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Abstract

This thesis aims at presenting a mathematical model (o environment) to describe the

biological reactions inside a cell. In particular, we want to analyze the iterations between

genes and proteins. A simplification of the dynamics is introduced in order to obtain

a discrete and quantized system. In particular, we want to create a model based on

Boolean functions. In order to capture more complex behaviors, models based on boolean

functions are extended to account for some sort of probabilistic behavior, such as a noise

or a non-constant update functions. Subsequently, the mathematical model is used to

monitor the process in question, in order to identify any fault in it.

Analysing the biological world by means of the logical-Boolean approach is a compro-

mise solution that tries to achieve a reasonable precision in describing certain dynamics,

even when not all the describing parameters are known. Despite this, the use of a Boolean

model is important in order to obtain useful information for the creation of more complex

models.





Sommario

Questa tesi ha lo scopo di presentare un modello matematico al fine di descrivere le

reazioni biologiche interne a una cellula. In particolare si vuole analizzare le iterazioni tra

geni e proteine. Si introduce una semplificazione delle dinamiche al fine di ottenere un

modello discreto e quantizzato. In particolare si vuole creare un modello basato su funzioni

booleane. Al fine di integrare comportamenti più complessi, verrà integrato il concetto

di rumore e di funzioni non constanti nel tempo. Successivamente, viene utilizzato il

modello matematico per tenere sotto controllo il processo in questione, al fine di cercare

di identificare eventuali guasti nello stesso.

Analizzare il mondo biologico con l’approccio logico-booleano è un compromesso tra

il non dover conoscere tutti i parametri necessari a descrivere le iterazioni e la precisione

con cui vengono descritte le dinamiche in questione. Nonostante questo, l’utilizzo di

un modello booleano è importante al fine di ricavare informazioni utili alla creazione di

modelli più complessi.
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Chapter 1

Introduction

In this chapter, we will present the key topics to get acquainted with the problem that

the thesis attempts to face. We start by introducing a brief overview of the biological

behaviors within a cell and of the techniques commonly used to collect real world data.

Then, we present the mathematical techniques commonly used to describe the biological

mechanism. We conclude by explaining how we want to use these notions to identify

genome-related pathologies.

1.1 Framework

All living organisms are made of cells. Depending on the organism or the function inside

the organism, each cell can vary in shape and size, but the chemistry and basic principles

remain common [1]. The cell is composed of different parts, some of them are used to

interact with the external world and others to regulate the internal behavior. For this

thesis, it is important to cite the presence of two types of amino acid sequences, the DNA

and RNA. The first is a “static” sequence that lasts throughout the life cycle of the cell,

the RNA instead is only temporary. In addition to these sequences, the amino acids

compose also some other actors of the cell life circle: the proteins. The proteins are used

for different functions inside and outside the cell. For example, they catalyze metabolic

reactions, encode specific signals and regulate the cell processes. The basic principle

that connects these components is called central dogma [2]. This dogma states that the

information needed to build proteins is encoded in some particular DNA subsections called
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genes. These pieces of information are transported outside the DNA through the RNA

and are later used for other amino acid sequences. These new sequences fold into proteins,

which regulate the cell’s internal and external behaviors. In other words inside the genes

all the information required for the life of the organism is available. It turns out that

protecting the DNA is very important to avoid transcription errors, which can lead to

malfunctioning or cell death. In some organisms, evolution has built a protected area

that maintains the DNA stable. This area is called the cell nucleus. An organism with

this feature is called eukaryote and is typical of an organism composed of multiple cells.

Otherwise, it takes the name of prokaryote, typical of single-cell organisms as bacteria.

The presence of the nucleus leads to a more complex transcription of the DNA to RNA

for eukaryotes cells, but the dogma remains unchanged. It is evident that the relations

between all of these components are not random: they follow some particular paths.

Biology calls these relationships gene regulator networks (GRNs). The study of GRNs is

the main topic of this thesis.

1.2 Real world data

The first problem that biologists have faced is how to observe and collect data from

reactions inside a 1−100µm system. The second problem is how to acquire them system-

atically and automatically. With the help of techniques from bioinformatics, the following

procedure was created: using microarrays or other technologies, take some snapshots of

the cell composition at various time steps. Use these snapshots to feed particular algo-

rithms that extract correlation between the objects of study. Based on this correlation,

the biologists design some experiments to demonstrate that they are correlated to some

chemical evolution and not casual events. In the end, a scheme that relates interactions

and describes the various components is generated. As previously reported, this model

takes the name of “gene regulator network”. An example of this network is reported in

Figure 1.1:

In this type of representation, the symbol → means that the first component induces

an increased presence of the second, instead, ⊣ the first component induces a decreased

presence of the second one. We need to generate a formal mathematical representation

for this type of model. Different approaches have been applied, all with pros and cons.

The main ones are the chemical master equation and booleans models.
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Figure 1.1: A simple GNR.

1.3 Chemical Master Equation

The chemical master equation approach transforms the graph into a system of first-

order parametric differential equations. These equations explain the functionality of

molecules, in particular how their concentration changes depending on the presence of

other molecules. The variables describe the quantities of each reagent and each product

at a given time, taking into account the probability that all reagents are available at the

same time in a given space. Indeed the presence of all reagents is strictly necessary for

the chemical reaction to take place.

Without going into too much detail, the chemical master equation approach has the

advantage of precisely describing the evolution of the components inside the cell, but it

requires to know every parameter internal to the system itself. These parameters are

usually too many to be possible to obtain an adequate estimate for each of them.

1.4 Boolean Models

To mitigate these difficulties, in 1993 Kauffman proposed to simplify the modelling ap-

proach, moving to a discrete time boolean representations [3]. The details of this approach

will be discussed in the next chapter, but they are based on the following consideration:

the molecules generally exhibit simple dynamics. A gene that produces the corresponding

mRNA is said to be an active gene, otherwise, it is said to be inactive. The activation

is related to the presence or absence of biological signals usually in the form of proteins.

All of these behaviors: active and inactive, presence and absence, can be encoded in a bi-

nary dynamics. Instead of modeling all the complex dynamics, as in the chemical master

equation approach, Kauffman proposes to synthesize the internal dynamics as a logical

circuit, where the logical function is the chemical reaction or transformation inside the
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cell, and the encoded variables that are the input-output of the circuit are the boolean

states of the biological actor. This kind of model is also used to study how a cell relates

with other cells or populations of cells.

1.5 Relations with pathologies

When a model of GRN has been generated and it has been proved to be consistent with

the phenomenon it aims to represent, the focus switches to how to use this object? Lots of

biological studies aim to understand how to relate certain pathologies to some behaviors

of the cell. The goal is to determine if some configurations of the components’ states are

related to some pathologies or if a pathology can lead to a different time evolution with

respect to the one described by the model.

Consider the first problem. According to [4], the insurgence of a pathology introduces

a change in the internal cell configuration. Our focus is to deduce the conditions that

lead to a stable cell configuration or the circumstances that lead to a significant change

thereof. The second problem is described in literature as a fault detection problem. To

detect a fault one needs to compare the real system evolution with the prediction of the

model to verify when a discrepancy arises. The question is if it is possible to understand if

and where the model stopped behaving as the real system that it tries to reproduce. Once

the “faulty” part is found, it is used in specific studies to understand what happened and

how to act to restore the normal behavior, if possible.

1.6 Thesis organization

The rest of the thesis is organized as follows: chapter 2 introduces boolean models and

boolean systems. In chapter 3 there are the foundations to move from a deterministic

boolean model to a stochastic approach, to encapsulate more complex dynamics. Chapter

4 is about fault detection models for boolean dynamics. In this chapter, we present the

common faulty behaviors for GRNs and their analysis. Then in chapter 5 the previous

techniques are applied, to explore a real complex problem.
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Chapter 2

Boolean Models

Let us consider the boolean set B = {0, 1}.

Definition 2.0.1. A variable α is a boolean variable if α ∈ B.

Definition 2.0.2. A map acting on n boolean variables: F : Bn → B is called a boolean

function.

Usually a boolean function is a combination of boolean operators. The most common

boolean operators are :

• NOT: the negation operator, indicated with ¬α, returns the opposite value of the

boolean variable α.

• OR: the conditional operator between two boolean variables α and β, indicated as

α ∨ β, returns 1 if at least one of the two variables is 1.

• AND: the conjunction operator between two boolean variables α and β, indicated

as α ∧ β, returns 1 if both variables are 1.

These operators are also called basic operations of the boolean algebra.

Example 2.0.1. Given α, β, γ ∈ B the expression:

ρ = α ∧ (¬β ∨ γ)

is a boolean function: ρ = F (α, β, γ), F : B3 → B.
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Alternatively, each boolean function F : Bn → B can also be expressed with a truth

table. This table consists of 2n lines. Each line corresponds to a different combination of

the inputs with the corresponding function value. The truth table of the Example 2.0.1

is reported in the Table 2.1.

Definition 2.0.3. If two different boolean functions have the same truth table, they are

said to be equivalent.

α β γ ρ
1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

Table 2.1: Truth table of the Example 2.0.1

In addition to the basic operations, it is important to report some particular boolean

functions called secondary operations, all of them binary, namely involving two logical

variables α and β:

• XOR: The “exclusive or” denoted by α ∨̄β, returns 1 if only one of the two variables

is 1

• Material conditional: The operation between α and β, denoted by α → β, returns

the value of β if α is 1, 1 otherwise.

• Logical equivalence: The operation, denoted by α ≡ β, returns 1 if and only if the

two variables have the same state.

2.1 Semi Tensor Product and logic in matrix form

It is possible to introduce a matrix representation for the boolean functions. To do this it

is necessary to present a new operation between matrices called the semi tensor product

that is based on the Kronecker product.
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The Kronecker product of two matrices A ∈ Bm×n and B ∈ Bp×q is defined as:

A⊗B =

⎡⎢⎢⎣
a11B · · · a1nB

:
. . . :

am1B · · · amnB

⎤⎥⎥⎦ ∈ B(mp)×(nq) (2.1)

where aij is the (i, j)th element of A.

Definition 2.1.1. Given two boolean matrices A ∈ Bm×n and B ∈ Bp×q, their semi

tensor product (STP) is defined as:

A⋉B = (A⊗ Iα/n)(B ⊗ Iα/p), (2.2)

where α the least common multiple of n and p.

This operation is a generalization of the common matrix multiplication. Indeed, if

n = p then α = 1 and (A ⊗ 1)(B ⊗ 1) = AB. In addition , it is possible to multiply

matrices of different sizes.

Example 2.1.1. Given A = [a1 a2 a3]
T and B = [b1 b2]

T , the STB between them is:

A⋉B = (A⊗ I2)B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0

0 a1

a2 0

0 a2

a3 0

0 a3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[︄
b1

b2

]︄
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1b1

a1b2

a2b1

a2b2

a3b1

a4b2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The STP has been defined for all kinds of vectors and matrices, but it encodes specific

properties if used with boolean vectors. In that case it is possible to encode the informa-

tion of the vector inside the position of the non-zero value inside the array. A boolean

two-dimensional vector is an equivalent representation of a boolean scalar variable. In

particular, the columns of the identity matrix are used to encode the boolean symbols:

1 =

[︄
1

0

]︄
0 =

[︄
0

1

]︄
(2.3)
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This representation is called algebraic form of the boolean variables. Consider now n

different boolean variables a1, a2, · · · , an expressed in algebraic form as in (2.3). It is

possible to define a new cumulative vector as:

x = ⋉n
i=1a1 (2.4)

This vector has size 2n and and it is canonical, namely all its entries are 0 except for one

which is unitary. This position is unique for each configuration of the boolean variables

ai.

Example 2.1.2. Given the boolean variables: a1 =
[︂
1 0

]︂T
, a2 =

[︂
0 1

]︂T
, a3 =

[︂
1 0

]︂T
,

the vector x = a1 ⋉ a2 ⋉ a3 becomes:

(a1 ⊗ I2)a2 ⋉ a3 = (

[︄
1

0

]︄
⊗

[︄
1 0

0 1

]︄
)

[︄
0

1

]︄
⋉

[︄
1

0

]︄
=

⎡⎢⎢⎢⎢⎣
1 0

0 1

0 0

0 0

⎤⎥⎥⎥⎥⎦
[︄
0

1

]︄
⋉

[︄
1

0

]︄
=

⎡⎢⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎥⎦⋉

[︄
1

0

]︄
=

(

⎡⎢⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎥⎦⊗ I2)

[︄
1

0

]︄
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

1 0

0 1

0 0

0 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[︄
1

0

]︄
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Instead to report the full vector as in the Example 2.1.2 it is possible to use a standard

representation for a canonical vector: δi2n , where 2
n is the size of the vector and i the index

of the unitary entry. If the number of variables is known, the size can be omitted. The

symbol ∆k denotes the set {δik, i ∈ [1, k]}, where k is the size of the vectors. In this

framework k will be equal to 2n. The following lemma synthesise the previous discussion

in a single statement:

Lemma 2.1.1. Given n boolean variables in algebraic form: a1, a2, · · · , an; ai ∈ ∆2, let

x ∈ ∆2n be defined as in (2.4). The n ai vectors can be uniquely determined from x.
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Proof: Given x ∈ ∆2n , proceed in two steps: split the vector x in two parts of identical

size x =
[︂
xT
1 xT

2

]︂T
. Since x is canonical only one between x1 and x2 is a non-zero vector.

If x1 is non-zero, a1 is δ12 and the previous splitting procedures need to be iterated for

x = x1. Otherwise, a1 is δ22 and the process needs to be iterated with x = x2. One can

continue with this procedure until x becomes a two dimensional canonical vector.

Once we assume for the boolean variables the algebraic form, it is possible to introduce

a third representation for a boolean function: the matrix form. The idea is the following

one: a boolean function F : Bn → B is converted into a matrix M2×2n based on the

information of the truth table. Instead of mapping each single variable, the cumulative

algebraic vector is used:

b = M ⋉ x (2.5)

To generate M one can proceed as follows: starting from the matrix 02×2n , where n is the

number of boolean variables involved, insert as ith column the output vector associated

with the input vector δi2n . As for the truth table, this matrix is uniquely determined for

each function.

Definition 2.1.2. A matrix M ∈ Bn×m is said to be a logical matrix if each of its columns

is a canonical vector.

A function represented as in (2.5) is said to be in logical form.

Example 2.1.3. Consider the boolean function of the Example 2.0.1:

ρ = α ∧ (¬β ∨ γ)

First it is necessary to map each combination of values of α, β, γ to a canonical vector

δi. For this example it is used the map reported in Table 2.2. The corresponding logical

matrix is: [︄
1 0 1 1 0 0 0 0

0 1 0 0 1 1 1 1

]︄
(2.6)
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α β γ δi

1 1 1 δ1

1 1 0 δ2

1 0 1 δ3

1 0 0 δ4

0 1 1 δ5

0 1 0 δ6

0 0 1 δ7

0 0 0 δ8

Table 2.2: Map of canonical vector and variables configuration of the Example 2.1.3

2.2 Boolean systems

Given a set of boolean functions:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

β1 = F1(α1, · · · , αl)

β2 = F2(α1, · · · , αl)
...

βn = Fn(α1, · · · , αl)

(2.7)

where each Fi is a boolean function F : Bl → B, it is possible to rewrite each function of

the previous set in logical form as in (2.5):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b1 = M1 ⋉ a1 ⋉ · . . . al
b2 = M2 ⋉ a1 ⋉ · . . . al

...

bn = Mn ⋉ a1 ⋉ · . . . al

(2.8)

where aj is the algebraic form of αj, bk is the algebraic form of βk and Mi is the logical

form of fi.

Consider the vectors:

y = ⋉n
k=1bk x = ⋉l

j=1aj y ∈ ∆2n , x ∈ ∆2l (2.9)
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The set of logical equations reported in (2.7) admits also another representation:

y = Lx (2.10)

As for the M matrix, one can generate L starting from the matrix 02n×2l and insert as

ith column the output vector y associated with the input vector δi
2l
.

The matrix L is unique for a system described as in (2.7). This is always related to

the Lemma 2.1.1. In fact, suppose there are two different matrices L′ and L′′ that aim to

represent the same system of equations. Calling c′i and c′′i the i-th column of the L′ and

L′′ matrices, one has c′i ̸= c′′i by hypothesis, but this implies that for the same condition

δi = ⋉l
j=iaj the system reported in (2.8) has two different results:

⋉n
j=iMjδ

i = ⋉n
j=ib

′
j = c′i ̸= c′′i = ⋉n

j=ib
′′
j = ⋉n

j=iMjδ
i (2.11)

and this is a contradiction.

We will use the boolean system to formalize any dynamical system.

2.3 Dynamical system

Consider two systems, an autonomous case, where the dynamics are generated only by the

system state variables, and a second one where the dynamics are also described with a set

of input variables. Let us introduce x1(k), x2(k), · · · , xn(k), the n boolean variables that

describe the system state at time k. The system state at time 0 takes the name of initial

condition: x1(0), x2(0), · · · , xn(0). The m variables u1(k), u2(k), · · · , um(k) describe the

system input at the time k, provided that it shows a dependency on them. The set of

equations: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1(k + 1) = F1(x1(k), x2(k) · · · , xn(k))

x2(k + 1) = F2(x1(k), x2(k) · · · , xn(k))
...

xn(k + 1) = Fn(x1(k), x2(k) · · · , xn(k))

(2.12)
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takes the name of boolean network or boolean system (BN), and⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1(k + 1) = F1(x1(k), x2(k), · · · , xn(k), u1(k), u2(k), · · · , um(k))

x2(k + 1) = F2(x1(k), x2(k), · · · , xn(k), u1(k), u2(k), · · · , um(k))
...

xn(k + 1) = Fn(x1(k), x2(k), · · · , xn(k), u1(k), u2(k), · · · , um(k))

(2.13)

take the name of boolean control network (BCN). Both BNs and BCNs can be represented

by a logical matrix L. This representation of the system is named of algebraic form. The

boolean state variables and the boolean input variables can be compacted into a matrix

(here an abuse of notation has been used, the state is no longer a boolean variable, but

in logical form):

x(k) = ⋉n
i=1xi(k) u(k) = ⋉m

i=1ui(k) (2.14)

and so a BN can be represented as

x(k + 1) = Lx(k) (2.15)

while a BCN is usually formalized as:

x(k + 1) = L⋉ u(k)⋉ x(k) = Lu(k)x(k) (2.16)

The decision to define the algebraic form of a BCN as in (2.16) is not trivial. With

respect to the inverse position Lx(k)u(k), this representation comes in handy to visualize

each input configuration as a network update function selector. Consider the following

examples:

Example 2.3.1. Given a system described by two boolean states α1 and α2, with the

following boolean network: ⎧⎨⎩α1(k + 1) = α1(k) ∨ α2(k)

α2(k + 1) = α1(k)

with x1(k) the vector representation of α1(k), x2(k) the vector representation of α2(k),

and x(k) = x1(k)⋉x2(k) it is possible to rewrite the system with the construction matrix

12



as reported in (2.8): ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x1(k + 1) =

⎡⎣1 1 1 0

0 0 0 1

⎤⎦x(k)

x2(k + 1) =

⎡⎣1 1 0 0

0 0 1 1

⎤⎦x(k)

It is also possible to compact the notation in a single logical matrix as in 2.15, the result

is:

x(k + 1) = Lx(k) =

⎡⎢⎢⎢⎢⎣
1 1 0 0

0 0 1 0

0 0 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎦x(k)

Once the M matrices are generated, the column of the L matrix are generated doing the

STP of the relative M columns.

Example 2.3.2. It is given a system with two states x1 and x2 and an input variable u.

The logical matrix L ∈ B8×4 is also given. The vector u⋉ x1 ⋉ x2 is the following map:

ux1x2 = δ1

ux1x̄2 = δ2

ux̄1x2 = δ3

ux̄1x2̄ = δ4

ūx1x2 = δ5

ūx1x̄2 = δ6

ūx̄1x2 = δ7

ūx̄1x̄2 = δ8

It is evident that δi, i ∈ {1, 2, 3, 4}, and δj, j ∈ {5, 6, 7, 8}, describe the same set of system

states, with the difference posed in the input variable. This allows to divide L into two

halves:

L =
[︂

L1 | L2

]︂
The input u works as a selector: if u = δ1 the state vector evolves according to the

logical matrix L1. Instead, if u = δ2, the system evolves according to L2. In Figure 2.1 a

representation of the example is given.

The Example 2.3.2 can be generalized to include m inputs: considering the algebraic

form of the array of input u(k) = δi2m , i ∈ {1, 2, · · · , 2m}, the operation L ⋉ u(k) can

be revisited as a BN selector, with the correspondence of i in u = δi and the i in the L
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Figure 2.1: A representation of the input as a selector.

sub-matrix:

L =
[︂

L1 | L2 | · · · | L2m

]︂
(2.17)

leading the operation Lu(k)x(k) to be the same as the multiplication

Lix(k) (2.18)

To summarize, the following theorem describes a general fact about a boolean system

evolution:

Theorem 2.3.1. The evolution of a boolean network with x(0) as initial condition until

a time K is uniquely identified by the logical matrix L reported in (2.15)

Proof: Consider the reverse procedure evolution:

x(K) = Lx(K − 1) = L2x(K − 2) = · · · = LKx(0)

and since the vector x(k) uniquely identifies each state variable xi(k) it is possible to

construct the evolution of the system starting form x(0).

For a boolean control network in addition to a known L the input sequence u(k)

k ∈ {1, 2, · · · , K} is needed to reconstruct the evolution of the state:

x(K) = Lu(K − 1)x(K − 1) = Lu(K − 1)Lu(K − 2)x(K − 2) =

= (ΠK
i=1Lu(K − i))x(0)

Definition 2.3.1. The set of states {x(0), x(1), · · · , x(K)} that are obtained by Theorem

14



2.3.1 is called trajectory of the boolean network (or boolean control network)

Given a state x(k), what can be said about its future evolution?The answer is to be

sought in the study of L, in particular its columns. Starting from the autonomous case

let us recall the definition of attractor:

Definition 2.3.2. Given a system in state space representation, where x is the state

vector, f() is the set of functions that describe the dynamics of the system and X the

phase space. An attractor A is a subset of X that has the following properties :

• It is invariant for f , namely f(a) ∈ A ∀a ∈ A,

• There exists a neighborhood of A, called the basin of attraction and denoted as

B(A), which consists of the subset of X where the trajectory of each point b ∈ B

converge to A

• There is no proper subset of A that maintains the previous properties.

Note also that the set of possible states is finite. That being stated, in a sufficient

large time window it is impossible not to reach a repetition of a given state. By theorem

2.3.1 the system evolution is uniquely determined by L. Therefore, should one observe the

repetition of a configuration, all the following ones would be observed again. Following

the previous definition, it is possible to categorize each state x in three groups:

• If x = Lx, x is said to be a fixed point

• If x = Lkx and the set {x, Lx, L2x, Lk−1x} does not contain repetition, {x, Lx, L2x, Lk−1x}
x is said to be a limit circle

• The set Si = {x|x(0) = x → x(t) ∈ Ci, t ≥ Tt} is said to be the domain of attraction

of the set Ci, where Ci is the set that describes an attractor, that can be either a

fixed point or a limit circle.

Example 2.3.3. Reconsider the Example 2.3.1. From matrix L:⎡⎢⎢⎢⎢⎣
1 1 0 0

0 0 1 0

0 0 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎦
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it is possible to extract the following information: the first and last column have 1’s on

the diagonal, which implies that Lδ1 = δ1 and Lδ4 = δ4 are fixed points. The layout of

the other two columns imply that if x(0) = δ3 or x(0) = δ2, the following trajectory is

the only one allowed:

δ2 = Lδ3 δ1 = Lδ2

In short, with different initial conditions, the possible trajectories are the following:

δ3 →δ2 → {δ1}

{δ4}

where δ1 and δ4 are fixed points and {δ2, δ3} is the domain of attraction of δ1.

Definition 2.3.3. A state of a boolean network is said to be stable if it is a fixed point.

Definition 2.3.4. A boolean network is said to be globally stable if the set of its attractor

is composed by a unique fixed point δi. If this is the case, it is possible to define a time

Ti called absorption time. The absorption time is the minimum k value such that, for

any initial condition x(0), the attractor is reached: Ti = minT s.t. k > Ti =⇒ x(k) =

Lkx(0) = δi ∀x(0) ∈ ∆

If the boolean network is globally stable, the LTi matrix needs to be composed of the

vector δi in each column:

LTi =
[︂

δi δi · · · δi
]︂

(2.19)

If this does not apply, there exists an initial condition x(0) = δj that in Ti step does not

reach the fixed point δi that does not reach the fixed point at step Ti. This observation

emphasizes the importance of the power operation of the L matrix, in order to identify

fixed points or limit circles.

Example 2.3.4. Reconsider the L matrix of the example 2.3.1, where the powers of L

are:

L =
[︂

δ1 δ1 δ2 δ4
]︂

L2 = L3 =
[︂

δ1 δ1 δ1 δ4
]︂

(2.20)

Since L2 = L3, it is impossible to have a different matrix if another step is taken in action.

Looking at the columns of L2, it turns out that δ1 and δ4 are actually fixed points.
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It is possible to extract an additional behavior looking at the evolution of the columns

in the sequence of Lk, k ∈ {1, 2, ·, K}. Indeed, considering the set of the evolution of the

j columns:

{Colj(L),Colj(L2), · · · ,Colj(LK)} (2.21)

and k, the exponent of matrix L as index of the element in the set, the previous result

can be expressed as:

• If Colj(L
k) = Colj(L

k+1), then Colj(L
k) is a fixed point

• If Colj(L
k) = Colj(L

k+a), a > 1, and all the elements in the subset between the

index k and k + a: {Colj(Lk),Colj(L
k+1), · · · ,Colj(Lk+a−1)} are distinct, then the

previous subset is a limit circle.

The step one takes to generalize these concepts to a boolean control network is com-

parable to a classical study of a control affine system:

x(k + 1) = f(x(k)) + g(x(k))u(k) (2.22)

In this case there is no drift dynamics f() and the g(x(k))u(k) are rewritten as Lix(k)

as reported in equation (2.18). It makes sense to convert the concepts of reachability,

controllability and stabilazability in a boolean fashion. In this regard, it is better to

introduce a new object:

Ltot =
2m∑︂
i=1

Li (2.23)

Where Li is the submatrix defined in (2.17). This object compresses all the possible

future states in a single square matrix without specifying what input is needed to reach

the specific output configuration.
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Example 2.3.5. Given a boolean control network described with the matrix:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

1 1 0 0 0 1 0 0

0 0 1 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The Ltot turns out to be:

Ltot =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 0 1 0

2 2 0 0 0 2 0 0

0 0 1 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
For example, consider a state x = δ3. From the third column it is possible to observe that

the next state is or δ3 either δ8, even without knowing u.

Before moving on to the complete definition of the problem, let us introduce the

following lemma, that explains the utility of Ltot:

Lemma 2.3.1. The number of input sequences that lead the system from the state xa to

xb in k steps is:

l(k;xa, xb) = xbL
k
totxa (2.24)

Proof: call u1, u2, . . . , ul(k,xa,xb) the sequences that carry the system from xa to xb.

This implies that there exists a sequence t(k, xa, xb) = 2mk − l(k, xa, xb) that does not
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carry the system from xa to xb denoted by w:

1 = xT
b L⋉ ui(k − 1)⋉ · · ·⋉ L⋉ ui(0)xa i ∈ {1, 2, . . . , l(k, xa, xb)} (2.25)

0 = xT
b L⋉ wj(k − 1)⋉ · · ·⋉ L⋉ wj(0)xa j ∈ {1, 2, . . . , t(k, xa, xb) (2.26)

Summing up all equation it results that:

l(k, xa, xb) = xT
b L⋉ 12m ⋉ · · ·⋉ L⋉ 12mxa = xT

b L
k
totxa (2.27)

where 12m is a column vector filled with ones and long 2m and L⋉ 12m is another way to

define the Ltot matrix.

With this lemma it is easy to understand that a state xb is reachable from xa in k

steps if and only if l(k;xa, xb) ̸= 0, but if it is reachable in k steps there is no guarantee

that is also possible to reach it in k + 1 steps, this property is called stabilizability. Let’s

formalize all these properties:

Theorem 2.3.2. Considering a BCN with n states as reported in (2.13) and its algebraic

form (2.16) from which the Ltot matrix is calculated. It turns out that:

a) A state xb = δb is reachable from xa = δa in k steps if and only if

l(k, xa, xb) > 0 (2.28)

b) A state xb = δb is reachable from xa = δa if and only if

2n∑︂
k=1

l(k, xa, xb) > 0 (2.29)

c) The BCN is said to be globally reachable from xa if all the states are reachable from

xa

d) A BCN is said to be globally controllable to xb if xb is reachable from each other

initial condition xa

d) A BCN is said to be globally controllable if each state xb can be reached from each
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state xa, or alternatively
2n∑︂
k=1

det
(︁
Lk
tot

)︁
> 0 (2.30)

The proof of this theorem is based on the demonstration that there exists a path from

a state xa to a state xb and this leads to l(k;xa, xb) ̸= 0

To conclude the summary of the nomenclature of a boolean control network we report

the concept of stabilizability. Starting from the definition of equilibrium point for a BCN,

it is possible to simplify the concept of a stabilazability of a boolean control network to

a configuration xs as the sum of two properties.

Definition 2.3.5. A state xe of a BCN with m inputs is said to be an equilibrium point

with constant input (or simply equilibrium point) if there exists an input ū ∈ ∆2m such

that xe = Lūxe

To be an equilibrium for a BCN, a state xe = δi requires the existence of a possible

stabilizing input: xe = Lūxe. Such condition is the same as requiring that the element in

position (i, i) of Ltot is not zero. With this definition it is possible to state the probability

of a stabilizability as:

Definition 2.3.6. A BCN is said to be stabilizable if exists a state xs that is globally

reachable form any other state and at the same time it is an equilibrium point.

Example 2.3.6. Consider the following matrix L, associated with a system with 3 system

states and a single input:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The corresponding matrix Ltot is:

Ltot =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 1 0 0 1 0

0 1 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 2 0 0

0 0 0 0 1 0 0 2

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
From Ltot it is possible to state that δ1 and δ2 are equilibrium points since the correspond-

ing entries on the diagonal [Ltot]1,1 and [Ltot]2,2 are different from zero. They are good

candidates to be points where the system can be stabilized. To this end we consider the

powers of the Ltot:

L2
tot =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 1 2 1 0 2 0

0 1 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 0 2 0 0 4

0 0 1 0 0 2 2 0

0 0 1 0 0 2 0 0

0 0 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
L3
tot =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 1 3 4 2 2 4 0

0 2 1 1 0 0 0 0

0 1 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 2 1 0 4 4 0

0 1 0 0 4 0 0 4

0 1 0 0 2 0 0 4

0 0 1 0 0 4 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L4
tot =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16 4 6 9 6 4 8 4

0 3 1 2 0 0 0 0

0 2 1 1 0 0 0 0

0 1 1 1 0 0 0 0

0 1 1 1 8 0 0 8

0 1 4 1 0 8 4 0

0 1 2 1 0 4 4 0

0 1 0 0 4 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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looking at the first row of L4
tot it is possible to notice that each element is different from

zero. As reported in Theorem 2.3.2 this means that δ1 is reachable from every other initial

condition. This fulfills the requirement of Definition 2.3.6. The second line has some zero

entries. To understand if something more can be said, let us consider higher powers of

the matrix:

L5
tot =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

32 10 15 20 12 12 20 8

0 4 2 3 0 0 0 0

0 3 1 2 0 0 0 0

0 2 1 1 0 0 0 0

0 4 9 3 0 16 8 0

0 5 1 1 12 0 0 16

0 3 1 1 8 0 0 8

0 1 2 1 0 4 4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
L6
tot =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

64 25 32 42 32 24 40 24

0 6 3 4 0 0 0 0

0 4 2 3 0 0 0 0

0 3 1 2 0 0 0 0

0 13 3 4 24 0 0 32

0 6 13 5 0 24 16 0

0 4 9 3 0 16 8 0

0 3 1 1 8 0 0 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L7
tot =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

128 57 74 89 64 64 88 48

0 9 4 6 0 0 0 0

0 6 3 4 0 0 0 0

0 4 2 3 0 0 0 0

0 16 18 13 0 48 32 0

0 19 5 6 40 0 0 48

0 13 3 4 24 0 0 32

0 4 9 3 0 16 8 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
L8
tot =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

256 131 153 185 152 128 176 128

0 13 6 9 0 0 0 0

0 9 4 6 0 0 0 0

0 6 3 4 0 0 0 0

0 44 13 16 80 0 0 96

0 24 46 19 0 80 48 0

0 16 28 13 0 48 32 0

0 13 3 4 24 0 0 32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
L5
tot has the same zero and nonzero pattern as L7

tot and the same holds for L6
tot and

L8
tot. This implies that all future powers of that matrix will keep that same zero/nonzero

pattern. The constant presence of zeros in the second row implies that the δ2 configuration

is not a stable state. Looking at the columns of the powers of Ltot it can be said that

in five steps any other configuration can be reached from the states δ2, δ3 and δ4. This

implies that the BCN is globally reachable from those states.
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2.4 Trajectory set

Consider a boolean network as in (2.15) in a time window 0, 1, ·, K, and all the possible

2n initial conditions x(0) ∈ δ2
n
. It is possible to create a set that contains all the possible

trajectories:

Tf = {(x(0), Lx(0), L2x(0), · · · , LKx(0));∀x(0)∆2n} (2.31)

It is also possible to introduce the same object for a boolean control network as in

(2.16), the difference is that it is required to consider all the possible input sequences

u1, u2, · · · , u2Km
:

Tf = {(x(0), Lui(1)x(0), · · · , LKui(K)x(0));∀x(0)∆2n ,∀ui ∈ {u1, u2, · · · , u2Km}} (2.32)

This kind of object easily becomes huge and difficult to fully express as time and the

dimension of the states increase. In practice the common use of this object is to verify if

a model is coherent with the real world data without the introduction of a state estimator

or an observer.

Example 2.4.1. Consider a general gene regulator network composed by n different

genes with no inputs and a boolean model with its trajectory set Tf . An experiment

is conducted and the evolution of the genes state are measured at different time steps:

tm = (x(0), x(1), · · · , x(K)). If tm ∈ Tf the trajectory is said to be compatible with the

model, if not or the measurements are affected with some kind of error, otherwise either

the measurements are affected by some kind of error or the chosen model is wrong.

One may wonder whether the model is actually wrong. As reported by Kauffman,

this approach of reducing a complex environment to a set of boolean actors is useful to

describe the general evolution of the system, but we must keep in mind the fact that it

is a huge simplification. Some modifications can be done to the general boolean model

(2.7) in order to encapsulate more trajectory on the Tf , in particular the next chapter

will cover the following changes that can be made:

• Add noise to the state update function.

• Move from a deterministic boolean update function to a probabilistic one.

• Move from a synchronous update scheme to an asynchronous one.
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Chapter 3

Beyond deterministic boolean

networks

As reported at the end of the previous chapter, the use of a boolean model to describe a

complex system as a gene regulator network can lead to some discrepancies between the

predicted state evolution and the effective trajectory. Let us discuss the proposed changes

to the general boolean model (2.13). The following discussion revolves around BCNs, but

it holds also for a BN, provided one removes the dependence on u.

3.1 Stochastic model

The first change proposed is to move from a deterministic update function to a stochastic

one. The main idea is to take the update function as described in (2.12) or in (2.13)

and use the property of the XOR operator to add noise. The noise is described by n

Bernoulli processes that generate at the time k a boolean value wi(k). The value is 1 with

probability pi and 0 with probability 1 − pi. By associating this process to the boolean

update function, one obtains a stochastic model, in which the symbol ⊕ represents the
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XOR operator:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1(k + 1) = f1(x1(k), · · · , xn(k), u1(k), · · · , um(k))⊕ w1(k)

x2(k + 1) = f2(x1(k), · · · , xn(k), u1(k), · · · , um(k))⊕ w2(k)
...

xn(k + 1) = fn(x1(k), · · · , xn(k), u1(k), · · · , um(k))⊕ wn(k)

(3.1)

Recalling the truth table reported in Table 3.1, considering x as the state vector variable

x w x⊕ w
1 1 0
1 0 1
0 1 1
0 0 0

Table 3.1: XOR truth table

and w as the noise, it is possible to observe that the variable x affected by the noise w

will change its status if and only if the noise value is 1. Indeed

x⊕ w ̸= x if w = 0 (3.2)

x⊕ w = x if w = 1 (3.3)

This implies that the probability 1 − pi can be seen as a “stability” measure of the

state xi: in fact, pi is the probability that wi = 1 and hence the state xi changes to its

complementary value x̄i.

A second observation is the fact that the probabilities pi may be different from each

other. This can be motivated by the information that the particular state variable encodes.

Consider the following example for a better view of a gene regulator network environment:

Example 3.1.1. In [5] the following network is proposed to describe the epithelial to

mesenchymal transition (EMT) of a cell. EMT is the process that makes an epithelial

cell1 lose its polarity and promotes the transformation into a mesenchymal stem cell.

1Roughly speaking a cell that composes the animal tissue
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These cells are not “specialized”. Instead, they evolve into other kinds of cells, which

can be bones, muscles, tissues, or cartilage cells. The EMT usually happens in three

different scenarios: growth of the embryo, wound repair and cancer development. The

authors discovered the existence of an intermediate phase, where the cell presents some

properties of the epithelial cells and others of a mesenchymal cell. When the cell shows

this characteristic it takes the name of hybrid cell.

To determine the state of the cell, it is necessary to look at four internal molecules

and an external one that works as an input [5]. Since the target of this thesis is not

biologists, details are omitted. However, such molecules are represented by the system

state variables xi. The network describing the process takes the form:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1(k + 1) = (x1(k) ∨ u(k)) ∧ (¬x2(k))

x2(k + 1) = x1(k) ∧ x3(k)

x3(k + 1) = (x1(k) ∨ x3(k)) ∧ (¬x4(k))

x4(k + 1) = x4 ∧ (¬x1(k) ∨ x3(k))

(3.4)

According to [5] it is possible to subdivide the cells internal state as in Figure 3.1

It is evident that for any state of the epithelial cell, it is sufficient to change the input

value to make the transition either hybrid or mesenchymal. If the input is fixed, the

sets of states are divided into three domains of attraction each of them with a single

fixed point. The authors have linked each domain to a specific type of cell. In this way,

the model allows a change of type only by changing the input. How is it possible to

describe the transition from epithelial to hybrid and at the end to mesenchymal state by

changing the input only once? To be able to describe this behavior, one can consider

each state as an unstable value, similar to (3.1). Consider for example an epithelial cell

in the configuration x = 0010. At the time k u goes from 0 to 1, and the cell became a

hybrid cell. At time k + 1, the cell reaches the equilibrium configuration x = 1011. In

order to complete the transition to become mesenchymal, the cell needs a perturbation,

for example, x = 1011 → x = 1011. The noise can also be used to justify the fact that a

mesenchymal cell that becomes a hybrid one.

Since this type of model is based on (2.13), one can ask himself which of the properties

of the deterministic model can be converted into a stochastic version. The key to this
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Figure 3.1: Evolution of the EMT network, where the numbers are the state of the cell
in the following order: u, x1, x2, x3, x4.

is a change of viewpoint: instead of looking at a single state configuration, it is worth

looking at a set of them. In this way even if the single configuration does change in time,

it can be categorized as a single entity provided that the evolution of the system starting

from an element of a set is fully contained in the same set. The second step is to assign

a description to the sets, which will be related to the evolutions that they incorporate.

Based on these descriptions it is worth evaluating the desired property with a measure. We

will focus only on stability because controllability and reachability are not interesting for

the scope of this thesis. In order to generate a stability index, one can make the following

consideration: the study of a stochastic network needs to start from the deterministic

part. An attractor is time invariant, and it makes no sense to study the stability of a

state that changes even in the deterministic representation. Hence, the attractor and the

basin of attraction will be the same for the deterministic model and for the one affected

by the noise. As a consequence the interesting set to look at is the 1-degree neighbor of

an attractor. It is defined as the set of states whose vector representation differs by one

bit (0/1) from the vector representation of the attractor state. Note that states belonging

to the 1-degree neighbor of an attractor may be part of its domain of attraction or belong
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to the domain of attraction of a different attractor. Based on this, once all the attractors

with the corresponding basin of attraction have been defined, the stability index of the

attractor xs is defined as:

Sxs =
∑︂
i

Oxs
i −

∑︂
j ̸=xs

Oj
xs

(3.5)

where Oj
i is the ratio between the 1-degree neighbors of the attractor i in the basin of

attractor j and the total 1-degree neighbors of i. In other words, the stability index

provides information on what is the probability that a perturbation of a single bit results

in a state that belongs to the domain of attraction of xs. Indeed, O
xs
i gives the probability

that a single bit perturbation of the attractor i results in a state that is attracted by xs,

while Oj
xs

represents the probability that a single bit perturbation of the attractor Xs

results in a state that is attracted by j ̸= xs.

The larger is the set Sxs the more stable is the system. More specifically, a large

value of Sxs highlights the robustness of the system and its capability to endure small

perturbations. This index cannot be regarded as a guarantee of stability, since it is

possible to move to a state that can lead to a different domain of attraction.

For this type of model a problem with the trajectory set Tf arises. Due to the additive

noise, the system evolves from one state xa to any other state xb. As a direct consequence,

Tf is composed of all the possible state sequence combinations. Therefore, it is impossible

to distinguish two models only by looking at the trajectories they generate.

3.2 Probabilistic Boolean Network

Instead of using the same update function at each time step, one can consider a model

where there is more than a possible deterministic function that can be used to update the

state vector. To do so let us introduce Fi, the set that contains all the possible update

functions for the state xi:

Fi = {f1,i(x1, · · · , xn, u1, · · · , un), f2,i(x1, · · · , xn, u1, · · · , un), . . . , fki,i(x1, · · · , xn, u1, · · · , un)}
(3.6)

The single function fa,i is chosen with a probability ra,i:

Ri = {r1,i, r2,i, . . . , rki,i} (3.7)
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Since it is a set of probability values it must be:

ki∑︂
a=1

ra,i = 1 ∀i (3.8)

From these update functions it is possible to generate k1 · k2 · · · · · kndifferent BCNs. Each
network is described by the set of indexes α1, α2, · · · , αn. Each index is associated to a

different update function in the set Fi. It is convenient to create a map from each n-tuple

of indexes to a single natural number:

(1, 1, · · · , 1, 1) → 1

(1, 1, · · · , 1, 2) → 2

...

(k1, k2, . . . , kn) → k1 · k2 · · · · · kn

In this way it is possible to identify each BCN only through its map index l:

fPBN
l :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = fα1(x1, x2, · · · , xn, u1, u2 · · · , um)

x2 = fα2(x1, x2, · · · , xn, u1, u2 · · · , um)
...

xn = fαn(x1, x2, · · · , xn, u1, u2 · · · , um)

(3.9)

The probability wl associated to that network is

wl = rα1,1 ∗ rα2,2 ∗ · · · ∗ rαn,n ∀l (3.10)

It is possible to introduce a discrete random variable W with the following probability

mass function:

w P (W = w)
1 w1

2 w2
...
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and use it to update the system:[︄
x(k + 1)

W (k + 1)

]︄
=

[︄
fW (k)(x(k),u(k))

0

]︄
+

[︄
0

w

]︄
(3.11)

where fW (k)(x(k),u(k)) is the same as in (3.9).

Each network fl can be rewritten in algebraic form by resorting to a logical matrix

L(l). As for Ltot it is possible to compress all the net information into a single matrix:

L =
l∑︂

i=1

wiL(i) (3.12)

With this notation the dynamical system can be written as:

x(k + 1) = L(w)u(k)x(k) (3.13)

and the expected vector state is expressed as:

E[x(k + 1)] = Lu(k)E[x(k)] (3.14)

These matrices can be used to check if the system has attractors, these are defined

similarly to the ones for BNs and BCNs:

Definition 3.2.1. A state xs of a PBN is said to be a fixed point if xs = L(w)xs ∀w

In practice, the point needs to be an equilibrium for each described network.

There are different possible definitions of equilibrium point for a PBCN, depending

on the assumptions we introduce. If the network used to update the system at the time

k is known before applying the input u(k), it is possible to use the following definition:

Definition 3.2.2. A state xe of a PBCN with m inputs is said to be an equilibrium point

if for each w there exists an input uw such that xe = L(w)uwxe ∀w.

Otherwise, if the network is unknown until the transition at time k takes place, it is

necessary to impose the same input for all possible L(w):

Definition 3.2.3. A state xe of a PBCN with m inputs is said to be an equilibrium point

if there exist an input ū such that xe = L(w)ūxe ∀w.
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The decision about which definition should be used is taken at the time of the problem

statement and it depends on the set-up: this problem can be ported as a request that

W (k) is accessible in (3.11). If this is the case it is possible to use 3.2.2. Otherwise, one

needs to adopt 3.2.3.

Since the update matrix L(w) is not known when the input is given to the system, it is

requested that ū is the same for each update matrix. Otherwise, even if the configuration is

in equilibrium, it is impossible to determine the input sequence that leads to the expected

behavior.

The concept of limit circle is more complex since it needs to be shared across all

the networks. It is possible to revise this definition by imposing that this invariant set

is shared across all the networks. To check these properties it is sufficient to look at

the L matrix reported in (3.12). If a unitary entry appears on the diagonal (or in the

diagonal of the submatrix corresponding to a specific input value) the evolution certainly

is stationary. If a state is not an equilibrium point, it is interesting to investigate what are

the configurations that are reachable from it. Recall that a state is said to be reachable

from another state if the former belongs to one of the trajectories starting from the latter.

Since the update function is not constant, it is necessary to keep track of it when the

reachability of a certain state is discussed:

Definition 3.2.4. A state xb is said to be definitely reachable from xa in k steps if it is

certain that in k steps the system state will move from xa to xb. Otherwise, it is reachable

with probability p in k steps if the probability to move from xa to xb in k is p.

Starting from the PBN matrix L and comparing it with the deterministic one, we

notice that the generic jth column of L is no longer a canonical vector, instead its ith

entry will represent the probability to “jump” to the state δi starting from the selected

initial condition δj. Knowing this, it is possible to employ the techniques devised for

classical boolean control networks. The main problem is the fact that Lemma 2.3.1 does

not apply anymore. One possibility is to normalize each column and verify if xT
b L

k
totxa is

different from zero. Should this event occur, it is possible to reach xb from xa in k steps.

In the following example, we discuss how the matrix L defined in (3.12) allows deriving

some conclusions on the trajectory behavior of the boolean control network.

Example 3.2.1. Consider the PBCN with two states x1 and x2 and the following update
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equations together with their probabilities:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x1(k + 1) =

⎧⎨⎩u1(k) ∨ (x1(k) ∨ x2(k)), p = 0.3

u1(k) ∨ x1(k), p = 0.7

x2(k + 1) =

⎧⎨⎩x1(k), p = 0.2

x1(k) ∧ x2(k), p = 0.8

There are only four possible configurations that correspond to the following matrices:

L(1) = δ[1, 1, 2, 2, 1, 1, 2, 4], p = 0.06

L(2) = δ[1, 2, 2, 2, 1, 2, 2, 4], p = 0.24

L(3) = δ[1, 1, 2, 2, 1, 1, 4, 4], p = 0.14

L(4) = δ[1, 2, 2, 2, 1, 2, 4, 4], p = 0.56

The matrix L turns out to be:

L =
4∑︂

i=1

L(i) =

⎡⎢⎢⎢⎢⎣
1 0.2 0 0 1 0.2 0 0

0 0.8 1 1 0 0.8 0.3 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.7 1

⎤⎥⎥⎥⎥⎦
From which it is possible to calculate compute the Ltot matrix:

Ltot =

⎡⎢⎢⎢⎢⎣
2 0.4 0 0

0 1.6 1.3 1

0 0 0 0

0 0 0.7 1

⎤⎥⎥⎥⎥⎦
From L and Ltot it is possible to extract the following dynamics: δ1 and δ4 are equilibrium

points, while δ3 is in the basin of attraction of both equilibrium points. Instead, δ2 may

either be stable, thus preserving its status, or switch to δ1. Consider, without loss of

generality, a constant input u = δ1. At each time step the probability to preserve a given

configuration is: Πk
i=10.8. In other words, one may legitimately expect δ2 to converge to

δ1 provided that the time frame is large enough.
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3.3 Asynchronous Step Update Scheme

Up to now, we have described systems whose update functions are synchronous. In this

section, by referring to [6] and [7] we will discuss some problems of this approach. When

dealing with a general GRN, the variables of the BCN represent different biological objects

such as DNA, RNA and proteins. These objects have different time scales, which are not

taken into consideration when the model is generated. A second problem is determined

by the simplification of the real world provided by boolean models. In the real world, an

event can not be triggered by the presence of a single molecule, but a threshold needs to

be reached. A synchronous boolean scheme is not always the best option for this type

of behavior. An argument against the synchronous update is how a biological function

works. Kalman reported that it is the changes in the state of a variable that induces

the activation of the update function. For this reason, a “cascade” updating scheme is

introduced, where the state variable xi updates through its update function fi if and only

the latter depends on at least a variable that has changed at the previous time step. There

are other possible asynchronous updating schemes. Each one has particular relevance in

a specific scientific environment. It turns out that a cascade update is a suitable type

of updating scheme when we deal with the update function of a genetic network. To

formalize this approach let us introduce a function that, given two state vectors x1 and

x2, returns the state variable that has changed. With this function it is possible to express

the asynchronous update in compact form as:[︄
x(k + 1)

c(k + 1)

]︄
=

[︄
fc(x(k),u(k), c(k))

fd(x(k),u(k), c(k))

]︄
(3.15)

The vector c(k) contains the indexes of the variables that have changed at the previous

update. For each boolean function (2.15), fc checks whether fi depends on a variable in

c. If not, then it replaces such variable update function with xi(k − 1).

This update scheme can be also used for a probabilistic network as (3.11):⎡⎢⎣ x(k + 1)

W (k + 1)

c(k + 1)

⎤⎥⎦ =

⎡⎢⎣fc(x(k),W (k), c(k))

0

fd(x(k),W (k), c(k))

⎤⎥⎦+

⎡⎢⎣0

w

0

⎤⎥⎦ (3.16)
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Where the update functions are based on the same philosophy as for (3.11). If c con-

stantly contains all possible values, the asynchronous cascade updating model collapses

to the synchronous one. As a consequence, as reported in [6], the synchronous updating

mechanism is a specific case of the cascade update model. The biological reason for the

introduction of this approach is that in a boolean network the concept of time does not

make any sense, and usually, it is the change of status of a node that triggers the update of

all the other nodes whose evolution depends on it. The initial conditions need to account

also for this: if c(0) is void the system is in equilibrium.

As in the previous section, we will study what is the expected behavior of an asyn-

chronous model. The first step is the concept of stability of a BN. In the synchronous

deterministic model, to determine if a state δi is an equilibrium it is only necessary to look

at the algebraic matrix L and see if its (i, i) entry is unitary. Since the update function

depends on the variable that was previously updated, this simplicity cannot be transferred

directly into the cascade model. The same state can have multiple possible evolutions

depending on the c vector that is associated with it. If c is void the state will not change

in time. This is compatible with the concept of attractor and leads to the conclusion that

in addition to checking the update functions, one has to look at c to determine when a

configuration is in equilibrium or not. This also implies that each configuration can be

an equilibrium, depending on how the system reached it. The focus needs to be posed

on how the system will change the update function. This task is very operations-specific,

there is no general result, and most papers come to the aforementioned conclusion using

numerical analysis. Here is presented an example where a GNR has been studied to better

visualize how difficult is to study an asynchronous model in comparison to a synchronous

one.

Figure 3.2: A simple GNR.

Example 3.3.1. Consider the GNR reported in Figure 3.2. This network is a simplifica-

tion of the life circle of a cell as reported in [4]. TNF is the acronym for Tumor Necrosis
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Factor, a protein that the body uses to notify the cell of a request to kill itself. In this

model, there is an external input u. IAP is a set of proteins that act as inhibitors of

apoptosis2. C3a and C8a are two cascades of internal cell processes3 that interacts with

TNF and IAP. Starting from the figure above, the presence of IAP will be modeled by

the boolean variable x1, the state of the cascade C3a by the boolean variable x2 and C8a

by x3. The corresponding model is the following:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1(k + 1) = (¬x2(k)) ∧ u(k)

x2(k + 1) = x3(k) ∧ (¬x1(k))

x3(k + 1) = x2(k) ∨ u(k)

It turns out that there are two special configurations: x1 = 0∧ x2 = 1 that correspond to

the dead cell, and all the other configurations correspond to a living cell. The question

we want to answer is the following: is it always possible to determine an input sequence u

that makes the cell move from an alive configuration to a dead one? The expected answer

is negative. Pathologies like cancer inhibit the apoptotic process. The two matrices L

and Ltot turn out to be:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

1 1 0 0 0 1 0 0

0 0 1 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2The apoptosis is the process by which the cell kills itself.
3“A cascade of internal cell process” is a sequence of interactions between different components or

molecules inside the cell. This is usually an independent process that can be considered as a single entity.
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Ltot =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 0 1 0

2 2 0 0 0 2 0 0

0 0 1 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The initial request is that δ5 and δ6 are the only equilibrium points when u = 1, while

δ3,δ4,δ7 and δ8 are transient points. In this way, it is guaranteed that each configuration

leads to the desired one when the input takes that specific value.

Looking at Ltot it is immediate to notice that [Ltot]5,5 = 2. This implies that δ5 is an

equilibrium point for every u ∈ {0, 1}. δ6 is not an equilibrium point, but δ3 and δ8 are.

Since it is impossible to determine the input configuration that leads the states δ3 and δ8

to be equilibrium points?, it is worth to look or at L or at the trajectories. From L we

deduce the possible one-step evolutions:

δ1 → δ7 ∀u
δ2 → δ7 ∀u

δ3 → δ3 if u = δ1

δ3 → δ8 if u = δ2

δ4 → δ3 if u = δ1

δ4 → δ8 if u = δ2

δ5 → δ5 ∀u
δ6 → δ7 ∀u

δ7 → δ1 if u = δ1

δ7 → δ6 if u = δ2

δ8 → δ3 if u = δ1

δ8 → δ8 if u = δ2

From these evolutions, it is possible to draw the following conclusions. There exists a

set of states that act as traps, i.e., once the system status enters the set it is impossible to

find an input sequence to exit the trap set. A deeper analysis of the evolution configuration
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leads to identify as possible the following cases:

• The trap set {δ3, δ8}, that can be accessed by the external state δ4 independently

of the input configuration.

• The trap set {δ1, δ6, δ7}, that can be accessed by the external state δ2 independently

of the input configuration.

• The state {δ5}, which is an equilibrium for all the inputs and is isolated.

This analysis emphasizes that it is impossible to move from one set to another. The

initial request was to check if the system is stabilizable at δ5 or δ6. Given that they are

not present in the first row the answer to our request is negative. If we switch to an

asynchronous update scheme the possible trajectories are reported in Figure 3.3 4

Figure 3.3: Asynchronous transition graph for the system. The nodes are the states of
the system’s boolean variables. (a) shows the updates with u = 0 and (b) with u = 1.
The common state 011 represents the dead cell the corrispettive of δ5. 000 (δ8) and 101
(δ3) represent the cell that will survive.

Here the desired states δ5 can be reached from δ6. So, a switching input fulfills the

request, as shows in the image switching between a and b. The different updates determine

different scenarios, and it is necessary to select the one that is relevant to the real data.

The lack of a rigorous procedure to determine what is the behavior of an asynchronous

system leads to a more complex analysis. In the next chapter we will focus on a general

way to detect if there is the system is faulty, both in case the system is a simple BCN

and in case it is a more complex network of the type discussed in this chapter.
4The figure is taken from [4].
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Chapter 4

Models for fault detection

Up to now, the reference system has been assumed to be perfectly described by its math-

ematical representation. The question addressed in this chapter is the following: What

happens if an error occurs? The error can regard the state vector, due to a wrong initial

condition or a wrong state estimation from the real world data. Otherwise, there is the

possibility that the system changes its internal behavior and the mathematical represen-

tation is no longer accurate. The latter problem can happen if a component breaks inside

the system, which could happen for reasons internal or external to the system. The goal

of this chapter is to verify if some kind of fault has happened to the system and if it is

possible to locate it.

According to [8], in a gene regulatory network represented by a BCN, the fault can be

viewed as a corruption of its boolean operators. This can happen in two ways:

• “Stuck-at” fault: this fault happens when the operator has the same output for each

input configuration. In particular, it is referred to as ‘stuck-at-1‘ and ‘stuck-at-0’

to better explain what type of fault occurred.

• “Bridging” fault: this type of fault happens when the operator accepts as input a

different component from the one that was initially configured. This can happen if

the process can be also activated by a different molecule that has a small error in

its production somewhere else in the system.

A pathology, such as cancer, can be a combination of multiple faults in the internal cell

network, that leads to an evolution that differs from the normal one. The system states
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remain the same, but they are linked by a different set of update functions. We denote by

Lfault the update matrix of the faulty system, i.e., the update function of the pathology,

by {u1, u2, · · · , u2Km} the set of all possible inputs in the time window {0, 1, · · · , K}, and
by ∆2n the set of all the possible initial conditions. If it is possible to directly observe

the system state (this hypothesis is not true in most cases, and we will relax it a bit

later), it is possible to define the set trajectories of the faulty system in the time window

{0, 1, · · · , K}:

Tfault = {(x(0), Lfaultu
i(1)x(0), · · · , LK

faultu
i(K)x(0));∀x(0) ∈ ∆2n ,∀ui ∈ {u1, u2, · · · , u2Km}}

(4.1)

The previous set, by construction, describes only the dynamics for t = 0, 1, . . . , K + 1 of

a system that is faulty already at t = 0. This is a strong hypothesis because in general

a fault can happen inside the time window, namely the system behaves normally until

the jth step, when the fault occurs, and the faulty update function is used to generate

the rest of the trajectory. If the exact moment of the fault is known the resulting set of

trajectories, corresponding to all possible initial conditions is:

T j
f,fault = {(x(0), Lui(1)x(0), · · · , x(0), Lj−1ui(j − 1)x(0), x(0), LfaultL

j−1ui(j)x(0),

· · · , LK−j
faultL

j−1ui(K)x(0));∀x(0) ∈ ∆2n ,∀ui ∈ {u1, u2, · · · , u2Km}} (4.2)

There are now two strong hypotheses that have been introduced to derive this set and

need to be relaxed a bit: the direct measure of the state vector and the knowledge of the

exact time when the fault occurs. To measure the state of the system a set of experiments

needs to be done. Each experiment can be modeled as a function h(x1, · · · , xn) called

output function.

4.1 Output of the system

Consider a boolean system described as in (2.12) or in (2.13). Up to now, we have

assumed that all system variables are accessible. This is not the general case. In classical

system theory, this has been fixed by assuming that at least some output measurements,

depending on the state variables, are available. In the boolean context this is equivalent
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to introduce a set of p boolean function F : Bn+m → B :⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y1(k) = h1(x1(k), · · ·xn(k), u1(k), · · ·um(k))

y2(k) = h2(x1(k), · · ·xn(k), u1(k), · · ·um(k))
...

yp(k) = hp(x1(k), · · ·xn(k), u1(k), · · ·um(k))

(4.3)

Being a set of boolean equations, it admits a logical representation:

y(k) = Hu(k)x(k) (4.4)

where y(k) = ⋉p
i=1yi.

As in the classical nomenclature, a boolean system is said to be observable if it is

always possible to the initial condition from the input sequence and the corresponding

output measurements in a finite time window. To do so we calculate the state with:

x(k) = (Hu(k))Ty(k) (4.5)

If x(k) is a canonical vector, this means that there exists a bijective correspondence

between this state of the system and the corresponding output.

Otherwise, the state of the system is a boolean vector that can thought of the sum

of all the vectors δi that generate the given output. In this case, the analysis needs to

be performed by looking also at the previous time steps and checking all the possible

scenarios, as in the classical approach. As a result, we can modify a bit the concept of

trajectory set. We introduce the output trajectory set :

To,f = {Hx(0), HLx(0), HL2x(0), . . . ,∀x(0) ∈ ∆2n} (4.6)

Considering the system output and therefore the output trajectories, relaxes the first

hypothesis, as it is no longer necessary to know the complete state of the system. To do

this, it is sufficient to consider y(k) = Hx(k) instead of x(k) without further modifying

the discussion.
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4.2 Types of fault

To relax the hypothesis of knowing when the fault occurs we will create a new set that

is the union of the trajectories that correspond to the different locations of the fault in

time:

Tf,fault =
K⋃︂
j=1

T j
o,f,fault (4.7)

Note: in this definition, we group the output trajectories, but we drop the o-subscript

since in real scenarios direct access to the system state is not guaranteed.

To recap, so far we have described how a breakdown of the model affects its trajectories.

The new set of trajectories is strictly dependent on the fault time, in the sense that two

different fault times correspond to two different sets of trajectories. By analyzing these

sets, we can classify the fault. In particular, we are interested in knowing if it is possible

to identify the fault time by looking at the trajectory (or rather the output trajectory) of

the system1.

Definition 4.2.1. A fault is said to be:

• Detectable if the intersection between Tf and Tf,fault is void.

• Not detectable if Tf,fault ⊂ Tf

• Possibly detectable if there exists some trajectories in Tf,fault that are not shared

with Tf , namely Tf,fault ∩ Tf ̸= ∅ but Tf,fault ̸⊂ Tf .

An absolutely observable fault is the best situation that can occur since it is always

possible to understand if the system is faulty or not. Usually, the more complex the model

becomes, for example as reported in Chapter 3, the more unlikely is to fall in this case.

It is also important to remark on the assumption that, until now, the system may be

affected only by a single kind of fault. If this is not the case, it is necessary to build a set

Tf,faulti for each known possible fault, and check if there exist some detectable trajectories.

If there is no knowledge of the fault type, it is only possible to detect if the evolution

does not belong to the set of expected ones Tf . Checking the presence of a trajectory

inside the previous set is elegant, but it requires the knowledge of the entire trajectory

1Keeping into account that the trajectories also depend on the type of model, as discussed in Chapter
3.
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set. This is costly for complex models. Another issue is the size of the time windows of

the trajectories. The researcher needs to figure out how big the experiment needs to be

in order to detect the possible fault, taking into account the relative cost.

The first approach to fault detection is to use a boolean model to build a state estimator

as in the classical system theory literature, meaning that an estimator is used to obtain

an estimate, x̄(k), of the state at the time k. Then it is possible to assume as error

measure the Hamming distance between x(k) and x̄(k). The Hamming distance of two

Boolean vectors is the number of positions in which the two vectors differ. As in [6] and

[9], this distance should remain contained in a specific interval of numbers if the system

is fault free (or the fault is not detectable). This interval is specific for each model, but

the procedure for obtaining it is not trivial. If a fracture occurs, this measurement is out

of its range. In practice, it is necessary to study the evolution of the error

e(k) = Hamm(x(k), x̄(k)). (4.8)

In the rest of the thesis we will not address this case, but if the state variables are not

accessible and hence only observable from an output equation y(k) = h(x(k)), the distance

can be assumed:

e(k) = Hamm(y(k), ȳ(k)) = Hamm(h(x(k)), h(x̄)(k)) (4.9)

Now it is possible to proceed in two ways. The first method is to set a threshold: when

e(·) exceeds this threshold, an error in the system will be notified. Otherwise, a more

complex study can be done by treating e(·) as a stochastic process. If e(·) does not match

the normal expectation, the system needs to be treated as a faulty one. From now on we

will focus on this second approach.

4.3 State estimator

To estimate the current state of a boolean network it is possible to use a classical open

loop observer. This is an additional system that shares the same boolean update function

of the desired system. This state estimator needs to be initialized with the same initial

condition and fed with the same input that goes to the real system. The knowledge of
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the initial condition is a strong assumption, because if we are able to know them we

should be able also to know the state of the system at each moment. We will discuss how

integrate the output of the system to remove this hypothesis. Figure 4.1 is a graphical

representation of this approach.

Figure 4.1: Classical state estimator scheme in open loop

This estimator is classically called open loop full observer and has some drawbacks.

Once initialized, there is no guarantee to keep the estimated state aligned with the real

one. The reduction of the gap between the estimated and the real state is addressed with

the introduction of a feedback; this will addressed in the next section. This approach

can be transferred to BNs and BCNs, but some problems emerge. They depend on the

characteristics of the update function, in particular, if the update function is no more

deterministic the construction of a proper feedback loop is not trivial. Consider a PBN

as in (3.9), recalling that the state update can be represented as:

x(k + 1) = L(ω)u(k)x(k) (4.10)

Where L(ω) is the current update matrix. Since it is not possible to know in advance

what is this matrix before the update, it is possible to study the expected evolution of

the state using L as reported in [9]:

x̂e(k + 1) = E[L(ω)]u(k)x̂e(k) (4.11)

The expected E[L(ω)] is the same reported in (3.13). As previously discussed, x̂e(k) is not

a more canonical. Instead, each entry i will represent the probability that the system is in
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the δi configuration. It is worth noticing that the evolution reported in (4.11) keeps track

of the previous probability when the new state is calculated. The absence of feedback

leads each i-probability to depend on all the previously estimated ones.

An asynchronous system requires a more complex approach. It is necessary to keep

track of the state’s history and change the update function accordingly. If the open

loop observer is combined with a stochastic update function, it is necessary to treat each

possibility separately. Such an approach requires more attention and becomes confusing

after a few steps. In these cases, a mere observer is not recommended. As an alternative,

an estimator based on the Kalman filter is very promising as reported in [10], [11], and

[12]. But first, let’s see how this observer is useful to identify the faults.

4.4 Fault detection observer

Consider the output function of a boolean dynamical system as reported in (4.4). An

observer can be built as:

x̂o = (Hu(k))Ty(k) (4.12)

Where the vector x̂o is a probability vector as x̂e(k). The difference is that instead of

being evaluated based on the evolution function, these probabilities are evaluated from

the observation function. It is also important to report the fact that these probabilities

depend on the current system state. The estimated state at the time k requires the

knowledge of the system input and the output at the time k. x̂o can be combined with

the estimated state gained in (4.11) to obtain a better state estimator:

x̂(k)′ = x̂o(k) ◦ x̂e(k) (4.13)

where ◦ is the element wise multiplication. This operation combines each specific state

probability, obtained from the expected evolution, with the probability to be in that

state given the output. Consequently, x̂(k)′ is a state vector whose ith entry is pie(k), the

probability of the system being in the δi configuration after the last update, multiplied

with pio(k), the probability of the system to be in the δi state given the output of the

system. The entries of x̂(k)′ are not ensured to sum to one anymore. The vector contains

all possible configurations estimated in x̂e(k) that are compatible with the output. This
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sum is represented with the symbol α as reported in [9]:

α(k) =
n∑︂

i=1

x̂′
i(k). (4.14)

If we assume that there is no fault in the system, α can be used to normalize the state

vector, to obtain a distribution that sums to one:

x̂(k) =
1

α(k)
x̂′(k) (4.15)

Given this description of α, it is interesting to note that 1−α corresponds to evolutions

that are not compatible with the model. This leads to the next construction: assume a

fault free system. At time k the state vector is x(k) = δi. The corresponding estimated

state x̂e(k) has in the ith position a positive number that corresponds to the probability

to have reached that configuration given the system model. The entry is zero if that

configuration is not compatible, given the update function and the previous state vector

x̂(k).

At the same time, the output δjv = Hu(k)δi is compatible with the state δi as far as

[x̂o(k)]i > 0.

In this way, α is ensured to be the sum of zeros and at least a positive number.

Otherwise, if the model has a fault the update x̂(k) = Lu(k−1)x̂(k−1) could have a zero

in the ith position of x̂(k). This can be used to determine the presence of an observable

fault.

Since x̂e is the vector with the probabilities to reach each particular configuration,

the element-wise multiplication with the observed state acts as a “selector” leading x̂′ to

contain only the accepted states.

Example 4.4.1. Consider a network and its fault detector observer. This system has

some internal states that lead to the same output. One of these states cannot be reached

by the faulty free system. As a consequence it is possible to be in the case whereHLx(0) =

HLfaultyx(0). In this case, α remains greater than zero, since the output is compatible

with the faulty free one. It remains so until HLkx(0) ̸= HLk
faultyx(0). When there is the

case of inequality, α drops to zero and it is certainly possible to say that the system had

a fault.
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Looking only if α(k) reaches zero, limits this approach as it only occurs when the

observed trajectory is not included in Tf . In the other cases, namely when the intersection

between Tf and Tf,fault is not empty, α remains greater than zero. It is possible to

mitigate this problem at the cost of the possibility of some false alarms. To do so we

require knowledge of the faulty system model. The basic idea is simple, we assume that

the system is affected by a fault at time k and evolves according with the faulty model

Lfaulty. We build an estimator on this evolution, and we evaluate through alpha the

probability that the current step is compatible with the given faulty model.

x̂f,e(k + 1) = Lfautlu(k)x̂(k) (4.16)

x̂′
f (k) = x̂o(k) ◦ x̂f,e(k) (4.17)

αfaulty(k) =
n∑︂

i=1

x̂′
f (k) (4.18)

x̂f (k) =
1

α(k)
x̂′
f (k) (4.19)

In this way, αfaulty will be the sum of states compatible with the given output weighted

by the probabilities determined by the faulty model. Such an estimator needs to work in

parallel to the one designed for normal behavior.

We want to point out that (4.11) shares the same state vector x̂(k) as in (4.19) before

performing the update. Given that the two estimators need to share the same initial state

x̂(k), we need to choose between (4.15) and (4.19) This is equivalent to asking whether

the model is faulty or not. In order to answer the usual question of weather or not the

model is faulty, we need to check the following inequality:

βα(k) < αfaulty(k) (4.20)

Whether the case is correct the system functions normally. Otherwise, the system needs

to be marked as faulty. By making use of β one can tune the probability of false alarms

against detection rate.

This approach can also be modified to integrate more than a single faulty model,

checking which one is the most probable. To do so, we reproduce an estimator for each

known fault, and calculate its αfaulty,j measure. The second step remains to look at which
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one is the most probable.

i(k) = argmax(βα(k), αfaulty,1(k), · · · , αfaulty,n(k)) (4.21)

This approach requires knowledge of how the fault affects the system. Moreover, such an

approach can be suitable in a biological environment, if the request is not to understand

how the system broke down but to check if it is affected by a specific pathology.

4.5 Boolean Kalman filter

In the last part of this chapter, we present the Boolean Kalman Filter as an alternative

to the state estimator. The base idea is to create 2n cases, where n is the number of

variables in the state vector. Each case will be a different simulation of the system

evolution. Associate at each case a possible initial condition of the system2. After this

initialization phase, for each time step in the time window we repeat the following: Update

the case with the system update function f and use the output function to estimate the

corresponding probability. Use this probability to make a weighted sum of the cases.

This would be the estimated current state. The estimated state will not interfere with

the various simulations, which will remain independent processes. Using all the possible

states at the same time is the key to the correctness of this algorithm since it ensures

keeping traces of all possible outcomes. However, this solution is quite demanding and

becomes impossible to use with large systems. This can be mitigated by adding a particle

filter. The probability of each state is used to generate a probability mass function within

the scope of sampling the possible states. Only this selection will be used to estimate the

current state and the next initial cases. In the algorithm 1 it is reported the pseudocode

of the particle filter as discussed in [11].

This is a Monte Carlo approach, where the state is estimated with a span of simu-

lations. The more simulations are taken into account, the more precise the estimation

becomes. It can be seen as a rough calculation of the possible evolution, and the particle

filter allows for a reduction in the amounts of particles requested. If the initial condition

of the system is known, it is possible to encapsulate this information in the initialization

phase.

2Since the state vector is ∆2n there will be one case for each possible condition.
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Algorithm 1 The pseudocode for the boolean kalman filter with the particle filter sub-
sample

# Initialize a set of N particle and give an initial probability of 1
N

x(0)i ∼ Π0|0,W (0)i =
1
N
, for i = 1, · · · , N

for k = 1, 2, · · · do
# Update each particle with the corresponding update function f
for i = 1 to N do

µ(k)i = f(x(k − 1)i)
# Update the corresponding probability of each particle with the probability

gained looking at the output of the system
V (k)i = P (Y(K)|µ(k)i)W (k − 1)i

end for
# Subsample the possible particle relating to the new probability distribution
{j(k)i}Ni=1 = Sample {V (k)Ni=1}
# For each sample integrate a noise and estimate the weight to the possibility to

reach the output with the integrated noise.
for i = 1 to N do

x(k)i) = µ(k)j(k)i ⊗ nk

W̃ (k)i =
P (Y(K)|x(k)i)

P (Y(K)|µ(k)j(k)i )
end for
# Normalize the weights

W (k)i =
W̃ (k)i∑︁N
i=1 W̃ (k)i

# The estimated next state is the weighted sum of the subsampled states
XMS(k) =

∑︁N
i=1 W (k)ix(k)i

end for
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In the algorithm we add a noise nk to affect a candidate state vector (namely a

particle). This is for the same reasons that have been taken into consideration when

dealing with models with noise. Using an appropriate noise could lead to a reduction of

the number of particles requested to reach an appropriate state estimation, adding some

random perturbation.

The probability P (y(K)|x(k)) depends on the experiment done in order to obtain the

observation. In the simulation reported in Chapter 5 we use the pure expectation of the

given output. This leads to great results but is only possible since the data are simulated.

Once the state is estimated it can be used to determine if the network is faulty. The

procedure is similar to what was done with the faulty observer in (4.13). First we replace

x̂e with the state estimated with the particle filter. Then we continue in order to obtain

α as in (4.14). The conclusions must be drawn by looking at when α goes to zero, as

reported in the previous discussion.

This method works also when dealing with PBNs and asynchronous networks. It only

required some small tweaks. In particular, it needs to take two distinct probabilistic

distributions into account: one describing the possible initial state and the second that

describes the network used at the current time to update the system. We can operate

by increasing the number of particles and keep the algorithm unchanged. The number of

particles needs to be big enough to ensure an appropriate representation of the update

function. This can be resource intensive also for very small networks. It is sufficient to

have a very small probability associated with an update function to increase drastically

the number of particles requested. In alternative, it is possible to modify a bit the code

of the filter. Instead of randomly choosing the update function, let us create a set of

new particles. These will be the result of the original one updated with each possible

function. The final particle will weigh as the original one multiplied by the probability

of the function used. This “dynamical” approach reduces the request of particles and

ensures that each update function has been taken into consideration at each time step. If

the system is asynchronous it is necessary to modify the structure depending on the type

of the update function. Since the cascade update depends on the consequences of the past

update, one cannot treat all particles equally. But as shown in (3.15) it is also necessary

to keep track of the individual history of each particle. Then we update each particle

with the relative update function. The rest of the algorithm remains unaltered, but the

estimated state is returned without the history since it makes no sense to average the
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changes on different processes. It is possible to combine both tweaks in order to generate

an estimation of more complex systems.

In the next chapter, we will present the difference between the results simulating a

real dynamical system.
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Chapter 5

Simulation on a real model

In this chapter we focus on a simulation of a real pathology. It is based on what is reported

in the paper [13]. By following up the reasoning made in Chapter 1, the authors use the

data obtained from multiple cells to generate the boolean models reported in Table 5.1.

The data has been used to group the target genes and proteins into twelve subgroups.

For the scope of this thesis, it is not interesting to study what these groups represent.

Instead, we will focus on the fact that a cell that develops a tumor will change its internal

behavior and consequently the functions that describe the interaction between the group

of genes change. These groups have been represented with a low-case letter “gi” in a

non-tumor cell and with an upper-case letter “Gi” in a tumor cell. The group is the same

in the two cases but they evolve with different functions and the different notation helps

to clarify. For the simulation, we assume that a cell switches from the healthy state to the

tumor one instantaneoulsy: gi(k) → Gi(k). This is a simplification: the real pathology

is a consequence of different faults that can happen at different times. To justify this we

present two motivations: first in a boolean model the time step depends on the experiment,

and it is possible to assume it is big enough to cover the transformation. Secondly, the

scope of this study is to identify if the model is faulty or not. The introduction of more

models can increase the number of shared trajectories, leading to a higher chance of false

alarms and as a consequence the reduction of the precision. Dealing with multiple models

can increase the number of false reports. As we will see, in this case, it is only requested

the knowledge of the normal model, in order to obtain a good fault detector. Another

consideration to do is the output function. This function is not reported in the paper,
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as the scientists created the model based on all the data available to them. They later

assumed that this data is always available and there are no hidden variables, which in our

model is equivalent to saying that y(k) = x(k)

Since this, it has been created as a custom one. As a future study, it is interesting to

understand what is the conclusion when the system is not observable. Keeping in mind

that reducing the number of observed variables leads to less expensive experiments.

In this chapter, the previous PBNs are tested in order to visualize how powerful is

the method described in Chapter 4. In order to show this, we proceed as follows: first,

we emulate the system as a classical synchronous PBN, next we reconstruct the system

trajectory with the state estimator and the Kalman filter. The test will be performed

by assuming for the first 200 steps the normal model, followed by the evolution with the

faulty model. This test has been run with a random initial condition that is not shared

with the observer. Then we repeated the same test with the asynchronous update scheme.

First, we report the result on the synchronous probabilistic boolean network. These

results are compatible with the ones reported in [9], where the authors classified the

fault as possibly detectable. In our simulations, we confirmed this since α goes to zero

in a couple of steps after the switch of the model in almost every simulation done. It

is interesting to look at the difference of α between the two estimation methods. The

particle filter seems to outperform the other method. This is because we perfectly know

the model. In the real world, additional interference reduces the accuracy of the result.

Figure 5.3 is reported as an interesting case, since the system reached an equilibrium

configuration. When the model is switched to the faulty the configuration is not more

equilibrium is not preserved and the configuration restart to change in time. Since the

estimator will still focus on the normal equation the estimated state remains fixed on the

equilibrium. The difference becomes evident even without looking at α.

Unfortunately, when we repeat the same type of tests with the asynchronous updated

model detected dropped significantly. The correct estimation of the system is still possible

with the modified particle filter, but the intersection between Tf and Tf,faulty is increased

and there are more cases of not detectable fault.

One can ask himself what happens when the system moved from the synchronous and

asynchronous update type since the same fault can become undetectable. The answer

should be searched in the trajectories set. These sets are not shared between the syn-

chronous system and the asynchronous one. From the simulations we extract that there
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are a low number of trajectories that the faulty system could go through that are not

shared with the non-faulty system. This leads the estimation filter to be able to track

the evolution of the faulty system with the normal system update function. Hence, α has

some difficulties to reach zero reducing the possibility to detect the fault scenario.
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Boolean Rule for Tumor cells Probability
G1(k + 1) = (¬G5(k) ∧ (¬G6(k) ∧G12(k)) ∨ (G5(k)) ∧ (¬G6(k) ∨G12(k))) 1

G2(k + 1) = G11(k) 1
G3(k + 1) = (¬G8(k) ∧ (G4(k) ∧G9(k))) ∨ (G8(k) ∧ (G4(k) ∨G9(k))) 1

G4(k + 1) = G8(k) 0.58
G4(k + 1) = G10(k) 0.42

G5(k + 1) = ¬G6(k) ∧ (¬G12(k) ∧G1(k)) ∨G6(k) 1
G6(k + 1) = (¬G12(k) ∧ (¬G1k ∧G5(k))) ∨ (G12(k) ∧G5(k)) 1

G7(k + 1) = G10(k) 1
G8(k + 1) = G4(k) 1
G9(k + 1) = G3(k) 1
G10(k + 1) = G7(k) 0.34

G10(k + 1) = (¬G1(k) ∧ (G5(k) ∨G6(k))) ∨ (G1(k) ∧ (G5(k) ∧G6(k))) 0.33
G10(k + 1) = (¬G5(k) ∧ (G6(k) ∧ ¬G12(k))) ∨ (G5(k) ∧ (G6(k) ∨ ¬G12(k))) 0.33

G11(k + 1) = G2(k) 1
G12(k + 1) = (¬G1(k) ∧ (¬G5(k) ∧G6(k))) ∨ (G1(k) ∧ (¬G5(k) ∨G6(k))) 0.55

G12(k + 1) = G2(k) 0.45

Boolean Rule for Non-tumor cells Probability
g1(k + 1) = g8(k) 1
g2(k + 1) = g12(k) 1

g3(k + 1) = (¬g7(k) ∧ (¬g4(k) ∧ g5(k))) ∨ (g7(k) ∧ (¬g4(k) ∨ g5(k))) 1
g4(k + 1) = (¬g5(k) ∧ (¬g6(k) ∧ g7(k))) ∨ (g7(k) ∧ g5(k)) 1

g5(k + 1) = (¬g6(k) ∧ (¬g7(k) ∧ g4(k))) ∨ (g6(k) ∧ (¬g7(k) ∨ g4(k))) 1
g6(k + 1) = g7(k) 1

g7(k + 1) = (¬g4(k) ∧ g6) ∨ (g4(k) ∧ (¬g5(k) ∨ g6(k))) 0.37
g7(k + 1) = (¬g3(k) ∧ (¬g8(k) ∧ g10(k))) ∨ (g3(k) ∧ (¬g8(k) ∨ g10(k))) 0.32

g7(k + 1) = (¬g1(k) ∧ g3(k)) ∨ (g1(k) ∧ (¬g8(k) ∨ g3(k))) 0.31
g8(k + 1) = g10(k) 1
g9(k + 1) = g12(k) 1
g10(k + 1) = g8(k) 0.36
g10(k + 1) = g6(k) 0.33

g10(k + 1) = (¬g9(k) ∧ (g11(k) ∨ g12(k))) ∧ (g9(k) ∧ g11(k)) 0.31
g11(k + 1) = g6(k) 1

g12(k + 1) = (¬g2(k) ∧ (g9(k) ∧ g11(k))) ∨ (g2(k) ∧ (g9(k) ∨ g11(k))) 0.35
g12(k + 1) = (¬g10(k) ∧ (g1(k) ∧ ¬g3(k))) ∨ (g10(k) ∧ (g1(k) ∨ ¬g3(k))) 0.33

g12(k + 1) = g1(k) 0.32

Table 5.1: Tables of the PBN reported in the cited paper.
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(a)

(b)

(c)

Figure 5.1: In (a) is reported the evolution of the simulated system. Each line corresponds
to a specific target. At the time 200 the model changed to the faulty one. In (b) is reported
the estimation of the state with the L matrix and the fault detection observer. In (c)
is reported the α in time. It is possible to see that α reaches zero after the model has
changed to the faulty one.
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(a)

(b)

(c)

Figure 5.2: In (a) is reported the evolution of the simulated system. Each line corresponds
to a specific target. At the time 200 the model changed to the faulty one. In (b) is reported
the estimation of the state with the kalman filter matrix and the fault detection observer.
In (c) is reported the α in time. It is possible to see that α is almost one until the model
has been changed to the faulty one.
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(a)

(b)

(c)

Figure 5.3: Here is reported an interesting case, where the system status is in equilibrium
until the update function change and the estimated filter cannot “follow” the new trajec-
tory. This led to a drop in the α value.
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(a)

(b)

(c)

Figure 5.4: In (a) is reported the evolution of the simulated system with the cascade
update scheme. Each line corresponds to a specific target. At the time 200 the model
changed to the faulty one. In (b) is reported the estimation of the state with the kalman
filter and the fault detection observer. In (c) is reported the α in time. It is possible to
see that α reaches zero after the model has changed to the faulty one.
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Chapter 6

Conclusion

In this thesis, we started with by presenting the boolean algebra and the boolean systems.

We showed how this set up can be used to model some biological functions and how is it

possible to introduce some improvements in order to encapsulate more complex behaviors.

We concluded the theoretical part with the introduction of the study needed in order to

perform some sort of fault detection. All these results have been used to simulate a real

system and showed that the introduction of more complex behaviors as the asynchronous

update has a huge impact on the detectability of a fault. This must be a warning for

future studies: every problem has more study stages, and it is very unlikely that the

initial proposed solution works when the approach starts to go deeper into the problem.

A second remark that we want to do regards a purely theoretical approach to pathology.

From the model and knowledge of a biological issue, one can think to design some sort of

feedback that leads the system to behave as a normal one. This is correct in theory but is

impossible with the current state of technology. To do so, one should have access to all the

pathology-afflicted cells, estimate the state of the cell and generate the correction input.

This must be done for each cell and each pathology, and is based on the assumption that

the immune system accepts this external component. Even if we can design a solution

to the problem, it is necessary to take into account all the complications of a biological

environment. This should not discourage a mathematical approach to the biological world,

but raise awareness of what needs to be done in this field of study.
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