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Abstract

Error Potentials (ErrPs) are neurophysiological signals generated by users when they perceive

errors in their actions and during interaction with brain-computer interfaces (BCIs), following

an incorrect response of the BCI. This work focuses on identifying and detecting ErrP signals

during the discrete control of a powered wheelchair. Nine healthy subjects voluntarily partici-

pated in the experiment. Electroencephalogram (EEG) signals were acquired from the subjects

while they controlled the powered wheelchair using a joystick along a predefined path. Random

errors were intentionally introduced during the control sessions to elicit ErrP responses.

The EEG signals were analyzed to identify, to characterize the ErrPs, and ultimately to construct

a classifier capable of detecting them. The results show a differentiation between the neural re-

sponses corresponding to correct and erroneous actions, confirming the presence of distinct ErrP

signals following incorrect commands during the discrete control of the wheelchair. A classi-

fier was successfully developed and trained to detect these ErrP signals on a trial-by-trial basis,

showcasing promising accuracy in identifying real-time errors.

Furthermore, individual variability in neural activity among subjects was acknowledged, hi-

ghlighting the necessity for personalized calibration and optimization of system parameters.

Future directions involve extending this research to more complex environments without pre-

defined paths to simulate realistic scenarios and testing the system’s efficacy with individuals

having motor impairments, who are the final end-users.





Sommario

I potenziali di errore (ErrP) sono segnali neurofisiologici generati dagli utenti quando percepi-

scono errori nelle loro azioni e durante l’interazione con le interfacce cervello-computer (BCI),

in seguito a una risposta errata della BCI. Questo lavoro si concentra sull’identificazione e la

rilevazione dei segnali ErrP durante il controllo discreto di una sedia a rotelle motorizzata. Nove

soggetti sani hanno partecipato volontariamente all’esperimento. I segnali dell’elettroencefalo-

gramma (EEG) dei soggetti sono stati acquisiti mentre controllavano la sedia a rotelle motoriz-

zata utilizzando un joystick lungo un percorso predefinito. Durante le sessioni di controllo sono

stati introdotti intenzionalmente errori casuali per suscitare i potenziali di errore.

I segnali EEG sono stati analizzati per identificare e caratterizzare gli ErrP e, infine, costruire un

classificatore in grado di rilevarli. I risultati mostrano una differenziazione tra le risposte neurali

corrispondenti ad azioni corrette ed errate, confermando la presenza di segnali ErrP distinti in

seguito a comandi errati durante il controllo discreto della sedia a rotelle. È stato sviluppato

con successo un classificatore in grado di rilevare questi segnali ErrP per ogni comando dato

alla sedia a rotella, dimostrando una promettente accuratezza nell’identificazione degli errori in

tempo reale.

Inoltre, è stata riconosciuta la variabilità individuale dell’attività neurale tra i soggetti, eviden-

ziando la necessità di una calibrazione soggetto-specifica e dell’ottimizzazione dei parametri

del sistema. Le direzioni future prevedono l’estensione di questa ricerca ad ambienti più com-

plessi e privi di percorsi predefiniti, per simulare scenari realistici, e la verifica dell’efficacia del

sistema con persone con disabilità motorie, che saranno gli utenti finali.





Contents

1 Introduction 1

1.1 BCI as a closed loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Invasive and non-invasive BCIs . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 BCIs based on self-paced activity and evoked potentials . . . . . . . . . . . . . 5

1.4 BCI based on Error-related potentials . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Objectives and motivations of the thesis . . . . . . . . . . . . . . . . . . . . . 9

2 Materials and Methods 11

2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Powered Wheelchair . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Joypad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 EEG cap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Robot Operating System - ROS . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Experiment Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Customized control algorithm . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Filtering and artifacts removal . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Trials extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.3 Delay computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Results 23

3.1 Delay analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Grand-Average analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Cross-correlation between signals and EOG . . . . . . . . . . . . . . . . . . . 26

3.4 Classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



3.4.1 Sliding window classification . . . . . . . . . . . . . . . . . . . . . . 29

4 Discussion 31

4.1 Delay analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Grand-Average analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Influence of EOG in the detection of ErrP . . . . . . . . . . . . . . . . . . . . 33

4.4 Decoding ErrP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.1 Sliding window classification discussion . . . . . . . . . . . . . . . . 34

5 Conclusions 35

Bibliography 37

A Single-subjects grand-average 45

B Cross-correlation 51

C AUC results - sliding window classification 55



List of acronyms

ACC anterior cingulate cortex

ANOVA Analysis of Variance

AUC area under the curve

BCI Brain-Computer Interface

BMI Brain-Machine Interface

BOLD blood oxygen level-dependent

CAR common average reference

ECoG electrocorticography

EEG electroencephalography

EOG electrooculogram

ERP Event-Related Potential

ErrP Error-Related Potential

fMRI functional magnetic resonance imaging

fNIRS functional near-infrared spectroscopy

ICA Independent Component Analysis

LOOCV leave-one-out cross-validation

MEA microelectrode array

MEG magnetoencephalography

MI motor imagery

ROC receiver operating characteristic

ROS Robot Operating System

SSVEP steady-state visual evoked potential





Chapter 1

Introduction

A Brain-Computer Interface (BCI), also known as a Brain-Machine Interface (BMI), is a tech-

nology that allows the brain to directly communicate with external devices such as prostheses,

computers, and robots [1]. BCIs acquire brain signals, analyze and interpret them, and translate

them into commands that can be used to control an external device [2]. BCIs have been devel-

oped for a variety of purposes, including improving medical care, facilitating communication

for people with motor or speech impairments, supporting scientific research, and enabling ad-

vanced human-computer interaction [3]. In fact, one of the motivations behind the development

of BCIs is the fact that the connection between the central nervous system and limbs might be

somehow interrupted caused by various conditions, including brain-related issues like strokes,

traumatic brain injuries, spinal cord injuries, or amputations [4]. This loss of communication

between the brain and limbs leads to the idea of reestablishing the connection by decoding the

user’s intentions from neural activity and executing these intentions to control the external de-

vice [5] (Figure 1.1). BCIs essentially link the brain’s command center directly to software

enabling users to train their brain to achieve direct control through thoughts.

These interfaces offer substantial help to people with disabilities in controlling prosthetic de-

vices, or wheelchairs, helping patients recovering from strokes or other neurological disorders,

and allowing them to interact with computers or other devices without relying on physical input

devices such as keyboards or mice.

1.1 BCI as a closed loop

BCIs are designed as closed-loop systems, delivering real-time feedback to users based on inter-

preted brain signals [6]. This feedback loop allows users to adapt their brain activity or responses

based on visual, auditory, or tactile information provided by the system [7]. Simultaneously, the

decoding system, which interprets brain signals, must evolve and improve over time, refining its
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Figure 1.1: General idea of a BCI

mathematic models to better match the user’s brain activity [8]. This close interaction between

the decoder and the user facilitates a process known as mutual learning, where both entities

adapt and learn from each other [8].

The functioning of a BCI involves five main steps [1] (Figure 1.2):

1. Signal acquisition: The first step of a BCI is the acquisition of brain activity, which can

be achieved through various techniques briefly discussed in Section 1.2.

2. Signal processing: Acquired signals are processed to facilitate the identification of the

most important characteristics of the signals and to facilitate further analysis. This step

includes filtering to remove noise, eliminating artifacts, and improving the signal-to-noise

ratio [2].

3. Features extraction: This step involves extracting important features from the pre-

processed signals, such as frequency, amplitude, and phase of the brain waves, used to

identify specific mental states or commands [2].

4. Classification: Extracted features are used to classify the mental state or command that

the user wants to communicate, often employingmachine learning algorithms like support

vector machines, artificial neural networks, or decision trees [2].

5. Feedback: The classified information is used to generate an output that can be used to

control an external device. For example, the output can be used to move a cursor on a

computer screen, control a robotic arm or a wheelchair, or control a prosthetic limb. The

execution of these commands produces feedback, representing the subject’s brain activity.

The external device enables the user to understand how well they can control the device

[2].
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Figure 1.2: BCI Closed-Loop

Overall, the success of a BCI depends on the precision and reliability of each stage: acquisition,

processing, feature extraction, and signal classification techniques. Each step is fundamental,

and even a minor imperfection in any of these phases can make the entire process vanified.

1.2 Invasive and non-invasive BCIs

Understanding user intentions requires recording the brain activity, a process facilitated by var-

ious methods that can be divided into invasive and non-invasive techniques [9]. BCIs are there-

fore classified into two categories based on the acquisition technique: invasive BCIs and non-

invasive BCIs [10].

Invasive BCIs record brain activity via surgically implanted electrodes placed close to the

target neurons in the cortex [11]. For instance, the microelectrode array (MEA) and

electrocorticography (ECoG) electrodes are commonly used [11]. MEA is typically inserted

within the cerebral cortex’s grey matter, allowing the detection of neuronal action potentials

(also known as spikes) generated by single or multiple neurons [11]. ECoG involves direct

electrode implantation over the cortex, usually positioned either below or above the dura matter

[11]. Remarkably, ECoG was first recorded in humans by Hans Berger in 1929 during a neuro-

surgical operation on a 17-year-old boy [12]. Invasive electrodes directly placed at the source

of brain activity grant significantly higher signal resolution, as the electrical activity originates

on the cortex. This provides a superior signal-to-noise ratio and a better localization of brain
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activity [13]. However, employing these implanted electrodes necessitates surgical operations,

carrying potential risks of scarring, brain infections, and other complications associated with the

insertion [14].

On the contrary, non-invasive BCIs collect information about brain activity without surgical

procedures using methods such as electroencephalography (EEG), magnetoencephalography

(MEG), functional magnetic resonance imaging (fMRI), and functional near-infrared spec-

troscopy (fNIRS) [11].

fMRI captures blood oxygen level-dependent (BOLD) activity, decoding changes in brain blood

flow to offer detailed brain mapping with high spatial resolution [15]. However, its low tem-

poral resolution, due to the timing of oxygenation and deoxygenation of an area of the brain,

poses challenges in real-time applications, potentially disrupting closed-loop interactions and

impeding user’s learning due to feedback delays [16]. Furthermore, its unmanageable size and

cost, limit the use of this technique for most BCI applications [13].

fNIRS is an alternative technique that measures BOLD activity [17]. It is a safe, non-invasive,

relatively inexpensive, and portable neuroimaging technique that is often integrated with EEG

to increase classification performance [18]. However, its low information transfer rate, caused

by inherent delays in hemodynamics, remains a limitation [13].

MEG detects the magnetic field associated with electrical brain signals, providing high spatial

and temporal resolution [19]. It requires a shielded room and it uses highly sensitive magne-

tometers (SQUIDs) [20]. However, its impracticality for home use makes it less suitable for

BCI applications, even if MEG can capture signals with less distortion and provides a better

spatiotemporal resolution compared to EEG [1].

EEG is the most popular non-invasive technique as it is economical, portable, and even compat-

ible with wireless devices [21]. This method measures brain activity through electrodes placed

on the scalp. While EEG offers high temporal resolution, detecting events that change in mil-

liseconds, its spatial resolution is limited due to the electrodes’ size [13]. Nonetheless, its high

usability makes EEG the most common method for non-invasive BCI applications [22]. The

resulting brain signals originate from cortical neurons, traveling through several layers before

reaching the scalp, producing measurable electrical activity in the brain [1]. Consequently, the

signal acquired directly from the brain cortex has a voltage of millivolts (mV), while the signal

collected from the scalp, undergoing various layers leading to an attenuation of it, has a reduced

voltage of microvolts (μV) [1].

Considering signal frequency, EEG signals are conventionally divided into specific frequency

bands: δ (0.5-4 Hz), ϑ (4-8 Hz), α (8-14 Hz), β (14-30 Hz), and γ (over 30 Hz) [23]. These

bands represent distinct frequency oscillations associatedwith different physiological states such

as sleep, wakefulness, alertness, and other conditions. Neurologists therefore analyze alterations
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in these rhythms compared to normal patterns to diagnose potential diseases [23].

The EEG detects changes in voltage produced by the neuronal activity. When a large group

of neurons discharges synchronously, electrical signals are generated and they are detectable

on the scalp through the use of electrodes. The voltage changes can be related to responses to

internal or external stimuli.

1.3 BCIs based on self-paced activity and evoked potentials

A further classification for EEG-basedBCIs is based on the type of brain signal they utilize. EEG

signals recorded can be classified as either endogenous (spontaneous) or exogenous (evoked),

leading to the categorization of BCIs into self-paced BCIs and evoked potential BCIs [24]. Self-

paced BCIs rely on endogenous brain signals, intentionally and spontaneously generated by the

user and independent of external stimuli [24]. Users initiate actions or commands voluntarily

through their mental processes, like imagining specific movements or intentions. These BCI

systems are driven by the intentional motor imagery (MI) of users. MI is a cognitive process in

which a subject imaginesmoving a specific body part without physically performing it [25]. Dif-

ferent studies ([26], [27]) have demonstrated that during both motor execution and motor imagi-

nation, there is precise spatial localization in the primary motor area and primary somatosensory

area of the brain. This means that imagining a specific body part activates the related area in the

motor cortex [28]. Furthermore, MI exhibits spectral localization, with EEG signals oscillating

between 8 and 12 Hz [29]. The combination of spatial and spectral localization can be used as

crucial features in the development of BCIs based on MI [30].

BCIs based on evoked activity rely on brain signals elicited in response to external stimuli. Ex-

ogenous brain signals represent the physiological responses triggered by an external stimulus,

typically within the visual, auditory, or somatosensory domains [31]. These stimuli induce mea-

surable brain responses detected through techniques like EEG or fMRI, allowing the interpre-

tation of these signals to understand user’s intention [32]. The most common evoked potentials

used in BCIs include steady-state visual evoked potentials (SSVEPs), P300, and Error-Related

Potentials (ErrPs) [33]. The activities associated with evoked potentials are time and phase-

locked, meaning that after each repetition of the stimulus, the evoked potentials always appear

with a certain delay and shape [34]. This facilitates the evoked potentials analysis allowing a

linear temporal analysis to recognize the shape [34].

SSVEPs are based on visual stimulation, often involving the flickering of an object at a specified

frequency on a computer screen [35]. SSVEP BCIs are completely passive with respect to the

cognitive state of the subject [35]. They primarily reflect the representation of visual stimuli

within the occipital cortex, thereby indicating the subject’s visual focus [35]. While this method
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works quite well, the fact that it relies on a fixed monitor placed in front of the user can be

considered uncomfortable for prolonged use [36].

P300 is a component of the Event-Related Potential (ERP) that is generated after visual or audi-

tory exogenous stimuli [37]. Specifically, it represents a brain response to a rare target stimulus

[38]. It is most frequently elicited within a framework called the “oddball paradigm” [38]. In

this paradigm, the subject is presented with a sequence of events that can be classified into two

categories. In general, events in one of the two categories are rarely presented [38]. Under these

circumstances, events in the rare category elicit an ERP characterized by a P300 component

[39]. This attention to the target stimulus triggers a cognitive process generating a positive de-

flection in the EEG signals approximately 300 milliseconds after the rare stimulus presentation

[40]. Detection of the P300 typically occurs in the central scalp position (Cz, FCz, Fz electrodes)

[41].

The ErrP is a brain response to an erroneous stimulus [42]. This response is widely discussed

in the following section (Section 1.4) since it is the focus of this research thesis.

1.4 BCI based on Error-related potentials

ErrP is an evoked potential in response to an incorrect stimulus [42]. It originates from the

anterior cingulate cortex (ACC), a deep region situated in the brain [43]. This area plays a

crucial role in regulating emotional responses [44]. ErrP is typically detected through electrodes

centrally positioned on the scalp, such as Fz, Cz, and predominantly FCz because ErrPs are

characterized by a fronto-central distribution along the midline [42]. Different typologies of

ErrP have been identified:

• Response ErrP: occurs when the subject is asked to respond as quickly as possible to

a stimulus, resulting in ErrP following errors arising from incorrect motor actions. The

primary components are a negative potential appearing approximately 80 ms after the

erroneous response, followed by a larger positive peak occurring between 200 and 500

ms after the incorrect response [42].

• Feedback ErrP: arises when the subject is asked to make a choice and ErrP follows

the presentation of a stimulus that indicates incorrect performance. The main component

is a negative deflection observed around 250 ms after the presentation of the feedback

indicating incorrect performance [42].

• Observation ErrP: may be present when observing errors made by an operator during a

choice reaction task. Similar to feedback ErrP, the main component is a negative potential

showing up 250 ms after the operator’s incorrect response during the task [42].

6
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Figure 1.3: Shape of interaction ErrPs. Average EEG for the difference error-minus-correct

at channel “FCz”. Feedback is delivered at time 0 s. A first positive peak shows up after 200

ms after the feedback. Negative and positive peaks show up about 250 and 320 ms after the

feedback, respectively [42]

.

• Interaction ErrP: elicited when, for example, the subject is asked to make a robot reach

a target, and an error occurs during the BCI’s recognition of the subject’s intent, leading

the robot to perform the opposite action. In general, it arises whenever the BCI wrongly

interprets the user’s intention and the user perceives the error. The main components

include an initial positive peak around 200 ms after the feedback, followed by negative

and positive peaks approximately at 250 ms and 320 ms after the feedback. Finally, a

second broader negative peak occurs about 450 ms after the feedback [42]. The pattern

of this ErrP is illustrated in Figure 1.3.

It is relevant to note that the latency of the positive and negative deflections within ErrP may

vary depending on the specific task demands and context [45].

1.5 Related works

Scientific research has developed several BCI systems based on ErrPs. Since BCIs may mis-

interpret the subject’s intention, ErrP can be useful to correct the actions [46]. ErrP has been

employed both in active BCIs and passive BCIs. An active BCI involves the user controlling

the external device through MI. In the event of a misinterpreted command, an ErrP is generated.

The interface decodes the ErrP to correct the action. Conversely, in a passive BCI, the user

monitors actions independently executed by an external device [47].

In an experiment by Chavarriaga and Millán, it was demonstrated that ErrPs arise when a user

7



CHAPTER 1. INTRODUCTION

monitors the performance of an external robot. In this scenario, the user acts as a critic of an

external autonomous system instead of directly controlling the movements of the device. This

highlights the possibility of achieving optimal robot behavior in line with the user’s intention,

allowing for customization of the robot’s behavior according to the user’s needs and prefer-

ences. In this situation, the subject passively monitors the robot’s behavior while the robot itself

exploits the ErrP as feedback to achieve the goal [48].

Ferrez and Millán conducted an experiment demonstrating the existence of ErrP resulting from

a failure of the BCI to execute a command. Participants were asked to bring a cursor to a target

position on a computer screen. To prevent ErrP recognition caused by the classifier’s failure

to interpret the user’s MI, commands were manually, rather than mentally, sent by the user.

This approach aimed to attribute any error feedback only to incorrect implementation of the

commands by the interface. Introducing a 20% probability, the system moves the cursor in the

opposite direction compared to the user’s intended movement, thereby inducing an ErrP. This

study shows the occurrence of ErrP as a result of a misinterpreted action by the BCI [42].

The same experiment was conducted with commands delivered by the user through MI instead

of manually. In particular, this experiment demonstrated the simultaneous detection of interface

errors and real-time MI classification. Users were asked to mentally control the movement of

a cursor toward a target. One classifier interpreted and executed the command, while simul-

taneously another classifier analyzed the user’s brain signals after the command was executed,

assessing the presence of the ErrP and, if detected, correcting the action performed on the cursor.

This research demonstrates the possibility of simultaneously extracting useful information for

the control of external devices via MI, while evaluating the brain response following the action,

thus improving the performance of the BCI [49].

In recent years, among various BCI applications, the use of the human brain in wheelchair move-

ment and control has gained attention in the scientific community due to its potential to help

elderly and paralyzed individuals, potentially improving their independence and quality of life.

EEG-based wheelchair systems use EEG data from the human brain for system control. Re-

searchers have demonstrated the feasibility of controlling wheelchairs through MI [50]. Tsui et

al. presented a self-paced MI-based BCI enabling the user to fully control the wheelchair [51].

In a study by Li et al. [52], an EEG-based wheelchair was designed, allowing users to steer

the wheelchair using only their thoughts without any other involvement, showing a potential

practical application for disabled people. Tonin et al. demonstrated the successful training of

individuals with tetraplegic spinal cord injury to operate a non-invasive, self-paced controlled

wheelchair, enabling them to perform complex navigation tasks [53]. This study explores the

feasibility of achieving continuous wheelchair control using MI [53].

However, MI BCIs might misclassify the user’s intention, resulting in incorrect wheelchair

8
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movements. To address this, an idea is to implement a classifier alongside the MI BCI that

detects ErrPs. Upon detection, the wheelchair’s action could be corrected.

1.6 Objectives and motivations of the thesis

Several scientific studies have demonstrated the feasibility of controlling wheelchairs using

brain signals [50]. However, current BCIs are not entirely reliable in accurately detecting user

intention and they may wrongly recognize the subject’s intent. This lack of precision—partly

due to the variability of brain signals between individuals [50]—can lead to incorrect interpreta-

tion of commands given to the wheelchair. As a result, BCI-based wheelchair control does not

currently provide full autonomy and safety in a real-world scenario [50].

To ensure safe and efficient control, it is crucial to develop a system that not only interprets brain

signals for wheelchair control (e.g., go straight, go left, or go right), but is also able to detect

and correct the wrongly interpreted intention of the user. The aim is to implement an algorithm

that assesses the brain’s response when the interpreted intention is translated into a command

executed by the wheelchair: if the intention is wrongly decoded, the user will generate a de-

tectable ErrP that can be used to correct the action. As shown, a system of this type has already

been implemented in stationary conditions. Currently, this methodology has not been developed

during operation with wheelchairs. Therefore, the aim of this research is to investigate the fea-

sibility of decoding ErrP and correct eventual errors during wheelchair operations. To simplify

the protocol, the user’s will not mentally control the wheelchair via BCI but manually through

a joystick. Therefore, the primary objective of the thesis is to determine the presence of ErrPs

during wheelchair control using a joystick, identify and classify them with an offline analysis,

and establish a baseline for the potential development of a corrective algorithm to use during

the real-time control of a wheelchair. Future work will involve the integration of this protocol

with MI BCI in order to increase the effectiveness control of the device.
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Chapter 2

Materials and Methods

This experiment aims to investigate, identify, and classify ErrPs through EEG signals. In this

chapter, the experimental protocol, participant selection, the equipment, the experiment’s setup,

and data analysis methods are reported.

2.1 Participants

Nine able-bodied, healthy subjects (7 males and 2 females) between the ages of 22 and 26 volun-

tarily participated in the study. Participants were carefully selected to ensure a homogenous and

healthy cohort. Inclusion criteria involved the absence of chronic medical conditions, such as

neurological disorders, and any ongoing conditions that might potentially influence the results

of the study. This rigorous selection process was designed to provide a consistent and uniform

baseline, enabling a more focused investigation of the variables under study and ensuring a more

robust and reliable analysis of the experimental outcomes. Written informed consent was given

to all participants before taking part in the study, explaining all the details of the experiment and

how the recorded data would be used afterward. Each participant completed the experiment in

a single session lasting approximately two hours.

2.2 Materials

2.2.1 Powered Wheelchair

A customized powered wheelchair (Figure 2.1) has been employed in this study. The pow-

ered wheelchair was transformed into an intelligent robot through the integration of multiple

sensors such as RGB cameras, LiDARs, and encoders [54]. For this experiment, a commer-

cial wheelchair has been modified and it has been connected to a gamepad controller. The
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Figure 2.1: The powered wheelchair employed in the experiments

wheelchair’s movement was enabled by individually driven front wheels, while the passive cas-

tor rear wheels provided frame support. Additionally, a laptop computer, positioned at the rear

during the experiments, recorded all the essential data required for the subsequent analysis.

2.2.2 Joypad

Even if the wheelchair has a built-in joystick, in the study under analysis an external joystick was

used to control its movement. Specifically, the gamepad utilized was a “Logitech F710 wireless

gamepad” (Figure 2.2). The control through the joystick offered both a continuous and a discrete

mode for the control. Continuous control allowed the user to navigate the wheelchair using the

analog stick, while discrete control necessitated the use of buttons. Although both controls have

been implemented during the experiments, this thesis focuses on the discrete control. Further

details are given in Section 2.4.

2.2.3 EEG cap

Since the experiments required the acquisition of subjects’ brain signals, the use of an EEG cap

was necessary. In particular, an ANTNeuro EEG cap, eegotmsports, with 64 electrodes was used

to collect the EEG data (Figure 2.3). The main advantage of this EEG cap is that it has shielded
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Figure 2.2: Joypad: Logitech F710 wireless gamepad used in the experiments.

Figure 2.3: EEG cap: ANT Neuro EEG cap used for the EEG acquisition.

cables and a battery-powered amplifier that can be used in a wheelchair. Another advantage of

this cap is that the electrodes are pre-positioned according to the international standard 10/20

system. The international 10/20 placement system is a particular scheme for placing electrodes

on the scalp [55]. It considers two landmarks on the head: the Nasion, which is the depressed

area between the eyes just above the bridge of the nose, and the Inion, which is the crest point of

the back of the skull [55]. The electrodes are placed at intervals of 10% or 20% of the distance

between these landmarks [56]. This montage setting allows to reduce the time for preparing each

participant for the experiment [57]. During the research, not all 64 electrodes were exploited

but only 32 electrodes: FP1, F1, FC5, FC3, FC1, C1, C3, C5, CP5, CP3, CP1, P1, P1, P3, P5,

Pz, FP2, Fz, F2, FC6, FC4, FC2, FCz, Cz, C2, C4, C6, CP6, CP4, CP2, P2, P4, P6. The reason
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behind this choice is the fact that the excluded electrodes are placed over areas of the brain that

are not of interest for the study in analysis, and so to reduce the preparation time, half of the

electrodes were not considered. In addition, the electrooculogram (EOG) electrode is placed

under the participant’s left eye to detect eye movements. After the cap has been placed upon the

participant, it was of crucial importance to verify that the electrodes were correctly positioned

[58]. This was done by identifying the midpoint between the Nasion and the Inion, as well as

the midpoint between the two preauricular points. The electrode labeled Cz must be precisely

located at the intersection point of these identified landmarks. This electrode placement proce-

dure ensured accurate and reliable data acquisition [57]. Afterward, to obtain a stable electrical

connection between the electrodes and the scalp, and thus a clean EEG signal, it was important

to have a low impedance so that the signals were not distorted [59]. To achieve this, a gel was

applied to each electrode.

2.3 Robot Operating System - ROS

The various components communicate through the Robot Operating System (ROS) middleware.

ROS is a distributed framework of processes that enables executables to be individually designed

and loosely coupled at runtime [60]. In particular, ROS-Neuro was exploited, which is an open-

source framework for neurorobotic applications based on ROS [61]. The ROS processes are

depicted as ‘nodes’ within a graph structure, interconnected by ‘topics’. To easily launch multi-

ple ROS nodes, roslaunch is employed [62]. roslaunch is a tool that accepts a .launch file

specifying parameters to set and the nodes to launch [63]. In this experiment, a single launch file

was created, detailing all necessary nodes that need to be executed. In particular, the following

nodes were necessary:

• a node needed for the acquisition of the EEG signals

• a node required to save the EEG data in .gdf files

• a joy node used to handle the commands that come from the joystick

• a customized node used to manage the communication between the joystick and the

wheelchair, which is discussed in the Subsection 2.4.1.

• a record node that uses the rosbag package to record all data into bags file (.bag ex-

tension). Those files contain the data about the wheel odometry and velocities of the

wheelchair.
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Figure 2.4: Path the users had to followwhile driving the wheelchair. The red crosses represent

the static obstacles to be avoided

2.4 Experiment Description

The research, as already highlighted, consisted of driving the wheelchair using a joystick

and analyzing the EEG signals. Therefore, during the experiment, participants sat in the

wheelchair while the operator fit the EEG cap and provided the instructions on the experimental

procedures. Simultaneously two different research experiments were carried out: the discrete

control, where the user controlled the wheelchair using the buttons, and the continuous

control, allowing the wheelchair navigation via the analog stick. Throughout the experiment,

participants were asked to drive the wheelchair along a predefined path. We refer to each

repetition of the path as a “run” and the maximum duration of it was defined as 240 seconds.

The total number of runs was 16, including 8 runs each for discrete and continuous control.

Additionally, two preliminary test runs were conducted—one for each control type—to allow

the users to understand the control mechanisms. The path, as shown in Figure 2.4, was designed

to induce the users to make as many turns as possible, avoiding static obstacles defined by chairs.

Since the thesis focuses on discrete control, only the description of this is reported below. The

possible buttons the user could use and the resulting actions on the wheelchair are the following:

• START (A) button: upon pressing this button (the green button in Figure 2.2), the

wheelchair took a fixed and constant linear velocity.
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• STOP (B) button: upon pressing this button (the red button in Figure 2.2), the wheelchair

stopped moving and both the linear and angular velocities were set to zero.

• LEFT (L1) and RIGHT (R1) buttons: these buttons (the circled buttons in Figure 2.2)

provided fixed rotations to the left or the right. The fixed rotation was approximately 75

degrees. The rotation lasted for 1.5 seconds, after which the angular velocity was set to

zero. In the next 3 seconds after a turn command is delivered, users cannot control the

movement of the device.

The customized algorithm used to control the wheelchair interpreted the joystick inputs and

translated them into the actual wheelchair movements. To induce potential errors in participants,

with a certain probability the turning command given by the user might be reversed, causing the

wheelchair to execute the opposite rotation. Furthermore, participants were also instructed to

fix a cross in front of them to reduce eye movements and blinking as much as possible, and not

to talk or move during individual runs as these could cause artifacts in the EEG signals.

2.4.1 Customized control algorithm

To handle the communication between the joystick and the wheelchair via a custom ROS node,

a control algorithm in Python was created. This node was responsible for translating joystick

commands into wheelchair motion commands by publishing them to the cmd_vel topic, and

publishing events related to the joystick buttons pressed to the events/bus topic. Each event

was defined by a code shown in Table 2.1, useful for later analysis. At the beginning, the code

randomly generates a number of errors between 1 and 4 that will be present in the run. The

decision of this range of errors was designed to prevent errors from occurring one after the other

and to prevent the total number of errors during the experiment from being too high. In this way,

the user does not get used to errors and can still perceive them as such. afterward, the duration

of a run is divided into N windows, where N is the duration of the run divided by the number of

errors, and for each window, the time at which an error will be induced was randomly generated.

Each time a command was received from the joystick, the code analyzed the type of command

and managed the chair’s behavior according to various conditions. If the “start” command was

activated, the chair began to move at a constant linear velocity for the entire duration of the

run, unless a “stop” command was received, in which case the chair stopped immediately by

resetting the linear and angular velocity to zero. For “left” and “right” commands, if a command

was detected within a 3-second interval from the previous command, the code only published

the events related to the unreleased command without actually sending velocity commands to

the chair (Figure 2.5). On the other hand, if the time elapsed since the last command was longer

than 3 seconds, the code checked whether or not an error should be generated: if the error has
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Table 2.1: Codes related to the events of the buttons pressed on the joystick. Error mask and

No released mask are summed to the event related to the button pressed when necessary

COMMAND EVENT

FORWARD 102

LEFT 101

RIGHT 103

STOP 100

ERROR MASK 5000

NO RELEASED MASK 4000

Figure 2.5: Control algorithm: The graph explains the control algorithm. At time 0 a com-

mand is released (green triangle). Between 0 and 3 seconds, every command sent by the user

is unreleased (red circle). After 3 seconds from the first released command, another command

can be released.

not been generated yet and the time elapsed within the time window exceeded the predetermined

instant for the error, the code sent an error command to the chair. Otherwise, if the error had

already been generated, the code converted the received command into a correct command to

be sent to the chair. It is useful to remember that only left and right commands can be reversed.

2.5 Data analysis

2.5.1 Filtering and artifacts removal

EEG signals were acquired using the ANT Neuro EEG cap with a sampling rate of 512 Hz. In

general EEG signal suffers from spatial blur due to the superposition of neural sources across

a broad cortical area, leading to neighboring electrodes capturing mixed signals influenced by

nearby neuronal activities [64]. To address this challenge, spatial filtering is a common tech-
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nique used to reduce this issue and emphasize local neural components [65]. First of all, an

initial separation of EOG signal from the other raw signals acquired by the 32 electrodes was

needed to prevent eye-movement components and blinks from being introduced into the signals

of interest during subsequent filtering. Among different spatial filters, the common average ref-

erence (CAR) filter is a widely used technique in EEG pre-processing. Therefore, raw EEG data

were first spatially filtered with this technique. This filtering method aims to reduce the com-

mon activity among all the electrodes by subtracting the average potential of all the electrodes

from each electrode’s potential [66]. Doing so helps highlight local variations by minimizing

the shared activity across electrodes [66], [67]. Then, we applied a 1-45 Hz bandpass filter to

remove the noise and used the Independent Component Analysis (ICA) to try to clean the data

from the artifacts, such as eye blink, electrocardiogram, and electromyogram artifacts [68], [69].

Since the focus is on ErrPs (slow cortical potentials), the clean dataset was band-pass filtered

at 1-8 Hz with a casual 4th order Butterworth filter [42], [70]–[72]. Since ICA cannot be ap-

plied online while CAR filtering can, we wanted to determine whether or not the removal of

eye artifacts via ICA was necessary. Therefore we wanted to understand whether or not the fil-

tered signals with and without the removal of some of the independent components were similar

enough to avoid ICA, thus be able to apply the protocol online and in real-time. By calculating

the cross-correlation between the signals and the EOG, it is possible to determine how similar

EEG signals are to the EOG. This allowed an assessment to be made of whether the removal

of artifacts by ICA makes a significant difference to the EEG signals compared to the simple

application of CAR. If the signals filtered with and without the use of ICA show considerable

similarity, then one could avoid using ICA and only apply the CAR filter. This allowed us to

simplify the process without compromising the quality of the signals, making it more suitable

for online and real-time implementation. The similarity between EEG signals without applying

CAR filter, EEG signals with CAR applied, and EEG signals with both CAR and ICA applied,

only for the significant channel FCz, versus EOG was calculated. In addition, to provide a

more robust and reliable measure of the significance of the cross-correlation results obtained,

statistical tests were performed on the cross-correlation results at zero lag—i.e., when the two

signals were perfectly overlapped. Statistical tests allow us to determine whether the similarity

measures obtained are statistically significant or whether they are due to chance or noise. Specif-

ically, in this case, an Analysis of Variance (ANOVA) test with Bonferroni correction was used

to assess the significance of the results. One-way ANOVA tests the hypothesis that the different

groups come from populations with the same mean against the alternative hypothesis that the

population means are not all the same [73].
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2.5.2 Trials extraction

As the analysis in this research focuses on the brain response following a turn, a restricted time

window of data associated with each turn command was extracted from the filtered signals.

Specifically, a window of 3 seconds was extracted, starting 1 second before the command re-

lease and ending 2 seconds later. We defined this time interval as a ‘trial’. This approach

makes it possible to focus exclusively on the critical period in which the brain response could

be influenced by the wheelchair rotation, thus contributing to a better understanding of how the

brain reacts during this process. The trials were divided into two distinct classes: ‘correct trials’

and ‘incorrect trials’. Correct trials were associated with correctly executed commands from the

wheelchair, where the wheelchair correctly follows the command given by the user. These trials

represented the expected response to the user’s request. On the other hand, incorrect trials re-

ferred to commands that were reversed by the wheelchair—i.e., when the chair did not correctly

execute the user’s command. Dividing the trials into these two classes makes it possible to study

in detail the differences in brain responses associated with correct and incorrect executions.

2.5.3 Delay computation

It is proved that wheel movement sometimes suffers from uncertainties caused by wheel slip

and drift [54]. Consequently, an important consideration arises from the delay in the wheelchair

movement. It was essential to assess the participants’ awareness regarding the actual execution

of commands after delivering them. Delays in command execution may be due to both technical

and design aspects of the wheelchair, which may influence the movement, as well as individual

parameters of the participants, such as the user’s weight or the way the user drove the device

and the position of the wheels at the time the button was pressed. This analysis was important

in order to understand when participants realized the command execution and perceived a pos-

sible error. To account for this delay, an approach exploiting the angular velocity was utilized:

upon a user command, the wheelchair’s angular velocity and the time instant were noted. We

hypothesized that the moment when the user actually perceives the rotation was strictly depen-

dent to the angular velocity of the wheelchair. Therefore, for each left and right turn commands,

we considered the instant when the angular velocity exceeded a subject-specific threshold (de-

picted as dashed black lines in Figure 2.6). Finally, we computed the difference between when

the command was delivered and when it was effectively perceived by the participant (blue dots

and the red dots in Figure 2.6).

Once the delay was applied to each trial, the averages along the trials for the two classes were

computed separately. A visual inspection of the averages was carried out to assess if there were

any qualitative differences in the brain responses among the different channels.
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Figure 2.6: Delay computation: The angular velocity is depicted by the black line. Red points

indicate turn commands. Subject-specific thresholds are represented by black dashed lines.

Blue dots mark the first time point after the threshold. The delay for each trial is calculated as

the difference between the timing of the blue and red dots.

2.5.4 Classification

As suggested in the literature [42], [70], [71], after data processing, the EEG signals were down-

sampled from 512 Hz to 64 Hz before the classification, which was based exclusively on tempo-

ral features. The start of the time window for each trial was determined as follows: the time at

which the joystick button was pressed was taken into account. The specific delay value for each

trial was added to this initial time. This procedure made it possible to define the starting point

of the time window used for the analysis of the EEG signals. The length of the time window

selected for the classification was 0.7 seconds. The input features vector size for classification

is determined by the number of trials times the number of samples corresponding to 0.7 seconds

(45 samples) multiplied by the number of the selected channels that vary from subject to subject.

It is important to note that the reference channels used for the analysis varied from subject to

subject and were selected according to visual inspection. The feature matrix was then divided

into training and test sets as follows: the first 70% of the trials were included in the training

set, and the remaining data defined the test set. The model used to detect the two different

classes (correct and incorrect trials) was a Naive Bayes model [74]. This model was trained on

the training set and then tested on both sets (training and test) to assess its ability to correctly

discriminate between the two classes. The classifier’s performance was assessed by comparing

the model’s predictions with the true values and computing accuracy, specificity, and sensitivity

rates. These recognition rates can be evaluated from the confusion matrix, indicating the num-
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Table 2.2: Confusion Matrix: TP refers to true positive; FP refers to false positive; FN refers

to false negative; TN refers to true negative; in this specific case 0 is the label for the correct

trials and 1 is the label for error trials.

Predicted Value

Positive Negative

T
r
u
e
V
a
lu
e

Positive TP FN

Negative FP TN

ber of correct and incorrect predictions for each class - the positive class refers to correct trials

and the negative class refers to error trials (Table 2.2). The calculation of recognition rates is

expressed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Specificity =
TN

TN + FP

Sensitivity =
TP

TP + FN

Due to data imbalance (more correct trials than incorrect ones), high accuracy values might be

achieved even if incorrect trials were misclassified. To address this, the true positive rate and the

true negative rate were used to generate the receiver operating characteristic (ROC) curve [75].

The ROC curve visualizes the model’s performance, where the x-axis represents the false pos-

itive rate (1 - specificity), and the y-axis denotes the true positive rate [75]. Furthermore, the

area under the curve (AUC) summarizes the ROC curve as an index to assess the classifier’s

effectiveness in distinguishing classes [75]. An ideal classifier exhibits high sensitivity, high

specificity, and yields an AUC of 1, reflected in the ROC curve deviating significantly from

the diagonal and ideally intersecting the point (1,0) [75]. Consequently, an AUC value of 1

indicates a perfect classifier, characterized by 100% sensitivity and specificity. In general, the

closer the apex of the curve is to the upper left corner, the better the discriminatory ability of the

test (i.e., higher true positive rate and lower false positive rate) [76].

As the future goal is the online identification of ErrPs, a sliding window classification was also

performed. In this situation, the length of the extracted trials was 1.2 seconds from the moment

the button was pressed. Each trial was divided into 33 overlapping sub-windows, with each

window shifted by one sample relative to the previous one. The previously trained classifier
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was used to classify each sub-window. To assign a unique result to each trial, a subject-specific

metric based on the posterior probabilities was developed: if the number of windows with poste-

rior probabilities above a threshold exceeded a certain value, the trial was considered incorrect;

otherwise, it was classified as correct.
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Results

This chapter presents in detail the results of the analysis carried out, providing a comprehensive

overview of the research outcomes.

3.1 Delay analysis

As explained in Section 2, a crucial aspect of this study involves evaluating participants’ aware-

ness regarding the temporal gap between command delivery and actual execution by the device.

This analysis is helpful in order to hypothesize when participants realize the command execu-

tion and perceive a possible error. Figure 3.1 displays the mean delay values record for each

individual subject. This visualization offers an overview of the observed delays showing the

variations and average delay times across the different participants.

Figure 3.1: Mean delay: The mean values of the delay for each of the nine subjects. The black

lines represent the standard deviation.
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3.2 Grand-Average analysis

Firstly, it was essential for this research to examine the presence of ErrP by analyzing the brain

responses following the execution of a wrong action by the wheelchair. Figure 3.2 shows the

grand average brain responses for all the nine subjects recorded during error trials with the

standard error denoted by the red curve, and the average responses during correct trials with the

standard error depicted by the blue curve for channel FCz. Additionally, the difference between

the average of the error trials and the average of the correct trials, labeled as error-minus-correct,

is presented as the black curve. Figure 3.2 also depicts the topoplots of error and correct trials

at the time points 0.1738, 0.373, and 0.634 seconds.

Figure 3.2: Grand-average: Grand-average of error (red curve) and correct (blue curve)

trials with the standard error (dotted lines) at channel FCz. From the grand-average S2 was

excluded. The vertical line at time 0 seconds represents the instant the user perceives the error.

The upper topoplots are related to correct trials. The lower topoplots are related to error trials.

After a visual inspection of the overall subjects’ responses, a subject-specific analysis was car-

ried out. The brain activity for the nine subjects was analyzed across four distinct channels:

‘Fz’, ‘Cz’, ‘Pz’, and ‘FCz’ selected for their relevance in capturing ErrP signals. Hereafter, the

average correct (blue curve) and error (red curve) signals with the standard error at channel FCz

for two different subjects are depicted in Figure 3.3 and Figure 3.4. In particular, S4 shows

good results, reporting a different brain behavior for error and correct trials. Conversely, the re-

sults of S2 show little variation between the two classes leading to a more difficult analysis and

classification. All the other results are reported in Appendix A. The curves from the 9 subjects

enable visualization and comparative analysis among them and the two different classes.
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Figure 3.3: Grand-Average S4: Averages of error trials (red curves), of correct trials (blue

curves), and the difference error-minus-correct (black curves) for S4 for channel FCz. The

dotted lines depict the standard errors. The first vertical line represents, on average, the com-

mand onset. The vertical zero line represents the instant the user perceives the error. The upper

topoplots are related to error trials. The lower topoplots are related to correct trials.

Figure 3.4: Grand-Average S2: Averages of error trials (red curves), of correct trials (blue

curves), and the difference error-minus-correct (black curves) for S2 for channel FCz. The

dotted lines depict the standard errors. The first vertical line represents, on average, the com-

mand onset. The vertical zero line represents the instant the user perceives the error. The upper

topoplots are related to correct trials. The lower topoplots are related to error trials.
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3.3 Cross-correlation between signals and EOG

In the experiments, subjects were asked to fix a cross in front of them attempting to minimize

eye and body movements. This precautionary measure was taken to avoid introducing artifacts

into the brain signal, which could interfere with the analysis. To remove the common noise

components, the CAR filter was used, followed by the application of ICA. To demonstrate the

successful removal of EOG from the signals, and to ensure minimal influence from ocular move-

ments in the EEG signals, the correlation between the signals and the EOG signal was calculated.

The cross-correlation analyses were conducted in three different cases: raw signals (referred to

as NoFilter) versus EOG, signals filtered with only the application of CAR (referred to as CAR)

versus EOG, and signals processed through both CAR and ICA (referred to as CAR+ICA) ver-

sus EOG. Results in Figure 3.5 report the correlation values of all subjects for the three distinct

filtering cases. From these, it can be seen that by applying only the CAR filter, the correlation

between the signals and the EOG decreases significantly compared to the NoFilter vs. EOG

case. Whereas, comparing the correlation results between CAR+ICA vs. EOG and CAR vs.

EOG signals showed little variation. The median correlation values for the three groups are

0.899, 0.421, and 0.311, respectively.

Furthermore, we compute an ANOVA statistical test with Bonferroni correction to evaluate the

significant differences between the three correlation distributions. The outcomes of this anal-

ysis revealed statistically significant differences among the correlation values obtained from

the three filtering scenarios. The statistical test confirms substantial variability and distinction

among the signal groups, as highlighted in Figure 3.5. The use of the asterisk (*) means that the

two groups are statistically different with a significance level of 0.05.

Individual analysis of the cross-correlation results for each subject reveals that, among the

9 subjects, 7 exhibit comparable cross-correlation outcomes between CAR versus EOG and

CAR+ICA versus EOG. As an example, Figure 3.6 shows S6 results, embracing this obser-

vation, while the results for S2 deviate from this trend. Additionally, single-subject ANOVA

test results are represented with asterisks (*) in Figure 3.6, showing the groups that are statis-

tically different with a significance level of 0.05. All the other subjects’ results are reported in

Appendix B.

3.4 Classification results

To evaluate the ability to detect ErrPs on a trial-by-trial basis, classification was performed by

dividing all trials into training and test sets. This strategy ensured that testing was always per-

formed on different data than the ones used to train the model, thus ensuring that the model’s

performance was rigorously assessed on unseen data, preventing overfitting and validating the
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Figure 3.5: All subjects cross-correlation: Cross-correlation results for all subjects for the

three cases: NoFilter vs. EOG; CAR vs. EOG; CAR+ICA vs. EOG. The asterisks are the

results of the ANOVA test (the two groups are statistically different).

Figure 3.6: Single subjects cross-correlation: On the left: cross-correlation results for subject

S6, showing good results of CAR filter. On the right: cross-correlation results for subject S2

for which the CAR filter is not removing the EOG component. The asterisks are the results of

the ANOVA test (the two groups are statistically different).

model’s generalizability. Both training and test sets classification results were analyzed utiliz-

ing the AUC values, the accuracy, the sensitivity, and the specificity. The average AUC was

0.9423±0.0454 for the training set and 0.7922±0.1362 for the test set; the average accuracy

was 82.6889±11.5406 for the training set and 79.5000±10.3285 for the test set; the average

sensitivity was 82.4000±12.9546 for the training set and 80.3111±11.4585 for the test set; the

average specificity was 89.0556±14.4664 for the training set and 68.1111±11.8334 for the test

set. The AUC results are reported in Figure 3.7, while the other metrics are depicted in Table

3.1 presenting a comprehensive depiction of the model’s performance. Additionally, the feature

extraction process required a careful selection of subject-specific channels critical for classifica-
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tion. Table 3.2 details the channels selected for each subject, underlining the tailored approach

employed in the selection, thus optimizing the classification process.

Figure 3.7: Classification results: Classification results determined by the AUC for the train-

ing set (blue bar) and test set (red bar) for the 9 different subjects.

Table 3.1: Classification results: The results are all expressed in percentage (%). The table

reports the accuracy, sensitivity, and specificity results for both the training set and test set for

all subjects.

Results training set Results test set

Subjects Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

S1 95.9 99 64 87 87.5 80

S2 60 57 100 64 64 66.6

S3 97.6 97.5 100 86.5 90.9 50

S4 86.4 86.4 87.5 80.4 81.6 50

S5 73.7 72 100 73.5 73.9 66.7

S6 80 78.6 100 71 69 83

S7 84.3 85.7 70 98 100 75

S8 88.1 87.4 100 72.6 72.9 66.7

S9 78.2 78 80 82.5 83 75
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Table 3.2: Selected channels: Channels selected for the classification procedure to recognize

the ErrP

Subjects Selected channels

S1 Fz, Cz, FCz

S2 Fz, Cz, FCz

S3 Fz, FCz

S4 Fz, Cz

S5 Fz, Cz, FCz

S6 Fz, Cz, FCz

S7 Fz, Cz

S8 Fz, Pz

S9 FCz

3.4.1 Sliding window classification

For the sliding window classification, the previously created classifier was used to evaluate the

performance on the test set through the use of sliding windows. As already highlighted, in this

case, the start of the trials corresponds to the command onset. The results offer a perspective on

the classifier’s performance across the different segments. By focusing on the AUC, the time

shift that corresponds to the highest AUC value was analyzed. This shift was compared with the

average delay applied to the trials. The results (Table 3.3) show that, in most cases, the optimal

classification using the sliding windows occurred with a time shift similar to the average delay.

This outcome highlights that the delay applied was reasonable.

For illustrative purposes, the AUC results of a single subject are reported. However, it is impor-

tant to note that similar analyses were conducted across all subjects. All the results are presented

in Appendix C. Figure 3.8 provides a visualization of the AUC values corresponding to the dif-

ferent windows for Subject 7. As shown in Figure 3.8, the highest AUC corresponds to a shift

from the command onset of 25 samples which is equal to 0.3906 seconds, comparable to the

mean delay applied (0.3982 seconds).

To consolidate the sliding window classification results for each trial across all windows,

subject-specific thresholds are used on the predicted posterior probabilities. Based on the thresh-

olds, each trial is classified as correct or error trial, and based on the classification results the

recognition rates were computed. Table 3.4 shows the recognition rates (accuracy, sensitivity,

and specificity) for all subjects. These rates reflect the efficacy of the classifier in accurately

categorizing trials based on different temporal windows, providing a summary of the classifier’s

performance.
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Figure 3.8: AUC results: AUC results for S7. The vertical line represents the highest AUC

value corresponding to the shift equal to 25

Table 3.3: Comparison between the shift related to the highest AUC and the mean delay ap-

plied: for each subject, the table highlights the mean delay applied to the trials in the processing,

the shift corresponding to the highest AUC values in seconds, and the difference between the

mean delay and the shift.

Subjects mean delay [s] shift [s] difference [s]

S1 0.3838 0.4375 -0.0537

S2 0.3735 0.3125 0.0610

S3 0.3430 0.4844 -0.1414

S4 0.2898 0.2500 0.0398

S5 0.3361 0.2500 0.0861

S6 0.3722 0.5000 -0.1278

S7 0.3982 0.3906 0.0076

S8 0.3641 0.2813 0.0828

S9 0.2874 0.2656 0.0218

Table 3.4: Recognition rates: The table reports the recognition rates: accuracy, sensitivity,

and specificity for each subject in percentage (%).

Subjects Accuracy Sensitivity Specificity

S1 96 98 80

S2 90.8 94 33.3

S3 75.7 75.8 75

S4 78.4 79.6 50

S5 63.3 65.2 33.3

S6 78.2 83.4 33.3

S7 70 69.6 75

S8 77.4 78 66.7

S9 82.5 83 75
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Discussion

4.1 Delay analysis

Understanding when the user perceives an error is a fundamental aspect of the study of human-

computer interaction. In particular, research studies focusing on the analysis of ErrP within a

real device such as a wheelchair are still limited. The limited availability of such research un-

derlines the fundamental need to consider delay as a critical parameter. Exploring these delays

in users’ interaction with real-world devices provides valuable insights into the complexities of

error perception. This research fills a significant gap in the understanding of ErrP in the practi-

cal context of wheelchair control. By deepening the analysis of delays, it aims to elucidate the

temporal complexities involved in wheelchair movement, of error perception, paving the way

for a deeper understanding of human-computer interaction in the context of real-world devices.

Observing and analyzing the mean values of the delays, shown in Figure 3.1, reveals differ-

ences in the perception times of each subject, highlighting variations in cognitive processing

and reaction times specific to each individual. Time delays may be influenced by variables such

as prior experience and cognitive strategies used when interacting with the wheelchair control

system. Understanding the impact of these variables is crucial and may provide a deeper per-

spective on subjective error perception, given the importance of customizing analysis according

to individual user characteristics.

4.2 Grand-Average analysis

The main aim of this research was to investigate ErrP during the active control of a powered

wheelchair. We tried to understand the brain response by analyzing the EEG signals during

instances when the users perceived or did not perceive errors from the system over which they

have no control. The experimental data collected from nine subjects allowed a comparative
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visualization and analysis of the brain responses during error and correct trials in the selected

channels. The results presented in Figure 3.2 provide an insight into the average neural activity

observed in response to error and correct actions of the wheelchair and offer an overview of

the appearance and characteristics of ErrP in the brain regions examined. In Figure 3.2, it is

possible to notice a different brain response for the two classes. In particular, a positive peak at

0.17 seconds, followed by a negative peak at 0.373 seconds, and a second positive peak at 0.64

seconds distinguish the error trials. Additionally, the topoplots highlight the difference between

the correct and error trials.

The single-subject brain response results confirm the existence of ErrP and show a different

brain response between error and correct actions. They also show significant differences in the

ErrPs recorded between the different subjects, both in the shape and in the timing of the peaks.

For some subjects like S4, a clear and well-defined ErrP curve is observed, whereas for others

like S2, a less distinct and more difficult to identify ErrP is detected. This variability in response

underlines a difference between subjects in the reaction to an erroneous action, making it more

complex to discriminate between error and correct trials. The main discriminator for all sub-

jects in identifying the ErrP seems to be the negative deflection, which is present in error trials

but not in the correct ones. The average latency of the negative peak from the user perception

of the error is 0.2944±0.1119 seconds. The positive peaks, on the other hand, often appear in

both correct and error trials, which could be related to the P300 component. The average la-

tency of the positive peak from the user perception of the command is 0.1050±0.0943. It is

possible that, after a certain number of trials, users become used to the presence of the error

and no longer react with surprise to the incorrect action. At the same time, the execution of the

correct command could produce a surprise effect in the user, contributing to the appearance of

the P300. Moreover, upon examining the grand average of S2, it becomes evident that the mean

error trials and mean correct trials exhibit a significant similarity. Both response patterns show

a nearly identical trend. This convergence might be attributed to the subject’s familiarity with

the experiment and the control protocol. Given the subject’s awareness of ErrPs, it resulted in

a similar surprise reaction observed in both correct and error trials. The subject was not able

to focus exclusively on the control of the wheelchair and the accurate movement execution but

continued to anticipate the occurrence of the errors. The user’s driving behavior was strongly

influenced by this awareness, taking preventive actions to be able to correct any errors and return

to the desired position. Furthermore, being aware of the presence of errors, he showed surprise

when the wheelchair correctly executed the command, generating a P300. At the same time, if

the command was executed incorrectly, the ErrP was generated, although with a reduced am-

plitude. This phenomenon is in line with the findings in the literature [42], where it is observed

that the amplitude of the ErrP decreases as the frequency of errors increases and, consequently,
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the subject’s adaptation to the continuous presence of errors in the experiment.

4.3 Influence of EOG in the detection of ErrP

Artifacts in the EEG can be caused by physiological activity such as eye movements, blink-

ing, electrocardiographic activity, and muscle movements. Bandpass filters are usually used to

remove such artifacts because the frequencies associated with these physiological signals are

well-known. In addition, the CAR filter is often used to reduce or remove the common compo-

nents to all EEG channels. However, there are other methods of artifact removal, including ICA,

which further clean up the signal. It is important to note that ICA is not suitable for real-time

analysis and therefore is not applicable online. To ensure consistency between offline and on-

line analysis, it is desirable to avoid using ICA during offline analysis. As described previously,

the similarity of the noFilter, CAR, CAR+ICA signals to the EOG was assessed. The results

indicate that the application of the CAR filter removes much of the common noise present in

all channels of the EEG, including eye movements, in almost all subjects. Subsequent integra-

tion of the ICA did not appear to result in significant improvements for most subjects, with the

exception of two cases. This could be due to the fact that the initial correlation between CAR

and EOG was already low. However, for the remaining two subjects a significant improvement

is observed: the correlation between CAR+ICA and EOG signals decreases significantly. This

could indicate that ICA has removed many components including movement-related artifacts.

In fact, we know that these two subjects did not restrict their body movements, suggesting a

greater effect of ICA signal cleaning. As a consequence of these results, even if the groups are

statistically different, it was decided to carry out the subsequent analysis using the data filtered

only by the CAR filter because the correlation values were still low. This decision was made to

facilitate future online implementation, as ICA cannot be implemented online. These findings

collectively emphasize the efficacy of the CAR filter in attenuating EOG-related artifacts from

EEG signals.

4.4 Decoding ErrP

The classification results demonstrate the possibility to discriminate between error and correct

trials during the navigation with a powered wheelchair. These outcomes exhibit a generally

satisfactory performance observed for most participants, stating the efficacy of the classification

model. However, for S3 and S4, it can be noticed that the classification performance is mainly

high for the positive class (correct trials). This situation leads to good overall accuracy, but a

detailed examination of the specificity shows that the results reflect performance metrics similar
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to those of a random classifier. In general, the classifier is able to effectively identify true

negatives and true positiveswhileminimizing false positives and false negatives. It is essential to

underline that leave-one-out cross-validation (LOOCV) was not adopted to create the classifier.

This decision was made in view of our final objective, which is the future implementation of

the protocol online. LOOCV, although a common practice for evaluating classifiers, is not

compatible with our ultimate goal of implementing the protocol in real-time. Since LOOCV

involves the sequential exclusion of a single sample for validation, in the context of an online

application, the implementation of LOOCV could introduce difficulties in adapting the classifier

to the real-time data stream, limiting its effectiveness and usability in practical use. Therefore,

although LOOCV is a valid practice for classifier evaluation, its application in this specific

context was not considered suitable for our research objectives.

4.4.1 Sliding window classification discussion

The implementation of sliding window classification was used to simulate real-time classifica-

tion, providing an analysis of the classifier’s capability to detect ErrPs within segmented tempo-

ral windows following the command onset. This analysis was carried out to avoid the complex-

ity associated with computing the delay. In the context of a real-time application, determining

the delay between the command and the user’s perception of the command execution can be

challenging and impractical. Therefore, we adopted the sliding window approach that enables

us to directly focus on the command-onset event as the starting point for ErrP classification.

Moreover, the implementation of subject-specific thresholds based on predicted posterior prob-

abilities adds a crucial layer of individualization, considering variations in temporal dynamics

and individual response patterns. As the results show, the observed shift time associated with

the highest AUC value aligns with the applied delay for most of the subjects. This suggests that

the selected window for trial extraction is pertinent to the analysis. The classification with the

sliding window reports lower recognition rates compared to the previous classification.
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Conclusions

The research focused on analyzing the brain response during discrete control of a powered

wheelchair. The results showed a significant difference in the responses between correct and

wrong actions, confirming the possibility to identify ErrPs following incorrect commands. Fur-

thermore, we developed a classifier capable of successfully decoding erroneous responses on

a trial-by-trial basis, with consistent and promising classification results for future online im-

plementation. However, it turned out that neural activity varies considerably from subject to

subject, making it complex to create a universal interface suitable for all users. Therefore, indi-

vidual training steps to optimize system parameters are essential.

Despite the successful findings, there is still much to be explored and several aspects require

further investigation. These include improving signal decoding in more complex environments

without a predefined path to better simulate realistic scenarios. It is also essential to test the sys-

tem on people with disabilities and characterize their neural response, as they will be the final

users of the device. It is also essential to evaluate the system online to verify its effectiveness in

recognizing and correcting errors and to integrate it with the MI BCI system to improve overall

performances.

It should be emphasized that, although discrete control represents an important step, it is based

on separate and distinct commands. It is similar to moving in steps, with each command repre-

senting a single movement. Therefore, this type of control may not appear natural to the user. On

the other hand, continuous control is more like a smooth and uninterrupted movement. Contin-

uous control might be perceived as more intuitive and closer to the natural experience of driving

than discrete control. Therefore, continuous control may be more appropriate in everyday con-

texts. This suggests the need to develop solutions that integrate continuous control to ensure a

smoother experience adaptable to real-world use.

Another important aspect to consider is eye movement, which adds complexity to the analysis.

During the experiment, users were required to focus on a cross, but this condition may be un-
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realistic and uncomfortable in a real-world implementation. It is therefore important to assess

how eye movements affect the signals when the user is free to move their eyes and how these

artifacts may affect the analysis.

In conclusion, this study is an important step forward in research and provides a basis for fu-

ture studies and developments with the final aim of helping people with motor impairments in

everyday life.
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Appendix A

Single-subjects grand-average

Figure A.1: Grand-Average: Averages of error trials (red curves), of correct trials (blue

curves), and the difference error-minus-correct (black curves) for S1 for channels Fz (left-top),

Cz (right-top), Pz (left-bottom), and FCz (right-bottom). The dotted lines depict the standard

errors. The first vertical line represents, on average, the command onset. The vertical zero line

represents the instant the user perceives the error.
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APPENDIX A. SINGLE-SUBJECTS GRAND-AVERAGE

Figure A.2: Grand-Average: Averages of error trials (red curves), of correct trials (blue

curves), and the difference error-minus-correct (black curves) for S2 for channels Fz (left-top),

Cz (right-top), Pz (left-bottom), and FCz (right-bottom). The dotted lines depict the standard

errors. The first vertical line represents, on average, the command onset. The vertical zero line

represents the instant the user perceives the error.

Figure A.3: Grand-Average: Averages of error trials (red curves), of correct trials (blue

curves), and the difference error-minus-correct (black curves) for S3 for channels Fz (left-top),

Cz (right-top), Pz (left-bottom), and FCz (right-bottom). The dotted lines depict the standard

errors. The first vertical line represents, on average, the command onset. The vertical zero line

represents the instant the user perceives the error.
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APPENDIX A. SINGLE-SUBJECTS GRAND-AVERAGE

Figure A.4: Grand-Average: Averages of error trials (red curves), of correct trials (blue

curves), and the difference error-minus-correct (black curves) for S4 for channels Fz (left-top),

Cz (right-top), Pz (left-bottom), and FCz (right-bottom). The dotted lines depict the standard

errors. The first vertical line represents, on average, the command onset. The vertical zero line

represents the instant the user perceives the error.

Figure A.5: Grand-Average: Averages of error trials (red curves), of correct trials (blue

curves), and the difference error-minus-correct (black curves) for S5 for channels Fz (left-top),

Cz (right-top), Pz (left-bottom), and FCz (right-bottom). The dotted lines depict the standard

errors. The first vertical line represents, on average, the command onset. The vertical zero line

represents the instant the user perceives the error.
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APPENDIX A. SINGLE-SUBJECTS GRAND-AVERAGE

Figure A.6: Grand-Average: Averages of error trials (red curves), of correct trials (blue

curves), and the difference error-minus-correct (black curves) for S6 for channels Fz (left-top),

Cz (right-top), Pz (left-bottom), and FCz (right-bottom). The dotted lines depict the standard

errors. The first vertical line represents, on average, the command onset. The vertical zero line

represents the instant the user perceives the error.

Figure A.7: Grand-Average: Averages of error trials (red curves), of correct trials (blue

curves), and the difference error-minus-correct (black curves) for S7 for channels Fz (left-top),

Cz (right-top), Pz (left-bottom), and FCz (right-bottom). The dotted lines depict the standard

errors. The first vertical line represents, on average, the command onset. The vertical zero line

represents the instant the user perceives the error.
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Figure A.8: Grand-Average: Averages of error trials (red curves), of correct trials (blue

curves), and the difference error-minus-correct (black curves) for S8 for channels Fz (left-top),

Cz (right-top), Pz (left-bottom), and FCz (right-bottom). The dotted lines depict the standard

errors. The first vertical line represents, on average, the command onset. The vertical zero line

represents the instant the user perceives the error.

Figure A.9: Grand-Average: Averages of error trials (red curves), of correct trials (blue

curves), and the difference error-minus-correct (black curves) for S9 for channels Fz (left-top),

Cz (right-top), Pz (left-bottom), and FCz (right-bottom). The dotted lines depict the standard

errors. The first vertical line represents, on average, the command onset. The vertical zero line

represents the instant the user perceives the error.
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Appendix B

Cross-correlation

Figure B.1: Cross-correlation results: Cross-correlation results for S1. The asterisks are the

results of the ANOVA test (the two groups are statistically different).

Figure B.2: Cross-correlation results: Cross-correlation results for S2. The asterisks are the

results of the ANOVA test (the two groups are statistically different).
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Figure B.3: Cross-correlation results: Cross-correlation results for S3. The asterisks are the

results of the ANOVA test (the two groups are statistically different).

Figure B.4: Cross-correlation results: Cross-correlation results for S4. The asterisks are the

results of the ANOVA test (the two groups are statistically different).

Figure B.5: Cross-correlation results: Cross-correlation results for S5. The asterisks are the

results of the ANOVA test (the two groups are statistically different).
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Figure B.6: Cross-correlation results: Cross-correlation results for S6. The asterisks are the

results of the ANOVA test (the two groups are statistically different).

Figure B.7: Cross-correlation results: Cross-correlation results for S7. The asterisks are the

results of the ANOVA test (the two groups are statistically different).

Figure B.8: Cross-correlation results: Cross-correlation results for S8. The asterisks are the

results of the ANOVA test (the two groups are statistically different).
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Figure B.9: Cross-correlation results: Cross-correlation results for S9. The asterisks are the

results of the ANOVA test (the two groups are statistically different).
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Appendix C

AUC results - sliding window classification

Figure C.1: AUC results: AUC results for S1. The vertical line represents the highest AUC

value

Figure C.2: AUC results: AUC results for S2. The vertical line represents the highest AUC

value
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APPENDIX C. AUC RESULTS - SLIDING WINDOW CLASSIFICATION

Figure C.3: AUC results: AUC results for S3. The vertical line represents the highest AUC

value

Figure C.4: AUC results: AUC results for S4. The vertical line represents the highest AUC

value

Figure C.5: AUC results: AUC results for S5. The vertical line represents the highest AUC

value

56



APPENDIX C. AUC RESULTS - SLIDING WINDOW CLASSIFICATION

Figure C.6: AUC results: AUC results for S6. The vertical line represents the highest AUC

value

Figure C.7: AUC results: AUC results for S7. The vertical line represents the highest AUC

value

Figure C.8: AUC results: AUC results for S8. The vertical line represents the highest AUC

value
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Figure C.9: AUC results: AUC results for S9. The vertical line represents the highest AUC

value
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