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Sommario

L’ottimizzazione della crescita nelle colture di microalghe è una missione rilevante per

garantire una maggiore efficienza nei processi industriali, che si traduce nella riduzione

dei costi e nella possibilità di aumentare il margine di guadagno sul prodotto finale. Ne-

gli impianti industriali spesso viene associato un gemello digitale ovvero una riproduzione

virtuale dell’impianto, che permette di fare analisi e previsioni del sistema anche in tempo

reale. Una possibile soluzione per ottimizzare la crescita di microalghe è quella di definire

una loro rigorosa rappresentazione virtuale, che tenga conto dei fenomeni che influiscono

sul loro sviluppo e che sia in grado di fornire le informazioni necessarie per gestire un cor-

retto controllo delle varie variabili. Questa tesi vuole mostrare alcuni modelli matematici

che descrivono la crescita di microalghe nei fotobioreattori e, tramite un simulatore, vuole

fornire un metodo per il controllo della concentrazione di biomassa. Il primo capitolo è

una introduzione sulla definizione e classificazione delle microalghe e del funzionamento

del fotobioreattore. Nel secondo capitolo, viene fornita la descrizione matematica del fun-

zionamento di un bioreattore e le formule matematiche che evidenziano la dinamica della

crescita delle alghe. Il terzo capitolo serve come raccolta delle informazioni necessarie

per l’implementazione in ambiente virtuale del modello. Il quarto capitolo fornisce due

diverse strategie di controllo, PID e MPC, e mostra come questi siano stati regolati. Nel

quinto capitolo si discute dei vantaggi e svantaggi dei due controllori e si paragonano tra

loro le prestazioni, mentre il sesto capitolo lascia spazio alle conclusioni finali.



Abstract

The optimization of growth in microalgae cultures is a relevant mission to ensure greater

efficiency in industrial processes, which means reducing costs and increasing the profit

margin on the final product. Often, in industrial plant, a digital twin is used, that is a

virtual reproduction of the plant, which allows to make analysis and predictions of the

system also in real time. A possible solution to optimize the growth of microalgae is to

define a rigorous virtual representation, which takes into account the phenomena that

affect their development and is able to provide the necessary information to manage a

proper control of the various variables. This thesis wants to show some mathematical

models that describe the growth of microalgae in photobioreactors and, through a simula-

tor, wants to provide a method to control the biomass concentration. The first chapter is

an introduction on the definition and classification of microalgae and the operation of the

photobioreactor. In the second chapter, the mathematical description of the functioning

of a bioreactor is provided as well as mathematical formulas that highlight the dynamics

of algae growth. The third chapter collects the information needed for the virtual envi-

ronment implementation of the model. The fourth chapter provides two different control

strategies, PID and MPC, and shows how these were tuned. The fifth chapter reviews

the advantages and disadvantages of the two controllers and compares their performance

with each other, while the sixth chapter shows the final conclusions.
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Chapter 1

Introduction

In this chapter it is offered an overview of the background knowledge needed to understand

the sector in which this thesis is located. In Section 1.1 is described what microalgae are

and how they are used in industrial processes. In Section 1.2 is presented the tools used

nowadays for the growth of microalgae in photo-bioreactors. In Section 1.3 is explained

what is the purpose of this thesis.

1.1 Microalgae

Microalgae are microscopic unicellular organisms that live in aquatic environments. They

have a simple reproductive structures and they do not have stems, roots or leaves [6].

Microalgae are considered photoautotrophic organisms, that is they are able to convert

light and CO2 into organic compounds, however, many microalgae are also heterotrophic,

since they are able to take nutrients from organic molecules [7]. Microalgae that can

undertake photosynthesis are essential for life on Earth as they produce around half of the

oxygen in the atmosphere [8] while also reducing CO2 in the atmosphere through carbon

fixation. The peculiarity of microalgae is that are capable of doing photosynthesis with

high photosynthetic yields compared to terrestrial plants and they can be grown quickly

in non-arable lands [9]. They boast a huge biodiversity with hundreds of thousands of

estimated species and thousands species described [10] and that is why they are very

versatile and can grow in a wide variety of environments, from oceans, lake, rivers, to

ponds and wastewater [11] and why are used in many fields.

Classification

Microalgae come in different sizes, shapes and pigments so it is a complex task to classify

them under an unique criteria. One great distinction is between eukariotyc and prokary-

otic [12], but algae can also be classified based on their pigments [13]. The main six

9



10 CHAPTER 1. INTRODUCTION

groups are:

• green algae (Chlorophyceae)

• blue-green algae, also called cyanobacteria (Cyanophyceae)

• red algae (Rhodophyceae)

• brown algae (Phaeophyceae)

• golden brown algae (Chrysophyceae)

• diatoms (Bacillariophyceae)

It should be stressed that each different specie needs a different type of light, according

mainly on its pigment content [14]. Some of the most important pigments are:

• Chlorophyll-a (in all plants, algae, and bacteria);

• Chlorophyll-b (in chlorophytes and land plants);

• Carotenoids (in all plants and algae);

• Phycoerythrin (in red algae)

• Phycocyanin (in cyanobacteria)

Figure 1.1: Pigment absorption spectrum. Extracted from [1]

Microalgae use the pigment chlorophyll-a to carry out the reaction of photosynthesis

[15]. This pigment absorbs very well the light at the blue and red frequencies, but some

species of microalgae can absorb light at others frequencies depending on the species.
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To maximize photosynthetic efficiency, the light source wavelength should match the

photosynhetically active spectrum, for example Chlorophyll b does not absorb green light,

so it should be avoided to irradiate 550nm wavelength light organisms where this pigment

is present.

Application

Applications arise from the exploitation of properties of microalgae, like their ability

of fixate CO2 and reduce greenhouse gas in the atmosphere, or derive from a desire

to extract a product. The final product of microalgae harvest may be exactly its own

biomass or its lipids that, for example, through transesterification can lead to biofuel [16],

or may be biochemicals produced directly by microalgae like β-carotene [17]. The wide

biodiversity of microalgae make them suitable for many fields, like commercial, industrial

and environmental [2].

Figure 1.2: Flow chart showing applications of microalgae in different fields. Extracted
from [2]

Algae cultivation systems

There are two main methods to cultivate microalgae [18]:

• Open systems like open ponds, circular ponds, raceway ponds

• Closed systems like bioreactor and photobioreactor (PBR)

The first method is the most natural way to grow algae. These are placed in oval or

circular tanks outdoors so that they receive light and carbon dioxide and are fed and

left to grow. The tanks are designed in a raceway configuration and are equipped with
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paddle wheels that provide circulation and mixing of cells, nutrients and dissolved gases

[19]. The main advantages over the closed systems are: simple and cheap design, relative

easy maintenance, cost efficient operation. However, there are significant drawbacks that

limit this technology from being superior in some applications: high contamination risk,

control of temperature, pH and nutrients can be more difficult given that the system is

more exposed to environmental changes.

Figure 1.3: Three different example designs of open pond systems. Extracted from [3]

Closed systems are typically referred to as photobioreactors. Its description and op-

erating principles are discussed in the next section.

1.2 Photobioreactor

A photobioreactor is a particular bioreactor that uses light as source of nutrient for pho-

totropic organisms. Hence, it is an artificial environment where specific conditions are

carefully controlled with the aim to obtain better growth rates of biomass or better pu-

rity levels compared to culture in the corresponding natural habitats [4]. In addition,

growth cultures can be continuously supplied by nutrients, and by gas like oxygen and

carbon dioxide and compensate the limited sun lighting with artificial lightning. It is

important to control all these variables since it has been shown that in microalgae cul-

tures, an optimal feeding strategy can lead to optimal growth or even a lipid induction,

under environmental stresses [20]. Photobioreactors can be placed indoors or outdoors,

but often these systems are placed inside greenhouses to reduce the cost of lighting. The
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major advantage of using these systems is the increased surface area for a certain culture

volume. Other advantages over open ponds are: lower contamination risk, higher cell

concentration, easier mixing which improves mass transfer, easier to control temperature,

pH and nutrient supply [18]. There are many types of bioreactors with different shapes:

vertical tubular, flat panel, horizontal tubular and stirred tank. In particular, a stirred

tank photobioreactor for laboratory use is a cylindrical vessel of a few liters equipped with

agitators that can spread the compounds and make the concentrations homogeneous. The

walls are generally made of glass, while the head plate is made of stainless steel metal,

with with various openings that allow the insertion of probes, media and gases, and the

sampling of the solution [21]. In addition, the bioreactor is equipped with various systems

for heat exchange, it may have an external coating or coil through which steam or cooling

water is pumped or it may have helical coils located internally. Another method is to

pump liquid from the reactor through a separate heat exchange [22]. Artificial illumina-

tion of the culture can be provided from the outside by LED lights and panels but there

are also systems that carry light inside the tank through optical fibers [23].

Figure 1.4: Laboratory stirred tank photobioreactors. Extracted from [4]

1.3 Aim of the thesis

Photosynthetic yield from light energy to biomass is very low in industrial processes re-

spect to theoretical limit. One of the reasons is the lack of a digital twin in automatic

control, based on a mathematical description that gives a quantitative depiction of mi-

croalgae growth. A digital twin is a virtual representation of a real objects that can
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be used to view the status of the actual physical object for monitoring, diagnostics and

prognostics to optimize asset performance and utilization. In this case, be able to assess

how much biomass and lipids can grow and how effectively light is utilized, may bring

an optimization of the entire process and the possibility to scale the production from lab

tank of few liters to industrial containers of thousands of liters. The objective of this

thesis is to select the models available in the state of the art, implement a simulation of

the microalgae growth through the Matlab software, define the control problem, build a

model predictive controller (MPC) in the simulation environment, estimate the state of

the system through a Kalman filter, and compare the performance to a standard PID

controller.



Chapter 2

Mathematical models for microalgae

growth

Modeling is a tool to understand, describe and analyze real world phenomena, and a

model can be define as an approximate representation of reality. Models can be used

to measure what is not accessible, to simulate and control systems and to predict their

behaviour. Mathematical models are crucial in the formulation of the control problem as

we use them to understand the effect of inputs to the system. Moreover, the capability

of the MPC to predict the evolution of the system in the future is totally dependent

by the model. Hence, the first main step of the project is to formulate a mathematical

description of how a photobioreactor works, and how microalgae grow. In Section 2.1 it

is described the basic bioreactor dynamics, in Section 2.2 it is analyzed a single organism

and single feed rate bioreactor and its typology, in Section 2.3 it is shown a particular

model of algae growth and in Section 2.4 a multi-input feed model that takes into account

lipid production.

2.1 Basic bioreactor model

A bioreactor is a tank that contains a mixture of substrates, microorganisms and their

products. Liquids can be injected and expelled in the tank, modifying the media com-

position and volume. To understand what changes inside the tank, we resort on mass

balance equations [24], [25] that give an explanation on how mass is transformed and how

volume changes over time. Hence, for a generic substance with concentration C [g/L] in a

volume V [L], the accumulation of mass inside the tank is given by three distinct factors:

• Influent volume, that brings new mass through the incoming fluid with concentration

Cin

15



16 CHAPTER 2. MATHEMATICAL MODELS FOR MICROALGAE GROWTH

• Effluent volume, that takes mass from the reactor volume with concentration C1

• Conversion, that means reactions of internal processes which can increment or decre-

ment the total concentration C inside the reactor

The mass balance equation is the following:

d(V (t)C(t))

dt
= rc(t)V (t) + Fin(t)Cin(t)− Fout(t)C(t) (2.1)

Where rc is the conversion function, Fin [L/d] (d=day) is the entering volume flow and

Fout [L/d] is the exiting volume flow. Omitting time dependency and using the derivative

of a product we obtain:

ĊV + V̇ C = rcV + FinCin − FoutC (2.2)

And then, isolating the concentration change Ċ:

Ċ = rc +
FinCin

V
− FoutC

V
− V̇ C

V
(2.3)

Volume change over time is regulated by flows entering and exiting2 in the tank:

V̇ =
nX

i=1

Fin,i − Fout (2.4)

Where i goes from one to n total influent flows.

2.1.1 Dilution rate

The dilution rate is a very important factor when working with a bioreactor and it is

usually used as input for the system. It is defined as follow:

D(t) =
nX

i=1

Fin,i(t)

V (t)

1

d
(2.5)

where d stands for days. From eq.(2.3) and (2.4) the concentration and volume derivatives

become:

1Mass in the media is considered well mixed, so the density is homogeneous
2it is considered a single media output flow
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Ċ = rc +
FinCin

V
− FoutC

V
− (
Pn

i=1 Fin,i − Fout)C

V

= rc +
FinCin

V
−DC

V̇ = Fin − Fout = DV − Fout

(2.6)

Eqs.(2.6) are the standard mathematical description of a bioreactor.

2.1.2 Conversion function

The conversion function is used to describe how mass of the different concentrations

inside the tank evolve. For example, the biomass is able to grow at a certain rate and

is susceptible to death at a different rate, but also the substrate is consumed with some

yield by the biomass. Taking this in consideration we can write:

• for biomass X

rX(t) = µX(t)− kdX(t) (2.7)

• for substrate S

rS(t) = − 1

YXS

µX(t) + kmX(t) (2.8)

Where X [g/L] is the biomass concentration, µ [1/d] is the specific growth rate, S [g/L] is

the substrate concentration, kd [1/d] is the death rate, km [1/d]3 is maintenance term for

biomass survival, YXS is the yield coefficient that relates the consumption of substrate to

the biomass growth.

2.2 Single microorganism and single input flow

Let’s focus on a bioreactor with only one type of microorganism and only one source of

influent and one source of outlet flow, assuming that no mass of microalgae are introduced

inside the tank and the tank is well mixed. From eq.(2.6), (2.7) and (2.8) it is possible to

write: 
Ẋ = µX − kdX −DX

Ṡ = − 1
YXS

µX + kmX +DSin −DS

V̇ = Fin − Fout

(2.9)

3generally, death rate kd and maintenance therm km are neglected
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From this configuration, acting on the inlet and outlet flow, it is possible to distinguish

three main types of bioreactors:

• Batch reactor

• Fed-Batch reactor

• Continuous stationary tank reactor (CSTR)

A batch reactor is a cultivation method where no flow is inserted and no flow comes

out. At the start of the process, a given amount of biomass and substrate are placed,

the biomass will consume the nutrients and start to grow while the total volume remains

constant4. The harvest is done when all the substrate is consumed. This setup can be

useful to observe how microalgae grow from which one can derive the estimation of the

model parameters. In a Fed-batch set up, only substrate valve is opened while the output

flow is always shut down. So the initial conditions start with little volume that begins

to increase over time and biomass that keeps getting fed by inflow. At the end of the

process all the content is withdrawn and the tank is cleaned and sterilized for the next

operation. The last type is a bioreactor that works in continuous mode, which means that

an input and an output flows are always present and equal in such a way that the total

volume stays constant. This system works on steady state conditions where medium is

fed continuously and the product is harvested continuously.

Batch Fed-Batch CSTR

Fin = Fout = 0 Fout = 0 Fin = Fout = F

Ẋ = µX Ẋ = (µ−D)X Ẋ = (µ−D)X

Ṡ = − 1
YXS

µX Ṡ = − 1
YXS

µX +D(Sin − S) Ṡ = − 1
YXS

µX +D(Sin − S)

V̇ = 0 V̇ = Fin = DV V̇ = Fin − Fout = 0

Table 2.1: Dynamic equations of the three types of bioreactor

Note: the total amount of volume in a fed-batch can be computed at any time t by

V (t) = V (t0) +
R t

t0
Findt where t0 is the initial time of the experiment.

4Small fluid adjustment can be done for pH and against foam
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Figure 2.1: Schematic representation of bioreactors

2.2.1 Specific growth rate

In this subsection we describe more in details what is the specific growth rate. This is

a function of different parameters that tells how fast microalgae can grow. Microalgae

are affected by external environment like how much nutrients are accessible, if too much

product is toxic, what is the outside temperature where they live, how acid is the medium,

how much light is available for photosynthesis and so on [24]. The specific growth rate

can be expressed as a function of products for each influencing factor:

µ = µ(X)µ(S)µ(P )µ(pH)µ(T )µ(I)...

The aim of the thesis is not to give a wide overview of the formulations on the specific

growth rate, so we show only the ones of major interest.

Influence of substrate S on µ

Microalgae require several nutrients to grow, and when deprived of these nutrients, their

growth can be severely reduced. Cells development are influenced by nitrogen and

phosphorus molecules [26] and also by many micronutrients, such as iron, manganese,

molybdenum, and nickel [27]. Many models have been tried to describe how nutri-

ents affect microalgae development. Monod developed one of the first growth models

[28], which was originally designed for bacterial cultures. To characterize the growth

rate as a function of nutrient concentration, he used the Michaelis-Menten equation.

Monod (Michaelis-Menten) equation:

µ(S) = µmax
S

(Ks + S)
(2.10)
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Where µmax is maximum specific growth rate, S is concentration of the limiting nutri-

ent, and Ks is concentration of limiting nutrient at which the specific growth rate is half

of its maximum value.

Monod’s equation, however, fails to explain the inhibitory effect that a high concentra-

tion of nutrients can lead to. The Haldane-Andrew equation takes into account this effect

by adding the inhibitory factor into the equation [29]:

Haldane equation5:

µ(S) = µmax
S

(Ks + S +
S2

Ki

)

(2.11)

where Ki is inhibition constant and µmax is a theoretical value representing maximum

specific growth rate if there was no inhibition. The next figure shows the plot of the

Monod and Haldane functions.

Figure 2.2: Specific growth rate as function of substrate concentration S (Ks = 0.1,
Ki = 0.4)

Influence of light intensity I on µ

Light is the most crucial parameter in the modeling of microalgal growth because algae

need light as a source of energy for photosynthesis. Based on the intensity of the light,

microalgal cells are located in three different light zones: photolimited, photosaturated,

and photoinhibited [5] as it can be see in Figure 2.3.

5The maximum of this function is when S =
√
KsKi
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Figure 2.3: A schematic of photosynthesis rate curve on light limited, saturated and
inhibited regions. Extracted from [5]

As light goes deeper, more and more light is attenuated and microalgae deeper in

the media receive less light causing limitation on the growth. Besides light penetration,

other phenomena should be taken in consideration, like the light exposure of algae in

hydrodynamic moving environment where the cells move and can come closer to or farther

away from a light source, or how light spectrum and different length waves can undermine

growth. We simplify this behaviour, making the assumption that light affect growth

as saturation like Monod equation: µ(I) = I
KsI+I

or inhibition like Haldane equation:

µ(I) = I

(KsI+I+ I2

KiI
)
.

Influence of temperature T on µ

Temperature, after nutrition and light, is the most important factor in microalgae de-

velopment. In fact, microalgae are not able to regulate their temperature, and every

microalgae species has an optimal temperature, which is generally between 20 °C and 24

°C [30]. They all appear to be following the same patterns like the one in Figure 2.4: a

region where the function reaches its peak at the optimum temperature, and the regions

outside where no growth occur. For simplicity sake, we describe here only two of many

models. The Hinshelwood model [31], which was created using the Arrhenius rule for

bacteria growth and later utilized for microalgae development:

µ(T ) = k1e
−E1

T − k2e
E2
T (2.12)

where T is absolute temperature and k1, k2, E1, and E2 are model parameters. E1 and

E2 replaced the activation energy over gas constant in the original form of Arrhenius law
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and k1 and k2 are pre-exponential factors. Thermodynamically, in this equation, the

first term can be interpreted as the production (growth) rate and the second term as

the consumption (death) rate of the bacteria due to high temperature. However, as the

temperature is decreased in this model, specific growth rate declines but never reaches

zero except at temperature of absolute zero. This makes the model unrealistic at low

temperatures. An alternative model proposed is the cardinal temperature model with

inflection (CTMI) [32]. This model uses three cardinal temperatures (Tmin, Topt, Tmax).

The growth takes place only when the temperature is between the maximum and the

minimum6.

µ(T ) = µmax
(T − Tmax)(T − Tmin)

2

(Topt − Tmin)[(Topt − Tmin)(T − Topt)− (Topt − Tmax)(Topt + Tmin − 2T )]
(2.13)

Figure 2.4: Specific growth rate as function of Temperature T, CTMI model.

2.3 Droop model

Differential equations like eq.(2.9) are not sufficient to describe very complex biosystems

like algae growing in a bioreactor. In particular, in contrast to bacteria, it has been seen

that some species of microalgae are able to uptake nitrogen and use their internal nitrogen

pool as source of feed in the case of lacking nutrients. This strong uncoupling between

6under the condition: Topt >
Tmin + Tmax

2
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nutrient uptake and growth was highlighted by Droop [33]. His model represented growth

dependent on an internal quota Q defined as the quantity of nutrient per biomass unit,

instead of dependent on substrate concentration S. Hence, the substrate is consumed

to increase directly and only the cell internal quota, which is subsequently utilized to

increase the biomass. The resulting equations are:
Ẋ = µ(Q)X −XD

Q̇ = ρ(S)− µ(Q)Q

Ṡ = −ρ(S)X +D(Sin − S)

(2.14)

Where ρ(S) is the uptake rate described in the next section.

2.3.1 Metabolic rates in Droop model

With metabolic rates are intended the functions that contribute on the development of

the cell, like growth, uptake of nutrients etc. and they are part of the conversion function

defined in Section 2.1.2.

Specific growth rate

As seen in Section 2.2.1 the specific growth rate is determined by the products of more

factors. In the original Droop model, it only depends by the internal quota Q. In fact, it

makes sense that the nitrogen pool has effect on the growth of the algae, which can grow

by drawing nutrients directly form their feed stock.

µ(Q) = µmaxµ(Q) = µmax 1− q0
Q

(2.15)

where µmax is the hypothetical growth rate obtained for an infinite quota and q0 is the

minimum internal quota allowing growth.

However, Droop model does not take into account the effect of light on the growth.

In our implementation, light effect has been modeled with an Haldane inhibition. So it is

added the multiplicative factor of light influence and the full specific growth rate becomes:

µ(Q, I) = µmaxµ(Q)µ(I) = µmax 1− q0
Q

 
I

KsI + I + I2

KiI

!
(2.16)

Uptake rate

The uptake rate is modeled with a saturation Monod curve, with substrate as the sat-

urating factor. The intuition is that if more nutrients are present, the microalgae can
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uptake them until a certain point where more nutrients can not be absorbed more. Other

models have been propose, like Hill allosteric regulation coefficient or model accounting

for maximum storage of the cell, but Akaike and Bayesian information criteria are able

to show little difference between the models [34], so in this case, the simple one is always

preferred.

ρ(S) = ρmax
S

(KS + S)
(2.17)

The parameters ρmax and KS represent respectively the maximum uptake rate and

the half-saturation constant for the substrate.

2.4 Lipid accounting model

Microalgae are organisms that can store lipids inside the cell in condition of nutrients

deficiency and environmental stresses. These lipids are a valuable product of the harvest

because it is obtained biodiesel after refinery. So when it comes to maximize productivity,

the aim is to harvest as much as biomass possible while you try to achieve high amount

of lipids. Thus, another model is presented from the paper of De la Hoz Siegler et al, and

Yoo et al [35], [36] derived from mass balance equations, so the mathematical description

is the same as eq.(2.6) and eq.(2.9) except there are two input feeds (one for glycine and

one for glucose) and three compartments: the active biomass, the nitrogen quota and the

lipid quota. 

Ẋ = µ(Q,S2)X −XD

Q̇ = ρ(S1)X − 1
YXQ

µ(Q,S2)X −QD

L̇ = π(L, S2)X − 1
YXL

µ(Q,S2)X − LD

Ṡ1 = −ρ(S1)X + S1,in
F1,in

V
− S1D

Ṡ2 = − 1
YXS

µ(Q,S2)X − kmX + S2,in
F2,in

V
− S2D

V̇ = V D − Fout = F1,in + F2,in − Fout

(2.18)

This model consists of six states [X,Q,L, S1, S2, V ]′ and summarizes these features: cells

are composed of three main compartments: metabolically active biomass X [g/L], lipid

body L [g/L], nitrogen pool Q [g/L]; nitrogen source S1 [g/L] (glycine) is inserted through

the nitrogen feed flow rate F1,in [mL/h] and is taken up into the nitrogen pool and later

converted, at a constant yield YXQ, into active biomass; carbon source is inserted through
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the carbon feed flow rate F2,in [mL/h] and is taken up by the cells and directly converted

either into active biomass or oil, at constant yields YXS or YLS respectively; oil stored in

the lipid bodies can be used to support growth at a constant yield YXL; glucose S2 [g/L]

is used for maintenance of active biomass; specific growth rate depends only by glucose

and nitrogen pool; uptake rate is function of glycine, and lipid production rate is function

of L and glucose. It is useful to represent also the total biomass given by the sum of the

three compartments:

Z = X +Q+ L

2.4.1 Metabolic rates in lipid model

Specific growth rate

In this model, the growth is influenced by four distinct factor: intracellular nitrogen Q,

lipid concentration L, glucose S2 (as limiting/saturating factor), light intensity I

µ = µmax 1− q0
Q/Z

1− l0
L/Z

S2

KS2 + S2

I

KI + I
(2.19)

where µmax [1/L] is the maximum growth rate q0 is the minimum nitrogen quota for

supporting growth, l0 is the minimum lipid quota for supporting growth, KS2 [g/L] is

the half saturation constant of glucose for growth, KI [µmol/m2s] is the half saturation

constant of light for growth.

Uptake rate

As mention in the Droop model, the nitrogen available affect directly the uptake of glycine

substrate. In this particular model, there are also bounds for a minimum and maximum

internal quota outside which the uptake stops:

ρ = ρmax
S1

S1 +KS1

qm −Q/Z

qm − q0
(2.20)

where ρmax [1/h] is the maximum uptake rate, qm is the maximum quota of nitrogen above

which uptake rate stops, KS1 [g/L] is the half saturation constant of glycine for uptake.

Lipid production rate

The lipid production rate is assumed to be affected by the intracellular nitrogen conditions

as lipid production increases in nitrogen-deficiency conditions and also assumed to be

affected by extracellular carbon concentration.
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π = πmax
S2

S2 +Kπ

1− Q

Z

lm − L/Z

lm
(2.21)

where πmax [1/h] is the maximum lipid production rate, Kπ [g/L] is the half saturation

constant for oil production, lm is the maximum quota of lipid above which lipid production

stops.
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Computational model

implementation

The next step after defining the model, is to evaluate the process dynamics through a

development environment that can run the computation of the differential equations and

give us the simulation in time of the growth of the microalgae. Matlab software is the one

most suitable software for this purpose, since it can be used to utilize functions, generate

plots, and perform simulation through the integrated software Simulink.

3.1 Model implementation

In this section it is presented all the model information necessary for the transposition

in the virtual environment, it is provided the model information, parameters, constraints

and equilibrium points that need to be used for the simulation.

3.1.1 Model info

This work is based on the Droop model introduced in Section 2.3 through a state-

space representation, with a specific growth rate and uptake rate functions define in

eqs.(2.16),(2.17). A state-space representation is a mathematical model of a physical sys-

tem as set of input, output and state variables related by differential equations. State

variables are variables whose values change over time based on the values they hold at

any given time and the values of input variables imposed externally. The values of output

variables are determined by the values of state variables. The advantage is that all the

information of the past history of the system is condensed in the state space at the present

time. A continuous stationary harvest mode is used so it is filled in as much volume as it

27
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is removed and the total volume remains constant. From eq.(2.14):

ẋ = f(x(t), u(t))

y(t) = h(x(t), u(t))
=⇒



Ẋ = µ(Q, I)X −XD

Q̇ = ρ(S)− µ(Q, I)Q

Ṡ = −ρ(S)X +D(Sin − S)

V̇ = DV − Fout = 0

y = X

(3.1)

This system has three states [X,Q, S]′ (V not included in the state because it does not

change), the dilution rate D [1/d] as the single input and the biomass concentration

(biovolume) X [µm3/L] as the single measured output expressed in biovolume on liters.

3.1.2 Model parameters

The difficulty in implementing a mathematical model, developed theoretically, is that not

all system parameters, appearing in the model equations, are known a priori. Experiments

with the real-world system can be used to identify unknown parameter values. In theory,

this may be accomplished by evaluating data measured at the system’s input and output

using parameter-identification methods. This is a simulation thesis and real time data

and measurements are not accessible, so the parameter values are based on the paper of

Benattia et. al [37] and are reported on the following table.

Parameter Description Value Unit

µmax Maximum specific growth rate 2 1/d

q0 Minimum cell quota allowing growth 1.8 µmol/µm3

KsI Light saturation constant 150 µE m−2 s−1

KiI Light inhibition constant 2000 µE m−2 s−1

Sin Substrate concentration in inlet feed 100 µmol/L

ρmax Maximum uptake rate 9.3 µmol/µm3d

KS Half saturation constant of substrate 0.105 µmol/L

Table 3.1: Droop model parameters
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3.1.3 Constraints

X,S are mass concentrations and their value can not be below zero. Similarly, dilution

rate is expressed as the ratio between input flow and volume, so it can not go below zero.

Furthermore the concentration of nutrients inside the tank may not exceed the external

concentration supply. Minimal and maximal internal quota are derived directly from the

model [38]: 

X ≥ 0

q0 ≤ Q ≤ ρmax

µmaxµI

+ q0

0 ≤ S ≤ Sin

D ≥ 0

(3.2)

where µI = µ(I)

It should be noticed that these constraints are automatically enforced by the model,

except for the input constraint. Therefore, the output of the controller is saturated

limiting the input value between 0 (we can not put a negative volume flux) and the

double of input reference.

3.1.4 Equilibrium point

The equilibrium trajectories are calculated for equilibrium at an operating point such that

Xr = 25µm3/L [39]. The equilibrium point for this equilibrium value are calculated when

the dynamics of the system do not change i.e when the derivatives are zero:

Dr = µmaxµI(1−
q0
Qr

)

Qr =
µmaxµI(Sin +KS) + (ρmax + µmaxµIq0)Xr −

√
∆

2µmaxµIXr

Sr =
µ(Qr, Ir)KsQr)

ρmax − µ(Qr, Ir)Qr

Ir = Iopt

∆ = aX2
r + bXr + c

a = (ρmax + µmaxµIq0)
2

b = 2µmaxµI [(KS − Sin)(ρmax + µmaxµIq0)− 2µmaxµIq0KS]

c = µ2
maxµ

2
I(Sin +KS)

2

(3.3)

In table 3.2 are shown the values of the working point.
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Reference Description Value Unit

Dr Dilution rate 0.711 1/d

Xr Biomass concentration 25 µm3/L

Qr Nitrogen quota 3.998 µmol/µm3

Sr Substrate concentration 0.046 µmol/L

Ir Light intensity 547 µE m−2 s−1

Table 3.2: Operating point

3.1.5 S-function

An S-function is a computer language description of a Simulink block written in MATLAB,

C, C++, or Fortran. C, C++, and Fortran S-functions are compiled as MEX files using the

mex utility. S-functions follow a general form and can accommodate continuous, discrete,

and hybrid systems. By following a set of simple rules, one can implement an algorithm

in an S-function and use the S-Function block to add it to a Simulink model. S-functions

define how a block works during different parts of simulation, such as initialization, update,

derivatives, outputs and termination. In every step of a simulation, a method is invoked

by the simulation engine to fulfill a specific task. S-function basics require fundamental

knowledge of mathematical relationships between the block inputs, states, and outputs.

Basically, we use a s-function to simulate the “true” plant, calculating at every sample

time what is the output given a certain input. The states update is defined by continuous

derivatives, but the input and output are sampled, giving us access to the true system

output only at the time we sample. In addition to the system input, the s-function wants

additional settings all gathered in a matlab structure called DroopData which has model

parameters, initial conditions, reference values, input constraints, sampling time. In this

case, the s-function takes the dilution rate as input, and light disturbance as second input,

while in output it gives the states at the next simulation time. However, only the biomass

concentration is the measured output, so we exclude the direct knowledge of the substrate

concentration and nitrogen quota through a gain that selects only the first state. Simulink

blocks and scheme are shown in Appendix A.
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3.2 Linearization

Linear models frequently arise as descriptions of small perturbations away from a nominal

solution of the system. The urge to linearize a model comes because linear system are

easier to study and analyze, computation is also faster, and it is more practical to build

a controller. Now let the control be perturbed from their nominal values to u(t) =

ur(t) + δu(t) and let the state trajectory accordingly be perturbed to x(t) = xr(t) + δx(t)

where the subscript stands for reference. Performing a Taylor series expansion to first-

order terms, we can write the Droop model in a linear state space representation:δẋ = Aδx+Bδu

δy = Cδx+Dδu
(3.4)

with

A =



∂Ẋ

∂X

∂Ẋ

∂Q

∂Ẋ

∂S

∂Q̇

∂X

∂Q̇

∂Q

∂Q̇

∂S

∂Ṡ

∂X

∂Ṡ

∂Q

∂Ṡ

∂S


x = xr

u = ur

B =



∂Ẋ

∂D

∂Ẋ

∂I

∂Q̇

∂D

∂Q̇

∂I

∂Ṡ

∂D

∂Ṡ

∂I

 x = xr

u = ur

I = Ir

C = [1 0 0] D = [0 0]

(3.5)

In more details, matrix A:

A =



µ(Qr, Ir)−Dr
q0µmaxµIXr

Q2
r

0

0 −µmaxµI
ρmaxKS

(Sr +KS)2

− ρmaxSr

Sr +KS

0 −Dr −Xr
ρmaxKS

(Sr +KS)2


x = xr

u = ur

(3.6)

and B:
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B =



−Xr Xrµmax(1−
q0
Qr

)
(KsI − I2r /KiI)

(Ir +KsI + I2r /KiI)2

0 −Qrµmax(1−
q0
Qr

)
(KsI − I2r /KiI)

(Ir +KsI + I2r /KiI)2

Sin − Sr 0

 x = xr

u = ur

I = Ir

(3.7)

Figure 3.1: Output from the true system and the linearized model

It can be seen in Figure 3.1 that the linearized model describes well the dynamics of

the nonlinear model even far from the equilibrium point with a maximum error between

the two outputs of approximately 5%, but one of the possibilities to improve further is to

make the linearization making the derivative directly by µI under the strong assumption

to know how exactly the light influences growth every time as well, that is perfectly know
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parameter values in the function µ(I). This would return another matrix B as follow:

B =



−Xr Xrµmax (1− q0/Qr)

0 −Qrµmax (1− q0/Qr)

Sin − Sr 0

 x = xr

u = ur

µ(I) = µ(Ir)

(3.8)

We notice, however, that the influence of light effect compared to the dilution rate

is much smaller, so we decided to keep the first approximation to not complicate the

assumptions and be content of the linearization error. So now it is possible to write the

derivatives for small perturbation from the equilibrium defined in eq.(3.3) in a linear state

space representation:


δẋ(t) =


0 3.64 0

0 −1.29 42.73

−2.84 0 −1068.94

 δx(t) +


−25 1.52e− 05

0 −2.43e− 06

99.95 0

 δu(t)

δy(t) = [1 0 0]δx(t) + [0 0]δu(t)

(3.9)

3.3 Discretization

Physical real world systems are naturally modelled as continuous-time, but when we

approach them through sampling, we need to threat a discrete-time model, in order to

design a controller. In matlab we can discretize a state space system with the c2d()

command which receives as input, the ss object and a sampling time (Ts = 0.01 days ∼
15min in our case). The default continuous-discrete conversion methods is the zero order

hold which provides an exact match between the continuous and discrete time systems in

the time domain for staircase inputs. The new linear discrete-time state space system

is:
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
δx(k + 1) =


0.99 3.64 0.03

−0.02 0.71 0.03

−0.003 −0.002 −8.17e− 05

 δx(k) +


−5.82 3.53e− 06

0.93 −5.64e− 07

0.11 −9.35e− 09

 δu(k)

δy(k) = [1 0 0]δx(k) + [0 0]δu(k)

(3.10)
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Controllers

Maintaining an optimum operating point is crucial to maximize the productivity in cul-

tivation of microalgae. The need to follow suitable harvest profiles shall be satisfied in

order to maintain a high level yields while the control also has to reject the many sources

of disturbance that can cause a reduction of the biomass density and compromise the

output. Hence, the control problem is formulated so as to follow a certain reference tra-

jectory for biomass that changes over time near the operating region and to reject the

disturbance represented by light variation from the optimal value. To pursue this purpose,

a generic closed-loop control scheme is adopted: the output is measured and its value is

used by the controller to compute the next input that will feed the plant. The trajectory

reference start at the equilibrium for the biomass concentration, then, after 2 days, drops

to 23 [µm3/L] to jumps at 28 [µm3/L] at 6.5 days. Figure 4.1 shows the reference profile.

Figure 4.1: Trajectory of reference

35
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Two different controllers were considered in this work: a control through a propor-

tional, integral, derivative action (PID); a control through a model predictive control

(MPC).

Plant

The true system in the simulation is represented by the s-function and it has been also

shown that the non-linear state space system in eq.(3.1) can be linearized around the

equilibrium point. The output measures are took from the true system, while the linear-

discrete model is used from the MPC to do the calculations and find the optimal discrete

input, which, once is made continuous, is used to feed the true system given by the

s-function. Both PID and MPC simulations have a sampling time Ts = 0.01 d.

Disturbance

The disturbance in the system is represented by the light intensity that hits the photo-

bioreactor. We suppose a constant value Iopt = 547µEm−2 s−1 at the equilibrium always

available, while a sine fluctuation of amplitude Iopt/4 and of one period per day is added

as disturbance from the working point. Figure 4.2 shows the light intensity measured over

the course of a day.

Figure 4.2: Light intensity with disturbance and measured disturbance over 1 day
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4.1 PID control

The PID is a feedback-based control loop commonly used in industrial control systems

and other applications that need constantly modulated control. It calculates an error

value as the difference between a desired reference point and a measured process output

and applies a correction based on proportional, integral, and derivative terms. Evaluating

the performance of PID control method is important to be able to compare the results

against the MPC. Due to the fact that we are operating at a certain region, we must

inject the constant reference input Dr to the system. The error term, defined by the

difference from the reference value and the output measure, is sent directly to the PID.

Also a negative gain is inserted after the PID to change sign on the control because we

want to manage the two cases:

1. e(k) = r(k)−y(k) ≤ 0 i.e. when the output value is above the reference. In this case

the error is negative but we want to increment the dilution rate to lower biomass

concentration

2. e(k) = r(k) − y(k) ≥ 0 i.e. when the output value is under the reference. In this

case the error is positive but we want to decrement the dilution rate to let biomass

grow

where e(k) is the error, r(k) is the reference and y(k) is the output at time k. This

explains why we need to insert the negative gain at the end of PID controller.

Because the reference trajectories is a piece-wise constant function (see Figure 4.1),

the derivative term of the PID would have some jumps and would saturate the input. To

overcome this, for the derivative part, the reference was neglected and only the output

is taken in consideration. To be able to tune the controller as we want, we do not use

the matlab PID block (that uses transfer function) already available on simulink but we

implement it manually. We need also to set the input initial value for the derivative block

to −KdXr

Ts
(it is multiplied by gain Kd because the block is after the derivative gain).

4.1.1 Gain tuning

The three degrees of freedom of the controller are the proportional gain Kp, the time

constant of the integral action Ti, and the time constant of the derivative action Td. The

effect of the integral and derivative action are briefly recalled: An integral term increases

action in relation not only to the error but also the time for which it has persisted. So,

if the applied force is not enough to bring the error to zero, this force will be increased

as time goes by. A derivative term does not consider the magnitude of the error, but

the rate of change of error, trying to bring this rate to zero. It aims at flattening the
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error trajectory into a horizontal line, damping the force applied, and so reduces overshoot.

Knowing the effect of integral and derivative action on the control, Ti and Td are manually

tuned via trial and error verifying that the saturation of input is avoided and seeking a

almost zero error at steady state while avoiding overshoot. The values found are Ti = 2

and Td = 0.01. For the tuning of the proportional gain, a cost function is used, define as

the integral absolute error through the entire simulation:

Je =
NX
k=1

|r(k)− y(k)|

The goal is to find the proportional gain Kp that minimizes the cost function, meaning

that the output is close to reference as long as possible. Different simulations are run

with different Kp ranging from 0.01 to 1 and the cost function is calculated for every

simulation. From table 4.1 it is possible to see that the optimal gain should be Kp = 0.5,

however, analyzing the plots of inputs and outputs at different values of Kp shown in

Figure 4.3, it can be seen that for values of Kp greater than 0.1 the proportional part

makes the input to saturate, while the output even overshoots. It is preferable to avoid

saturation and overshooting, thus, Kp = 0.1 has been chosen for the proportional gain

as trade-off between proper control aggressiveness and enough distance from saturation

limits.

Kp Je

0.01 1550

0.05 606.79

0.1 316.41

0.3 125.39

0.5 122.43

1 134.69

Table 4.1: Proportional gain and relative cost function values
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(a) Inputs (b) Outputs

Figure 4.3: Effect of different gains Kp on manipulated variable and on output

4.2 Model predictive control

Model predictive control is an advanced approach of process control. Model predictive

controllers rely on dynamic process models to anticipate future events and can take control

actions accordingly. PID controllers do not have this predictive ability. Therefore, at each

control step, the MPC controller:

1. Explores all possible sequences1 of N control-actions, considering their effect on the

system in the next PH (Prediction Horizon) steps. Then it picks-up the “optimal”

sequence

2. Applies only the first control-action of the “optimal” sequence of N control actions

and wait for a new measurement

3. When a new measurement comes in, the controller updates/re-computes the optimal

sequence of control actions for the next PH steps

4. Then it will apply the first move of the optimal sequence and so on

4.2.1 Cost function

The goal of the MPC control, is to find the optimal control action sequence that minimize

a predefined cost function J . There are a lot of different optimization problem, some very

hard to solve. In this thesis, the aim is to follow a reference trajectory without departing

too much from the suggested input. Assuming a quadratic weights of the difference

1compatible within constraints
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between the values, J takes exactly the form of a quadratic cost for reference tracking :

J =
PHX
k=1

(ŷ(kT )−y0(kT ))
TQ(ŷ(kT )−y0(kT ))+(u(kT )−u0(kT ))

TR(u(kT )−u0(kT )) (4.1)

where PH is the prediction horizon, y0(kT ) is the reference signal we want to track at

time kT , ŷ(kT ) is the output value, u0(kT ) is the reference input value equal to Dr, and

u(kT ) is the input feed at time kT , Q > 0, R > 0 are positive definite matrices. Finding

the optimal sequence of control action means minimize this cost function, that provides

a trade-off between the predicted control error and the cost of a control action deviation

from the suggested input, limiting controller aggressiveness through the weights Q and R.

The weights Q and R are set after trial and error, keeping in mind the different orders of

magnitude. We find a good balance of following reference, without saturating the input,

for Q and R equal to 0.015 and 1 respectively.

4.2.2 Input constraints

Input constraints can be represented as a linear inequality. This arrangement is crucial

when it comes to solve a quadratic programming problem like the one in our case.
−1

1

u(kT ) ≤


−umin

umax

 (4.2)

where umin = 0
1

d
and umax = 1.42

1

d

4.2.3 Perturbation domain

These constraints work in the original system. The process of linearization bind us to

work around the equilibrium point where the linearization takes place, so we now have

to translate the problem in the perturbation domain instead of the full system. This

brings the need to define the reference values and constraints in the new domain. All the

new reference values are now set to 0, because we do not want to move away from the

equilibrium point. The input constraints are calculated by subtracting the old constraints
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with the reference value Dr and they become:
−1

1

 δu(kT ) ≤


0.71

0.71

 (4.3)

4.3 Kalman filtering

In control theory, a state observer or state estimator is a system that provides an estimate

of the internal state of a given real system, from measurements of the input and output

of the real system. The problem of find the estimate for the states occurs when not

all these are directly measurable from sensors. To know at every sample time which is

the state, observers are used that can give the estimation of all the states utilizing the

information that measures can provide. The gold standard for state estimation it is the

so called Kalman filter, which is the statistically optimal observer given the model error

and measurement noise properties. It is assumed a gaussian random process for noise

with zero mean and a given variance of W = 10−4 for model error and a variance of

V = 10−2 for measurements noise and uncorrelation between each other. The Kalman

filter is implemented through the simulink block which takes as inputs the input u, the

disturbance d and the measurement affected by noise y and returns the estimates of the

state.
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Chapter 5

Results and discussion

In this chapter it is shown the result of the simulation between the two control strategies.

The simulation scheme is structured in this way: the real photobioreactor is represented

by a set of nonlinear equations, and the dynamics are processed by the s-function. The

measurements obtained are used for feedback, influencing the computation of the input

of the two controllers, thus closing the feedback loop. The MPC also uses the linearized

version at the equilibrium point of the Droop model and calculates for that model the

optimal sequence of input for each new sample. Since the model has been linearized, the

MPC is evaluating and calculating the optimal input sequence in the perturbed system.

Nominal values are added when returning to the true unperturbed system. To update

the state, Kalman estimator is placed, which uses the linear model and measurements to

obtain the best estimate of the state. The model parameters do not vary over time, the

reference sequence is a step function, and the disturbance is represented by light intensity

and it is a sine wave that sums to the optimal reference value. The initial conditions are

the equilibrium values and then control applies to track the reference. The duration of

the experiment is set to 10 days, measurement are available every 15 minutes and are

affected by white noise of zero mean and variance equal to 0.01.

5.1 PID performance

PID control is used as a landmark to evaluate controllers performance. In fact, PID

control is well suited for reference tracking in systems that receive a single input and

provide a single output. The PID controller provides good performance and it allows the

output to reach steady state after approximately two days with almost a zero steady state

error. The control input never saturates but it can be seen that is a lot noisy, making the

control to changes very fast between one sample to the next one. That is because the noise

on the measurements makes the signal to rapidly vary, and that makes the derivative part

43
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of PID to amplify noise as it is shown in Figure 5.2. To remedy the problem, it should be

inserted before the derivative block a low-pass filter capable of eliminating noise at high

frequencies.

(a) Input from PID control (b) Output from PID control

Figure 5.1: Input and output response from simulation with PID

Figure 5.2: Contribution of proportional, integral, derivative parts

5.2 MPC performance

MPC plots show good performance for the simulation with the MPC controller: fast

tracking for reference without any overshoot and the control input never saturate through
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the entire simulation. However, it can be seen a small error at steady state. Probably,

the trade off between the amount of dilution rate to be applied and the reference to be

followed makes the system settle below the target. Increasing the weight for reference

tracking within the cost function, i.e. increasing the value of Q, could achieve zero error

but with the risk of saturating the input. Another possible solution could be to implement

an integral action that would bring the error to zero in steady state.

(a) Input from MPC control (b) Output from MPC control

Figure 5.3: Input and output response from simulation with MPC

MPC is a very advanced tool. It can handle multiple inputs and multiple outputs,

control even nonlinear systems and work on certain input and output constraints. In

addition, the cost function is fully customizable according to the type of the problem.

One can give heavier penalties to input action, to output and to input changes, penalize

just one, two or all. One can also use cost functions for regulation to 0 or for tracking

a reference, or for the objective of the maximization or minimization of one or more

variables. This customization allows control via MPC to be much more flexible and

address many more complex problems than PID can. However, the popularity of PID lies

in its easy use, and there are plenty of methods that help with weight tuning. The MPC,

in addition, is extremely dependent on the model used. Working with biological systems,

many variables come into play, and it is not trivial to understand how these variables affect

each other, and which of these stand out for importance and for effects on the system.

This thesis aims to solve a simple problem: tracking of a reference in a single-input single-

output system. This is the kind of problem very suitable for a PID. The main objective,

however, is to implement an MPC knowing that in the future it will be increased in

complexity, adding more inputs and more sensors and further improving the mathematical

model, adding for example the lipid component that constitutes the microalgae and their

dynamics, and evaluate other cost functions that takes in consideration the maximization
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of a variable or cost functions that puts constraints in the input variations.

5.3 State estimation

In this simulation, a linear Kalman filter was implemented in order to estimate the state

of the system. The estimate is subsequently sent to the MPC block to update it on the

plant condition. The values of the model error variance and measurement noise variance

are assumed to be known. In order to compare the goodness of the estimate, a version of

the simulation allows to derive the true values of the three states, which are paired with

their own estimates provided by the Kalman filter, as shown in Figure 5.4. The plots show

Figure 5.4: States of plant and their estimate through Kalman filter

that the estimator was able to correctly calculate the state even with noisy measurements.

However, a bias error can be seen for state 2 and state 3 due to the discrepancy between

the linear model used for Kalman filtering and the nonlinear model represented by the

photobioreactor.

5.4 Different set-ups

This section aims to demonstrate the customization of the simulator for different experi-

mental set ups. For example, one can change the duration of the trial, the data sampling

time, the reference trajectory, the available measurements, the constraints or the param-

eters. The simulator is now used for other types of experiments. All of the following plots

are taken from the MPC simulation.

5.4.1 Change of input constraints and output tracking weight Q

For this simulation, tighter input constraint have been chosen: the minimum value that the

dilution rate can take is changed to umin = Dr/2 = 0.36 1
d
and it is changed the maximum
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input value at umax = 1 1
d
. Then, it is tested a more aggressive control increasing the

weight Q to 10 in the cost function. In Figure 5.5 it is showed the result of the simulation.

(a) Input (b) Output

Figure 5.5: Input and output response whit different constraints and weight

5.4.2 Change of reference trajectory

For this simulation, a different reference trajectory is selected.

(a) Input (b) Output

Figure 5.6: Input and output response whit different reference trajectory
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5.4.3 Change of sampling time

For this simulation, the sampling time is Ts = 0.3 d

(a) Input (b) Output

Figure 5.7: Input and output response whit different sampling time



Chapter 6

Conclusions

The cultivation of algae is a very complex operation since their growth is influenced by

many factors for which is difficult to attribute the exact effects that affect the culture and

how these effects act, in a combined way, on the organism. In this thesis a mathematical

model was developed to describe the ability of microalgae to absorb nutrients in the

solution, and to use their energy reserves to grow and duplicate. In particular, it was

taken into account the inhibitory effect of light, which at high intensity, can damage

the proper development of algae. Then, a simulator was built from scratch, it can take

advantage of the knowledge provided by the mathematical model to predict the growth of

microalgae and it can give a prediction of the biomass inside the tank. The concentration

had to follow a specific trend, so it was built a model predictive controller, able to predict

the effects of the input sequence on the system and determine via numerical optimization

the most effective dilution rate sequence to apply. Next to the controller a Kalman

state estimator was placed which is capable, using the linear model and measurements,

to provide state estimation not only of the biomass, but also of the internal nitrogen

quota and nutrient concentration in the photobioreactor. The controller showed good

performance at tracking the reference trajectory, and was able to handle the disturbance

that caused the light to move away from the optimal value. The estimator proved useful

in calculating the state estimate, providing good results with noisy measurements and

model uncertainty. An additional experiment was done with a PID controller in order

to have a reference of the controller qualities. The PID and MPC showed comparable

results to each other, which therefore suggests that good efficiency has been achieved in

handling the control problem. MPC is a very advanced tool, and its advantages over

PID are not appreciated in this thesis. By adding complexity to the model, putting more

inputs and more outputs to the system, applying more constraints, and using a different

cost function, the benefits of MPC over traditional PID can be more easily highlighted.

The simulator is still in an embryonic stage, further developments are needed to make the

49
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tool more effective and reliable but it stands as a solid starting point that can already be

applied and associated to small experiments with laboratory bioreactors.



Appendix A

Simulink schemes

Figure A.1: Plant via s-function block

Figure A.2: PID block

51
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Figure A.3: Simulation with PID controller
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Figure A.4: Simulation with MPC controller
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Appendix B

Code listing

Listing B.1: s-function of the Droop model

1 f unc t i on [ sys , x0 , s t r , t s ] = Droop s funct ion ( t , x , u , f l a g , par )

2

3 % x (1)=X biomass concent ra t i on [ micro mˆ3/L ]

4 % x (2)=Q i n t e r n a l quota [ micro mol/micro mˆ3 ]

5 % x (3)=S subs t r a t e [ concent ra t i on micro mol/L ]

6 switch f l ag ,

7

8 %%%%%%%%%%%%%%%%%%

9 % I n i t i a l i z a t i o n %

10 %%%%%%%%%%%%%%%%%%

11 case 0 ,

12 [ sys , x0 , s t r , t s ]= md l I n i t i a l i z e S i z e s ( par ) ;

13

14 %%%%%%%%%%%%%%%

15 % Der i va t i v e s %

16 %%%%%%%%%%%%%%%

17 case 1 ,

18 sys=mdlDer ivat ives ( t , x , u , par ) ;

19

20 %%%%%%%%%%%

21 % Outputs %

22 %%%%%%%%%%%

23 case 3 ,

24 sys=mdlOutputs ( t , x , u , par ) ;

25

55
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26 case { 2 , 4 , 9 } ,
27 sys = [ ] ;

28

29 %%%%%%%%%%%%%%%%%%%%

30 % Unexpected f l a g s %

31 %%%%%%%%%%%%%%%%%%%%

32 otherw i s e

33 DAStudio . e r r o r ( ’ Simulink : b locks : unhandledFlag ’ , num2str ( f l a g

) ) ;

34

35 end

36

37 % end sfuntmpl

38

39 %

40 %

=============================================================================

41 % md l I n i t i a l i z e S i z e s

42 % Return the s i z e s , i n i t i a l cond i t i ons , and sample t imes f o r the

S−f unc t i on .

43 %

=============================================================================

44 %

45 f unc t i on [ sys , x0 , s t r , t s ]= md l I n i t i a l i z e S i z e s ( par )

46

47 s i z e s = s ims i z e s ;

48

49 s i z e s . NumContStates = 3 ;

50 s i z e s . NumDiscStates = 0 ;

51 s i z e s . NumOutputs = 3 ;

52 s i z e s . NumInputs = 2 ;

53 s i z e s . DirFeedthrough = 0 ;

54 s i z e s . NumSampleTimes = 1 ; % at l e a s t one sample time i s needed

55

56 sys = s ims i z e s ( s i z e s ) ;



57

57

58 %

59 % i n i t i a l i z e the i n i t i a l c ond i t i on s

60 %

61 x0 = par . x 0 ;

62

63 %

64 % s t r i s always an empty matrix

65 %

66 s t r = [ ] ;

67

68 %

69 % i n i t i a l i z e the array o f sample t imes

70 %

71 t s = [−1 0 ] ; %i nh e r i t e d sample time

72

73 % end md l I n i t i a l i z e S i z e s

74

75 %

76 %

=============================================================================

77 % mdlDer ivat ives

78 % Return the d e r i v a t i v e s f o r the cont inuous s t a t e s .

79 %

=============================================================================

80 %

81 f unc t i on sys=mdlDer ivat ives ( t , x , u , par )

82 muI=(u (2 ) /( par . KsI+u (2)+u (2) ˆ2/ par . KiI ) ) ;

83 mu= par .mumax∗(1−par . q0/x (2 ) ) ∗muI ;

84 ro= par . romax∗( x (3 ) /(x (3 )+par .KS) ) ;

85

86 x1dot= x (1) ∗(mu−u (1) ) ;
87 x2dot= ro−mu∗x (2 ) ;
88 x3dot= −ro ∗x (1 )+u (1) ∗( par . Sin−x (3 ) ) ;

89
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90 sys = [ x1dot x2dot x3dot ] ;

91 % end mdlDer ivat ives

92

93 %

94 %

=============================================================================

95 % mdlOutputs

96 % Return the block outputs .

97 %

=============================================================================

98 %

99 f unc t i on sys=mdlOutputs ( t , x , u , par )

100

101 sys = [ x (1 ) x (2 ) x (3 ) ] ;

102

103 % end mdlOutputs

Listing B.2: function that loads Droop model parameters

1 f unc t i on DroopData=LoadMPCDroop ( )

2

3 %% Droop parameters

4

5 % Simulat ion parameters

6 DroopData . Ts=0.01; %[ d ] d=days

7 DroopData . SimTime=10; %[ d ]

8

9 % System parameters

10 mumax=2; % [1/d ]

11 KsI=150; % [ micro E in s t e in /mˆ2∗ s ]
12 KiI=2000; % [ micro E in s t e i n /mˆ2∗ s ]
13 Iopt =547; % [ micro E in s t e i n /mˆ2∗ s ]
14 romax=9.3; % [ micro mol/L ]

15 q0=1.8 ; % [ micro mol/micro mˆ3 ]

16 KS=0.105; % [ micro mol/L ]

17 Sin=100; % [ micro mol/L ]
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18

19 % Equi l ibr ium point

20 Xr=25; % Benatt ia et a l (2015) IFAC−PapersOnLine

192−197

21 I r=Iopt ;

22 muI=I r /( I r+KsI+( I r ∗ I r /KiI ) ) ;

23 de l t a =((romax+mumax∗muI∗q0 ) ∗Xr−mumax∗muI∗( Sin+KS) )
ˆ2+4∗mumax∗muI∗KS∗romax∗Xr ;

24 Qr=(mumax∗muI∗( Sin+KS)+(romax+mumax∗muI∗q0 ) ∗Xr−s q r t (

d e l t a ) ) /(2∗mumax∗muI∗Xr) ;

25 Dr=mumax∗(1−q0/Qr) ∗muI ;

26 mu=mumax∗(1−q0/Qr) ∗muI ;

27 Sr=((KS∗mu∗Qr) /( romax−mu∗Qr) ) ;

28 ro=romax∗( Sr /( Sr+KS) ) ;
29

30 % Continuos Time State Space Model ( L i n e a r i z a t i o n on

equ i l i b r i um point )

31 Ac=[mu−Dr , q0∗mumax∗muI∗Xr/(Qrˆ2) , 0 ;

32 0 , −mumax∗muI , romax∗KS/(( Sr+KS) ˆ2) ;
33 −romax∗( Sr /( Sr+KS) ) , 0 , −Dr−((Xr∗romax∗KS) /( ( Sr+KS

) ˆ2) ) ] ;

34 dXdI=Xr∗mumax∗(1−q0/Qr) ∗ ( ( KsI−I r ∗ I r /KiI ) / ( ( I r+KsI+I r

∗ I r /KiI ) ˆ2) ) ; %p a r t i a l d e r i v a t i v e o f Xdot r e sp e c t

to I

35 dQdI=−Qr∗mumax∗(1−q0/Qr) ∗ ( ( KsI−I r ∗ I r /KiI ) / ( ( I r+KsI+

I r ∗ I r /KiI ) ˆ2) ) ; %p a r t i a l d e r i v a t i v e o f Qdot

r e sp e c t to I

36 Bc=[−Xr ; 0 ; Sin−Sr ] ;

37 Mc=[dXdI ; dQdI ; 0 ] ;

38 Cc=[1 0 0 ] ;

39 Dc= [0 , 0 ] ;

40

41 % Exact D i s c r e t i z a t i o n us ing Matlab Toolbox

42 s y s c=s s (Ac , [ Bc ,Mc] , Cc ,Dc) ;

43 sy s d=c2d ( sys c , DroopData . Ts ) ;

44

45 % System
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46 DroopData . System .A=sys d .A;

47 DroopData . System .B=sys d .B( : , 1 ) ;

48 DroopData . System .M=sys d .B( : , 2 ) ;

49 DroopData . System .C=sys d .C;

50 DroopData . System .D=sys d .D;

51 DroopData . x 0=[Xr Qr Sr ] ;

52 DroopData . SystemModel=DroopData . System ;

53

54 DroopData .mumax=mumax;

55 DroopData .muI=muI ;

56 DroopData . KsI=KsI ;

57 DroopData . KiI=KiI ;

58 DroopData .KS=KS;

59 DroopData . romax=romax ;

60 DroopData . q0=q0 ;

61 DroopData . Sin=Sin ;

62 DroopData . Iopt=Iopt ;

63 DroopData . Xr=Xr ;

64 DroopData .Qr=Qr ;

65 DroopData . Sr=Sr ;

66 DroopData . I r=I r ;

67 DroopData . Dr=Dr ;

68 DroopData . u max=2∗Dr ;

69 DroopData . u min=0;

70 DroopData . delta u max=DroopData . u max−Dr ;

71 DroopData . de l ta u min=DroopData . u min−Dr ;

72 DroopData . s y s c=sy s c ;

73 DroopData . sys d=sys d ;

Listing B.3: main file for simulation run

1 c l c

2 c l o s e a l l

3 c l e a r a l l

4

5 addpath ( ’ Sources ’ )

6

7 DroopData=LoadDroop ( ) ;
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8

9 %% PID Cont r o l l e r Parameters

10 PID cont ro l l e r pa ramete r s . Ti=2;

11 PID cont ro l l e r pa ramete r s .Td=0.01;

12 PID cont ro l l e r pa ramete r s .Kp=0.1;

13 PID cont ro l l e r pa ramete r s . Ki=PID cont ro l l e r pa ramete r s .

Kp/ PID cont ro l l e r pa ramete r s . Ti ;

14 PID cont ro l l e r pa ramete r s .Kd=PID cont ro l l e r pa ramete r s .

Kp∗PID cont ro l l e r pa ramete r s .Td ;

15 PID cont ro l l e r pa ramete r s . Ts=DroopData . Ts ;

16 PID cont ro l l e r pa ramete r s . Ie max=0.5;

17 PID cont ro l l e r pa ramete r s . Ie min=−0.5;

18

19 %% MPC Cont r o l l e r Parameters

20 % Pred i c t i on hor i zon

21 PH=100; %[ s t ep s ]

22

23 % Cost Weights

24 QMPC=0.015;

25 RMPC=1;

26

27 % Refe rences input

28 u 0=DroopData . Dr ;

29 de l t a u 0 =0;

30

31 % Const ra in t s

32 F=[−1

33 1 ] ;

34

35 f=[−DroopData . de l ta u min

36 DroopData . delta u max

37 ] ;

38 % Condensing

39 condensedMatr ices=build MPC matrices (DroopData .

SystemModel ,R MPC,QMPC,F, f ,PH) ;

40

41 % System Dimension
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42 n=s i z e (DroopData . SystemModel .A, 1 ) ;

43 p=s i z e (DroopData . SystemModel .C, 1 ) ;

44 m input=s i z e (DroopData . SystemModel .B, 2 ) ;

45 m dist=s i z e (DroopData . SystemModel .M, 2 ) ;

46

47 %% Model e r r o r and measurement no i s e

48 Q model=10ˆ−4∗eye ( s i z e (DroopData . SystemModel .A, 1 ) ) ;

49 R model=10ˆ−2∗eye ( s i z e (DroopData . SystemModel .C, 1 ) ) ;

50 S model=ze ro s ( s i z e (DroopData . SystemModel .A, 1 ) , s i z e (

DroopData . SystemModel .C, 1 ) ) ;

51 %% Simulat ing

52 sim ( ’ Fu l l s imu l a t i on . s l x ’ )

53

54 %% Plot s

55 f i g u r e

56

57 % PID

58 subplot ( 2 , 2 , 1 )

59 s t a i r s ( S imulat ionVar iab les PID . time , S imulat ionVar iab les PID .

s i g n a l s . va lue s ( : , 1 ) , ’−−k ’ )

60 hold on

61 s t a i r s ( SystemOutput PID . time , SystemOutput PID . s i g n a l s . va lue s )

62 hold o f f

63 ylim ( [ 0 . 9 ∗min( Simulat ionVar iab les PID . s i g n a l s . va lue s ( : , 1 ) ) 1 .1∗
max( Simulat ionVar iab les PID . s i g n a l s . va lue s ( : , 1 ) ) ] )

64 y l ab e l ( ’ Biomass concent ra t i on [mˆ3/L ] ’ )

65 x l ab e l ( ’ time [ d ] ’ )

66 l egend ( ’ r e f e r e n c e ’ , ’ output ’ )

67 t i t l e ( ’PID ’ )

68

69 subplot ( 2 , 2 , 3 )

70 s t a i r s ( ControlAction PID . time , ControlAction PID . s i g n a l s . va lue s

( : , 1 ) )

71 hold on

72 s t a i r s ( [ 0 DroopData . SimTime ] , DroopData . u max ∗ [ 1 1 ] , ’−−k ’ )

73 hold o f f

74 ylim ( [ DroopData . u min 1 .3∗DroopData . u max ] )
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75 y l ab e l ( ’ D i lu t i on ra t e [ 1/ d ] ’ )

76 x l ab e l ( ’ time [ d ] ’ )

77 l egend ( ’ c on t r o l a c t i on ’ , ’max con t r o l ’ )

78

79 % Plot o f P, I and D con t r i bu t i on s

80 subplot ( 3 , 1 , 3 )

81 s t a i r s ( ControlComponents PID . time , ControlComponents PID . s i g n a l s .

va lue s )

82 hold on

83 s t a i r s ( [ 0 DroopData . SimTime ] , DroopData . u max ∗ [ 1 1 ] , ’−−k ’ )

84 hold o f f

85 y l ab e l ( ’ c on t r o l a c t i on ’ )

86 x l ab e l ( ’ time [ d ] ’ )

87 l egend ( ’P ’ , ’ I ’ , ’D ’ )

88

89 % MPC

90 subplot ( 2 , 2 , 2 )

91 s t a i r s ( SimulationVariables myMPC . time , SimulationVariables myMPC .

s i g n a l s . va lue s ( : , 1 ) , ’−−k ’ )

92 hold on

93 s t a i r s ( SimulationVariables myMPC . time , SimulationVariables myMPC .

s i g n a l s . va lue s ( : , 2 ) )

94 hold o f f

95 ylim ( [ 0 . 9 ∗min( SimulationVariables myMPC . s i g n a l s . va lue s ( : , 1 ) )

1 .1∗max( SimulationVariables myMPC . s i g n a l s . va lue s ( : , 1 ) ) ] )

96 y l ab e l ( ’ Biomass concent ra t i on [mˆ3/L ] ’ )

97 x l ab e l ( ’ time [ d ] ’ )

98 l egend ( ’ r e f e r e n c e ’ , ’ output ’ )

99 t i t l e ( ’MPC’ )

100

101 subplot ( 2 , 2 , 4 )

102 s t a i r s (ControlAction myMPC . time , ControlAction myMPC . s i g n a l s .

va lue s ( : , 1 ) )

103 hold on

104 s t a i r s ( [ 0 DroopData . SimTime ] , DroopData . u max∗ ones ∗ [ 1 1 ] , ’−−k ’ )

105 hold o f f

106 ylim ( [ DroopData . u min 1 .3∗DroopData . u max ] )
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107 y l ab e l ( ’ D i lu t i on ra t e [ 1/ d ] ’ )

108 x l ab e l ( ’ time [ d ] ’ )

109 l egend ( ’ c on t r o l a c t i on ’ , ’max con t r o l ’ )
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