 5.4: Scatter plot of ESP1 and ESP3 and histogram of ESP1-ESP3
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Subject ESP1 ESP2 ESP3 ESP1-ESP3

156 0.13 0.70 0.28 -0.15

260 0.60 0.75 0.64 -0.04

90 0.62 0.55 0.49 0.13

Table 5.5: Comparison of ESP1, ESP2 and ESP3 for three patients
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Figure 5.5: Longitudinal trajectories predicted by model J1 (solid line) and

model J3 (dashed line), and observed log(serBilir) (black circles)
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ESP1 vs ESP4

74% of the differences between ESP1 and ESP4 belong to the interval [0, 0.10)

while the remaining 26% is below zero. Again, the more evident differences

belong to patients with the lowest survival probabilities, but, as it can be seen

in the scatter plot of Figure 5.6, the dispersion around the 1:1 is rather small.

In this case, two may be the reasons behind this behaviour. First, all the

integrals start from zero independently of the covariate trajectory’s features

and the integral tends to homogenize the trajectory differences, especially in

the very first years of study when trajectories are more similar. Second, the

value of association parameter α4 is not that high (α4 = 0.181) so that a

substantial increase of the integral value is needed in order to significantly

augment the value of the risk function. For example, in order to obtain the

same risk’s increment given by one unit increase of the covariate value, the

integral increment should be equal to 7.141, which is a lot for the types of

longitudinal trajectories considered here. The consequences are not univocal

for all patients. More specifically, they can be divided into two groups: to

the first group belong 207 patients with a EPS1 higher than or equal to

0.794, all the other 71 patients belong to the second group, where ESP1 is

lower than 0.794. The first group generates the tenuous deviation on the

right of the loess curve from the 1:1 line in the scatter plot of Figure 5.6.

Similarly, the negative differences of the second group generate the prominent

deviation towards the left and this deviation increases as ESP1 decreases.

The maximum difference between ESP1 and ESP4 is equal to -0.489.

We use patients 25, 54, and 80 as examples (see Table 5.6 and Figure

5.7). ESP1 is slightly more optimist than model J4. This is probably due

to the fact that the baseline hazard function h0(t) of model J4 is slightly

higher than that of model J1 and to the small value of the parameter α4

which makes the negative integral to be less ‘protective’ than the negative

covariate value. In patient 54, a consistent increasing integral value and a

covariate value which starts around 0.5 and do not reach 2 within year 4

makes the two ESPs to practically agree. On the contrary, the rather high
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Figure 5.6: Scatter plot of ESP1 and ESP4 and histogram of ESP1-ESP4

initial covariate value of patient 80 and its increment over time makes ESP1

decrease more quickly than does the corresponding increment of the integral

with respect to ESP4.

Subject ESP1 ESP4 ESP1-ESP4

25 0.98 0.92 0.05

54 0.84 0.83 0.01

80 0.37 0.63 -0.26

Table 5.6: Comparison of ESP1 and ESP4 for three patients
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Figure 5.7: Longitudinal trajectories predicted by model J1 (solid line) and

model J4 (dashed line), and observed log(serBilir) (black circles)
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ESP1 vs ESP5

Maybe surprisingly, using a weighted cumulative effect greatly reduces the

observed gap between ESP1 and ESP4. All the differences belong to the

interval [−0.10, 0.10] (see Figure 5.8). Evidently, model J1 and model J5, al-

though using a different version of the information contained in the covariate,

reach very close conclusions.

The weighted integral has a much greater influence on the risk function

of model J5 that does the normal integral on that of model J4: while α4 is

equal to 0.184, α5 is equal to 2.435. This means that a one unit increase of

the normal integral is associated with a exp(0.184) = 1.20-fold increase in the

patient’s risk, whereas a one unit increase of the weighted integral produces

a exp(2.435) = 11.42-fold increase in the patient’s risk.
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Figure 5.8: Scatter plot of ESP1 and ESP5 and histogram of ESP1-ESP5

ESP1 vs ESP6

253 (91%) of the differences between ESP1 and ESP6 belong to the inter-

val [−0.10, 0.10) and 226 (81.3%) are contained in the interval [−0.05, 0.05).

Only 25 (9%) patients have an absolute difference higher than 0.10. This

time, there is not a very evident pattern that could explain a negative in-

stead of a positive difference. We see that model J1 tends to be slightly
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more optimist than model J2 with low risk patients (Figure 5.9). In fact,

considering the 188 individuals with a difference in the interval [0, 0.05), 165

(87.8%) of them have a ESP1 higher than 0.90, 13 (6.9%) have a ESP1 be-

tween 0.80 and 0.90 and the other 10 (5.3%) have a ESP1 lower than 0.80.

In general, differences belonging to the interval [-0.10, 0.10] can be ascribable

to the fact that the quantities ESP1 and ESP6 are based on models using

slightly different baseline hazard functions (the estimated baseline hazard of

model J6 is higher than that of model J1) and longitudinal models, and only

marginally to trajectories’ characteristics which are practically constant in

the first four years of study.
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Figure 5.9: Scatter plot of ESP1 and ESP6 and histogram of ESP1-ESP6

For those differences not belonging to that interval, we notice a possible

stronger influence of the different use of the covariate information made by

the two models. For example, patients 254 and 269 have the biggest positive

and negative differences (Figure 5.10 and Table 5.7). Their longitudinal

trajectories are characterized by moderate initial values of the covariate and

quite high slopes. Since, with high and increasing covariate values, the risk

increases more quickly and model J6 considers lagged values, ESP1 is lower

than ESP2. On the contrary, patients 93 and 130 do present a covariate
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increment which is smaller than that of the previous two patients so that

both models predict similar ESPs.

Subject ESP1 ESP6 ESP1-ESP6

254 0.23 0.44 -0.21

269 0.16 0.37 -0.21

93 0.80 0.84 -0.84

130 0.31 0.27 0.04

Table 5.7: Comparison of ESP1 and ESP6 for four patients
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Figure 5.10: Longitudinal trajectories predicted by model J1 (solid line) and

model J4 (dashed line), and observed log(serBilir) (black circles)
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ESP1 vs ESP7

225 (80.9%) are the patients with a difference between ESP1 and ESP7 in

the interval [-0.10, 0.10) whereas 43 (15.5%) patients have differences be-

longing to the interval (-0.70, -0.20). These patients are the same individuals

which were pointed out in the comparison between the ESPs of model J1

and model J2: their trajectories are mostly characterized by high covariate

initial values and slopes, which are constant or slightly decreasing. However,

the differences observed in this case tend to be more accentuated. In fact,

comparing the scatter plots in Figure 5.2 and Figure 5.11 we can see that

the loess function in the latter plot tends to stay higher.
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Figure 5.11: Scatter plot of ESP1 and ESP7 and histogram of ESP1-ESP7

As we have noticed before, the information given by the slope, and in this

case the lagged slope, can result in quite different expected survival proba-

bilities with respect to the information given by the current value. Table

5.8 and Figure 5.12 give a further example. According to model J7, patients

156, 130, 241, and 214 have practically the same probability of surviving

year 4 given that they were alive at year 2: ESP7 is equal to 0.82 for patients

156 and 241, while it is equal to 0.81 for patients 130 and 214. However,

model J1 rather disagrees: the ESP1s are equal to 0.13, 0.66, 0.31 and 0.90,
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respectively. The reason is made clearer looking at the covariate trajectories

in Figure 5.12 fitted according to model J7. Indeed, patients 156, 241, and

214 have the same (lagged) slope in practice, and this explains the practi-

cally equal ESP7s. On the contrary, their trajectories are quite different in

the starting values and this strongly affects the ESPs of model J1: since pa-

tient 156 has the highest starting value, his/her survival probability is very

low, whereas patient 214, with a starting value close to zero, has the highest

survival probability.

Subject ESP1 ESP7 ESP1-ESP7

156 0.13 0.82 -0.69

130 0.31 0.81 -0.50

241 0.66 0.82 -0.16

214 0.90 0.81 0.09

Table 5.8: Comparison of ESP1 and ESP7 for four patients
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Figure 5.12: Longitudinal trajectories predicted by model J7 of patients 156

(solid line), 130 (dashed line), 241 (dotted line), and 214 (dashed and dotted

line)
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ESP1 vs ESP8

Model J8 uses the information from both the lagged value and the lagged

slope so that the discrepancies seen in the previous comparison are greatly

reduced (see Figure 5.13). 262 (94.2%) differences are in the interval [-0.10,

0.10), with 241 (86.7%) being in the interval [-0.05, 0.05). The 16 (5.8%)

absolute differences which are higher than 0.10, belong to the same high risk

patients pointed out in the previous comparisons. The information brought

into the model by the lagged covariate value makes model J8 to be less

optimist than model J7 for those patients.
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Figure 5.13: Scatter plot of ESP1 and ESP8 and histogram of their difference

Table 5.9 reports the ESPs of model J1 and model J8 for the four patients

already considered in Table 5.8. In particular, the difference between ESP1

and ESP8 is about -0.20 for both patients 156 and 130, whereas the difference

between ESP1 and ESP7 was -0.69 for patient 156 and -0.50 for patient 130.
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Subject ESP1 ESP8 ESP1-ESP8

156 0.13 0.32 -0.19

130 0.31 0.51 -0.20

241 0.66 0.69 -0.03

214 0.90 0.89 0.01

Table 5.9: Comparison of ESP1 and ESP8 for four patients
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5.4.2 The time interval effect on ESPs differences

In this part of the analysis, we wish to monitor the changes in the ESP

differences when ∆t increases. This time, we are going to use only those

patients who survived at least 6 years. In fact, for these patients the number

of serum bilirubin measurements used to estimate the longitudinal part of

the model is higher so that the longitudinal trajectories will be closer to the

‘true’ final trajectories, which are those obtained using all the measurement

values actually available at the end of the study. For example, in Figure

5.14, the longitudinal trajectories of patients 96 and 142 are shown. The

trajectories of the first and the second row are based on the measurements

available at year 2 and 6, respectively. Since the measurements of patient 96

are nearly constant between year 2 and year 6, the trajectories are practically

the same. On the contrary, patient 142 presents an increasing trend which

makes his/her trajectory at year 6 steeper than that at year 2. The effect on

the predicted trajectory when new measurent are available can be also seen

in Figure 5.1.

The number of patients involved in this analysis are 166 (53%). It should

always be kept in mind that these patients are a selected group of all the 312

patient participating to the study. More specifically, the major part of those

patients who were already at high risk at year 2 (according to model J1) did

not survived until year 6. Consequently, most of the 166 patients considered

now had a low or moderate risk of death at year 2. Their risk level at year

6 depends on the serum bilirubin evolution between year 2 and year 6.

In the following part, we will show how differences between the ESPs pre-

dicted by model J1 and the other models as the time interval ∆t increases.

For each comparison, we will report a figure containing the ESPs’ scatter

plots for S(7 | 6), S(8 | 6) and S(10 | 6), a table containing the ESPs for

S(7 | 6), S(8 | 6) and S(10 | 6) and the respective differences, and a fig-

ure which will represent these differences. In order to give more specific

examples, we will use 20 patients whose covariate trajectories are considered

‘representative’ of the different trajectory types characterizing the 166 pa-
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tients involved in the analysis. The identification numbers of the selected

patients are: 135, 218, 19, 96, 34, 48, 136, 99, 258, 166, 39, 161, 133, 85,

180, 104, 46, 142, 51, 93. Patients are listed according to their ESP1 value

for S(7 | 6) in a descending order. Figures from 5.15 to 5.19 contain the

predicted trajectories of the 20 selected patients fitted according to model J1

(solid line) and model J2 (dashed line).

For practical reasons, the differences between ESP1 and ESPj, j =

2, ..., 8, will be indicated with DIFF1j. Moreover, in general, when we will

describe DIFF1j, we will mean its absolute value. For example, if we say

0 2 4 6 8 10

−
1

1
2

3
4

5

Patient 96

Year

lo
g(

se
rB

ili
r)

0 2 4 6 8 10

−
1

1
2

3
4

5
Patient 142

Year

lo
g(

se
rB

ili
r)

0 2 4 6 8 10

−
1

1
2

3
4

5

Patient 96

Year

lo
g(

se
rB

ili
r)

0 2 4 6 8 10

−
1

1
2

3
4

5

Patient 142

Year

lo
g(

se
rB

ili
r)

Figure 5.14: Longitudinal trajectories predicted by model J1 (solid line)

and model J2 (dashed line) at year 2 (first row). Longitudinal trajectories

predicted by model J1 (solid line) and model J2 (dashed line) at year 6

(second row)
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that DIFF1j is increasing over time it could either be that DIFF1j was -0.05

and becomes -0.20 or that diff1j was 0.05 and becomes 0.20. The context or

explicit indications will clarify in which case we are.
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Figure 5.15: Longitudinal trajectories predicted by model J1 (solid line) and

model J2 (dashed line), and observed log(serBilir) (black circles)
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Figure 5.16: Longitudinal trajectories predicted by model J1 (solid line) and

model J2 (dashed line), and observed log(serBilir) (black circles)
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Figure 5.17: Longitudinal trajectories predicted by model J1 (solid line) and

model J2 (dashed line), and observed log(serBilir) (black circles)
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Figure 5.18: Longitudinal trajectories predicted by model J1 (solid line) and

model J2 (dashed line), and observed log(serBilir) (black circles)
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Figure 5.19: Longitudinal trajectories predicted by model J1 (solid line) and

model J2 (dashed line), and observed log(serBilir) (black circles)
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ESP1 vs ESP2
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Figure 5.20: Scatter plots of ESP1 and ESP2 for S(7 | 6), S(8 | 6), and

S(10 | 6)

As it can be seen in Figure 5.20, as ∆t increases, the differences between

ESP1 and ESP2 tends to increase, however the pattern is not equal for all

patients. In fact, Figure 5.21 and Table 5.10 show that model J1 tends to be

more optimist than model J2 for patients with the highest S(7 | 6) values (i.e.

patients on the left of Figure 5.21). On the contrary, model J1 is more pes-

simist than model J2 for those patients with the lowest S(7 | 6) (i.e. patients

on the right of Figure 5.21). We give some examples. Patients 19, 96 and 34

have the biggest (positive) differences since their covariate values tends to

stay below 0 for several years after the study entry, and then start to slowly

increase. Model J2 is particularly sensitive to this increment while model J1,

since the current covariate values are still low, is more positive. Models J1

and J2 substantially agree on the ESPs of patients 99 and 258: their slope

is not ignorable and their covariate values are above zero. Patients 93, 51,

and 142 have the biggest (negative) differences: ESP2 does not decrease as

fast as ESP1 so that the DIFF12 increases over time. The fast decrement

of ESP1 is attributable to the quite high covariate values which characterize

patients’ trajectories, especially between year 6 and year 10. On the other
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hand, model J2 sees a current slope which is decreasing in that interval. On

the contrary, patients 46 have a high and increasing current slopes which

makes DIFF12 decrease over time.
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Figure 5.21: DIFF12 for S(7 | 6) [circle], S(8 | 6) [square], and S(10 | 6)

[triangle]

Now, we wish to focus our attention on two groups of patients. In the

first group we have patients 161, 133, 85, 180, and 104. In the second we

have patients 142, 51, 93. We see that DIFF12 at year 8 and DIFF12 at year

10 are more far apart in the first group than in the second (see Figure 5.21).

In particular, what happen to patient 93 is emblematic: DIFF12 decreases

between year 8 and 10. We call this the low-ESP effect and it can be well

understood looking at Figure 5.22 and Table 5.10. The ESP1 of patient 93

at year 8 is already very low (i.e. ESP1 = 0.095). The consequence is that

ESP1 will not decrease much further during the subsequent 2 years since

ESPs have zero as lower boundary. On the contrary, ESP2 at year 8 is equal

to 0.618 so that it can significantly decrease, shortening the gap with ESP1.

Conversely, patient 104 has a higher ESP1 at year 8 than patient 93 and thus

his/her DIFF12 is immune to the low-ESP effect.
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S(7 | 6) S(8 | 6) S(10 | 6)

Patient ESP1 ESP2 DIFF12 ESP1 ESP2 DIFF12 ESP1 ESP2 DIFF12

135 0.996 0.981 0.015 0.991 0.955 0.036 0.973 0.872 0.101

218 0.995 0.974 0.021 0.989 0.940 0.049 0.965 0.839 0.126

19 0.995 0.958 0.037 0.986 0.895 0.091 0.944 0.711 0.233

96 0.992 0.962 0.030 0.980 0.907 0.073 0.925 0.751 0.174

34 0.984 0.933 0.051 0.958 0.846 0.112 0.842 0.647 0.195

48 0.980 0.963 0.017 0.950 0.911 0.039 0.838 0.756 0.082

136 0.975 0.953 0.022 0.938 0.897 0.041 0.809 0.757 0.052

99 0.975 0.955 0.020 0.935 0.896 0.039 0.767 0.722 0.045

258 0.963 0.931 0.032 0.906 0.853 0.053 0.718 0.688 0.030

166 0.962 0.868 0.094 0.881 0.675 0.206 0.457 0.297 0.160

39 0.951 0.853 0.098 0.851 0.716 0.135 0.470 0.485 -0.015

161 0.890 0.952 -0.062 0.754 0.897 -0.143 0.477 0.780 -0.303

133 0.878 0.935 -0.057 0.725 0.871 -0.146 0.421 0.746 -0.325

85 0.866 0.862 0.004 0.659 0.711 -0.052 0.214 0.431 -0.217

180 0.789 0.870 -0.081 0.547 0.720 -0.173 0.174 0.447 -0.273

104 0.755 0.813 -0.058 0.461 0.674 -0.213 0.114 0.488 -0.374

46 0.726 0.737 -0.011 0.378 0.491 -0.113 0.038 0.177 -0.139

142 0.617 0.824 -0.207 0.298 0.700 -0.402 0.066 0.546 -0.480

51 0.548 0.833 -0.285 0.235 0.729 -0.494 0.048 0.611 -0.563

93 0.370 0.768 -0.398 0.095 0.618 -0.523 0.006 0.450 -0.444

Table 5.10: Comparison of ESP1, ESP2, and DIFF12 over time

0.
0

0.
4

0.
8

Subject 104

Time

P
r(

T
i≥

u 
| T

i>
t,

y~
i(t

))

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

Subject 104

Time

P
r(

T
i≥

u 
| T

i>
t,

y~
i(t

))

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

Subject 93

Time

P
r(

T
i≥

u 
| T

i>
t,

y~
i(t

))

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

Subject 93

Time

P
r(

T
i≥

u 
| T

i>
t,

y~
i(t

))

0 2 4 6 8 10 12

Figure 5.22: Comparison of ESP1 (first column) and ESP2 (second column)

of two patients. The solid line depicts the mean of πi(u | t) over the Monte

Carlo samples. The dashed line depicts a 95% pointwise confidence intervals

based on the quantiles of πi(u | t) over the Monte Carlo samples.
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ESP1 vs ESP3
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Figure 5.23: Scatter plots of ESP1 and ESP3 for S(7 | 6), S(8 | 6), and

S(10 | 6)

Model J1 and J3 tend to give closer ESPs than model J2 as we can see

from Figure 5.23 and Figure 5.24. In general, from Figure 5.24, we can see

that differences start to reach consistent values when ∆t = 4. In fact, when

∆ = 1, ∆t = 2, and ∆t = 4 there are , respectively, 3, 9, and 24 differences

which are bigger than 0.10 (but smaller than 0.20). The highest negative

differences belong to patients with a longitudinal trajectory similar to that

of patients 161 and 51: their slopes are small and decreasing between year

6 and 10 so that model J3 tends to be more optimist. The influence of an

increasing slope on ESP3 is made quite evident if we consider patient 46 and

166: both their trajectories have a strongly increasing slope after year 4 but

patient 46 has much higher initial covariate values. First we analyse patient

46. DIFF13 at year 7 is equal to 0.143 so that model J1 is more optimist than

model J3 which is influenced by the high value of the current slope. Between

year 7 and 8, DIFF13 stays constant in practice but between year 8 and 10

strongly decreases so that, at year 10, it is nearly zero. We remind that in

model J1, the current covariate value has more weight than in model J3,

thus the high covariate values between year 8 and 10 allow ESP1 to decrease
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more quickly than ESP3 and reach similar values. Now we analyse patient

166. At year 7, ESP3 is only slightly lower than ESP1. However, in this case,

ESP3 will decrease more rapidly than ESP1 since patient’s covariate value

exceeds 2 only after year 8.
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Figure 5.24: DIFF13 for S(7 | 6) [circle], S(8 | 6) [square], and S(10 | 6)

[triangle]
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S(7 | 6) S(8 | 6) S(10 | 6)

Patient ESP1 ESP3 DIFF13 ESP1 ESP3 DIFF13 ESP1 ESP3 DIFF13

135 0.996 0.996 0 0.991 0.989 0.002 0.973 0.944 0.029

218 0.995 0.996 -0.001 0.989 0.989 0 0.965 0.960 0.005

19 0.995 0.994 0.001 0.986 0.983 0.003 0.944 0.910 0.034

96 0.992 0.992 0 0.980 0.976 0.004 0.925 0.884 0.041

34 0.984 0.980 0.004 0.958 0.943 0.015 0.842 0.774 0.068

48 0.980 0.984 -0.004 0.950 0.958 -0.008 0.838 0.849 -0.011

136 0.975 0.975 0 0.938 0.931 0.007 0.809 0.786 0.023

99 0.975 0.981 -0.006 0.935 0.949 -0.014 0.767 0.821 -0.054

258 0.963 0.960 0.003 0.906 0.894 0.012 0.718 0.677 0.041

166 0.962 0.917 0.045 0.881 0.726 0.155 0.457 0.284 0.173

39 0.951 0.916 0.035 0.851 0.760 0.091 0.470 0.374 0.096

161 0.890 0.924 -0.034 0.754 0.828 -0.074 0.477 0.627 -0.15

133 0.878 0.901 -0.023 0.725 0.781 -0.056 0.421 0.566 -0.145

85 0.866 0.807 0.059 0.659 0.564 0.095 0.214 0.234 -0.020

180 0.789 0.755 0.034 0.547 0.487 0.060 0.174 0.195 -0.021

104 0.755 0.713 0.042 0.461 0.474 -0.013 0.114 0.241 -0.127

46 0.726 0.583 0.143 0.378 0.235 0.143 0.038 0.033 0.005

142 0.617 0.628 -0.011 0.298 0.394 -0.096 0.066 0.189 -0.123

51 0.548 0.613 -0.065 0.235 0.382 -0.147 0.048 0.224 -0.176

93 0.370 0.436 -0.066 0.095 0.197 -0.102 0.006 0.071 -0.065

Table 5.11: Comparison of ESP1, ESP3, and DIFF13 over time
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ESP1 vs ESP4
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Figure 5.25: Scatter plots of ESP1 and ESP4 for S(7 | 6), S(8 | 6), and

S(10 | 6)

From Figure 5.25 we can see that, also in this case, the biggest differences

belong to medium and high risk patients, with model J1 being, in general,

more pessimist than model J4.

Figure 5.26 and Table 5.12, however, show that high differences at year

7 tend to decrease as time passes and to be particularly close to zero at

year 10. On the other hand, several differences which were small at year

7, tend to increase as time passes. To the first group belong patients 51,

93, 142, and 104. Their trajectories are characterized by covariate values

close to zero at the beginning of the study and a rapid increase over time

which makes them reach very high covariate values, especially between year

6 and 10. A consequence is that the value of the integral increases a lot in

four years thus making ESP4 decrease rapidly. To the second group belong

patients 39, 166, and 161. Patients 39 and 166 have covariate values which

stay below one at least until year 6 and then start to rapidly increase. On

the contrary, patient 161 has covariate values which are slightly above one

at the beginning of the study and are not expected to exceed two in the

following years. The reduction of the gap between ESP1 and ESP4 among
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patients of the first group is attributable to both the rapid increment of the

integral after year 6 and to the low-ESP effect. Figure 5.27 shows it quite

clearly. Indeed, considering patient 104, DIFF16 decreases over time but is

still bigger than 0.10 since his/her ESP1 at year 7 and 8 is still high (i.e.

ESP1 = 0.755 and ESP1 = 0.461 respectively, see Table 5.12). Thus, ESP1

can significantly decrease and be still lower than ESP6. On the contrary,

ESP1 at year 7, but especially at year 8, are already low (i.e. ESP1 = 0.37

and ESP1 = 0.095, respectively) so that it cannot decrease much further.

Therefore, ESP6 has the opportunity to reach ESP1. For patients 39 and

166, DIFF14 is increasing over time since their integrals are still small at

year 6 and, although increasing, ESP6 does not decrease as fast as ESP1.

On the other hand, the reasoning behind patient 161 is slightly different.

ESP6 decreases more quickly than ESP1 since integral at year 6 is already

consistent and keeps increasing significantly. On the contrary, ESP1 tends to

decrease slowly since the covariate value is not that high and the increment

between year 6 and 10 is truly small.
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Figure 5.26: DIFF14 for S(7 | 6) [circle], S(8 | 6) [square], and S(10 | 6)

[triangle]
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S(7 | 6) S(8 | 6) S(10 | 6)

Patient ESP1 ESP4 DIFF14 ESP1 ESP4 DIFF14 ESP1 ESP4 DIFF14

135 0.996 0.988 0.008 0.991 0.976 0.015 0.973 0.955 0.018

218 0.995 0.987 0.008 0.989 0.974 0.015 0.965 0.949 0.016

19 0.995 0.987 0.008 0.986 0.975 0.011 0.944 0.952 -0.008

96 0.992 0.981 0.011 0.980 0.961 0.019 0.925 0.921 0.004

34 0.984 0.974 0.010 0.958 0.945 0.013 0.842 0.876 -0.034

48 0.980 0.950 0.030 0.950 0.895 0.055 0.838 0.769 0.069

136 0.975 0.960 0.015 0.938 0.914 0.024 0.809 0.800 0.009

99 0.975 0.956 0.019 0.935 0.905 0.030 0.767 0.783 -0.016

258 0.963 0.950 0.013 0.906 0.888 0.018 0.718 0.727 -0.009

166 0.962 0.949 0.013 0.881 0.887 -0.006 0.457 0.709 -0.252

39 0.951 0.966 -0.015 0.851 0.924 -0.073 0.470 0.792 -0.322

161 0.890 0.837 0.053 0.754 0.642 0.112 0.477 0.254 0.223

133 0.878 0.875 0.003 0.725 0.717 0.008 0.421 0.346 0.075

85 0.866 0.850 0.016 0.659 0.662 -0.003 0.214 0.248 -0.034

180 0.789 0.758 0.031 0.547 0.486 0.061 0.174 0.091 0.083

104 0.755 0.887 -0.132 0.461 0.727 -0.266 0.114 0.306 -0.192

46 0.726 0.781 -0.055 0.378 0.508 -0.130 0.038 0.067 -0.029

142 0.617 0.825 -0.208 0.298 0.582 -0.284 0.066 0.120 -0.054

51 0.548 0.791 -0.243 0.235 0.510 -0.275 0.048 0.070 -0.022

93 0.370 0.668 -0.298 0.095 0.309 -0.214 0.006 0.011 -0.005

Table 5.12: Comparison of ESP1, ESP4, and DIFF14 over time
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Figure 5.27: Comparison of ESP1 (first column) and ESP4 (second column)

of two patients. The solid line depicts the mean of πi(u | t) over the Monte

Carlo samples. The dashed line depicts a 95% pointwise confidence intervals

based on the quantiles of πi(u | t) over the Monte Carlo samples.
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ESP1 vs ESP5
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Figure 5.28: Scatter plots of ESP1 and ESP2 for S(7 | 6), S(8 | 6), and

S(10 | 6)

Figure 5.28 shows that model J1 and model J5, although using the covari-

ate information in a different way, they do predict very similar ESP values.

We report Figure 5.29 and Table 5.13 for completeness.

S(7 | 6) S(8 | 6) S(10 | 6)

Patient ESP1 ESP5 DIFF15 ESP1 ESP5 DIFF15 ESP1 ESP5 DIFF15

135 0.996 0.994 0.002 0.991 0.988 0.003 0.973 0.963 0.010

218 0.995 0.993 0.002 0.989 0.982 0.007 0.965 0.953 0.012

19 0.995 0.993 0.002 0.986 0.984 0.002 0.944 0.937 0.007

96 0.992 0.989 0.003 0.980 0.974 0.006 0.925 0.918 0.007

34 0.984 0.982 0.002 0.958 0.950 0.008 0.842 0.858 -0.016

48 0.980 0.974 0.006 0.950 0.938 0.012 0.838 0.826 0.012

136 0.975 0.969 0.006 0.938 0.928 0.010 0.809 0.778 0.031

99 0.975 0.970 0.005 0.935 0.937 -0.002 0.767 0.766 0.001

258 0.963 0.958 0.005 0.906 0.901 0.005 0.718 0.703 0.015

166 0.962 0.962 0 0.881 0.907 -0.026 0.457 0.566 -0.109

39 0.951 0.961 -0.01 0.851 0.875 -0.024 0.470 0.592 -0.122

161 0.890 0.876 0.014 0.754 0.753 0.001 0.477 0.429 0.048

133 0.878 0.878 0 0.725 0.740 -0.015 0.421 0.399 0.022

85 0.866 0.873 -0.007 0.659 0.705 -0.046 0.214 0.241 -0.027

180 0.789 0.801 -0.012 0.547 0.577 -0.003 0.174 0.182 -0.008

104 0.755 0.801 -0.046 0.461 0.561 -0.100 0.114 0.132 -0.018

46 0.726 0.772 -0.046 0.378 0.457 -0.079 0.038 0.058 -0.02

142 0.617 0.685 -0.068 0.298 0.422 -0.124 0.066 0.064 0.002

51 0.548 0.627 -0.079 0.235 0.320 -0.085 0.048 0.051 -0.003

93 0.370 0.483 -0.113 0.095 0.159 -0.064 0.006 0.007 -0.001

Table 5.13: Comparison of ESP1, ESP5, and DIFF15 over time
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Figure 5.29: DIFF15 for S(7 | 6) [circle], S(8 | 6) [square], and S(10 | 6)

[triangle]
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ESP1 vs ESP6
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Figure 5.30: Scatter plots of ESP1 and ESP2 for S(7 | 6), S(8 | 6), and

S(10 | 6)

Looking at Figure 5.30 we see that there are very few differences between

ESP1 and ESP6 which are lower than -0.10: we have 4, 9, and 7 patients

for S(7 | 6), S(8 | 6), and S(10 | 6), respectively. As happened before, those

patients showing high differences at year 7 and 8 do not coincide with those

showing high differences at year 10. For example, the four high DIFF16s at

year 7 tend to decrease with time, whereas those DIFF16s which which are

lower that -0.10 at year 10 where smaller at year 7 and 8. This behaviour

is strictly linked to the different longitudinal trajectories. Patients with de-

creasing DIFF16s have longitudinal trajectories similar to those of patients

93 and 142, which are characterized by high covariate values, especially after

year 6. Since model J6 considers at year t the covariate values at year t− 2,

ESP6 decrease more slowly than ESP1 with this type of trajectories. The

decrement of DIFF16 with time is mostly due to the low-ESP effect. As

exampe, this time we consider patient 142. DIFF17 at year 7, 8, and 10 is

equal to -0.130, -0.152, and -0.004, respectively. Thus, it slowly increases

between year 7 and 8 and then decreases until year 10. In Figure 5.32 we

see that ESP1 decreases faster than ESP6. However, the ESP1 decrement
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rate is slowing after year 9 and this gives to ESP6 the opportunity to reach

ESP1 at year 10. Apart from the lower boundary issue, the same reasoning

is applicable when trajectories similar to those of patients 39 and 166 are

involved: since model J6 uses lagged covariate values, which are lower than

the current values, ESP6 decrease more slowly than ESP1 and this become

more evident at year 10 (see Figure 5.32).
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Figure 5.31: DIFF16 for S(7 | 6) [circle], S(8 | 6) [square], and S(10 | 6)

[triangle]
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S(7 | 6) S(8 | 6) S(10 | 6)

Patient ESP1 ESP6 DIFF16 ESP1 ESP6 DIFF16 ESP1 ESP6 DIFF16

135 0.996 0.992 0.004 0.991 0.984 0.007 0.973 0.960 0.013

218 0.995 0.991 0.004 0.989 0.979 0.010 0.965 0.944 0.021

19 0.995 0.991 0.004 0.986 0.980 0.006 0.944 0.942 0.002

96 0.992 0.986 0.006 0.980 0.969 0.011 0.925 0.916 0.009

34 0.984 0.980 0.004 0.958 0.953 0.005 0.842 0.859 -0.017

48 0.980 0.970 0.010 0.950 0.935 0.015 0.838 0.836 0.002

136 0.975 0.966 0.009 0.938 0.924 0.014 0.809 0.797 0.012

99 0.975 0.967 0.008 0.935 0.926 0.009 0.767 0.804 -0.037

258 0.963 0.956 0.007 0.906 0.896 0.010 0.718 0.697 0.021

166 0.962 0.966 -0.004 0.881 0.918 -0.037 0.457 0.701 -0.244

39 0.951 0.965 -0.014 0.851 0.910 -0.059 0.470 0.671 -0.201

161 0.890 0.865 0.025 0.754 0.717 0.037 0.477 0.415 0.062

133 0.878 0.873 0.005 0.725 0.719 0.006 0.421 0.382 0.039

85 0.866 0.882 -0.016 0.659 0.734 -0.075 0.214 0.362 -0.148

180 0.789 0.791 -0.002 0.547 0.566 -0.019 0.174 0.172 0.002

104 0.755 0.849 -0.094 0.461 0.637 -0.176 0.114 0.199 -0.085

46 0.726 0.797 -0.071 0.378 0.546 -0.168 0.038 0.077 -0.039

142 0.617 0.747 -0.13 0.298 0.450 -0.152 0.066 0.071 -0.005

51 0.548 0.678 -0.13 0.235 0.356 -0.121 0.048 0.048 0

93 0.370 0.572 -0.202 0.095 0.233 -0.138 0.006 0.012 -0.006

Table 5.14: Comparison of ESP1, ESP6, and DIFF16 over time

90



0.
0

0.
4

0.
8

Subject 142

Time

P
r(

T
i≥

u 
| T

i>
t,

y~
i(t

))

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

Subject 142

Time

P
r(

T
i≥

u 
| T

i>
t,

y~
i(t

))

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

Subject 166

Time

P
r(

T
i≥

u 
| T

i>
t,

y~
i(t

))

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

Subject 166

Time

P
r(

T
i≥

u 
| T

i>
t,

y~
i(t

))

0 2 4 6 8 10 12

Figure 5.32: Comparison of ESP1 (first column) and ESP6 (second column)

of two patients. The solid line depicts the mean of πi(u | t) over the Monte

Carlo samples. The dashed line depicts a 95% pointwise confidence intervals

based on the quantiles of πi(u | t) over the Monte Carlo samples.
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ESP1 vs ESP7
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Figure 5.33: Scatter plots of ESP1 and ESP7 for S(7 | 6), S(8 | 6), and

S(10 | 6)

Comparing Figure 5.20 with Figure 5.33 and Figure 5.21 with Figure

5.34 we see that the patterns are the same. However, comparing ESP7s with

ESP2s, we notice that model J7 is slightly more optimist or more pessimist

than model J2. Again, this behaviour is strictly linked to the patient’s lon-

gitudinal trajectory. Since model J7 uses lagged slope values, ESP7s are

higher than ESP2s if the current slope is increasing after year 6. In fact,

model J7 uses smaller slope values. On the contrary, if the current slope is

decreasing, ESP7 will be lower than ESP2 because ESP7 uses higher slope

values. Comparing the results in Table 5.15 and Table 5.10, we see that, in

the former case, DIFF17 tends to be bigger than DIFF12 (see, for instance,

patients 135, 96, 218, 46), whereas, in the latter case, it will be smaller (see,

for instance, patients 166, 133, 142, 51, 93).
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Figure 5.34: DIFF17 for S(7 | 6) [circle], S(8 | 6) [square], and S(10 | 6)

[triangle]

S(7 | 6) S(8 | 6) S(10 | 6)

Patient ESP1 ESP7 DIFF17 ESP1 ESP7 DIFF17 ESP1 ESP7 DIFF17

135 0.996 0.979 0.017 0.991 0.948 0.043 0.973 0.839 0.134

218 0.995 0.970 0.025 0.989 0.921 0.068 0.965 0.745 0.220

19 0.995 0.971 0.024 0.986 0.924 0.062 0.944 0.744 0.200

96 0.992 0.967 0.025 0.980 0.913 0.067 0.925 0.721 0.204

34 0.984 0.948 0.036 0.958 0.873 0.085 0.842 0.658 0.184

48 0.980 0.974 0.006 0.950 0.936 0.014 0.838 0.809 0.029

136 0.975 0.956 0.019 0.938 0.895 0.043 0.809 0.728 0.081

99 0.975 0.963 0.012 0.935 0.910 0.025 0.767 0.750 0.017

258 0.963 0.930 0.033 0.906 0.839 0.067 0.718 0.625 0.093

166 0.962 0.932 0.030 0.881 0.794 0.087 0.457 0.381 0.076

39 0.951 0.846 0.105 0.851 0.661 0.190 0.470 0.346 0.124

161 0.890 0.955 -0.065 0.754 0.903 -0.149 0.477 0.783 -0.306

133 0.878 0.908 -0.030 0.725 0.810 -0.085 0.421 0.614 -0.193

85 0.866 0.930 -0.064 0.659 0.825 -0.166 0.214 0.560 -0.346

180 0.789 0.929 -0.140 0.547 0.833 -0.286 0.174 0.599 -0.425

104 0.755 0.735 0.020 0.461 0.521 -0.060 0.114 0.255 -0.141

46 0.726 0.854 -0.128 0.378 0.637 -0.259 0.038 0.208 -0.170

142 0.617 0.695 -0.078 0.298 0.480 -0.182 0.066 0.254 -0.188

51 0.548 0.643 -0.095 0.235 0.441 -0.206 0.048 0.251 -0.203

93 0.370 0.666 -0.296 0.095 0.431 -0.336 0.006 0.194 -0.188

Table 5.15: Comparison of ESP1, ESP7, and DIFF17 over time
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Figure 5.35: Scatter plots of ESP1 and ESP8 for S(7 | 6), S(8 | 6), and

S(10 | 6)

Also in this case, as already happened in the comparison between ESP1s

and ESP3s, model J8 give results which are very close to those of model J1

(see Figure 5.35). We report Figure 5.36 and Table 5.16 for completeness.

S(7 | 6) S(8 | 6) S(10 | 6)

Patient ESP1 ESP8 DIFF18 ESP1 ESP8 DIFF18 ESP1 ESP8 DIFF18

135 0.996 0.996 0 0.991 0.991 0 0.973 0.970 0.003

218 0.995 0.994 0.001 0.989 0.986 0.003 0.965 0.949 0.016

19 0.995 0.995 0 0.986 0.986 0 0.944 0.936 0.008

96 0.992 0.991 0.001 0.980 0.974 0.006 0.925 0.884 0.041

34 0.984 0.982 0.002 0.958 0.948 0.010 0.842 0.771 0.071

48 0.980 0.983 -0.003 0.950 0.958 -0.008 0.838 0.870 -0.032

136 0.975 0.974 0.001 0.938 0.934 0.004 0.809 0.785 0.024

99 0.975 0.979 -0.004 0.935 0.946 -0.011 0.767 0.803 -0.036

258 0.963 0.962 0.001 0.906 0.900 0.006 0.718 0.675 0.043

166 0.962 0.968 -0.006 0.881 0.900 -0.019 0.457 0.494 -0.037

39 0.951 0.943 0.008 0.851 0.832 0.019 0.470 0.415 0.055

161 0.890 0.902 -0.012 0.754 0.782 -0.028 0.477 0.513 -0.036

133 0.878 0.883 -0.005 0.725 0.741 -0.016 0.421 0.438 -0.017

85 0.866 0.893 -0.027 0.659 0.728 -0.069 0.214 0.308 -0.094

180 0.789 0.830 -0.041 0.547 0.600 -0.053 0.174 0.198 -0.024

104 0.755 0.758 -0.003 0.461 0.489 -0.028 0.114 0.146 -0.032

46 0.726 0.786 -0.060 0.378 0.465 -0.087 0.038 0.039 -0.001

142 0.617 0.584 0.033 0.298 0.271 0.027 0.066 0.058 0.008

51 0.548 0.532 0.016 0.235 0.246 -0.011 0.048 0.064 -0.016

93 0.370 0.437 -0.067 0.095 0.152 -0.057 0.006 0.023 -0.017

Table 5.16: Comparison of ESP1, ESP8, and DIFF18 over time
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Conclusions

Longitudinal studies, such as clinical trials or observational studies, often pro-

duce two types of outcome: one or more repeatedly measured biomarkers,

along with baseline covariates, and the elapsed time to an event of interest.

These markers are frequently important heath indicators since they can be

used to monitor the disease progression. In order to optimally use the infor-

mation contained in the collected data and significantly reduce the bias due

to the traditional separate analyses of these types of data, a joint modeling

approach has been recently proposed and is currently under development.

In this approach, the longitudinal process and the time-to-event process are

modeled simultaneously.

During the last decade, there has been an increasing interest in the use of

joint models to obtain subject-specific predictions for the survival outcome.

Survival predictions based on a joint model have the advantage that they

can be updated as soon as new information is available.

The association structure represents the way the longitudinal outcome is

related to the risk for an event. In the standard joint model, it is usually

assumed that the risk for an event at a particular time point t depends on the

current value of the longitudinal biomarker. However, this type of association

may not always be the most appropriate in expressing the correct relationship

between the longitudinal and the survival processes so that other types of

association structures should be considered. In fact, choosing one association

structure instead of another may substantially influence the derived results.

The aim of this work was indeed to investigate how sensitive are survival
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predictions with respect to the assumed association structure of the survival

sub-model. Seven where the alternative association structures considered in

this work which were formalized through seven different parameterizations.

Our analysis was based on data collected during a study on primary

biliary cirrhosis (PBC). The serum bilirubin level is the longitudinal covariate

considered while death is the event of interest. After having estimated the

eight joint models, for each of them, we computed the patients’ expected

survival probabilities (ESPs) at different time points. We remind that the

expected survival probability of a patient is the estimate of the conditional

probability of surviving time u > t given survival up to t, i.e. S(t +∆t | t).

Subsequently, we compare the ESPs of the standard model with those of the

alternative models.

Not surprisingly, those parameterizations which were more similar to the

standard one were more likely to give analogous ESPs. However, indepen-

dently of the alternative parameterization used, the differences between ESPs

where more accentuate for the high risk patients. Their longitudinal tra-

jectories, in fact, are characterized by high serum bilirubin values and an

increasing trend (i.e. positive slope) which may be more or less pronounced.

With this type of trajectories, in comparison with the standard parameter-

ization, the different interpretation of the trajectory features given by the

alternative parameterizations shows its maximum effect. On the contrary,

the discrepancies between ESPs of low risk patients are usually small. In

fact, their longitudinal trajectories are characterized by small serum bilirubin

values, especially at the beginning of the study, which tend to stay constant

or slightly increase over time. These trajectory features guarantee similar

ESPs. Thus, in general, for low risk patients, using one association structure

instead of another does not have a strong influence on the obtained ESPs.

On the contrary, for high risk patients the choice of the association structure

has a much stronger impact.

Furthermore, in this type of analysis, the evolution in time of the lon-

gitudinal covariate should not be forgotten. In fact, the ESPs comparisons
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have been done considering different values for both t and ∆t. In particular,

the most interesting results were found keeping t fixed while increasing the

prediction interval ∆t. In our analysis we have chosen ∆t = 1, 2, 4 years.

The fact that for ∆t = 1, the standard parameterization and an alternative

one give similar or, on the contrary, very different ESPs does not guarantee

that it will be the same for ∆t = 2 or ∆t = 4. Differences can either stay

constant or increase or decrease when ∆t increases. Again, everything de-

pends on the evolution of the patient’s longitudinal trajectory whose features

are differently interpreted by the eight considered models.

Besides, monitoring the value of the differences between ESPs as ∆t in-

creases, we noticed that, for high-risk patients, it was decreasing. We called

this phenomenon the low-ESP effect. In comparison with the other alter-

native parameterizations, the standard parameterization tends to be more

pessimist with high risk patients. This means that, for these patients, the

ESPs of the standard joint model have a higher decreasing rate so that they

already reach values close to zero when ∆t = 2. Since zero is the lower bound-

ary, the ESP of the standard joint model will not significantly decrease any

further while the ESP of the alternative model, being much higher when

∆t = 2, will still have space to decrease. Thus, as ∆t augments, the two

ESP values will become closer.

We are aware of the fact that our work may be questionable since the

differences in ESPs are not only due to the assumed association structure

but also to the fact that each model has its own estimates of the parameters

defining the longitudinal sub-model and the baseline hazard function of the

survival sub-model. However, it can easily be noticed that it is the association

structure to have the greatest influence on the computation of the ESPs. If

this wasn’t true, we would not have individuate the strong link between the

ESPs and the features of the longitudinal trajectory.

We believe that joint models, thanks to their capability to maximize the

use of the information contained in prognostic factors such as biomarkers, will

constitute a precious tool in the future clinical practice. The physician expe-
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rience combined with a subject-specific survival probability would hopefully

help decision making and improve clinical outcome. Due to their important

application in patients’ management, it is important to obtain survival prob-

abilities which are as accurate as possible. Our analysis has demonstrated

how strong can be the influence of the assumed association structure on

individual expected survival probabilities, especially for high risk patients.

Therefore, in the part of the data analysis dedicated to the choice of the more

appropriate prognostic model, it is fundamental to consider and investigate

alternative associations between the longitudinal covariate and the risk for

an event and not solely rely on the standard one. The availability of statis-

tical softwares within the joint modeling framework has recently made this

investigation rather feasible.
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