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Abstract

In this Thesis we discuss recent ideas concerning the evaluation of multi-loop Feynman
Integrals in the context of Dimensional Regularization.

In the first part we study relations fulfilled by Feynman Integrals, with a particular
focus on Integration By Parts Identities (IBPs). We present the latter both in the standard
momentum space representation, where we essentially we integrate a set of denominators
over the loop momenta, and in Baikov representation, in which denominators are promoted
to integration variables, and the Gram determinant of the whole set of loop and external
momenta, referred to as Baikov Polynomial, emerges as a leading object.

IBPs in Baikov representation naturally lead to the study and the implementation
of concepts and algorithms developed in Computational Algebraic Geometry, such as
Sygyzies. We present a Mathematica code devoted to IBPs generation in Baikov rep-
resentation.

In the second part we focus on the Method of Differentil Equations for Feynman In-
tegrals, with a particular emphasis on the algorithm based on the Magnus Exponential to
achieve the Canonical Form: in both of them, an underlying algebraic structure arises.
We present applications relevant to phenomenology: namely we compute the Mis for the
1-loop box which appear in the µe → µe scattering and we obtain the Canonical Form
for a 2-loops non plaanar 3-points function, which is part of a wider task regarding the
calculation of the 2-loops non planar box which is needed for the qq̄ → tt̄ process.

In the last part we analyze the role of Cut Integrals as solutions of homogeneous Dif-
ferential Equations, and their implementation in Baikov representation. Working on an
explicit example, we show how different IBPs-compatible integration regions lead to dif-
ferent solutions for a higher order Differential Equation.
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Introduction

Scattering Amplitudes constitute one of the key elements in QFT, and undoubtedly play an
essential role for Particle Physics Phenomenology, since they are related to the transition
probability between an initial state |i〉 and a finial state |f〉. Working in an appropriate
energy regime, Perturbation Theory allows us to expand the Amplitude as a Series in the
small coupling constant; each term in the Series can be represented through Feynman Dia-
grams, and the associated analytic expression is dictated by Feynman Rules. The Leading
Order term, the so called Tree Level term, is, by far, the easiest to compute; the other
Diagrams in the series involve loops, namely closed lines with virtual particles circulat-
ing inside. Feynman Rules force us to sum or, better, to integrate over all the possible
momenta carried by virtual particles. On the one hand, dealing with these multivariate
integrals, referred to as multiloop integrals, constitutes one of the most challenging part
in the calculation, but on the other hand its mandatory in order to make reliable predic-
tions, and fully exploit the possibilities offered by the experiments, surely the LHC but
also several project in the so called Physics Beyond Colliders, [67], [68]. Moreover it is
worth stressing that multiloop integrals are almost ubiquitous in Physics: they are needed
for QCD scattering processes, Top physics, Higgs physics, QED corrections to lepton form
factors, static parameters, forward-backward asymmetry, as well as for Supergravity The-
ories and Critical Exponents.
As a remarkable fact, integrals potentially involved in the calculation turn to be not inde-
pendent.
Among others, Integration By Parts Identities (IBPs) [69], which arise from the vanishing
of a total derivative under the integral sign, provide a huge set of relations between inte-
grals. Then, the Laporta Algorithm [2], allows us to identify a minimal set of integrals,
the so called Master Integral (MIs), which constitute a basisfor the whole set of integrals
(we stress that just the size of the basis is dictated by the problem, while the choice of the
basis elements is arbitrary). Thus, the remaining ones can be expressed as combination of
these carefully chosen Mis; the coefficients in these relations turn to be rational functions
in d, namely the space time dimensions, and in the kinematics variables. Thanks to this
strategy we can impressively reduce the number of hard multiloop integrals by several order
of magnitudes, and so, not surprisingly, the Laporta algorithm has been implemented in
various public (and private) codes [52]-[59]. Despite this fact, there is still room for im-
provement; it is not clear which representation for multiloop integrals is the most natural
and suitable one to perform the IBPs. The Baikov representation (which appears several
times through this work) seems to be very promising in order to implement ideas and
algorithms related to Computational Algebraic Geometry, such as Sygyzy Equations [9],
[11] or module-intersection computations [48]-[70], needed in order trim and handle the
tremendous number of equations.
Once the MIs have been identified, we are left with the problem concerning their eval-
uation. Among others, a very powerful strategy is the method of Differential Equations
for Feynman Integrals. In fact, we can consider the unknown MIs as functions of internal
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masses, as originally advocated by Kotikov [6], or kinematic invariants, as proposed by
Remiddi [7] and Gherman and Remiddi [8] (see [1] and [71] for a review); deriving the MIs
w.r.t. the latter variables, and rearranging the output through IBPs, we obtain a suitable
system of 1st order Differential Equations (DEQs system) and we eventually recast the
latter as a single higher order DEQ for one of the MI involved. Solving this unique DEQ,
we determine all the MIs, avoiding a direct integration over the loop momenta (the other
MIs are related to the one we are considering via differential operators). Over recent years,
triggered by Henn [15], a more systematic and, in a certain sense, algebraic picture has
emerged. Instead of obtaining an higher order DEQ, the system itself is solved in terms of
iterated integrals, by means of the Dyson Series. More in detail, choosing an appropriate
basis of MIs, the so called Canonical Basis, ε, namely the dimensional regularization pa-
rameter, results completely factorized from the kinematics and the system turns to have
simple poles. Given these conditions, the solution naturally arise as a Taylor Expansion
in ε involving Generalized Polylogarithms (GPLs). Even if it is not clear if the Canonical
Form can be found for any process, and, a fortiori, no completely general algorithm is
known to achieve such a basis, several criteria have been proposed, starting from different
ansatz. Among others, the one based on the Magnus Exponential [23], intensively used in
this work, requires a DEQs sysetm linear in ε, and provides a rotation matrix in the space
of Master Integrals, which is very closely related to the solution of the DEQ system itself
at ε = 0, that reabsorbs the O(ε) term, leading to the Canonical Form.
The importance of Cut Integrals, i.e Integrals in which we impose virtual particles to be on
shell was understand long ago; since their appearance in the pioneering works by Cutkosky
[72], they have been a formidable tool in the study of Scattering Amplitudes. Amazingly,
Cut Integrals turn to have a key role also in the context of Differential Equations. In fact,
as it was shown for the first time in [74] and then generalized in [43], [44], Maximal Cut In-
tegrals (i.e. integrals in which the whole set of denominators is cut) solve the homogeneous
part of the DEQ. This is a remarkable fact since, for example, once the homogeneous
solution is known, the non homogeneous one can be recovered via standard techniques.
Considering an higher order DEQ, no general strategy is known to solve its homogeneous
part, and having this physical input (i.e. Cut Integrlas) prevent us from a case-by-case
analysis, which is heavily limited by the classification of Differential Equations and their
solutions present in the Mathematical Literature.
As it was shown by many Authors [45]-[47], the Baikov representation turns to be a very
powerful tool for computing Cut Integrals. This representation does not only make the
Cut procedure almost straightforward, but it provides a better understanding of the whole
picture. Thanks to the Lee-Pomeransky [65] criterium, we can determine a priori the num-
ber of MIs (for a given topology), and so the order of the corresponding DEQ. Moreover
it naturally suggests the different, IBPs-compatible, integrations regions for the residual
integration variables (i.e. variables that are not fixed by the Cut; the latter are always
present in 2-loop cases). Recalling that, a mth-order DEQ requires m independent homo-
geneous solutions, the the integration over the different regions mentioned above, provides
a whole set of homogeneous solutions.

This work is organized as follows. In the first Chapter we introduce the key objects
of this work, namely scalar Feynman Integrals. After briefly describing some alterna-
tive representations of Feynman Integrals (with respect to the standard momentum space
representation, in which we integrate Denominators and ISPs over the loop momenta) we
re-derive the Baikov representation, following [3]. In this representation, Denominators and
ISPs are promoted to integration variables, and the so-called Baikov Polynomial, namely
the Gram determinant of the loop and independent external momenta, naturally emerges
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as the leading element of the integrand. Then, we discuss the sources of relations among
integrals, Lorentz Invariance Identities (LIs), Sector Symmetries (SecSym) and Integration
by Parts Identities (IBPs), and we briefly introduct the Laporta algorithm. We finally
move to IBPs in Baikov representation. As anticipated above, the latter requires a careful
study of particular relations among determinants, and, more in general, among polynomi-
als, known in Algebraic Geometry as Sygyzies Equations. Strongly inspired by [48] [70],
we furnish an independent proof concerning Sygyzies Equations for determinants and their
relation with the Laplace Expansion; moreover we presented a new algorithm for comput-
ing Sygyzies based on the Euler’s theorem on homogeneous functions. Finally we present
an extended version of an existing Mathematica code [49] devoted to IBPs generation in
Baikov representation, which required the Software Singular [13] (for Sygyzies generation)
as well as the code Reduze 2 [58] (as a starting point to obtain SecSym relations in Baikov
representation and to discard vanishing integrals from the huge system of identities).

In the Second Chapter we discuss the method of Differential Equations for Mis. We fo-
cus on the Canonical Form and the algorithm based on the Magnus Exponential, developed
to achieve such a form. We present the special classes of functions which appear in the
solution of DEQs system, once the latter is solved in terms of iterated integrals over ratio-
nal kernel, namely Harmonic Polylogarithms (HPLs) [31] and Goncharov Polylogarithms
(GPLs) [30] [33]. We present (some of) the properties fulfilled by these functions, which we
implement in Mathematica. Moreover we discuss the problem concerning the fixing of the
Boundary Conditions (BCs): once the general solution has been determined, we have to fix
the integration constants in order the match the “physical value of the integrals. Along the
lines suggested in [27] we present, and apply to an explicit one-loop example, a strategy in
order the infer the BCs for massive integrals from massive ones, and vice-versa.
We propose the calculation of the MIs for the 1-loop 4-point function topology in the full
massless case, and for the 1-loop 4 point function for the µe → µe scattering. Finally we
obtain the Canonical System for a 2-loop non planar 3 point topology, which is needed in
order to complete the calculation of the Mis for the qq̄ → tt̄ process, which are currently
known just numerically.

In the Third Chapter we reconsider the algorithm based on the Magnus Exponential,
and we apply it to the so-called “QED Sunrise“ Integral Family, starting from a basis of
MIs which fulfills a DEQs system linear in ε. In particular we emphasize its connection
with the solution of the DEQs system at ε = 0: obtaining different solutions for the system
at ε = 0 we build a matrix, which is similar, and, on practical grounds, fully equivalent to
the one obtained through the Magnus algorithm.
Then we consider another basis of MIs, namely the Laporta basis, related to the previous
one via IBPs and we show how Cut Integrals, and their natural implementation in Baikov
Representation, together with a careful analysis of different IBP-compatible integration
domains, provide the whole set of solutions for the homogeneous part of an higher order
DEQ [47].
Finally, starting from the full set of homogeneous solutions obtained through Cuts and
using IBPs, we obtain another matrix, for the original basis of MIs, similar but, on practical
grounds, equivalent, to the one obtained through the Magnus algorithm.
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Chapter 1

Feynman Integrals Representations
and Properties

In this Chapter we review the decomposition of the Amplitude in terms of scalar Feynman Integrals.
After briefly introducing some alternative representations of Feynman Integrals, we present the Baikov
representation, in which Denominators and Irreducible Scalar Products (ISPs) are promoted to integra-
tion variables. The so-called Baikov Polynomial, namely the Gram determinant of the loop and external
momenta expressed in terms of Denominators and ISPs, turns to have a key role in this representation;
thus we review and derive some useful properties concerning determinants.
Then, we focus on relations fulfilled by Feynman Integrals, in particular Integration By Parts Identities
(IBPs). As a direct application (but this is not the only one), IBPs relate different Integrals in a given
Integral Family, thus just a finite number of them, the so called Master Integrals (MIs) are needed in order
to evaluate the Amplitude.
We exploit IBPs in Baikov representation, both analytically and numerically, extending an existing Mathematica

code dedicated to IBPs generation in this representation. As mentioned above, this approach requires the
study of determinants, their algebra, and more generally concepts and ideas from Algebraic Geometry,
such as Sygyzies Polynomials.

1.1 From Feynman Diagrams to Feynman Integrals

The Amplitude, M, associated to (one of) the Feynman Diagram(s) for a process involving
n+1 external particles, and p = {pi}i=1,...,n independent external momenta is dictated by
the Feynman Rules; it can be represented as:

M(p) = εµ1 . . . εµnb
Mµ1...µnb (p), p = {p1, . . . , pn}; (1.1)

where we pull out the set of polarization vectors associated to the nb ≤ n + 1 external
bosons. Then, Mµ1...µnb , can be further decomposed as (but this is neither the unique nor
the most powerful way):

Mµ1...µnb (p) =
∑
j

T µ1...µnb
; j(p)fj(p), p = {p1, . . . , pn}. (1.2)

where the T µ1...µnb
; j capture the Lorentz and Dirac structure of the Amplitude; the re-

mainder fj , usually called Form Factors contain all the scalar loop integrals, referred to
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as Feynman Integrals, we are interested in. A generic l-loop Feynman Integral, F , reads:

F (`,n)(p) =

∫ ∏̀
j=1

dd kj
N (k,p)∏t′

k=1D
rk
k

, k = {k1, . . . , k`}, p = {p1, . . . , pn}. (1.3)

The denominators, {Dk}k=1,...,t′ , are inherited from the original Feynman Diagram(s),
namely: Dk = (q2k +m2

k) = ((
∑n

i=1 akipi +
∑`

j=1 bkjkj)
2 +m2

k).
The numerator, N (k,p), often involves the scalar products formed by either one of the
(independent) external momenta and one of the loop momenta, or by two loop momenta.
Given n independent external momenta, and l loop momenta the number of scalar products,
nSP , (nSP 6= n) is:

nSP =
`(`+ 1)

2︸ ︷︷ ︸
internal-internal

+ ` n︸︷︷︸
internal- independent external

. (1.4)

Whenever it is possible, it is preferable to express the scalar products in the numerator in
terms of denominators, in order to obtain simplifications in (1.3). Beyond one loop, the
number of scalar products, nSP always exceedes the number of denominators, t, forcing us
to identify nISP = nSP − t, Irreducible Scalar Products, ISPs: namely the scalar products
which cannot be re-expressed in terms of denominators. Therfore we deal with integral of
the form:

Id (`,n)(p) =

∫ ∏̀
j=1

dd kj

∏nISP
h=1 S−sh

h∏t
k=1D

rk
k

, (1.5)

where {Sh}h=1,...,nISP
is the set of ISPs, t is the number of different denominators. Integrals

of the form (1.5) identify an Integral Family.
We define a Topology (or Sector) as a set of different denominators which can be

represented as a graph satisfying momentum conservation at each vertex; a Subtpology (or
Subsector) is simply a subset of the latter denominators, which again can be represented
as a graph, satisfying momentum conservation at each vertex, as well.
As a final remark we notice that we can identify an integral as a string, specifying the set
of indices for denominators and ISPs, namely:

I[{r1, . . . , rt, s1, . . . , snISP }] or Ir1,...,rt,s1,...,snISP
, (1.6)

and we can compute two useful quantities, namely:

r =

t∑
k=1

rk, s = −
nISP∑
h=1

sh (1.7)

Moreover, given a set of indices {k1, . . . kp} ⊆ {1, . . . t} with p ≤ t, we can define the
Identification Number, ID,:

ID =

p∑
n=1

2kn−1, (1.8)

which uniquely identify a (sub)topology.
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1.2 Feynman Integrals in d = 4− 2ε euclidean dimensions, an
invitation

As it is well known, it is possible to deal with integrals like (1.5), either in the minkowskian
metric or in the euclidean one; we will assume the former as the default choice through
this thesis. However, not surprisingly, working with the latter, i.e.: the euclidean one,
could offer some advantages, in particoular a clear and intuitive geometrical interpretation
for angles and scalar products among vectors. In virtue of that, we will consider in this
section the euclidean metric, and then, eventually, we would perform analytic continuation
on our results.
Up to now, we made no assumption on the particular regularization scheme adopted; a
common and well established pattern, consists in promoting the four loop momenta to a
d-dimensional one, while different choices are possible regarding the non divergent parts,
such as γ-algebra, metric tensor, external momenta and polarization vectors [37].

For example, we can consider the external momenta and the polarizaton vectors, as
strictly four dimensional objects. More in detail, we can split the d-dimensional metric
tensor, gαβ , as:

gαβ =

(
gαβ[4] 0

0 gαβ[−2ε]

)
. (1.9)

where gαβ[4] part of the metric tensor associated to the physical four dimensional part, while

gαβ[−2ε] is dictated by the necessity of regularize divergences. We assume:

gαβ[4] (g[4])αβ = 4, gαβ[−2ε](g[−2ε])αβ = −2ε. (1.10)

Moreover we naturally split a vector, vα:

vα = vα[4] + vα[−2ε], (1.11)

and we define external momenta and polarization vectors such that:

pαi ≡ pα[4] i, εαi ≡ εα[4] i. (1.12)

Beyond that, we regard at a generic loop momentum, kαj as:

kαj = kα[4] j + kα[−2ε] j = kα[4] j + µα
j , (1.13)

where µα
j denotes the [−2ε] dimensional part. Thus, the scalar product among a loop

momentum, kαj , and an external one, pβi , reads:

kj · pi = kαj gα β p
β
i ≡ kα[4] j (g[4])α β p

β
i = k[4] j · pi. (1.14)

Similarly, we have:

kj · εi ≡ k[4] j · εi,
kj · kl = k[4] j · k[4] l + µj · µl ≡ k[4] j · k[4] l + µjl.

(1.15)

Then, looking at a generic scalar feynman integrand expressed in terms of the latter de-
composition, turns to be illuminating. In fact a denominator, Dj , reads:

Dj = l2j [4] +
∑
i,k

αi jαk jµi j +m2
j , lα[4] j =

∑
i

αi jk
α
[4] i +

∑
i

αi jp
α
[4] i. (1.16)
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and, in general, numerators depend on kα[4] i and on the scalar products µi j .
Moreover, it is worth recalling that in the 4 dimensional part of the loop momenta, the
standard canonical basis is assumed, namely:

kα[4] j =
4∑

j=1

xji ê
α
i , êαi = δαi . (1.17)

Thus, we argue that a generic `-loop feynman integrand depends only on a finite number
of variables, namely `(`+9)

2 , wich are:

v = {xj1, xj2, xj3, xj4, µij}, 1 ≤ i ≤ j ≤ `. (1.18)

The latter correspond to the 4` four dimensional components of the loop momenta and the
`(`+1)

2 scalar product among the (−2ε) dimensional part of the loop momenta themselves.
This analysis suggests that the integration over these `(`+9)

2 variables, which are, in a
certain sense, “dictated by the integrand”, could offer more advantages than the usual inte-
gration over the l ·d individual loop momenta components. Starting from this observations,
the underlying concepts can be pushed even forward in the concept of the so called Adap-
tive Integrand Decomposition [38] and the Baikov representation [39], [40], [41].

Let’s sketch how a Scalar Feynman Integral transforms in these variables. For the sake
of simplicity we will consider a 2-loop integral (for a more general derivation see [3]).

2-loop Integral Measure in d = 4− 2ε dimensions
The Integral Meausre reads:

Md (`,n)
I =

∫ `=2∏
j=1

ddkj =

`=2∏
j=1

d4k[4] jd
[−2ε]µj . (1.19)

Then, we introduce spherical coordinates in the [−2ε]-dimensional space:∫
d[−2ε]µj =

1

2

∫ +∞

0
dµjj (µjj)

[−2ε]−2
2

∫
dΩ[−2ε]−1 j , 1 ≤ j ≤ ` = 2, (1.20)

where:

dΩ[−2ε]−1 j = (sin θ1j)
[−2ε]−3d cos θ1j (sin θ2j)

[−2ε]−4d cos θ2j . . . dθ[−2ε]−1 j , (1.21)

with:
θi j ∈ [0, π], i = 1, . . . , [−2ε]− 2, θ[−2ε]−1 j ∈ [0, 2π[. (1.22)

Choosing θ12 as the relative orientation between µα
1 and µα

2 , namely:

µ12 =
√
µ11 µ22 cos θ12, (1.23)

and performing the irrelevant angular integration:

Md (`=2,n)
I =

Ω[−2ε]−1,1Ω[−2ε]−2,2

4

∫ `=2∏
j=1

d4k[4] j

∫ `=2∏
j=1

dµjj (µjj)
[−2ε]−2

∫ +1

−1
d cos θ12 (sin θ12)

[−2ε]−3
2 .

(1.24)
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Moreover, inverting (1.23) we have:

sin2(θ12) =
µ11µ22 − µ2

12

µ11 µ22
,

d cos(θ12) =
dµ12√
µ11 µ22

,

(1.25)

and so (1.24), is equivalent to:

Md (`=2,n)
I = < Ω >`=2

[−2ε]

∫ `=2∏
j=1

d4k[4] j

∫ `=2∏
j=1

dµjj

∫ +
√
µ11 µ22

−√
µ11 µ22

dµ12 (G(µ1, µ2))
[−2ε]−3

2 ,

(1.26)
where G(µ1, µ2) is the Gram determinant associated to the (−2ε)-dimensional part of the
2-loop momenta, and for convenience we introduced

< Ω >`=2
[−2ε] =

`=2∏
j=1

Ω[−2ε]−j, j

2
. (1.27)

`-lopp Integral Measure in d = 4− 2ε dimensions
Then (1.26) can be generalized to higher loops (see [3]):

Md (`,n)
I = < Ω >`

[−2ε]

∫ ∏̀
j=1

d4k[4] j

∫ ∏
1≤i≤j≤`

dµij (G(µ1, . . . , µ`))
d−5−`

2 , (1.28)

where:

< Ω >`
[−2ε] =

∏̀
j=1

Ω[−2ε]−j, j

2
, (1.29)

and G(µ1, . . . , µ`) is the Gram determinant associated to the (−2ε)-dimensional part of
the `-loop momenta.

1.3 Feynman Integrals in d = d|| + d⊥ euclidean dimensions,
an invitation

Roughly speaking, one of the key observations contained in [38], consits in the aim of
maximizing the number of vectors in the four dimensional basis orthogonal to the external
momenta. In fact we can split the whole d-dimensional space, into a longitudinal space,
namely the one spanned by the external momenta, and its orthogonal and complementary
part, denoted by transverse space.
Considering a generic integral, associated to a diagram with n+ 1 external legs, recalling
momentum conservation, the dimension of the longitudinal space is:

d|| = min(4, n). (1.30)

It is worth stressing that, if n < 4, the longitudinal space covers just a subspace of the
whole four dimensional space and the orthogonal space “eats” 4 − n dimensions physical
directions. Obviously, in the case in which n ≥ 5, the orthogonal space collapses on the
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(−2ε)-dimensional space introduced above.
Then, essentially in the spirit of (1.9), we decompose the metric tensor as:

gαβ =

(
gαβ[d||]

0

0 gαβ[d⊥]

)
, (1.31)

with:
gαβ[d||]

(g[d||])αβ = d||, and gαβ[d⊥] (g[d⊥])αβ = d⊥. (1.32)

For a l-loop feynman integral with n ≤ 4 independent external legs, we can introduce a
set of (4− d||) basis elements, namely {eαd||+1, . . . , e

α
4 }, and eventually complete the latter

to a basis for the whole orthogonal space, such that:

ei · pj = 0, j ≤ n, i > d||,

ei · ek = δik, i, k > d||.
(1.33)

Thus, we can split a d-dimensional loop momenta, as:

kαi = kα|| i + λα
i , (1.34)

where = kα|| i lies on the longitudinal space, namely:

kα|| i =

d||∑
j=1

xijp
α
j , (1.35)

and:

λα
i =

4∑
j=d||+1

xije
α
j + µα

i , (1.36)

where in the last equality we completed the set of (4− d||) vectors to a whole basis for the
orthogonal space.
Working in this basis, the scalar products involving loop momenta read:

ki · pj = kαi gαβp
β
j = kα|| i (g[d||])αβ p

β
j = k|| i · pj , (1.37a)

ki · kj = kαi gαβk
β
k = kα|| i (g[d||])αβk

β
|| j + λα

i (g[d⊥])αβλ
β
j = k|| i · k|| j + λij ; (1.37b)

where in the last line we introduce, similarly to the previous section:

λij ≡ λi · λj =
4∑

k=d||+1

xikxjk + µij . (1.38)

Thus, denoting collectively by x|| i the projection of kαi on the longitudinal space, and by
x⊥ i the projection of the same loop momentum (or, better the four dimensional part) on
the orthogonal space, we notice that in a generic `-loop integrand, denominators depends
explicitly on the `(`+1)

2 scalar products λij and on the d|| · ` components x|| i, wich is only
a subset of the `(`+9)

2 identified in the previous section1.
On the other hand, x⊥ i may survive in the numerator of the integrand, due to the pres-
ence of four dimensional vectors orthogonal to external momenta. In fact, recalling the

1This statement holds iff d|| < 4
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orthogonality condition between the polarization vector of a massless particle, say εαi , and
its momentum pαi , we should consider:

kj · εi ∝ λj · εi =
4∑

k=d||+1

xjk(ek · εi). (1.39)

Anyway, even if this analysis goes beyond the scope of this thesis, we notice that this
“residual” dependence on x⊥ j , namely the (4− d⊥) transverse components for each loop,
is a polynomial dependence, and the related integration can be carried out in terms of
Gegenbauer polynomials; we refer the interested readers to [3] and [38] for detailed discus-
sions and derivations.

Thanks to the previous analysis on the integrand, we are ready to recast the integral in
terms of the new, carefully chosen, set of variables. Let’s consider, for the sake of simplicity,
a 2-loop integral measure (for a more general derivation see again [3]) with n ≤ 4 external
legs.

2-loop Integral Measure in d = d|| + d⊥ dimensions
Our starting point is:

Md (`=2,n)
I =

∫ `=2∏
j=1

ddkj (1.40)

We stress that in (1.40), we are integrating over the individual components of the loop
momenta, expressed in the “standard” canonical basis, E , namely:

kj =
d∑

α=1

kαj êα, (êα)j = δα j , êα · êβ = δαβ. (1.41)

Thus, we can identify another basis in which the first elements are given by the n indepen-
dent external legs; we denote d|| ≡ n,

B = {p1, . . . , pd|| , ed||+1, . . . , ed}, (1.42)

with:

pi · ej = 0, i ≤ d||, j ≥ d|| + 1,

ej · ek = δjk, j, k ≥ d||.
(1.43)

Thus, we can regard at the same vector, kj , expressed in the basis B:

kj =

d||∑
i=1

xijpi +

d∑
k=d||+1

λ
k−d||
j ek; (1.44)

Then, re-expressing (1.40) within the basis B, we have to take in to account the determinant
of the jacobian associated to change of basis G : B → E , namely det(JG)

2

det(JG) =
√

G(p1, . . . , pd||) . (1.45)

2 Let’s consider, for the sake of simplicity, a linear change of basis F : B → B′, and a vector, v,
expressed in the different basis:

v =

m∑
i=1

xibi =

m∑
j=1

yjb′
j ;
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Then (1.40), can be rewritten as:

Md (`=2,n)
I =

(
G(p1, . . . , pd||)

)(`=2)/2
∫ `=2∏

j=1

dd||xj d
d⊥λj (1.46)

Introducing spherical coordinates we can rewrite the integral measure as:∫
dd⊥λj =

1

2

∫ ∞

0
dλjj (λjj)

(d⊥−2)/2
∫

dΩd⊥−1 j 1 ≤ j ≤ ` = 2. (1.47)

and:
dΩd⊥−1 j = (sin θ1j)

d⊥−3d cos θ1j (sin θ2j)
d⊥−4d cos θ2j . . . dθd⊥−1 j , (1.48)

with:
θi j ∈ [0, π], i = 1, . . . , d⊥−2, θd⊥−1

∈ [0, 2π[. (1.49)

Choosing spherical coordinates for λ2 w.r.t λ1, i.e.: considering θ12 as the relative orienta-
tion between λ1 and λ2, we can write:

λ12 =
√
λ11λ22 cos θ12. (1.50)

Then, performing the irrelevant angular integrations3: we obtain:

Md (`=2,n)
I =

(
G(p1, . . . , pd||)

)(`=2)/2 Ωd⊥−1,1Ωd⊥−2,2

4
×∫ `=2∏

j=1

dd||xj

∫ +∞

0

`=2∏
j=1

dλjj (λjj)
(d⊥−2)/2

∫ +1

−1
d cos θ12(sin θ12)

d⊥−3.
(1.51)

Then, inverting (1.50) we have:

sin2(θ12) =

(
λ11λ22 − λ2

12

)
λ11λ22

,

d cos(θ12) =
dλ12√
λ11λ22

(1.52)

Plugging the latter relations in (1.51) we obtain:

Md (`=2,n)
I =

(
G(p1, . . . , pd||)

)(`=2)/2
< Ω >`=2

d⊥

∫ `=2∏
j=1

dd||xj

∫ +∞

0

`=2∏
j=1

dλjj×

∫ +
√
λ11λ22

−
√
λ11λ22

dλ12 (G(λ1, λ2))
(d⊥−3)/2 ,

(1.53)

then, the jacobian associated to the transformation, JF , simply reads:

JF = (b1 · · ·bm) ,

namely the columns of the jacobian are the bais vectors of B expressend in the other basis B′. Then, it is
sufficient to recall the identity:

det(JF ) =

√
det2(JF ) =

√
det(J t

F )det(JF ) =
√

det(J t
FJF ).

Finally it is sufficient to regard at the row-column matrix multiplication, as scalar products among vectors,
and so:

det(JF ) =
√

G(b1 · · ·bm).

In order to obtain (1.45), we need to recall the block diagonal structure of the Gram matrix, due to the
orthogonality conditions:

pi · ej = 0, ek · ej = δij .

3The integrand depends just on λ11, λ22 and λ12.
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being G(λ1, λ2) the Gram determinant associated to the transverse components of loop
momenta, and for convenience we introduced:

< Ω >`=2
d⊥

=
`=2∏
j=1

Ωd⊥−j,j

2
. (1.54)

`-lopp Integral Measure in d = d|| + d⊥ dimensions
Thus, generalizing (1.53) to a generic `-loop integral see [3]:

Md (`,n)
I = < Ω >`

d⊥
(G(p1, . . . pn))

`/2
∫ ∏̀

j=1

d||xj

∫ ∏̀
1≤i≤j

dλij (G(λ1, . . . , λ`))
(d⊥−1−`)/2 ,

(1.55)
where:

< Ω >`
d⊥

=
∏̀
j=1

Ωd⊥−j, j

2
, (1.56)

and G(λ1, . . . λ`) is the Gram determinant of the transverse components of loop momenta.

1.4 Baikov representation

A key observation is that the number of integration variables in (1.53) matches exactly the
number of possible scalar products involving at least one loop momentum:

sji = kj · pi, j ≤ `, i ≤ n, (1.57a)
s̃jk = kj · kk j, k ≤ `; (1.57b)

in this section we will denote the whole set of nsp scalar product involving at least one
loop momentum as s = {sji, s̃jk}, and we will reintroduce d|| = n and d⊥ = d− n for the
sake of clarity. We stress again that n is the number of independent external momenta.
Not surprisingly the scalar products defined just above, constitute a “natural” set of inte-
gration variables, as well. As a first step, we work out the relation between {xij}i≤n,j≤`,
defined in (1.44), and the set of scalar products {sji}j≤`,i≤n (1.57a). From the very defini-
tion we have (em · pi = 0):

sji =

(
n∑

k=1

xjkpk +
d∑

m=n+1

λm−n
j em

)
· pi =

=
n∑

k=1

xjk pi · pk

(1.58)

wich leads to: 
sj1
sj2
...

sjn

 =


p1 · p1 p1 · p2 · · · p1 · pn
p2 · p1 p2 · p2 · · · p2 · pn

...
...

...
...

pn · p1 pn · p2 · · · pn · pn



xj1
xj2
...
xjn

 , (1.59)

and finally:
n∏

i=1

dsji = G(p1, . . . pn)
n∏

i=1

dxji , j = 1, . . . , `. (1.60)
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where G(p1, . . . pn) is the Gram determinant associated to the n independent external
momenta.
The change of variables from {λij}1≤i≤j≤` to {s̃ij}1≤i≤j≤` is even more straightforward,
since the relation, encoded in (1.37b), is essentially a linear shift, and so:∏

1≤i≤j≤`

s̃ij =
∏

1≤i≤j≤`

λij . (1.61)

Moreover, we can introduce the Gram determinant of the whole set of loop and independent
external momenta, namely G(k1, . . . , k`, p1, . . . , pn). The latter will play a crucial role in
the following. We notice that the longitudinal component of each loop momentum drops
out, since it is linear dependent from the external kinematics. Thus, we have:

G(k1, . . . , k`, p1, . . . , pn) = G(λ1, . . . , λ`, p1, . . . , pn). (1.62)

In addition, due to the trasversality condition λj · pi = 0, the Gram matrix G, is block-
diagonal :

G(λ1, . . . , λ`, p1, . . . , pn) =

(
G(λ1, . . . , λ`) 0

0 G(p1, . . . , pn)

)
. (1.63)

So, we have4

G(λ1, . . . , λ`, p1, . . . , pn) = G(λ1, . . . , λ`)G(p1, . . . , pn). (1.64)

Then, (1.53) results:

Md (`,n)
I = < Ω >`

d−n (G(p1, . . . , pn))
(n+1−d)/2

∫ ∏̀
j=1

n∏
i=1

dsji×

∏̀
1≤i≤j

ds̃ij (G(k1, . . . , k`, p1, . . . , pn))
(d−n−1−`)/2 .

(1.65)

Thus, we can rewrite an integral with n independent in terms of scalar products as:

Id (l,n) = < Ω >l
d−n (G(p1, . . . , pn))

(n+1−d)/2
∫ ∏̀

j=1

n∏
i=1

dsji×

∏̀
1≤i≤j

ds̃ij (G(k1, . . . , k`, p1, . . . , pn))
(d−n−1−`)/2 N (sji, s̃ij)∏t

k=1D
rk
k (sji, s̃ij)

.

(1.66)

Finally, we can recall the one to one correspondence between the whole set of scalar
products involving at least one loop momentum, s = {sij , s̃jk}, and the set of denominators
and ISPs, collectively denoted by z = {zi}i=1,...,nSP , with nSP = t + nISP . Once again,
the relation between z and s is linear:

z = A s+ c, (1.67)

where A is an invertible matrix, and c is a constant vector wich depends on masses and
external kinematics.
Therefore, (1.66) can be rewritten, with a minimal effort, as:

Id (`,n) = C`
d (G(p1, . . . , pn))

(n+1−d)/2
∫ nSP∏

i=1

dzi (F (z))(d−n−1−`)/2 N (z)∏t
k z

rk
k

. (1.68)

4The standard notation G := det(G) is assumed.
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where:

C`
d = det(A−1)< Ω >`

d−n, < Ω >`
d−n =

∏̀
j=1

Ωd−n−j, j

2
, (1.69)

and F (z), which is often referred to as Baikov polynomial, is nothing that the Gram
determinant of the loop and external momenta expressed in terms of the {zi}i=1,...,nSP

variables:
F (z) = G(k1, . . . , kl, p1, . . . , pn)|s=A−1(z−c). (1.70)

Looking at (1.68), it is worth noting that F (z) carries the whole dependence on d, namely
the space time dimensions in the integrand.

1.5 Identities for determinants

As we can realize from (1.68) and (1.70), and we will extensively exploit in the following,
the Gram determinant associated to the loop and independent external momenta plays
a key role in this representation. We present here some of its properties, which will be
extremely important in the context of Integration By Parts Identities (IBPs) for Feynman
Integrals, see Section (1.7) and (1.11).

• First of all, we cast the whole set of momenta as:

{k1, . . . , k`, p1, . . . , pn}, (1.71)

then we define sij as the scalar product among the ith and jth elemnts in the list
(1.71)5. We cearly have: sij ≡ sji, thus the Gram matrix, G, expressend in terms of
scalar products, sij , turns to be symmetric.

Then, given a generic matrix A = {aij}1≤i,j≤m:

• det(A) can be obtained through the Laplace expansion w.r.t. the ith row; it reads:

det(A) =
m∑
k=1

aik Cik, (1.72)

where Cik, referred to as (i, k)-cofactor, is: Cik := (−1)i+k det(Mik), being Mik the
(i, k)-minor ;

• det(A) is a homogeneous function of degree n w.r.t. its entries. Then, a classical
result by Euler guarantees that det(A) is a homogeneous function of degree m, if and
only if: ∑

{ij}

aij
∂ det(A)
∂aij

= m det(A). (1.73)

Let’s consider a generic matrix, in which the entries depend on a parametr: t, namely
A(t) = {aij(t)}1≤i,j≤m, then:

5We think that the notation s = {s, s̃} is useful just in Section (1.4, but we will not adopt it in the
following.
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• The derivative of the determinant w.r.t. t reads:

d det(A(t))
dt

=
m∑
i=1

det
(
A′
i(t)
)
, (1.74)

where A′
i(t) means that we derive the ith-row with respect to t.

Proof. It is sufficient to recall the expression for the determinant in terms of the
Levi-Civita tensor :

det(A(t)) =
m∑

i1,...,in=1

εi1,...,im a1i1(t) . . . amim ; (1.75)

Thus, we immediatly have:

d det(A(t))
dt

=

m∑
i1,...,im=1

εi1,...,im a′1i1(t) . . . amim(t) + · · ·+ εi1,...,im a1i1(t) . . . a
′
mim(t) =

= det
(
A′
1(t)
)
+ · · ·+ det

(
A′
m(t)

)
=

=

m∑
i=1

det
(
A′
i(t)
)
,

(1.76)

as stated just above.

Let’s consider a symmetric matrix S = {sij}1≤i≤j≤m, with sij = sji, then:

• The following relation holds [48]:

m∑
k=1

(1 + δjk)sik
∂ det(S)
∂sjk

= 2 δij det(S). (1.77)

We provide here an independent proof.

Proof. Let’s consider (1.74) with t → sjk, then for j 6= k we have:

∂ det(S)
∂sjk

= Cjk + Ckj = 2Cjk, j 6= k; (1.78)

where in the first equality we use the fact that, being the matrix symmetric, sjk = skj
and we have two non vanishing derivatives, namely the derivative in the jth-row and
the one in the kth-row. The last equality comes from the symmetry condition as well,
namely Ckj = (−1)k+j det(Mkj) = (−1)k+j det

(
M t

kj

)
= (−1)j+k det(Mjk) = Cjk.

For j = k, we simply have:

∂ det(S)
∂sjk

= Cjj , k = j. (1.79)

Thus, we can multiply (1.78) by sjk and sum over k, with k 6= j:

m∑
k=1, k 6=j

sjk
∂ det(S)
∂sjk

= 2

m∑
k=1, k 6=j

sjkCjk (1.80)
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Then, adding the term: 2sjjCjj , we obtain:

m∑
k=1, k 6=j

sjk
∂ det(S)
∂sjk

+ 2sjjCjj = 2

m∑
k=1

sjkCjk = 2det(S), (1.81)

where in the last equality we used the Laplace expansion (1.72) w.r.t. the jth-row.
We can recast the l.h.s. in (1.81) as:

m∑
k=1

(1 + δjk)sjk
∂ det(S)
∂sjk

= 2det(S). (1.82)

Repeating the last steps with sjk → sik, namely considering:

m∑
k=1, k 6=j

sik
∂ det(S)
∂sjk

=

m∑
k=1, k 6=j

sikCjk, (1.83)

and adding the term: 2sijCjj , we obtain:

m∑
k=1

(1 + δjk)sik
∂ det(S)
∂sjk

= 2

m∑
k=1

sikCjk = 0, (1.84)

where the last equality is due to the fact that we recognize the Laplace expansion
of the determinant (1.72) for a matrix with two equal rows (i.e.: the jth row in
the original matrix is replaced by the ith-row, thus the latter appears twice in the
“modified” matrix). Thus, (1.81) and (1.84) can be combined in:

m∑
k=1

(1 + δjk)sij
∂ det(S)
∂sjk

= 2 δij det(S), (1.85)

as stated above.

• Finally, we think that identities concerning determinants and determinants algebras
already known in mathematical literature, such as the Cailey identity [86], (and it’s
generalization, namely Bernstein-Sato identities)

det(∂)(detA)s = s(s+ 1) . . . (s+m− 1)(detA)s−1, (1.86)

where: ∂ = {∂/∂aij}1≤i,j≤m will be important in order to understand special rela-
tions between integral in Baikov representation.

1.6 Praeludium

Within an Integral Family (1.5), the various Integrals turn out to be not independent:
finding relations among them, identifying a minimal set of integrlas, namely the Master
Integrals, drammaticaly simplify the amount of calculations needed for the Amplitude.
Before facing the real problem, let us stress the importance of finding relations among
integrals with a pedagogical example, adapted from [1].
Let’s consider the Integral Family:

In(α) =

∫ +∞

0
dxe−αx2

xn, n ∈ N. (1.87)
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Then we claim that, in the ntegration region indicated just above, namely x ∈ (0,+∞) we
have:

0 =

∫ +∞

0
dx

∂

∂x

(
e−αx2

xn
)
, (1.88)

which holds when R(α) > 0. Furthermore we can perform the derivative in (1.88), obtain-
ing:

0 = −2α

∫ +∞

0
dx e−αx2

xn+1 + n

∫ +∞

0
dx e−αx2

xn−1; (1.89)

after a minor rearrangement (n → n+ 1) the latter reads:∫ +∞

0
dxe−αx2

xn+2 =
n+ 1

2α

∫ +∞

0
dxe−αx2

xn, (1.90)

or, better:

In+2(α) =
n+ 1

2d
In(α), (1.91)

which is a recurrence relation among intgerals within (1.87). Thanks to (1.91), it is suffi-
cient to compute I0(α) and I1(α), in order to recover all the integrals in (1.87).
We trivially have:

I0(α) =

√
π

2
√
α
, I1(α) =

1

2α
. (1.92)

1.7 Integration By Parts Identities (IBPs)

First of all we have to generate identities among the various integrals within a given
Integral Family ; certainly a stunning procedure is the one offered by the Integration By
Parts Identities (IBPs), [69] which can be interpred as Gauss Theorem in d- dimensions:∫

ddkj
∂

∂kµj

(
vµ
∏nISP

h=1 S−sh
h∏t

k=1D
rk
k

)
= 0. (1.93)

In the latter expression, vµ is chosen among the l-loop momenta and the n independent
external momenta, vµ ∈ {{kµj }j=1,...,l , {pµi }i=1,...,n}. We stress that, performing the algebra
in (1.93), we obtained a linear combination of integrals with different exponents, but no
new denominator can appear. Actually, vµ ∂

∂kµj
could reproduce a Reducible Scalar Product,

and so it could be possible to reconstruct one of the {Dk}k=1,...,t in the numerator, leading
to a remarkable simplification which ends with the appearance of an integral belonging to
a Sub-Topolgy. Finally, it should be clear by the procedure described, that the coefficients
among the various integrals are rational functions in the kinematics invariants (i.e.: scalar
products among external momenta, and masses) and in d, namely the space-time dimen-
sions.
We give here a few simple examples, in order to clarify the discussion.
Let’s consider:

T (1,0) = =

∫
ddk

1

(k2 −m2)r1
. (1.94)

Then, for r1 = 1 we have:

0 ≡
∫

ddk
∂

∂kµ
vµ

(k2 −m2)
; (1.95)
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In this example, the only possible choice is vµ ≡ kµ, and so:

0 ≡
∫

ddk
∂

∂kµ
kµ

(k2 −m2)
= d

∫
ddk

1

(k2 −m2)
− 2

∫
dd

kµkµ
(k2 −m2)2

=

= d

∫
ddk

1

(k2 −m2)
− 2

∫
ddk

(k2 −m2) +m2

(k2 −m2)2
.

(1.96)

Recasting the latter we find:

=
d− 2

2m2
. (1.97)

On the other hand, let’s consider:

B(1,1) =

p

=

∫
ddk

1

((k − p)2 −m2)r1 (k2 −m2)r2
. (1.98)

Choosing r1 = r2 = 1:

0 ≡
∫

ddk
∂

∂kµ
vµ

((k − p)2 −m2) (k2 −m2)
. (1.99)

Then, we could have vµ = kµ or vµ = pµ. In the first case:

0 ≡ d

∫
ddk

1

((k − p)2 −m2) (k2 −m2)
−
∫

ddk
2k2 − 2k · p

((k − p)2 −m2)2 (k2 −m2)
+

− 2

∫
ddk

k2

((k − p)2 −m2) (k2 −m2)2
;

(1.100)

Then we can rearrange the numerators as:

• 2k2 − 2k · p = (k2 −m2) +m2 + ((k − p)2 −m2)− p2 +m2;

• k2 = (k2 −m2) +m2.

Plugging the latter in (1.100), after some algebra, mostly partial fractioning and suitable
shift of the loop momentum, namely k → k + p:∫

ddk
1

((k − p)2 −m2)
=

∫
ddk

1

(k2 −m2)
, (1.101)

we obtain:

(d− 3) = + (2m2 − p2) +

+ 2m2 .

(1.102)
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On the other hand, we could have vµ = pµ:

0 ≡
∫

ddk
∂

∂kµ
pµ

((k − p)2 −m2) (k2 −m2)
=

∫
ddk

(2p2 − 2k · p)
((k − p)2 −m2)2 (k2 −m2)

+

+

∫
ddk

−2k · p
((k − p)2 −m2) (k2 −m2)2

.

(1.103)

The numerators can be rewritten as:

• 2p2 − 2k · p =
(
(k − p)2 −m2

)
+ p2 −

(
k2 −m2

)
;

• −2k · p =
(
(k − p)2 −m2

)
− p2 −

(
k2 −m2

)
.

Thus (1.103) reads:

= . (1.104)

1.8 Lorentz Invariance Identities (LIs)

Additional relations can be obtained recalling that integrals of the form (1.5) are Lorentz
Scalars. So, by definitions, we are allowed to consider an infinitesimal Lorentz transforma-
tion:

pµi → pµi + δpµi = pµi + ωµνpi ν , ωµν = −ωνµ, ∀i = 1, . . . , n. (1.105)

Doing so, we obtain:

I(`,n)(p) = I(`,n)(p+ δp), p = {p1, . . . , pn}. (1.106)

Thus we can expand the r.h.s. in ( 1.106) as:

I(`,n)(p) = I(`,n)(p) + ωµν
n∑

j=1

pjν
∂I(`,n)(p)

∂pµj
. (1.107)

Thus we obtain:

0 =

n∑
j=1

(
pjν

∂

∂pµj
− pjµ

∂

∂pνj

)
I(`,n)(p). (1.108)

Finally, multiplying (1.108) by one of the n(n−1)
2 antisymmetric tensor of the form: (pm,µ pn,ν−

pm,ν pnµ), other identities among the integrals are guaranteed, as stated above.

1.9 Symmetry Relations and Sector Symmetries

On top of that, we recall that an integral is invariant under a linear shift :

kµj → (A)ji k
µ
i + (B)jm pµm, i, j = 1, . . . , l m = 1, . . . , n. (1.109)

On the other hand, (1.109) maps an integrand into a linear combination of different inte-
grands. Thus, restoring the integral sign, we obtain extra relation among integrals which
might belong to different sectors.
Moreover, we could identify a subset of transformations (1.109), referred to as Sector Sym-
metries, SecSym, such that the original set of denominators is mapped into itself.
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1.10 Master Integrals (MIs)

As pointed out for the first time by Laporta [2], given an Integral Family (1.5), we can
generate identities (IBPs, LIs, SecSym) up to certain values of s and r, spanning the set
of all the possible sclar integrals involved in the calculation. It is worth stressing that, on
the one hand, raising r and s, the number of equations grows faster than the number of in
tegrals involved; this would apparently lead to an over constrained system. On the other
hand, it turns out that the equations we are dealing with are not independent, and in fact
the (row) rank of the system is always smaller than the number of unknowns. Eventually,
we can “solve” the system, namely we can express the “hardest” integrals in terms of the
“easiest’ ones, according to a careful lexicographical ordering established a priori. A pro-
posal is sketched just below.

Lexicographical ordering
Given the set of indices which uniquely defines an integral:

I(`,n)[{r1, . . . , rt, s1, . . . , snISP }], ri ∈ Z, sj ∈ N≥0, i = 1, . . . , t, j = 1, . . . , nISP ,
(1.110)
we can compute:

• ρ= the number of positive (non null) indices in (1.110);

• σ= the number of negative (non null) indices in (1.110);

• r= the sum of positive indices in (1.110);

• s= minus the sum of negative indices in (1.110).

Then, we define an auxiliary list of indices:

I(`,n)[{r1, . . . , rt, s1, . . . , snISP }] → I(`,n)[{ρ, σ, r, s, r1, . . . , rt, s1, . . . , snISP }]. (1.111)

Roughly speaking, we classify integrals according to the values of ρ: an higher value of ρ
implies an higher complexity for the corresponding integral; being ρ the same for a subset
of integrals we sort them (i.e.: integrals within this subset) according to the values of σ:
an higher value of σ implies an higher complexity for the corresponding integral, as well,
and so on. In Mathematica this ordering is accomplished by the built-in functions Reverse
and Sort6 Given a list of equations, we can solve the 1st one w.r.t. to most complex
integral, and we plug the solution in the whole system. Then we repeat the same for the
2nd equation and so on. The set of integrals we are left with, called Master Integrals, MIs,
forms a basis for the whole set of integrals: we might express every integral as a linear

6 Starting from scratch, given a set of integral we detect:

nmax = max(rmax + 1, smax + 1), (1.112)

where rmax, (smax) is the highest value of r (s) among the ones in the list. Then, let pi be the ith element
in the list {ρ, σ, r, s, r1, . . . , rt, s1, . . . , snISP }, (p1 ≡ snISP ), we define:

w =

4+t+nISP∑
i=1

pi n
i−1
max.

Finally w defines the complexity of the corresponding integral, namely, once again, an higher value of w
implies an higher complexity for the integral.
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combination of MIs performing a back substitution in our system. The coefficients in all
these relations are rational valued functions in the kinematics invariants, masses and the
space-time dimensions d.
The reduction in MIs dramatically simplifies the number of integrals needed for the Am-
plitude, tipically #MIs ∼ O(102) while # Integrals ∼ O(104) in a two-loop process. Not
surprisingly, the reduction in MIs is one of the key points in multiloop calculations. On
the one hand many public (and private) implementations of the Laporta Algotihm were
developed over the years [52]-[59]; moreover, new ideas based on the Functional Recon-
struction (over Finite Fields) [60]-[62] seem to be very promising in order to handle the
tremendous complexity regarding algebraic manipulations (especially very large interme-
diate expressions) required by the reductions. On the other hand several criteria, such as
the one proposed by Lee and Pomeransky [65], were suggested to determine at least the
Number of MIs in a given Sector; this fact, which is quite interesting per se, could lead to
new strategies in the whole IBPs reductions.

1.11 IBPs in Baikov’s representation

As stated above, the integration variables within the Baikov’s representation turn to
be the t Denominators and the nISP ISPs; these variables are collectively denoted by
{zi}i=1,...,nSP , with nSP = t + nISP . It seems natural to study how to implement the
identities among various integrals, especially IBPs, (previously presented in momentum
space), in this context. On the one hand, not surprisingly, IBPs arise from the the inte-
gral of a total derivative, (w.r.t. the current integration variables, namely {zi}i=1,...,nSP ,
with nSP = t+ nISP ), with vanishing boundary terms. A more formal, but equivalent in
practice, discussion can be found in [10] and [11]. On the other hand, within this represen-
tation, concepts related to Algebraic Geometry naturally arise. In particular we will focus
on Sygyzy Polynomials wich appeared for the first time in [9] in order to avoid doubled
denominators, and revisited in [11] [12] in order to handle and reduce the huge number of
equations generated by IBPs and related identities.
Let’s consider consider, for the sake of simplicity, the following redefinitions (treating de-
nominators and ISPs on an equal footing):

{r1, . . . , rt, s1, . . . , snISP } → {a1, . . . , at, at+1, . . . , at+nISP } ≡ a; (1.113)

{z1, . . . , zt, zt+1, . . . , zt+nISP } → z; (1.114)

t+ nISP → nSP . (1.115)

Thus, we deal with an integral of the form (avoiding overall factors, and keeping the
notation as concise as possible):

I[a] =
∫ nSP∏

i=1

dzi
zaii

F (z)γd , γd =
d− n− 1− `

2
. (1.116)

We notice that γd caputeres the dependence on d, as well as on the number of the inde-
pendent external legs, n, and the number of loop, `.
Thus, in order to build up an IBP for arbitrary indices, we introduce a set of Polynomials,
{vj(z)}j=1,...,nSP , depending on the z variables (as well as on the kinematics involved),
which is analogous to the vector vµ, contained in (1.93). We have:

0 ≡
∫ nSP∏

i

dzi

nSP∑
j=1

∂j

(
vj(z)F (z)γd∏nSP

i=1 zaii

)
. (1.117)
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Performing the derivatives in (1.117), after a minor rearrangement, we obtain:

0 ≡
∫ nSP∏

i

dzi
F (z)γd∏nSP
i zaii

nSP∑
j=1

γd
F (z)

vj(z)∂jF (z) +

nSP∑
j=1

∂jvj(z)−
ajvj(z)

zj

 . (1.118)

Avoiding dimensional shift

Since the exponent of the Gram determinant, namely γd, is strictly related to the space-time
dimensions, d, the term proportional to F (z)−1 in (1.118), would involve lower dimensional
integrals. Thus, it seem somewhat desirable looking for a set of polynomials:

v(z) = {v1(z), . . . , vnSP (z), vF (z)} (1.119)

such that:
nSP∑
j=1

vj(z)∂jF (z) = vF (z)F (z). (1.120)

We left the discussions concerning these polynomials to the following subsections, we just
notice here that once the latter are determined, then (1.118) reads:

0 ≡
∫ nSP∏

i

dzi
F (z)γd∏nSP
i zaii

γdvF (z) +

nSP∑
j=1

∂jvj(z)−
ajvj(z)

zj

 . (1.121)

Avoiding doubled denominators

Moreover, in this representation, the absence of doubled denominators, or better the absence
of denominators raised to a higher power7, originally advocated in [9], seems to be naturally
implementable. In fact, it is sufficient looking for a new set of polynomials:

f(z) = {f1(z), . . . fnSP (z), fF (z}, (1.122)

related to the previous ones by:

vj(z) = zjfj(z), j = 1, . . . , t,

vk(z) ≡ fk(z), k = t+ 1, . . . , t+ nISP ,

vF (z) ≡ fF (z).

(1.123)

such that:
t∑

j=1

zjfj(z)∂jF (z) +

t+nISP∑
k=t+1

fk(z)∂kF (z) = fF (z)F (z). (1.124)

Sygyzies Equations

Finding one (or more than one) set of polynomials:

f(z) = {f1(z), . . . , ft+nISP (z), fF (z)}, (1.125)

such that (1.123) holds, is a well-studied mathematical problem, known as Sygyzies Equa-
tions, or Sygyzies Solutions or simply Sygyzies. The set(s) of solutions can be provided by

7This constraint is relaxed for the ISPs, as it is clear from (1.123).
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several computer algebra systems, like SINGULAR [13] and Macaulay2 [14].
Once the Sygyzy Equation (1.124) is solved, then (1.118) reads:

0 ≡
∫ nSP∏

i

dzi
F (z)γd∏nSP
i zaii

γdfF (z) +

 t∑
j=1

∂j(zjfj(z))− ajfj(z)

+

+

(
t+nISP∑
k=t+1

∂kfk(z)−
akfk(z)

zk

))
.

(1.126)

Let’s conclude this section noting that, if we multiply a given set of solutions f(z), by an
arbitrary monomial m(z), we obtain a new set of solutions, f̃m, which satisfies (1.124) as
well, but leads to a different IBP.

Sygyzies from Euler scaling

On the other hand, we might say that the strategy presented just above could be too
demanding. In particular (1.124), especially for complicated 2-loops integrals, seems to be
hardly solvable. Because of this, as a first step, we should relax the condition regarding
the absence of doubled denominators, trying to avoid just integrals in different dimensions.
Thus, let’s recall the equation we are interested in:

nSP∑
i=1

vi(z)
∂F (z)

∂zi
= vF (z)F (z), (1.127)

where:
v(z) = {v1(z), . . . , v(z)nSP , vF (z)}, (1.128)

is the unknown set of polynomials. It is worth recalling that F (z) is the Gram determinant
of the whole set of loop and external momenta, expressed in terms of the z = {z1, . . . , znISP }
variables. Despite its simplicity this fact turn to have important consequences. In fact,
let’s consider (1.62) and (1.64)

G({k1, . . . , k`, p1, . . . , pn}) = G({λ1, . . . , λ`})G({p1, . . . , pn}),
F (z) = G({k1, . . . , k`, p1, . . . , pn})|s=A−1(z−c).

(1.129)

Then, G({λ1, λ`}) turns to be a homogeneous function of degree ` in the scalar products
{λij}1≤i≤j≤`.
Thus, we have (1.73):∑

c ∈ C
λc

∂ G({λ1, . . . , λ`})
∂λc

= `G({λ1, . . . , λ`}), C = {ij}1≤i≤j≤`. (1.130)

Now, recalling that denominators can be rewritten in terms of {λij}1≤i≤j≤`, using the
chain rule we find:

∂Gλ

∂λc
=
∑
i ∈ I

∂Gλ

∂zi

∂zi
∂λc

, (1.131)

where I is a carefully chosen set of indices, I ⊆ {1, . . . , nSP } . Now, plugging (1.131) in
(1.130), we obtain (expressing everything in terms of z):

∑
i ∈ I

(∑
c ∈C

λc
∂zi
∂λc

)
∂Gλ

∂zi

∣∣∣∣∣
λc(z)

= `Gλ. (1.132)
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Finally, multiplying both sides in (1.132) by the z-independent factor G({p1, . . . , pn}), and
using (1.64), we have:∑

i ∈ I
wi(z)

∂F (z)

∂zi
= ` F (z), wi(z) =

∑
c ∈C

λc
∂zi
∂λc

, (1.133)

which is exactly the kind of relations we are interested in. In many cases, wi(z), i ∈ I,
I ⊆ {1, . . . , nSP } turn to be rational functions, i.e.: there could be untrivial denominators;
anyway this is not a big obstacle, in fact we can multiply the set {wi(z)}i=I by the common
denominator, and recast (1.133) as the desired (1.127):∑

i ∈I
vi(z)

∂F (z)

∂zi
= vF (z)F (z). (1.134)

Sygyzies from Euler scaling, a 2-loop example

Let’s cnsider a 2-loop example, namely:

I(2,2) = , (1.135)

explicitly:

I(2,2) =

∫
ddk1d

dk2
(k2 · p1)−s1

(k21)
r1((k1 − p1)2)r2((k1 − p1 − p2)2)r3((k2 + p1 + p2)2)r4(k22)

r5((k1 + k2)2)r6
,

(1.136)
with p21 = p22 = 0 and p1 · p2 = s

2 .
The Baikov Polynomial, namely F (z), reads:

F (z) =
1

16

[
s2
(
z22 − 2(z5 + z6 + 2z7)z2 + (z5 − z6 + 2z7)

2
)
+

2s
(
−(z4 + z5)z

2
2 +

(
z25 − z6z5 + 2z7z5 − 4z6z7 + 2z3(z5 + z7)+

z4(−z5 + z6 + 2z7)) z2 − 2z3z7(z5 − z6 + 2z7)+

z1(−2z3(z5 + 2z7) + z2(z4 + z5 + 2z7) + (z4 − z5 − 2z7)(z5 − z6 + 2z7)))+

(z2(z5 − z4) + z1(z4 − z5 − 2z7) + 2z3z7)
2
]

(1.137)

On the other hand, in this 2-loop example we have:∑
c∈C

λc
∂G({λ1, λ2})

∂λc
= 2G({λ1, λ2}), C = {11, 12, 22}. (1.138)

We explicitly find:

λ11 =
sz2 − (z1 − z2)(z2 − z3)

s
,

λ12 =
−s(z2 + z5 − z6 + 2z7) + z2z4 − z2z5 − 4z2z7 + 2z3z7 + z1(−z4 + z5 + 2z7)

2s
,

λ22 =
s(z5 + 2z7) + 2z7(−z4 + z5 + 2z7)

s
.

(1.139)
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Then, solving the latter w.r.t. {z3, z4, z6}, i.e. I = {3, 4, 6}, we obtain:

z3 = −−λ11s+ sz2 + z22 − z1z2
z1 − z2

,

z4 = −λ22s− 2sz7 − sz5 − 4z27 − 2z5z7
2z7

,

z6 =
1

2(z1 − z2)z7

(
z21(−λ22 + z5 + 2z7) + z1(2z7(2(λ12 + z7) + z5)− 2z2(−λ22 + z5 + z7))

−4λ11z
2
7 − 2z2z7(2λ12 + z5) + z22(z5 − λ22)

)
;

(1.140)

and then (1.133) gives:

w3(z) =
sz2 − (z1 − z2)(z2 − z3)

z1 − z2
,

w4(z) = −s(z5 + 2z7) + 2z7(−z4 + z5 + 2z7)

2z7
,

w6(z) = − (z5 + 2z7)z
2
1 − 2((−z5 + z6 − 2z7)z7 + z2(z5 + z7))z1 + z2(z2z5 + 2(z6 − z5)z7)

2(z1 − z2)z7
.

(1.141)

Thus, multiplying the latter by the common denominator, namely 2(z1− z2)z7, we obtain
the usual relation: ∑

i ∈ I
vi(z)

∂F (z)

∂zi
= vF (z)F (z), I = {3, 4, 6}, (1.142)

where:
v3(z) = 2 z7 (sz2 − (z1 − z2)(z2 − z3)) ,

v4(z) = −(z1 − z2) (s(z5 + 2z7) + 2z7(−z4 + z5 + 2z7)) ,

v6(z) = −(z5 + 2z7)z
2
1 − 2((−z5 + z6 − 2z7)z7 + z2(z5 + z7))z1 + z2(z2z5 + 2(z6 − z5)z7),

vF (z) = 4(z1 − z2)z7.

(1.143)

Sygyzies from Laplace expansion

Let’s consider once again the Gram determinant associated to the whole set of loop and
independent external momenta, namely G({k1, . . . , k`, p1, . . . , pn}). Being the Gram matrix
symmetric, namely sij = sji, then (1.85) holds (m → `+ n):

`+n∑
k=1

(1 + δjk)sik
∂G

∂sjk
= 2δijG. (1.144)

Then, taking j ≤ `, i.e.: considering just the set of scalar products involving at least one
loop momentum, collectively denoted by s, and recalling the linear relations among s and
z = {z1, . . . , znSP }, namely:

z = As+ c, (1.145)

thanks to the chain rule, we infer:

`+n∑
k=1

(1 + δjk)sik

nSP∑
a=1

∂G|s=A−1(z−c)

∂za

∂za
∂sjk

= 2 δjkG|s=A−1(z−c). (1.146)

Thanks to a minor rearrangement, and recalling the definition of the Baikov Polynomial
F (z), namely (1.70), we obtain again (1.127), namely:

nSP∑
a=1

va(z)
∂F (z)

∂za
= vF (z)F (z), (1.147)
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with:

va(z) =

`+n∑
k=1

(1 + δjk)sik
∂za
∂sjk

∣∣∣∣
s=A−1(z−c)

, vF (z) ≡ vF = 2 δij . (1.148)

We stress that we are forced to consider: 1 ≤ j ≤ ` and 1 ≤ i ≤ `+ n.
Furthermore, being vF (z) proportional to δij , choosing i 6= j the corresponding IBP (1.121)
turns to be d-independent.

Sygyzies from Laplace expansion, a 2-loop example

As an example, let’s consider once again the integral (1.136), which impose ` = n = 2.
Considering different choices compatible with 1 ≤ j ≤ 2 and 1 ≤ i ≤ 4, then (1.148) gives
Sygyzies solutions:

v(z) = {v1(z), v2(z), . . . , vnSP (z), vF (z}. (1.149)

For instance, among the possible choices, we present here:

• i = 1 and j = 1 which gives:

v(z) = {2z1, z1 + z2,−s + z1 + z3, 0, 0, z1 − z6 + z6, 0, 2};

• i = 1 and j = 2 which gives:

v(z) =

{
0, 0, 0, s − z3 − z5 + z6,−z1 − z5 + z6, z1 − z5 + z6,

1

2
(z1 − z2), 0

}
;

• i = 2 and j = 1 which gives:

v(z) = {−z1 − z5 + z6,−z1 − z5 + z6 − 2z7, s− z1 − z4 + z6, 0, 0,−z1 + z5 + z6, 0, 0}.

just to mention a few.

Dimension-shifted Integrals

Finally, we would like to exploit how relations between integrals in different dimensions
naturally arise in Baikov representation, we refer the interested readers to [66] for a detailed
discussion. To that end, we reintroduce the d-dependent prefactors, and let’s consider:

Id (`,n) = C`
d (G(p1, . . . , pn))

n+1−d
2

∫ nSP∏
i=1

dzi
zai

(F (z))
d−n−`−1

2 . (1.150)

We can factorize F (z), and we consider the identity:

Id (`,n) =C`
d (G(p1, . . . , pn))

n+1−d
2

∫ nSP∏
i=1

dzi
zai

(F (z))
d−n−`−1

2

=C`
d (G(p1, . . . , pn))

n+1−d
2

∫ nSP∏
i=1

dzi
zai

F (z)(F (z))
d−2−n−`−1

2 ,

(1.151)

thus, making explicit F (z), and performing the simplifications against
∏nSP

i=1 zaii , we can
read the last line in (1.151) as a combination of integrlas in d−2 dimensions, provided the
replacements:

(G(p1, . . . , pn))
n+1−d

2 = G(p1, . . . , pn)
−1 (G(p1, . . . , pn))

n+1−(d−2)
2

C`
d = C`

d−2

(
C`
d

C`
d−2

)
.

(1.152)
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1.12 Code Implementation

We illustrate here the main features of a Mathematica code written in order to generate
IBPs in Baikov representation. Our implementation is an extension of a first version
developed in [49].
Lets sketch here the main steps in our code.

• Given the set of Denominators and ISPs for the Integral Family under consideration,
we generate the corresponding Baikov Polynomial, through the script Baikov.m [46];

• Then we consider the general form of IBPs in Baikov representation (1.126):

0 ≡
∫ nSP∏

i

dzi
F (z)γd∏nSP
i zaii

γdfF (z) +
 t∑

j=1

∂j(zjfj(z))− ajfj(z)

+

+

(
t+nISP∑
k=t+1

∂kfk(z)−
akfk(z)

zk

)]
;

(1.153)

where: γd = d−n−1−`
2 , (` is the number of loops for the parent topology, n the

independent external legs) and t the number of denominators, nSP = t+ nISP ;

• We recall that f(z) = {f1(z), . . . , ft(z), ft+1(z), . . . fnISP (z), fF (z)} is a minimal set
of Sygyzies; namely they fulfill the following relation:

t∑
j=1

zjfj(z)∂jF (z) +

t+nISP∑
k=t+1

fk(z)∂kF (z) = fF (z)F (z). (1.154)

We stress that in (1.154), F (z) and ∂kF (z) are considered known, and the set f(z) is
unknown. In our code we obtain this set of polynomials thanks to SINGULAR [13];

• Multiplying the minimal set of Sygyzies by arbitrary Monomials, we obtain auxiliary
Sygyzies and thus, thanks to (1.153) others IBPs.

• Once the previous steps are accomplished we obtain a list of IBPs; in each of them
(1.153) reduces to a linear combination of integrals with arbitrary exponents, with
coefficients depending on d as well as on the kinematics variables. In the output,
integrals are presented according to the string of their exponents, e.g.:∫ nSP∏

i=1

dzi
F (z)γd

za11 za22 · · · zanSP
nSP

→ INT[{a1, a2, . . . , anSP }]

• Finally we read integrals, and therefore IBPs, for different values of explicit indices:
e.g.:

{a1, a2, . . . , anSP } → {1, 1, . . . , 0} ⇒
INT[{a1, a2, . . . , anSP }] → INT[1, 1, . . . , 0}];

An Explicit Example
In order to clarify the discussion we provide an explicit 2-loop example. Let’s consider:

I(2,2) = . (1.155)
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We assume the two independent external momenta massless, namely p21 = p22 = 0, and
p1 · p2 = s

2 .

Input
We initialize the input variables:
NLoops = 2;
NExtMom = 2;
Denominators = {k[1]^2 ,(k[1]-p[1])^2 ,(k[1]-p[1]-p[2])^2 ,(k[2]+p[1]+p[2])^2 ,

k[2]^2 ,(k[1]+k[2])^2};
ISPs = {k[2] p[1]};
ExtRules = {ss[3,3]->0, ss[4,4]->0, ss[3,4]->S1/2};
gamma = (d -5)/2;
RankMonAux = {0, 1, 2};

where:

• NLoops is the number of loops;

• NExtMom is the number of independent external momenta:

• Propagators is the whole list of Denominators and ISPs (in momentum space);

• ExtRules consists in the definitions of external invariants. Notice that external mo-
menta are labelled according to the redefinition: p1 → p`+1, . . . , pn → p`+n, and so
ss[3, 3] corresponds to p1 · p1, and so on. Moreover the Mandelstam invariant s is
identified by S1 in our code.

• gamma was defined as γd;

• RankMonAux is needed in order generate auxiliary monomials to obtain auxiliary
Sygyzies and IBPs, see below;

Baikov Polynomial Generation
We define the whole set of Propagators as: Denominators ∪ ISPs.
Propagators = Join[Denominators , ISPs];

Then, we generate the Baikov Polynomial F (z); this step is accomplished thanks to the
Baikov.m script [46].
Baikov[NLoops , NExtMom , Propagators , ExtRules ];

F // Simplify
1/16((z[2](-z[4]+z[5])+z[1](z[4]-z[5]-2z[7])+2z[3]z[7])^2+
S1^2(z[2]^2+(z[5]-z[6]+2z[7])^2 -2z[2](z[5]+z[6]+2z[7]))+
2S1(-z[2]^2(z[4]+z[5])-2z[3]z[7](z[5]-z[6]+2z[7])+
z[1]( -2z[3](z[5]+2z[7])+z[2](z[4]+z[5]+2z[7])+
(z[4]-z[5]-2z[7])(z[5]-z[6]+2z[7]))+
z[2](z[5]^2 -z[5]z[6]+2z[5]z[7]-
4z[6]z[7]+2z[3](z[5]+z[7])+z[4](-z[5]+z[6]+2z[7]))))

Monomials Generation
As a preliminary step, we (re)define the Denominators and ISPs in terms of z variables
(notice the lower case):
rsp = Table[z[i], {i, Length[Denominators ]}];
isp = Complement[Table[z[i], {i, Length[Propagators ]}], rsp];
allz = Join[rsp , isp];
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Then, thanks to the function MonomialListBuilder, we generate a list of monomials,
auxilliartmonlist, in the allz variables, whose rank is compatible with the one (or with
the ones) given in RankMonAux, defined in input. This list of monomials will be used in
order to obtain auxiliary IBPs, see below.

(* RankMonAux = {0, 1, 2} *)

auxilliartmonlist
{1, z[7], z[6], z[5], z[4], z[3], z[2], z[1], z[7]^2, z[6] z[7],
z[6]^2 , z[5] z[7], z[5] z[6], z[5]^2 , z[4] z[7], z[4] z[6],
z[4] z[5], z[4]^2, z[3] z[7], z[3] z[6], z[3] z[5], z[3] z[4],
z[3]^2 , z[2] z[7], z[2] z[6], z[2] z[5], z[2] z[4], z[2] z[3],
z[2]^2 , z[1] z[7], z[1] z[6], z[1] z[5], z[1] z[4], z[1] z[3],
z[1] z[2], z[1]^2}

IBPs Generation: Arbitrary indices
Then, given F (z), and its derivatives, we can compute the Sygyzies Solutions for (1.154)
by means of SINGULAR [13].
Moreover each list of Sygyzies solutions obtained by SINGULAR is multiplied by each
auxiliary monomial. Doing so, we obtain others Sygyzies which lead to others IBPs. Then,
plugging the Sygyzies in the square bracket in (1.153), we obtain the core expression for
IBPs. The steps described above are accomplished by the function GenSyzIBP; a typycal
output is presented below.

GenSyzIBP[F, gamma , rsp , isp , auxilliartmonlist]

{{5S1 -5z[1]+5z[2]-a[3](-z[1]+z[2])-a[1](S1 -z[1]+z[2])-
a[2](S1-z[1]+z[2])+10z[7]-2a[4]z[7]-a[5](S1+2z[7])-
a[6](S1-z[1]+z[2]+2z[7])+1/2( -5+d)(2S1 -2z[1]+2z[2]+4z[7])-
(a[7]( S1z [7]+2z[7]^2))/z[7], ...

Finally, thanks to the function RecasterLaurent, we “convert” or, better, we “recast” the
square bracket into an IBP with arbitrary indices:

(-d+a[1]+a[2]+a[3]+a[6]) INT[{-1+a[1],a[2],a[3],a[4],a[5],a[6],a[7]}]
+(d-a[1]-a[2]-a[3]-a[6]) INT[{a[1],-1+a[2],a[3],a[4],a[5],a[6],a[7]}]
+2(d-a[4]-a[5]-a[6]-a[7]) INT[{a[1],a[2],a[3],a[4],a[5],a[6],-1+a[7]}]
+S1(d-a[1]-a[2]-a[5]-a[6]-a[7]) INT[{a[1],a[2],a[3],a[4],a[5],a[6],a[7]}], ...

IBPs Generation: Explicit Indices
Given a list of IBPs with arbitrary indices we have to fill the latter in order to obtain
explicit identities among integrals. Moreover, the same relation with arbitrary indices,
produces different relations with explicit indices, once the latter are chosen in different
ways.
In a given set of indices, the positive ones correspond to (non trivial) denominators; the
negative ones to (non trivial) numerators and zeros mean the absence of the correspond-
ing variables. Furthermore the set of positive indices identifies the (sub)topology for the
corresponding integral.
Thus, in order to obtain a set of exponents we have to specify:

• parentdeno: the number of denominators for the parent topology,

• parentisp: the number of ISPs for the parent topology,

• nsubdeno: the number of denominators for the considered subtopologies,
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• maxden: the difference between the sum of powers of denominators, for the considered
subtopologies, and the number of denominators for that subtopologies; e.g.: setting
maxden= 0 each denominaotr in the considerd subtopology is raised to power one;

• maxisp: minus the sum of power of numerators for the considered subtopologies.

Then, the function AssignSubTopo generates lists of exponents compatible with its argu-
ments:

parentdeno =6;
parentisp =1;
nsubdeno =6;
maxden =1;
maxisp =0;

AssignSubTopo[parentdeno , parenisp , nsubdeno , maxden , maxisp]
{{a[1]->1, a[2]->1, a[3]->1, a[4]->1, a[5]->1, a[6]->2, a[7]->0},
{a[1]->1, a[2]->1, a[3]->1, a[4]->1, a[5]->2, a[6]->1, a[7]->0},
{a[1]->1, a[2]->1, a[3]->1, a[4]->2, a[5]->1, a[6]->1, a[7]->0}, ...

Now, simply performing a substitution we get IBPs with explicit indices:

{-(-5+d)INT[{0,1,1,1,1,2,0}]+(-5+d)INT[{1,0,1,1,1,2,0}]+
2(-4+d)INT[{1,1,1,1,1,2,-1}]+(-5+d)S1 INT[{1,1,1,1,1,2,0}],
-(-4+d)INT[{0,1,1,1,2,1,0}]+(-4+d)INT[{1,0,1,1,2,1,0}]+
2(-4+d)INT[{1,1,1,1,2,1,-1}]+(-5+d)S1 INT[{1,1,1,1,2,1,0}],
-(-4+d)( INT[{0,1,1,2,1,1,0}]-INT[{1,0,1,2,1,1,0}]-
2INT[{1,1,1,2,1,1,-1}]- S1INT [{1,1,1,2,1,1,0}] ), ...

Zero Sectors
Moreover, we can trim the whole system imposing the vnishing of integrals whose ID num-
ber (1.1) is compatible with the Zero Sectors’ IDs generated by the code Reduze 2, [58];
thanks to this step we get rid of integrals which are known to be vanishing in Dimensional
Regularization, such as scaleless integrals.

Sector Symmetries
We might obtain extra identities among integrals thanks to redefinitions of loop momenta;
an interesting class of relations, the so called Sector Symmetries (1.9), is generated shifting
the loop momenta in such a way that the set of denominators in a given (sub)topology, is
mapped into itself. Since these identities can be ontained with a minimal effort in “mo-
mentum space”, for example thanks to Reduze 2, and they greatly simplify the reduction
in MIs, it is desirable to implement them within the Baikov representation.
Roughly speaking, since Baikov representation relies on the relation between scalar prod-
ucts and the set of denominators and ISPs, it is sufficient to shift loop momenta in “mo-
mentum space representation, and express the result in terms of {zi}i=1,...,t+nISP . A given
Sector Symmetry produces just a permutation of indices on denominators:

{z1, . . . , zt} → {zσ(1), . . . , zσ(t)}. (1.156)

On the other hand, each ISP is mapped into a linear combination of the whole set of
z = {zi}i=1,...,t+nISP and a linear combination of kinematics invariants, collectively denoted
by s.

zi →
t+nISP∑
j=1

cij zj + s, (1.157)
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Finally the Baikov polynomial, F (z), turns to be invariant under the transformation (1.156)
and (1.157); this fact reflects the shift invariance property of Gram Determinants.
We stress that Sector Symmetries turn to be d-independent relations. On practical grounds,
it turns to be convenient to consider the action of (1.156) and (1.157) on a set of denom-
inaotrs with arbitrary indices and on a monomial in the corresponding ISPs with explicit
indices, neglecting at all F (z).
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NLoops, NExtMom,
Propagators,
ExtRules,

RankMonAux, γ

Baikov.m

Baikov Polynomial

GenSyzIBPSingular MonomialsListBuilder

IBPs Arbitrary Indices

AssignSubTopo

IBPs Explicit Indices

Reduze 2: ZeroSec

IBPs trimmed

Sygyzies

Subs

Monomials

Figure 1.1: Flowchart for IBPs generation in Baikov representation. Red clouds represent external codes
needed in the chain; green clouds represent implemented functions or chain of commands; blue blocks
stand for key outputs in different steps.
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System Solver
Once the system is built, the latter has to be solved. In simple cases, i.e. few integrals
and few scales, the built-in Mathematica function Solve, is sufficient: provided the fact
that the number of MIs is known, it is possible to solve the system w.r.t. all the integrals
except for the ones chosen to be MIs. As a result, each integral in the system (excpet for
the MIs) is writen as a linear combination of the chosen MIs.
On top of that, for the most complex cases, we plan to adopt an implementation of the
Laporta algorithm [2] (or some of its variants).
It is worth stressing that the coefficients of the huge system are rational functions in d
and in the kinematics, and the strategy advocated by Laporta heavily relies on Gaussian
Elimination. Consequently, this type of approach suffers from the so-called intermediate
expression swell i.e.: very large intermediate expressions appear. A very powerful idea
to overcome this issue consists in reconstructing the analytic expression of the final result
from multiple numerical evaluations. A detailed discussion of this topic, which goes beyond
the scope of this Thesis can be found in [62] [63].
We present below some simple examples, in order to show the ideas behind these Functional
Reconstruction techniques, taken from [64].

Univariate Polynomials
Let’s consider a simple polynomial of degree two:

P(x) = 5x2 − 7x+ 13 (1.158)

Our goal is to guess (1.158), considering, as a starting point, its values at a given set of
input values: 

P(3) = 37

P(5) = 103

P(7) = 209
...

. (1.159)

If, by any chance, the degree d of P is known in advance, we could simply build and solve
a system of d+ 1 equations of the form:

P(x) = n0 + n1x+ n2x
2

∣∣∣∣
x=xi

, xi = 3, 5, 7. (1.160)

However, since in general one does not know a priori the degree d, another method must
be used. The task at hand can be solved rewriting the polynomial in an alternative
representation due to Newton:

P(x) =

R∑
i=0

ai

i−1∏
j=0

(x− yj)

= a0 + (x− y0)

(
a1 + (x− y1)

(
a2 + (x− y2)(· · ·+ (x− yR−1)aR))

))
,

(1.161)

where the ai depend on the yi, and the latter can be chosen arbitrarily. The values of
the coefficients ai can then be immediately extracted performing a smart sampling on x.
Baring in mind the second line of (1.161), we have:

choose y0 = 3 ⇒


P(3) = a0 + (3− 3)(· · · )

= a0

⇓
a0 = 37
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choose y1 = 5 ⇒


P(5) = 37 + (5− 3)(a1 + (5− 5)(· · · ))

= 37 + (5− 3)a1

⇓
a1 = 33

choose y2 = 7 ⇒


P(7) = 37 + (7− 3)(33 + (7− 5)(a2 + (7− 7)(· · · )))

= 37 + (7− 3)(33 + (7− 5)a2)

⇓
a2 = 5

One can see that ai = 0 for any yi when i > 2, thus the final expression we find is

P(x) = 37 + (x− 3)(33 + (x− 5)5) (1.162)

which, after a minor rearrangement, coincides with (1.158).

Univariate rational functions
In a similar fashion, given the rational function:

R(x) =
n0 + n1x+ n2x

2 + · · ·+ nRx
R

d0 + d1x+ d2x2 + · · ·+ dR′xR′ (1.163)

we can use the so called Thiele Interpolation Formula, which is an alternative representation
of (1.163):

R(x) = a0 +
x− y0

a1 +
x− y1

a2 +
x− y2

...

aN−1 +
x− yN−1

aN

= a0 + (x− y0)

(
a1 + (x− y1)

(
(x− y2)

(
· · ·+ x− yN−1

aN

)−1
)−1

)−1

(1.164)

Again, introducing a set of arbitrary constants yi, the computation of the coefficients ai is
reduced to a systematic evaluation of R on the chosen yi. The analytic expression of the
ai is computed recursively and is given by:

a0 = R(y0)

a1 = (R(y1)− a0)
−1(y1 − y0)

...

ar =

((
(R(yN )− a0)

−1(yN − y0)− a1

)−1
(yN − y1)− · · · − aN−1

)−1

(yN − yN−1)

(1.165)

IBP reconstruction: an explicit example
Finally we present a typical output of an IBP reduction8(namely an integral written as a
combination of MIs), for an integral belonging to (1.136).

INT[{1, 1, 1, 1, 1, 2,−3}] =b1INT[{0, 1, 0, 1, 1, 1, 0}] + b2INT[{1, 0, 1, 1, 1, 0, 0}]+
b3INT[{1, 0, 0, 1, 0, 1, 0}]

(1.166)

8The identity is obtained by means of Reduze 2.
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Each coefficient is interpreted as a black box, which associate to a given input value the
corresponding output. We present the number of numerical evaluations needed to recon-
struct the coefficients. The reconstructions are obtained by means of routines developed
in [64], concerning the Multivariate Reconstruction, consisting in a further development of
the ideas just sketched above.

Coefficient Number of evaluations Analytic expression

b1 11 − (d−5)(d−3)2

2(d−4)(d−2)

b2 17 (d−5)(d−3)d(d+2)
8(d−6)(d−4)(d−2)(d−1)

b3 37 −3(3d−8)
(
3d6−53d5+373d4−1349d3+2678d2−2764d+1080

)
8(d−6)2(d−4)2(d−2)(d−1) S1

(1.167)
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Chapter 2

Differential Equations

In this Chapter we focus on the method of the Differential Equations for Feynman Integrals.
Given a set of unknown MIs, we can consider its derivatives w.r.t. the masses or the kinematics invariants
and, thanks to IBPs, we obtain a suitable system of Differential Equations (DEQs). Solving the latter
(and fixing the integration constants in the General Solution) we determine the analytic expression for the
MIs, avoiding a direct integration over the loop momenta.
We recall the notion of Canonical Basis, a particular basis of Mis, in which ε (the regulator parameter)
is completely factorized from the kinematics and the solution is naturally expressed in terms of iterated
integrals over rational kernels. Moreover, we study an algorithm (purely “algebraic” ), based on the Mag-
nus Exponential, proposed to recast a DEQ system linear in ε in the Canonical form. We studied and
implemented some of the properties fulfilled by the functions involved in the Solutions, namely Harmonic
Polylogarithms and Goncharov Polylogarithms.
Thanks to these techniques, we propose the calculation of the MIs for the 1-loop 4-point function topology
in the full massless case, and for the 1-loop 4 point function for the µe → µe scattering. Finally we obtain
the Canonical System for a 2-loop non planar 3 point topology, which is needed in order to complete the
calculation of the Mis for the qq̄ → tt̄ process, which are currently known just numerically.

2.1 Differential Equations (DEQs) for Master Integrals

Once the set of MIs has been identified, the latter has to be calculated. As proposed
for the first time by Kotikov [6], then generalized by Remiddi [7] and fully exploited by
Gehrmann and Remiddi [8], among others, a very powerful strategy consists in determining
the unknown MI(s) as the solution(s) of a suitable Differential Equations (System) thus,
avoiding the direct integration over the loop momenta. The procedure is sketched by the
following example [4].

Derivative w.r.t. masses

Given a set of MIs, {Fi}i=1,...,n, for an Integral Family under consideration, let’s consider
the derivative of Fī(m

2
ī
), ī ∈ {1, . . . , n}, w.r.t. m2

ī
, (assuming (q2

ī
−m2

ī
)−r̄i ∈ Fī, r̄i > 0,

and considering, for the sake of simplicity, that m2
ī

appears just in an unique Denominator
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), then:

∂

∂m2
ī

Fī(m
2
ī ) ≈

∫ l∏
i=1

ddki . . .
∂

∂m2
ī

(
1

(q2
ī
−m2

ī
)r̄i

)
· · · ≈

≈
∫ l∏

i=1

ddki . . .
r̄i

(q2
ī
−m2

ī
)r̄i+1

. . . ;

(2.1)

thus we notice that is possible to rearrange the r.h.s. through IBPs, in order to express
the derivative of a MI in terms of that particular MI as well as others MIs chosen from the
given set. Thus, iterating the procedure also for the other MIs, we end up with a coupled
system of Differential Equations; roughly speaking, organizing the MIs in a vector with an
increasing number of Denominators in each entry, F, the DEQs System can be represented
as:

∂m2F = AF. (2.2)

We stress that the DEQs System is obtained using IBPs, and so the coefficients appearing
in the System, turn to be rational functions in the kinematics invariants (i.e.: scalar prod-
ucts among external momenta, and masses) and in d, namely the space-time dimensions.
Moreover, since IBPs relate integrals belonging to a given topology to integrals belonging
to the same topology and its sub-topologies, the System turns to have a remarkable block
triangular structure, where blocks are due to the fact that there could be more than one
integral belonging to the same topology.

Derivative w.r.t. external kinematics invariants

In order to consider the derivative w.r.t. the external invariants, technical, simple but
crucial details are needed [5], due to the fact that integrals do not depend explicitly on
the external invarinats. Given n+1 external particles, we can identify only n independent
external momenta, due to momentum conservation. Thus, we can build n(n+1)

2 external
invariants, {sij}, sij = pi · pj , and we can implement the chain rule:

∂

∂pµi
=
∑
j

∂sji
∂pµi

∂

∂sij
. (2.3)

We can multiply the latter equation by a vector, let’s say pµk , obtaining a system of n2 equa-
tions. The latter seems to be over determined, since we want to solve n2 equations w.r.t.
n(n+1)

2 derivative in the external invariants, thus dealing with n2 − n(n+1)
2 = (n)(n−1)

2 addi-
tional equations. But this is exactly the number of Lorentz Invariance identities (1.108):
actually the different representations for a given differential operator, let’s say ∂

∂sij
, turn

to be related by LI symmetries.
As stated above, we can express the outcome of the derivative through IBPs; thus, we
stress again that the derivative of a given MIs turns to be a combination of MIs in the
same topology and its subtopology. Iterating the procedure for all the MIs, and for all the
chosen kinematics invariants, we are able to build up a Coupled System of (partial) Dif-
ferential Equations (if the kinematics invariants are more than one), which inherits from
the IBPs a remarkable block triangular structre and rational coefficients in the kinematics
invariants and d, namely the space-time dimensions. For the sake of simplicity in the rest
of this section, we assume that MIs depends on a single variable, let’s say x (often chosen
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to be adimensional); thus, we deal with system in the form:

∂F(x, d)

∂x
= A(x, d)F(x, d); (2.4)

We are free to redefine d = dc − 2ε, where, usually, dc = 4.
Generally speaking, (2.4) gives, after integration, just the general solution(s); in order to
obtain the particular expression(s) for the unknown MI(s), let us anticipate that we have to
adjust the constants coming from the integration, in order to match the “physical” result.
This problem, which we referred to as Fixing of the Boundary Conditions, is particularly
tricky; we will return on this delicate issue later on.
It is worth recalling that, on the one hand, the number of MIs is, somewhat, dictated by
the problem, but, on the other hand, the choice of MIs is arbitrary. In fact we can imagine
to express (2.4) in terms of a new basis of MIs, namely I, related to the previous one by
the relation F(x, ε) = B(x)I(x, ε). Thus, it is possible to recast (2.4) as:

∂I(x, ε)

∂x
=

(
B−1(x)A(x, ε)B(x)− B−1(x)

∂B(x)
∂x

)
I(x, ε), (2.5)

as we will see, this simple expression will play a crucial role in the proceeding. Even if, a
priori, (2.4) could be expressed and solved w.r.t. any basis of MIs, a particularly brilliant
and, in certain sense, natural basis, as it will be clear in a while, is the so called canonical
basis, proposed by Henn, [15].

2.2 Solving DEQs, a General Strategy

As stated above, a key proprierty of a DEQs system for MIs is its block triangular structure,
inherited from IBPs. Thus, it seems obvious to adopt a bottom-up solving strategy. Once a
certain sector is solved, then the solution just determined is plugged in the inhomogeneous
part of the next DEQ (i.e.: with an higher number of denominators). Let’s consider,
concretely, the case in which each sector contains just one MI. Then, the DEQ for the ith

MI, namely Fi(x, ε), reads:

∂Fi(x, ε)

∂x
= Aii(x, ε)Fi(x, ε) + Si(x, ε), (2.6)

where Si(x, ε) stands for the subtopology, considered known, for the given MI.
Then, we can solve (2.6) through Euler’s Variations of Constants. Primarily, we solve the
homogeneous DEQ associated to (2.6):

∂Fi, hom(x, ε)

∂x
= Aii(x, ε)Fi, hom(x, ε); (2.7)

we have:
Fi, hom(x, ε) = ci(ε) exp

(∫ x

dtAii(t, ε)

)
; (2.8)

then, we look for a solution for (2.6) in the form of:

F ∗
i (x, ε) = φi(x, ε)Fi,hom(x, ε). (2.9)

Plugging the previous ansatz in (2.6), we obtain a DEQ for φi(x, ε); solving the latter we
can build-up (2.9), namely a particular solution for the non-homogeneous DEQ (2.6).
Then, a general solution for (2.6) reads:

Fi(x, ε) = Fi,hom(x, ε) + F ∗
i (x, ε). (2.10)
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Bubble Integral, Closed Form

We consider the integral family given by:

B(2,2) =

∫
d̃dk

1

((k − p)2 −m2)r1(k2 −m2)r2
. (2.11)

Thanks to REDUZE2 we identify the following basis of MIs: F = {F1, F2} where:

F1 := =

∫
d̃dk

1

(k2 −m2)
, (2.12)

and:

F2 :=

p

=

∫
d̃dk

1

((k − p)2 −m2) (k2 −m2)
. (2.13)

The DEQs system for F(s, ε) = {F1(s, ε), F2(s, ε)} w.r.t. p2 = s reads:

∂F(s, ε)

∂s
= A(s, ε)F(s, ε), A(s, ε) =

(
0 0

2(ε−1)
s(s−4m2)

2m2−sε
s(s−4m2)

)
(2.14)

We immediately notice that F1 turns to be independent from the external momentum p;
thus, the DEQ w.r.t. s = p2, must be trivial:

∂F1(s, ε)

∂s
= 0,⇒ F1(s, ε) ≡ F1(ε) = const. (2.15)

Moreover the analytic expression for F1(ε) can be obtained from a direct integration1 Then
we can focus on the DEQ for F2 considering its subtopology, namely the non homogeneous
term in the DEQ completely known. We have:

∂F2(s, ε)

∂s
=

(
2m2 − εs

)
s (s− 4m2)

F2(s, ε) +
2(ε− 1)

s (s− 4m2)
F1(ε). (2.16)

In order to simplify the DEQ, let’s introduce the change of variable:

x = − s

4m2
(2.17)

Thus, (2.16) reads:

∂F2(x, ε)

∂x
=

(
1− 2ε

2(x+ 1)
− 1

2x

)
F2(x, ε) +

2− 2ε

4m2

(
1

x
− 1

x+ 1

)
F1(ε) (2.18)

We stress again that F1 has to be considered completely known, in this example: F1 =
const.
Then, we can focus on the homogeneous DEQ in (2.18). Solving the latter we find:

F2,hom(x, ε) = c2(ε)x
− 1

2 (1 + x)
1
2
−ε, (2.19)

1The choice of the integration measure is not strictly necessary in this section.
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where c2(ε) is an arbitrary constant.
Then, we look for a solution in the form of:

F ∗
2 (x, ε) = φ2(x)F2,hom(x, ε). (2.20)

Plugging the latter in (2.18), we obtain a DEQ for φ2(x, ε) which reads:

∂φ2(x, ε)

∂x
= −(ε− 1)(x+ 1)ε−

3
2

2m2
√
x

F1(ε). (2.21)

Once again, F1 is completely known, namely F1 = const. Solving (2.21), we obtain:

φ2(x, ε) = −
√
x(ε− 1) 2F1

(
1
2 ,

3
2 − ε; 32 ;−x

)
m2

F1(ε), (2.22)

where 2F1 is the hypergeometric function. Finally the general solution (2.10) reads:

F2(x, ε) = c2(ε)x
− 1

2 (1 + x)
1
2
−ε −

(ε− 1)(x+ 1)
1
2
−ε

2F1

(
1
2 ,

3
2 − ε; 32 ;−x

)
m2

F1(ε). (2.23)

We stress that the general solution depends on an arbitrary constant, namely c2(ε), which
has to be fixed. We will discuss this issue in a dedicated section.

Solving DEQs, Laurent Expansion

Concretely, we are interested in determining the MIs in the ε → 0 limit (namely in the
d → dc limit). Thus the closed form (2.23), could be, somewhat, unnecessary and often
too demanding.
Thus, we can consider the Laurent Expansion for the considered MIs:

Fi(x, ε) =
∞∑
k=k̄

εk F
(k)
i (x). (2.24)

Plugging the previous expansion in (2.6) we obtain a chained DEQs system for the co-
efficients F

(k)
i (x, ε), which can be solved in a bottom-up approach, starting from the 1st

coefficient in the Laurent Series, namely F k̄
i (x, ε). Notice that this strategy, leads to a

much more simple system, since, at least, the ε-dependence is factorized from the kinemat-
ics.

Bubble Integral, Laurent Expansion

Let’s consider once again the DEQs system (2.14). As stated above, the 1st MI, namely
F1 is a constant. We can adjust the integral measure, d̃dk, as:

d̃dk =
ddk

iπ
d
2

, (2.25)

in such a way that:

F1(ε) =
m2

ε
−m2

(
log

(
m2

µ2

)
+ γ − 1

)
+O(ε). (2.26)
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Thus, F1 and in particular its Laurent Expansion are completely known. Then let’s consider
the change of variable given by2

− s

m2
=

(1− y)2

y
; (2.27)

the DEQ for the second MI reads:

∂F2(y, ε)

∂y
= −(y − 1)2ε+ 2y

y(y2 − 1)
F1(y, ε)−

2(ε− 1)

m2 (y2 − 1)
F1(ε). (2.28)

Then, let’s suppose we are looking for 3 :

F2(y, ε) =
∞∑

k=−2

εk F
(k)
2 (y). (2.29)

Then, plugging the previous expansion in (2.28) we obtain:

∂F
(k)
2 (y)

∂y
=− 2

y2 − 1
F

(k)
2 (y)− (y − 1)2

y(y2 − 1)
F

(k−1)
2 (y)+

2

m2 (y2 − 1)
F

(k)
1 − 2

m2 (y2 − 1)
F

(k−1)
1 .

(2.30)

Order ε−2

Thus, the DEQ for F
(−2)
2 (y) reads (being F

(−2)
2 (y) the very first term in the Laurent Ex-

pansion, F (−2−1)
2 (y) is vanishing; F (−2)

1 and F
(−2−1)
1 are vanishing as well by construction):

∂F
(−2)
2 (y)

∂y
= − 2

y2 − 1
F

(−2)
2 (y); (2.31)

we immediatly have:

F
(−2)
2 (y) = −y + 1

y − 1
c(−2). (2.32)

We anticipate here that F2(y, ε) turns to be finite in the s → 0 ⇔ y → 1 limit (see Section
(2.6)), and so we are forced to set c(−2) ≡ 0.

Order ε−1

The DEQ for F
(−1)
2 (y) reads (taking into account: F

(−2)
2 (y) = 0, F

(−1)
1 = m2 and

F
(−1−1)
1 = 0 by construction):

∂F
(−1)
2 (y)

∂y
= − 2

y2 − 1
F

(−1)
2 (y) +

2

y2 − 1
. (2.33)

The latter can be solved through the Euler’s variations of constants described in the
previous Subsections. The homogeneous equation is once again (2.31), thus:

F
(−1)
2, hom(y) = −y + 1

y − 1
c(−1); (2.34)

2The usual redefinition: − s
m2 = x would lead to more uncomfortable intermediate expression.

3It is well known (e.g.: by direct integration), that the Laurent Expansion for both the Tadpole, namely
F1 and the Bubble, namely F2, are ∝ 1

ε
+ O(ε0). Thus our guess is “wrong”. Anyway the fixing of the

Boundary Conditions (see Section (2.6) will restore the correct Laurent Expansion. We believe that our as-
sumption, namely considering an unnecessary term ∝ 1

ε2
in the Laurent Expansion makes the construction

more transparent.
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we look for a particular solution for (2.33) in the form of:

F
∗ (−1)
2 (y) = −y + 1

y − 1
φ(−1)(y); (2.35)

plugging the latter in (2.33) we obtain a DEQ for φ(−1)(y):

∂φ(−1)(y)

∂y
= − 2

(y + 1)2
, (2.36)

and a particular solution reads:

φ(−1)(y) =
2

y + 1
. (2.37)

Thus, a particular solution for (2.33) is:

F
∗ (−1)
2 (y) = − 2

y − 1
, (2.38)

and so the general solution is:

F
(−1)
2 (y) = F

(−1)
2, hom(y) + F

∗ (−1)
2 (y) =

2 + (1 + y)c(−1)

1− y
. (2.39)

The fixing of c(−1) is usually left as a final step in the calculation. However, as we antici-
pated above, the solution has to be finite in the s → 0 ⇔ y → 1 limit, and this is sufficient
to set c(−1) = −1.

Order ε0

Then, we can solve the DEQ for (F (0)
2 (y)) which reads (taking into account the previous

results):

∂F
(0)
2 (y)

∂y
= − 2

y2 − 1
F

(0)
2 (y)−

2
(
log
(
m2
)
+ γ − 1

)
y2 − 1

+
1− y

y(y + 1)
− 2

y2 − 1
; (2.40)

Once again the homogeneous solution is known, namely:

F
(0)
2, homy = −y + 1

y − 1
c(0), (2.41)

where c(0) is an arbitrary constant. Then, we look for a particular solution for (2.40) in
the form of:

F
∗(0)
2 (y) = −y + 1

y − 1
φ(0)(y). (2.42)

Plugging the latter in (2.40) we obtain a DEQ for φ(0)(y) which reads:

∂φ(0)(y)

∂y
=

2y log
(
m2
)
+ y2 + 2(γ − 1)y + 1

y(y + 1)2
. (2.43)

whose solution reads:

φ(0)(y) = log(y)−
2
(
log
(
m2
)
+ γ − 2

)
y + 1

. (2.44)
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Thus we have:

F
∗(0)
2 (y) = −

−2 log
(
m2
)
+ y log(y) + log(y)− 2γ + 4

y − 1
. (2.45)

Finally the general solution for (2.40) is:

F
(0)
2 (y) = F

(0)
2, hom(y) + F

∗(0)
2 (y) = −

c(0)y + c(0) − 2 log
(
m2
)
+ y log(y) + log(y)− 2γ + 4

y − 1
.

(2.46)
Requiring that F

(2)
2 (y) has to be finite in the s → 0 ⇔ y → 1 limit, we fix c(0): c(0) =

log
(
m2
)
+ γ − 2.

2.3 Canonical Basis

One variable case
In this section, we would try to delineate the principal features of the Canonical Basis

[15], recalling (two of) the most remarkable properties:

• ε factorized form the kinematics, or explicitly the system in the form:

∂I(x, ε)

∂x
= εAc(x)I(x, ε), (2.47)

• the matrix Ac(x) turns to have simple poles.

A few comments are mandatory; it is customary to rewrite the canonical system in a dlog
form, namely:

d I(ε, x) = εdAc(x)I(ε, x), Ac =

k∑
i

Mid log ηi(x); (2.48)

in the latter expression {Mi}i=1,...,k are completely constant matrices, while {ηi(x)}i=1,...,k

form the so-called alphabet, which constitutes the kernel for the integration.
Moreover, once the system is recast in the canonical form (modulo a rescaling by an
appropriate power of ε for each MIs, in order to eliminate the ε-poles) the general solution
can be obtained with a minimal effort, in terms of the Dyson Series, thus involving Iterated
Integrals, up to an arbitrary order in the Taylor expansion in ε. More precisely, the bottom
up approach can be avoided, and we can treat all the MIs on an equal footing, keeping
them in a vector, I(x, ε):

I(x, ε) =

(
1 + ε

∫ x

dt1 Ac(t) + ε2
∫ x

dt1

∫ t1

dt2 Ac(t1)Ac(t2) + . . .

)
I0(ε). (2.49)

We immediately notice that the solution at order k depends only on the solution at order
k − 1; the latter condition is encoded in:

∂I(k)(x)

∂x
= Ac(x) I

(k−1)(x), (2.50)

and:
∂I(0)(x)

∂x
≡ 0 ⇔ I(0)(x) ≡ I0(ε), (2.51)

namely the leading term in the ε expansion is a constant.
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Two variables case
If the DEQs system is expressed in terms of two variables, let’s say {x, y}, some additional
effort is needed. More precisly, let’s consider a partial DEQs system in the form:

∂I(x, y, ε)

∂x
= εAx(x, y) I(x, y, ε),

∂I(x, y, ε)

∂y
= εAy(x, y)I(x, y, ε). (2.52)

Then, we look for a solution:

I(x, y, ε) =
(

1 + εB(1)(x, y) + ε2B(2)(x, y) + . . .
)
I0(ε). (2.53)

The matrices {B(i)(x, y)} are computed according to the following steps.

• Given the general solution at order k, namely B(k)(x, y, ε), then we can compute:∫ x

dtAx(t, y)B(k)(t, y).

So the general solution at order k + 1, will be:

I(x, y, ε) =

(
1 + · · ·+ ε(k)B(k)(x, y) + ε(k+1)

(∫ x

dtAx(t, y)B(k)(t, y) + C(k+1)(y)

))
I0(ε);

where C(k+1)(y) is an unknown matrix depending on y.

• Plugging the latter in the DEQs system w.r.t. y, forgetting about the boundary
vector I0, and collecting terms proportional to εk+1, we obtain:

∂C(k+1)(y)

∂y
= − ∂

∂y

(∫ x

dtAx(t, y)B(k)(t, y)

)
+ Ay(x, y)B

(k)(x, y).

We stress that the r.h.s. must be x-independent; solving the latter DEQ, and thus
obtaining C(k+1), we determine the general solution at order k + 1.

We also stress that, once the DEQs system is recast in the canonical form, the solutions
turn to be pure functions of uniform trascendentality ; more explicitly, following [15], we can
define the degree of trascendentaly Td(f), of a function f , as the number of integrations
needed to obtain it, thus Td(log) = Td(π) ≡ 1, Td(ζn) ≡ n just to mention a couple of
examples; and so, arbitrary imposing Td(ε) = −1, each canonical MI is represented by a
combination of functions wich degree of trascendentaly equals to zero. As a consequence
of the previous discussion, investigating the nature of a certain function in terms of degree
of trascendentality, and consequently manipulating the integrand, could offer a criterion to
reach the canonical basis. Furthermore, it has been conjectured that MIs with unit leading
singularities lead to pure functions of uniform trascendentality [15].
Besides its elegance, it should be noted that the general solution (2.49) can be obtained
in an almost “algebraic” way, thus it’s more than welcome in view of automation. Not
surprisingly a lot of techniques, based on different approaches, have been proposed in the
recent years in order to obtain the canonical basis of MIs, e.g.: [16]-[22]. Among the
others, the method proposed for the first time in [23] based on the Magnus Expansion or,
equivalently Magnus Exponential, requires, as a starting point, a system which is linear in
ε, and had been used in presence of several variables; this method was successfully applied
in many cases, as can be found in [23]-[27].
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2.4 Magnus Exponential

In order to explain the method based on the Magnus Exponential it’s worth reminding
once again our starting assumption, namely, given a set of MIs F, we consider a system
linear in ε (just for the sake of simplicity, we assume that the MIs depends on a single
variable, denoted by x):

∂F(x, ε)

∂x
= (A0(x) + εA1(x))F(x, ε). (2.54)

Then, roughly speaking, the idea is to “eat”, or better, “rotate away” the ε-independent
term, absorbing the latter via a change of basis for the MIs.
More concretely, we are free to redefine F(x, ε) = B(x)I(x, ε), where B(x) is an unknown
matrix, and thus we recast (2.54) as:

∂I(x, ε)

∂x
= B−1(x)

(
−∂B(x)

∂x
+ A0(x)B(x) + εA1(x)B(x)

)
I(x, ε). (2.55)

We immediatly notice that, if B(x) is such that:

∂B(x)
∂x

= A0(x)B(x), (2.56)

then it is garanteed that (2.55) presents a manifest ε factorization:

∂I(x, ε)

∂x
= εB−1(x)A1(x)B(x)I(x, ε) ≡ εAc(x)I(x, ε). (2.57)

Thus, we are left with the problem of solving a DEQ (2.56), for the linear operator B(x).
Following [29], a solution for (2.56), can be written in terms of the exponential of an, a
priori, infinite series:

B(x) = eΩ[A0](x), (2.58)

where Ω[A0](x) is given by:

Ω[A0](x) =

∞∑
k=1

Ωk[A0](x); (2.59)

the various terms in the latter expression involve iterated integrals of nested commutators
of the kernel A0. More explicitly the first terms read:

Ω1[A0](x) =

∫ x

d t1A0(t1),

Ω2[A0](x) =

∫ x ∫ t1

d t1d t2[A0(t1),A0(t2)].

(2.60)

Clearly, on a practical level, we have to furnish a closed solution to (2.56), since, after all,
we are interested in finding out an explicit change of basis. Such an explicit transformation
is guaranteed if the kernel A0 is a triangular matrix; the latter leads to a series (2.59) which
contains just a finite number of terms, say n̄, namely Ωm[A0] ≡ 0 ∀m > n̄, as desired.
In order to prove the previous statement, we notice that we are free to split the triangular
kernel A0(x) as:

A0(x) = D0(x) + S0(x), (2.61)

where D0(x) is the diagonal part, and S0(x) the sub-triangular one. Then, as a preliminary
step, D0(x) can be reabsorbed with a minimal effort (a diagonal matrix commutes with its
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integral, and so only the very first term in (2.60) is non-vanishing). On practical grounds,
we introduce a new basis of MIs, F(x, ε) = B1(x)F

[2](x, ε), and we recast (2.54) as:

∂F[2](x, ε)

∂x
= B−1

1 (x)

(
−∂B1(x)

∂x
+ D0(x)B1(x) + S0(x)B1 +O(ε)

)
F[2](x, ε). (2.62)

If the unknown matrix B1(x) satisfies:

∂xB0(x) = D0(x)B0(x) ⇒ B0(x) = e
∫ x d tD0(t); (2.63)

then (2.62) reduces to:

∂F[2](x, ε)

∂x
=

B−1
1 (x)S0(x)B1(x)︸ ︷︷ ︸

=T0(x)

+O(ε)

F[2](x, ε); (2.64)

furthermore the resulting matrix, T0(x) = e−
∫ x d t D0(t) S0(x) e

∫ x d t D0(t), turns to be strictly
triangular, being S0(x) strictly triangular, and e±

∫ x d t D0(t) diagonal ones. But now, we
recall that the product of a set of m, (m,m) strictly triangular matrix is always vanishing.
Thanks to this fact, given a (m,m) strictly triangular kernel, we argue that m nested com-
mutators vanish as well (independently of iterated integrals), and so (2.59) has at most m
terms.
On the other hand, it is worth stressing that even if the kernel A0 turns not to be triangular,
then we could have a finite number of terms in (2.59) thanks to its nilpotency properties.

Bubble Integral, a 1-loop example

We show in this section an application of the algorithm described in the previous section.
We consider the integral family given by:

B(1,1) =

∫
d̃dk

1

((k − p)2 −m2)r1(k2 −m2)r2
. (2.65)

Thanks to REDUZE2, we identify a basis of MIs, F = {F1, F2}4 which fulfills a DEQs system
linear in ε:

∂F(s, ε)

∂s
= A(s, ε)F(s, ε), A(s, ε) =

(
0 0
ε

s(s−4m2)
2m2−(ε+1)s
s(s−4m2)

)
, (2.66)

where:

F1(s, ε) ≡ F2(ε) = =

∫
d̃dk

1

(k2 −m2)2
, (2.67)

and:

F2(s, ε) =

p

=

∫
d̃dk

1

(k2 −m2)2((k − p)2 −m2)
. (2.68)

4Strictly speaking we should multiply each MI by a factor ε in order to eliminate the ε-poles from the
MIs. Anyway, this is not necessary here, and we postpone the issue to the following sections.
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Then, splitting A(s, ε) as: A(s, ε) = A0(s)+ εA1(s), being A0,1(s) ε independent, the matrix
A0(s) reads:

A0(s) =

(
0 0

0 s−2m2

s(4m2−s)

)
. (2.69)

Then, following the algorithm presented just above, we perform a change of basis: F(s, ε) =
B(s)I(s, ε) and 2.66 can be recasted as:

∂I(s, ε)

∂s
= B−1(s)

(
−∂B(s)

∂s
+ A0(s)B(s) + εA1(s)B(s)

)
I(s, ε). (2.70)

Being A0(s) diagonal it commutes with its integral and the Magnus Series consists in the
very first summand; we simply have:

∂B(s)
∂s

= A0(s)B(s) ⇒ B(s) = e
∫
dsA0(s) =

(
1 0
0 1√

−s
√
4m2−s

)
. (2.71)

Then, the canonical MIs I(s, ε) = {I1(ε), I2(s, ε)}, reads:

I1(ε) = F1(ε), I2(s, ε) =
√
−s
√
4m2 − sF2(s, ε). (2.72)

Finally, performing the change of variable: − s
m2 = (1−x)2

x , (2.70) reads5

∂I(x, ε)

∂x
= εAc(x)I(x, ε), Ac =

(
0 0
1
x

1
x − 2

x+1

)
, (2.73)

which has the desired properties.

A comment on a “Post-Canonical” scenario

We would like to mention the possibility to further iterate the ideas presented just above.
Given the canonical system (2.73), we consider: Ac(x) = Dc(x) + Nc(x), being Dc(x) the
diagonal part of the Canonical Matrix. Then, we could perform an additional change of
basis: I(x, ε) = C(x)H(x, ε), obtaining the usual:

∂H(x, ε)

∂x
= C−1(x)

(
−∂C(x)

∂x
+ Dc(x)C(x) + NcC(x)

)
H(x, ε). (2.74)

then we look for a matrix C(x) such that:

∂C(x)
∂x

= εDc(x)C(x). (2.75)

Being Dc(x) diagonal, the integration is straightforward; in this explicit example we obtain:

C(x) =

(
1 0
0 xε(1 + x)−2ε

)
. (2.76)

The new system reads:

∂H(x, ε)

∂x
= Apc(x, ε)H(x, ε), Apc(x, ε) = ε

(
0 0

x−(1+ε)(1 + x)2ε 0

)
. (2.77)

5We consistently assume: 0 < x < 1.
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Then, thnaks to its strictly triangular form, the Dyson Series for Aps(x, ε), has a finite
number of terms 6. In this explicit example we have:

H(x, ε) =

(
1 0

−x−ε
2F1(−2ε,−ε; 1− ε;−x) 1

)
H0(ε). (2.78)

We notice that, at least in principle, this decomposition could be applied to all the one-loop
integrals, since, for these integrals, the Canonical System is triangular.

2.5 General Solution

Once the DEQs system is casted in the canonical form (2.48), and a suitable change of
variable has been performed in order to obtain a rational alphabet7, we are ready to deter-
mine the general solution in terms of a particular class of function, the so called generalized
polylogarithms (GPLs) [30]-[?], thus exploiting the compactness and elegance, and so, fi-
nally, the “naturalness” offered by the Canonical Basis. In this context, the number of
kinematics variables, i.e.: the ones w.r.t. we differentiate, considerably determines the
richness of the mathematical structure involved; therefore we will follow here an “histor-
ical” approach, focusing , at the beginning, on the case with one variable present, and
subsequently moving to the two variables case.

2.5.1 One variable case, HPLs

Definitions
In the one variable case, following [32] we assume that the alphabet is formed by:

η(x) = {x, 1− x, 1 + x}. (2.79)

Then, iterated integrals over the inverse of (2.79) lead to the so called Harmonic Polylog-
arithms: these functions are identified by a set of n indices, grouped into a n-dimensional
vector ~ωn, with entries chosen from the set: {0, 1,−1}. Even if these functions are, nowa-
days, well known mathematical objects, we prefer to build them up, in a constructive and
pedagogical way. As a first step, we can furnish a list of the rational functions, up to
irrelevant constant factors, expected in the DEQ, which we referred to as kernel, namely:

1

x
= f(0, x),

1

1− x
= f(1, x),

1

1 + x
= f(−1, x).

(2.80)

Integrating (2.80) in the interval [0, x] we find (define):

H(0, x) ≡ log(x),

H(1, x) =

∫ x

0

dt

1− t
= − log(1− x),

H(−1, x) =

∫ x

0

dt

1 + t
= log(1 + x).

(2.81)

6Namely: (
0 0
♣ 0

)(
0 0
♠ 0

)
= 0.

7A non-rational alphabet can be trated in terms of Chen’s iterated integrals [34] .
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Thus, roughly speaking and with a little abuse of notation, we can regard the integration
as a “replacement”, at least in this very first step:∫ x

0
dt : f({±1, 0}, t) → H({±1, 0}, x), (2.82)

Trivially, the derivative brings us back to the fs, namely:

d

dx
: H({±1, 0}, x) = f({±1, 0}, x). (2.83)

Keeping in mind the structure given by the Dyson Series, we expect to face, at the nth

stpe, or, more properly at weight n, the iterative structure given by:∫ x

0
dt : f(ωn, t)H(~ωn−1, t) → H(~ωn, x), ~ωn = {ωn, ωn−1, . . . , ω1}

= ωn, n−1, ..., 1.

(2.84)

accompanied by:
d

dx
: H(~ωn, x) → f(ωn, x)H(~ωn−1, x). (2.85)

Through standard calculus, we can recognize the recursive relations:

H(~1n, x) =
1

n!
(− log(1− x))n,

H(−~1n, x) =
1

n!
logn(1 + x),

(2.86)

and, for consistency, we impose:

H(~0n, x) =
1

n!
logn(x). (2.87)

We immediately notice that all the HPLs, except from H(~0n, x), vanish in x = 0, due to
the

∫ 0
0 dtf(ωn, t)H(~ωn−1, t) integral.

Shuffle Algebra
Several of the properties fulfilled by HPLs can be proved by the usual integration by parts
(ibp). Let’s consider (H({ω2, ω1}, x) ≡ H(ω2,1, x)):

H(ω2,1, x) =

∫ x

0
dtf(ω2, t)H(ω1, t) = H(ω2, x)H(ω1, x)−

∫ x

0
dtH(ω2, t)f(ω1, t)

= H(ω2, x)H(ω1, x)−H(ω1, 2, x).

(2.88)

The latter reads, after a minor rearrangement:

H(ω1, x)H(ω2, x) = H(ω1, 2, x) +H(ω2, 1, x). (2.89)

Then, starting from (2.89) we can argue that HPLs obey the following relation:

H(ωn, x)H(ωn−1, n−2, ..., 1, x) =H(ωn, n−1, n−2, ..., 1, x)

+H(ωn−1, n, n−2, ..., 1, x)

+ . . .

+H(ωn−1, n−2, ..., 1, n, x).

(2.90)
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In fact, recalling the “standard method” presented in [31], we claim that (2.90) is guaranteed
if and only if it holds in a point x0 and it holds for its derivative, as well. We immediately
notice that (2.90) holds in x0 = 0, because all the HPLs are vanishing (it is sufficient to
avoid the “pathological case” in which ωi = 0 ∀i; in this case (2.90) is equivalent to (2.87)).
So, if we consider the derivative w.r.t. x in (2.90) we obtain:

f(ωn, x)H(ωn−1 n−2 ... 1, x) +H(ωn, x) f(ωn−1, x)H(ωn−2 ... 1, x) =

f(ωn, x)H(ωn−1 n−2 ... 1, x) + · · ·+ f(ωn−1, x)H(ωn n−2 ..., 1, x)+

f(ωn−1, x)H(ωn−2 ..., 1 n, x).

(2.91)

Thus, we notice that the first term in the first row cancels against the first term in the
second row; moreover we can collect and remove an irrelevant f(ωn−1, x) common factor.
Then, we conclude that (2.91) holds, if and only if (2.90) is proven to be true at a lower
weight; but, iterating the procedure, sooner or later, lowering the weight, we land on (2.89),
wich holds by a direct calculation.
Moreover, (2.90) can be generalized to the product of two HPLs with arbitrary weights,
namely H(~ωp, x)H(~ωq, x), with p and q a priori both different form 1. In fact, thanks to
the “standard method”, the so called shuffle relation holds:

H(~ωp, x)H(~ωq, x) =
∑

r=p]q
H(~ωr, x), (2.92)

where ~ωr=p]q represents all merges of ~ωp and ~ωq in which all the relative order of the
elements in ~ωp and ~ωq is preserved.

2.5.2 Multiple variable case, GPLs

Definitions and properties
As promised, we are ready now to introduce a new and a bit more general, class of functions,
namely the Generalized Polylogarithms. In this context, we have x = {x1, . . . xm} variables.
Then, we can factor a generic letter in the alphabet, ηk(x) w.r.t. each variable xi, namely:

ηk(x) =
∏
ik

(xik − ωik), (2.93)

where ωik depends, a priori, on all the others variables.
Then, we define (notice that, again for “historical reasons”, the string of indices is reversed
w.r.t. the previous case):

G(~ωn, xi) =

∫ xi

0
dt

1

t− ω1
G(~ωn−1, t),

G(~0n, xi) =
1

n!
logn(xi),

(2.94)

or, equivalently:
∂

∂xi
G(~ωn, xi) =

1

xi − ω1
G(~ωn−1, xi). (2.95)

Moreover, we can recover the classical polylogarithms:

G(~ωn, xi) =
1

n!
logn(1− xi

ω
), ~ω = {ω, . . . , ω}︸ ︷︷ ︸

n times

, (2.96)
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and the HPLs introduced in the previous subsections:

H(~ωn, xi) = (−1)pG(~ωn, xi), (2.97)

where p is the number of indices equal to +1 contained in ~ω. GPLs fulfill some interesting
properties, often useful, or necessary, also during the calculations, such as the shuffle
algebra, described in the previous section, a sort of “rescale invariance”, namely the fact
that if the rightmost index is different from 0, ωn 6= 0, the G(~ωn, xi) is invariant under the
rescaling of all its arguments by a common factor z ∈ C∗:

G(~ωn, xi) = G(z ~ωn, z x), ωn 6= 0, z ∈ C∗. (2.98)

Besides that, we can mention the Holder convolution [36], [35] considering ω1 6= 1 and
ωn 6= 0, we have:

G({ω1, . . . , ωn}, 1) = (−1)nG({1− ωn, . . . , 1− ω1}, 1). (2.99)

Derivative of GPLs w.r.t. their weights
On top of that, it is important to develop a strategy to compute the derivative of GPL
w.r.t. their weights, or, better:

∂

∂xj
G({ω1, . . . , ωk(xj), . . . , ωn}, xi) ≡

∂G(~ω(xj), xi)

∂xj
, xj 6= xi. (2.100)

The latter can be computed recalling the very definition (2.94); then (2.100) trivially reads:

∂G(~ω(xj), xi)

∂xj
=

∫ xi

0

dt1
t1 − ω1

· · ·
∫ tk−1

0

∂

∂xj

(
dtk

tk − ωk(xj)

)
· · ·
∫ tn−1

0

dtn
tn − ωn

=

=

(
−∂ωk(xj)

∂xj

)∫ xi

0

dt1
t1 − ω1

· · ·
∫ tk−1

0

∂

∂tk

(
dtk

tk − ωk(xj)

)
· · ·
∫ tn−1

0

dtn
tn − ωn

=

=

(
−∂ωk(xj)

∂xj

)∫ xi

0

dt1
t1 − ω1

· · ·
∫ tk−1

0

∂

∂tk

(
dtk

tk − ωk(xj)

)
G(~ωn−k, tk).

(2.101)

Then, we can focus on the integral in dtk in the last line above, and performing the standard
integration by parts (dropping the xj dependence):∫ tk−1

0

∂

∂tk

(
dtk

tk − ωk

)
G(~ωn−k, tk) =

=
1

tk−1 − ωk
G(~ωn−k, tk−1)−

∫ tk−1

0

dtk
tk − ωk

∂G(~ωn−k, tk)

∂tk
=

=
1

tk−1 − ωk
G(~ωn−k, tk−1)−

∫ tk−1

0

dtk
(tk − ωk)(tk − ωk+1)

G(~ωn−k−1, tk).

(2.102)

Moreover, we can rewrite:

1

(tk − ωk)(tk − ωk+1)
=

A

tk − ωk
+

B

tk − ωk+1
, (2.103)

where A,B are found to be:

A = −B =
−1

ωk+1 − ωk
; (2.104)
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thus (2.102) results:∫ tk−1

0

∂

∂tk

(
dtk

tk − ωk(xj)

)
G(~ωn−k, tk) =

=
1

tk−1 − ωk
G(~ωn−k, tk−1)−A

∫ tk−1

0

dtk
tk − ωk

G(~ωn−k−1, tk)+

−B

∫ tk−1

0

dtk
tk − ωk+1

G(~ωn−k−1, tk).

(2.105)

Finally, we can plug the explicit result of the derivative, namely (2.105), in (2.101); again
we have to perform the decomposition:

1

(tk−1 − ωk−1)(tk−1 − ωk)
=

C

tk−1 − ωk−1
+

D

tk−1 − ωk
, (2.106)

where C,D reads:

C = −D =
−1

ωk − ωk−1
. (2.107)

At the end, (2.101) results:

∂G(~ω(xj), xi)

∂xj
=

(
−∂ωk(xj)

∂xj

)
×

×
[(

1

ωk − ωk−1

)(
G({ω1, . . . , /ωk−1, . . . , ωn}, xi)−G({ω1, . . . , /ωk, . . . , ωn}, xi)

)
+

+

(
1

ωk+1 − ωk

)(
G({ω1, . . . , /ωk, . . . , ωn}, xi)−G({ω1, . . . , /ωk+1, . . . , ωn}, xi)

)]
.

(2.108)

The procedure exposed just above, can be extended with a minimal effort to the case in
which there are several weights depending on xj . In the “unlucky” configuration in which
two consecutive weights are equal, (ωk ≡ ωk+1) the infinities appearing in a single derivative
(2.108) turn to cancel out in the sum.

2.6 Boundary Conditions

Once the general solution is determined, independently from the basis of MIs we are work-
ing with, we are left with the problem regarding the fixing of the Boundary Conditions, as
anticipated above. We stress again that we are asked to choose the integration constants in
such a way that the general solutions matches the “physical result”, namely the “original”
values of the integrals. Generally speaking, this means that we have to obtain the value of
the unknown integrals in a certain, preferable, kinematics points8 through an independent
method; then, evaluating our general solutions in those kineamtics limits, we have to adjust
the free constants, in order to reproduce the desired results. Even if obtaining the value
of an integral in a single point is, by far, less demanding than obtaining the full result,
this step of the calculation is particularly tricky and not yet systematized. Among the
various strategy often adopted, we could mention Expansion by Regions or the Large Mass
Expansion. However it turns out that it is possible to infer quantitative informations re-
garding integrals from qualitative ones: for example, we could fix the boundary conditions
in such a way that unphysical or fictitious singularities, are absent from the solution. On

8Boundary conditions for different MIs can be obtained, a priori, working in different kinematics points.
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top of that, a careful inspection of the singularities, detecting physical and unphysical ones
directly in the DEQ, and a subsequent manipulation on the latter, turns to be sufficient.
Again, even if not strictly necessary, expressing the MIs in the canonical basis, makes this
analysis particularly evident. In fact, the presence of a pseudo-threshold as a simple pole
in the DEQ, let’s say (x− x̄0)

−1, suggests that multiplying the latter by a factor (x− x̄0),
and then safely taking the limit x → x̄0 in the expression, we obtain a relation between
MIs in x = x̄0; and this can provide the fixing of BCs.
Moreover we notice that the Magnus exponential could introduce some pseudo-threshold,
let’s say again (x− x̄0), directly in the numerator of the canonical MI. Thus, imposing the
vanishing of that MI in the x → x̄0 limit, we could fix the BCs.
Another possible strategy, suggested in [27], consists in solving the differential equation
for a massive integral in a particular limit, and then exploiting the relation among the
solution just obtained, the one associated to the whole differential equation (i.e.: no par-
ticular limit is assumed) and the value of the corresponding massless integral which is,
generally speaking, much easier to compute and can be considered known. We will apply
this proposal to an explicit example.

2.6.1 Massive BCs from Massless ones

Lets consider the DEQs system formed by:

=

∫
d̃dk

1

(k2 −m2)2
=: T1, (2.109)

and:

p

=

∫
d̃dk

1

(k2 −m2)2((k − p)2 −m2)
=: T2, (2.110)

with:

d̃dk =
ddk

(2π)d
(m2)ε

iΓ(1 + ε)(4π)ε−2
, p2 = s. (2.111)

Then, introducing the Landau variable: − s
m2 = (1−x)2

x , and thanks to the Magnus Expo-
nential (2.4), we identify the canonical basis, namely I = {I1, I2}:

I1 = εT1(ε), I2(s, ε) = ε
√
−s(4m2 − s)T2(s, ε). (2.112)

The DEQs system reads (x variable is assumed):

∂I(x, ε)
∂x

= εA(x)I(x, ε), A(x) =

(
0 0
1
x

1
x

−2
1+x

)
. (2.113)

The system can be solved, up to the Boundary Conditions (BCs), through the Dyson
Series, in terms of GPLs. I1 can be computed by direct integration; using (2.111) it turns
to be:

I1 = 1. (2.114)
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Following [27] we want to determine the BCs from the x → 0, namely m2 → 0, limit of
the DEQs system. In this limit (2.113) reduces to:

∂I(x, ε)
∂x

x→0' 1

x
εMI(x, ε), M =

(
0 0
1 1

)
. (2.115)

First of all we can identify a new basis of MIs, H = {H1,H2}, related to the canonical one
by: H = SI, where S is such that SMS−1 reduces to the Jordan Form, J.9

SMS−1 = J, S =

(
−1 0
1 1

)
, J =

(
0 0
0 1

)
. (2.116)

In this new basis the system reads:

∂H(x, ε)

∂x
= ε

1

x
JH(x, ε). (2.117)

From the latter it follows that, integrating the second DEQ,:

H2 = xεH2,0 ⇔ H2,0 = x−εH2, (2.118)

H2,0 being a constant.
We can now express H2 in terms of the canonical MIs {I1, I2}, through the relation H = SI,
and (2.118) becomes:

H2,0 = lim
x→0

x−ε(I1(ε) + I2(x, ε)); (2.119)

in the latter expression only the BCs of I2 are unknown.
The r.h.s in (2.119) can be also seen as a function of m2, in the limit m2 → 0. In fact we can
pull out the factor (m2)ε form the integral measure10 (2.111) and, inverting − s

m2 = (1−x)2

x ,
we can re-write x

m2 as a Series Expansion in m2; in the m2 → 0 limit the latter reads:

x

m2

m2→0
= −1

s
⇒
( x

m2

)−ε m2→0
=

(
−1

s

)−ε

= (−s)ε . (2.120)

We can now re-express {I1, I2} in terms of {T1, T2}, and then take the limit m2 → 0 at the
integrand level and in the prefactor. So we have:

H2,0 = (−s)ε (I1 + I2)m2→0 = (−s)ε
(
εT1 +

√
−s(4m2 − s)εT2

)
m2→0

=

= (−s)1+ε(εT2)m2→0;
(2.121)

where in the last equality we use the fact that the massless dotted Tadpole, namely
(T1)m2→0, is vanishing in Dimensional Regularization.
Now we can compute (εT2)m2→0 by direct integration:

(εT2)m2→0 = (−s)−1−εF(ε), (2.122)

with:

F(ε) =
Γ2(1− ε)

Γ(1− 2ε)
. (2.123)

So it results:

H2,0 =
Γ2(1− ε)

Γ(1− 2ε)
. (2.124)

9In this case S ≡ S−1.
10After this, the integration measure is m-independent.
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Imposing the equality of (2.124) and (2.119) order by order in ε we can determine the BCs
for I2. Denoting the latter by I2,0 =

∑3
i=0 ε

iI
(i)
2,0, we find:

I
(0)
2,0 = 0,

I
(1)
2,0 = 0,

I
(2)
2,0 = −π2

6
,

I
(3)
2,0 = PolyGamma[2, 1] = −2ζ3

11

(2.125)

The latter expressions are in fully agreement with the ones obtained through other stan-
dard methods, e.g.: Feynman Parametrization.

2.6.2 Massless BCs from Massive Ones

Furthermore we would like to mention the possibility to infer the BCs for Massless Integrals
from Massive ones. This strategy is inspired by [87], where the Autors present a general
method to solve numerically a DEQs system; roughly speaking it consists in introducing a
common fictitious mass η to the whole set of MIs, determining the BCs in the limit η → ∞,
and finally reading the original value for the set of MIs at η = 0. The key point is that all
the MIs in the η → ∞ reduce to Tadpoles, which are much more easy to determine.
Let’s consider G(m2, ε) = {G1(m

2, ε), G2(m
2, ε)}, where

G1(m
2, ε) = εT1(m2, ε), G2(m

2, ε) =
√
−s
√

4m2 − s εT2(m2, ε), (2.126)

where {T1(m2, ε), T2(m2, ε)} are defined in (2.109) and (2.110) respectively, but assuming
the Integral Measure:

d̃dk =
ddk

(2π)d
(−s)ε

iΓ(1 + ε)(4π)ε−2
. (2.127)

Then, they fulfill a DEQs system in the adimensional variable v, with: v
(1−v)2

= −m2

s

(inherited from the one in m2) wich reads:

∂G(v, ε)

∂v
= εA(v)G(v, ε), A(v) =

( 2
v−1 − 1

v 0
1
v

2
v−1 − 2

v+1

)
. (2.128)

The general solution for (2.128) can be obtained in terms of GPLs. Moreover, G1(v, ε) can
be obtained by direct integration, namely (taking into account (2.127)):

G1(v, ε) =

(
(1− v)2

v

)ε

, (2.129)

thus only the BCs for G2(v, ε) are unknown in (2.128).
We can consider the v → 0 limit in (2.128) i.e.:

∂G(v, ε)

∂v

v→0' ε

v
MG(v, ε), M =

(
−1 0
1 0

)
. (2.130)

Following the discussion in the previous Subsection, we identify a new basis of MIs H(v, ε),
H(v, ε) = SG(v, ε), where S is such that: SMS−1 reduces to the Jordan form J. We have:

SMS−1 = J, S =

(
−1 0
1 1

)
, J =

(
−1 0
0 0

)
. (2.131)

11Mathematica: N[PolyGamma[2, 1]]=N[-2*Zeta[3]].
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In this new basis the system reads:

∂H(v, ε)

∂v
=

ε

v
JH(v, ε), (2.132)

thus we find:
H2(v, ε ≡ H2,0(ε). (2.133)

Then, we can express the r.h.s. in terms of {G1(v, ε), G2(v, ε)}:

H2,0(ε) = lim
v→0

G1(v, ε) +G2(v, ε) (2.134)

The r.h.s. can be seen as a function of (−s,m2) in the limit m2 → 0, namely:

H2,0(ε) = lim
m2→0

(
εT1(m2, ε) +

√
−s
√

4m2 − s εT2(m2, ε)
)
= (−s) (εT2)m2→0 , (2.135)

where in the last equality we use the fact that the massless dotted Tadpole is vanishing in
Dimensional Regularization. An explicit calculations leads to:

H2,0(ε) =
Γ2(1− ε)

Γ(1− 2ε)
, (2.136)

and thus (2.134) could be used to fix the BCs for G2(v, ε), as well as we did in the previous
Subsection.
On the other hnad, we can look at (2.134) considering the r.h.s completely known: e.g. the
BCs for G2(v, ε) con be computed requiring that G2(v, ε) → 0 in the v → 1 limit (the latter
corresponds to the s → 0 limit, in which T2 is regular while the prefactor

√
−s

√
4m2 − s is

vanishing). Thus, H2,0(ε) in (2.134) as well as in (2.135) can be considered known; finally
we can use (2.135) to infer the (Boundary) value of (−s) (εT2)m2→0. We consistently find:

(−s) (εT2)m2→0 = 1− ε2
π2

6
+O(ε3), (2.137)

in agreement with the Series Expansion of (2.136).

2.7 One-loop massless 4-point topology

Integral Family

We consider in this section the 1-loop massless 4-point function; we assume all the external
momenta incoming and massless, namely:

pµ1 + pµ2 + pµ3 + pµ4 = 0, p2i = 0, ∀i = 1, . . . , 4. (2.138)

Moreover we can define the Mandelstam invariants as:

(p1 + p2)
2 = s, (p1 + p3)

2 = t, (p1 + p4)
2 = u, (2.139)

related by the usual constraint:
s+ t+ u = 0. (2.140)

The denominators read:

D1 = (k − p1)
2, D2 = k2, D3 = (k + p2)

2, D4 = (k + p2 + p4)
2. (2.141)
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and the integral family is:

B(1,3) =

p 1

p 2

p 3

p 4

k =

∫
d̃dk

1

Da1
1 Da2

2 Da3
3 Da4

4

, (2.142)

where the definition of d̃dk is:

d̃dk =
ddk

(2π)d
Γ(1− 2ε)

Γ2(1− ε)Γ(1 + ε)
(2.143)

Magnus Exponential and Canonical Form

Thanks to Reduze 2, we identify three MIs, T = {T1, T2, T3}, which fulfill a DEQs system
in (s, t) linear in ε:

T1(t, ε) = , T2(s, ε) = , T3(s, t, ε) = (2.144)

The DEQs systems read:

∂T (s, t, ε)

∂s
=

 0 0 0
0 − ε+1

s 0
2

s(s+t) − 2
s(s+t) − s+εt+t

s(s+t)

 T (s, t, ε), (2.145a)

∂T (s, t, ε)

∂t
=

 − ε+1
t 0 0
0 0 0

− 2
t(s+t)

2
t(s+t) − εs+s+t

t(s+t)

 T (s, t, ε). (2.145b)

A change of variables which greatly simplifies the problem is:

s = s, t = sz. (2.146)

In fact, thanks to the chain rule, we can write:

∂T (s, z, ε)

∂s
≡ ∂T (s, t = sz, ε)

∂s
=

[
∂T
∂s

+
∂T
∂t

z

]
(s, z, ε), (2.147)

and plugging in the latter (2.145a) and (2.145b) we have:

∂T (s, z, ε)

∂s
=

− ε+1
s 0 0
0 − ε+1

s 0
0 0 − ε+2

s

 T (s, z, ε); (2.148)

Similarly we have:

∂T (s, z, ε)

∂z
=

∂T (s, t = sz, ε)

∂z
=

∂T (s, z, ε)

∂t
z; (2.149)

finally, thanks to (2.145b) the latter reads:

∂T (s, z, ε)

∂z
=

 − ε+1
z 0 0
0 0 0

− 2
sz(z+1)

2
sz(z+1) − ε+z+1

z(z+1)

 T (s, z, ε). (2.150)
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We immediately notice that the DEQs system in s, (2.148), is absolutely trivial: solving
just three decoupled homogeneous DEQs we completely determine the s-dependent part of
the MIs. Moreover, we can recast T , as:

T (s, z, ε) = S(s)F̃(z, ε), (2.151)

with:

S(s) =

(−s)−ε−1 0 0
0 (−s)−ε−1 0
0 0 (−s)−ε−2

 , (2.152)

being F̃(z, ε) the unknown (part of the) MIs; the DEQs system for F̃(z, ε) trivially reads:

∂F̃(z, ε)

∂z
= S−1(s)

 − ε+1
z 0 0
0 0 0

− 2
sz(z+1)

2
sz(z+1) − ε+z+1

z(z+1)

S(s) F̃(z, ε)

=

− ε+1
z 0 0
0 0 0
2

z(z+1) − 2
z(z+1) − ε+z+1

z(z+1)

 F̃(z, ε).

(2.153)

We can now go on, trying to remove the ε-poles from the various MIs, i.e.: looking for a
Taylor expansion in ε, rather than a Laurent Series. It’s well known that F̃1,2 have simple
poles in ε, and so we introduce two new MIs which are free from ε poles:

Fi(z, ε) = εF̃i(z, ε), i = 1, 2. (2.154)

Moreover, in order to facilitate the convergence of the Magnus Series, it is desirable to
have as many entries as possible in the system proportional to ε . Thus, we consider:

F3(z, ε) = ε2F̃3(z, ε); (2.155)

So, the DEQs system we are interested in, is:

∂F(z, ε)

∂z
= A(z, ε)F(z, ε), F(z, ε) = Diag(ε, ε, ε2)F̃(z); (2.156)

with:

A(z, ε) =

− ε+1
z 0 0
0 0 0
2ε

z(z+1) − 2ε
z(z+1) − ε+z+1

z(z+1)

 . (2.157)

Thus, in order to recast the DEQs system in the Canonical Form, we apply the algorithm
based on the Magnus Exponential, described in (2.4). In virtue of that, we split A(x, ε) as:

A(z, ε) = A0(z) + εA1(z), (2.158)

with:

A0(z) =

−1
z 0 0
0 0 0
0 0 −1

z

 (2.159a)

A1(z) =

 −1
z 0 0
0 0 0

2
z − 2

z+1
2

z+1 − 2
z

1
z+1 − 1

z

 . (2.159b)
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We notice that, in this simple example, the DEQ which should be solved thanks to the
Magnus Exponential is:

∂B(z)
∂z

= A0(z)B(z). (2.160)

But, thanks to the remarkable Diagonal Structure, the Series involved in the Magnus
Exponential which has A0(x) as a kernel, consists in the very first term, since a Diagonal
Matrix always commutes with its integral, thus:

B(z) = e
∫ z dt A0(t) = diag

(
1

z
, 1,

1

z

)
. (2.161)

As stated in (2.4), the canonical MIs, namely I(z, ε), are related to the previous ones by
the relation:

F(z, ε) = B(z) I(z, ε). (2.162)

Then, the DEQs system for the Canonical MIs reads:

∂I(z, ε)

∂z
= εAc(z)I(z, ε), Ac(z) = B−1(z)A1(z)B(z), (2.163a)

Ac(z) =

 −1
z 0 0
0 0 0

2
z − 2

z+1 − 2
z+1

1
z+1 − 1

z

 . (2.163b)

General Solution

Then, the General Solution can be written in terms of Iterated Integrals and, more precisely,
it involves just HPLs (2.5.1). Let’s consider the General Solution in the form of:

I(z, ε) =
(

1 + εB(1)(z) + ε2B(2)(z) + ε3B(3)(z) +O(ε4)
)
I(ε). (2.164)

The entries of B(1) reads:

B(1)
11 = −H[{0}, z], B(1)

12 = B(1)
13 = 0;

B(1)
21 = B(1)

22 = B(1)
23 = 0;

B(1)
31 = −2H[{−1}, z] + 2H[{0}, z], B(1)

32 = −2H[{−1}, z],

B(1)
33 = H[{−1}, z]−H[{0}, z].

(2.165)

The entries of B(2) are:

B(2)
11 = H[{0, 0}, z], B(2)

12 = B(2)
13 ) = 0;

B(2)
21 = B(2)

22 = B(2)
23 = 0;

B(2)
31 = −2H[{−1,−1}, z] + 4H[{−1, 0}, z] + 2H[{0,−1}, z]− 4H[{0, 0}, z],

B(2)
32 = −2H[{−1,−1}, z] + 2H[{0,−1}, z],

B(2)
33 = H[{−1,−1}, z]−H[{−1, 0}, z]−H[{0,−1}, z] +H[{0, 0}, z].

(2.166)
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Finally the entries of B(3) read:

B(3)
11 =−H[{0, 0, 0}, z], B(3)

12 = B(3)
13 = 0;

B(3)
21 =B(3)

22 = B(3)
23 = 0;

B(3)
31 =− 2H[{−1,−1,−1}, z] + 4H[{−1,−1, 0}, z] + 2H[{−1, 0,−1}, z]+

− 6H[{−1, 0, 0}, z] + 2H[{0,−1,−1}, z]− 4H[{0,−1, 0}, z]+
− 2H[{0, 0,−1}, z] + 6H[{0, 0, 0}, z],

B(3)
32 =− 2H[{−1,−1,−1}, z] + 2H[{−1, 0,−1}, z] + 2H[{0,−1,−1}, z]+

− 2H[{0, 0,−1}, z],

B(3)
33 =H[{−1,−1,−1}, z]−H[{−1,−1, 0}, z]−H[{−1, 0,−1}, z]+

+H[{−1, 0, 0}, z]−H[{0,−1,−1}, z] +H[{0,−1, 0}, z]+
+H[{0, 0,−1}, z]−H[{0, 0, 0}, z]

(2.167)

Boundary conditios

We notice that I1 (and I2) can be obtained in a closed form, by direct integration, with a
minimal effort, see e.g. [42]. Thus, their expansion in terms of HPLs is not necessary. So
the only unknown for this problem can be considered I3.
A careful inspection shows that this MI is regular in te z → −1 limit, since planar integrals
are known to be regular in the u → 0 ⇔ z → −1 limit. Thus, multiplying the DEQ for the
3rd MI by a factor (z+1) and considering the z → −1 limit, we obtain a relation between
the three MIs at z = −1 (which holds order by order in ε), namely:

I3(−1) = 2I1(−1) + 2I2(−1). (2.168)

Thanks to the analytic expression for I2,3 mentioned just above and (2.143), then the latter
equality gives:

I1(−1) = 1− iπε− π2ε2

2
+

iπ3ε3

6
+O

(
ε4
)
, I2(−1) = 1. (2.169)

Being all the MIs known at z = −1 we can fix the BCs order by order in ε in the General
Solution in order to match (2.169). Doing so, we obtain:

I3(z, ε) =

3∑
i=0

εiI
(i)
3 (z) +O(ε4), (2.170)

with:

I
(0)
3 (z) =4,

I
(1)
3 (z) =− 2H[{0}, z],

I
(2)
3 (z) =− π2,

I
(3)
3 (z) =− 2(H[{0, 0,−1}, z] + ζ(3)) +

1

3
H[{0}, z]3+

+
(
2H[{0,−1}, z] + π2

)
H[{0}, z]−H[{−1}, z]

(
H[{0}, z]2 + π2

)
.

(2.171)
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2.8 One-loop QED 4-point topology µe scattering

In this Section we discuss the calculation of the MIs needed the one-loop four-point function
for the µe → µe scattering, as presented in [27].
Currently the study of QED corrections to µe → µe, and in particular the NNLO QED
corrections which goes beyond the scope of this work [27], [28] , are crucial in order to
interpret the high-precision data of future experiments like MUonE, recently proposed at
CERN, dedicated to the study of the differential cross section of high energy muons on
atomic electrons as a function of the spacelike squared momentum transfer [67], [68]. These
measurements will lead to the knowledge of the running of the electromagnetic coupling
in the spacelike region , allowing a new and independent determination of the hadronic
contributions to g-2. The success of the program requires to measure the differential cross
section with statistical and systematic uncertainties of the order 10 ppm, and thus the
same accuracy is required in the theoretical predictions.
Moreover, these higher order QED corrections could be useful for the crossing related
process: e+e− → µ+µ−, which is planned to be studied at low energy e+e− experiments,
like Belle-II and VEPP-2000.

Integral Family

The process we are considering is:

µ+(p1) + e−(p2) → e−(p3) + µ+(p4), (2.172)

where, due to momentum conservation, p1 + p2 = p3 + p4; in particular we focus on the
Feynman Diagram:

where thick lines represent muons.
We define the Mandelstam invariants as:

s = (p1 + p2)
2, t = (p2 − p3)

2, u = (p1 − p3)
2. (2.173)

The previous variables are related by the well-known relation s + t + u = 2m2, where
we assumed the electron massless. Thanks to this assumption, the denominators can be
written as:

D1 = (k2 −m2), D2 = (k + p1)
2, D3 = (k + p1 + p2)

2, D4 = (k + p4)
2, (2.174)

and the Integral Family which we are referring to, reads:

B(1,3)
µe = =

∫
d̃dk

1

Dr1
1 Dr2

2 Dr3
3 Dr4

4

ri ≥ 0; (2.175)

where we have introduced, for later convenience12

d̃dk =
ddk

(2π)d

(
iSε

16π2

)−1(m2

µ2

)ε

, Sε = (4π)εΓ(1 + ε). (2.176)
12Being µ the ’t Hooft parameter.
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Magnus Exponential and Canonical Form

We identify the following set of MIs, which obeys a coupled system of Differential Equations
linear in ε, in the variables s and t:

F1(ε) = εT1(ε), F2(s, ε) = εT2(s, ε), F3(t, ε) = εT3(t, ε),
F4(t, ε) = ε2T4(t, ε), F5(s, t, ε) = ε2T5(s, t, ε),

(2.177)

where:

T1(ε) = , T2(s, ε) = , T3(t, ε) = ,

T4(t, ε) = , T5(s, t, ε) =

(2.178)

Thanks to the Magnus Exponential we can rotate away the ε-independent part, and
recast the system of Differential Equation in the Canonical Form. The new set of MIs are
related to the previous one by the following relations:

I1(ε) = F1(ε), I2(s, ε) = −sF2(s, ε), I3(t, ε) = −tF3(t, ε),

I4(t, ε) =
√
−t
√

4m2 − tF4(t, ε), I5(s, t, ε) = −t(m2 − s)F5(s, t, ε).
(2.179)

Finally we introduce a couple of adimensional variables, namely x and y, related to s and
t by:

− s

m2
= x, − t

m2
=

(1− y)2

y
. (2.180)

So the unknown vector of MIs I = {Ii}i=1,...,5 satisfies the following Differential Equations:

∂I(x, y, ε)
∂x

= εAx(x, y)I(x, y, ε),
∂I(x, y, ε)

∂y
= εAy(x, y)I(x, y, ε); (2.181)

the matrices Ax and Ay are presented below:

Ax(x, y) =


0 0 0 0 0

− 1
x+1

1
x
− 2

x+1
0 0 0

0 0 0 0 0
0 0 0 0 0

− y
xy+1

+ 2
x+1

− 1
x+y

2
(

2
x+1

− 1
x

)
+2

(
1
x
− y

xy+1

)
− 2

x+y
− y

xy+1
− 1

x+y
y

xy+1
− 1

x+y
y

xy+1
− 2

x+1
+ 1

x+y

 ,

(2.182a)

Ay(x, y) =


0 0 0 0 0
0 0 0 0 0
0 0 1

y
− 2

y−1
0 0

1
y

0 − 1
y

2
y+1

− 2
y−1

0

− x
xy+1

+ 1
y
− 1

x+y
− 2x

xy+1
+ 2

y
− 2

x+y
− x

xy+1
+ 2

y−1
− 1

x+y
x

xy+1
− 1

x+y
x

xy+1
− 2

y−1
+ 1

x+y

 .

(2.182b)

General Solution

Along the lines presented in (2.3), the general solutions for the various MIs, up to order ε2

read:
I(x, y, ε) =

(
1 + εB(1)(x, y) + εB(2)(x, y)

)
I0(ε), (2.183)
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where the entries of B(1) read:

B(1)
11 = B(1)

12 = B(1)
13 = B(1)

14 = B(1)
15 = 0;

B(1)
21 = −G[{−1}, x], B(1)

22 = −2G[{−1}, x] +G[{0}, x], B(1)
23 = B(1)

24 = B(1)
25 = 0;

B(1)
33 = G[{0}, y]− 2G[{1}, y], B(1)

31 = B(1)
32 = B(1)

34 = B(1)
35 = 0;

B(1)
41 = G[{0}, y], B(1)

43 = −G[{0}, y], B(1)
44 = 2G[{−1}, y]− 2G[{1}, y], B(1)

42 = B(1)
45 = 0;

B(1)
51 = 2G[{−1}, x]−G[{−(1/y)}, x]−G[{−y}, x],

B(1)
52 = 4G[{−1}, x]− 2G[{−(1/y)}, x]− 2G[{−y}, x],

B(1)
53 = −G[{0}, y] + 2G[{1}, y]−G[{−(1/y)}, x]−G[{−y}, x],

B(1)
54 = −G[{0}, y] +G[{−(1/y)}, x]−G[{−y}, x],

B(1)
55 = −2G[{−1}, x] +G[{0}, y]− 2G[{1}, y] +G[{−(1/y)}, x] +G[{−y}, x].

(2.184)
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and the ones for B(2) are:

B(2)
11 = B(2)

12 = B(2)
13 = B(2)

14 = B(2)
15 = 0;

B(2)
21 = 2G[{−1,−1}, x]−G[{0,−1}, x],

B(2)
22 = 4G[{−1,−1}, x]− 2G[{−1, 0}, x]− 2G[{0,−1}, x] +G[{0, 0}, x],

B(2)
23 = B(2)

24 = B(2)
25 = 0;

B(2)
33 = G[{0, 0}, y]− 2G[{0, 1}, y]− 2G[{1, 0}, y] + 4G[{1, 1}, y],

B(2)
31 = B(2)

32 = B(2)
34 = B(2)

35 = 0;

B(2)
41 = 2G[{−1, 0}, y]− 2G[{1, 0}, y],

B(2)
43 = −2G[{−1, 0}, y]−G[{0, 0}, y] + 2G[{0, 1}, y] + 2G[{1, 0}, y],

B(2)
44 = 4G[{−1,−1}, y]− 4G[{−1, 1}, y]− 4G[{1,−1}, y] + 4G[{1, 1}, y],

B(2)
42 = B(2)

45 = 0;

B(2)
51 = G[{0}, y]G[{−(1/y)}, x]−G[{0}, y]G[{−y}, x]− 8G[{−1,−1}, x]+

2G[{−1,−(1/y)}, x] + 2G[{−1,−y}, x]−G[{0, 0}, y] + 4G[{−(1/y),−1}, x]+
−G[{−(1/y),−(1/y)}, x]−G[{−(1/y),−y}, x] + 4G[{−y,−1}, x]−G[{−y,−(1/y)}, x]+
−G[{−y,−y}, x],

B(2)
52 = −16G[{−1,−1}, x] + 4G[{−1, 0}, x] + 4G[{−1,−(1/y)}, x] + 4G[{−1,−y}, x]+

8G[{−(1/y),−1}, x]− 2G[{−(1/y), 0}, x]− 2G[{−(1/y),−(1/y)}, x]− 2G[{−(1/y),−y}, x]
+ 8G[{−y,−1}, x]− 2G[{−y, 0}, x]− 2G[{−y,−(1/y)}, x]− 2G[{−y,−y}, x],

B(2)
53 = 2G[{−1}, x]G[{0}, y]− 4G[{−1}, x]G[{1}, y]− 3G[{0}, y]G[{−(1/y)}, x] + 4G[{1}, y]G[{−(1/y)}, x]+

−G[{0}, y]G[{−y}, x] + 4G[{1}, y]G[{−y}, x] + 2G[{−1,−(1/y)}, x] + 2G[{−1,−y}, x]+
−G[{0, 0}, y] + 4G[{0, 1}, y] + 4G[{1, 0}, y]− 8G[{1, 1}, y]−G[{−(1/y),−(1/y)}, x]+
−G[{−(1/y),−y}, x]−G[{−y,−(1/y)}, x]−G[{−y,−y}, x],

B(2)
53 = 2G[{−1}, x]G[{0}, y] + 2G[{−1}, y]G[{−(1/y)}, x]−G[{0}, y]G[{−(1/y)}, x]+

− 2G[{1}, y]G[{−(1/y)}, x]− 2G[{−1}, y]G[{−y}, x]−G[{0}, y]G[{−y}, x]+
2G[{1}, y]G[{−y}, x]− 2G[{−1,−(1/y)}, x] + 2G[{−1,−y}, x]− 2G[{0,−1}, y]+
−G[{0, 0}, y] + 2G[{0, 1}, y] + 2G[{1, 0}, y] +G[{−(1/y),−(1/y)}, x]+
−G[{−(1/y),−y}, x] +G[{−y,−(1/y)}, x]−G[{−y,−y}, x].

(2.185)

Boundary Conditions

We are left with the problem regarding the fixing of the Boundary Conditions. Let us
notice that, thanks to the normalization chosen in (1.9), I1 is totally trivialized:

I1 ≡ 1. (2.186)

Moreover, I3(y, ε) can be computed through the standard Feynman parametrization with
a minimal effort, obtaining (taking into account (2.176):

I3(y, ε) =

(
(1− y)2

y

)−ε (
1− ε2ζ2 +O(ε3

)
; (2.187)
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and so the BCs are, simply, given by the second factor in the latter. On the contrary the
remaining MIs requires a careful examination.
We notice that T2(s, ε) is regular in the s → 0, i.e. x → 0 limit; then recalling (2.177) and
(2.179), we have:

I2(s, ε) = ε(−s)T2(s, ε), (2.188)

and so we immediately argue that I2(s, ε) vanishes in the s → 0 ⇔ x → 0 limit, thanks
to the prefator (−s) and the regular behaviour of T2(s, ε) in this limit. We immediately
stress that the latter condition holds order by order in ε, and so the Boundary Conditions
for I2(x, ε), namely I0,2(ε) read:

I0,2 =

2∑
i=0

εiI
(i)
0,2,

I
(0)
0,2 = I

(1)
0,2 = I

(2)
0,2 = 0.

(2.189)

We can focus now on the 4th MI. T4(t, ε) turns to be regulat at t → 4m2 (i.e.: y → −1),
and so the corresponding MI, namely I4(t, ε) is vanishing in this limit due to the prefactor√
4m2 − t in the numerator; therefore we have:

lim
y→−1

I4(y, ε) = 0, (2.190)

and the latter information, which holds order by order in ε, is sufficient in order to fix the
BCs. We obtain:

I0,4 =
2∑

i=0

εiI
(i)
0,4,

I
(0)
0,4 = I

(1)
0,4 = 0,

I
(2)
0,4 = G[{0, 0},−1]− 2G[{0, 1},−1];

(2.191)

I5 turns to be finite in the s = −t → 4m2 limit; we notice that the latter condition is
equivalent to x = −y → −1

2 . Thus let’s consider the DEQ w.r.t. x for I5, multiply the
latter by a factor (x + y) and then consider the limit x = −y → −1

2 . Being all the MIs
regular in this limit, as well as ∂xI5, we select a linear combination of MIs involving I5,
evaluated in (x, y) = (−1

2 ,
1
2), which was exactly the one proportional to 1

(x+y) in the
canonical DEQ, namely:

0 = −I1 − 2I2 − I3 − I4 + I5. (2.192)

We stress again that this relation holds oreder by order in ε, and fully determine the BCs
for I5, which are, at this level, the only unknowns we are left with. We find:

I0,5 =

2∑
i=0

εiI
(i)
0,5, I

(0)
0,5 = 2, I

(1)
0,5 = 0,

I
(2)
0,5 =

1

6

(
−π2 + 12G[{−1},−(1/2)]G[{0}, 1/2]+

− 24G[{−1},−(1/2)]G[{1}, 1/2] + 24G[{−1,−1},−(1/2)]+

− 12G[{0,−1},−(1/2)] + 6G[{0, 0},−1]− 12G[{0, 1},−1]+

−12G[{1, 0}, 1/2] + 24G[{1, 1}, 1/2]) .

(2.193)
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Final Result and GPLs manipulations

Finally, taking into accout the matrices (2.184) and (2.185), and the MIs directly computed,
namely (2.186), (2.187), and the ones explicitly worked out in (2.189), (2.191) and (2.193),
then (2.183) gives all the MIs; the final expressions are:

I
(k)
i (x, y, ε) = εk

2∑
k=0

I
(k)
i (x, y) +O(ε3), i = 2, 4, 5; (2.194)

with:

I
(0)
2 = 0,

I
(1)
2 (x) = −G[{−1}, x],

I
(2)
2 (x) = 2G[{−1,−1}, x]−G[{0,−1}, x]

(2.195)

I
(0)
4 = 0,

I
(1)
4 (y) = 0,

I
(2)
4 (y) = G[{0, 0},−1]− 2G[{0, 1},−1]−G[{0, 0}, y] + 2G[{0, 1}, y];

(2.196)

I
(0)
5 = 2,

I
(1)
5 (x, y) =− 2G[{−1}, x] +G[{0}, y]− 2G[{1}, y],

I
(2)
5 (x, y) =− 2G[{−1}, x]G[{0}, y] + 4G[{−1}, x]G[{1}, y]+

1

6
(−π2 + 12G[{−1},−(1/2)]G[{0}, 1/2]− 24G[{−1},−(1/2)]G[{1}, 1/2]+

24G[{−1,−1},−(1/2)]− 12G[{0,−1},−(1/2)]+

6G[{0, 0},−1]− 12G[{0, 1},−1]− 12G[{1, 0}, 1/2] + 24G[{1, 1}, 1/2]).
(2.197)

As an exercise we could recast (2.196) and (2.197) in a much more compact form in
particular as concerns the constants, thanks to GPLs properties described in (2.5.2). In
fact, thanks to Shuffle Algebra, namely (2.92) we have:

G[{0, 0},−1] =
1

2
(G[{0},−1])2 =

1

2
log2(−1) = −π2

2
. (2.198)

Moreover, by the very definition, we have:

G[{0, 1},−1] = −H[{0, 1},−1] = −Li2(−1) =
π2

12
, (2.199)

where in the first equality we used (2.97); so we have

I
(2)
4 (y) = G[{0, 0},−1]− 2G[{0, 1},−1]−G[{0, 0}, y] + 2G[{0, 1}, y] =

= −2π2

3
−G[{0, 0}, y] + 2G[{0, 1}, y] =

= −4ζ2 −G[{0, 0}, y] + 2G[{0, 1}, y],

(2.200)
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in perfect agreement with [27].
Unfortunately I

(2)
5 (x, y, ε) is more tedious. Let’s consider the constant term in I

(2)
5 (x, y, ε),

namely:

K
I
(2)
5

=
1

6
(−π2 + 12G[{−1},−(1/2)]G[{0}, 1/2]− 24G[{−1},−(1/2)]G[{1}, 1/2]+

+ 24G[{−1,−1},−(1/2)]− 12G[{0,−1},−(1/2)]+

+ 6G[{0, 0},−1]− 12G[{0, 1},−1]− 12G[{1, 0}, 1/2] + 24G[{1, 1}, 1/2]);
(2.201)

now, thanks to the Scaling Property (2.98), and assuming we have:

G[{−1},−(1/2)] = G[{1}, 1/2],
G[{−1,−1},−(1/2)] = G[{1, 1}, 1/2],
G[{0,−1},−1/2] = G[{0, 1}, 1/2].

(2.202)

Thus, we can rewrite (2.201) as:

K
I
(2)
5

=− π2

6
+ 2G[{0}, 1/2]G[{1}, 1/2]− 4G[{1}, 1/2]2 +G[{0, 0},−1]+

− 2G[{0, 1},−1]− 2G[{0, 1}, 1/2]− 2G[{1, 0}, 1/2] + 8G[{1, 1}, 1/2];
(2.203)

now, we can re-use the Shuffle Relation, namely (2.92):

G[{0}, 1/2]G[{1}, 1/2] = G[{0, 1}, 1/2] +G[{1, 0}, 1/2],
(G[{1}, 1/2])2 = 2G[{1, 1}, 1/2],

(2.204)

which leads to:

K
I
(2)
5

= −π2

6
+G[{0, 0},−1]− 2G[{0, 1},−1]. (2.205)

Finally, thanks to (2.198) and (2.199) we have:

K
I
(2)
5

= −5π2

6
= −5ζ2. (2.206)

Thus, we obtain:

I
(2)
5 (x, y) = −5ζ2 +−2G[{−1}, x]G[{0}, y] + 4G[{−1}, x]G[{1}, y], (2.207)

which is in fully agreement with [27].

2.9 Two-loop non planar Vertex

We consider here a 3-point 2-loop non planar Integral Family. The MIs considered here
are a subset of those, currently unknown, needed for the 2-loops non planar box Feynman
Diagram:
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which contribute to the QCD corrections to the tt̄ production at hadron colliders (thick
lines represent top quarks, thin lines lighter quarks). The complete 2-loops QCD correc-
tions to pp → tt̄ are, in fact, known only numerically [75]-[79].
The analytic evaluation of the MIs concerning the leading-colour corrections to pp → tt̄,
due to planar diagrams only, were considered in [80]-[83]. The set of available functions for
considering also sub-leading color contributions were extended in [27] [28]. The analytic
calculations for the planar double box, with a closed top loop was presented in [84]; more-
over another non planar 3-point subgraph for the non planar double box with a closed top
loop, was published in [85]

Integral Family

Let’s consider the set of denominaotrs:

D1 = k21, D2 = k22 −m2, D3 = (k2 − p3)
2, D4 = (k1 − p3 − p4)

2,

D5 = (k1 − k2)
2 −m2, D6 = (k1 − k2 − p4)

2, D7 = (k2 + p4)
2.

(2.208)

We assume:

p2 = s = (p3 + p4)
2 (2.209)

being p the incoming momentum, and p3,4 the outgoing ones; furthermore we have:

p23 = p24 = m2. (2.210)

Then, the Integral Family reads:

T (2,2) =
p

=

∫
d̃dk1d̃dk2

D−s1
7

Dr1
1 Dr2

2 Dr3
3 Dr4

4 Dr5
5 Dr6

6

. (2.211)
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MIs linear in ε

Thanks to Reduze2, we identify a basis of MIs, F(s, ε) = {Fi(s, ε)}i=1,...,16 which fulfills a
DEQs system w.r.t. s, linear ε:

F1(s, ε) = ε2 , F2(s, ε) = ε2 , F3(s, ε) = ε2 ,

F4(s, ε) = ε2 , F5(s, ε) = ε2 , F6(s, ε) = ε2 ,

F7(s, ε) = (−1 + 2ε)ε2 , F8(s, ε) = ε3 , F9(s, ε) = ε2 ,

F10(s, ε) = ε2 , F11(s, ε) = ε2 , F12(s, ε) = ε3 ,

F13(s, ε) = ε2 , F14(s, ε) = ε4 , F15(s, ε) = (1 + 2ε)ε2 ,

F16(s, ε) = ε4 .

(2.212)

We point out that the overall factor ε2 in (2.212) is required in order to have a basis of MIs
free from ε poles. In particular, a common factor to the whole set of MIs does not modify
at all the DEQs system and so the residual factors, depending on ε, are the source of the
linear dependence on ε, as well as the choice of squared denominators in the basis of MIs.

Magnus Exponential

The DEQs sysetm for the basis F(s, ε) reads:

∂F(s, ε)

∂s
= (A0(s) + εA1(s))F(s, ε). (2.213)

The matrices A0(s) and A1(s) are presented in Appendix A. In order to obtain an ε-
factorized form, following (2.4), we proceed in two steps. As a first step we split the
matrix A0(s) as:

A0(s) = D0(s) + N0(s), (2.214)

where D0(s) is the diagonal part of A0(s). Then we switch to a new basis of MIs, F(s, ε) =
B1(s)F

[2](s, ε):

∂F[2](s, ε)

∂s
= B−1

1 (s)

(
−∂B1(s)

∂s
+ D0(s)B1(s) + N0(s)B1(s) + εA1(s)B1(s)

)
F[2](s, ε).

(2.215)
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We impose that B1(s) is such that:

∂B1(s)

∂s
= D0(s)B1(s), B1(s) = e

∫
dsD0(s). (2.216)

We stress that the latter can be trivially solved, being D0(s) a diagonal matrix ; therefore
resulting matrix B1(s) is diagonal as well. The matrix B1(s) is presented in Appendix A.
Then, (2.215) results:

∂F[2](s, ε)

∂s
= B−1

1 (s) (N0(s) + εA1(s))B1(s)︸ ︷︷ ︸
=A[2](s,ε)

F[2](s, ε) = A[2](s, ε)F[2](s, ε). (2.217)

The matrix A[2](s, ε) is, by construction, linear in ε, namely A[2](s, ε) = A[2]
0 (s) + εA[2]

1 (s);
moreover the diagonal elements are null. We introduce once again a new basis of MIs,
F[3](s, ε), where: F[2](s, ε) = B2(s)F

[3](s, ε), and so:

∂F[3](s, ε)

∂s
= B−1

2 (s)

(
−∂B2(s)

∂s
+ A[2]

0 (s)B2(s) + εA[2]
1 (s)B2(s)

)
F[3](s, ε). (2.218)

We immediatly notice that the desired ε-factorized form is achieved when:

∂B2(s)

∂s
= A[2]

0 (s)B2(s). (2.219)

The latter can be solved by means of the Magnus Exponential (2.4), and the solution is
presented in Appndix A.
The DEQs system now reads:

∂F[3](s, ε)

∂s
= εB−1

2 (s)A[2]
1 (s)B2(s)︸ ︷︷ ︸

=A[3](s)

F[3](s, ε) = εA[3](s)F[3](s, ε). (2.220)

Finally we can express the DEQs system in the Landau Variable13 x, − s
m2 = (1−x)2

x , and
we introduce a new basis of MIs, in order to “clean-up” the DEQs system from the residual
m2 factor: F[3](x, ε) = B3(m

2)I(x, ε) (the matrix B3(m
2) is presented in Appendix A):

∂I(x, ε)

∂x
= εAc(x)I(x, ε). (2.221)

13We assumed 0 < x < 1.
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Canonical Basis

The basis I(s, ε) are related to F(s, ε) by the following relation:

I1(s, ε) =F1(s, ε), I2(s, ε) = sF2(s, ε),

I3(s, ε) =m2F3(s, ε), I4(s, ε) = sF4(s, ε),

I5(s, ε) =
√
s
√
s− 4m2

(
1

2
F4(s, ε) + F5(s, ε)

)
, I6(s, ε) = sF6(s, ε),

I7(s, ε) =
√
s
√
s− 4m2 (F2(s, ε) + F7(s, ε)) , I8(s, ε) =

√
s
√
s− 4m2F8(s, ε),

I9(s, ε) =s

(
m2F9(s, ε)−

F2(s, ε)

2
− F7(s, ε) + F8(s, ε)

)
,

I10(s, ε) =−
√
s
√
s− 4m2

(
4m4F10(s, ε) + 6m2F3(s, ε)− 3sF4(s, ε) + F1(s, ε)

)
8m2 − 4s

,

I11(s, ε) =
1

4

√
s
√

s− 4m2
(
4m2F11(s, ε) + 3F6(s, ε)

)
,

I12(s, ε) =
√
s
√
s− 4m2F12(s, ε),

I13(s, ε) =
m2
(
12m2F3(s, ε) + s(6F3(s, ε)− 7F4(s, ε)− 4(F5(s, ε) + 3F8(s, ε))) + 2F1(s, ε)

)
12m2 − 6s

+

− s(5sF4(s, ε)s− 4sF5(s, ε)− 12sF8(s, ε)s+ 24sF12(s, ε)− 2F1(s, ε))

12 (2m2 − s)
+m2sF13(s, ε)

4m2s
(
m2F10(s, ε) + 3F12(s, ε)

)
3 (2m2 − s)

,

I14(s, ε) =
√
s
√
s− 4m2F14(s, ε),

I15(s, ε) =− 1

24
s
(
8(F11(s, ε)− 3F15(s, ε)m

2 + 3F6(s, ε) + 48F14(s, ε)
)
,

I16(s, ε) =s3/2
√

s− 4m2F16(s, ε)

(2.222)

The matrix Ac(x) in (2.221), turns to have a rational alphabet, with letters {x, 1+x, 1−x}:

Ac(x) =
1

x
M1 +

1

1 + x
M2 +

1

1− x
M3. (2.223)

Thus, the general solution can be obtained in terms of HPLs with a minimal effort. We
present here the explicit expression for: {Mi}i=1,2,3:

M1 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 2 0 0 0 0 0 0 0 0 0 0 0
1 0 0 −3 4 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 1

2
2 0 0 0 0 −1 −1 0 0 0 0 0 0 0

0 1 −4 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 − 1

2
0 0 0 0 1 2 2 0 0 0 0 0 0 0

1
2

0 3 − 3
4

− 3
2

0 0 0 0 −2 0 0 0 0 0 0
0 0 3 0 0 3

4
0 0 0 0 1 0 0 0 0 0

− 1
12

0 − 1
2

− 1
24

1
6

0 1
2

1
2

0 2
3

0 0 1
2

0 0 0
− 1

6
0 −1 5

6
7
6

0 2 1 0 4 0 0 1 0 0 0
− 1

2
0 −2 0 0 3

8
0 0 0 0 0 0 0 −2 −1 0

0 0 0 0 0 0 0 0 0 0 − 4
3

0 0 4 2 0
− 1

3
−1 −2 5

6
0 5

8
0 0 2 0 0 0 2 0 1 2



, (2.224)
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M2 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −6 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2



, (2.225)

M3 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 −2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 2 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
0 0 0 0 1

3
0 1 1 0 4

3
0 2 0 0 0 0

− 1
3

0 −2 5
3

0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6



. (2.226)
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Chapter 3

Differential Equation and
Homogeneous solution

In this Chapter we reconsider the algorithm based on the Magnus Exponential, and we apply it to the
so-called “QED Sunrise“ Integral Family. In particular we emphasize its connection with the solution of
the DEQs system at ε = 0: obtaining different solutions for the system at ε = 0 we build a matrix, which
is similar, and, on practical grounds, fully equivalent to the one obtained through the Magnus algorithm.
Then we consider a different basis of MIs, and we show how Cut Integrals, and their natural implementa-
tion in Baikov Representation, provide the whole set of solutions for the homogeneous part of an higher
order DEQ.
Finally, thanks to the full set of homogeneous solutions obtained through Cuts and IBPs, we obtain another
matrix for the original basis of MIs, similar but fully equivalent on practical grounds, to the one obtained
through the Magnus algorithm.

3.1 Magnus Exponential

3.1.1 Magnus Exponential, application to the QED Sunrise

Let’s consider:

S(2,1) = =

=

∫
d̃dk1d̃dk2

(k1 + p)−s1(k2 + p)−s2

(k21 −m2)r1((k1 + k2 + p)2)r2(k22 −m2)r3
, si ≤ 0, i = 1, 2.

(3.1)

In this Section we will apply the algorithm based on the Magnus Exponential (2.4) to the
Integral Family (3.1). Thanks to Reduze 2 we identify the following basis of MIs given by,
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F = {F1, F2, F3}:

F1 = =

∫
d̃dk1d̃dk2

1

(k22 −m2)2(k21 −m2)2
,

F2 = = m2

∫
d̃dk1d̃dk2

1

(k22 −m2)2((k1 + k2 + p)2)2(k21 −m2)
,

F3 = = m2

∫
d̃dk1d̃dk2

1

(k22 −m2)2(k1 + k2 + p)2(k21 −m2)2
.

(3.2)

They fulfill a DEQs system linear in ε, expressed w.r.t. the adimensional variable x, where
− s

m2 = (1−x)2

x :

∂F(x, ε)

∂x
= A(x, ε)F(x, ε),

A(x, ε) =

 0 0 0
ε

2(x−1) −
ε

2(x+1)
−6ε−1
x+1 − 1

x−1 + 3ε+1
x

1−2ε
2(x−1) −

ε
x + 6ε−1

2(x+1)

0 2ε
x − 4ε

x−1
1
x − 2

x−1

 .
(3.3)

We can now split A(x, ε) as: A(x, ε) = A0(x) + εA1(x), i.e. into a part linear in ε, namely
εA1(x) and another one which is ε-independent, namely A0(x), which reads:

A0(x) =

 0 0 0
0 1

x − 1
x+1 − 1

x−1
1

2(x−1) −
1

2(x+1)

0 0 1
x − 2

x−1

 (3.4)

The latter, namely A0(x), can be further decomposed as A0(x) = D0(x) + N0(x) (being
D0(x) the diagonal part):

A0(x) = D0(x) + N0(x), D0(x) = diag
(
0,

1

x
− 1

x+ 1
− 1

x− 1
,
1

x
− 2

x− 1

)
. (3.5)

We can now obtain a DEQs system for a new basis of MIs, G(x, ε), related to the previous
one by the relation: F(x, ε) = B1(x)G(x, ε); we trivially find:

∂G(x, ε)

∂x
= B−1

1 (x)

(
−∂B1(x)

∂x
+ D0(x)B1(x) + N0(x)B1(x) + εA1(x)B1(x)

)
G(x, ε).

(3.6)
We impose now that B1(x) is such that:

∂B1(x)

∂x
= D0(x)B1(x), ⇒ B1(x) = e

∫
dx D0(x) =

B1(x) =

1 0 0
0 x

1−x2 0

0 0 x
(1−x)2

 ,
(3.7)
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and so (3.6) can be recast as:

∂G(x, ε)

∂x
= B−1

1 (x)(N0(x) + εA1(x))B1(x)︸ ︷︷ ︸
=:A[2](x,ε)

G(x, ε) = A[2](x, ε)G(x, ε). (3.8)

We can now consider A[2](x, ε) = A
[2]
0 (x) + εA

[2]
1 (x), as well. It results:

A[2]
0 (x) =

0 0 0
0 0 − 1

(x−1)2

0 0 0

 (3.9)

We immediately perform another change of basis, namely G(x, ε) = B2(x) I(x, ε), and,
thanks to the latter, we have:

∂I(x, ε)

∂x
= B−1

2 (x)

(
−∂B2(x)

∂x
+ A[2]

0 (x)B2(x) + εA[2]
1 (x)B2(x)

)
I(x, ε); (3.10)

we notice that we are close to the desired ε-factorized from; the latter can be achieved
provided the fact that we are able to furnish an explicit expression for the matrix B2(x),
with B2(x) such that:

∂B2(x)

∂x
= A[2]

0 (x)B2(x). (3.11)

This very last matrix DEQ (3.11), can be solved through the Magnus Exponential (2.59),
(2.60); as stated above, we have:

B2(x) = eΩ[A[2]
0](x). (3.12)

Being A[2]
0 (x) a strictly upper (3, 3) triangular matrix Ω[A[2]

0](x) is expected to have a
finite number of summands; an explicit calculation show that Ω[A[2]

0](x) consists in the
very first term of the series:

Ω[A[2]
0 ](x) =

∫
dxA[2]

0 (x), (3.13)

since A[2]
0 commutes with its integral; and so it results:

B2(x) =

1 0 0
0 1 1

x−1

0 0 1

 . (3.14)

Moreover the Canonical System reads:

∂I(x, ε)

∂x
= εAc(x)I(x, ε),

Ac(x) =

 0 0 0
− 1

x
5
x − 6

x+1 − 2
x−1 − 6

x + 3
x+1 + 2

x−1

0 2
x

2
x−1 − 2

x

 ,

F(x, ε) = B1(x)G(x, ε) = B1(x)B2(x)I(x, ε).

(3.15)

In this worked out example, the algorithm based on the Magnus Exponential, produces the
“rotation” matrix:

RMagnus(x) = B1(x)B2(x) =

1 0 0
0 x

1−x2
x

(x−1)(1−x2)

0 0 x
(1−x)2

 . (3.16)
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3.1.2 A first look beyond Magnus Exponential

Moreover, we could notice that the matrix solution given by the Magnus Exponential is
deeply related to the solution of the DEQs system itself, at ε = 0, i.e.: d = dc. More in
detail, we can consider the DEQs system, at ε = 0:

∂F0(x)

∂x
= A0(x)F

0(x). (3.17)

A standard result in the general theory of Differential Equations, states that we can con-
sider F0

[1](x), . . . ,F
0
[m](x) different solutions for (3.17), and consequently build the matrix1:

Φ(x) =
(
F0
[1](x), · · · ,F

0
[m](x)

)
; (3.18)

then, essentially simply preforming the row-column multiplication, we can argue that Φ is
such that:

∂Φ(x)

∂x
= A0(x)Φ(x), (3.19)

which is exactly the DEQs system (2.56) solved in terms of the Magnus Exponential.
Furthermore, considering a constant matrix C, then:

ΨC(x) = Φ(x)C (3.20)

satisfies the same DEQs system, namely (2.56).

DEQs system at ε = 0, the QED Sunrise
Let’s consider the DEQ (3.3) at d = 4 ⇔ ε = 0, namely 2:

∂F0(x)

∂x
= A0(x)F

0(x), A0(x) =

0 0 0
0 1

x − 1
x+1 − 1

x−1
1

2(x−1) −
1

2(x+1)

0 0 1
x − 2

x−1

 , (3.21)

where F0(x) = {F 0
1 (x), F

0
2 (x), F

0
3 (x)}. The solution for F1,0(x) is absolutely trivial:

F 0
1 (x) ≡ F 0

1 = c1, (3.22)

where c1 is a constant. The solution for F 0
3 (x) is straightforward as well, namely:

F 0
3 (x) = c3

x

(1− x)2
. (3.23)

Then, once the solution for F 0
3 (x) is known, the DEQ for F 0

2 (x) is a 1st order non ho-
mogeneous DEQ, and can be solved with standard techniques (i.e.: Euler’s variation of
constants method). We find:

F 0
2 (x) = c3

x

(x− 1)(1− x2)
+ c2

x

1− x2
. (3.24)

1I.e.: the ith-column of Φ is given by Fi(x).
2We notice that the system is “homogeneous”, in the sense that each DEQ involves Mis belonging to

the same topology, i.e. with the same denominators.
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Then, for example, choosing the set of constants {c1, c2, c3} as:

{c1, c2, c3} = {1, 0, 0} ⇒ F0,T
[1] = (1, 0, 0)

{c1, c2, c3} = {0, 0,−1} ⇒ F0,T
[2] (x) =

(
0,

x

(x− 1)2(x+ 1)
,− x

(1− x)2

)
{c1, c2, c3} = {0,−1,−1} ⇒ F0.T

[3] (x) =

(
0,

x2

(x− 1)2(x+ 1)
,− x

(1− x)2

)
.

(3.25)

We can build the matrix:

Φ(x) =
(
F0
[1](x),F

0
[2](x),F

0
[3](x)

)
=

1 0 0

0 x
(x−1)2(x+1)

x2

(x−1)2(x+1)

0 − x
(1−x)2

− x
(1−x)2

 , (3.26)

and we can verify that:
∂Φ(x)

∂x
= A0(x)Φ(x), (3.27)

and in fact RMagnus(x) and Φ(x) are related by the relation:

RMagnus(x) = Φ(x)CΦ, CΦ =

1 0 0
0 1 −1
0 −1 0

 . (3.28)

After all, thanks to the Magnus Exponential, we solve a 1st-order differential equation, and
an arbitrariness in choosing the constants should be expected.

2nd-order DEQ, the QED Sunrise
Finally we would like to mention the possibility to recast a DEQs system into a unique
higher order DEQ for one of the unknown. This observation will play an important role
especially in the next section; even if it’s not strictly necessary, we apply this method to
(3.21) . As a first step, let’s consider3:{

∂F 0
2 (x)
∂x = a22(x)F

0
2 (x) + a23(x)F

0
3 (x)

∂F 0
3 (x)
∂x = a32(x)F

0
2 (x) + a33(x)F

0
3 (x)

(3.29)

We can express F 0
3 in terms of F 0

2 and ∂xF
0
2 , namely:

F 0
3 (x) =

1

a23(x)

(
∂xF

0
2 (x)− a22(x)F

0
2 (x)

)
. (3.30)

Then, considering the derivative in (3.29) we have4

∂2
xF

0
2 (x) = ∂xa22(x)F

0
2 (x) + a23(x) ∂xF

0
2 (x) + ∂xa23(x)F

0
3 (x) + a23(x) ∂xF

0
3 (x), (3.31)

but thanks to (3.30) and the 2nd DEQ in (3.29) we have:

∂2
xF

0
2 (x) =

(
a22(x) + a33(x) +

∂xa23(x)

a23(x)

)
∂xF

0
2 (x)+

+

(
∂xa22(x) + a23(x) a32(x)−

a22 (a23 a33 + ∂xa23)

a23

)
F 0
2 (x).

(3.32)

3We consider here a DEQs system with two unknowns. In our example the 1st MI is just a subtopolgy,
thus it does not play any role. Moreover, in our explicit example the two DEQs for F0,2(x) and F0,3(x)
are decoupled; thus even if it is possible, it is not necessary to recast the two DEQs into an unique DEQ,
as stated above.

4We assume the standard notation: ∂k

∂xk = ∂k
x .
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We immediately notice that, once F 0
2 (x) is solved then F 0

3 (x) can be determined, thanks
to (3.30). In the explicit example (3.21) we have:

∂2
xF

0
2 (x) =

2
(
2x2 + x+ 1

)
x− x3

∂xF
0
2 (x)−

2
(
x2 − x+ 1

)
(x− 1)2x2

F 0
2 (x). (3.33)

Solving the latter we find:

F 0
2 (x) = k1

x2

(x− 1)2(x+ 1)
+ k2

x

(x− 1)2(x+ 1)
, (3.34)

being {k1, k2} arbitrary constants.
Choosing {k1, k2} = {0, 1}, and expressing F 0

3 (x) in terms of {F 0
2 (x), ∂xF

0
2 (x)}, through

(3.30) we find a solution for (3.29), namely:

F̃0,T
[2] (x) =

(
x

(x− 1)2(x+ 1)
,− x

(1− x)2

)
. (3.35)

On the other hand, repeating the same steps with {k1, k2} = {1, 0} the solution reads:

F̃0,T
[3] (x) =

(
x2

(x− 1)2(x+ 1)
,− x

(1− x)2

)
(3.36)

Being (3.32) solved we build-up two solution for (3.21):

F0,T
[2] (x) =

(
0, F̃0,T

[2] (x)
)
, F0,T

[3] (x) =
(
0, F̃0,T

[3] (x)
)
. (3.37)

Finally, considering:
F0,T
[1] = (1, 0, 0) , (3.38)

we reobtain (3.26), namely:

Φ(x) =
(
F0
[1],F

0
[2](x),F

0
[3](x)

)
=

1 0 0

0 x
(x−1)2(x+1)

x2

(x−1)2(x+1)

0 − x
(1−x)2

− x
(1−x)2

 . (3.39)

On top of that we can recast ( 3.32) as:

∂x

(
F 0
2 (x)

∂xF
0
2 (x)

)
= Aeq(x)

(
F 0
2 (x)

∂xF
0
2 (x)

)
, (3.40)

with:

Aeq =

(
0 1

−2
(
x2−x+1

)
(x−1)2x2

2
(
2x2+x+1

)
x−x3

)
. (3.41)

We can build the Wronski matrix, starting from (3.34):

W(x) =

(
F k1=1,k2=0
0,2 (x) F k1=0,k2=1

0,2 (x)

∂xF
k1=1,k2=0
0,2 (x) ∂xF

k1=0,k2=1
0,2 (x)

)
=

=

(
x2

(x−1)2(x+1)
x

(x−1)2(x+1)

− x
(
x2+x+2

)
(x−1)3(x+1)2

− 2x2+x+1
(x−1)3(x+1)2

)
.

(3.42)

We can verify that the following relation holds:

∂xW(x) = Aeq(x)W(x). (3.43)

84



3.2 Homogeneous solution, a general strategy

In this Section we will study Cut Integrals in the context of DEQs. Cut Integrals turn
to be an unrivaled tool, since, as it was intensively shown by many autohrs [43]-[47], they
provide the homogeneous solution for DEQ. Things are even more interesting looking at
an higher order DEQ, i.e.: when there is more than one MI for a given topology, since,
taking care about the integration contours, they provide the whole set of homogeneous
solutions. This fact seems to be extremely important: no general strategy to compute the
homogeneous solution of an higher order DEQ is known, and this “physical input” seems
essential. Moreover, once the homogeneous solution is known, the whole solution could be
recovered with a standard technique, namely Euler variations of constants. Even if it goes
beyond the scope of this thesis, we would mention the possibility to use these techniques
in the study of Feynman Integral, and the associated DEQs, beyond Polylogarithms [3].
Finally we would reveal the connection between the (set of) homogeneous solutions an the
Magnus Exponential (2.4).

3.2.1 Feynman Cut Integrals

We review here some basic definitions and properties about Cut Integrals, closely following
[3].
Roughly speaking, a Feynman Cut Integral is an integral in which we impose one, or even
more, virtual particles to be on-shell. On practical grounds this means that we substitute
one, or more denominators, with the corresponding δ function under the integral sign,
according to the prescription:∫

ddk
1

Dk(k)
→
∫

ddk δ(Dk(k)). (3.44)

Moreover, we can furnish an operative definition for a Cut Integral involving a denominator
raised to a power greater than one, namely Drk

k (k), with rk > 1. For the sake of simplicity,
let’s consider rk = 2 (the generalization to ak > 2 can be obtained with a minimal effort)
and modify the mass in the corresponding denominator according to: m2

k → m̂2
k; thus we

have:
I
(`,n)
1...2...1 = − lim

m̂2
k→m2

k

∂m̂2
k
I
(`,n)
1...1...1. (3.45)

Finally, we can apply the usual operative definition for a Cut Integrals (3.44), assuming
the Cut Operation is insensible (roughly speaking it “commutes” ) to ∂m̂2

k
:

Cut[I(`,n)1...2...1] = − lim
m̂2

k→m2
k

∂m̂2
k
Cut[I(`,n)1...1...1]. (3.46)

3.2.2 Cut Integrals in Baikov representation

Not surprisingly the Baikov representation is particularly well suited for Cut Integrals; in
fact, in this representation a cut over the kth denominator, reads:

Cut[I(`,n)] = (G({p1, . . . , pn}))(n+1−d)/2
∫ nSP∏

i=1, i 6=k

dzi
zaii

∮
zk=0

dzk
(F (z))γd

zakk
, (3.47)

where n is the number of independent external momenta, and γd = d−n− 1− `, see (1.4).
We immediatly notice that (3.47) can be computed by means of Residue Theorem.
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Furthermore, in the case in which ri = 1, we recover the standard prescription:
1

zi
→ 2πiδ(zi). (3.48)

Then, considering an Integral with the whole set of t denominators raised to power 1, the
corresponding Maximal Cut, i.e.: the Integral in which the whole set of denominator is cut,
reads:

MCut[I(`,n)] = I(`,n)
M.C. = (2πi)t (G({p1, . . . , pn}))(n+1−d)/2

∫ nSP∏
i=t+1

dzi z
−ai (F (z))γd

∣∣∣
z1=···=zt=0

.

(3.49)
Then, in order to exploit (3.49) and its consequences some comments are mandatory:

• at one loop, i.e.: ` = 1, the number of integration variables always matches the
number of denominators. Thus, a Maximal Cut Integral is completely localized, i.e.:
for ` = 1 there is no integration left in (3.49);

• since IBPs rely on the vanishing of the integrand on the integration boundaries,
imposing that IBPs hold for (3.49), beyond one loop, it is natural to identify an
Integration Domain, Γ, such that the Baikov Polynomial on the Cut, MCut[F (z)] =

F (z)
∣∣∣
z1=···=zt=0

, is vanishing on ∂Γ:

MCut[F (z)]
∣∣∣
∂Γ

= 0. (3.50)

A remarkable fact is that we can identify more than one region, namely Γ = Γ1 ∪
Γ2 ∪ · · · ∪ Γn such that:

MCut[F (z)]
∣∣∣
∂Γi

= 0, ∀i = 1, . . . n. (3.51)

• Given an IBP, we can apply to both sides of the equation our operative definitions
of “Cut”. In a t∗-Cut, Integrals with a number of denominators lower than t∗ turn to
be vanishing, since they do not support the t∗-Cut. Furthermore, if we apply a Max-
imal Cut compatible with the “highest topology”, i.e.: the topology with the highest
number of denominators, in a given relation, we select the homogeneous part of the
relation. By virtue of this, since a DEQ is obtained by a chained series of IBPs, the
Cut Integrals turn to satisfy the homogeneous DEQ; moreover, considering an higher
order DEQ, each representation of maximal Cut Integrals (3.51) should satisfies the
DEQ itself.
Moreover, thanks to IBPs it is always possible to express an Integral with t propaga-
tors, each of them raised to powers greater or equal to one, as a linear combination
of Integrals of the same topology with denominators strictly raised to power one and
subtopologies:

I(`,n)[{a1, . . . , at, at, . . . anSP }] =
∑
i

ciI(`,n)[{1, . . . , 1, ait+1, . . . , a
i
nSP

}]+

+ subtopologies.
(3.52)

Then, applying a Maximal Cut, we have:

MCut[I(`,n)[{a1, . . . , at, at+1, . . . , anSP }]] =
∑
i

ciMCut[I(`,n)[{1, . . . , 1, ait+1, . . . , a
i
nSP

}]];

(3.53)
the latter can be seen as an alternative definition for (Maximal) Cut Integrals, in-
volving denominators raised to powers greater than one.
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3.3 Homogeneous DEQ for the QED Sunrise, Laporta Basis

Let’s consider once again the Integral Family (3.1):

S(2,1) =

∫
d̃dk1d̃dk2

(k1 · k2)−a4(k1 · p)−a5

(k21 −m2)a1((k1 + k2 + p)2)a2(k22 −m2)a3
, ai ≤ 0, i = 4, 5. (3.54)

Thanks to Reduze 2 we identify the following “minimal” basis of MIs, L = {L1, L2, L3}:

L1 = =

∫
d̃dk1d̃dk2

1

(k21 −m2)(k22 −m2)
,

L2 = m2

k1·k2

p

= m2

∫
d̃dk1d̃dk2

1

(k21 −m2)(k1 + k2 + p)2(k22 −m2)
,

L3 =

k1·k2

p

=

∫
d̃dk1d̃dk2

(k1 · k2)
(k21 −m2)(k1 + k2 + p)2(k22 −m2)

.

(3.55)

The latter fulfills a DEQs system in the adimensional variable x, − s
m2 = (1−x)2

x , which
reads:

∂L(x, d)

∂x
= A(x, d)L(x, d), A(x, d) =


0 0 0

d−2
2(x2−1)

d
(
x2−4x+1

)
−4(x−1)2

2x(x2−1)
−3(d−2)

x2−1

d−2
2(x2−1)

−dx2+2x2+4dx−12x−d+2
2x−2x3

(d−2)
(
x2−x+1

)
x(x2−1)

 .

(3.56)
Then, starting from (3.56), we can obtain a 2nd-order homogeneous differential equation
(L1 = 0) for L2 in d = 4− 2ε dimensions:

∂2
xL

ε
2,h +

3(x− 1)2ε+ 6x− 2

x (x2 − 1)
∂xL

ε
2,h +

(2ε− 1)
((
x2 − 4x+ 1

)
ε+ 2x

)
(x− 1)2x2

Lε
2,h = 0. (3.57)

Moreover at ε = 0, we have:

∂2
x L

ε=0
2,h +

2− 6x

x− x3
∂x L

ε=0
2,h − 2

(x− 1)2x
Lε=0
2,h = 0. (3.58)

Solving the latter we find 2-independent solutions (as expected for a 2nd order DEQ):

h01(x) =
x2 − x+ 1

(x− 1)2
,

h02(x) =

(
x2 − x+ 1

(x− 1)2

)(
− 3(x− 2)

x2 − x+ 1
+ x− 1

x
+ 4 log(x)

)
.

(3.59)

3.4 Baikov on the Maximal Cut

On the other hand, let’s consider the integral:

L2

m2
=

p

=

∫
d̃dk1d̃dk2

1

(k21 −m2)(k1 + k2 + p)2(k22 −m2)
; (3.60)
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L
m2 can be expressed in terms of the Baikov representation5 (we assume z4 = k1 · p,
z5 = k2 · p)

L2

m2
=

p

= (G(p))
2−d
2

∫ 5∏
i=1

dziF (z)
d−4
2

1

z1z2z3
. (3.61)

Where:
G(p) = p2 = s. (3.62)

Then, (3.61) on the Maximal Cut, reads:

MCut[
L2

m2
] =

p

= (G(p))
2−d
2

∫
dz4dz5 (F (z))

d−4
2

∣∣∣
z1=z2=z3=0

, (3.63)

where, F (z) on the Maximal Cut, i.e.: F (z)
∣∣∣
M.C.

= F (z)
∣∣∣
z1=z2=z3=0

, reads:

F (z)
∣∣∣
M.C.

= −m2(s+ z4 + z5)
2 − 1

4
(s+ 2z4)(s+ 2z5)(s+ 2(z4 + z5)). (3.64)

A comment on the Lee-Pomeransky criterium
We would like to mention the possibility to apply the Lee-Pomeransky criterium [65],
already cited in Section (1.10), within the Baikov representation on the Maximal Cut. The
criterium states that the number of Proper Critical Points {z̄α}, where:

{z̄α} = {z | OF (z)
∣∣∣
M.C.

= 0, F (z)
∣∣∣
M.C.

6= 0} (3.65)

is equal to the number of MIs for the corresponding topology, modulo symmetry relations.
For what concerns the DEQs, thanks to this analysis we can determine a priori (i.e.:
without performing explicitly the IBPs reduction) the order of the homogeneous DEQ for
(one of) the MI for the considered topology.
Working on (3.64), we identify three Proper Critical Points according to (3.65):

z̄1 = −1

3
(2m2 + s, 2m2 + s), z̄2 = −1

4
(s+

√
s
√

8m2 + s, s−
√
s
√
8m2 + s),

z̄3 = −1

4
(s−

√
s
√

8m2 + s, s+
√
s
√

8m2 + s).

(3.66)

Actually, z̄2 and z̄3 turn to be related by the symmetry: {z4 → z5, z5 → z4}, as we can see
simply looking at (3.64), which corresponds to the symmetry: {k1 → k2, k2 → k1} in mo-
mentum space. Thus, we have just two independent Proper Critical Points and thus there
are two MIs for the corresponding topology, as confirmed by the explicit IBPs reduction.

Since multiloop calculations heavily rely on integration by parts relations, the integra-
tion domain in (3.63) has to be chosen consistently in such a way that the total derivative
under the integral sign is vanishing. This means that the integration boundaries in (3.63)

5We are forgetting about irrelevant over-all constants.
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should be identified among the zeros of the integrand. Moreover, generally speaking, deal-
ing with a 2-fold integration, such as (3.63), is quite uncomfortable. Thus, we will perform
some change of variables in order to decouple the two integration variables. More precisely,
our goal is to obtain an “irrelevant” variable , namely one of the two residual variables in
(3.63) should give just an overall numerical factor and on practical grounds the associated
integration in (3.63) should depend on s and m2 neither at the integrand level, nor in the
boundaries and so it turns to be negligible in the study of the homogeneous solution.

3.4.1 Change of Variables

We can consider the following redefinitions:

(z4, z5) →
(
s

2

(
w(v + l(1 + v)2)

v(1 + v)
− 1

)
,
s

2

(
w(v + l(1 + v)2)

(1 + v)
− 1

))
, (3.67)

where:

l = −m2

s
. (3.68)

Thanks to (3.67), the Baikov Polynomial on the Maximal Cut reads:

F (v, w)
∣∣∣
M.C.

= −
s3(w − 1)w2

(
l(v + 1)2 + v

)3
4v2(v + 1)2

, l = −m2

s
. (3.69)

For the sake of simplicity we will consider: l > 0 ⇔ s < 0.

We notice that in (3.69) the v-dependent term and the w-dependent one are completely
factorized. In order to build-up the whole integrand we have to compute the jacobian
associated to (3.67); since in each redefinition the new variables are always factorized, the
same holds also for the corresponding jacobian:

jac(v, w) =
s2

4

w(v + l(1 + v)2)2

(v(v + 1))2
. (3.70)

So, our starting point for the integration is:

MCut[
L2

m2
] = sd−3

∫
Γ

dv dw v2−d ((v+1)2)
2−d
2 (l(v+1)2+v)

3d
2
−4 wd−3 (1−w)

d−4
2 , l > 0.

(3.71)
We notice that we can get rid of the w-dependent term, as promised. Moreover the
quadratic form (l(v + 1)2 + v) can be naturally recast as:

(l(v + 1)2 + v) = l

(
v − −2l −

√
4l + 1− 1

2l

)(
v − −2l +

√
4l + 1− 1

2l

)
= l (v − v̄−)(v − v̄+).

(3.72)

Thus, (3.71) seems to impose 5 integration regions:

Γ =
5⋃

i=1

Γi (3.73)
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with:

Γ1 =

(
−∞,

−2l −
√
4l + 1− 1

2l

)
;

Γ2 =

(
−2l −

√
4l + 1− 1

2l
,−1

)
;

Γ3 =

(
−1,

−2l +
√
4l + 1− 1

2l

)
;

Γ4 =

(
−2l +

√
4l + 1− 1

2l
, 0

)
;

Γ5 = (0,+∞) .

(3.74)

3.4.2 Integration in d = 4 dimension

We can consider the d = 4 limit in (3.71) both at the integrand level and in the prefactor6:

MCut[L2]
∣∣∣d=4

Γ
= l−1

∫
Γ
dv

(
l
(
v + 1

v + 2
)
+ 1
)2

(v + 1)2
. (3.75)

Unfortunately the integral is divergent at: {±∞,−1, 0}. Nevertheless, we can try to
integrate over: Γ2 ∪Γ3 using integration by parts to regularize the integral. Let’s consider:

MCut[L2]
∣∣∣d=4

Γ2∪Γ3

= l−1

∫ −2l+
√
4l+1−1
2l

−2l−
√
4l+1−1
2l

dv

(
l
(
v + 1

v + 2
)
+ 1
)2

(v + 1)2
, (3.76)

which is divergent at v = −1. As stated above, we can overcome this issue using the
standard integration by parts 7; as a first step we notice that the numerator in (3.76), is
vanishing at the boundaries; by virtue of this fact we can safetly neglect the surface term
obtaining:

MCut[L2]
∣∣∣d=4

Γ1∪Γ2

= l−1

∫ −2l+
√
4l+1−1
2l

−2l−
√
4l+1−1
2l

dv
2l(v − 1)

(
l(v + 1)2 + v

)
v3

. (3.77)

Then, no singular point is present on the integration path. A direct integration gives:

MCut[L2]
∣∣∣d=4

Γ2∪Γ3

= 2

(
l

2v2
+ lv +

l + 1

v
+ (l + 1) log(v)

)∣∣∣−2l+
√
4l+1−1
2l

−2l−
√
4l+1−1
2l

, (3.78)

which is equivalent:

MCut[L2]
∣∣∣d=4

Γ2∪Γ3

= l−1

(√
4l + 1(1− 2l) + 2l(l + 1) log

(
2l +

√
4l + 1 + 1

2l −
√
4l + 1 + 1

))
. (3.79)

As a final step we can express l in terms of x, namely: l = −m2

s = x
(1−x)2

, and we obtain
one solution for the homogeneous DEQ

MCut[L2]
∣∣∣d=4

Γ2∪Γ3

(x) = H 0
1 (x) =

x4 − 4x3 + 4
(
x2 − x+ 1

)
x log(x) + 4x− 1

(x− 1)2x
. (3.80)

6We considered s → −m2 l−1, and we dropped the factor proportional to m2.
7We use:

∫
dvF (v)g(v) = F (v)G(v) −

∫
dvf(v)G(v), with F (v) =

(
l
(
v + 1

v
+ 2

)
+ 1

)2 and g(v) =
1

(v+1)2
.
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Moreover, once a solution for a 2nd order homogeneous DEQ is known, the other one can
be recovered thanks to Euler’s variation of constants method. More in detail we look for a
solution:

H 0
2 (x) = H 0

1 (x)F (x). (3.81)

Plugging the latter in (3.58) we obtain a 1st order DEQ for f(x), being f(x) = ∂F (x)
∂x .

The latter reads (after minor rearrangements):

∂xf(x) + f(x)
2
(
x5 + 5x4 − 12x3 + 4x2 + 4

(
2x3 − 6x2 + 3x− 1

)
log(x) + 11x− 9

)
(x2 − 1) (x4 − 4x3 + 4 (x2 − x+ 1)x log(x) + 4x− 1)

= 0,

(3.82)
and f(x) is trivially determined 8:

f(x) = − (1− x)2(x+ 1)4

(x4 − 4x3 + (4x3 − 4x2 + 4x) log(x) + 4x− 1)2
. (3.83)

Despite its complexity, a primitive for f(x) can be explicitly found:

F (x) =

∫
dxf(x) =

x
(
x2 − x+ 1

)
x4 − 4x3 + 4 (x2 − x+ 1)x log(x) + 4x− 1

, (3.84)

and so, quite surprisingly, the other solution is:

H 0
2 (x) = H 0

1 (x)F (x) =

(
x2 − x+ 1

)
(x− 1)2

. (3.85)

3.4.3 Integration in d dimensions

Some additional effort is needed in order to explicitly perform the integration, in particular
to recognize a primitive for (3.71) in d dimensions.
First of all let’s recast (3.71) as6:

MCut[L2]
∣∣∣
Γ
= l3−d

∫
Γ
dv

(
(v+1)2

v

) 2−d
2
(
l(v+1)2

v + 1
) 3d

2
−4

v
, (3.86)

and introduce the auxiliary variable p defined as:

p(v) =
(1 + v)2

v
. (3.87)

The function p(v) is not injective over R6=0; however it turns to admit an inverse function
at least on: I1 = (−∞,−1), I2 = (−1, 0), I3 = (0,+1) and I4 = (+1,+∞), being the
inverse function respectively: v−(p), v+(p), v−(p) and v+(p), with:

v+(p) =
(p− 2) +

√
p(p− 4)

2
, v−(p) =

(p− 2)−
√
p(p− 4)

2
. (3.88)

Finally, (3.86) can be computed recalling the relation:
dv

v
=

1

v±(p)

∂v±(p)

∂p
dp =

∂ log(v±(p))

∂p
dp, (3.89)

and it results:

MCut[L2]
∣∣∣
Γ
= l3−d

∫
Γ
dp

∂ log(v±(p))

∂p
p

2−d
2 (l p+ 1)

3d
2
−4, (3.90)

where v±(p) = {v+(p), v−(p)} should be chosen according to the integration region. In
this explicit example, the choice among v±(p) = {v+(p), v−(p)} produces just an overall
different sign, which is negligible in the study of the homogeneous differential equation.

8Forgetting about a trivial integration constant.
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3.4.4 Integration over Γ1

The integration over Γ1 reads:

MCut[L2]
∣∣∣
Γ1

= l3−d

∫ −2l−
√
4l+1−1
2l

−∞
dv

(
(v+1)2

v

) 2−d
2
(
l(v+1)2

v + 1
) 3d

2
−4

v
=

= l3−d

∫ − 1
l

−∞
dp

∂ log(v−(p))

∂p
p

2−d
2 (l p+ 1)

3d
2
−4 =

= −22−dl3−d

(√
p− 4(4l + 1)

3d
2
−4F1

(
1

2
;
d− 1

2
, 4− 3d

2
;
3

2
; 1− p

4
,− l(p− 4)

4l + 1

)∣∣∣∣− 1
l

−∞
;

(3.91)

where F1 is the Appel function. Then, assuming:

lim
p→−∞

l3−d
√
p− 4(4l + 1)

3d
2
−4F1

(
1

2
;
d− 1

2
, 4− 3d

2
;
3

2
; 1− p

4
,− l(p− 4)

4l + 1

)
= 0, (3.92)

which holds for some value of d, we have:

MCut[L2]
∣∣∣
Γ1

=
−22−di

√
πl

5
2
−d(4l + 1)

3d
2
− 7

2Γ
(
3d
2 − 3

)
2F1

(
1
2 ,

d−1
2 ; 3d2 − 5

2 ; 1 +
1
4l

)
2Γ
(
3d
2 − 5

2

) .

(3.93)

3.4.5 Integration over Γ2

The integration over Γ2 is:

MCut[L2]
∣∣∣
Γ2

= l3−d

∫ −1

−2l−
√
4l+1−1
2l

dv

(
(v+1)2

v

) 2−d
2
(
l(v+1)2

v + 1
) 3d

2
−4

v
=

= l3−d

∫ 0

− 1
l

dp
∂ log(v−(p))

∂p
p

2−d
2 (l p+ 1)

3d
2
−4 =

= −22−dl3−d

(√
p− 4(4l + 1)

3d
2
−4F1

(
1

2
;
d− 1

2
, 4− 3d

2
;
3

2
; 1− p

4
,− l(p− 4)

4l + 1

)∣∣∣∣0
− 1

l

.

(3.94)

The latter is equivalent to:

MCut[L2]
∣∣∣
Γ2

=− 22−di
√
π

 l3−d(4l + 1)
3d
2
−4Γ

(
3
2 − d

2

)
2F1

(
1
2 , 4−

3d
2 ;

1−d
2 + 3

2 ;
4l

4l+1

)
Γ
(
2− d

2

) +

−
l
5
2
−d(4l + 1)

3d
2
− 7

2Γ
(
3d
2 − 3

)
2F1

(
1
2 ,

d−1
2 ; 3d2 − 5

2 ; 1 +
1
4l

)
2Γ
(
3d
2 − 5

2

) )
.

(3.95)
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3.4.6 Integration over Γ3

The integration over Γ3 reads:

MCut[L2]
∣∣∣
Γ3

= l3−d

∫ −2l+
√
4l+1−1
2l

−1
dv

(
(v+1)2

v

) 2−d
2
(
l(v+1)2

v + 1
) 3d

2
−4

v
=

= l3−d

∫ − 1
l

0
dp

∂ log(v+(p))

∂p
p

2−d
2 (l p+ 1)

3d
2
−4 =

= 22−dl3−d

(√
p− 4(4l + 1)

3d
2
−4F1

(
1

2
;
d− 1

2
, 4− 3d

2
;
3

2
; 1− p

4
,− l(p− 4)

4l + 1

)∣∣∣∣− 1
l

0

,

(3.96)

and so we argue that:
MCut[L2]

∣∣∣
Γ2

= MCut[L2]
∣∣∣
Γ3

(3.97)

3.4.7 Integration over Γ4

The integration over Γ4 is:

MCut[L2]
∣∣∣
Γ4

= l3−d

∫ 0

−2l+
√
4l+1−1
2l

dv

(
(v+1)2

v

) 2−d
2
(
l(v+1)2

v + 1
) 3d

2
−4

v
=

= l3−d

∫ −∞

− 1
l

dp
∂ log(v+(p))

∂p
p

2−d
2 (l p+ 1)

3d
2
−4 =

= −22−dl3−d

(√
p− 4(4l + 1)

3d
2
−4F1

(
1

2
;
d− 1

2
, 4− 3d

2
;
3

2
; 1− p

4
,− l(p− 4)

4l + 1

)∣∣∣∣− 1
l

−∞
,

(3.98)

and so:
MCut[L2]

∣∣∣
Γ4

= MCut[L2]
∣∣∣
Γ1

. (3.99)

3.4.8 Integration over Γ5

The integration over Γ5 reads:

MCut[L2]
∣∣∣
Γ5

= l3−d

∫ +∞

0
dv

(
(v+1)2

v

) 2−d
2
(
l(v+1)2

v + 1
) 3d

2
−4

v
=

= l3−d

(∫ +1

0
dv +

∫ +∞

+1
dv

) ( (v+1)2

v

) 2−d
2
(
l(v+1)2

v + 1
) 3d

2
−4

v
=

= l3−d

(∫ 4

+∞
dp

∂ log(v−(p))

∂p
p

2−d
2 (lp+ 1)

3d
2
−4 +

∫ +∞

4
dp

∂ log(v+(p))

∂p
p

2−d
2 (lp+ 1)

3d
2
−4

)
=

= l3−d

∫ +∞

4
dp

∂

∂p
log

(
v+(p)

v−(p)

)
p

2−d
2 (lp+ 1)

3d
2
−4 =

= 23−d l3−d

(√
p− 4(4l + 1)

3d
2
−4F1

(
1

2
;
d− 1

2
, 4− 3d

2
;
3

2
; 1− p

4
,− l(p− 4)

4l + 1

)∣∣∣∣+∞

4

.

(3.100)
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In the latter expression the p → 4 limit is vanishing as well as the p → +∞ limit, which is
vanishing for some value of d, as stated above. So we have:

MCut[L2]
∣∣∣
Γ5

= 0. (3.101)

We can verify that each term MCut[L2]
∣∣∣
Γi

, 1 ≤ i ≤ 5 is a solution for (3.57). Moreover,

we notice that the 2nd term in MCut[L2]
∣∣∣
Γ2

precisely corresponds to −MCut[L2]
∣∣∣
Γ1

; thus,

we argue that each term in (3.95) is a solution for (3.57). Therefore we are free to identify
(l → x

(1−x)2
is assumed):

L
(1) d
2, h = MCut[L2]

∣∣∣
Γ1

=

= −
i
√
π21−d

(
x

(x−1)2

) 5
2
−d (

(x+1)2

(x−1)2

) 1
2
(3d−7)

Γ
(
3d
2 − 3

)
2F1

(
1
2 ,

d−1
2 ; 12(3d− 5); (x+1)2

4x

)
Γ
(
3d
2 − 5

2

) ,

(3.102)

and:

L
(2) d
2, h = MCut[L2]

∣∣∣
Γ1

+ MCut[L2]
∣∣∣
Γ2

=

= −
i
√
π22−dx4

(
x

(x−1)2

)−d−1 (
(x+1)2

(x−1)2

)3d/2
Γ
(
3
2 − d

2

)
2F1

(
1
2 , 4−

3d
2 ; 2−

d
2 ;

4x
(x+1)2

)
(x+ 1)8Γ

(
2− d

2

) .

(3.103)

The latter are two independent solutions for (3.57), in d dimensions.

3.4.9 Limit at d = 4

Using the Mathematica package HypExp 2 [51], we can consider the limit d → 4:

L
(1) d=4
2, h = lim

d→4
L
(1) d
2, h = −

4
(
x2 − x+ 1

)
xHPL

(
{plus}, x+1

x−1

)
+ x4 − 4x3 + 4x− 1

2(x− 1)2x
=

9
= −

x4 − 4x3 + 4
(
x2 − x+ 1

)
x log(−x) + 4x− 1

2(x− 1)2x
=

= −
2iπ

(
x2 − x+ 1

)
(x− 1)2

−
x4 − 4x3 + 4

(
x2 − x+ 1

)
x log(x) + 4x− 1

2(x− 1)2x
.

(3.104)

On the other hand, we have:

L
(2) d=4
2, h = lim

d→4
L2, d
(2) h = −

2iπ
(
x2 − x+ 1

)
(x− 1)2

. (3.105)

We can verify that (3.104) and (3.105) are (independent) solutions for 3.58).
9Using the Mathematica package HPL [50], and the function HPLConvertToKnownFunction implemented

therein.
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3.5 Magnus Matrix from Cut Integrals

In this Section we will build the matrix T(x):

T(x) =

1 0 0

0 F
(1) ε=0
2, h F

(2) ε=0
2, h

0 F
(1) ε=0
3, h F

(2) ε=0
3, h

 , (3.106)

where each column in (3.106) is a solution for the system (3.3) at ε = 0. The matrix T(x)
is such that:

∂T(x)
∂x

= A0(x)T(x), (3.107)

which is exactly the DEQ solved by the Magnus Exponential.

First of all, we can read F ε
2,h through IBPs “on the Cut”, namely:

F ε
2, h := m2

p

k1·k2

=A(x)m2
p

+

+B(x)
p

k1·k2

,

(3.108)

where:

A(x) = x(2ε− 1)

[
(1 + 12x− 105x2 + 200x3 − 105x4 + 12x5 + x6)ε

2(x− 1)2(x+ 1)6
+

−
(
x6 + 4x5 − 89x4 + 176x3 − 89x2 + 4x+ 1

)
2(x− 1)2(x+ 1)6

− 12(x− 1)2x2

2(x− 1)2(x+ 1)6ε

]
,

(3.109)

and:

B(x) = 3x2(2ε− 1)

[(
x4 − 20x3 + 30x2 − 20x+ 1

)
ε

(x− 1)2(x+ 1)6
−
(
x4 − 24x3 + 34x2 − 24x+ 1

)
(x− 1)2(x+ 1)6

+

− 4x(1− x+ x2)

(x− 1)2(x+ 1)6ε

]
.

(3.110)

On the one hand, two solutions for Lε
2,h = m2

p

, were computed in the previous

Section (3.102) and (3.103), namely L
(1) ε
2, h and L

(2) ε
2, h ; then, the corresponding homogeneous

solutions for L3, namely L
(i) ε
3, h , i = 1, 2 can be computed inverting the homogeneous DEQ

for L2:

Lε
3, h =

p

k1·k2

=

[(
x2 − 4x+ 1

)
ε+ 4x

6x(ε− 1)
+

x2 − 1

6(ε− 1)
∂x

]
m2

p

(3.111)
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Thus, given two pairs of solutions: {L(i) ε
2, h , L

(i) ε
3, h }, i = 1, 2, by means of (3.108) we obtain

F
(i) ε
2, h , i = 1, 2.

Considering the leading coefficient in the Laurent Expansion for each of them, we obtain
two solutions for the homogeneous DEQ (3.33), namely F

(i) ε=0
2, h , i = 1, 2. We explicitly

find:
F

(1) ε=0
2, h =

x

x2 − 1
, F

(2) ε=0
2, h =

x(2x− 1)

(x− 1)2(x+ 1)
. (3.112)

Finally, simply inverting the DEQ for F2 at ε = 0, and given F
(i) ε=0
2, h , i = 1, 2, we obtain

the corresponding solutions F
(i) ε=0
3, h , i = 1, 2:

F
(i) ε
3, h =

[
x2 + 1

x
+ (x2 − 1)∂x

]
F

(i) ε
2, h , i = 1, 2. (3.113)

Thus, we explicitly reads:

F
(1) ε=0
3, h = 0, F

(2) ε=0
3, h = − x

(x− 1)2
, (3.114)

and (3.106) reads: 1 0 0

0 x
x2−1

x(2x−1)
(x−1)2(x+1)

0 0 − x
(x−1)2

 (3.115)

In conclusion, the matrix T(x) defined just above, and the one obtained through the
algorithm based on the Magnus Exponential (3.16), namely RMagnus(x), are related by:

RMagnus(x) = T(x)D, D =

1 0 0
0 −1 2
0 0 −1

 . (3.116)
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Conclusions

In this Thesis we discussed and applied some of the novel ideas concerning Feynman In-
tegrals. In the first part of this work, we focused on the main source of relations among
integrals, namely Lorentz invariance identities, Sector Symmetries and especially Integra-
tion by Parts Identities. Studying the latter in Baikov representation, we are naturally
led to consider highly non trivial concepts regarding Polynomials and their manipulations,
especially coming from Algebraic Geometry, such as Sygyzies Equations. Inspired by this,
we developed a Mathematica code devoted to IBPs generation in Baikov representation.
Furthermore we independently derive and apply algorithm for Sygyzies involving deter-
minants, and we present a new method to address this issue based on Eulers theorem on
homogeneous functions.
In the second part we studied the method of Differential Equations for Feynman Integrals;
the latter fulfill suitable System of Differential Equations and thus Feynman Integrals are
obtained solving this system, thus avoiding a direct integration over loop momenta. We
focused on the Canonical Form for Differential Equations, and the algorithm based on
the Magnus Exponential to obtain the latter. Following this strategy, Algebra naturally
emerges: the Magnus Exponential involves nested commutators, and the algorithm pro-
duces a set of Matrix similarity transformations. Moreover, once the system is recast in the
Canonical Form, the solution can obtained via the Dyson Series, keeping the unknown In-
tegrals tight together in a single vector. This approach remarkably simplifies the solution,
both from a conceptual and a practical point of view. We applied these techniques to a few
known examples, one of them concerning the 1-loop box topology; moreover we obtained
the Canonical Form for a non-planar 2-loops 3-points Integral Family whose integrals are
a subset of the ones, currently unknown, needed for a non-planar 2-loops graph which
contributes to qq̄ → tt̄ process.
In the last part we exploit Cut Integrals, and their role as solutions for homogeneous Dif-
ferential Equations, working on an explicit example, namely the so-called QED Sunrise
Integral Family. Remarkably the Baikov representation turns to be a very powerful tool:
on the one hand Cut Integrals are naturally implementable within this representation,
and, on the other hand, it allows to identify different, IBP-compatible, integration regions,
which provide the whole set of solutions for a higher order Differential Equation. More-
over we showed the relation between the solution given by the Magnus algorithm and the
homogeneous solutions obtained by means of Cut Integrals.
Concluding, we would like to mention some possible developments and future prospects
related to the work presented in this Thesis:

• a robust implementation of a system solver for the IBPs system. As we sketched in
the First Chapter solving such a huge system is very challenging from a computa-
tional point of view; in this sense, approaches based on the functional reconstruction,
namely the reconstruction of the analytic shape of a function from multiple numer-
ical evaluations, seem to be very promising in order to avoid the large intermediate
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expressions. Moreover other strategies, which rely on the a priori knowledge of the
number of Mis, as advocated in [73], could simplify the task;

• the evaluation of the MIs identified in Section (2.9); the general solution is really at
hand. We plan to fix the Boundary Conditions along the lines suggested in Subsection
(2.6.1);

• for the time being, the algorithm based on the Magnus Exponential produces the
desired transformation matrix only if the series has a finite number of terms (and
this was the case in many many examples); however a counterexample is given by the
Massive Sunrise [74], which evaluates to elliptic integrals; it would be interesting to
investigate how to obtain a Resummation for such an infinite series and, the relations
with Cut Integrals goes in this direction.

The methods presented in this Thesis are important, or even fundamental, in several
branches of Physics. These and related topics are mandatory, in order to study processes
involving massive particles, like heavy quarks, electroweak bosons and Higgs Boson. Be-
yond Phenomenology, they can be used to reveal new unexpected relations concerning the
underlying framework of Scattering Amplitudes. On top of that, we believe that they
can contribute to develop new ideas in other Fields, namely Algebraic Geometry, Number
Theory and Computing, just to mention a few, triggering a virtuous cycle between them.
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Appendix A

Matrices for 2-loop non planar vertex

We present here the matrices obtained along the lines described in (2.9), namely the
matrices A0(s) and A1(s) which form the DEQs system linear in ε: A(s, ε) = A0(s)+εA1(s).
Moreover we present the matrices: B1(s),B2(s) and B3(m

2) needed to obtain the Canonical
Form.
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