
UNIVERSITY OF PADUA

MASTER’S THESIS

Partial Least Squares for Classification:
a new point of view

Department of Mathematics

Master’s Degree in Data Science

Author:
Martino DE NARDI

1206029

Supervisor:
Prof. Bruno SCARPA

Co-Supervisor:
Matteo STOCCHERO, PhD

Academic Year 2019/2020

http://
https://www.eee.hku.hk/~elam/
https://www.eee.hku.hk/~hso/




i

Abstract

Nowadays data are everywhere and it becomes increasingly important to col-
lect and analyze them in the correct way in order to obtain useful information,
since a broad number of fields on a scientific and industrial level need data anal-
ysis to solve a wide range of problems.
With the advent of highly performing computers as well as measurement and
processing systems, data are exploding progressively in both size and complex-
ity, therefore requiring careful analysis to address the issues arising from this
phenomenon: just think of the sensors that can make thousands of measure-
ments in a few moments and that subsequently need a proper analysis to ex-
tract the information.
This scenario introduces the so-called high dimensional data, characterized by a
number of predictor variables which is (possibly much) larger than that of ob-
servations: this type of data can be found in different areas such as economy,
bioinformatics, astronomy, geology, chemistry, physics, and so on.
This phenomenon poses several problems when using the traditional approaches,
so it is necessary to apply some methods that are suited and adapted to this
context: one of this is Partial Least Squares regression (PLS), a technique ini-
tially designed for linear regression that exploits a dimensionality reduction
approach to find a few orthogonal components which explain as much variance
of the predictors as possible while being correlated to the response.

The focus of this thesis is to adapt PLS for classification from a new point of
view with respect to those are now present in the literature, since in most cases
PLS is used as a discriminatory tool rather than a classifier, meaning that it only
separates the classes of the response variable and does not effectively perform
the final classification (delegated to an additional classifier).
This is our starting point: indeed, the aim of this work is to design a new classifi-
cation method purely based on PLS. To achieve this, there are two main ingredi-
ents: the first one involves the formulation of PLS as an iterative procedure that
minimizes the distance between response and modelled response (that in the
Euclidean space corresponds to the least squares problem) through the steepest
descent method; the second one is the use of compositional data, through which
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it is possible to consider the response as compositions (and therefore probabil-
ities), giving a rigorous mathematical justification to the classification criterion
used by the model, and make use of proper transformations that allow to per-
form calculations that link spaces with different structures.

Exploiting these factors, we developed a new approach that adapts PLS for
classification providing a clear theoretical foundation, focusing on the binary
response case. The case of G > 2 class is presented in its general framework but
it requires further studies for a more detailed discussion.
Different procedures are proposed which share the underlying approach but
differ in the space in which the calculations are made and in the transformation
applied to the data.
These classification techniques have the same performance of Partial Least Squares
- Discriminant Analysis (PLS-DA) , which is the most used state-of-the-art tool
to perform classification using PLS; nevertheless, PLS-DA is not a purely PLS-
based method since it also requires additional classifiers, as Linear Discriminant
Analysis (LDA), to predict the classes of the observations.
Moreover, the proposed methods present a good predictive ability also in tra-
ditional scenarios, that is when the number of X-variables is much lower than
that of observations and the collinearity between predictors is mild or moder-
ate: in this setting, the results are comparable to those of logistic regression.
The classification procedures are tested against both simulated and real datasets,
also giving the evidence of their theoretical properties.
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Chapter 1

Guideline

The aim of this thesis is to fit PLS in the classification context, defining a new
method to perform it with a precise mathematical justification and without us-
ing any additional classifier during the procedure.
Thus, first of all PLS is presented as it was designed, i.e. an algorithm to solve
linear regression problems with continuous response variables, as well as some
other post-processing steps that can be applied to it; then, some methods re-
lated to PLS are described to give a wider view of the model.
After this introductory part, the most common techniques that exploit PLS in
the classification scenario are illustrated in Chapter 4: at the state of the art, PLS
is mainly used as an initial discriminatory step, which means that it does not
effectively assign a class to an observation, but more simply separates the sam-
ples so that subsequently a classifier can distinguish the classes and perform
the classification.
Nevertheless, there are some methods that approach the use of PLS as a pure
classifier: an overview about them is also given.
The new methods we designed for classification are presented in Chapter 6,
where also the technical details are described. Finally, those techniques are
tested using different datasets and the results are commented in Chapter 7.
The specifications regarding the mathematical notation employed in this work
are given in the Appendix A, while in Appendix B proofs and additional clar-
ifications about some details of the new methods explained in Chapter 6 are
reported.
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Chapter 2

Partial Least Squares regression

In this Chapter, Partial Least Squares regression (PLS) is presented in its orig-
inal formulation, i.e. as a means of solving linear regression problems using a
latent variable approach, and the motivation behind its ability to handle high-
dimensional problems is highlighted. Then, different versions of the algorith-
mic procedure used to build the model are given, as well as a description of
a post-processing technique to extract the predictive part of the model. An al-
ternative and new formulation of PLS based on gradient descent will be intro-
duced in Chapter 6.

2.1 PLS and reasons behind it

Partial Least Squares regression (PLS) is a method for relating two data matri-
ces, the predictors X (N × P) and the responses Y (N × M) by a multivariate
model; the regression is not performed using the measured predictors and re-
sponses, but using the so called latent variables that are obtained projecting the
measured features along suitable directions. The latent variables span the latent
space where the linear regression model is built. As a result, a bilinear decom-
position is generated for both X and Y, while a matrix of regression coefficients
is calculated to predict Y from X. The projection into the latent space reduces
the dimensionality of the problem acting as a sort of regularization [43] [30].

A great advantage of PLS lies in its ability to handle data in high dimensional
scenarios, especially when the number of predictors (which are affected by
collinearity and are often noisy) is greater than that of observations.
The traditional approach to regression involves modelling Y by means of X
using ordinary least squares (OLS), which works well if the X-variables are
few and fairly uncorrelated (that means X has full rank): with the advent of
sophisticated and technological measuring instruments (spectrometers, chro-
matographs, sensor batteries, etc), the number of explanatory variables increased
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considerably in many fields and they are no longer by their nature uncorrelated
to each other.
This fact poses a problem, since OLS is no more capable of providing models
and estimates suited to the context (more about this in Section 5.1).
Consider a standard linear regression to be used when n > p: X is a N × P
matrix, y ∈ RN is the response vector and e is a vector of independently and
identically distributed N(0, σ2) errors.
The common model is y = Xβ + e and the aim is to find the optimum vector β̂

to minimize the residual sum of squares:

β̂ = argmin
β∈RP

‖y− Xβ‖2
2 (2.1)

The well-known solution of this problem is

β̂ = (X>X)−1X>y

This closed form solution exists if the columns of X are linearly independent
and X>X is invertible; it appears obvious that in the p > n scenario, the vari-
ables are correlated, X cannot have linearly independent columns and X>X is
not invertible.

On the contrary, PLS regression is able to solve the "large p small n" problem
since it exploits dimensional reduction using orthogonal latent variables as new
predictors in the model and therefore allows to analyze data composed of many
correlated predictors: for this reason it now occupies an important position in
the chemometric literature.

2.2 Historical notes about PLS

The first papers concerning PLS were published around 1975 by Herman Wold,
a Norwegian-born econometrician and statistician who applied this technique
to multiple blocks of data from the economic and social sciences [38]: indeed, in
those years he realized the power of the latent variable concept in multivariate
modelling, starting to show interest in Principal Component Analysis (PCA),
which he then generalized to path models in latent variables using the PLS ap-
proach [42].
Subsequently, also his son Svante Wold (chemometrician), was attracted by the
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PLS philosophy: at the beginning of the 80’s he started to work on PLS regres-
sion with Harald Martens and after several issues (and with the help of the pro-
fessor of numerical analysis Axel Ruhe), they defined the well-known 2-block
PLS regression approach based on the Nonlinear Iterative Partial Least Squares
(NIPALS) algorithm developed by H. Wold for path modelling.
The PLS version of Wold and Martens is called PLS2 to distinguish it from other
implementations such as SIMPLS [15] and UPLS [9]. PLS2 was presented at a
conference in Oslo in 1982 [39]; after that, he published together with his father
and Harald Martens the first papers about PLS and multivariate calibration in
1983 [41] and an application for the analytical chemistry community [17]. In
Martens’ opinion, "there is no other statistical method with comparable versa-
tility" with respect to PLS regression [19], since it provides both cognitive access
to the relevant information and statistical tools for the reliability of the results.
S. Wold suggested to use Projection to Latent Structures by partial least squares
instead of Partial Least Squares to give a more descriptive meaning to PLS.

2.3 PLS2

To truly understand why PLS can overcome the high-dimensional problem, let’s
see how regression is performed.
The PLS model aims at finding a few new latent variables that captures the vari-
ance of the X matrix1 but at the same time are correlated with the Y block. In
fact, for each latent variable PLS finds the direction that maximizes the covari-
ance between X and Y, in a sense adjusting the PCA directions to better predict
the Y.
Thus, the idea is to find some variables, whose values are expressed by the score
matrix T (N× A), that focus both on describing as much variance as possible of
the X block while being correlated to Y.

In general, given a matrix X of predictors [x1, x2, . . . , xP] and a matrix Y of
responses, the aim of PLS is to compute the regression coefficients matrix B
(P×M) defining the following model:

Y = XB + FA (2.2)

where A is the number of latent variables and FA is the matrix of residuals.
Moreover, PLS does not require assumptions on the statistical distribution of
the errors because regression is performed minimizing the norm of the matrix

1As the Principal Component Analysis does, more about this in 3.1
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of the residuals in an algebraic fashion. If X is a full rank matrix and A is chosen
to be the rank of X, than the regression coefficients are the same of the OLS
estimates. Since PLS is usually applied in cases when P > N, a value of A
smaller than the rank of X is typically adopted.

PLS is an iterative algorithm where at each step i a weight vector wi is calcu-
lated; the weight vector is used to project the residual matrix to obtain the score
ti. Thus, the weight vectors give the information about how much an explana-
tory variable xi contributes to form a latent variable. Note that the terms latent
variable and component are used with the same meaning in the following.

The vector wi is found maximizing the covariance of the residual matrix of
the X-block and Y; the matrix T obtained juxtaposing the score vectors ti, (i =
1, . . . , N) is used to decompose X and Y such that:

X = TP> + EA (2.3)

and
Y = TQ> + FA (2.4)

where EA (N× P) and FA (N×M) are respectively the residuals of the X and Y
block after A iterations and P (P× A) and Q (M× A) are the loadings, that can
be expressed using T and the original data X and Y. Indeed, P = X>T(T>T)−1

and Q = Y>T(T>T)−1.
The general scheme of the matrix decomposition generated by PLS is shown in
Figure 2.1.

z1 z2 z3
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Figure 2.1: Matrix decomposition of PLS model

We now present the most common formulation of PLS introduced by Martens
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and Wold [41], based on the Nonlinear Iterative Partial Least Squares (NIPALS)
algorithm. PLS is called PLS2 in that case. Unless otherwise noted, PLS will be
used to stand PLS2 in the following.
Let X be the predictor matrix, Y the response matrix, A the number of compo-
nents of the model and ε the parameter for the convergence check.

Algorithm 1: NIPALS - PLS

1 E0 = X, F0 = Y;
2 for i = 1, . . . , A do
3 Set ũi the first column of Fi−1;

4 wi =
E>i−1ũi

(ũ>i Ei−1E>i−1ũi)
1
2

;

5 ti = Ei−1wi;

6 qi =
F>i−1ti

(t>i Fi−1F>i−1ti)
1
2

;

7 ui = Fi−1qi;
8 If ‖ũi − ui‖ ≤ ε, then go to 9, else ũi ← ui and go to 4;

9 pi =
E>i−1ti

t>i ti
;

10 bi =
u>i ti

t>i ti
;

11 Ei = Ei−1 − ti p>i ;
12 Fi = Fi−1 − bitiq>i
13 end

Note that if we introduce the orthogonal projection matrix Q̂ti = IN −
tit>i
t>i ti

(that
projects a given matrix M onto the space orthogonal to the score vector ti), the
last two steps (11 and 12) can be written as:

Ei = Ei−1 − ti p>i = Ei−1 −
tit>i
t>i ti

Ei−1 = Q̂ti Ei−1

Fi = Fi−1 − bitiq>i = Fi−1 −
u>i ti

t>i ti
tiq>i = Q̂ti Fi−1

This calculations are important because also in the following algorithms Q̂ti is
used to simplify the notation in the deflation steps, since it helps in defining the
part of information orthogonal to the score vector and therefore to be explained
in the following components. This particular form of the deflation step assures
that the score vectors ti are a set of orthogonal scores.

Another formulation of the algorithm can be given since Höskuldsson observed
that steps 3-8 are equivalent to solve the following eigenvalue equation [14]:

E>i−1Fi−1F>i−1Ei−1wi = λiwi (2.5)
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Thus, let X be the matrix of predictors, Y be the matrix of responses and A the
number of latent variables; the algorithm can be re-formulated as follows.

Algorithm 2: NIPALS - PLS, Eigenvalue formulation

1 E0 = X, F0 = Y;
2 for i = 1, . . . , A do
3 Ei−1

>Fi−1Fi−1
>Ei−1wi = λiwi;

4 ti = Ei−1wi;
5 Ei = Q̂ti Ei−1;
6 Fi = Q̂ti Fi−1;

7 end

where the matrix Q̂ti is used for the deflation steps of the X and Y block; at each
step, indeed, the procedure removes the information explained by the ith latent
variable to define the residuals and use them at the next iteration to explain the
part of data that is left. It is essentially the same algorithm as before, written in
a more compact way and exploiting Equation 2.5.
It is worth noting that the Y-deflation step is not necessary to calculate the
weights since Fi−1 can be substituted by Y in 2.5 without to modify the solu-
tion. Again, the eigenvalue formulation is more suitable for theoretical inves-
tigations than the original form based on NIPALS as suggested by Rayens and
Andersen [28] .
From a geometrical point of view, the solution of equation 2.5 is the solution of
the problem of finding the versors wi and ci such that

wi, ci = argmax cov
w,c

(Eiw, Fic) (2.6)

If the score vectors ti = Eiwi and ui = Fici are introduced, at each step of PLS
the covariance between the scores of the X and Y block is maximized. This
point of view is useful to develop new versions of PLS, as done in the case of
constrained PLS [32] [34].

The score matrix T = [t1, . . . , tA] can be calculated from the original measured
predictors by T = XW∗ where W∗ is a transformation of the matrix W =

[w1, . . . , wA] to write the scores as a function of the original variables; the matrix
W∗ can be computed as W∗ = W(P>W)−1.

As pointed out in 2.4 and using what we have just noticed, the Y matrix can be
written as

Y = TQ> + FA = XW∗Q> + FA = XB + FA (2.7)
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where B = W∗Q> = W(W>X>XW)−1W>X>Y + FA is therefore the matrix of
regression coefficients of Y against X. It is worth noting that B depends only on
W, X and Y.

It is important to specify how the number of latent variables is chosen when ap-
plying PLS regression. In general, when performing a prediction of a response
variable using a set of predictors, the aim is to get the lowest possible error: to
achieve this, the model must be not too complex (otherwise it tends to overfit
the data, giving high variance) but also not too simple, because in that case it
misses the relevant patterns between features and output and thus underfits
the data, causing bias. For this reason, usually a tradeoff between bias and vari-
ance must be found: however, in PLS scenario there is no analytical form of
the prediction error and it is not known how errors vary as a function of the
number of latent variables, so the cross-validation procedure on training data
must be used in order to find the number of latent variables with the maximum
predictive power, which coincides with the minimum error in prediction.

The validation of the choice of the final model can be done through a permu-
tation test, that is a procedure that builds sampling distribution by resampling
the observed data, in particular shuffling the y values for n times without re-
placement: this is done assigning different response values to each observation
from among the set of actually observed outcomes. This procedure is usually
applied in experimental studies to test the null hypothesis that two treatment
groups do not differ on the outcome: in fact, we want to assess whether the sev-
eral Q2 values2 after the shuffling are similar with respect to the original one.
The distribution of the null hypothesis is therefore the distributions of the n Q2

calculated after the shuffling: if the values of the Q2 were close to the original
one, it would mean that the model would predict those outcome values anyway
and that it fails to define specific patterns for the prediction (it would not have
credibility because the result does not change even if the values in the response
variable are exchanged).
The p-value of a permutation test consists in the proportion of samples for
which the statistics (e.g. the Q2) is higher than the original one, with respect
to the total number of permutations. Since in most cases it is not possible for
computational reasons to consider all the possible permutations (which are n!),
a reasonably large number of permutations is applied (usually 1000 or more).

2The Q2 represents the goodness of prediction of a model and it is calculated as the R2 but
using the validation data or cross-validation
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Finally, the predictions of new observations can be calculated as:

Ynew = XnewB

or calculating the score matrix T (Tnew = XnewW∗) and then multiplying by the
transposed of the Y-loadings:

Ynew = TnewQ> = XnewW∗Q>

2.4 PLS1

Considering the simplest case of univariate y response, which means that the Y
block is a N × 1 vector, the algorithm aims at finding b such that y = Xb + fA,
where fA are the residuals after A iterations.

The algorithm starts looking for a vector w1 that is the result of the maximiza-
tion problem:

max
‖w‖=1

cov(Xw, y) (2.8)

Then, the score vector t1 is defined as projection of the X data along w1 and the
matrix X is deflated using the information gathered up by this component; the
process that is repeated iteratively for A times.
In its NIPALS formulation, the algorithm is:

Algorithm 3: NIPALS - PLS1

1 for i = 1, . . . , A do
2 wi = Xi−1

>yi−1;

3 wi =
wi

‖wi‖
;

4 ti = Xi−1wi;

5 pi =
Xi−1

>ti

ti
>ti

;

6 qi =
yi−1

>ti

ti
>ti

;

7 Xi = Xi−1 − ti pi
>;

8 yi = yi−1 − tiqi;
9 save wi, ti, pi, qi

10 end

At line 2, the direction vector that maximizes the covariance between the pre-
dictors and the response is found. Then, after its normalization, the original
data (X) are projected along it, resulting in scores t (line 4).
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The two final steps consist in the deflation of the X and y matrices, in such a
way to remove the information explained by the current component.
Thus, the response values therefore can be modelled as

y =
A

∑
i=1

ŷi + fA = q1t1 + q2t2 + · · ·+ qAtA + fA =

= Tq> + fA

(2.9)

where T is a N × A matrix ([t1, t2, . . . , tA], with ti ∈ RN) and q ∈ RA.
Again, the vector of coefficients b can be defined as b = W∗q>, with W∗ =

W(P>W)−1.

2.5 What is PLS model?

Often, traditional statistical methods involve a parameter estimation based on
distribution assumptions (e.g. require knowledge about the distribution of the
errors). PLS exploits a different approach: indeed, it is an algorithmic proce-
dure based on linear algebra that does not make probabilistic assumptions and
therefore has no assumptions about the statistical model of the data.
Instead, it deterministically minimizes a given loss function in a vector space
provided with distance; thus, the term "model" in the PLS context refers to the
matrix decomposition3.
Moreover, the use of latent variables in PLS provides a mathematical frame
which can be used to explore and relate data in a new domain, as well as to
assess the number and nature of influencing phenomena, acting as interface be-
tween the experimental (measurable) data and the conceptual world, meaning
the underlying structures existing as latent information [13]. This is of primary
importance because one of the most important goals of all branches of science is
to provide a description of the phenomena in a domain in terms of a small num-
ber of concepts [13], that is what PLS tries to achieve: nowadays, in many fields
high dimensional data are emerging and methods that use latent variables try
to convert them into communicable and accessible information.

2.6 Iterative deflation algorithm (IDA)

PLS regression is a special case of a more general strategy for regression that
uses the so called Iterative Deflation Algorithm [30].
Given:

3Recall that using PLS the X matrix can be decomposed as X = TP + EA
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• the matrices X and Y of the data

• the number A of latent variables (or equivalently the number of iterations)

• the weight matrix W = [w1, . . . , wA]

The algorithm is the following:

Algorithm 4: Iterative Deflation Algorithm

1 E0 = X;
2 F0 = y;
3 for i = 1, . . . , A do
4 ti = Ei−1wi;
5 Ei = Q̂ti Ei−1;
6 Fi = Q̂ti Fi−1;

7 end

where the matrices Ei−1 and Fi−1 of the residuals are deflated using the orthog-
onal projection matrix Q̂ti .
The algorithm produces orthogonal vectors ti and for a non-trivial choice of W
leads to:

Y = XW(W>X>XW)−1W>X>Y + FA = XB + FA

X = XW(W>X>XW)−1W>X>X + EA
(2.10)

where B = W(W>X>XW)−1W>X>Y.
When wi is calculated using equation 2.5, PLS is obtained. If wi is the loading
PCA-vector, Principal Component Regression (PCR) is obtained.

Notice that in this case we already have the matrix W before the application of
the algorithm4: this might sound strange but actually the IDA is very useful for
the transformation technique presented in Section 2.7.
In fact, an interesting property of this algorithm is that if a nonsingular matrix
L(A× A) is used to transform the weight W, i.e.:

W̃ = WL

and if those weights are used instead of W, the same residuals and the same B
are obtained. This property is used to apply the post-transformation.

4That can be found e.g. by running a PLS algorithm before the application of the IDA
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2.7 Post-transformation of PLS (ptPLS)

The post-transformation of PLS is a procedure through which it is possible to
divide the latent space in a predictive part (meaning that it is useful in explain-
ing the response) and the remaining non-predictive one, useless in describing
the Y-block [34]: the strength of this technique lies in the fact that a smaller
number of components is needed to describe the data and potential sources of
noise can be detected.
Post-transformation has been introduced because PLS sometimes generates un-
satisfactory decompositions with a number of latent variables that exceeds the
rank of Y. This behavior is observed when X data variation that is not corre-
lated to Y is used to build the latent variables: that X data variation is called
structured noise.

It is basically a three-step process:

1. A PLS model is built to obtain the weight matrix W

2. The weights are subjected to a suitable orthogonal transformation through
a matrix G

3. IDA is applied with W̃ = WG as weight matrix

In step 2, the matrix G = [GoGp] is defined as a juxtaposition of the columns
goi and the columns gpi, related to the non-predictive and the predictive part
respectively.
The block Go gives weight vectors woi = Wgoi, while Gp defines the weight
vectors of the predictive part wpi = Wgpi: let’s now see how this matrix G is
built.
The block Go is composed of M vectors, i.e. Go = [go1, . . . , goM] and they are
calculated as follows.
Consider the singular value decomposition of Y>XW: Y>XW = USV>; goi are
the M eigenvectors extracted from:

Q̂V goi = λoigoi (2.11)

with λoi > 0. The block Gp is made of A − M columns ([gp1, . . . , gp(A−M)]),
computed as the eigenvectors of:

Q̂Go gpi = λpigpi (2.12)

with λpi > 0 and A is the total number of columns of W.
The minimum number of predictive latent variables is less or equal to min(rank(Y), A).
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Using W̃ in the iterative deflation algorithm, the X-block and Y-block are de-
composed such that:

X = TpP>p + ToP>o + EA

Y = TpQ>p + FA
(2.13)

which means that Y can be modelled using only the predictive part.
In this case, Pp = X>Tp(T>p Tp)−1, Po = X>To(T>o To)−1 and Qp = Y>Tp(T>p Tp)−1.

Now, the regression model becomes:

Y = (X− ToP>o )Bpt + FA

where the original matrix of coefficients B and the new Bpt are linked by this
relationship:

B = [Ip −Wo(P>o Wo)
−1P>o ]Bpt

Thus, it is possible to define Bpt as:

Bpt = [Ip −Wo(P>o Wo)
−1P>o ]−1B

Analyzing the predictive part of X (i.e. TpP>p ) is significantly important be-
cause it can be used to examine the X-variation that influence Y, while the non-
predictive one (i.e. ToP>o ) can be used to analyze variation of the X-block that
do not affect the response block but generates the structured noise.

2.8 Model interpretation

One of the main advantages of the PLS model lies in its interpretation: in fact,
it is possible to extract information between predictors and response and also
between predictors and latent scores by direct model interpretation, e.g. using
plots [32].
In presence of modest correlation between predictors, the vector of regression
coefficients can be used for model interpretation: in this setting, when a PLS
model is made of few latent components, one possible way to investigate the
relationship between predictors and responses is through the w∗q plot, which
shows their relation using a single plot (also in the case of more than one re-
sponse variable).
However, when the correlation between predictors is strong, this is not true and
the attention should be focused on other parameters like Variable Influence on
Projection (VIP) and Selectivity Ratio (SR) or procedures as stability selection
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[32]. There is no best parameter to interpret a model, since each of them is de-
signed considering specific properties of the model, so they should be chosen
according to the case.
As mentioned above, if the multicollinearity is not too strong and the model has
few latent variables, a first tool to discover the relationship between predictors
and responses is the w∗q plot: w∗i , i = 1, . . . , A are the column of the W∗ matrix5

and qi, i = 1, . . . , A are the loadings of the Y-block. This graph is based on the
relationship B = W∗Q> and so the w∗i and the loading qi are reported in the
same plot.

Another useful tool to investigate the relationship between (predictive) latent
variables and predictors and between (predictive) latent variables and responses
is the correlation loading plot, in which the Pearson’s correlations between each
latent variable and both the predictors and the responses are plotted together
in the same graph. Indeed, this plot can be helpful for the interpretation of
the model since the scores of the latent variables are orthogonal; when a strong
collinearity is present, this tool gives a qualitative explanation and visualiza-
tion of the relation between predictors and responses and it is recommendable
over the previous one [32]. In fact, predictors that are positively or negatively
correlated to the response of interest are the ones for which the related points
in the graph are close to that of the response or to its image obtained by origin
reflection.

To give an example, we consider a real dataset which is divided during its con-
struction in training and test sets. Each observation of the dataset consists in a
1H Nuclear Magnetic Resonance (NMR) spectroscopy of post-mortem aqueous
humor (the clear fluid filling the space in the front of the eyeball between the
lens and the cornea) collected from sheep with both closed and opened eyes.
Data processing was applied to obtain a dataset whose features are 43 quanti-
fied metabolites.
The y values consist in the post-mortem intervals (PMI) after which the samples
are collected, expressed in minutes (ranging from 118 to 1429).
The training set is composed of 38 observations and 43 quantified metabolites
as predictors, while the test set for the prediction has 21 observations. More de-
tails about sample collection, experimental procedure and data pre-processing
in [18].
The correlation loading plot of a model with 4 latent variables is shown in Fig-
ure 2.2: pcor[Tp] denotes the Pearson’s correlation between the predictive latent

5Recall that W∗ = W(P>W)−1 is a transformation of the weight matrix W that allows to write
the latent scores as a function of the original variables, i.e. T = XW∗
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variable and each predictor and between the predictive latent variable and the
response. The same holds for pcor[To1], but the first orthogonal latent vari-
able is considered instead of the predictive one. The points associated to the 43
metabolites are plotted in green, while the one indicating the response (PMI) in
blue.

Figure 2.2: Correlation loading plot of a PLS model with 4 latent variables

Predictors whose points are close to the response (Taurine, Choline, Succinate)
or to its projection by origin reflection (Isoleucine, Leucine, Betaine) are those
that are most correlated to the response variable PMI.

Kvalheim in 2010 introduced a new parameter, the SR, which can be used only
when there is a single predictive latent variable [16]: it is based on the possibil-
ity to decompose the latent space into two orthogonal subspaces (as described
in 2.13) and on the assumption that the similarity between a predictor and a
latent variable gets bigger with the increasing of the variance explained by that
latent variable. In particular, SR is defined for each predictor i as the proportion
between its variance explained by the predictive latent variable (computed us-
ing Xp = tp p>p , where tp and pp are the predictive latent score vector and the
predictive X-loading vector respectively) and its variance not explained by that
predictive latent variable (i.e. related to Xo + EA = ToP>o + EA, as in Equation
2.13), that is

SRi =
var(Xpi)

var(Xoi + Ei)
(2.14)
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The predictors with the highest SR are the most informative in explaining the
predictive latent variable. A parametric test based on the F-distribution has
been developed to select the most relevant X-variables.
Using the same dataset as before, it is possible to calculate the SR for each X-
variable (Figure 2.3): it is worth noting that the predictors with the highest val-
ues are the same that resulted to be (positively or negatively) correlated with
the response in the correlation loading plot (Figure 2.2).

Figure 2.3: Selectivity Ratio of a PLS model with 4 latent variables

Nevertheless, one of the most common parameter to investigate the importance
of a variable in a PLS model is the VIP: for each measured X-variable, the VIP
is computed as

VIPi =

√√√√ P
SSY

A

∑
j=1

W2
ijSSYj (2.15)

with A equal to the number of latent variables, P the number of X-variables,
SSYj corresponding to the sum of squares of Y explained by component j and
SSY the total sum of squares of Y.
VIP provides a ranking for the contribution of each X-variable in building the
latent space [40]. Unfortunately, parametric tests for assessing if a variable with
a certain VIP is significant have not been developed. VIP is mainly used for
variable selection and model refinement.
An example of the VIP is given in Figure 2.4, where it is possible to note that
the most-influencing X-variables in defining the latent space correspond to the
previously mentioned predictors.
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Figure 2.4: VIP of a PLS model with 4 latent variables

Finally, instead of evaluating the importance of predictors through parame-
ters, it is possible to define a procedure, called stability selection, which aims
at finding a subset of predictors that are helpful for the model. This technique
is implemented drawing a consistent number of random subsamples of the data
and then applying a PLS with VIP selection to each subsample: the most valu-
able predictors are those selected in more than half of the sub-models generated
for each subsample [3]. The procedure has been recently improved including
new measures of importance and a well-founded procedure for assessing which
variable is relevant and which are irrelevant [31].
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Chapter 3

PLS and related methods

PLS has many relationships with other regression techniques developed to solve
linear problems where collinearity and noise affect the data: in fact, efforts have
been made to include PLS in a more general system of regression methods.
To give a wider view of the model, in this Chapter we want to give a picture of
those relationships, the common elements and those which instead distinguish
PLS with respect to these.

Basically, when dealing with high-dimensional data, there are two main strate-
gies that can be used to address the issue of multicollinearity: the first one is reg-
ularization, which imposes a penalization on the magnitude of regression coef-
ficients, while the second consists in dimensionality reduction, a transforma-
tion of the original data from a high-dimensional space into a low-dimensional
space in such a way that the new space representation retains the informative
properties of the original data; this is what PLS does when looking for few la-
tent components describing the data. We now present some famous methods
related to PLS that implement dimensionality reduction or regularization, and
then general frameworks that include PLS regression.

3.1 Principal Component Regression (PCR)

The first method related to PLS that comes to mind is PCA, a statistical pro-
cedure for dimensionality reduction that allows to summarize the information
content in a large dataset by means of a smaller set of latent variables, which are
linear combination of the original ones and try to describe as much as possible
the variance of the data [1].
The orthogonal scores of PCA can be used as new variables for OLS, defining
the PCR; unlike PLS, PCA in the regression context does not use the response
variable to define the components and this is the main difference between the
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two approaches: in fact, only the predictors are used to define the new latent
variables.

The first component of PCA is the direction along which the variance of the
data is maximized; the second one is the direction of maximum variance of the
data subject to the condition of being orthogonal to the first. In general, each
new component is defined as the direction that maximizes the variance of the
data with the constraint of being orthogonal to the previous ones.
Indeed, the first weight vector is found solving the following maximization
problem:

w1 = argmax
‖w‖=1

{‖Xw‖}2 = argmax
‖w‖=1

{w>X>Xw} (3.1)

When w1 is found, the first score vector is computed as t1 = Xw1.
Generalizing, the ath component is calculated subtracting the contribution to
explain the data of the previous a− 1 principal components from X:

Xa = X−
a−1

∑
s=1

Xwsw>s

and then finding the vector wa that maximizes the variance of Xa:

wa = argmax
‖w‖=1

{‖Xaw‖}2 = argmax
w
{w>X>a Xaw

w>w
} (3.2)

to calculate the ath score vector as ta = Xwa.

In other words, the weight vectors are eigenvectors of the matrix X>X1 whose
associated eigenvalues correspond to the variance of the components.
Thus, the original matrix X can be written as:

T = XW (3.3)

If X is a N × P matrix and A is the number of components of the model, T is
defined as a N × A matrix and W has dimensions P× A.
PCA is nowadays one of the most common techniques to perform dimensional-
ity reduction, especially in high dimensional scenarios, such as those in which
PLS is applied.

1The wh weight vector is the hth eigenvector of X>X
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3.2 Ridge regression

Ridge regression (RR) is a regression technique that imposes a regularization
on the magnitude of the coefficients, in such a way to reduce their variance and
to mitigate the problem of multicollinearity. In RR, the OLS loss function is
augmented by a penalty factor regarding the coefficients in order to minimize
the sum of squared residuals as well as the size of parameter estimates, in such
a way to shrink them towards zero to reduce the complexity of the model2.
Thus, given a matrix X ∈ RN×P of predictors and a response vector y ∈ RN ,
RR solves the following optimization problem:

min
β0,β
{ 1

2N

N

∑
i=1

(yi − β0 −
P

∑
j=1

β jxij)
2 + λ

P

∑
j=1

β2
j } (3.4)

where β0 is the intercept, β the vector of coefficients of the predictors and λ

is the parameter that controls the amount of regularization of the model: set-
ting λ to zero implies performing a OLS regression, while as λ increases, the
penalty becomes more and more marked, shrinking the coefficients values to-
wards zero.
Too high values of λ are associated to a strong penalization and therefore can
lead to low variance but high bias at the same time. On the other side, too low
values of λ can be not sufficient to properly reduce the variance of the estimates:
thus, λ must be chosen in such a way to find a tradeoff balancing variance and
bias (for example performing a cross-validation).
It is important to note that RR is characterized by a L2 penalization (λ is mul-
tiplied by the sum of squared coefficients) which tends to evenly shrink the
coefficient to zero.

3.3 Lasso

The Lasso (Least Absolute Shrinkage and Selection Operator) is very similar to
RR, with the only difference consisting in the penalty term. In fact, the Lasso
adds to the OLS loss function the sum of the absolute values of the coefficients:
this difference has several implications, since the L1 regularization creates spar-
sity in the model, which means that the less important features’ coefficients are
set to zero, therefore removing those variables from the model. From this point
of view, in contrast to RR, Lasso also acts as a variable selection procedure.

2When multicollinearity affects the data, the OLS estimates of the regression coefficients tends
to be very imprecise since they are characterized by high variance
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Lasso solves the following optimization problem:

min
β0,β
{ 1

2N

N

∑
i=1

(yi − β0 −
P

∑
j=1

β jxij)
2 + λ

P

∑
j=1
|β j|} (3.5)

If the outcome values yi are centered, the intercept term β0 can be omitted and
the Lagrangian form of the problem becomes:

min
β

1
2N
‖y− Xβ‖2

2 + λ‖β‖1

Actually, Lasso and RR can be seen as special cases of a more general setting,
called Elastic Net, which combines the two methods and solves problem of the
form:

min
β0,β
{ 1

2N

N

∑
i=1

(yi − β0 −
P

∑
j=1

β jxij)
2 + λ1

P

∑
j=1
|β j|+ λ2

P

∑
j=1

β2
j }

with λ1 and λ2 corresponding to Lasso and RR penalty parameters respectively.
The same problem can be also written as:

min
β0,β
{ 1

2N

N

∑
i=1

(yi − β0 −
P

∑
j=1

β jxij)
2 + λ

P

∑
j=1

[
1
2
(1− α)β2

j + α|β j|]} (3.6)

where α is the parameter controlling how much Ridge regularization is used
with respect to Lasso, and viceversa. In fact, α = 1 consists in applying the L1
regularization (and therefore the Lasso procedure), while α = 0 means using
RR. If 0 < α < 1, a convex combination of the two methods is applied.

3.4 Canonical Ridge Analysis

An overview of the relation between different regression techniques can be in-
troduced through the so-called Canonical Ridge Analysis (CRA) , which provides
a unique formulation to collect different procedures like OLS, Canonical Corre-
lation Analysis (CCA), RR and PLS as special cases of it [10].
Given a matrix X of predictors and the response matrix Y, the CRA in general
solves the following optimization problem:

max
‖w‖=‖c‖=1

[cov(Xw, Yc)]2

[(1− ηX)var(Xw) + ηX][(1− ηY)var(Yc) + ηY]
(3.7)

where ηX ≥ 0, ηY ≤ 1 are the regularization terms and w, c are respectively the
weights of the X and Y blocks to get the scores of the latent variables (among
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which the covariance is maximized).
Some special cases can be highlighted to show how CRA includes well-known
procedures:

• ηX = 0 and ηY = 0 implies CCA, which solves the following problem:

max
‖w‖=‖c‖=1

[cov(Xw, Yc)]2

[var(Xw)][var(Yc)]
= corr2(Xw, Yc)

• ηX = 1 and ηY = 1 implies PLS since the problem becomes of the form:

max
‖w‖=‖c‖=1

[cov(Xw, Yc)]2

This clearly applies also in the case of univariate response (y is a vector), getting:

max
‖w‖=1

[cov(Xw, y)]2 (3.8)

Moreover, in this setting and if 0 ≤ ηX ≤ 1, RR is obtained. In fact, the opti-
mization problem becomes

max
‖w‖=1

[cov(Xw, y)]2

(1− ηX)var(Xw) + ηX
(3.9)

which can be seen as:

max
‖w‖=1

[cov(Xw, y)]2

var(Xw)− ηXvar(Xw) + ηX
=

max
‖w‖=1

[cov(Xw, y)]2

var(Xw) + η
=

max
‖w‖=1

[corr(Xw, y)]2var(Xw)

var(Xw) + η

where ηX ∈ [0, 1] and η ≤ 0 representing the regularization terms (ridge param-
eters) and η = −ηXvar(Xw) + ηX.
Finally, imposing η = 0 consists in considering the OLS case.
In fact, the optimization problem is the following:

max
‖w‖=1

[corr(Xw, y)]2var(Xw)

var(Xw)
=

max
‖w‖=1

[corr(Xw, y)]2
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which is equal to:

max
‖w‖=1

[cov(Xw, y)]2

var(Xw)
(3.10)

that is exactly the OLS approach.
This is evident as imposing η = 0 means not adding a constant to the diagonal
of the X>X matrix.
Thus it is possible to summarize some methods and the quantities they opti-
mize:

PLS: var(Xw) · corr2(Xw, Yc) · var(Yc)
PCA: var(Xw)

CCA: corr2(Xw, Yc)

As it can be seen from Equations (3.8), (3.9) and (3.10), the optimization ap-
proaches differ for the denominators, since in RR the ridge parameter ηX de-
fines a convex combination between the PLS and OLS ones (ηX = 1 implies
considering the PLS case while ηX = 0 leads to OLS setting).

3.5 Continuum approach

Actually, different continuum approaches have been designed in such a way
to find a common ground among PLS and other regression techniques. One of
these [26], is designed as a method to encompass OLS, PLS and RR as special
cases, developed for the case of a single response variable.
In general, since the aim is to determine a latent variable t = Xw having a
good prediction ability, the vector of weights w must be chosen in such a way
to maximize the correlation between t and y, i.e.:

corr(t, y) =
t>y√

t>t
√

y>y
=

w>X>y√
w>X>Xw

√
y>y

(3.11)

The vector of weights w which is the solution of the latter is proportional to
(X>X)−1X>y. This is basically the OLS model:

y = X(X>X)−1X>y + e

where e is the vector of errors.
This procedure, as known, requires the inversion of matrix X>X, which can be
a problem in case of presence of multicollinearity, phenomenon that leads to a
bad quality of prediction and poor interpretability of the model.
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In order to deal with this issue, PLS aims to find the vector w that maximize the
covariance between t and y: in this case, w is proportional to X>y and not to
(X>X)−1X>y as in the OLS approach.
Thus, from this point of view PLS consists in a shrinkage of the matrix (X>X)−1

towards I, the identity matrix. From this point of view, a continuum range of
possibility between the two extreme points can be defined.
Let α be a constant such that α ∈ [0, 1]: instead of using only (X>X)−1 or I,
a convex combination can be defined: in this way, w is proportional to [(1−
α)(X>X) + αI]−1X>y.

The relationship between X and y can be modelled using a set of latent vari-
ables: in particular, the first one is t1 = Xw1, where w1, as previously said, is
proportional to [(1− α)(X>X) + αI]−1X>y.
Then, the matrix of predictors X and the response variable y are regressed upon
t1, in such a way to determine the residual matrix of the predictors (E) and the
residual vector f related to the y.
In a second step, the latent variable t2 is created as t2 = Ew2, where in this case
w2 is proportional to [(1− α)(E>E)+ αI]−1E> f . This procedure can be repeated
as many times as the number of latent variables that must be computed.

Note that in this setting, due to the construction of the approach, α = 0 gives
the OLS regression while α = 1 corresponds to PLS regression.
Thus, the first step leads to the model:

ŷ = γX[(1− α)(X>X) + αI]−1X>y (3.12)

where γ is the regression coefficient of y upon the first latent variable t1.
With a slight modification, it can be written as:

ŷ =
γ

(1− α)
X[(X>X) + k(α)I]−1X>y

where k(α) =
α

1− α
and k(α) ∈ [0,+∞).

As it can be noticed, the first-factor model of this approach is equivalent to the
RR with a modification of a constant.
Indeed, one can test this type of regression with different values of α and look
for the one which provide the minimization of the error (or maximization of the
Q2) with a numerical method.
For this purpose, a dataset has been defined in such a way to appreciate the
influence of the parameter α on the model. Basically the construction of the
dataset starts from a PCA model of a matrix M of random numbers (a 100× 100
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matrix of numbers drawn from a Gaussian function with µ = 0 and σ = 1) from
which the loadings P are extracted as right singular vectors.
The data in M are projected along those directions to find the orthogonal scores
T (T = MP) and one of those scores is chosen as response, with additional
noise; the loadings are then used again to compute the X matrix as X = TP>.
Figure 3.1 represents the Root Mean Square Error (RMSE) obtained in a 7-fold
cross validation using the first component of the model and different values of
α.

Figure 3.1: RMSE in cross-validation (RMSECV) as a function of α

In Figure 3.2, instead, the RMSE in cross-validation for different numbers of
components for PLS is shown.

Figure 3.2: RMSE in cross-validation (RMSECV) for PLS

Thus, the minimization of the error occurs for a fairly large value of α, precisely
for α = 0.81, that indicates that the model is closer to PLS than OLS.
To validate this result, we apply a permutation test: in this case (n = 1000
permutations) it is evident that the null hypothesis is rejected since the original
Q2 is at the extreme of the distribution, giving a p-value of 0.001 (Figure 3.3).
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(a) Null hypothesis distribution (b) Q2 and correlation for each permutation

Figure 3.3: Permutation test (n = 1000)

To sum up, PLS has many relationships and common elements with other re-
gression techniques (primarily PCA as it is defined), which however differ from
each other based on the quantity that is maximized in determining the weights
and latent variables. Furthermore, PLS can be seen as the borderline case of a
continuous approach that can go up to the classic OLS, including inside the RR.
All these techniques are usually applied to perform linear regression, which is
also the original aim of PLS; therefore, predictions are made on quantitative re-
sponse variables. In Chapter 4 several methods that use PLS in the classification
scenario are described.
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Chapter 4

PLS for discrimination

Classification is a cornerstone in statistics; in many application areas, in fact, the
variable to be predicted is qualitative and therefore PLS requires an appropriate
adaptation of the algorithm to the categorical case, which is not the original pur-
pose for which this technique was designed (i.e., to perform linear regression).
There are many ways in which PLS can be applied within a classification frame-
work; in most cases PLS is used as a discriminatory tool to separate the observa-
tion, but it needs a subsequent additional model to perform the actual classifi-
cation (so it discriminates rather than classify): this is a crucial point since it is the
reason why we want to develop a new technique that exploit PLS directly as a
classifier.
A classification procedure based on PLS as discriminator is therefore commonly
built following two main steps: first of all, the response variable is coded through
an indicator Y-matrix containing the information about the class of each in-
stance and a PLS model is built on it using the predictors. Then, the latent
scores are used as input for a classifier (many types of classifiers or classifica-
tion criteria can be used in this step).
In the following sections, the most common approaches are described.

4.1 PLS-Discriminant Analysis (PLS-DA)

PLS has been developed to perform regression: then, it cannot be applied to
responses that are categorical variables. The idea underlying PLS-DA is to use
a numerical representation of the categorical response that can be modelled by
PLS. In classical regression, categorical variables are represented using a spe-
cial coding that uses indicator variables: specifically, two coding systems are
the most used, both using indicator variables composed of 0 and 1.
The first one, in case of a G-class problem, uses a indicator matrix with G
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columns, where each column is associated to a particular class. An observa-
tion belonging to class i is codified with 1 in column i and zero in the other
columns: the obtained representation is overdetermined.
The other one uses a class as a control and an indicator matrix with G − 1
columns. If the observation belongs to the control class, it is codified using 0
in all the columns, while if the observation belongs to class i that is not the con-
trol class, it shows 1 in column i and zero in the other columns.
Both systems can be used (and are used) to codify the categorical response in
PLS-DA. After the coding, the indicator Y-matrix is centred or autoscaled1 and
submitted to PLS. This approach is a heuristic approach to discrimination that
is usually justified recalling that the directions discovered by Linear Discrim-
inant Analysis (LDA) can be calculated applying CCA to relate the X-matrix
of the predictors and the indicator Y-matrix specifying the class membership
[6]. Here, since the predictors are correlated and noisy, CCA is substituted with
PLS.
When the G classes are equally populated and X is centred, the objective func-
tion of PLS at each iteration is

argmax
w>w=1
c>c=1

w>E>i−1Fi−1c =⇒ wi : argmax t>i (ŶŶ>)ti ∝
G

∑
j=1

t̄ij
2 (4.1)

where t̄ij is the mean value of the score ti calculated considering the observa-
tions of class j. In other words, the among-groups sum of squares for each latent
variable is maximised. In the general case of classes with a different number of
observations, the maximum of the objective function depends on the number
of observations of each class and the among-groups sum of squares is not max-
imised. In the case of a 2-class problem the differences between the mean scores
of the two classes is always maximised: these properties can be proved with
simple algebra.
Barker and Rayens [5] proposed a modification of the scaling factor used to
scale the indicator Y-matrix in order to obtain a maximum of the objective func-
tion equal to the among-groups sum of squares both for equally and not equally
populated classes.

Then, the representation of the observations in the latent space obtained by PLS-
DA should be more suitable for distinguishing the groups of observation than
that obtained by PCA [8]. However, the within-group variation is not taken into
account.

1Each variable of the dataset is standardized, subtracting the mean of that variable and divid-
ing by its standard deviation
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The matrix of the responses is modelled considering a linear regression model.
As a consequence, the calculated responses are not 0 or 1 but they are in the
whole real axis and the prediction of PLS-DA cannot be directly interpreted
as class membership. For this reason, a second step must be performed to
transform the results of PLS-DA into class membership: this is a drawback of
PLS-DA. Several approaches can be applied to assess class membership: the
traditional approach is that to classify an observation on the basis of the class
response with the maximum value or to apply a some sort of classification rule
optimized by cross-validation. Other approaches use the scores of the PLS-DA
model as predictors to train classical classifiers, such as Naive Bayes classifiers
and LDA.
Model interpretation is performed taking into account only the PLS part of
the procedure and the tools described in Section 2.8 are applied. The lack of
a method to assess the importance of the predictors in the whole procedure
used for classification is another drawback of PLS-DA. It is interesting to note
that most of the studies published in literature that use PLS-DA do not specify
which scaling is applied to the indicator Y-matrix or which rule or technique is
used to transform the results of the PLS regression in class membership, while
PLS-DA is a two-step procedure. In the next section, PLS-DA is presented using
a real dataset and simulated datasets.

4.2 Some examples

4.2.1 Classification through LDA

To give a practical example, a dataset with three classes is chosen; in particular,
the observations are 1H-NMR olive oil spectra used for cultivar classification:
the dataset is made of 45 observations, which are almost equally distributed
among the three classes (16 observations for class 1, 15 for class 2 and 14 for
class 3), and 221 predictors. The dataset is divided in a training set and a test
set, to perform the prediction on previously unseen samples: the test set in-
cludes 15 observations equally distributed among the classes.
The three possible outcomes of the response variables are "Coratina" (origi-
nally from the city of Corato, is an olive cultivar typical of Puglia and cul-
tivated throughout the North Bari countryside), "Ogliarola" (one of the most
widespread squeezing olive cultivars in the south of Italy, particularly present
in Puglia and Basilicata) and "Peranzana" (an olive cultivar whose production
area is the north-west area of the province of Foggia). More details about the
dataset are provided in [25].



32 Chapter 4. PLS for discrimination

A first glance at the data can be given by applying a PCA on the autoscaled ma-
trix of predictors X and assessing which is the proportion of the total variance
that the first latent variables are able to explain.

Figure 4.1: Proportion of explained variance of each component using PCA

These components captures most of the variance of the data (Figure 4.1): in fact,
the first latent variable is able to explain more than 88% of the total variance, fol-
lowed by a 4.50% of the second one; the first four components explain the 97%
of the total variance of the data.
In Figure 4.2 data separation using the first two components of PCA is illus-
trated.

Figure 4.2: Scores of the first two latent variables

The first component is clearly not useful in separating the groups of observa-
tions. PLS-DA has been performed considering the autoscaled matrix of X-
variables and autoscaled indicator Y-matrix with 3 columns and LDA on the
score vectors in the second step.
In Figure 4.3 is presented an example of the discriminatory power of PLS and
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in particular of the scores upon which LDA is performed: more precisely, those
values are the scores of the two predictive components (post-transformation has
been applied as explained in Section 2.7) of the model2. Unlike the first com-
ponents of PCA (Figure 4.2), in this case the two predictive components of the
model are useful in separating the classes.

Figure 4.3: Scores of the predictive components (3-class classification problem)

Indeed, three PCA components are necessary to separate the groups: Figure 4.4
shows the clusters of observations of the three cultivars created by the applica-
tion of PCA with the first three components.

Figure 4.4: Scores of the first three latent variables

In this case it can be seen that PLS is able to markedly separate the samples,
which is the best possible case: a traditional classifier will not have problem in

2An example with three classes is shown since two predictive component are sufficient to
discriminate between three classes and so they are easy to represent in a 2D plot
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correctly classifying the samples.
Using LDA on the scores of a PLS model, the following results are obtained for
different numbers of components (Figure 4.5).

Figure 4.5: Cohen’s Kappa in calculation, cross-validation and prediction

We use the Cohen’s Kappa as statistic since it represents the degree of accuracy
and reliability in a statistical classification, it takes into account the possibility
of the agreement occurring by chance and it can handle multi-class problems
[21].
The Cohen’s Kappa is defined as:

κ =
P(a)− P(e)

1− P(e)

where P(a) is the proportion of values in the confusion matrix that are in agree-
ment, calculated as the sum of the diagonal terms (the ones for which the sam-
ples are correctly classified) divided by the total number of observations. In-
stead, P(e) represents the expected proportion of chance agreement and it is
computed as the sum of the multiplication of the marginal proportions for each
class.
The Cohen’s Kappa can take values from -1 (worst situation) to 1 (perfect classi-
fication): if P(a) = 1, κ = 1 and the non-diagonal terms of the confusion matrix
are all 0; therefore, the model correctly classifies all the observations.
If P(a) = P(e), than the numerator is equal to 0 and so is κ, meaning that the
result is that of a random classifier; finally, if P(a) < P(e), the κ value is lower
than 0 and the model performs worse than a random classifier.
Note that PLS-DA can certainly also be used in 2-class problems (the simplest
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case).

As it can be seen, the Cohen’s Kappa does not present good values until three
components are used in the model; from the fourth one, every instance is as-
signed to its true class in calculation, prediction and CV, which is performed
with 6 folds on the training set.

4.2.2 Classification through other approaches

Another procedure consists in exploiting a Bayesian approach to classify the
observations (we start from 2-class problem scenario): indeed, one can train a
PLS model on the training set with a binary response, collecting all the values
of the calculated y-value for the two classes. A normal distribution is subse-
quently fitted on the two set of values and finally a threshold can be set in the
point where the two Gaussian curves cross, since in that point the probability
of belonging to the two classes is assumed to be equal: using it, a new instance
can be classified depending on whether its predicted value in the test phase ex-
ceeds the threshold or not. PLS is exploited in this case to discriminate between
classes and the samples are than classified using a specific criterion; the thresh-
old is used to assign a test sample to a specific class [24].
To exemplify this approach, a dataset is built starting from the definition of a
matrix D ∼ N (0, 1) with 100 rows and 100 columns of random numbers drawn
from a Gaussian distribution, from which the loadings (P) are extracted as right
singular vectors (the first three vectors are kept, so P is a 100× 3 matrix). The y
variable is defined as a sequence of 50 values equal to 1 and other 50 equal to 0,
defining the classes of the observations. The matrix of the predictors is made of
a column z1 that contains the information regarding the classes (since it is com-
posed of a set of 50 random numbers from a Gaussian with µ = 1, σ = 0.1, and
other 50 random numbers from a Gaussian with µ = 0, σ = 0.1), and other two
columns (z2, z3) that do not contain any information (they can be extracted from
a Gaussian with a given mean and standard deviation, or other distributions)3.
The matrix Z = [z1, z2, z3] is mean centred obtaining Z′ and, since we want to
have a matrix T with orthogonal components, it is multiplied by its loadings P′

found through the application of the PCA, resulting in T ∈ R100×3. Finally, T is
multiplied by P> to get the final X matrix (100× 100).
In Figure 4.6 the matrices generation scheme is reported.

3There is no particular reason why the columns that do not carry information are two, another
number could be used
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Figure 4.6: Matrices generation scheme

Figure 4.7 illustrates an example of the Normal distributions fitted on the calcu-
lated values during the training step where the observation are easily separable.

Figure 4.7: Gaussian distributions and threshold with σ = 0.1

In this case the two classes are easily separable because the variance of the two
groups in z1 is quite low (0.1). The more the samples are easily separable, the
more the PLS model is able to discriminate between them and the probability
of making mistakes during the classification phase decreases.
In Figure 4.8 the standard deviation of the two groups of samples in z1 is set to
0.25, so the classes are less easily distinguishable than in the previous case. With
respect to the previous example, the two curves are less tightly clustered around
the mean, thus the probability that in the prediction phase an observation of a
class may be beyond the threshold is higher.

Other examples are given in Figure 4.9 where σ = 0.5 and σ = 1 are considered:
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Figure 4.8: Gaussian distributions and threshold with σ = 0.25

the higher the value of the standard deviation, the more the spread of the obser-
vations around the mean increases, implying more problems in separating the
samples.

(a) σ = 0.5 (b) σ = 1

Figure 4.9: Gaussian distributions and threshold with σ = 0.5 (left) and σ = 1
(right)

This method can be generalized to G > 2 classes, starting from training a PLS
model on the indicator Y-matrix; then, for each class, the samples of that class
are separated from those of all the others classes using the threshold as for the
2-class procedure previously mentioned. A threshold is set using the calculated
values in the training phase in such a way to separate that class from the others;
in this setting, if the predicted value of a new test instance for a given class is
greater than the threshold, the observation is assigned to that class [4].
However, there is a non-negligible drawback: using this criterion it can happen
that two or more estimated class values exceed the related thresholds; in this
case, the sample is defined as not assigned.
The same applies in the case in which no one of the estimated class values ex-
ceeds the related thresholds: in this case, the sample would not be recognised
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as member of any class, so it is labeled as not assigned too.
In the ideal situation, only one of the predicted class values exceeds the thresh-
old and the observation is assigned to that class.
In Figure 4.10 the number of not assigned samples and the Cohen’s Kappa in cal-
culation using the olive oil dataset with three response classes can be observed.

Figure 4.10: Cohen’s Kappa and number not assigned samples in calculation

As it can be seen, the value of the Cohen’s Kappa rises quickly and it is an
increasing function of the number of latent variables, while at the same time the
number of not assigned samples decreases, reaching zero after three components.
The result obtained in prediction using the test set (which presents an equal
number of observations between classes) is reported in Figure 4.11.

The number of not assigned samples has a minimum (as it should) when four la-
tent variables are used, which also corresponds to the optimal number of com-
ponents, that represent a compromise between a too simple model and a model
that incurs in overfitting. When more than five component are used, the num-
ber of not assigned samples increase because the model overfits and values of
bad predictions return to exceed more than one threshold, or no one at all, as
for a very small number of latent variables.

A more direct procedure, instead, involves the training of a PLS model on
the indicator Y-block and then use it to predict an instance assigning it to the
class with the highest estimated class value [4].
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Figure 4.11: Cohen’s Kappa and number not assigned samples in prediction

It is important to underline that using this approach, all the samples are as-
signed to one and only one class, without having not assigned samples4.
In Figure 4.12 is shown the result using this method applied to the dataset of
olive cultivar, which shows in this case a good prediction ability starting from
a model with three components; as can be expected, with a smaller number
of components the model is not able to easily distinguish the classes and the
results in prediction are worse than the ones in calculation.

Figure 4.12: Cohen’s Kappa in calculation and prediction

4In contrast to what happens for the methods outlined in 4.1 that fit the Gaussian distributions
on the calculated value in the training phase and then classify using a threshold, with the risk of
having not assigned samples
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The intuition to assign the observation to the class with the highest predicted
value is empirical and we want to give this procedure a well-defined mathe-
matical justification: this is possible through the introduction of compositional
data (presented in Chapter 6).
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Chapter 5

Towards classification

The use of PLS in the context of classification as self-consistent classifier has
been presented so far in some papers, even if in general it has not been explored
so much in the literature. Some techniques that try to move towards the use of
PLS as an effective classifier are now described.
However, first of all it is important to explain why traditional methods, like
logistic regression, are not suitable to a high-dimensional scenario.

5.1 Logistic regression in high dimensional setting

When the response variable is categorical, one of the most common approaches
to classification is to use logistic regression; however, it is important to un-
derstand why conventional techniques, as logistic regression, are not adequate
when p > n.
Logistic regression is a statistical technique used when the response variable
is binary (e.g. success vs failure, alive vs dead, etc) that models the logarithm
of the ratio between the probability of success (event Y = 1) and the proba-
bility of failure (event Y = 0) as a linear combination of the predictors. The
logarithm of this proportions is called log-odds and it corresponds to the logit
function whose input is the probability of success. Let’s define the probability
of success p = P(Y = 1). Then, the model is:

logit(p) = ln
(

p
1− p

)
= β0 + x>β (5.1)

where x is the vector containing the values of the covariates of an observation
and β is the vector of regression coefficients of the model.
In this way, the link function (i.e. the logit) maps values in (0, 1) to (−∞,+∞),
which is the same domain of the linear combination of the predictors.
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Using the inverse function (logistic) the probability p can be written as:

p =
1

1 + e−(β0+x>β)
(5.2)

Thus, once β is estimated in the training phase, the prediction of a new observa-
tion xi can be made using [5.2] to find the probability of success and then using
a threshold to effectively assign it to one of the two classes. In other words,
logistic regression squeezes the output of a linear equation between 0 and 1.
Indeed, the name of the method derives from the fact that the probability of the
response being 1 is equal to the value of the logistic function whose input is the
linear combination of the X-variables.
The β coefficients of the model may be found via maximum likelihood estima-
tion. Specifically, they can be estimated through Iteratively Re-weighted Least
Squares (IRLS) procedure. IRLS is a method to solve optimization problems
(as the Least Squares problem) through an iterative procedure that updates a
weight vector; in fact, at each iteration the parameters are re-estimated as

β̂t+1 = argmin
β

n

∑
i=1

wi(β̂t)|yi − fi(β)|2

where the optimization problems has an objective function of the form

argmin
β

n

∑
i=1
|yi − fi(β)|p

with p indicating a p-norm.
This technique is widely applied in several fields, but as for the other traditional
methods, a high-dimensional setting poses different problems when trying to
build a model. Indeed, the problems caused by the high-dimensional scenario
highlighted in Section 2.1 hold also for this method.
In fact, when the number of predictors is (possibly much) larger than the num-
ber of observations, the existence and unicity of the vector of coefficients is not
guaranteed and also this technique needs a regularization method (as the ridge
penalty) to handle the high-dimensionality of the data.
This is one of the reasons why we want to adapt PLS also for the classification
purpose. In the following sections, some adaptations of PLS for classification
are discussed.
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5.2 PLS logistic regression

In this section some classification techniques that try to approach PLS in their
formulation are illustrated.
A work by Michel Tenenhaus [36] was written in 2000 to adapt the PLS algo-
rithm to the case of logistic regression.
It was the first attempt to extend PLS towards classification based on a serious
thought about what PLS is. Tenenhaus observed that the components of the
weights of PLS1 can be calculated considering single OLS regression between
the y-response and the residuals of each single predictor. This new formulation
of PLS1 driven the development of the logistic version of PLS discussed in the
following.
In Tenenhaus [36], a new estimation method is presented to fit a model such
that

ln
(

p
1− p

)
= Xb (5.3)

where b is the vector of regression coefficients.
The algorithm starts with the computation of the latent variables (m compo-
nents th with h = 1, 2, . . . , m), working on the individual explanatory variables.
Given the matrix X made of P centred predictor variables, the first component
is found by computing the regression coefficient a1j of xj in the simple logistic
regression of the response variable y on xj for each variable xj, with j going from
1 to P.
A vector a1 is made up using these coefficients, then it is subsequently normal-
ized and w1 is computed:

w1 =
a1

‖a1‖

Now the scores of the first component are ready to be computed:

t1 =
Xw1

w1
>w1

In computing the second component of the model, the information captured by
the first one must be taken into account; in fact, first of all the residual matrix
E1 = [e11, e12, . . . , e1P] of the linear regression of X on t1 is computed. Then,
the regression coefficients a2j of each e1j are calculated in the multiple logistic
regression of y on t1 and e1j, j = 1, . . . , p.

As before, the vector is normalized and w2 is calculated as w2 =
a2

‖a2‖
.
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At this step, the second score vector of the model is:

t2 =
X1w2

w2>w2

The other components are calculated in the same way, adding the information
of the previous component at each step.
For the hth latent variable, the residual matrix Eh−1 is computed on the latent
variables t1, . . . , th−1.
Then, ahj are the regression coefficients of eh−1,j in the multiple logistic regres-
sion of y on [t1, . . . , th−1, eh−1,j], j = 1, . . . , P.

Then, wh =
ah

‖ah‖
and th =

Eh−1wh

wh
>wh

.

This procedure assures that the score vectors ti are a set of orthogonal vectors.
After h iterations, the set of weight vectors wi, i = 1, . . . , h and score vectors ti,
i = 1, . . . , h are obtained, which compose the matrices W and T.
The orthonality of the score vectors is then exploited when making a prediction,
according to Equation 5.3: in fact, the following relationship holds

logit(p) = XW∗q> = Xb (5.4)

where Q is matrix of loadings of the Y-block and b = W∗q>.
Usually the number of components of the model is choosen via cross-validation
in order to have a sufficient number of latent variables to explain the response
but at the same time avoid overfitting.
The technique has not been adapted to the general case of G classes: the G-
class classification problem can be solved using pairs of logistic-PLS models
according to the standard approach used for logistic regression.

5.3 Other methods

Other methods have been designed towards the classification using PLS [7];
one of these was formulated by Nguyen and Rocke [22] and, given a number of
latent components A, applies a PLS model on Y using the X-variables as pre-
dictors, finding the score matrix T. Then parameters are estimated by running
on Y and T the IRLS in the classical logistic regression framework.

A second method called Iteratively Re-weighted PLS (IRPLS) was devel-
oped by Marx [20] and tries to extend the concept of PLS into the framework of
generalized linear models.
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IRPLS is essentially an IRLS algorithm in which the PLS regression is used in-
stead of the weighted least squares regression; it is worth noting that using the
maximum number of PLS components corresponds to the least squares case.
Moreover, in [20] the number of components is chosen to be equal to rank(X):
this choice can be not appropriate in the "large p small n" scenario since in this
case the algorithm never converges. Other authors [23] use a similar procedure
with A < rank(X). The principal drawback of this method is that convergence
is not guaranteed.

Another method was designed in a work by Fort and Lambert-Lacroix [12],
in which a new procedure is proposed to combine PLS and Ridge penalized
logistic regression to extend PLS to the logistic regression model.
They suggest to replace the binary y response with a pseudoresponse variable
(indicated as z∞ at convergence of the algorithm) that has an expected value
with a linear relationship with the covariates. This new dependent variable has
some properties; in fact, at convergence of the Ridge-IRLS (RIRLS), which is a
version of IRLS that substitutes the weighted regression with a weighted RR, it
can be written as z∞ = Xγ̂R + e, where γ̂R is the vector of regression coefficients.
The method is called R-PLS since a ridge approach is applied to PLS: in this case,
two parameters must be found by cross-validation, i.e. λ (the ridge parameter)
and A (the number of latent variables).

A different approach to classification using PLS for a multiclass problem is
that of Wang et al. [37] , in which a classification of four stages of cancer devel-
opment ("normal", "hyperplasia", "dysplasia" and "early cancer") is performed
in two steps.
First of all, the PLS components are extracted using the original explanatory
variables and the response block, coded in three indicator variables (assumed
as unordered).
Then, the following is assumed:

ln
(

pk

p1

)
= β0k + βk

>sk (5.5)

where pk = P(class k|sk) and sk is the vector of values of the PLS components
for an instance belonging to class k.
The regression coefficients are computed through maximum likelihood and a
sample is classified according to the class with the highest predicted probability
from the logistic regression.

Finally, a work regarding the use of PLS in the context of classification was
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presented in 2007 by Tenenhaus A. et al [35] and focused on a new algorithm,
called KL-PLS (Kernel Logistic PLS), which essentially is a tool for supervised
nonlinear dimensionality reduction and binary classification.
Indeed, it can be seen as a supervised dimensionality reduction method fol-
lowed by a classification based on logistic regression.
The main idea of KL-PLS is to look for a discriminant space spanned by the
KL-PLS components (t1, . . . , tm), where a simple model, such as the logistic re-
gression may become efficient for classification.
In order to find such space, a kernel matrix is used to map the data into a higher-
dimensional space (with respect to the original) where the probability of finding
the hyperplane increases with the dimension of the space.
The scheme of KL-PLS is quite intuitive:

1. The kernel matrix is computed

2. The m KL-PLS components are calculated

3. Logistic regression of the response matrix Y on the m retained latent vari-
ables is performed

Let X be a N × P matrix, with N observations and P explanatory variables and
y the dependent variable. A kernel matrix K associated to X is a N × N matrix
in which each cell kij represent the inner product between individuals i and j in
the feature space F ; it follows that each column k j, j = 1, . . . , N represent the
similarity between the individual j and the whole dataset.
To determine the first KL-PLS component, a sequence of N simple logistic re-
gressions must be carried out:

Step 1: Compute the coefficients a1j of k j in the binary logistic regression of
y on each k j, j = 1, . . . , N.

Step 2: Normalization step, w1 =
a1

‖a1‖
Step 3: Calculate the first score vector t1 = Kw1

The hth component tries to capture as much as possible the discriminant infor-
mation not explained by the previous components.
Thus, at each step the residual matrix must be computed, that is kh−1,1, . . . , kh−1,N

are calculated from the multiple regression of each k j on t1, . . . , th−1, giving Kh−1

as result.
Again, the hth latent variable is determined through N logistic regressions:

Step 1: Compute ahj of kh−1,j by performing a binary logistic regression of y
on [t1, . . . , th−1, kh−1,j], with j = 1, . . . , N
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Step 2: Normalize the vector, i.e. wh =
ah

‖ah‖
Step 3: Calculate the hth score vector: th = Kh−1wh

Often it is useful to express the values of the score vector of a latent variable
in terms of the original variables, that is finding a vector wh

∗ such that th =

Kwh
∗: this allows to compute directly the KL-PLS components for a new data

set, using the relationship ttest = KtestW∗.
It must be noticed that the first component is already expressed in terms of the
original variables, because w1

∗ = w1 (and t1 = Kw1).
The second component and the following ones are expressed in terms of the
residuals, so wh

∗ 6= wh, for h > 2.
In the case of the second component, let p1j be the regression coefficient of t1 in
the regression of k j on t1, then K = t1 p1

> + K1 and t2 = K1w2.
Thus we get:

t2 = K1w2 = (K− t1 p1
>)w2 = (K− Kw1 p1

>)w2 =

= K(I − w1 p1
>)w2 = Kw2

∗
(5.6)

where w2
∗ = (I − w1 p1

>)w2.
Extending this reasoning to the general case of the hth component, th can be
expressed as:

th = Kh−1wh = (
k−1

∑
i=1

ti pi
>)wh = (

k−1

∑
i=1

Kwi
∗pi
>)wh =

= K(I −
k−1

∑
i=1

wi
∗pi
>)wh = Kwh

∗
(5.7)

where wh
∗ = (I −

k−1

∑
i=1

wi
∗pi
>)wh .

Also in this case, the choice of the number of components m is usually guided
by cross-validation.

However, as it can be noticed those methods are designed in such a way that
PLS is initially used as first step for the discriminatory phase (calculating the
components and trying to separate the classes); subsequently, an analysis is
made on the PLS scores.
For this reason, we want to design a new technique purely based on PLS, which
acts as a classification tool (which is not the case of PLS-DA).
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Chapter 6

PLS for Classification

The methods described so far (especially PLS-DA in Chapter 4) are nowadays
widely used and although they work and often give consistent results, their
approach is empirical or PLS is used only as an initial discriminatory step and
needs other classifier to effectively assign an observation to a specific class.
Thus, in this Chapter we want to present the use of PLS with a different ap-
proach: to understand how this is possible, let’s start to see PLS from a new
point of view, through whose extension we can get to the new methods, which
are then illustrated after the introductory part.

6.1 PLS and Gradient Descent

In addition to how it has already been described in Chapter 2, PLS can be
seen as an algorithm that solves the least squares problem through an itera-
tive approach where at each step the residuals of the X-block and Y-block are
regressed using the first approximated solution obtained by steepest descent
method. From this point of view, the concept of latent variables by projection
are introduced only later since it is not strictly necessary to define the method
(actually they are only two different versions to solve the same problem).
The objective function of PLS1 arises from the application of the steepest de-
scent method maximizing the directional derivative and it is fully justified in
the framework, as it is explained in the following sections.
Introducing PLS as a means of solving the least squares is very important be-
cause starting from this point of view it is possible to modify the algorithm for
more general purposes, in the direction in which we want to move, therefore
trying to adapt it to classification. Given this general introduction, let’s proceed
with the first case, i.e. PLS1.

1Maximization of covariance between the scores in the X and Y spaces
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6.1.1 A new formulation for PLS1

PLS1 is the special case of PLS in which the response variable has only one
dimension, so y is a N × 1 vector, where N is the number of observations.
Given a matrix of predictors X (N× P) and a vector y (N× 1), that we consider
mean-centred and scaled, let’s consider the linear regression problem:

y = Xb + e (6.1)

where b (P× 1) is the vector of regression coefficients and e (N× 1) is the vector
of errors (no assumptions regarding the errors are done).
The core of the iterative procedure here described is the application of the gra-
dient descent to reduce the distance between y or its residuals and its approxi-
mation obtained considering a subspace of X.
Let’s define fi the vector of residuals of y at step i2 and Ei a subspace of the
column space of X at iteration i; the aim is to find the weight vectors such that:

w̃i+1 = argmin
w

‖ fi − Eiw‖2
F (6.2)

being the solution w̃i+1 = w̃(0)
i+1 + ∆w̃i+1 + . . . , where ∆w̃i+1 = αi+1wi+1 and

‖wi+1‖F = 1. The Frobenius norm is used since in this Chapter we have to deal
also with norm of matrices.
Starting from the initial guess w̃(0)

i+1 = 0p, the solution at the first iteration of the
steepest descent algorithm is:

w̃i+1 ≈ ∆w̃i+1 = αi+1wi+1 (6.3)

where

wi+1 ∝ −∂‖ fi − Eiw̃i+1‖2
F

∂w̃i+1

∣∣∣
w̃(0)

i+1=0p
= E>i fi i.e. wi+1 =

E>i fi

‖E>i fi‖
(6.4)

and

αi+1 = argmin
α
‖ fi − αEiwi+1‖2

F , i.e. αi+1 =
f>i EiE>i fi

f>i EiE>i EiE>i fi
‖E>i fi‖ (6.5)

2At the beginning of the algorithm, fi is exactly y
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It is worth noting that the same solution is obtained by considering the direction
wi+1 that maximizes the following directional derivative:

argmax
wi+1

∇wi+1‖ fi−Eiw̃i+1‖2
F = argmax

wi+1

∇‖ fi−Eiw̃i+1‖2
F

∣∣∣
w̃i+1=0p

wi+1 ∝ argmax
wi+1

f>i Eiw̃i+1

that is wi+1 ∝ E>i fi and αi+1 = argmin
α
‖ fi − αEiwi+1‖2

F .

The algorithm is the following:

Algorithm 5: PLS1 - "Gradient descent" PLS1 algorithm

1 f0 = y;
2 E0 = X;
3 for i = 1, . . . , A do

4 wi =
E>i−1 fi−1

( f>i−1Ei−1E>i−1 fi−1)
1
2

;

5 αi =
w>i E>i−1 fi−1

w>i E>i−1Ei−1wi
;

6 Ei = Q̂Ei−1wi Ei−1;
7 fi = fi−1 − αiEi−1wi;

8 end

where Q̂Ei−1wi = IN − (w>i E>i−1Ei−1wi)
−1Ei−1wiw>i E>i−1 is the orthogonal projec-

tion matrix that projects a vector v (P× 1) onto the space orthogonal to Ei−1wi.
After A iterations, the response variable y is decomposed as:

y = XβA + fA (6.6)

where fA is the vector of residuals after A iterations and the vector βA is:

βA = W(W>X>XW)−1W>X>y (6.7)

being W the matrix of weights, i.e. W = [w1, . . . , wA].
The regression model in 6.1 is obtained if we consider b = βA and fA = e.
In Appendix B.1 it is proved that the algorithm solves the least squares problem.

Moreover, one can prove that the algorithm is the PLS1 algorithm. Introducing
the vector

ti = Ei−1wi (6.8)

the residuals of the y-block can be written as:

fi = fi−1 − αiEi−1wi = Q̂ti fi−1 (6.9)
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and the algorithm becomes:

Algorithm 6: "Eigenvalue" PLS1 algorithm

1 f0 = y;
2 E0 = X;
3 for i = 1, . . . , A do

4 wi =
E>i−1 fi−1

( f>i−1Ei−1E>i−1 fi−1)
1
2

;

5 ti = Ei−1wi

6 Ei = Q̂ti Ei−1;
7 fi = Q̂ti fi−1;

8 end

The "gradient descent" PLS1 algorithm will be used to solve the classification
problem with 2-classes. It is interesting to note that steps 4 and 5 characterize
the algorithm in the least squares sense.
On the other hand, steps 4 and 7 in the "eigenvalue" PLS1 algorithm are the ones
that characterize the algorithm as a least squares solver, since Step 4 is used to
find the direction that minimizes the least squares loss function (‖ fi− Eiw̃i+1‖2

F)
and Step 7 is a least squares regression considering the latent variable ti.

6.1.2 A new formulation for PLS

Let’s now come to the most general form of PLS algorithm (recall that PLS is
used to stand PLS2), which is able to handle more than one response variable at
the same time. Given a multiple Y-response (N × K) and the matrix X (N × P)
of the predictors, that are mean-centred and scaled, the residual matrix Fi and
the matrix Ei belonging to the column subspace of X, the objective function to
be minimized in this case at iteration i is:

‖Fi − EiW̃i+1‖2
F = tr(F>i Fi)− 2tr(F>i EiW̃i+1) + tr(W̃>i+1E>i EiW̃i+1) (6.10)

The idea consists in considering the directional derivative

∇Wi+1‖Fi − EiW̃i+1‖2
F (6.11)

and looking for Wi+1 that maximizes 6.11, i.e.:

argmax
‖Wi+1‖2

F=1
∇Wi+1‖Fi − EiW̃i+1‖2

F = argmax
‖Wi+1‖2

F=1
tr
(
∇‖Fi − EiW̃i+1‖2

F

∣∣∣
W̃i+1=0

Wi+1

)
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Since ∇ f (X) =
(

∂ f
∂Xij

)
, we get:

∇‖Fi − EiW̃i+1‖2
F

∣∣∣
W̃i+1=0

= F>i Ei (6.12)

and also

argmax
‖Wi+1‖2

F=1
∇Wi+1‖Fi − EiW̃i+1‖2

F = argmax
‖Wi+1‖2

F=1
tr(F>i EiWi+1) (6.13)

If the SVD of F>i Ei is introduced as

F>i Ei = CiSiV>i (6.14)

with Ci = [ci
1, . . . , ci

a], Vi = [wi
1, . . . , wi

a], Si = diag(si
j), we get:

argmax
‖Wi+1‖2

F=1
∇Wi+1‖Fi − EiW̃i+1‖2

F = argmax
‖Wi+1‖2

F=1
tr(CiSiV>i Wi+1) (6.15)

The maximum of this quantity is obtained when Wi+1 = wi
1ci>

1 ; in fact, in this
case

tr(F>i EiWi+1) = tr(F>i Eiwi
1ci>

1 ) = ci>
1 F>i Eiwi

1 = si
1 (6.16)

We recall that wi
1 satisfies the following equation

E>i FiF>i Eiwi
1 = s(i)21 wi

1 (6.17)

and also
ci

1 =
1
si

1
F>i Eiwi

1 (6.18)

Therefore, in this setting the first approximation of W̃i+1 if W̃(0)
i+1 = 0 is consid-

ered is
W̃i+1 = αi+1wi

1ci>
1 (6.19)

The term αi+1 is a scalar equal to argmin‖Fi − αi+1Eiwi
1ci>

1 ‖2
F and it is defined

as:

αi+1 =
tr(F>i Eiwi

1ci>
1 )

tr(ci
1wi>

1 E>i Eiwi
1ci>

1 )
=

si
1

wi>
1 E>i Eiwi

1
(6.20)
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Thus, the proposed algorithm in this case is:

Algorithm 7: "Gradient descent" PLS algorithm

1 F0 = Y;
2 E0 = X;
3 for i = 1, . . . , A do
4 solve E>i−1Fi−1F>i−1Ei−1wi = s2

i wi;
5 ci =

1
si

F>i−1Ei−1wi;

6 αi =
si

w>i E>i−1Ei−1wi
;

7 Ei = Q̂Ei−1wi Ei−1;
8 Fi = Fi−1 − αiEi−1wic>i ;

9 end

Thus after A iterations of the procedure, the response is decomposed as:

Y = XβA + FA (6.21)

where
βA = W(W>X>XW)−1W>X>Y (6.22)

with W = [w1, . . . , wA].
When A = rank(X), given the SVD of X: X = USV>,

βA = VS−1U>Y (6.23)

and the least squares problem is solved.
Moreover, introducing the score vectors ti, i = 1, . . . , A defined as in 6.8, the
residuals of the X and Y blocks can be written as:

Ei = Q̂ti Ei−1

Fi = Fi−1 − αiEi−1wic>i = Fi−1 −
si

t>i ti
ti

1
si

t>i Fi−1 = Q̂ti Fi−1
(6.24)

and noting that the vectors wi are equal to the PLS-weight vectors, we can con-
clude that the algorithm is equivalent to the PLS algorithm introduced in section
2.3.
So, the matrix of regression coefficients of PLS is the one presented in 6.22 and
the blocks are decomposed as follows:

X = TP> + EA (6.25)
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Y = T(T>T)−1T>Y + FA = XB + FA (6.26)

where T = [t1, . . . , tA], P = X>T(T>T)−1 and B = βA, according to PLS.
It is worth noting that the proposed derivation of PLS does not require the intro-
duction of the concept of latent variable and that the objective function of PLS
has been derived minimizing the least squares loss function without assump-
tions about the covariance of X and Y. Moreover, steps 4 and 5 of the algorithm
are the solution of the problem

wi, ci = argmax
w,c

(w>E>i Fic) (6.27)

that is the maximization problem 2.6 used in the standard formulation of PLS.
This formulation will be used to solve the G-class classification problem with
G > 2 thanks to the capability of PLS to handle more than one response at the
same time.

6.2 "Gradient descent" PLS and regularization

The iterative procedure used to define "gradient descent" PLS (and that of PLS1
in the case of single y-response) generates a series of estimations of the solution
of the least squares problem and converges to the least squares solution when
the maximum number of iterations is performed. However, the least squares
solution may be a suboptimal solution in the case of real data. Indeed, the vari-
ance of the coefficients may result too large and model generalization may be
hindered due to over-fitting. As a consequence, regularization is introduced to
balance bias and variance in order to obtain good performance in predictions
and improve generalization. In the case of PLS, regularization is not performed
constraining the norm of the regression coefficients as for Ridge or Lasso regres-
sion but applying the so-called early stopping that is a general methods usually
applied to control the complexity of the solution obtained by iterative methods
[27]. In early stopping, the algorithm used to solve the problem is stopped at a
certain iteration on the basis of some stopping rules. In PLS, strategies of cross-
validation are usually applied to determine the iteration that generates the min-
imum of the estimated error in prediction since an analytical expression of the
error in prediction is not known, and the algorithm is stopped. As a results, the
regression coefficients are regularized because they belong to a subspace of the
column space of X with a dimension much smaller than rank(X).
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6.3 Transformation of the Y-response and PLS

The formulation of PLS based on gradient descent is suitable to solve the prob-
lem of regression when functions are used to transform the Y-response. We
consider the function

g : RK → RL (6.28)

that transforms the response y into g(y) = [g1(y), . . . , gL(y)]> = z ∈ RL. More-
over, we assume that the inverse g−1 : RL → RK of g exists, i.e. g−1g(y) = y
and gg−1(z) = z.
The following regression model is considered

g(Y) = XB + E (6.29)

where B(P× L) is the matrix of regression coefficients and E(N × L) is the ma-
trix of residuals. We assume that X is mean-centred and scaled. The model
parameters can be estimated by the following algorithm

Algorithm 8: "Gradient descent" PLS - X-space

1 F0 = g(Y);
2 E0 = X;
3 for i = 1, . . . , A do

4 solve argmax
‖Wi‖2

F=1
∇Wi‖Fi−1 − Ei−1W̃i‖2

F

∣∣∣
W̃i=0

;

5 calculate αi = argmin
α
‖Fi−1 − αEi−1Wi‖2

F ;

6 Fi = Fi−1 − αiEi−1Wi;
7 Deflation step Ei ← Ei−1;

8 end

that corresponds to the "gradient descent" PLS algorithm where g(Y) is used
instead of Y.
Specifically, the solution of step 4 is

Wi = wic>i such that E>i−1Fi−1F>i−1Ei−1wi = s2
i wi

ci =
1
si

F>i−1Ei−1wi
(6.30)

while
αi =

si

w>i E>i−1Ei−1wi
(6.31)
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and the deflation step 7 is
Ei = Q̂Ei−1wi Ei−1 (6.32)

After A iterations, the matrix of the regression coefficients is

B = W(W>X>XW)−1W>X>Y (6.33)

and
E = FA

It is interesting to note that step 4 and 5 are solved in the Euclidean space where
the matrix of the predictors is defined. We called this approach "regression in
the X-space".
When the inverse transformation g−1 is taken into account, the regression model

g(Y) = XB + E

can be solved considering the following iterative algorithm

Algorithm 9: "Gradient descent" PLS - Y-space

1 F0 = Y;
2 E0 = X;
3 for i = 1, . . . , A do
4 solve argmax

‖Wi‖2
F=1
∇Wi‖Fi−1 − g−1(Ei−1W̃i)‖2;

5 calculate αi = argmin
α
‖Fi−1 − g−1(αEi−1Wi)‖2 ;

6 Fi = g−1(g(Fi−1)− αiEi−1Wi);
7 Deflation step Ei ← Ei−1;

8 end

that corresponds to the "gradient descent" PLS algorithm where g−1 is used
to transform the matrices in the X-space into its representation in the Y-space.
We called this approach "regression in the Y-space". It is worth noting that the
differences in steps 4 and 5 are calculated in the Y-space that could not be a
Euclidean space (e.g. it could be a simplex).
After A iterations, the following Y-block decomposition is obtained

FA = g−1

(
g(Y)−

A

∑
i=1

αiEi−1Wi

)
= g−1 (g(Y)− XB) i.e. g(Y) = XB + g(FA)

(6.34)



58 Chapter 6. PLS for Classification

having Ei the general form Ei = XZi where Zi depends on the deflation step 7.
In this case we have

E = g(FA) (6.35)

If g−1 is a linear function, we have

Y = g−1(XB) + FA (6.36)

A special case of functions used to transform Y is the link function used in the
logistic regression that is discussed in the next section.

6.4 PLS for classification

We now present the central part of this thesis, focused on explaining how the
classification problem can be solved by PLS through various methods, each ex-
ploiting different properties. Both the 2-class problem and the framework of its
generization to G > 2 classes are considered.

6.4.1 2-class classification problem

In the following, we shall consider two classes A and B, and the related condi-
tional probabilities

0 < P(class = j|xi) < 1 with j = A, B (6.37)

being xi ∈ RP the vector of predictors of observation i. Given a training set of
NA observations of class A and NB observations of class B, we shall assume that
all the observations of the same class show the same conditional probability and
specifically that

P(class = A|xi) = 1− ε if the observation i belongs to class A

and
P(class = A|xi) = ε if the observation i belongs to class B

for 0 < ε < 1
2 . Moreover, we shall consider the regression model

g(yi) = x>i b + ei (6.38)

where yi = P(class = A|xi), the vector of regression coefficients is b and ei is
the vector of errors.



6.4. PLS for classification 59

6.4.2 2-class classification problem solved by logistic-like method in
the X-space

In this section, the transformation of the Y-response called logit function

g(yi) = ln
(

yi

1− yi

)
, with yi ∈ (0, 1) (6.39)

whose inverse is the logistic function

g−1(xi) =
1

1 + e−xi
, with xi ∈ (−∞,+∞) (6.40)

is considered.
For the observations of the training set, the values of the logit function are

g(yi) = ln
[

P(class = A|xi)

1− P(class = A|xi)

]
= ln

(
1− ε

ε

)
> 0 for observations of class A

and

g(yi) = ln
[

P(class = A|xi)

1− P(class = A|xi)

]
= − ln

(
1− ε

ε

)
< 0 for observations of class B

Here, we estimate the vector of the regression coefficients using the PLS "re-
gression in the X-space" approach. The "regression in the Y-space" approach
will be considered only after the introduction of the compositional data. Com-
positional data theory is required to properly take into account the different
geometry of the X and Y spaces. It is worth noting that we can directly apply
the "regression in the X-space" approach to the transformed response ignoring
the geometry of the y-transformed space because the logit function is an iso-
morphism. Indeed, it corresponds to the additive-logratio transformation for a
binary mixture, as it will be discussed in section 6.4.4.

The vector g(y) of the responses is

g(y) = ln
(

1− ε

ε

)[
1NA

−1NB

]
(6.41)

where 1Ni is the vector with Ni elements equal to 1.

After mean centering (being the mean vector ḡ = ln( 1−ε
ε )(NA−NB

NA+NB
)), the vector

of the responses is

g̃(y) = 2 ln
(

1− ε

ε

)
1

NA + NB

[
NB1NA

−NA1NB

]
(6.42)
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and the solution of step 4 at iteration i is the weight vector

wi ∝ E>i−1

[
NB1NA

−NA1NB

]
, i.e. wij ∝ (e−(i−1)

jA − e−(i−1)
jB )

where e−(i−1)
jk is the mean of the residuals of the predictor j at the iteration i− 1

calculated using the observations of class k. It is interesting to note that the
weight vectors are independent of ε and that they are the same obtained by
PLS-DA for a 2-class problem. Moreover, they are a set of orthonormal vectors3.
After A iterations the following decompositions are obtained

X = TP> + EA (6.43)

and

g̃(y) =
A

∑
i=1

αiti + FA = XW∗α + FA (6.44)

The vector of the regression coefficients is

b = W∗α = 2 ln
(

1− ε

ε

)
1

NA + NB
W∗(T>T)−1T>

[
NB1NA

−NA1NB

]
(6.45)

and the vector of the residuals is FA. The matrices T, P, W∗ are defined accord-
ing to the standard PLS.

The class of a new observation x is predicted estimating the logit function by

ln
(

P(class = A|xnew)

P(class = B|xnew)

)
= (xnew − x̄)>Lscalingb + ḡ

∝ (xnew − x̄)>LscalingW∗(T>T)−1T>
[

NB1NA

−NA1NB

]
+

1
2
(NA − NB)

where x̄ is the vector of the mean values of the columns of X and Lscaling =

diag( 1
fi
) is the scaling matrix ( fi is a parameter that depends on the type of

scaling that is applied). If the class membership is attributed on the basis of
the maximum conditional probability, the predicted class is independent of ε

because it depends only on the sign of the logit function.

3Since for j < i we have Ei−1 = ZiQ̂tj Ej−1, then, w>j wi = w>j E>i−1ci = w>j E>j−1Q̂tj Zjci =

t>j Q̂tj Zjci = 0; for j = i, we have w>j wi = w>i wi = 1
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Again, the score latent space can be post-transformed according to the post-
transformation procedure proposed for PLS [33][29] obtaining a single predic-
tive latent variable and the following model of g(y)

g(y) = tpqp + ḡ + fA

where qp =
t>p g̃(y)

t>p tp
, is obtained. It allows the calculation of the conditional prob-

ability

P(class = A|xi) =
1

1 + e−(tpiqp+ḡ)
(6.46)

6.4.3 Some notes about compositional data

Compositional data theory is one of the keys of this work. It allows us to con-
sider the real nature of the probabilities to belong to a given set of classes, that
is the constraint to sum to 1. From an algebraic point of view, the Y-space of the
probability and the X-space of the predictors are treated with the right geome-
try and their relationships studied using suitable isomorphisms.

Background

Compositional data are vectors whose components are the proportion of some
whole, carrying relative information; their fundamental property is that the
sum is constrained to be equal to some constant (e.g. 1 for proportions, 100
for percentages or other constant c for other cases).
Such type of data must be properly processed, since they are not simple vectors
of real numbers: in fact, strange behaviours can occur when statistical methods
for unconstrained data are applied to compositional data.
This is due to the fact that the space of compositional data is different from the
real Euclidean space associated to uncostrained data.

Compositional data are present in many areas, such as petrology or geology
(e.g. for geochemical or mineral compositions of rocks), economics (portfolio
compositions), geography (land use compositions), agriculture, biology, medicine,
etc. [2]

As previously said, standard statistical methods lose their applicability and in-
terpretation when dealing with compositional data, so a new approach was
designed by J. Aitchison in the 80’s, defining a theory based on log-ratios: a
mathematical foundation of the analysis of compositional data is based on the



62 Chapter 6. PLS for Classification

definition of a specific geometry on the simplex, through which it is possible to
perform rigorous analysis using such data.

The sample space of compositional data is the simplex:

SG = {x = [x1, x2, . . . , xG]|xi > 0, i = 1, . . . , G,
G

∑
i=1

xi = κ} (6.47)

which means that x is a G-part composition whose components are stricly pos-
itive real numbers that sum to κ.

Moreover, for any vector of G real strictly positive component of the form

z = [z1, z2, . . . , zG] ∈ RG
+ (6.48)

the closure of z is:

C(z) =
[

κ · z1

∑G
i=1 zi

,
κ · z2

∑G
i=1 zi

, . . . ,
κ · zG

∑G
i=1 zi

]
(6.49)

resulting in the same vector rescaled so that the sum of the components is equal
to κ, with κ depending on the measurements.

Euclidean geometry is not a proper tool when dealing with compositional data;
as an example, let’s consider two couples of compositions:

[10, 80, 10], [20, 70, 10]

and
[60, 30, 10], [70, 20, 10]

The Euclidean distance between each couple is undoubtedly the same, but in
the first couple the first component is doubled, while in the second case it in-
creases by only 16%, so since we are dealing with proportions, the percentage
increase seems to be much more suitable for the analysis of compositions than
the absolute difference and thus the difference between those two couples does
not appear to be the same.
This is only one possible example that motivates the need of defining a new
geometry to analyze this type of data.
First of all, two operations which give the simplex a vector space structure must
be defined.
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Vector space structure

The perturbation operation (analogous to addition in the Euclidean space) of a
composition x ∈ SG by a composition y ∈ SG is defined as:

x⊕ y = C[x1y1, x2y2, . . . , xGyG] (6.50)

Power transformation (equivalent to multiplication by a scalar in real space) of
a composition x ∈ SG by a constant α ∈ R is defined as:

α� x = C[xα
1 , xα

2 , . . . , xα
G] (6.51)

The simplex (SG,⊕,�) with the perturbation operation and power transforma-
tion is a vector space.
The properties are reported in Appendix B.3. Definitions of inner product, norm
and distance in this space to get a linear vector space structure are given in Ap-
pendix B.4.

Mapping the simplex and the Euclidean space

Transformations are essential to achieve the goal of performing classification,
because they allow us to make calculations by relating spaces with different
structures. There are three main transformations, each with properties that
characterize and differentiate it from the others: these properties will then be
exploited in the algorithms based on the purpose and type of data.

• Additive-logratio transformation (alr): once a component (ref ) is chosen
as reference, the transformation is defined as:

alr : SG → RG−1 s.t. y→
(

ln
y1

yre f
, . . . , ln

yk

yre f

)
(6.52)

The Additive-logratio transformation is an isomorphism but it is not an
isometry because the distances in the simplex are not the same of the ones
in the transformed space.

• Centred-logratio transformation (clr):

clr : SG → RG s.t. y→
(

ln
y1

g(y)
, . . . , ln

yG

g(y)

)
(6.53)
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where g(y) = (
G

∏
i=1

yi)
1
G , that is the geometric mean of the composition.

The inverse of the clr transformation is the softmax transformation:

softmax : RG → SG s.t. y→
(

ey1

∑G
i=1 eyi

, . . . ,
eyG

∑G
i=1 eyi

)
(6.54)

The clr is both an isomorphism and an isometry, but the representation
in RG does not use an orthogonal basis and the observations belong to a
plane inRG.
It is important to point out that it is possible to apply all the methods
developed in the uncostrained RG space to analyze the relationships be-
tween data in the simplex if clr is applied to the data (softmax must then
be applied on the data inRG to bring the data back to the simplex SG).

• Isometric-logratio transformation (ilr): this transformation is an isometry
(as the name suggests) and an isomorphism. Moreover, it uses an orthog-
onal basis to represent the data of the simplex (SG) in the Euclidean space
RG−1: for this reason, ilr is the natural transformation to be used if the goal is
to apply algebraic methods for regressing classes (starting from composi-
tional data) on predictors in the real space, because after the application of
ilr both X and Y variables belong to space with the same norm and scalar
product (this is fundamental to obtain consistent results).
Finally, there is an important relation between clr and ilr:

∀α ∈ SG, ilr(α) = V>clr(α) = V> ln(α) (6.55)

where V is a G× G− 1 matrix such that V>V = IG−1 and
VV> = IG − 1

G 1G1>G .

6.4.4 2-class classification problem solved by logistic-like method in
the Y-space

Given the two classes A and B, if we assume that

0 < P(class = j|xi) < 1

we recognize that P belongs to the simplex S2.
If P(class = B|xi) is considered the reference, the alr-transformation generates
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the followingR-representation

alr: S2 → R s.t. P(class = A|xi)→ ln
(

P(class = A|xi)

1− P(class = A|xi)

)
(6.56)

i.e. yi → ln( yi
1−yi

), that is equivalent to apply the logit function to yi = P(class =
A|xi). Its inverse is

alr−1(x) = C(exp(x, 0)) = C(ex, 1) =
(

1
1 + e−x ,

e−x

1 + e−x

)
(6.57)

that corresponds to the logistic function. Taking this is mind, we can now apply
the PLS "regression in the Y-space" approach to estimate the parameters of the
regression model

g(yi) = x>i b + ei

Recalling the iterative algorithm introduced in section 6.3 for the "regression in
the Y-space", it is important to note that the norm in steps 4 and 5 is not the norm
of a vector in RN , but the norm of a compositional-data vector in S2

N (which is
a set of N compositions each belonging to S2), and that the differences have to
be calculated in the simplex because the vectors involved belong to the simplex
and are not vectors in the Euclidean space. Moreover, alr is not an isometry and
the solution of steps 4 and 5 must be obtained operating in the simplex.
Given y ∈ S2

N mean centred4 and X scaled and mean-centered, the algorithm
can be re-written as

Algorithm 10: Logistic-like method for 2 classes in the y-space

1 f0 = y;
2 E0 = X;
3 for i = 1, . . . , A do

4 wi =
d

dw̃i
‖ fi−1 � alr−1(Ei−1w̃i)‖2

S

∣∣∣
w̃i=0p

;

5 ti = Ei−1wi;
6 αi = argmin

α
‖ fi−1 � alr−1(αti)‖2

S;

7 fi = alr−1(alr( fi−1)− αiti);
8 Ei = Q̂ti Ei−1

9 end

4The mean of a set of N compositional data vectors ai ∈ SD is defined as

m̄ = mean(a1, . . . , aN) = C( N
√

a11, . . . , aN1, . . . , N
√

a1D, . . . , aND)

in the case of ai ∈ S2 we have alr(ȳ) = mean(alr(y1), . . . , alr(yN))
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where y and fi are compositional-data vectors with elements in S2, � is the
difference between vectors in S2

N , ‖x‖2
S is the norm of the vector x ∈ S2

N , X and
Ei are matrices inRN×P, wi and w̃i are vectors inRP and αi ∈ R.
Specifically, in S2

N we have

‖a‖2
S =

N

∑
i=1
‖ai‖2

S =
1
2

N

∑
i=1

[
ln
(

ai1

ai2

)]2

,

with a =


a1

a2
...

an

 ∈ S2
N and ai = (ai1, ai2) ∈ S2

whereas the difference � is defined as

∀x, y ∈ S2
N , x � y =


x1 ⊕ ((−1)� y1)

...
xN ⊕ ((−1)� yN)

 =


C( x11

y11
, x12

y12
)

...
C( xN1

yN1
, xN2

yN2
)


being C(·) the closure operator, i.e. C(a, b) = ( a

a+b , b
a+b ).

To obtain the explicit form of the algorithm, we calculate the derivative in step
4, solve step 5 and simplify the expression of the residuals in step 6. Firstly, we
recognize that

‖ f � alr−1(Ew̃)‖2
S =

N

∑
i=1
‖ fi ⊕ (−1)� alr−1((Ew̃)i)‖2

S =

=
N

∑
i=1
‖C
(

fi1

alr−1((Ew̃)i)1
,

fi2

alr−1((Ew̃)i)2

)
‖2

S =

=
1
2

N

∑
i=1

[
ln
(

fi1

fi2

alr−1((Ew̃)i)2

alr−1((Ew̃)i)1

)]2

=

=
1
2

N

∑
i=1

[
ln
(

fi1

fi2
e−(Ew̃)i

)]2

=
1
2

N

∑
i=1

[
ln
(

fi1

fi2

)
− (Ew̃)i

]2

=

=
1
2

N

∑
i=1

[alr( fi)− (Ew̃)i]
2

Then, we have

wi =
d

dw̃i
‖ fi−1 � alr−1(Ei−1w̃i)‖2

S

∣∣∣
w̃i=0p

∝ E>i−1alr( fi−1)
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Step 6 can be re-written as

αi = argmin
α
‖ f � alr−1(αt)‖2

S = argmin
α

N

∑
i=1

[alr( fi)− α(Ew̃)i]
2 = argmin

α
f (α)

and the minimum is

αi =

N

∑
j=1

alr( fi−1,j)tj

N

∑
i=1

t2
i

=
t>i alr( fi−1)

t>i ti

because f ′′(α) =
N

∑
i=1

t2
i > 0.

Step 6 can be re-written as

fi = alr−1(alr( fi−1)− αiti) = fi−1 � alr−1(αiti)

because alr and alr−1 are linear transformations, i.e.

alr(α� a⊕ β� b) = αalr(a) + βalr(b)

and
alr−1(αa + βb) = α� alr−1(a)⊕ β� alr−1(b)

Finally, the algorithm to solve a 2-class classification problem using the logistic-
like regression method in the Y-space is

Algorithm 11: Regression in the Y-space - alr

1 f0 = y;
2 E0 = X;
3 for i = 1, . . . , A do

4 wi =
E>i−1alr( fi−1)

[alr( fi−1)>Ei−1E>i−1alr( fi−1)]
1
2

;

5 ti = Ei−1wi;

6 αi =
t>i alr( fi−1)

t>i ti
;

7 Ei = Q̂ti Ei−1;
8 fi = fi−1 � alr−1(αiti)

9 end

The weight vectors are a set of orthonormal vectors and the score vectors are
orthogonal to each other. After A iterations the following decompositions are
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obtained
X = TP> + EA

and

fA = y � alr−1

(
A

∑
i=1

αiti

)
Using the inverse transformation of alr−1, i.e. alr, we have

ln
(

yi

1− yi

)
= alr(yi) =

A

∑
j=1

αjtji + alr( fAi) = x>i W∗α + alr( fAi)

Then, the vector of the regression coefficients is b = W∗α and ei = alr( fAi).
The matrices T, P, W∗ are defined according to standard PLS. The class of a new
observation xnew is predicted estimating the probabilities

(P(class = A|xnew), P(class = B|xnew)) = alr−1((xnew − x̄)>LscalingW∗α)⊕ ȳ

or the value of the logit function

ln
(

ynew

1− ynew

)
= (xnew − x̄)>LscalingW∗α + alr(ȳ)

where x̄ is the vector of the mean values of the columns of X, Lscaling = diag( 1
fi
)

is the scaling matrix and ȳ is the mean of y for the training set calculated in the
simplex.

6.4.5 2-class classification problem solved in the framework of com-
positional data

The case of using alr as Y-transformation has been discussed in the previous
sections. Here we summarise the results obtained using clr and ilr as Y-transformation
distinguishing the case of regression in the X- and Y-space.

Regression in the X-space

The case of ilr-transformation is similar to that of alr because both transfor-
mation map S2 into R and the PLS regression follows the same lines of PLS1.
Specifically, the mean centred y-response is

g̃(y) =
v1 − v2

NA + NB
ln
(

1− ε

ε

)[
NB1NA

−NA1NB

]
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where v1 and v2 depend on the orthogonal basis chosen for S2, and the weight
vectors are

wi ∝ E>i−1

[
NB1NA

−NA1NB

]
i.e. wij ∝ (e−(i−1)

jA − e−(i−1)
jB )

being e−(i−1)
jk the mean of the residuals of the predictor j at the iteration i − 1

calculated using the observations of class k.

The case of clr-transformation is only apparently different. Indeed, since clr
maps S2 into a plane in R2, the PLS regression follows the lines of PLS with
more than one response variable. Specifically, after mean centring of the Y-
response we obtain

g̃(y) =
1

(NA + NB)
ln
(

1− ε

ε

)[
NB1NA −NB1NA

−NA1NB NA1NB

]

When the PLS algorithm for the regression in the X-space is applied, the weight
vector is

wi ∝ E>i−1

[
NB1NA

−NA1NB

]
i.e. wij ∝ (e−(i−1)

jA − e−(i−1)
jB )

being e−(i−1)
jk the mean of the residuals of the predictor j at the iteration i − 1

calculated using the observations of class k. Indeed, introducing the vector

z = E>i−1

[
NB1NA

−NA1NB

]

the eigenvalue problem to be solved in step 4 becomes

E>i−1 g̃(y)g̃(y)>Ei−1wi = s2
i wi =⇒ zz>wi = s2

i wi

whose solution is z.

Then, we can conclude that the weight vectors generated by PLS regression
in the X-space are independent of the Y-transfomation applied and are equal
to those obtained by standard PLS-DA for a 2-class problem. Moreover, the
weight vectors are independent of ε.
If the class membership is attributed considering the class with the greatest con-
ditional probability, the prediction of a new observation is independent of ε and
it is the same for all the three transformations, as proven in Appendix B.2.



70 Chapter 6. PLS for Classification

Regression in the Y-space

The case of alr-transformation has been discussed in the section 6.4.4. Here, we
consider the case of ilr-transformation for the sake of simplicity. The case of
clr-transformation requires a more complex solution since it maps S2 into R2

(it follows the same lines of the case of G-class problem solved in the Y-space
discussed in section 6.4.9). We recall the algorithm for PLS regression in the
Y-space in the case of simplex as Y-space and Euclidean space as X-space.

Algorithm 12: Compositional data framework - Y-space (2-class problem)

1 f0 = y;
2 E0 = X;
3 for i = 1, . . . , A do
4 solve argmax

‖Wi‖2
F=1
∇Wi‖ fi−1 � g−1(Ei−1W̃i)‖2

S;

5 calculate αi = argmin
α
‖ fi−1 � g−1(αEi−1Wi)‖2

S ;

6 fi = g−1(g( fi−1)− αiEi−1Wi);
7 Deflation step Ei ← Ei−1;

8 end

where g−1 is a function that maps the Euclidean space in the simplex, y and
fi are compositional-data vectors with components in S2, � is the difference
between vectors in S2

N and ‖x‖2
S is the norm of the vector x ∈ S2

N , X and Ei are
matrices in RN×P, Wi and W̃i are matrices in RP×2 or RP×1 depending on g,
and αi ∈ R.
The main advantage to use ilr instead of alr is that the application of ilr to the
probabilities in S2 allows us to solve the problems in steps 4 and 5 using the
properties of RN because ilr is an isometry. Indeed, the minimization of the
loss function in steps 4 and 5 can be performed in the Euclidean space being the
norm the same of that calculated in the simplex. Then, we can use the Frobenius
norm considering the ilr-transformation of fi and αiEi−1Wi. This is not possible
in the case of alr because it is not an isometry and we have to apply norm and
the operations of the simplex.

If the vector ti = Ei−1wi is introduced, step 7 becomes Ei = Q̂ti Ei−1.
Considering y mean centred and X mean centred and scaled, Algorithm 13 is
obtained.

Step 4 generates a set of orthonormal weight vectors wi ∝ E>i−1ilr( fi−1) whereas
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Algorithm 13: Ilr transformation - Y-space (2-class problem)

1 f0 = y;
2 E0 = X;
3 for i = 1, . . . , A do
4 wi = argmax

w>w=1
∇‖ilr( fi−1)− Ei−1w‖2

F;

5 ti = Ei−1wi;
6 αi = argmin

α
‖ilr( fi−1)− αti‖2

F;

7 fi = fi−1 � ilr−1(αiti);
8 Ei = Q̂ti Ei−1

9 end

the coefficients are αi =
w>i E>i−1ilr( fi−1)

w>i E>i−1Ei−1wi
according to PLS1.

After A iterations, the following matrix decompositions are obtained

X = E0 = TP> + EA

and

y = ilr−1

(
A

∑
i=1

αiti

)
⊕ fA = ilr−1 (E0W∗α)⊕ fA = ilr−1(Xb)⊕ fA

where b = W∗α. T, P, W∗ are defined according to standard PLS.

A new observation xnew is predicted by

ynew = ilr−1((xnew − x̄)>Lscalingb)⊕ ȳ (6.58)

where x̄ is the vector of the mean values of the columns of X, Lscaling = diag( 1
fi
)

is the scaling matrix and ȳ is the mean of y for the training set calculated in the
simplex.

6.4.6 G-class classification problem

In the following sections the lines to solve the general G-class classification
problem by PLS will be drawn. We will not discuss in details every aspects
of the presented methods, but we shall limit to present the general framework.
Further studies are required for a more detailed discussion.
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6.4.7 G-class classification problem solved by logistic-like method

The logistic regression based on PLS can be applied to solve a G-class problem
according to the standard approach for multinomial logistic regression. Specifi-
cally, given G classes of observations, G− 1 logistic models are built considering
the class k as reference to calculate the conditional probabilities

P(class = j|xi) = P(class = k|xi)ex>i bj|k+cj|k , ∀j 6= k

where bj|k and cj|k are the vector of regression coefficients and the constant term
for the logistic-like PLS regression of class j against class k, respectively.

Since
G

∑
j=1

P(class = j|xi) = 1, we have

P(class = k|xi) = 1−
G

∑
j=1
j 6=k

P(class = j|xi) =

= 1− P(class = k|xi)
G

∑
j=1
j 6=k

ex>i bj|k+cj|k

(6.59)

then
P(class = k|xi) =

1

1 +
G

∑
j=1
j 6=k

ex>i bj|k+cj|k

and

P(class = j|xi) =
ex>i bj|k+cj|k

1 +
G

∑
j=1
j 6=k

ex>i bj|k+cj|k

, ∀j 6= k

The estimation of the regression parameters can be performed both by regres-
sion in the X- or in the Y-space. It is worth noting that bj|k and cj|k depend only
on the two classes j and k and are independent of the other G − 2 classes (as-
sumption of independence of irrelevant alternatives). Moreover, in the case of the
regression in the X-space the set of G − 1 predictive latent scores could not be
a set of orthogonal vectors and the classification model depends in principle on
the choice of ε.
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6.4.8 G-class classification problem solved in the framework of com-
positional data in the X-space

The approach used in 6.4.1 and 6.4.5 to solve the 2-class classification problem
using the compositional data theory can be extended to the general case of G-
class classification problems. Given a training set of G classes, we assume that
if observation i belongs to class j one has

P(class = j|xi) = 1− (G− 1)ε

and for the other classes (∀k 6= j)

P(class = k|xi) = ε

being 0 < ε < 1
G .

The training set can be represented by the response compositional-data matrix

[
y1 y2 · · · yG

]
=


[1− (G− 1)ε]1N1 ε1N1 · · · ε1N1

ε1N2 [1− (G− 1)ε]1N2 · · · ε1N2
...

...
. . .

...
ε1NG ε1NG · · · [1− (G− 1)ε]1NG


where Ni is the number of observation for the class i, ∀i = 1, . . . , G.
After clr-transformation of the matrix, we have

clr
([

y1 y2 · · · yG

])
=

1
G

ln
[

1− (G− 1)ε
ε

] 
(G− 1)1N1 −1N1 · · · −1N1

−1N2 (G− 1)1N2 · · · −1N2
...

...
. . .

...
−1NG −1NG · · · (G− 1)1NG


Applying mean-centring we obtain

Ỹclr = ln
[

1− (G− 1)ε
ε

] 
( 1−N1

N )1N1 −N2
N 1N1 · · · −NG

N 1N1

−N1
N 1N2 ( 1−N2

N )1N2 · · · −NG
N 1N2

...
...

. . .
...

−N1
N 1NG −N2

N 1NG · · · ( 1−NG
N )1NG


= ln

[
1− (G− 1)ε

ε

]
YDActr
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where N =
G

∑
i=1

Ni is the total number of observations and YDActr is the Y-

indicator matrix used in PLS-DA after mean-centering. Since

E>i−1ỸclrỸ>clrEi−1 ∝ E>i−1YDActrY>DActrEi−1

the weight vectors obtained applying the PLS "regression in the X-space" are
the same generated by PLS-DA if only mean centring is applied as data pre-
treatment. Then, the weight matrix W = [w1, . . . , wA] can be used to calculate
the matrix of the regression coefficients

B = W(W>X>XW)−1W>X>Ỹclr (6.60)

and the class of a new observation xnew is predicted by

class i = yi,new = max(y1,new, . . . , yG,new) (6.61)

being [
y1,new y2,new · · · yG,new

]
= softmax((xnew − x̄)>LscalingB + ȳclr)

where ȳclr,i =
1
G (

Ni
N (G− 1)) ln

[
1− (G− 1)ε

ε

]
, x̄ is the vector of the mean val-

ues of the columns of X and Lscaling = diag( 1
fi
) is the scaling matrix.

The weight matrix is independent of ε, the predictive latent scores are a set of
orthogonal vectors and the presence of a particular class influences the proba-
bilities of all the other classes (no assumption of independence of irrelevant alter-
natives).
In general, because

(xnew − x̄)>LscalingB + ȳclr = at

where a = ln
(

1−(G−1)ε
ε

)
> 0 and t a row vector inRG, if

eati = max(eat1 , . . . , eatG) =⇒ eãti = max(eãt1 , . . . , eãtG), ∀ã > 0

the prediction is independent on ε.
In the case of ilr transformation, each vector of SG is transformed in a vector
of SG−1. The PLS regression in the X-space follows the same lines discussed in
the case of clr, with the difference of using a different Y-matrix.
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6.4.9 G-class classification problem solved in the framework of com-
positional data in the Y-space

In the case of a 2-class classification problem, the ilr transformation allows us
to solve steps 4 and 5 using PLS1. In the general case of a G-class classification
problem, those steps are solved using the same method discussed in section
6.1.2 for PLS. Both ilr and clr can be applied as isomorphism because they are
isometries and, then, they allow the minimization of the norm in the simplex
considering the Frobenius norm in the Euclidean space. Given a training set of
N observations belonging to G classes, we represent the training set using the
compositional-data vector

y =


y1

y2
...

yN

 ∈ SG
N

where the composition of observation i of class j is

P(class = j|xi) = 1− (G− 1)ε

and
P(class = k|xi) = ε, ∀k 6= j

with 0 < ε < 1
G .

For mean centered y and mean centered and scaled X, if ilr is applied, the fol-
lowing algorithm is obtained.

Algorithm 14: Regression in the Y-space - ilr

1 f0 = y;
2 E0 = X;
3 for i = 1, . . . , A do
4 Wi = argmax

‖W‖2
F=1
∇‖ilr( fi−1)− Ei−1W‖2

F;

5 αi = argmin
α
‖ilr( fi−1)− αEi−1Wi‖2

F;

6 fi = fi−1 � ilr−1(αiEi−1Wi);
7 deflation step Ei ← Ei−1

8 end
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Steps 4 and 5 generate the weight vectors

wi s.t. E>i−1ilr( fi−1)ilr( fi−1)
>Ei−1wi = s2

i wi

ci =
1
si

ilr( fi−1)
>Ei−1wi

being Wi = wic>i and the coefficient

αi =
si

w>i E>i−1Ei−1wi

Step 7 becomes
Ei = Q̂ti Ei−1

where ti = Ei−1wi.
After A iterations, the following matrix decompositions are obtained

X = TP> + EA (6.62)

and

y = ilr−1

(
A

∑
i=1

αitic>i

)
⊕ fA = ilr−1(XW∗C̄>)⊕ fA = ilr−1(XB)⊕ fA (6.63)

where B = W∗C̄> being C̄ = [α1c1, . . . , αAcA].
A new observation xnew is predicted by

ynew = ilr−1((xnew − x̄)>LscalingB)⊕ ȳ (6.64)

where x̄ is the vector of the mean values of the columns of X, Lscaling = diag( 1
fi
)

is the scaling matrix and ȳ is the mean of y for the training set calculated in the
simplex.
The same approach can be applied considering clr, substituting clr for ilr.
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Chapter 7

Applications

In this Chapter the proposed algorithms are tested against both simulated and
real datasets, giving the practical evidence of their properties.

7.1 Low dimensional scenario (p < n)

First of all, a traditional logistic regression problem is considered to evaluate
how the proposed methods behave in this context, i.e. we use datasets in which
the number of predictors is smaller than that of observations and the collinear-
ity between predictors is mild or moderate.
The first dataset is a real dataset used for banknote authentication [11]; it con-
tains 1372 observations, 4 continuous predictors and a binary response variable
which indicates whether a banknote is genuine (0) or forged (1).
The values of the X-variables are extracted from images that are taken from
genuine and forged banknote-like specimens: an industrial camera for print in-
spection is used for digitalization of the images and gray-scale pictures with a
resolution of about 660 dots per inch (dpi) are obtained. Finally, the features are
extracted from images through a Wavelet Transform tool.
The predictors are the variance, skewness and curtosis of the Wavelet Trans-
formed image and the entropy of the image.
Using this dataset, we want to compare logistic regression with the methods we
presented in the previous Chapter.

First of all, we can evaluate how the Cohen’s Kappa changes, both in calcula-
tion and cross-validation (10 folds are used), as the number of latent variables
increases. Figure 7.1 shows the results using the autoscaled X matrix, ilr trans-
formation in the X-space and ε = 10−6 (the default value where not specified
in the following). However, the predictions (and therefore the κ values for each
component) are the same for all the three types of transformations (alr, clr, ilr)
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and also for the regression in the X and Y space. This confirms what we men-
tioned in Section 6.4.5 and proved in B.2 for PLS regression in the X-space.

Figure 7.1: Cohen’s κ as a function of the number of latent variables

The horizontal black line indicates the κ value obtained from logistic regression
in a 10-fold cross-validation, which is just above the κ of the new methods with
three and four components. This highlights how the proposed techniques pro-
vide fairly accurate predictions even in a traditional scenario (i.e. when n > p).
The κ increases both in calculation (as it is expected) and in cross-validation, and
their difference is subtle. The predictions in calculation and cross-validation are
almost the same, as illustrated in Table 7.2, which represent the confusion ma-
trices obtained using four latent variables in calculation and cross-validation.
Only one more observation is misclassified in cross-validation.

Figure 7.2: Confusion matrices in calculation (left) and cross-validation (right)
with 4 latent variables

Furthermore, as we expected also the weight vectors produced by the models
are equal using all the three transformations and they are a set of orthonormal
vectors: an example of weight matrix W is given in Figure 7.3, where the values
of wi, i = 1, . . . , 4 of a model with four latent variables are shown.

Figure 7.4 shows on the left the cumulative fraction of the y variation explained
by each model (R2Y) which is equal performing the regression in the X and Y
space, while through the regression in the Y-space it is possible to appreciate
the decreasing of the squared norm of the y-residuals as the number of latent
variable grows (right).



7.1. Low dimensional scenario (p < n) 79

Figure 7.3: Weight matrix of the model with four latent variables

(a) Cumulative fraction of y variation ex-
plained by each model

(b) Squared norm of the y residuals for each
number of latent variables

Figure 7.4: Cumulative fraction of the y variation (left) and squared norm of the
Y residuals (right) as a function of the latent variables in the model

The first latent variable explains half of the variation of y, while the others add
progressively smaller increments in the R2Y, as it should be when dealing with
dimensionality reduction techniques like PLS.
Finally, a permutation test is applied: specifically, we considered the model with
4 components and shuffled the response variable 1000 times: for each permu-
tation, a 10-fold cross-validation is performed using the autoscaled X matrix
considering that permutation of y and the k value is calculated. Note that also
in this case the choice of the transformation to be used or the type of method
(i.e. whether to regress in the space of X or Y) is indifferent as they all lead to
the same prediction.
The right panel of Figure 7.5 shows the Cohen’s Kappa in cross-validation for
each permutation as a function of the Pearson’s correlation between the original
y and the related permutation of the response variable1.

As it can be seen in the left panel, there is no permutation for which the κ in
cross-validation is higher than the original one, so the p-value is 0.001, which

1Since y and its permutations are binary vectors, also the Tanimoto coefficient can be used to
calculate the correlation. Given two vectors a, b ∈ RN , the Tanimoto coefficient ranges from 0 to
+1 (+1 is the highest similarity) and it is computed as:

T(a, b) =
a · b

‖a‖2 + ‖b‖2 − a · b (7.1)
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(a) Distribution of the Kappa values (b) Cohen’s Kappa in cross-validation as a
function of the Pearson’s correlation

Figure 7.5: Permutation test (1000 permutations)

means that the parameter κ is statistically significant.

Let’s now consider the case of a simulated dataset with 500 observations
and 10 predictors: the values of each predictor are drawn from a Gaussian dis-
tribution N (µ = 0, σ = 1) and a regression coefficient is assigned to each of
them (β0 is the intercept and β the vector of coefficients of the variables). Then,
the probability of the response being 1 (p) of each observation xi is modelled as

pi =
1

1 + e−(β0+β>xi)
(7.2)

and the response variable y is defined as vector in which each value yi is drawn
from a Bernoulli distribution having an expected value equal to pi, i = 1, . . . , 500.
First, we investigate the pairwise correlation of the predictors (Figure 7.6), which
always has a low absolute value: thus, no particular correlation is detected
among variables.

Figure 7.6: Pairwise correlation of the X-variables
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A standard logistic regression is then applied. The true coefficients in the un-
derlying model and the estimated ones are reported in Figure 7.7.

Figure 7.7: Coefficients estimated by logistic regression and true ones for each
X-variable

The logistic regression presents a κ value in a 10-fold cross-validation equal to
0.774; actually, the proposed techniques perform slightly better, since the κ in
cross-validation goes up to 0.781 with three latent variables. The results in cal-
culation and cross-validation are shown in Figure 7.8. This confirms the ability
of the methods to properly adapt to traditional problems as well, i.e. in the
"small p, large n" scenario.

Figure 7.8: Cohen’s κ in calculation and cross-validation for each number of
latent variables

Also in this case, the weight vectors are the same for all the three transforma-
tions and both performing the regression in the Y or X-space. The same holds
for the predicted class.
An example of the comparison of the regression coefficients is given in Figure
7.9, where the first column represents the coefficients of the regression in the
Y-space of a model with three latent variables using clr transformation. The
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second columns presents the coefficients estimated by the logistic regression
and the last one the true coefficients. Recall that the intercept is not present in
the proposed model.

Figure 7.9: Comparison of regression coefficients

Actually, it is interesting to evaluate how the regression coefficients vary as a
function of the number of latent variables in the model. To do that, we calcu-
late the regression coefficient vector for each number of latent variables from
one to ten, and compare them to the original β and to the vector of coefficients
estimated by the logistic regression. To facilitate the visualization of the data,
a PCA has been applied in such a way that each model can be represented by
a point in a three-dimensional space (the first three principal components are
considered).

Figure 7.10: Vector of regression coefficients in the space extracted by the first
three PCA components for all the considered models

The vectors of regression coefficients of the model with one latent variable is far
from the others, indicating that it presents different values for the coefficients,
which stabilize from the model with two components. Also the vector estimated
by logistic regression in not really close to the reference one, that is the vector
of original coefficients β.
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Again, we apply a permutation test on the data. As before, we consider 1000
permutations of y and a model with three components, evaluating how the Co-
hen’s Kappa in a 10-fold cross-validation changes when the response variable
is shuffled.
Figure 7.11 illustrates the results of the permutation test, that also in this case
gives a p-value of 0.001.

(a) Distribution of the Kappa values (b) Cohen’s Kappa in cross-validation as a
function of the Pearson’s correlation

Figure 7.11: Permutation test (1000 permutations)

7.2 High-dimensional scenario (p > n)

In this Section the new methods are tested in the scenario for which they are
designed, i.e. when the number of predictors are bigger than the number of
observations, causing a multicollinearity phenomenon. Moreover, we want to
compare these classification procedures with the well-known PLS-DA2. Let’s
start by testing those methods against the simulated dataset used in Section 4.2.
First of all it is possible to check that the data are affected by collinearity, as
shown in Figure 7.12: the correlation has values close to +1 or -1 for a large part
of the X-variable pairs, indicating a (positive or negative) high correlation.

The proposed techniques present the same weight vectors of PLS-DA (as men-
tioned in 6.4.5). An example is given in Figure 7.13, which shows the first el-
ements of the weights vectors of a model trained on the autoscaled X matrix
using a regression in the X-space with 10 latent variables and clr as transforma-
tion3 and those of a PLS-DA model, fitted on the same X matrix and with the
same number of components.

2PLS is used for the class separation and Linear Discriminant Analysis for the classification
3It has already been proved that the weight vectors are the same for all the three transforma-

tions, so it clr can be replaced also by ilr or alr
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Figure 7.12: Pairwise correlation between X-variables

Figure 7.13: Weights of the new approach and PLS-DA

The same applies also in cross-validation: indeed, the methods we developed
and PLS-DA share the same predicted classes, and therefore also the value of κ

for each number of latent variables in the model.
Figure 7.14 summarizes the results in calculation: the Cohen’s Kappa grows sig-
nificantly up to the model with five latent variables and then tends to stabilize.

Figure 7.14: Cohen’s Kappa in calculation for the new approach and PLS-DA
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The values of κ in calculation reflects the proportion of variation of y explained
by each model (Figure 7.15, left). In the right panel the squared norm of the
residuals for each number of latent variables is illustrated.

(a) Cumulative fraction of y variation ex-
plained by each model

(b) Squared norm of the y residuals for each
number of latent variables

Figure 7.15: Cumulative fraction of the y variation (left) and squared norm of
the Y residuals (right) as a function of the latent variables in the models

In cross-validation the values of κ are definitely lower than in calculation but
still the two approaches share the performance also when predicting new ob-
servations (Figure 7.16). In contrast to the calculation case, in cross-validation
the model that performs best (i.e. balances underfitting and overfitting) seems
to be the one with two latent variables.

Figure 7.16: Cohen’s Kappa in cross-validation for the new approach and PLS-
DA

Thus, a permutation test is applied considering a model with two components.
Here, the κ value in cross-validation of the original model is closer to the ones of
the permutations with respect to the previous cases, but still higher than all the
others, giving a p-value of 0.001 and therefore providing statistical significance
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to the model. As can be observed in Figure 7.17, the Cohen’s Kappa of the
original model lies at the end of the right tail of the distribution.

(a) Distribution of the Kappa values (b) Cohen’s Kappa in cross-validation as a func-
tion of the Pearson’s correlation

Figure 7.17: Permutation test (1000 permutations)

Another interesting parameter to investigate is ε, and in particular whether it
influences the predictions. As it is noted in Chapter 6, the weight vectors cal-
culated in the models should be independent on the value of ε ∈ (0, 1

2 ) for the
regression in the X-space, and they should be the same for all the three trans-
formations.
This is confirmed by the evidence on the data: computing the Cohen’s Kappa in
calculation using the autoscaled X matrix, it is possible to check that any value
of ε in that interval does not affect the predictions (and also the weight vectors)
using all the transformation and for any number of latent variables.

Figure 7.18: Cohen’s Kappa depending on ε and the number of components

In Table 7.18, the type of transformation is kept fixed (clr with a regression in
the X-space is used) and the Cohen’s Kappa depending on the number of latent
variables and ε is reported: given a number of components, the Cohen’s Kappa
is independent on ε.
In Table 7.19 the number of latent variables is kept fixed (a model with two
components is used) and the Cohen’s Kappa depending on ε and the type of
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transformation is shown: as can be seen, the Cohen’s Kappa is the same for any
type of transformation and value of ε.

Figure 7.19: Cohen’s Kappa depending on ε and the type of transformation

The same holds also in cross-validation. On the contrary, having a value of
ε > 1

2 means inverting the probability of the two classes, assigning more prob-
ability to the wrong one. This leads to a specular prediction4 and therefore the
value of the Cohen’s Kappa has the same absolute value but with a negative
sign.

From the running time point of view, the regression in the X-space and PLS-
DA present very similar times of execution, while the regression in the Y-space
takes more time: 100 10-fold-cross-validations were run 50 times, collecting the
50 averages of execution times (summarized in Figure 7.20).
The regressions in the X- and Y-space were performed using the autoscaled
X matrix, 10 latent variables and ilr as transformation. However, the type of
transformation negligibly affects execution times. PLS-DA were run using the
autoscaled X matrix, 10 folds and 10 latent variables, as for the other methods.

Figure 7.20: Distribution of mean execution times of a 10-fold cross-validation

4A sample that is assigned to class 1 with ε ∈ (0, 1
2 ) is predicted as 0 with ε ∈ ( 1

2 , 1) and
viceversa
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The regression in the Y-space takes more time of execution than that of the
X-space (+ 49%) because at each iteration the values of the response variables
must be mapped (more than once) from the simplex to the Euclidean space and
subsequently re-transformed through the inverse function. Furthermore, oper-
ations like sum, difference, norm must be performed as they are defined in the
simplex.
On the contrary, when regressing in the X-space the y variable is transformed at
the beginning from the simplex to the Euclidean space and then used as input
for PLS; only when the execution of PLS is completed, the values are mapped
back into the original space.
The classification procedures are tested on a MacBook Pro 2016 with 2.9 GHz In-
tel Core i5 dual-core CPU, 8 GB 2133 MHz LPDDR3 RAM and Intel Iris Graphics
550 (1536 MB) graphic card.

The new methods discussed in this thesis are then tested against the real
dataset presented in Section 2.8. However, the response variable of interest now
corresponds to the state of the eye of each sample, which can takes two possible
values, i.e. "opened" or "closed"; thus, the binary y variable (called "EYE") is
coded with 0 and 1 depending on the state of the eye.
The two classes are balanced in both training and test sets: indeed, the training
contains 19 samples belonging to class 0 and 19 instances for class 1, while the
test set has 10 observations for class 0 and 11 samples for class 1.

First, it is worth noting that having the same weight vectors in our approach
and in PLS-DA implies that also the score vectors are the same (and this holds
for both PLS regression in the X and Y space and for all three transformations).
An example of the score vectors is illustrated in Figure 7.21, which shows the
ability of the first two latent variables to separate the groups.

Figure 7.21: Separation of the groups in the training set
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We want to compare the new techniques with PLS-DA in calculation and pre-
diction. The matrix of predictors X is autoscaled and the three transformations
produce the same results. As before, they show the same prediction ability in
classifying the samples (Figure 7.22).

(a) Cohen’s Kappa in calculation for the
new approach and PLS-DA

(b) Cohen’s Kappa in prediction for the new
approach and PLS-DA

Figure 7.22: New approach and PLS-DA in calculation (left) and prediction
(right)

The right panel shows the performance of both procedures when a model with
a given number of latent variables is fitted on the autoscaled training set and
then used to predict new samples (i.e. the test set). The model with four latent
variables is the one that performs best, while simpler models or more complex
models result in showing respectively high bias and high variance, which de-
crease their performance in prediction.

As for model interpretation, if the regression in the X-space is applied, one
can use post-transformation, VIP, SR and other parameters because the method
corresponds to a standard PLS with a suitably transformed response variable.
On the other hand, for the regression in the Y-space, VIP and standard plots
can be used, whereas the post-transformation has not yet been developed, so
SR and related methods do not yet exist.

Thus, to give a practical example of model interpretation in the classification
scenario, a PLS model with 4 latent variables is calculated using the autoscaled
matrix X of predictors and the transformed response variable (alr transforma-
tion is used).
The correlation loading plot obtained from the model is reported in Figure 7.23,
where pcor[Tp] indicates the Pearson’s correlation between the predictive la-
tent variable and each predictor, as well as the response. The same holds for
pcor[To1], but the first orthogonal latent variable is considered instead of the
predictive one.
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Figure 7.23: Correlation loading plot of a PLS model with 4 latent variables

The predictors whose points are close to that of the response (or its image by
origin reflection) and therefore are (positively or negatively) highly correlated
with the response seem to correspond to metabolites like Hypoxanthine, Uracil,
Inosine, 3-Hydroxyisobutyrate, Citrate, Glutamine, Glutamate.
This is confirmed by the VIP parameter, whose aim is to identify the most im-
portant X-variables in the model (Figure 7.24): the variables that show the high-
est VIP correspond exactly to the aforementioned predictors.

Figure 7.24: VIP of a PLS model with 4 latent variables
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Chapter 8

Conclusions

In this work new procedures to perform classification exclusively through PLS
are presented. Indeed, at the state-of-the-art most of PLS-based classification
techniques require an additional classifier to effectively assign the classes to the
observations. Therefore, PLS is used as a discriminatory tool to separate the sam-
ples rather than a classifier.
The development of those methods starts from looking at PLS from a different
point of view, that is an iterative procedure that minimizes the distance between
response and modelled response (that in the Euclidean space corresponds to the
least squares problem) through the steepest descent method. Moreover, com-
positional data theory is used to consider the response variables as probabilities
(i.e. compositions that sum up to 1) providing a theoretical foundation to the
procedure; the proposed Y-transformations allow to perform calculations that
link spaces with different structures.

Two main categories of models are presented: the first one involves a regression
in the X-space, since the response variable is mapped through proper transfor-
mations in the same space of the X-variables, i.e. the Euclidean space, and
minimization is performed in that space.
On the other side, the regression in the Y-space involves taking into account
at each iteration the specific structure of the response variable space and using
suitable operations to perform the calculations in that space since minimization
is performed in the Y-space, i.e. the simplex. Thus, this opens up the possibility
of choosing the space with the simplest geometry to perform the minimization
depending on the type of response and predictors.

The theory of these algorithms for both 2-class and G-class (G > 2) problems is
presented, even if the focus is on the binary case.
In that setting, we can assert that the proposed classification procedures present
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the same performance as PLS-DA even not requiring further classifiers (our ap-
proach is purely PLS-based).
Moreover, the properties mentioned in Chapter 6 are confirmed through tests
on simulated and real data. In fact, the weight vectors and the predictions are
identical for both the regression in the X and Y space and for all three trans-
formations; moreover, the ε value does not influence the weight vectors and
the predictions if it lies in the interval (0, 1

2 ) and if the class membership is at-
tributed considering the class with the greatest conditional probability.
The regression in the X-space generates models that can be post-transformed
according to the standard methods developed for PLS whereas for the regres-
sion in the Y-space the post-transformation has still not been developed.
The new methods behave properly also in a low-dimensional setting and have
comparable results with respect to those of logistic regression.
As for running times, the regression in the X-space has slightly shorter times
than PLS-DA regardless of the type of transformation, although the difference
is negligible.
The strategy to use for solving a general G-class problem with G > 2 in the
framework of PLS has been presented. However, the behavior of the proposed
methods could be different from the case of 2 classes. Indeed, the value of ε

could influence the predictions and the model could depends on the transfor-
mation used to map the simplex into the Euclidean space.
Then, further investigations are required to clarify the effect of the choice of ε

and the role played by the transformation used. Moreover, in the case of not
equally populated classes, a suitable scaling factor for the response is probably
required to balance the different variance of the class-response during mini-
mization since PLS is scale sensitive.
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Appendix A

Mathematical notation

In this work, the common notation where column vectors are written in lower
case characters (e.g. a) and the matrices in upper case characters (e.g. A) is
used.
The transpose of a given matrix A is denoted A>, the scalar product between
two vectors a and b is indicated as a>b and the matrix product between two
matrices A and B as AB. The juxtaposition of two matrices A and B is [AB] and
the identity matrix of size N is written as IN .
A vector with p elements equal to zero or one is written as 0p or 1p respectively.
The Frobenius norm of a matrix A ∈ Rn×m, which means it has n observations

and m columns, is defined as ‖A‖F =

√
m

∑
i=1

n

∑
j=1
|aij|2 and it corresponds to the

Euclidean norm when A is a vector.
The matrix Q̂t = IN − t(t>t)−1t> is defined as the orthogonal projection matrix
that projects any matrix A onto the space orthogonal to the vector t ∈ RN .





99

Appendix B

Chapter 6

B.1 Algorithm 5

Let’s prove that Algorithm 5 solves the least squares problem.
Consider the vector wi that has the general form wi = Vhi, with hi (A × 1):
h>i hj = δij being A = rank(X) and X = USV> the singular value decomposi-
tion.
When A = rank(X), the matrix H = [h1, . . . , hA] is orthogonal and W = VH;
therefore,

βA = VH(H>V>X>XVH)−1H>V>X>y = VS−1U>y (B.1)

and so the least squares problem is solved since VS−1U> is the Moore-Penrose
inverse of X given the SVD of X and βA is the vector of the regression coeffi-
cients with minimum norm.

B.2 Equivalence of the prediction of a new observation
using alr, ilr, clr transformations

Firstly, we prove that using ilr-transformation the prediction of a new observa-
tion is equal to that obtained using the clr-transformation. Defining

g̃(y)clr =
1

(NA + NB)
ln
(

1− ε

ε

)[
NB1NA −NB1NA

−NA1NB NA1NB

]
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and

g̃(y)ilr =
(v1 − v2)

(NA + NB)
ln
(

1− ε

ε

)[
NB1NA

−NA1NB

]
the mean centred Y-matrices obtained in the case of clr and ilr, respectively, we
have

g̃(y)clr =
1

(v1 − v2)

[
g̃(y)ilr −g̃(y)ilr

]
The vector of the regression coefficients bilr in the case of ilr is related to the
matrix of the regression coefficients Bclr obtained by clr by

Bclr =
1

(v1 − v2)
W(W>X>XW)−1W>X>

[
ỹilr −ỹilr

]
=

1
(v1 − v2)

[
bilr −bilr

]
Then in the Euclidean space, we have

ynew,clr ∈ R2, ynew,clr = (xnew − x̄)>LscalingBclr + ȳclr =

=
1

(v1 − v2)

[
(xnew − x̄)>Lscalingbilr + ȳilr −(xnew − x̄)>Lscalingbilr − ȳilr

]
=

=
1

(v1 − v2)

[
ynew,ilr −ynew,ilr

]
where ynew,ilr = (xnew− x̄)>Lscalingbilr + ȳilr ∈ R and ȳilr =

(v1−v2)
2

(
NA−NB
NA+NB

)
ln
( 1−ε

ε

)
.

Since
ynew = softmax(ynew,clr) ∈ S2

we have

ilr(ynew) = V>clr(softmax(ynew,clr)) = V>ynew,clr =
1

(v1 − v2)

[
v1 v2

] [ ynew,ilr

−ynew,ilr

]
= ynew,ilr

Then, ilr−1(ynew,ilr) = ilr−1(ilr(ynew)) = ynew.
The equivalence of the prediction of alr and clr is proven observing that

g̃(y)clr =
1
2

[
g̃(y)alr g̃(y)alr

]
and

ynew,clr ∈ R2, ynewc lr = (xnew − x̄)>LscalingBclr + ȳclr =

=
1
2

[
(xnew − x̄)>Lscalingbalr + ȳalr −(xnew − x̄)>Lscalingbalr − ȳalr

]
=

=
1
2

[
ynew,alr −ynew,alr

]
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Indeed, we have

ynew = softmax(ynew,clr) =

[
e

1
2 ynew,alr

e
1
2 ynew,alr+e−

1
2 ynew,alr

e−
1
2 ynew,alr

e
1
2 ynew,alr+e−

1
2 ynew,alr

]
=

=
[

1
1+e−ynew,alr

e−ynew,alr

1+e−ynew,alr

]
= alr−1(ynew,alr)

B.3 Properties of the Aitchison geometry on the simplex

The simplex (SG,⊕,�) with the perturbation operation and power transforma-
tion is a vector space; therefore the following holds:

(SG,⊕) has a commutative group structure, that is for x, y, z ∈ SG the following
properties hold:

1. Commutative property: x⊕ y = y⊕ x

2. Associative property: (x⊕ y)⊕ z = x⊕ (y⊕ z)

3. Neutral element: n = C[1, 1, . . . , 1] = [ 1
G , 1

G , . . . , 1
G ] (n is the barycenter of

the simplex and it is unique)

4. Inverse of x: x−1 = C[x−1
1 , x−1

2 , . . . , x−1
G ]; x⊕ x−1 = n

For the power transformation, given x, y ∈ SG, α, β ∈ R:

1. Associative property: α� (β� x) = (α · β)� x

2. Distributive property 1: α� (x⊕ y) = (α� x)⊕ (α� y)

3. Distributive property 2: (α + β)� x = (α� x)⊕ (β� x)

4. Neutral element: 1� x = x.

B.4 Inner product, norm and distance

To get a linear vector space structure, the following inner product, norm and
distance are defined:

• Inner product of x, y ∈ SG:

〈x, y〉a =
1

2G

G

∑
i=1

G

∑
j=1

ln
xi

xj
ln

yi

yj
(B.2)
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• Norm of x ∈ SG:

‖x‖a =

√√√√ 1
2G

G

∑
i=1

G

∑
j=1

(
ln

xi

xj

)2

(B.3)

• Distance between two compositions x, y ∈ SG:

da(x, y) = ‖x	 y‖a =

√√√√ 1
2G

G

∑
i=1

G

∑
j=1

(
ln

xi

xj
− ln

yi

yj

)2

(B.4)

When referring to (SG,⊕,�) as an Euclidean linear vector space, we can call it
Aitchison geometry on the simplex.
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