

Contents

1 Time Series Anomaly Detection 3

1.1 Introduction . 3

1.2 Anomaly Detection Taxonomy . 4

1.2.1 Input Data . 4

1.2.2 Anomaly Type . 5

1.2.3 Nature of the Method . 6

1.3 Point Anomalies . 7

1.3.1 Univariate Time Series . 7

1.3.2 Multivariate Time Series . 8

2 Neural Networks for Time Series Forecasting 11

2.1 Convolutional Neural Networks . 11

2.1.1 Architecture of CNNs . 11

2.1.2 Time Series Adaptation . 12

2.2 Long-Short-Term Neural Networks . 13

2.2.1 Historical Background . 13

2.2.2 LSTM Architecture and Cell Structure 14

2.2.3 Time Series Applications . 15

3 Bayesian Inference and Neural Networks 17

3.1 Bayesian Inference . 17

3.2 Bayesian Neural Networks . 18

3.3 Bayesian Learning Advantages . 21

4 Bayesian Autoencoder for Confidence Interval Forecasting 23

4.1 Introduction . 23

4.2 Bayesian Approximation . 24

4.2.1 Method . 24

4.2.2 Prediction Uncertainty . 25

4.3 Model Design . 28

i

ii CONTENTS

4.3.1 Autoencoder . 28

4.3.2 Prediction Network . 29

5 Benchmark Datasets 31

5.1 Numenta Anomaly Benchmark . 31

5.1.1 Dataset . 31

5.1.2 NAB Scoring System . 32

5.2 NAB Limitations . 34

5.3 Dataset . 34

5.4 Scoring System . 34

5.4.1 Alternative Metrics . 36

6 Experiments 37

6.1 Data Preparation . 37

6.1.1 Scaling . 37

6.1.2 Window Size . 37

6.1.3 Data Split . 38

6.2 Autoencoder Training . 38

6.3 Predictor Training . 39

6.4 MC Dropout and p parameter . 40

6.5 Results . 43

7 Conclusion and Future Works 45

Bibliography 47

Abstract

In the realm of time series analysis, accurate anomaly detection is crucial for

a variety of different applications, ranging from industrial process monitoring to

financial fraud detection. Traditional methods often struggle with the complexity

and high dimensionality inherent in time series data. This work explores the

integration of an Autoencoder with Long Short Term Memory (LSTM) layers

and a Convolutional Neural Network (CNN) used as a predictor within the realm

of Bayesian inference, to predict anomalies in time series data, aiming to enhance

detection accuracy and robustness by identifying confidence intervals that allows

to classify normal behavior in the data over anomalies.

The proposed model leverages the strengths of both LSTMs and CNNs to cap-

ture temporal dependencies and extract complex features from time series data,

respectively. The Autoencoder architecture, designed to learn efficient represen-

tations of the input data, consists of an encoder that compresses the input into

a lower-dimensional space and a decoder that reconstructs the input from this

compressed representation. By incorporating LSTM layers, the model effectively

retains long-term dependencies within the sequential data, while the CNN layers

facilitate the extraction of localized patterns.

This thesis contributes to the field of time series analysis by presenting a novel

hybrid model that combines the temporal learning capabilities of LSTMs with

the spatial feature extraction prowess of CNNs, encapsulated within an Autoen-

coder architecture. The findings highlight the model’s effectiveness in identifying

anomalies, paving the way for future research and applications in various domains

requiring reliable anomaly detection.

An extensive experimental evaluation is conducted on benchmark datasets, where

the model’s performance is compared against state-of-the-art anomaly detection

techniques. The results demonstrate that the Autoencoder with LSTM and CNN

layers improves the precision and recall of anomaly detection. Furthermore, the

model exhibits robustness in handling noise and variability in time series data,

showcasing its potential for real-world applications.

1

2

Chapter 1

Time Series Anomaly Detection

1.1 Introduction

Recent advances in technology allow us to collect a large amount of data over time in diverse

research areas [1]. Observations that have been recorded in an orderly fashion and that

are correlated in time constitute a time series. Time series data mining aims to extract

all the meaningful knowledge from these data, and several mining tasks (e.g., classification,

clustering, forecasting, and outlier detection) have been considered in the literature [2, 3, 4].

Outlier detection has become more and more relevant for many researchers and practitioners

and is now one of the main tasks of time series data mining. The field has been studied

in a variety of application domains such as credit card fraud detection, intrusion detection

in cyber-security, or fault diagnosis in industrial machinery. In all examples cited above,

outliers can be thought as observations that do not follow the expected behaviour. In time

series, the word can have two different meanings, and the semantic distinction between them

is mainly based on the interest of the analyst or the particular scenario considered. These

observations have been related to noise, erroneous, or unwanted data, which by themselves

are not interesting to the analyst [5]. In these cases, outliers should be deleted or corrected to

improve data quality and generate a cleaner dataset that can be used by other data mining

algorithms. For example, sensor transmission errors are eliminated to obtain more accurate

predictions, because the main objective is to make predictions. Nevertheless, in recent years

and especially in the area of time series data, many researchers have aimed to detect and

analyse unusual but interesting phenomena. Fraud detection is an example of this because

the main objective is to detect and analyse the outlier itself. These observations are often

referred to as anomalies [5], hence the name anomaly detection (AD) to describe the family

of practices and algorithms whose goal is to find and study these outliers among the general

data structure.

3

4 Chapter 1. TIME SERIES ANOMALY DETECTION

1.2 Anomaly Detection Taxonomy

Outlier detection techniques in time series data vary depending on the input data type, the

outlier behaviour and the nature of the method. Therefore, a comprehensive taxonomy is

proposed that encompasses these three aspects [1]. Figure 1.1 shows an overview of the

resulting structure that will be described in detail below.

Figure 1.1: Anomaly Detection Taxonomy

1.2.1 Input Data

The first axis represents the type of input data that the detection method is able to deal

with (that is, univariate or multivariate time series).

• Univariate time series - A univariate time series X = {xt}t∈T is an ordered set of

real-valued observations, where each observation is recorded at a specific time t ∈ T ⊆
Z+.

Then, xt is the point or observation recorded at time t and S = xp, xp+1, ..., Xp+n−1

the subsequence of length n ≤ T starting at position p, t ∈ T and p ≤ T − n + 1.

It is assumed that each observation xt is a realised value of a certain random variable

Xt. In figure 1.2a and 1.3a are reported examples of univariate time series.

• Multivariate time series - A multivariate time series X = {xt}t∈T is defined as

an ordered set of k-dimensional vectors, each of which is recorded at a specific time

t ∈ T ⊆ Z+ and consists of k real-valued observations, xt = x1t, x2t, ..., xkt. Note that

this definition could include irregularly sampled time series or dimensions (variables)

with different temporal granularities, assuming that some of the xit values might be

missing.

Then, xt is said to be a point and S = xp, xp+1, ..., xp+n−1 a subsequence of length n ≤ T

of the multivariate time series X, for pt ∈ T and p ≤ T − n + 1. For each dimension

j ∈ {1, ..., k}, Xj = {xjt}t ∈ T is a univariate time series, and each observation

xjt in the vector xt is a realised value of a random time-dependent variable Xjt in

Xt = (X1t, ..., Xkt). In this case, each variable could depend not only on its past

1.2 Anomaly Detection Taxonomy 5

values, but also on the other variables dependent on time. In figure 1.2b and 1.3b are

reported examples of multivariate time series.

(a) (b)

Figure 1.2: Time series examples - (a) Univariate time series with two point anomalies: O1 and O2. (b) Multivariate
time series with different point anomalies: O1, O2 and O3.

(a) (b)

Figure 1.3: Time series examples - (a) Univariate time series with two subsequence anomalies: O1 and O2. (b)
Multivariate time series with different subsequence anomalies: O1, O2 and O3.

1.2.2 Anomaly Type

The second axis describes the type of outlier that the method aims to detect (that is, a

point, a subsequence or a time series).

• Point outliers - A point outlier is a datum that behaves unusually in a specific time

instant when compared to the other values in the time series (global outlier) or to its

neighbouring points (local outlier). Point outliers can be univariate or multivariate

depending on whether they affect one or more time-dependent variables, respectively.

Figures 1.2a and 1.2b represent a univariate and a multivariate time series, respectively,

with point anomalies.

6 Chapter 1. TIME SERIES ANOMALY DETECTION

• Subsequence outliers - This term refers to consecutive points in time whose joint

behaviour is unusual, although each observation individually is not necessarily a point

outlier. Subsequence outliers can also be global or local and can affect one (univariate

subsequence outlier) or more (multivariate subsequence outlier) time-dependent vari-

ables. In figure 1.3a and 1.3b are shown a univariate and a multivariate time series,

respectively, with subsequence anomalies.

• Outlier time series - Complete time series can also be outliers, but can only be

detected when the input data are a multivariate time series. Figure 1.4 depicts an

example of an outlier time series.

Figure 1.4: Outlier time series example: the behaviour of Variable 4 significantly differs from the ones of the other
time series.

Observe that this axis is closely related to the input data type. If the method only allows

univariate time series as input, then no multivariate point or subsequence outliers can be

identified. In addition, outlier time series can only be found in multivariate time series.

Finally, it should be noted that outliers depend on the context. Thus, if the detection

method uses the entire time series as contextual information, then the detected outliers are

global. Otherwise, if the method only uses a segment of the series (a time window), then

the detected outliers are local, because they are outliers within their neighbourhood.

1.2.3 Nature of the Method

The third axis analyses the nature of the detection method used (that is, if the detection

method is univariate or multivariate). A univariate detection method only considers a single

time-dependent variable, whereas a multivariate detection method is able to simultaneously

work with more than one time-dependent variable. Note that the detection method can be

univariate, even if the input data are a multivariate time series, because an individual analysis

1.3 Point Anomalies 7

can be performed on each time-dependent variable without considering the dependencies

that may exist between the variables. In contrast, a multivariate technique cannot be used

if the input data are a univariate time series. Thus, this axis will only be mentioned for

multivariate time series data.

1.3 Point Anomalies

Point outlier detection is the most common anomaly detection task in the field of time series.

This section presents techniques for detecting this kind of outlier and, in particular, the focus

will be on two key characteristics that these methods may present:

• Temporality - whether or not the order of the time series is considered. The main

difference between these two approaches is that the latter yields the same results when

fed ordered and shuffled data. Within the methods that take into account temporality,

a subgroup of these makes use of time windows.

• Streaming data - whether or not the methoEvend is able to detect if a new incoming

datum is an outlier as soon as it arrives without the need of waiting for new data.

Within this group, some methods use a fixed model throughout the stream evolution,

whereas others update the models used for detection with the new information received:

either by retraining the whole model or by learning in an incremental manner.

In the following sub-section will be discussed some techniques developed to deal with uni-

variate and multivariate time series anomaly detection.

1.3.1 Univariate Time Series

The most popular and intuitive definition for the concept of point anomaly is a point that

significantly deviates from its expected value. Therefore, given a univariate time series, a

point at time t can be declared an outlier if the distance to its expected value is greater than

a predefined threshold τ :

|xt − x̂t| > τ, (1.1)

where xt is the observed data point, and x̂t is its expected value. The outlier detection

methods based on the strategy described in equation 1.1 are denominated model-based [1]

and are the most common approaches in the literature. Although each technique computes

the expected value x̂t and the threshold τ differently, they are all based on fitting a model

(either explicitly or implicitly). If x̂t is obtained using previous and subsequent observations

to xt (past, current, and future data), then the technique is within the estimation model-

based methods. In contrast, if xt is obtained relying only on previous observations to xt (past

8 Chapter 1. TIME SERIES ANOMALY DETECTION

data), then the technique is within the prediction model-based methods. In practice, the

main difference between using estimation or prediction methods is that techniques within

this latter category can be used in streaming time series, because they can determine whether

or not a new datum is an outlier as soon as it arrives.

Some other univariate outlier detection methods analyse all of the residuals obtained from

different models to identify the outliers. For example, Hochenbaum et al. [6] use STL

decomposition, and Akouemo and Povinelli [7, 8, 9] use ARIMA models with exogenous

inputs, linear regression, or artificial neural networks (ANNs). Although most of these

models can also be used in prediction, in this case, outliers are detected in the residual set

using past and future data. Specifically, once the selected model is learnt, hypothesis testing

is applied over the residuals to detect the outliers.

In contrast to estimation models, prediction models-based techniques fit a model to time

series and obtain x̂t using only past data; that is, without using the current point xt or

any posterior observations. Points that are very different from their predicted values are

identified as outliers. All of the techniques within this category can deal with streaming

time series. Within prediction-based methods, some use a fixed model and thus are not able

to adapt to the changes that occur in the data over time. For example, the DeepAnT outlier

detection approach presented by Munir et al. [10] applies a fixed Convolutional Neural

Networks (CNNs) to predict values in the future. Other methods use an autoregressive

model [11] or an ARIMA model [12], which obtain confidence intervals for the predictions

instead of only point estimates. Consequently, these methods implicitly define the value of

τ .

1.3.2 Multivariate Time Series

The input time series is sometimes a multivariate time series with possibly correlated vari-

ables rather than a univariate time series. In contrast to this case, the detection method

used to identify point outliers in multivariate time series can deal not only with a single

variable but also with more than one variable simultaneously. Additionally, a point outlier

in a multivariate time series can affect one (univariate point) or more than one (multivariate

point, a vector at time t) variable.

Univariate Techniques

Given that a multivariate time series is composed of more than one time-dependent variable,

a univariate analysis can be performed for each variable to detect univariate point outliers,

without considering dependencies that may exist between the variables. Although the lit-

erature barely provides examples of this type of approach, in essence, all of the univariate

techniques could be applied to each time-dependent variable of the input multivariate time

1.3 Point Anomalies 9

series. As one of the few examples, Hundman et al. [13] propose using the Long-Short-Term

Memory (LSTM) prediction model-based method to predict spacecraft telemetry and find

point outliers within each variable in a multivariate time series, following the idea of equation

1.1.

Correlation dependencies between the variables are not considered when applying univariate

techniques to each time-dependent variable, leading to a loss of information. To overcome

this problem and at the same time to leverage that univariate detection techniques are highly

developed, some researchers apply a preprocessing method to the multivariate time series to

find a new set of uncorrelated variables where univariate techniques can be applied. These

methods are based on dimensionality reduction techniques and, as depicted in figure 1.5, the

multivariate series is simplified to a lower dimension representation before applying univari-

ate detection techniques. Since the new series are combinations of the initial input variables,

the identified outliers are multivariate; that is, they affect more than one variable. Some of

those dimensionality reduction techniques are based on finding the new set of uncorrelated

variables by calculating linear combinations of the initial variables: Papadimitriou et al. [14]

propose an incremental Principal Component Analysis (PCA) algorithm to determine the

new independent variables; Galeano et al. [15] suggest reducing the dimensionality with

projection pursuit, which aims to find the best projections to identify outliers; Baragona

and Battaglia [16] propose using Independent Component Analysis (ICA) to obtain a set of

unobservable independent non-Gaussian variables.

Other techniques reduce the input multivariate time series into a single time-dependent vari-

able rather than into a set of uncorrelated variables. For example, Lu et al. [17] define the

transformed univariate series using the cross-correlation function between adjacent vectors

in time.

Figure 1.5: Example of multivariate time series dimensionality reduction.

Multivariate Techniques

In contrast to the univariate techniques, the multivariate methods deal simultaneously with

multiple time-dependent variables, without applying previous transformations. These ap-

proaches perform the detection directly using all the original input data variables and can

10 Chapter 1. TIME SERIES ANOMALY DETECTION

be divided into two groups:

• Model-based - As in univariate time series, these techniques can also be used to

detect point outliers in multivariate time series. The methods within this group are

based on fitting a model that captures the dynamics of the series to obtain expected

values in the original input time series. Then, for a predefined threshold τ , outliers

are identified if

||xt − x̂t|| > τ, (1.2)

where xt is the actual k-dimensional data point, and x̂t its expected value. Note that

this is a generalization of the definition given for the model-based techniques in uni-

variate time series. Also in this context can be found estimation and prediction models.

Within the former category, one of the most commonly used method is Autoencoders

(AEs), which are a type of neural network that learns only the most significant features

of a training set used as the reference of normality. Since outliers often correspond to

nonrepresentative features, autoencoders fail to reconstruct them, providing large er-

rors in equation 1.2 [18, 19].

Prediction model-based techniques also fit a model to a multivariate time series, but

the expected values are the predictions for the future made on the basis of past val-

ues: for example, the DeepAnt algorithm [10] is capable of detecting point outliers in

multivariate time series using the CNN prediction model.

• Dissimilarity-based - These techniques are based on computing the pairwise dissimi-

larity between multivariate points or their representations, without the need for fitting

a model. Therefore, for a predefined threshold τ , τ is a point outlier if

s(xt, x̂t) > τ, (1.3)

where xt is the actual k-dimensional points. These methods do not usually use the raw

data directly, but instead use different representation methods. For example, Cheng et

al. [20, 21] represent the data using a graph where nodes are the multivariate points of

the series and the edges the similarity values between them computed with the Radial

Basis Function.

Chapter 2

Neural Networks for Time Series

Forecasting

In the realm of model-based methods for time series anomaly detection, this chapter will

focus its attention on some key features of ANN. In particular, it will be presented a brief

overview of the architectures that will be used in order to develop the main network that

will be presented in the following chapters.

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have revolutionized the field of computer vision

and have become the go-to model for a wide range of visual recognition tasks. Their unique

architecture, inspired by the human visual system, allows CNNs to effectively capture spatial

hierarchies in images, making them highly effective for tasks like image classification, object

detection, and segmentation. This review aims to provide a comprehensive overview of

CNNs, discussing their architecture, key concepts, advancements, and applications.

2.1.1 Architecture of CNNs

CNNs are characterized by their use of convolutional layers, which apply convolutional fil-

ters to the input data. This process involves sliding filters across the input to produce

feature maps, capturing local patterns such as edges, textures, and shapes [22]. The typical

architecture of a CNN includes several types of layers:

• Convolutional Layers - These layers are the core building blocks of CNNs. They ap-

ply a set of learnable filters to the input, producing feature maps that highlight various

aspects of the input image. The convolution operation is mathematically represented

11

12 Chapter 2. NEURAL NETWORKS FOR TIME SERIES FORECASTING

as

(I ∗K)((x, y)) =
∑
m

∑
n

I(x+m, y +m) ·K(m,n) (2.1)

where I is the input image and K is the convolutional kernel. x and y represent the

pixel locations in the image, and inset m and n are indexes over the kernel entries.

• Pooling Layers - Pooling layers reduce the spatial dimensions of the feature maps by

sub-sampling the output from a convolutional layer: max-pooling or average-pooling

are two of the most popular kind. This down-sampling process helps to reduce the

computational load and make the representation more invariant to small translations

of the input.

• Fully Connected Layers - These layers are usually placed at the end of the network

and are responsible for making the final classification. They connect every neuron in

one layer to every neuron in the next layer, similar to traditional neural networks.

• Activation Functions: function applied to the output of different layers in order to

introduce non-linearity within the model, allowing to learn more complex patterns.

One example could be the ReLU function, defined as

ReLU(x) = max(0, x) (2.2)

Figure 2.1: Example of the general structure of a CNN architecture: here is presented how data flow into the
architecture and the model gets updated via back propagation.

2.1.2 Time Series Adaptation

Convolutional Neural Networks, originally designed for image processing tasks, have recently

been adapted for time series forecasting due to their ability to capture local patterns and

hierarchical features in the data. Using this framework, there are a few key concepts that

apply to CNNs which helps them in dealing with time series forecasting:

2.2 Long-Short-Term Neural Networks 13

• Temporal Convolutions - 1D convolutions are specifically designed to handle the

sequential nature of time series data, capturing temporal dependencies and patterns

[23].

• Receptive Field - The receptive field in a time series CNN determines how many time

steps in the past influence the prediction. Increasing the receptive field can capture

long-term dependencies.

• Dilated Convolutions - To capture larger temporal contexts without increasing the

computational burden, dilated convolutions introduce gaps between filter elements,

allowing for an exponentially growing receptive field with linear filter size increase.

• Residual Connections - Inspired by ResNet [24], residual connections help mitigate

the vanishing gradient problem, allowing for deeper networks and improving perfor-

mance on complex time series [25].

2.2 Long-Short-Term Neural Networks

Long-Short-Term Memory (LSTM) networks are a type of recurrent neural network (RNN)

architecture [26] designed to model sequential data and capture long-range dependencies.

Introduced by Hochreiter and Schmidhuber in 1997 [27], LSTMs have addressed many of

the limitations faced by traditional RNNs, such as the problem of vanishing gradients. This

chapter explores the structure and application of LSTMs, particularly in the domain of time

series forecasting.

2.2.1 Historical Background

Traditional RNNs were developed to handle sequential data by maintaining a hidden state

that captures information from previous time steps. However, RNNs struggle with learn-

ing long-term dependencies due to issues such as vanishing and exploding gradients, which

hinder their effectiveness in tasks that require memory over extended periods. LSTMs were

developed to overcome these challenges by introducing a memory cell capable of maintaining

its state for long periods of time.

The innovative architecture of LSTMs includes gating mechanisms that regulate the flow of

information, allowing the network to learn what to keep, discard, and output from the cell

state. This capability makes LSTMs particularly suitable for time series forecasting, where

understanding temporal dependencies is crucial.

14 Chapter 2. NEURAL NETWORKS FOR TIME SERIES FORECASTING

2.2.2 LSTM Architecture and Cell Structure

LSTM networks is composed of several units called cells. An LSTM cell comprises three

main gates: the input gate, the forget gate, and the output gate. These gates control the

cell state Ct and the hidden state ht, allowing the network to manage information over long

sequences. In the following, the three kinds of gate are briefly described and represented,

figure 2.2:

• Forget Gate - Decides what information to discard from the cell state.

ft = σ(Wf · [ht−1, xt] + bf) (2.3)

where σ is the sigmoid function, Wf is the weight matrix, ht−1 is the previous hidden

state, xt is the current input, and bf is the bias term.

• Input Gate - Determines what new information to store in the cell state.

it = σ(Wi · [ht−1, xt] + bf)C̃t = tanh(Wc · [ht−1, xt] + bf) (2.4)

• Cell State Update - Updates the cell state with the new information.

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.5)

• Output Gate - Controls what information to output from the cell state.

ot = σ(Wo · [ht−1, xt] + bo)ht = ot ∗ tanh(Ct) (2.6)

Figure 2.2: LSTM Cell Structure.

2.2 Long-Short-Term Neural Networks 15

2.2.3 Time Series Applications

Here are presented some of the most popular fields in which LSTM architecture has been

applied.

Financial Time Series

LSTMs are widely used in financial time series forecasting, where they predict stock prices,

commodity prices, and market indices [28]. The ability of LSTMs to capture temporal

dependencies and learn from past trends makes them valuable tools for financial analysts

and traders. Studies have shown that LSTMs outperform traditional statistical methods in

predicting complex financial time series.

Weather Prediction

Weather forecasting is highly dependent on understanding temporal patterns and depen-

dencies in meteorological data. LSTMs have been successfully applied to predict various

weather parameters, such as temperature, precipitation, and wind speed [29]. Their capa-

bility to handle long-range dependencies allows them to model seasonal patterns and trends

effectively.

Energy Load Forecasting

Accurate forecasting of energy demand is critical for efficient management and planning of

the power grid. LSTMs are used to predict energy consumption patterns by learning from

historical load data [30]. Their application helps to optimise energy distribution, reduce

costs, and improve the reliability of the power supply.

16

Chapter 3

Bayesian Inference and Neural Networks

3.1 Bayesian Inference

The Bayesian paradigm in statistics contrasts with the frequentist paradigm, with a major

area of distinction in hypothesis testing [31]. It is based on two simple ideas. The first is

that probability is a measure of belief in the occurrence of events, rather than the limit in

the frequency of occurrence when the number of samples goes toward infinity, as assumed

in the frequentist paradigm. The second idea is that prior beliefs influence posterior beliefs.

Bayes’ theorem, which states that:

P (H|D) =
P (D|H)P (H)

P (D)
=

P (D,H)∫
H
P (D,H ′)dH ′ (3.1)

summarizes this interpretation. Formula 3.1 is still true in the frequentist interpretation,

where H and D are considered as sets of outcomes.

The Bayesian interpretation considers H to be a hypothesis about which one holds some

prior belief, and D to be some data that will update one’s belief about H. The probability

distribution P (D|H) is called the likelihood. It encodes the aleatoric uncertainty in the

model, i.e., the uncertainty due to the noise in the process.

P (H) is the prior and P (D) =
∫
H
P (D,H ′)dH ′ the evidence. P (H|D) is called the pos-

terior. It encodes the epistemic uncertainty, i.e., the uncertainty due to the lack of data.

P (D|H)P (H) = P (D,H) is the joint probability of D and H. Using Bayes’ formula to train

a predictor can be understood as learning from the data D. In other words, the Bayesian

paradigm not only offers a solid approach for the quantification of uncertainty in deep learn-

ing models but also provides a mathematical framework to understand many regularization

techniques and learning strategies that are already used in classic deep learning [32] .

17

18 Chapter 3. BAYESIAN INFERENCE AND NEURAL NETWORKS

3.2 Bayesian Neural Networks

A Bayesian Neural Network (BNN) is defined slightly differently across the literature, but

a commonly agreed definition is that a BNN is a stochastic artificial neural network trained

using Bayesian inference [33]. The goal of artificial neural networks (ANNs) is to represent an

arbitrary function y = ϕ(x). Traditional ANNs such as feedforward networks and recurrent

networks are built using one input layer l0, a succession of hidden layers li, i = 1, ..., n−1, and
one output layer ln. (Here, n+1 is the total number of layers.) In the simplest architecture

of feedforward networks, each layer l is represented as a linear transformation, followed by

a nonlinear operation s, also known as an activation function:

l0 = x, (3.2)

li = si(Wili−1 + bi) ∀i ∈ [1, n], (3.3)

y = ln. (3.4)

Here, θ = (W, b) are the parameters of the network, where W are the weights of the net-

work connections and b the biases. A given ANN architecture represents a set of functions

isomorphic to the set of possible parameters θ.

Deep learning is the process of regressing the parameters θ from the training data D, where

D is composed of a series of input x and their corresponding labels y. The standard ap-

proach is to approximate a minimal cost point estimate of the network parameters θ, i.e., a

single value for each parameter, using the backpropagation algorithm, with all other possible

parametrizations of the network discarded.

The cost function is often defined as the log likelihood of the training set, sometimes with a

regularization term included. From a statistician’s point of view, this is a maximum likeli-

hood estimation (MLE), or a maximum a posteriori (MAP) estimation when regularization

is used. The point estimate approach, which is the traditional approach in deep learning, is

relatively easy to deploy with modern algorithms and software packages, but tends to lack

explainability [34].

The final model might also generalize in unforeseen and overconfident ways on out-of-training

distribution data points [35, 36]. This property, in addition to the inability of ANNs to say

“I don’t know”, is problematic for many critical applications. Of all the techniques that

exist to mitigate this [37], stochastic neural networks have proven to be one of the most

generic and flexible. Stochastic neural networks are a type of ANN built by introducing

stochastic components into the network. This is performed by giving the network either a

stochastic activation or stochastic weights to simulate multiple possible models θ with their

associated probability distribution p(θ). Thus, BNNs can be considered a special case of

ensemble learning [38].

3.2 Bayesian Neural Networks 19

The main goal of using a stochastic neural network architecture is to obtain a better idea of

the uncertainty associated with the underlying processes. This is accomplished by comparing

the predictions of multiple sampled model parametrizations θ. If the different models agree,

then the uncertainty is low. If they disagree, then the uncertainty is high. This process can

be summarized as follows:

θ ∼ p(θ), (3.5)

y = ϕθ(x) + ϵ (3.6)

where ϵ represents random noise to account for the fact that the function ϕ is only an

approximation.

Figure 3.1: Workflow to design (a), train (b) and use a BNN for predictions (c).

A BNN can then be defined as any stochastic artificial neural network trained using Bayesian

inference [39]. To design a BNN, the first step is the choice of a deep neural network

architecture, i.e., a functional model. Then, one has to choose a stochastic model, i.e., a

prior distribution over the possible model parametrization p(θ) and a prior confidence in the

predictive power of the model p(y|x, θ) (Figure 3.1a). The model parametrization can be

considered to be the hypothesis H and the training set is the data D. The choice of a BNN’s

stochastic model is somehow equivalent to the choice of a loss function when training a point

estimate neural network. The model parameters will be denoted by θ, the training set by D,

the training inputs by Dx, and the training labels by Dy. By applying Bayes’ theorem, and

enforcing independence between the model parameters and the input, the Bayesian posterior

can be written as:

p(θ|D) =
p(Dy|Dx, θ)p(θ)∫

θ
p(Dy|Dx, θ′)p(θ′)dθ′

∝ p(Dy|Dx, θ)p(θ) (3.7)

The Bayesian posterior for complex models such as artificial neural networks is a high di-

mensional and highly non-convex probability distribution [40]. This complexity makes com-

20 Chapter 3. BAYESIAN INFERENCE AND NEURAL NETWORKS

puting and sampling it using standard methods an intractable problem, especially because

computing the evidence
∫
θ
p(Dy|Dx, θ

′)p(θ′)dθ′ is difficult. To address this problem, two

broad approaches have been introduced: (1) Markov chain Monte Carlo and (2) variational

inference.

When using a BNN for prediction, the probability distribution p(y|x,D) [12], called the

marginal distribution and which quantifies the model’s uncertainty on its prediction, is

of particular interest. Given p(θ|D), p(y|x,D) can be computed as:

p(y|x,D) =

∫
θ

p(y|x, θ′)p(θ′|D)dθ′ (3.8)

In practice, p(y|x,D) is sampled indirectly using Equation 3.6. The final prediction can be

summarized by statistics computed using a Monte Carlo approach (3.1c). A large set of

weights θi is sampled from the posterior and used to compute a series of possible outputs yi

, as shown in Algorithm 1, which corresponds to samples from the marginal distribution.

In Algorithm 1, Y is a set of samples from p(y|x,D) and θ a collection of samples from

p(θ|D). Usually, aggregates are computed on those samples to summarize the uncertainty of

the BNN and obtain an estimator for the output y. This estimator is denoted by ŷ. When

performing regression, the procedure that is usually used to summarize the predictions of a

BNN is model averaging [23]:

ŷ =
1

|Θ|
∑
θi∈Θ

ϕθi(x) (3.9)

This approach is so common in ensemble learning that it is sometimes called ensembling.

To quantify uncertainty, the covariance matrix can be computed as follows:

∑
y|x,D

=
1

|Θ| − 1

∑
θi∈Θ

(ϕθi(x)− ŷ)(ϕθi(x)− ŷ)T (3.10)

Algorithm 1 Inference procedure for a BNN.

Define p(θ|D) = p(Dy |Dx,θ)p(θ)∫
θ p(Dy |Dx,θ′)p(θ′)dθ′

for i = 0 to N do
Draw θi ∼ p(θ|D);
yi = ϕθi(x)

end forreturn Y = {yi|i ∈ [0, N)},Θ = {θi|i ∈ [0, N)}

3.3 Bayesian Learning Advantages 21

3.3 Bayesian Learning Advantages

One of the major critiques of Bayesian methods is that they rely on prior knowledge. This is

especially true in deep learning, as deriving any insight about plausible parametrization for

a given model before training is very challenging. Thus, why use Bayesian methods for deep

learning? Discriminative models implicitly represent the conditional probability p(y|x, θ),
and Bayes’ formula is an appropriate tool to invert conditional probabilities, even if one has

little insight about p(θ) a priori.

While there are strong theoretical principles and schema upon which this Bayes’ formula can

be based [41], here are presetend some of the practical benefits granted by using BNN.

• First, Bayesian methods provide a natural approach to quantify uncertainty in deep

learning since BNNs have better calibration than classical neural networks [42, 43, 44],

i.e., their uncertainty is more consistent with the observed errors. They are less often

overconfident or underconfident.

• Second, a BNN allows distinguishing between the epistemic uncertainty p(θ|D) and the

aleatoric uncertainty p(y|x, θ) [45]. This makes BNNs very data-efficient since they can

learn from a small dataset without overfitting [46]. At prediction time, out-of-training

distribution points will have high epistemic uncertainty instead of blindly giving a

wrong prediction.

• Third, the no-free-lunch theorem for machine learning [47] can be interpreted as stating

that any supervised learning algorithm includes some implicit prior. Bayesian methods,

when used correctly, will at least make the prior explicit. Integrating prior knowledge

into ANNs, which work as black boxes, is difficult but not impossible. In Bayesian deep

learning, priors are often considered as soft constraints, analogous to regularization,

or data transformations such as data augmentation in traditional deep learning. Most

regularization methods used for point estimate neural networks can be understood

from a Bayesian perspective as setting a prior.

22

Chapter 4

Bayesian Autoencoder for Confidence

Interval Forecasting

4.1 Introduction

As stated in the first chapter of this work, accurate time series forecasting and reliable es-

timation of the prediction uncertainty are critical for anomaly detection, optimal resource

allocation, budget planning, and other related tasks [48]. This problem is challenging, es-

pecially during high variance segments (e.g., holidays, sporting events), because extreme

event prediction depends on numerous external factors that can include weather, city pop-

ulation growth, or marketing changes (e.g., driver incentives) [49] that all contribute to the

uncertainty of the forecast. LSTM model [27] has gained popularity due to its end-to-end

modeling, ease of incorporating exogenous variables, and automatic feature extraction abil-

ities [50]. By providing a large amount of data across numerous dimensions, it has been

shown that an LSTM network can model complex nonlinear feature interactions [51], which

is critical for modeling complex extreme events. A recent paper from 2017 [52] has shown

that a neural network forecasting model is able to outperform classical time series methods

in cases with long, interdependent time series. However the problem of estimating the un-

certainty in time-series predictions using neural networks remains an open question. The

prediction uncertainty is important for assessing how much to trust the forecast produced

by the model, and has profound impact in anomaly detection.

In this work is proposed a novel end-to-end model architecture for time series prediction,

and quantify the prediction uncertainty using Bayesian Neural Network, which is further

used for large-scale anomaly detection.

Under this framework, the prediction uncertainty can be decomposed into three types: model

uncertainty, inherent noise, and model misspecification. Model uncertainty, also referred

to as epistemic uncertainty, captures the ignorance of the model parameters, and can be

23

24 Chapter 4. BAYESIAN AUTOENCODER FOR CONFIDENCE INTERVAL FORECASTING

reduced as more samples being collected. Inherent noise, on the other hand, captures

the uncertainty in the data generation process and is irreducible. These two sources have

been previously recognized with successful application in computer visions [53]. The third

uncertainty from model misspecification, however, has been long-overlooked [48]. This

captures the scenario where the testing samples come from a different population than the

training set, which is often the case in time series anomaly detection. Similar ideas have

gained attention in deep learning under the concept of adversarial examples in computer

vision [54], but its implication in prediction uncertainty remains unexplored.

This thesis presents a novel hybrid model that combines the temporal learning capabilities

of LSTMs with the spatial feature extraction prowess of CNNs, encapsulated within an Au-

toencoder architecture. Taking advantage of bayesian learning techniques the model is able

to compute confidence interval for its prediction allowing to make anomaly detection without

the need of training a trigger.

4.2 Bayesian Approximation

In order to compute confidence intervals for the prediction made by the architecture which

will be presented in the next section, the network developed is inspired by the Monte Carlo

dropout (MC dropout) framework proposed in [55] and [56], which requires no change of the

existing model architecture and provides uncertainty estimation almost for free. Specifically,

stochastic dropouts are applied after each hidden layer, and the model output can be ap-

proximately viewed as a random sample generated from the posterior predictive distribution

[57]. As a result, the model uncertainty can be estimated by the sample variance of the

model predictions in a few repetitions, as explained in the previous chapter, 3.

4.2.1 Method

Given a trained neural network f Ŵ (·) where Ŵ represents the fitted parameters, as well as a

new sample x∗, the goal is to evaluate the uncertainty of the model prediction, ŷ∗ = f Ŵ (x∗).

Specifically, to quantify the prediction standard error, η so that an approximate α-level

prediction interval can be constructed by

[ŷ∗ − zα/2η, ŷ
∗ + zα/2η] (4.1)

where zα/2 is the upper α/2 quantile of a standard Normal. This prediction interval is critical

for various tasks. For example, in anomaly detection, anomaly alerts will be fired when the

observed value falls outside the constructed 95% interval. As a result, underestimating η will

lead to high false positive rates. In the rest of this section, we will present our uncertainty

4.2 Bayesian Approximation 25

estimation algorithm in Section 3.1, which accounts for three different sources of prediction

uncertainties. This framework can be generalized to any neural network architectures.

4.2.2 Prediction Uncertainty

Let fW (·) the functional neural network representation, where f captures the network archi-

tecture, and W is the collection of model parameters. In a Bayesian neural network, a prior

is introduced for the weight parameters, and the model aims to fit the optimal posterior

distribution. For example, in regression, a Gaussian prior is commonly assumed:

W ∼ N(0, I) (4.2)

Let us further specify the data generating distribution p(y|fW (x)). In regression, is often

assume

y|W ∼ N(fW (x), σ2) (4.3)

with some noise level σ. In classification, the softmax likelihood is often used. For time

series prediction, the focus will be on the regression setting. Given a set of N observations

X = {x1, ..., xN} and Y = {y1, ..., yN}, Bayesian inference aims at finding the posterior

distribution over model parameters p(W |X, Y). With a new data point x∗, the prediction

distribution is obtained by marginalizing out the posterior distribution:

p(y∗|x∗) =

∫
W

p(y∗|fW (x∗))p(W |X, Y)dW (4.4)

In particular, the variance of the prediction distribution quantifies the prediction uncertainty,

which can be further decomposed using law of total variance:

Var(y∗|x∗) = Var[E(y∗|W,x∗)] + E[Var(y∗|W,x∗)] (4.5)

= Var(fW (x∗)) + σ2 (4.6)

It can immediately be seen that the variance is decomposed into two terms:

(i) Var(fW (x∗)), which reflects our ignorance over model parameter W , referred to as the

model uncertainty ;

(ii) σ2 which is the noise level during data generating process, referred to as the inherent

noise.

However, this is not always the case in practice. In anomaly detection, in particular, it is

expected that certain time series will have unusual patterns, which can be very different from

the trained model. Therefore, here is proposed that a complete measurement of prediction

26 Chapter 4. BAYESIAN AUTOENCODER FOR CONFIDENCE INTERVAL FORECASTING

uncertainty should be a combination from three sources: (i) model uncertainty, (ii) model

misspecification, and (iii) inherent noise level [48].

Model uncertainty

The key to estimating model uncertainty is the posterior distribution p(W |X, Y), also re-

ferred to as Bayesian inference. This is particularly challenging in neural networks because

the non-conjugacy due to nonlinearities. There have been various research efforts on approx-

imate inference in deep learning. Here, following the idea in [55] and [56] to approximate

model uncertainty using Monte Carlo dropout (MC dropout). The algorithm proceeds as fol-

lows: given a new input x∗, we compute the neural network output with stochastic dropouts

at each layer. That is, randomly dropout each hidden unit with certain probability p. This

stochastic feed-forward is repeated B times, and we obtain {ŷ∗(1), ..., ŷ∗(B)}. Then the model

uncertainty can be approximated by the sample variance:

V̂ar(fW (x∗)) =
1

B

B∑
b=1

(ŷ∗(b) − ¯̂y∗)2 (4.7)

where ¯̂y∗ = 1
B

∑B
b=1 ŷ

∗
(b) [55].

Model misspecification

Next, the problem of capturing potential model misspecification has to be adressed. In

particular, the goal is to capture the uncertainty when predicting unseen samples with very

different patterns from the training data set. In [48] is proposed to account for this source

of uncertainty by introducing an encoder-decoder to the model framework. The idea is to

train an encoder that extracts the representative features from a time series, in the sense

that a decoder can reconstruct the time series from the encoded space. At test time, the

quality of encoding of each sample will provide insight on how close it is to the training

set. Another way to think of this approach is to first fitting a latent embedding space for

all training time series using an encoder-decoder framework. Then, measuring the distance

between test cases and training samples in the embedded space.

Inherent noise

Finally, the inherent noise level σ2 needs to be estimated. In the original MC dropout

algorithm [55], this parameter is implicitly determined by a prior over the smoothness of W .

As a result, the model could end up with drastically different estimations of the uncertainty

level depending on this pre-specified smoothness [57]. This dependency is undesirable in

anomaly detection, because would be desirable for the uncertainty estimation to also have

4.2 Bayesian Approximation 27

robust frequentist coverage, but it is rarely the case that the correct noise level is known a

priori. In [48] is proposed a simple and adaptive approach that estimates the noise level via

the residual sum of squares, evaluated on an independent held-out validation set. Following

the steps of the original paper [48] it can be shown that:

σ̂2 =
1

V

V∑
v=1

(y′v − fW (x′
v))

2 (4.8)

where V is the size of the validation set, provides an asymptotically unbiased estimation on

the inherent noise level. In the finite sample scenario, it always overestimates the noise level

and tends to be more conservative.

At last, here are presented the MC dropout algorithm and the one needed to compute

the finel boundaries of the prediction confidence intervals.

Algorithm 2 MC Dropout.

Input: data x∗, encoder g(·), prediction network h(·), dropout probability p, number of
iterations B
Output: prediction ŷ∗mc, uncertainty η1
for b = 1 to B do

e∗(b) ← VariationalDropout(g(x∗), p)

z∗(b) ← Concatenate(e∗(b), external feature)

ŷ∗(b) ← Dropout(h(z∗(b)), p)
end for
ŷ∗mc ← 1

B

∑B
b=1 ŷ

∗
b

η21 ← 1
B

∑B
b=1(ŷ

∗
b − ŷ∗)2 return ŷ∗mc, η1

Algorithm 3 Inference.

Input: data x∗, encoder g(·), prediction network h(·), dropout probability p, number of
iterations B
Output: prediction ŷ∗, uncertainty η
ŷ∗mc, η1 ← MCDropout(x∗, g, h, p, B)
for x′

v in validation set {x′
1, ...x

′
V } do

ŷ′v ← h(g(x′
v))

end for
η22 ← 1

V

∑V
v=1(ŷ

∗
v − y∗)2

η ←
√

η21 + η22 return ŷ∗, η

28 Chapter 4. BAYESIAN AUTOENCODER FOR CONFIDENCE INTERVAL FORECASTING

4.3 Model Design

In this section is presented BeaConF (Bayesian Autoencoder for Confidence interval For-

casting).

The complete architecture of the neural network is shown in Figure 4.1. The network con-

tains two major components: (i) an encoder-decoder framework that captures the inherent

pattern in the time series, which is learned during pre-training step, and (ii) a prediction

network that takes input from both the learned embedding from encoder-decoder, as well as

any potential external features to guide the prediction.

Figure 4.1: Neural network architecture, with a pre-training phase using a LSTM encoder-decoder, followed by a
prediction network, with input being the learned embedding concatenated with external features.

4.3.1 Autoencoder

Prior to fitting the prediction model, we first conduct a pre-training step to fit an encoder

that can extract useful and representative embeddings from a time series. The goals are to

ensure that:

(i) the learned embedding provides useful features for prediction;

(ii) unusual input can be captured in the embedded space, which will get further propa-

gated to the prediction network in the next step.

Here, an encoder-decoder framework with two-layer LSTM cells is used. Specifically, given

a univariate time series {xt}t, the encoder reads in the first T timestamps {x1, ..., xT}, and

4.3 Model Design 29

constructs a fixed-dimensional embedding state. After then, from this embedding state, the

decoder constructs the following F timestamps {xT + 1, ..., xT + F} with guidance from

{xT − F + 1, ..., xT} (Figure 4.2). The intuition is that in order to construct the next few

timestamps, the embedding state must extract representative and meaningful features from

the input time series. This design is inspired from the success of video representation learning

using a similar architecture [58].

4.3.2 Prediction Network

After the encoder-decoder is pre-trained, it is treated as an intelligent feature-extraction

blackbox. Specifically, the last LSTM cell states of the encoder are extracted as learned

embedding. Then, a prediction network is trained to forecast the next one or more times-

tamps using the learned embedding as features. In the scenario where external features are

available, these can be concatenated to the embedding vector and passed together to the

final prediction network.

Inspired by DeepAnt [10], here a CNN is used as prediction network: two convolutional

layers, each followed by a max-pooling layer, are used in this architecture as shown in Figure

4.2. The input layer has w input nodes as we have converted the data into w latent vectors.

Each convolution layer is composed of 32 filters (kernels) followed by an element-wise acti-

vation function, ReLU. Last layer of the network is a fully connected (FC) layer in which

each neuron is connected to all the neurons in the previous layer. This layer represents the

network prediction for the next time stamp. The number of nodes used in the output layer

are equal to F . In our case, we are predicting only the next time stamp, so the number of

output node is 1.

Figure 4.2: Predictor architecture for time series forecasting: A convolutional neural network with two convolutional
layers, two max pooling, and a fully connected layer.

30

Chapter 5

Benchmark Datasets

Before proceeding with the experiments conducted in order to determine BAeCon perfor-

mances, let us review the main dataset that was used in order to test it and compare it with

respect to other already existing algorithms.

In this short chapter will be presented NAB benchmark [59], its data and scoring systems

with its merits and limitations.

5.1 Numenta Anomaly Benchmark

Benchmarks designed for static datasets do not adequately capture the requirements of real-

time applications. For example, scoring with standard classification metrics such as precision

and recall do not suffice because they fail to reflect the value of early detection. An artificial

separation into training and test sets does not properly capture a streaming scenario nor

does it properly evaluate a continuously learning algorithm. The NAB methodology and

scoring rules (described below) are designed with such criteria in mind. Following insights

from industry experts [59] it is beneficial for the industry to include real-world labeled data

from multiple domains. Such data is rare and valuable, and NAB attempts to incorporate

such a dataset as part of the benchmark.

5.1.1 Dataset

NAB aims to represent the variety of anomalous data and the associated challenges detectors

face in real-world streaming applications. We define anomalies in a data stream to be

patterns that do not conform to past patterns of behavior for the stream. This definition

encompasses both point anomalies (or spatial anomalies) as well as temporal anomalies.

For example, a spiking point anomaly occurs when a single data point extends well above

or below the expected range. Streaming data commonly also contains temporal anomalies,

31

32 Chapter 5. BENCHMARK DATASETS

such as a change in the frequency, sudden erratic behavior of a metric, or other temporal

deviations. Anomalies are defined with respect to past behavior. This means a new behavior

can be anomalous at first but ceases to be anomalous if it persists; i.e. a new normal pattern

is established. Fig. 1 shows a few representative anomalies taken from the NAB dataset.

The data currently in the NAB corpus represents a variety of metrics ranging from IT metrics

such as network utilization to sensors on industrial machines to social media chatter. We

also include some artificially-generated data files that test anomalous behaviors not yet

represented in the corpus’s real data, as well as several data files without any anomalies.

The current NAB dataset contains 58 data files, each with 1000-22,000 data instances, for a

total of 365,558 data points. The NAB dataset is labeled by hand, following a meticulous,

documented procedure. Labelers must adhere to a set of rules when inspecting data files for

anomalies, and a label-combining algorithm formalizes agreement into ground truth labels.

The process is designed to mitigate human error as much as possible1. In addition a smooth

scoring function (described below) ensures that small labeling errors will not cause large

changes in reported scores.

It is often prohibitively expensive to collect an accurately labeled set of anomalous data

instances that covers all types of anomalous behavior [60]. A key element of the NAB

dataset is the inclusion of real-world data with anomalies for which the causes are known.

5.1.2 NAB Scoring System

In NAB an anomaly detector accepts data input and outputs instances which it deems to

be anomalous. The NAB scoring system formalizes a set of rules to determine the overall

quality of anomaly detection. We define the requirements of the ideal, real-world anomaly

detector as follows:

1. Detects all anomalies present in the streaming data.

2. Detects anomalies as soon as possible, ideally before the anomaly becomes visible to a

human.

3. Triggers no false alarms (no false positives).

4. Works with real time data (no look ahead).

5. Is fully automated across all datasets (any data specific parameter tuning must be

done online without human intervention).

There are three key aspects of scoring in NAB:

1The full labeling process and rules can be found in the NAB wiki, along with the label-combining source
code, in the NAB repository.

5.1 Numenta Anomaly Benchmark 33

• anomaly windows - An anomaly window consists of a sequence of data points cen-

tered around one or more true anomalies in a dataset. These windows are used by the

NAB scoring function to compute weights of individual anomaly detections for a given

dataset. It is of note that, in the NAB scoring system, if there are multiple detections

within a particular anomaly window, then only the earliest detection is considered as

a true positive, and all subsequent anomaly detections within the window are ignored.

• scoring function - NAB defines three different application profiles: standard, reward

low false positives, and reward low false negatives. In the standard profile, relative

weights are assigned to true positives, false positives and false negatives, based on the

window size, whereas in the reward low false positives profile and the reward low false

negatives profile, greater penalties are assigned for false positives and false negatives

respectively. NAB provides anomaly scores for each of these application profiles for

every dataset.

• application profiles - Given an anomaly window and an application profile, NAB uses

the following sigmoidal scoring function to compute weight of each anomaly detection:

σA(y) = (ATP − AFP)

(
1

1 + e5y

)
− 1 (5.1)

where A is the given application profile, y is the relative position of the detection in

the given anomaly window,ATP is the corresponding weight of true positives in profile

A, and AFP is the corresponding weight of false positives in profile A. This scoring

function is designed so as to give higher positive scores to true positive detections earlier

in a window and negative scores to detections outside the window. Using the weights

of individual detections, the ‘raw score’ of a dataset, denoted by SA
d is calculated as

follows:

SA
d =

(∑
y∈Yd

σA(y)

)
+ AFNfd (5.2)

In this equation, the sum of weighted scores of true positives and false positives is com-

puted, which is then discounted by the weighted sum of missed detections computed

as AFNfd, where AFN denotes the weight of false negatives in profile A, and fd denotes

the total number of false negatives (or missed detections) in dataset d. Using Eq. 5.2,

the final normalized, reported score over all 58 datasets is computed as follows:

SA
NAB = 100 · SASA

null

SA
perfectS

A
null

(5.3)

where SA is the sum of raw scores over all datasets, (i.e.
∑

d S
A
d), SA null is the

sum of raw scores achieved by a null detector (i.e., the one that outputs no anomaly

34 Chapter 5. BENCHMARK DATASETS

detections), and , SA
perfect is the sum of raw scores achieved by a (hypothetical) perfect

detector (i.e., the one that outputs all true positives and no false positives/negatives).

5.2 NAB Limitations

Following the work of Singh et al. [61] in this section are presented some limitation that are

inherit of the NAB benchmark.

5.3 Dataset

1. Missing values in datasets - A time-series is generally composed of data points that

are collected at a constant interval or frequency (e.g., every 1 hour, every 10 minutes).

In other words, the pacing of observation times is constant in a general time series.

In scenarios where observations are not collected at a constant interval, one or more

forms of data preprocessing is done to create equally spaced time series before fitting

a model to the dataset, failing which a time series model may yield inaccurate results.

NAB provides time series datasets that are mostly composed of observations gathered

at a constant interval, but some of the datasets do not have this desirable property

due to which time series models fail to perform well on these datasets.

2. Difference in data distribution - In many NAB datasets (like occupancy6005,

speed6005), the distribution of data for the first few days (e.g., 4 or 5 days) happens to

be quite different from the distribution for rest of the time series. This characteristic

of certain NAB datasets negatively impacts with the training of machine learning or

time series models because the first few days of data is typically used for training these

models while rest of the dataset is used for the testing purpose. This difference in

training and test distributions is one of the potential causes of low performance of

different models that have been so far evaluated on NAB datasets.

5.4 Scoring System

1. Determining anomaly window’s size - The NAB scoring system is based on

anomaly windows, but there is no systematic way of determining the optimal size

of anomaly windows. Lavin and Ahmad in [59] chose the window size to be 10% the

number of instances in a dataset, divided by the number of anomalies in the given

dataset. But, window size cannot be chosen in this way in many real-world problem

settings, especially in streaming environments, because the number of instances in a

5.4 Scoring System 35

dataset may not be known in advance (e.g., in streaming environment) and more im-

portantly, it is impossible to know the number of anomalies in a streaming dataset

before an anomaly detection algorithm is executed on the dataset. This leaves little

room for applicability of the proposed way of selecting window size in real-life problem

scenarios.

2. Gaps in scoring function - The scoring function of the NAB framework is primarily

based on Eq. 5.1, which is used to compute the weight of each detection given an

anomaly window and an application profile. But, this equation is not well-defined and

has the following gaps. First, it is unclear as to how y (which denotes the relative

position of a detection in the given anomaly window) should be computed. Hence, the

range of values that y can take on remains unknown. Second, in Eq. 5.1, value of 5y is

chosen as the power of e (in the second term). But the reason for choosing the value

of 5 is not clear, due to which it remains unknown as to what impact can other values,

like 5.1 or 50, have on the weights of detections and how will it change the overall NAB

score of an algorithm. Third, the scoring example provided in [59] does not match with

Eq. 5.1. For convenience sake, we replicate that figure in Fig. 5.1a, where we see that

when the relative position of the detection is outside the anomaly window, i.e., at y

(approximately) equal to −5, the scaled sigmoid value (i.e., the second term of Eq.

5.1) is −1. This is incorrect as, in this case, the second term of Eq. 5.1 would yield

a value close to 0, i.e., −0.0000000000139 (calculated as 1
1+e5(−5) − 1). This is shown

pictorially in Fig. 5.1b. Similarly, when the relative position of the detection is −2 in

the anomaly window, then the scaled sigmoid value is +0.9999. This is incorrect as

well as, the second term of Eq. 5.1 would still yield a value close to 0, i.e., −0.0000453,
(calculated as 1

1+e5(−2) − 1).

Figure 5.1: Example of NAB scoring system: (a) Example as provided originally in the NAB framework description
[59] (b) Example after analysis and corrections

36 Chapter 5. BENCHMARK DATASETS

5.4.1 Alternative Metrics

Given the limitation this scoring system present, the algorithm presented in this thesis is

going to be tested using a different metric.

Let us call precision the measure of how often the algorithm correctly predicts an anomaly:

precision =
TP

TP + FP
(5.4)

and recall the measure of how often a a machine learning model correctly identifies anomalies

from all the actual ones:

recall =
TP

TP + FN
(5.5)

Notice the fact that a low value for the recall indicates that the algorithm in question is

classifying incorrectly a lot of anomalies as ordinary data, while a low precision indicates the

fact that a lot of ordinary points are misclassified as anomalies. These metrics are widely

spread across the literature and already used to benchmark a variety of different algorithms.

The results that will be presented in the following chapters are going to me measured using

the F-score which consists in the harmonic mean between precision and recall:

F − score = 2 · precision · recall
precision+ recall

(5.6)

The highest possible value of an F-score is 1.0, indicating perfect precision and recall, and

the lowest possible value is 0, if precision and recall are zero.

Chapter 6

Experiments

In this chapter is described the methodology implemented in order to train, validate and

test BAeCon using the NAB dataset, taking into account its limitations, and confronting

the results with some of the most successful results in the literature.

The entire implementation has been carried using Python as programming language and in

particular the PyTorch package [62].

6.1 Data Preparation

In order to get the algorithm work at its full capabilities and taking into consideration the

fact that data coming from the NAB datasets do differ a lot just think about their origin,

the data preprocessing needs to be standardised across each one of the time-series. Besides,

the data need to be arranged and structured based on the width of the window used for

making the prediction and splitted into training, validation and test sets.

6.1.1 Scaling

All data have been rescaled projecting all data points from the time series in a range between

0 and 1. This was operated by using the functionMinMaxScaler from the Scikit-learn Python

package [63].

6.1.2 Window Size

Following the guide lines from the original paper from Numenta [59], the windows size has

been set to be equal to 10% of the time-series length, meaning the BAeCon can use an array

of that length as input in order to cast a prediction about the future points.

37

38 Chapter 6. EXPERIMENTS

6.1.3 Data Split

Each time-series has been split into three sub-series in order to train, validate and test the

algorithm, respectively 70%, 15% and 15% of the time-series length. Notice that the training

and validation sets are not allowed to contain any anomaly. That is because the goal is to

make the network learn a clean representation of the time-series so that it will be able to

recognise variation when it will deal with anomalies.

Figure 6.1: Time series split into training, validation and testing sets. Notice the fact that the anomaly is contained
only within the test subset of data.

6.2 Autoencoder Training

In order to train the model, the data have been arranged into batch of 128 sets (input points

within the window, and target output) and the procedure is set to last up to 150 epochs: if

the training loss function were to reach convergence, with a tolerance of 1e−6, the procedure
is stopped. At the end of each epoch the model is tested on the validation set and the loss

function is evaluated on it in order to check the training convergence and to allow to save the

model version that better performed on never seen data. In Fig. 6.3 can be seen 20 randomly

sampled training procedures for the Autoencoder: to be noted that for each time-series in

the NAB datasets the loss functions reach convergence.

In order to train the Autoencoder the following parameters have been set:

• Loss function - Mean Squared Error (MSE).

• Optimizer - Adam [64] with learning rate equal to 1e− 3.

• MC dropout probability p - has originally been set to 0.5. The algorithm converge

for a wide range o values, in the 0 to 1 interval, but as will be demonstrated in the

following sections, it role is to allow the user to adapts the final confidence interval for

the final prediction.

6.3 Predictor Training 39

Figure 6.2: Training procedure for 20 randomly sampled NAB time-series

6.3 Predictor Training

Once the Autoencoder has been trained, its decoder part can be detached and connect the

encoder to the CNN which will act as a predictor. It is important to note that MC dropout

is applied at this new part of the network.

The procedure remains the same as the one for the autoencoder.

40 Chapter 6. EXPERIMENTS

Figure 6.3: Training procedure for 20 randomly sampled NAB time-series with the CNN attached to the Encoder.

6.4 MC Dropout and p parameter

Has already discussed on in chapter 3, MC dropout is used in order to introduce stochasticity

into the model prediction so that it is possible to build a statistic for the prediction hence

defining a confidence interval for anomaly detection. Intuitively, as the value of p increase

the forecast made for a given data window become more and more variable, broadening its

possible value distribution.

This as important repercussion over the computation as the confidence intervals: since they

are calculated from the standard variation of the forecast set, the wider is the prediction

distribution the more coverage the uncertainty will have over the data broadening the con-

fidence intervals.

This behaviour has been tested for 20 randomly sampled time series coming from the NAB

dataset: fixing the input data feed to the network the forecast has been repeated 100 times

for different values of p, in particular 0.10, 0.25, 0.50, 0.75. Has expected, upon inspection

of the prediction distribution it can be verified that the tails do in fact become more and

6.4 MC Dropout and p parameter 41

more prominent as p increases, as shown in Fig. 6.4.

The final score for the algorithm will be computed using the value of p yielding the best

results. In order to look for such value, the average precision and recall of the algorithm as

been computed over the different domains of the NAB time series for different values of p:

the best results were achieved by p = 0.3 as can be seen in Fig. 6.5.

Construction the confidence intervals in this way, when computing the average data coverage

across all entire time series for all the ones in the data set, the result is around 94%, meaning

that the algorithm is accepting data as not an anomaly with the confidence probability.

Figure 6.4: For 20 randomly sampled time series from the NAB dataset BAeCon has been trained and given a fixed
input from the respective test dataset the forecast has been performed 100 times with different setting for p. On the
y axis are represented the counting for the histograms while on the x axis is represented each prediction shifted by
the set average value.

42 Chapter 6. EXPERIMENTS

Figure 6.5: Precision - Recall trade-off: in blue, on the left y axis, there is the precision computed as averages over
the different domains with different values of p. On the right y axis in red, can be found the recall.

6.5 Results 43

6.5 Results

In this section are presented the results scored by BAeCon on the entire NAB dataset

clustered by the different domain to which belongs the time series. The F-score is compared

with the one coming from different anomaly detection algorithms such as: Twitter’s Anomaly

Detection (Twitter ADVec), context OSE, Skyline, Numenta, Multinomial Relative Entropy

[65], Bayes changepoint detection [66], EXPoSE [67], simple sliding threshold and DeepAnt

[10].

As can be seen from table 6.1, BAeCon is the algorithm that yield the best average F-

score across all the domain of the NAB dataset. That is probably due to the average low

recalls that the other algorithms yield, as shown in [10], meaning that in general all of

this models misclassify anomalies as normal behaving data thus resulting in a high number

of false negatives. Even when considering the precision metric BAeCon score on average

better better than its competitor, meaning that most of the registered anomalies are in fact

abnormal data and the number of false positives is low.

B
ay
es

C
h
an

ge
p
oi
n
t

C
on

te
x
t
O
S
E

E
X
P
oS

E

H
T
M

J
A
V
A

K
N
N

C
A
D

N
u
m
en
ta

N
u
m
en
ta
T
M

R
el
at
iv
e
E
n
tr
op

y

S
k
y
li
n
e

T
w
it
te
r
A
D
V
ec

W
in
d
ow

ed
G
au

ss
ia
n

D
ee
p
A
n
t

B
A
eC

on

Artificial no Anomaly 0 0 0 0 0 0 0 0 0 0 0 0 0

Artificial with Anomaly 0.009 0.004 0.004 0.007 0.003 0.012 0.007 0.021 0.043 0.017 0.013 0.156 0.307

Real Ad Exchange 0.018 0.022 0.005 0.034 0.024 0.040 0.035 0.024 0.005 0.018 0.026 0.132 0.243

Real AWS Cloud Watch 0.006 0.007 0.015 0.018 0.017 0.018 0.018 0.053 0.013 0.053 0.013 0.146 0.295

Real Known Cause 0.007 0.005 0.005 0.013 0.008 0.018 0.015 0.048 0.008 0.017 0.006 0.200 0.336

Real Traffic 0.012 0.02 0.011 0.032 0.013 0.033 0.036 0.033 0.091 0.020 0.045 0.223 0.343

Real Tweets 0.003 0.003 0.003 0.010 0.004 0.009 0.010 0.006 0.035 0.018 0.026 0.075 0.128

Table 6.1: Here are reported the average F-scores for each domain of the NAB dataset, achieved by the reviewed
algorithms. The score in bold characters are the best of the category.

44

Chapter 7

Conclusion and Future Works

Given the experiments conducted on widely spread data used across the literature, this works

successfully show the effectiveness of BAeCon which is able to leverages the strengths of both

LSTMs and CNNs to capture temporal dependencies and extract complex features from time

series data. The results demonstrate that the Autoencoder with LSTM and CNN layers

improves the precision and recall of anomaly detection. Furthermore, the model exhibits

robustness in handling noise and variability in time series data showcasing its potential for

real-world applications given that most of the time series used in the proposed experiments

are not artificial. Furthermore, this work demonstrate the effectiveness of Bayesian inference

in the context of anomaly detection, allowing to construct a way of discriminating anomalies

in a scalable and adaptable way.

In the future would be crucial to expand the experimentation to wider and more divers

datasets, tackling the world of multidimensional time series in order to take full advantage

of the autoencorder structure and the convolutional layers.

Furthermore, a promising direction to follow would be testing different dimensions and scales

for the model, in order to gauge if it is possible to further imporve the results by adjusting

the architecture.

45

46

Bibliography

[1] Ane Blázquez-Garćıa et al. “A review on outlier/anomaly detection in time series

data”. In: ACM Computing Surveys (CSUR) 54.3 (2021), pp. 1–33.

[2] Eamonn J Keogh. “Mining time series data”. In: Wiley StatsRef: Statistics Reference

Online (2014).

[3] Philippe Esling and Carlos Agon. “Time-series data mining”. In: ACM Computing

Surveys (CSUR) 45.1 (2012), pp. 1–34.

[4] Tak-chung Fu. “A review on time series data mining”. In: Engineering Applications of

Artificial Intelligence 24.1 (2011), pp. 164–181.

[5] Charu C Aggarwal. Outlier analysis second edition. 2016.

[6] Jordan Hochenbaum, Owen S Vallis, and Arun Kejariwal. “Automatic anomaly detec-

tion in the cloud via statistical learning”. In: arXiv preprint arXiv:1704.07706 (2017).

[7] Hermine N Akouemo and Richard J Povinelli. “Time series outlier detection and im-

putation”. In: 2014 IEEE PES General Meeting— Conference & Exposition. IEEE.

2014, pp. 1–5.

[8] Hermine N Akouemo and Richard J Povinelli. “Probabilistic anomaly detection in

natural gas time series data”. In: International Journal of Forecasting 32.3 (2016),

pp. 948–956.

[9] Hermine N Akouemo and Richard J Povinelli. “Data improving in time series us-

ing ARX and ANN models”. In: IEEE Transactions on Power Systems 32.5 (2017),

pp. 3352–3359.

[10] Mohsin Munir et al. “DeepAnT: A deep learning approach for unsupervised anomaly

detection in time series”. In: Ieee Access 7 (2018), pp. 1991–2005.

[11] David J Hill and Barbara S Minsker. “Anomaly detection in streaming environmen-

tal sensor data: A data-driven modeling approach”. In: Environmental Modelling &

Software 25.9 (2010), pp. 1014–1022.

[12] Yang Zhang et al. “Statistics-based outlier detection for wireless sensor networks”. In:

International Journal of Geographical Information Science 26.8 (2012), pp. 1373–1392.

47

48 BIBLIOGRAPHY

[13] Kyle Hundman et al. “Detecting spacecraft anomalies using lstms and nonparamet-

ric dynamic thresholding”. In: Proceedings of the 24th ACM SIGKDD international

conference on knowledge discovery & data mining. 2018, pp. 387–395.

[14] Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. “Streaming pattern dis-

covery in multiple time-series”. In: (2005).

[15] Pedro Galeano, Daniel Peña, and Ruey S Tsay. “Outlier detection in multivariate

time series by projection pursuit”. In: Journal of the American Statistical Association

101.474 (2006), pp. 654–669.

[16] Roberto Baragona and Francesco Battaglia. “Outliers detection in multivariate time se-

ries by independent component analysis”. In:Neural computation 19.7 (2007), pp. 1962–

1984.

[17] Hui Lu et al. “An outlier detection algorithm based on cross-correlation analysis for

time series dataset”. In: Ieee Access 6 (2018), pp. 53593–53610.

[18] Mayu Sakurada and Takehisa Yairi. “Anomaly detection using autoencoders with non-

linear dimensionality reduction”. In: Proceedings of the MLSDA 2014 2nd workshop

on machine learning for sensory data analysis. 2014, pp. 4–11.

[19] Tung Kieu, Bin Yang, and Christian S Jensen. “Outlier detection for multidimensional

time series using deep neural networks”. In: 2018 19th IEEE international conference

on mobile data management (MDM). IEEE. 2018, pp. 125–134.

[20] Haibin Cheng et al. “A robust graph-based algorithm for detection and characterization

of anomalies in noisy multivariate time series”. In: 2008 IEEE international conference

on data mining workshops. IEEE. 2008, pp. 349–358.

[21] Haibin Cheng et al. “Detection and characterization of anomalies in multivariate time

series”. In: Proceedings of the 2009 SIAM international conference on data mining.

SIAM. 2009, pp. 413–424.

[22] Zewen Li et al. “A survey of convolutional neural networks: analysis, applications,

and prospects”. In: IEEE transactions on neural networks and learning systems 33.12

(2021), pp. 6999–7019.

[23] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. “An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling”. In: arXiv preprint arXiv:1803.01271

(2018).

[24] Brett Koonce and Brett Koonce. “ResNet 50”. In: Convolutional neural networks with

swift for tensorflow: image recognition and dataset categorization (2021), pp. 63–72.

BIBLIOGRAPHY 49

[25] Weicong Kong et al. “Short-term residential load forecasting based on resident be-

haviour learning”. In: IEEE Transactions on power systems 33.1 (2017), pp. 1087–

1088.

[26] Stephen Grossberg. “Recurrent neural networks”. In: Scholarpedia 8.2 (2013), p. 1888.

[27] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural

computation 9.8 (1997), pp. 1735–1780.

[28] Thomas Fischer and Christopher Krauss. “Deep learning with long short-term memory

networks for financial market predictions”. In: European journal of operational research

270.2 (2018), pp. 654–669.

[29] Xingjian Shi et al. “Convolutional LSTM network: A machine learning approach for

precipitation nowcasting”. In: Advances in neural information processing systems 28

(2015).

[30] Xin Wang et al. “LSTM-based short-term load forecasting for building electricity

consumption”. In: 2019 IEEE 28th international symposium on industrial electronics

(ISIE). IEEE. 2019, pp. 1418–1423.

[31] Alexander Etz et al. “How to become a Bayesian in eight easy steps: An annotated

reading list”. In: Psychonomic bulletin & review 25.1 (2018), pp. 219–234.

[32] Nicholas G Polson and Vadim Sokolov. “Deep learning: A Bayesian perspective”. In:

(2017).

[33] Laurent Valentin Jospin et al. “Hands-on Bayesian Neural Networks–a Tutorial for

Deep Learning Users”. In: arXiv e-prints (2020), arXiv–2007.

[34] Scott Cheng-Hsin Yang et al. “Mitigating belief projection in explainable artificial

intelligence via Bayesian teaching”. In: Scientific reports 11.1 (2021), p. 9863.

[35] Chuan Guo et al. “On calibration of modern neural networks”. In: International con-

ference on machine learning. PMLR. 2017, pp. 1321–1330.

[36] Jeremy Nixon et al. “Measuring calibration in deep learning.” In: CVPR workshops.

Vol. 2. 7. 2019.

[37] Dan Hendrycks and Kevin Gimpel. “A baseline for detecting misclassified and out-of-

distribution examples in neural networks”. In: arXiv preprint arXiv:1610.02136 (2016).

[38] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

[39] David JC MacKay. “A practical Bayesian framework for backpropagation networks”.

In: Neural computation 4.3 (1992), pp. 448–472.

[40] Pavel Izmailov et al. “What are Bayesian neural network posteriors really like?” In:

International conference on machine learning. PMLR. 2021, pp. 4629–4640.

50 BIBLIOGRAPHY

[41] Christian P Robert et al. The Bayesian choice: from decision-theoretic foundations to

computational implementation. Vol. 2. Springer, 2007.

[42] John Mitros and Brian Mac Namee. “On the validity of Bayesian neural networks for

uncertainty estimation”. In: arXiv preprint arXiv:1912.01530 (2019).

[43] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. “Being bayesian, even just

a bit, fixes overconfidence in relu networks”. In: International conference on machine

learning. PMLR. 2020, pp. 5436–5446.

[44] Yaniv Ovadia et al. “Can you trust your model’s uncertainty? evaluating predictive

uncertainty under dataset shift”. In: Advances in neural information processing systems

32 (2019).

[45] Armen Der Kiureghian and Ove Ditlevsen. “Aleatory or epistemic? Does it matter?”

In: Structural safety 31.2 (2009), pp. 105–112.

[46] Stefan Depeweg et al. “Decomposition of uncertainty in Bayesian deep learning for

efficient and risk-sensitive learning”. In: International conference on machine learning.

PMLR. 2018, pp. 1184–1193.

[47] David H Wolpert. “The lack of a priori distinctions between learning algorithms”. In:

Neural computation 8.7 (1996), pp. 1341–1390.

[48] Lingxue Zhu and Nikolay Laptev. “Deep and confident prediction for time series at

uber”. In: 2017 IEEE International Conference on Data Mining Workshops (ICDMW).

IEEE. 2017, pp. 103–110.

[49] Wolfram Manzenreiter. “ACCOUNTING FOR MEGA-EVENTS”. In: INTERNA-

TIONAL REVIEW FOR THE SOCIOLOGY OF SPORT 39.2 (2004), pp. 187–203.

[50] Mohammad Assaad, Romuald Boné, and Hubert Cardot. “A new boosting algorithm

for improved time-series forecasting with recurrent neural networks”. In: Information

Fusion 9.1 (2008), pp. 41–55.

[51] Olalekan Ogunmolu et al. “Nonlinear systems identification using deep dynamic neural

networks”. In: arXiv preprint arXiv:1610.01439 (2016).

[52] Nikolay Laptev et al. “Time-series extreme event forecasting with neural networks at

uber”. In: International conference on machine learning. Vol. 34. sn. 2017, pp. 1–5.

[53] Alex Kendall and Yarin Gal. “What uncertainties do we need in bayesian deep learning

for computer vision?” In: Advances in neural information processing systems 30 (2017).

[54] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and harnessing

adversarial examples”. In: arXiv preprint arXiv:1412.6572 (2014).

BIBLIOGRAPHY 51

[55] Yarin Gal and Zoubin Ghahramani. “Dropout as a bayesian approximation: Repre-

senting model uncertainty in deep learning”. In: international conference on machine

learning. PMLR. 2016, pp. 1050–1059.

[56] Yarin Gal and Zoubin Ghahramani. “A theoretically grounded application of dropout

in recurrent neural networks”. In: Advances in neural information processing systems

29 (2016).

[57] Yarin Gal et al. “Uncertainty in deep learning”. In: (2016).

[58] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. “Unsupervised learning

of video representations using lstms”. In: International conference on machine learning.

PMLR. 2015, pp. 843–852.

[59] Alexander Lavin and Subutai Ahmad. “Evaluating real-time anomaly detection algorithms–

the Numenta anomaly benchmark”. In: 2015 IEEE 14th international conference on

machine learning and applications (ICMLA). IEEE. 2015, pp. 38–44.

[60] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detection: A sur-

vey”. In: ACM computing surveys (CSUR) 41.3 (2009), pp. 1–58.

[61] Nidhi Singh and Craig Olinsky. “Demystifying Numenta anomaly benchmark”. In:

2017 International Joint Conference on Neural Networks (IJCNN). IEEE. 2017, pp. 1570–

1577.

[62] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning

Library”. In: Advances in Neural Information Processing Systems 32. Curran Asso-

ciates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.cc/paper/9015-

pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

[63] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine

Learning Research 12 (2011), pp. 2825–2830.

[64] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.

In: arXiv preprint arXiv:1412.6980 (2014).

[65] Chengwei Wang et al. “Statistical techniques for online anomaly detection in data cen-

ters”. In: 12th IFIP/IEEE international symposium on integrated network management

(IM 2011) and workshops. IEEE. 2011, pp. 385–392.

[66] Ryan Prescott Adams and David JC MacKay. “Bayesian online changepoint detec-

tion”. In: arXiv preprint arXiv:0710.3742 (2007).

[67] Markus Schneider, Wolfgang Ertel, and Fabio Ramos. “Expected similarity estimation

for large-scale batch and streaming anomaly detection”. In: Machine Learning 105

(2016), pp. 305–333.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	Time Series Anomaly Detection
	Introduction
	Anomaly Detection Taxonomy
	Input Data
	Anomaly Type
	Nature of the Method

	Point Anomalies
	Univariate Time Series
	Multivariate Time Series

	Neural Networks for Time Series Forecasting
	Convolutional Neural Networks
	Architecture of CNNs
	Time Series Adaptation

	Long-Short-Term Neural Networks
	Historical Background
	LSTM Architecture and Cell Structure
	Time Series Applications

	Bayesian Inference and Neural Networks
	Bayesian Inference
	Bayesian Neural Networks
	Bayesian Learning Advantages

	Bayesian Autoencoder for Confidence Interval Forecasting
	Introduction
	Bayesian Approximation
	Method
	Prediction Uncertainty

	Model Design
	Autoencoder
	Prediction Network

	Benchmark Datasets
	Numenta Anomaly Benchmark
	Dataset
	NAB Scoring System

	NAB Limitations
	Dataset
	Scoring System
	Alternative Metrics

	Experiments
	Data Preparation
	Scaling
	Window Size
	Data Split

	Autoencoder Training
	Predictor Training
	MC Dropout and p parameter
	Results

	Conclusion and Future Works
	Bibliography

