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ABSTRACT 

Earthquakes are natural phenomena occurring very often all around the world and bringing 

destruction and death. Over the past years, with the help of computers and computational 

methods, several seismic analyses procedures have been developed but, because of their 

diversity, the results could be meaningfully scattered so that various campaigns have been 

launched to uniform and validate them. 

In particular SMART 2013 benchmark consists in  testing on a shaking table a reinforced 

concrete scaled structure and compare the results coming out from the numerical models 

to those experimentally measured. 

In this paper, after the description of the mock-up, the numerical model is given: 3D 

elements are chosen for modelling concrete parts while beams are chosen for steel 

reinforcement bars. The choice of a continuum-damage-based constitutive law  for 

concrete lets obtain a concrete behavior performance close to the real one, including micro 

cracking, internal sliding and other local phenomena, and lets easily identify damage 

localization. For the steel an uniaxial law is computed, without making the computational 

cost augmenting. 

 The seismic inputs are given under the form of imposed displacements at the structure 

bases and they correspond to real earthquake accelerograms, from 0.2g to 1.70g. 

The numerical results are then displayed and compared to the experimental ones and at 

the end, they’re even compared to those coming out from an elastic constitutive law 

model, in order to obtain a strength reduction factor commonly used in simplified seismic 

analyses. 
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1 INTRODUCTION 

Every year more then 400 000 earthquakes can be detected with current instrumentation 

and luckily only 1/5 of them can be felt. But when a strong seismic event occurs, it often 

causes destruction and death, as Haiti 2010 (316000 people killed, 1,3 million displaced, 

97000 houses destroyed), Sumatra 2004 (220000  killed, 17 million displaced) and many 

others (USGS). 

Nowadays seismic rules for buildings design have been introduced and different kind of 

seismic analysis have been developed in order to predict structural behavior of buildings 

and prevent damage, collapse and, the most important, save human lives. 

Because of their quasi-brittle behavior, reinforced concrete buildings require a special 

attention: very little is known about nonlinear range and torsional 3D effects. The aim of 

the several campaigns launched in the past decades was to investigate over non linearity 

and try to validate different ways of structure modeling and analyzing but, as the SMART 

2008 (Seismic design and best-estimate Methods Assessment for Reinforced concrete 

buildings subjected to Torsion and non-linear effects) campaign underlined, the results are 

nowadays very scattered. 

 

1.1 SMART 2008 

In 2007, the CEA (Commissariat à l’Énergie Atomique et aux énergies alternatives) and 

EDF (Électricité de France) launched a blind prediction contest, involving 35 institutions 

from 20 countries all over the world in order to assess capability of RC structures 

exhibiting 3D effects to withstand earthquake load. 

The main objectives of this benchmark were to: 

 assess different conventional design methods of structural dynamic analyses, 

including floor response spectra evaluation; 

 compare best-estimate methods for structural dynamics response and floor 

response spectra evaluation. 

In order to achieve these objectives, an asymmetric 3-storeys RC mock-up was defined, 

representing a half of a nuclear building, and all the geometry and material prescriptions 

were given to the participants. This specimen was then built and tested on a shaking table 

(Azalee) following a list of seismic loads (21 runs) and displacements and damage data 

were recorded. 
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Every participant was supposed to create his own numerical model of the mock-up, opting 

for the program and the finite element type he preferred and send back the outputs 

(displacements) obtained by the chosen analysis type. 

The organizing committee was then charged to compare the experimental data with the 

ones provided by all the participants and a final report was written. 

The conclusions of this blind predicting benchmark were (Lermitte, 2008): 

1. there's a huge variability in participants hypothesis (type of model, material 

properties, damping values, mass modeling, type of analysis...), which leads to very 

scattered results and it underlines the necessity to reconsider something in 

engineers practice; 

2. some guidelines should be given to participants in order to: 

 simplify the type of the model for conventional analyses; 

 use the damping value according to the type of analysis (because of the high 

influence of damping in the structure behavior, research should be 

undergone); 

 choose a right Young modulus and his law of degradation due to damage; 

3. more complete studies investigating the parameters variability influence in 

conventional analyses should be started. 

In 2011 was then launched a new experimental campaign, SMART 2013, with the same 

objectives as the 2008 one, taking account the previous suggestions and conclusions. 

 

1.2 THESIS OVERVIEW 

This paper purpose is to illustrate the choices and procedures made at LMT Cachan, 

taking part at the SMART 2013 project. 

Firstly the SMART 2013 campaign will be illustrated, focusing on requests and objectives 

of the benchmark and the main modelling choices are outlined. 

In the following chapter it will be presented the geometrical model and the detailed Finite 

Elements Model computation, the material laws for steel and concrete will then be 

investigated and a description of the applied time-history algorithm is exposed. 
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After reporting a small chapter about computational problems, the results are conferred 

and conclusions are written. 

 

 

 

 

2 THEORETICAL BACKGROUND 

 

2.1 SMART 2013 

As for the project SMART 2008, the benchmark 2013 aim is to raise knowledge of RC 

buildings behavior due to seismic loadings with particular attention to non-linear and 

torsional 3D effects. 

The objectives are exactly the same as for the previous campaign: 

 comparison and validation of approaches used for the dynamics responses; 

 assessment of the capability of advanced dynamic non-linear models for predicting 

structures behavior; 

 quantification of the vulnerability within a probabilistic framework. 

The main differences between the two benchmarks are that in the current one: 

 Advanced digital image correlation techniques are used to monitor the 

displacements in some established points and the boundary conditions; 

 natural signals are used as input ground motions; 

 a new strong reinforced concrete foundation has been designed; 

 an accurate finite element model of the shaking table is provided by CEA; 

 higher seismic inputs are prescribed; 

 material parameters and damping values guidelines are given. 

This international benchmark is composed by four stages. The stage#1 requires a general 

description of the numerical model , including information about the name and type of the 

fem code used, descriptions of the time integration algorithm, damping value, finite 
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elements and degrees of freedom, constitutive laws taken in account for concrete and 

steel (local tests are prescribed)... During the stage#2 the elastic calibration is performed: 

after considering the results of the modal analysis, light seismic loads are applied in order 

to characterize the linear behavior of the numerical model. The following stage concerns 

the blind nonlinear computation: higher seismic inputs are applied in order to enter the 

nonlinear range of constitutive laws and the consequent displacement field will be sent to 

the organizing committee and then compared to the experimental results. The last part of 

the benchmark consists in conducting vulnerability analyses for determining fragility curves 

(stage#4) (Chaudat & Richard, 2013). 

 

2.1.1 SEISMIC ANALYSES 

During the past years, owing to the progress of the fem method and to the growing efficacy 

of computers, several seismic analyses methods have been developed and implemented. 

First of all a modal analysis has to be conducted in the interest of identifying the shaking 

characteristics of the structure. It consists in solving the eigenvalue problem: 

[𝑀][�̈�] + [𝐾][𝑈] = [0] 

standing out from the classical equation of motion of a spring mass system, where the 

damping is consider equal to zero. The eigenvectors are representative of the natural 

mode shapes, corresponding to the natural frequencies (eigenvalues) of the structure. 

The most simplified analysis is the equivalent static one, which consists in translating the 

earthquake ground accelerations into static forces applied to the building, which is 

supposed to respond according to his fundamental modes. This case could be applied 

when the structure shows high regularity and symmetry (low importance of torsion) and 

corrected with some factors to account effects of yielding or small irregularities. 

One step closer to real behavior of buildings is given by the response spectrum analysis, 

in which, for each solicitation the corresponding natural frequency is read in the design 

spectrum and then they are combined in three possible ways: absolute (peak values are 

added together), square root of the sum of the squares (SRSS), complete quadratic 

combination (CQC). 

As the seismic inputs become stronger and the nonlinear domain is reached, it's possible 

to choose a pushover analysis (nonlinear static). The structure is still represented by a 

SDOF system, but with nonlinear properties and the ground accelerations are plotted as 
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total force against a reference displacement in a capacity curve, then combined with the 

response spectrum. 

When higher natural modes become important, the static analyses are no longer 

appropriate. In case of remaining in the linear field of materials behavior the linear dynamic 

analysis can be applied: the structure is modeled as a MDOF system and the inputs 

(seismic solicitations) and outputs (stresses and displacements) are calculated in the time 

domain. All phase information is maintained and higher natural modes can be taken in 

account (taller buildings). 

Once again the demand of going up to the nonlinear part of material laws requires a more 

complex analysis: the nonlinear dynamic. With it both the constitutive law and the loadings 

are integrated in the time domain and the result is a response curve for each degree of 

freedom considered. This last kind of analysis can be applied to irregular buildings and its 

results are very accurate, however the response is very sensible to parameters variations 

and the calculations are heavy. 

 

 

2.1.2 FEM METHOD AND MODELLING CHOICES 

The FEMethod is an approximate way to solve the mechanics problem: the continuum 

body is discretized into representative geometrical elements and for each one of their 

nodal points, the state variables are computed. 

Depending on the shape of the considered body and on the accuracy needed, one can 

choose between three main formulation families: 

 Beam/truss when one dimension is greater than the other two. The beam elements 

has only two nodes at the ends and for each node 3 degrees of freedom are 

considered (DOF), while the truss accounts only one. 

 Plate/shell when two dimension are considered. The difference between shell and 

plate lies in the out-of-plane formulation. 

 Bricks when a 3D problem is considered. 

More specifically a continuum body can be represented as fig.1 shows 
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Figure 1: Continuum body discretization 
 

Where forces and displacements could be listed as nodal-equivalent ones: 

𝑞 = {
𝑞1

𝑞2

…
}  with 𝑞𝑖 = {

𝑈𝑖

𝑉𝑖
} nodal forces 

𝑎 = {
𝑎1

𝑎2

…
}  with 𝑎𝑖 = {

𝑢𝑖

𝑣𝑖
} nodal displacements 

For an elastic problem: 𝑞1 = 𝐾1𝑎1 + 𝑓𝑝
1 + 𝑓𝜀0

1  which represents the equilibrium between 

internal and external forces. 

For the equivalence with the stresses matrix it could be written: 

𝜎1 = 𝑄1𝑎1 + 𝜎𝜀0
1  where Q is the element stresses matrix 

Introducing the boundary conditions: 

𝐾𝑖𝑎𝑖 = 𝑟 − 𝑓 

a standard discrete system could be written as 

𝐾𝑎 + 𝑓 = 𝑟, with 𝐾 = ∑ 𝐾𝑒. 

Considering a single finite element e, with nodes i, j, m etc. any characteristic field in any 

point of the element can be written in terms of nodal formulation: 

𝑢 = �̅� = ∑ 𝑁𝑘𝑎𝑘
𝑒 = 𝑁𝑎𝑒 with 𝑁𝑖 = 𝑁𝐼 for displacements 

휀 = 휀̅ = 𝑆𝑢 = 𝐵𝑎 with 𝐵 = 𝑆𝑁for strains 

𝜎 = 𝐷(휀 − 휀0) + 𝜎0 for stresses, where D is the constitutive matrix. 

In order to make the nodal forces equal to the boundary stresses and the external forces a 

virtual displacement 𝛿𝑎𝑒 is considered: 

𝛿𝑢 = 𝑁𝛿𝑎𝑒 and 𝛿휀 = 𝐵𝛿𝑎𝑒 

leading to: 

𝑞𝑒 = ∫ 𝐵𝑇𝜎𝑑𝑉 − ∫ 𝑁𝑇𝑏𝑑𝑉
𝑉𝑉

. 

Knowing that 
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𝑞𝑒 = 𝐾𝑒𝑎𝑒 + 𝑓𝑒, 𝐾𝑒 = ∫ 𝐵𝑇𝐷𝐵𝑑𝑉
𝑉

 (being B=SN) 

and 𝑓𝑒 = − ∫ 𝑁𝑇𝑏𝑑𝑉
𝑉

− ∫ 𝐵𝑇𝐷휀𝑑𝑉 + ∫ 𝐵𝑇𝜎0𝑑𝑉
𝑉𝑉

. 

For the whole structure is 𝑢 = �̅�𝑎, with a being the list of points. 

For any virtual displacement, being 

−𝛿𝑎𝑇𝑟 = ∫ 𝛿𝑢𝑇𝑏𝑑𝑉
𝑉

+ ∫ 𝛿𝑢𝑇𝑡𝑑𝐴
𝐴

− ∫ 𝛿휀𝑇𝜎𝑑𝑉
𝑉

 

𝐾𝑎 = 𝑟 − 𝑓 

𝑓 = − ∫ 𝑁𝑇𝑏𝑑𝑉 −
𝑉

∫ 𝑁𝑇𝑡𝑑𝐴 −
𝐴

∫ 𝐵𝑇𝐷휀0𝑑𝑉 + ∫ 𝐵𝑇𝜎0𝑑𝑉
𝑉𝑉

, 

ensuring the satisfaction of the equilibrium equations. 

When considering complicated systems, involving a lot of points, it becomes more difficult 

to ensure the equilibrium at all points and another procedure can be introduced: the 

variational principles. It consists in considering 𝛿𝑎, 𝛿𝑢, 𝛿휀 as variations: 

𝛿(𝑎𝑇𝑟 + ∫ 𝑢𝑇𝑏𝑑𝑉 + ∫ 𝑢𝑇𝑡𝑑𝐴) = −𝛿𝑊
𝐴𝑉

  with W being the potential 

energy of external loads 

∫ 𝛿휀𝑇𝜎𝑑𝑉 = 𝛿𝑈
𝑉

 with U being the strain energy 

𝑈 =
1

2
∫ 휀𝐷𝑇휀𝑑𝑉 −

𝑉
∫ 휀𝑇𝐷휀0𝑑𝑉 + ∫ 휀𝑇𝜎0𝑑𝑉

𝑉𝑉
. 

The principle lays in the minimization of the total potential Π, which has to be stationary: 

𝛿(𝑈 + 𝑊) = 𝛿Π = 0. 

The variational method solution is then depending on the integral approximation procedure 

chosen, as for example the Ryleigh-Ritz or the Galerking weighted residual. (Zienkiewicz & 

Taylor) 

The FEM softwares are nowadays built for solving a wide range of mechanical problems, 

and let engineers model and analyze structures in  simplified or sophisticated ways, 

depending on the options chosen (kind of mesh element, linear or polynomial shape 

functions…). 

 

2.2 LMT CHOICES AND INTERNSHIP OBJECTIVES 

The purpose of this paper is to explain the choices made, once decided to participate at 

the SMART 2013 project, and to validate the described procedure for analyzing RC 

structures under seismic loads. 
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The Laboratoire de Mécanique et Technologie de l’Ecole Normale Supérieure de Cachan 

is a research unit specialized engineering sciences: materials mechanics, experimental 

mechanics, numerical simulation and high performance computation and it’s taking part in 

the project SMART 2013, presenting his own model.  

According to the project requests and to the researchers team knowledge in numerical 

computation and materials laws, it was possible to tune up a complex numerical model, 

well representing the real behavior of the structure when cyclic solicitations induced by an 

earthquake occur.  

The brittle behavior of concrete and the high intensity of seismic loadings require the 

involvement of 3D cubic elements in the numerical model in order to obtain a realistic 

simulation of torsional effects and a detailed mapping of the damaged zones. 

Knowing that such a detailed and complex analysis leads to a very high computational 

cost, which is not useful to be applied in everyday engineering works, the results will be 

compared to a simplified elastic model in pursuance of obtaining a Strength Reduction 

Factor. 

The descriptions of geometry, constitutive laws and numerical procedures will be detailed 

in the following chapters. 
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3 MATERIALS AND METHODS 

3.1 SMART MOCKUP 

The SMART 2013 project consists in analyzing a reinforced concrete building, tested on a 

shaking table (Azalee) in order to obtain the structure response when an earthquake 

happens. A scaled model representing an half part of an electric building of a nuclear 

center is built and anchored to the shaking table.  

  In the following sections will be reported the geometry, materials and fem model in detail. 

3.1.1 SUPERSTRUCTURE 

The benchmark participants are provided of an accurate description of the structure: it's 

made by an asymmetric 3 story RC model with trapezoidal base, representing a simplified 

half part of an electrical nuclear building. The building is scaled to ¼ and the distance 

between two levels is 1.2 m, reaching a total height of 3.6 m. The three perimetal walls are 

disposed over a “C”, two of them exhibiting openings, and in the fourth side a column 

arises, as shown in figures 2,3 and 4.  

 

Figure 2: plan of the mock-up 
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Figure 3: elevation of the mock-up 

 

Figure 4: tested RC scaled building 

Reducing the structure dimension to the scale of  ¼ leads to the problem of modifying the 

scale of the length-derived dimensions. In order to conserve acceleration when referring to 

the scaled model, and knowing that the gravity load and the material properties can’t be 

modified, a scaling factor of 1/16 and ½ are going to be applied to the mass and time 

respectively. 

In the interest of obtaining the scaling factor for all the dimensions, the conservation of 

accelerations and stresses is imposed: 
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[𝑙𝑒𝑛𝑔𝑡ℎ]

[𝑡𝑖𝑚𝑒]2
=

[𝐿]

[𝑇]2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 →  𝜆 =

𝑇2

𝑇′2
 

[𝑓𝑜𝑟𝑐𝑒]

[𝑙𝑒𝑛𝑔𝑡ℎ]2
=

[𝑀][𝐿]

[𝑇]2[𝐿]2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 →  𝜆 =

𝑀𝑇′2

𝑀′𝑇2
 

from which one can achieve: 

𝑇 = √𝜆𝑇′ 𝑎𝑛𝑑  𝑀 = 𝜆2𝑀′ 

Being λ=4 the scaling factors become those presented in the table 1. 

 

Table 1: scaling factor 

Parameter Scaling factor 

Length 4 
Mass 16 
Time 2 
Acceleration 1 

Stress 1 
Frequencies 0.5 

Forces 16 

Steel area 16 
 

In consideration of the previous reflections, the specimen mass had been corrected by 

anchoring additional masses at each level as shown in the table 2. 

 

Table 2: additional masses 

Level Mean values (tons) 

#1 11.45 

#2 12.17 

#3 10.32 
 

 

The materials used for building the mockup are concrete C30/37 (for the walls, the central 

column and the floors) and steel (under the form of reinforcement bars) which properties 

are experimentally measured and listed in table 3. 
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Table 3: material parameters 

Properties Concrete Steel 

Young Modulus E [Pa] 30*109  200*109  

Density ρ [kg/cm3] 2300  7850  

Poisson’s coeff. ν 0.2 0.3 

Compression stress [MPa] 30*106  600*106  

Traction stress [MPa] 2.4 106  600*106  
 

With these properties, the superstructure weights 11.89 tons while considering the mass 

correction 45 tons are reached. 

 

 

3.1.2 SHAKING TABLE 

The dynamic inputs are provided by exciting a shaking table: comparing a shaking table 

based experiment to a reaction wall based one (fig. 5), the degrees of freedom of the 

superstructure are not forced to follow imposed displacements and as a result of it, they’ll 

be more realistic. 

 

Figure 5: reaction wall and shaking table principles 

 

The shaking table AZALEE is a semi rigid block (6 m x 6 m) which total mass is about 25 

tons and it’s able to test structures up to 100 tons (fig. 6).  
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Figure 6: Azalee shaking table at CEA 

Eight hydraulics jacks allow to shake the buildings in the three directions: 4 of them are 

positioned horizontally (2 along x and 2 along y axes) and 4 vertically and as a 

consequence of that, the superstructure is able to move following all the six degrees of 

freedom (3 displacements and 3 rotations). The jacks maximal extension is 125 mm along 

x and y and 100 mm along the vertical axis and each one can transmit the maximal force 

of 1000 kN. 

A system of accumulators positioned under the table and a reaction mass, as the scheme 

in fig. 7 shows, are necessary to keep the shaking table isolated. 

 

Figure 7: Azalee shaking table scheme 
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3.1.3 ASSEMBLY 

The foundations of the superstructure consist of a continuous footing under the perimetral 

walls (65 cm wide and 25 cm high) in reinforced concrete and it allows to reduce a the 

differential settlement between the shaking table and the mockup. The footing is anchored 

to the shaking table by steel stud bolts, while the central column is fixed to the table by 

means of a steel plate 2 cm thick. 

It’s important to underline that the superstructure has been positioned in pursuance of 

making his center of mass coincide with the one of the shaking table (fig. 8): no additional 

torsion effect will be induced. 

 

Figure 8: Positioning the superstructure on the Azalee table 

 

3.2 FEM MODEL 

Every participant at the SMART 2013 benchmark was asked to build a numerical model to 

carry on with the seismic analyses, recreating the benchmark mockup previously 

described.  
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The purpose of the project is to obtain realistic and accurate information about how the 

structure reacts to seismic loadings, in terms of local displacements and damage and this 

is why it’s necessary to work with the non-simplified geometric numerical model described 

in the following chapter, and with a local approach in the material law (chapter 3.3.2). 

 

3.2.1 SUPERSTRUCTURE 

For obtaining a realistic and exhaustive model of the mockup it has been chosen to model 

it mainly with 3D 8-nodes cubic elements with linear interpolation shape functions. 

In order to contain the computational cost of the program, this choice is applied only to the 

RC walls, to the central column and to the foundation letting easily identify the damaged 

zones and displaying an accurate displacements field. 

Concerning the reinforcement steel bars (fig. 9), they’ve been modeled by beam elements: 

due to their geometry, an uniaxial element is well fitting the bars behavior. 

 

Figure 9: reinforcement steel bars 

For the floor diaphragms, elastic shell elements are adopted because they won’t be 

damaged by horizontal forces and they don’t even need a nonlinear behavior law for the 

material. 
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A particular attention is given to the definition of the 5 reference points situated at each 

level (fig. 10) because the results are required in terms of displacement, speed and 

acceleration at these points. 

 

Figure 10: Reference points 

The additional masses anchored at each floor for the reason previously described have 

been modeled by augmenting the mass density of the concrete horizontal slabs. 

 

3.2.2 SHAKING TABLE 

The Azalee shaking table has also been taken in account due to here influence in the 

seismic behavior of the building (Lermitte, 2008). The CEA provided a model made up of 4 

node shell elements with a linear elastic constitutive law (Chaudat & Richard, 2013). 

 

Figure 11: Shaking table CEA plates model 
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3.2.3 ASSEMBLY AND BOUNDARY CONDITIONS 

The superstructure is assembled to the shaking table model through associating the its 

stiffness to the shaking table one, by forcing the first mesh points to follow a linear 

combination of the displacements field of the corresponding points in the second mesh. 

The boundary conditions consist in blocking displacements at the jacks level: 2 are 

blocked in the x direction, 2 in the y direction while all of them are blocked in the vertical 

direction z. It’s important to underline that the seismic charge will be applied as a chain of 

imposed displacements to these boundaries conditions. 

After calculating the dead load of the mock-up and having defined the Ryleigh damping 

evolution, the nonlinear dynamic analysis is launched whit the PASAPAS procedure 

(chapter 3.5). 

 

3.3 MODAL ANALYSIS AND ELASTIC CALIBRATION 

In order to validate the assumptions made with the numerical model, a modal analysis and 

an elastic calibration have been undergone. 

During the modal analysis, three different models were considered: 

 Empty superstructure without the shaking table, directly anchored at foundations 

level (fig. 12); 

 Corrected density superstructure without the shaking table; 

 Corrected density superstructure assembled to the shaking table (fig. 13); 

and the results were then compared to the experimental ones (fig. 14). 

It stands out that taking in account the shaking table has a non-completely negligible 

influence in the seismic behavior of the building: the eigen frequencies are much more 

similar to the experimental ones when considering both the additional masses and the 

table.  

The remarkable influence of the shaking table could be explained considering that the 

mock-up is a very rigid structure, which stiffness is almost comparable to the shaking table 

one. 
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Figure 12: empty superstructure modes 1 (20,62 Hz), 2 (37,16 Hz) and 3 (66,80 Hz) 

 

Figure 13: complete model modes 1 (6,23 Hz), 2 (10,28 Hz) and 3 (18,76 Hz) 

 

Figure 14: experimental modes 1 (6,28 Hz), 2 (7,86 Hz) and 3 (16,5 Hz) 

The elastic calibration consisted in imposing a light seismic input (0,1g) to the numerical 

and compare the results to the experimental ones in terms of displacements, speed and 

acceleration at the 5 points level (RUN#6). As it could be noticed in fig. 15 and 16, there’s 

not a remarkable difference between the two temporal evolutions and the elastic 

parameters values (young modulus..) could be considered appropriate. 
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Figure 15: displacements evolution at point A 2nd floor 

 

Figure 16: acceleration evolution at point D 2nd floor 

For performing seismic analyses, it is necessary to define a damping value and it’s 

possible to choose between: 

 A simplified linear combination of the mass and stiffness matrix (Rayleigh damping 

matrix) 

𝐶 = 𝛼𝑀 + 𝛽𝐾, 

where 𝛼 and 𝛽 are two scalar coefficients, depending on the fist eigen frequencies, 

𝛼 =
2𝜁

2𝜋(𝑓1+𝑓2)
 ,    𝛽 =

2𝜋

2𝑓1𝑓2𝛼
 

In this case, K and M are referred to the initial conditions and don’t take in account 

any changes during the earthquake. 
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 More realistic could be considering the tangent stiffness matrix Kt (𝐶 = 𝛼𝑀 + 𝛽𝐾𝑡), 

accounting the stiffness variation during the dynamic phenomenon. Notice that in 

case of elastic domain, K=Kt  

 The closest formulation to the real damping evolution, would consider the step-by-

step update of the coefficients 𝛼 and 𝛽, together with considering the tangent 

stiffness matrix Kt : 

𝐶 = 𝛼(𝑡)𝑀 + 𝛽(𝑡)𝐾𝑡 

Because of the increasing computational cost required by updating the eigen frequencies 

f1 and f2, or the stiffness matrix at every step of charge (Grégory, 2011), it has been chosen 

to work with the simplest linear combination described, even if this definition of the value 

leads to an overestimation of the damping, when not taking in account contribution of  the 

internal sliding (Lemaitre, Chaboche, Benallal, & Desmorat, 2009) and the loss of stiffness 

due to damage (Zareiana & Medina, A practical method for proper modeling of structural 

damping in inelastic plane structural systems, 2009). In this case of study, it was suggest 

to take a damping value around 5% (coming out from measurements conducted during 

SMART 2008) and in particular the values used are: 

 ζ=0.04 

 f1=6.23 Hz 

 f2=10,28 Hz. 

 

3.4 MATERIAL LAWS 

When strong seismic events affect buildings, it can be observed that materials are 

overcoming the linear range in their constitutive law and damage and plasticization take 

place: that’s why it was necessary to introduce at this point of the project materials 

constitutive relations describing post-elastic phenomena and non linearities. 

 

3.4.1 STEEL  

Uniaxial constitutive laws for metal are generally showing a linear elastic part and then a 

hardening behavior till breaking point. 

The steel is used in reinforced concrete as bars and it makes considering an uniaxial law 

adequate so that the Menegotto-Pinto model could well fit the steel behavior (Menegotto & 

Pinto, 1973). 
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3.4.1.1 THEORETICAL MODEL 

For a monotonic loading, the relationship between stresses and strain could be divided in 

three phases: linear elasticity until (휀𝑠𝑦, 𝜎𝑠𝑦) is reached, a plastic constant part (𝜎 = 𝜎𝑠𝑦) 

followed by hardening behavior up to the point (휀𝑠𝑢, 𝜎𝑠𝑢). The stress for 휀 > 휀𝑠ℎ is written 

as: 

𝜎 = 𝜎𝑠𝑢 − (𝜎𝑠𝑢 − 𝜎𝑠𝑦) (
휀𝑠𝑢 − 휀

휀𝑠𝑢 − 휀𝑠ℎ
)

4

 eq. 1 

When passing to a cyclic loading, the hardening becomes cinematic and the Bauschinger 

effect has to be represented. The hardening part inclination could be expressed as  

𝐸ℎ =
𝜎𝑠𝑢 − 𝜎𝑠𝑦

휀𝑠𝑢 − 휀𝑠𝑦
 eq. 2 

 

 

Figure 17: steel constitutive law 

3.4.1.2 CASTEM MODEL 

This constitutive law is implemented in Cast3m under ACIER_UNI (Combescure, 

2001)and it has been slightly modified in order to take in account the buckling 

phenomenon in cyclic loading. 
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3.4.1.3 PARAMETER VALUES 

In the SMART 2013 benchmark, the participants are asked to provide the results in terms 

of stresses and strains of a model of the chosen steel law applied to a 1m bar submitted to 

cyclic loading. 

Some of the steel parameters were prescribed by the CEA, as for Young modulus, 

Poisson ratio, yield stress and ultimate stress, while the others have been chosen 

following Cast3m suggestions (Di Paola, 2001). 

 

Table 4: steel parameters values 

Properties Variables 

 

Values 

Young Modulus E [Pa] YOUN 200E9  

Density ρ [kg/cm3] RHO 7800  

Poisson’s coeff. Ν NU 0.3 

Yield stress [MPa] STSY 500E6  

Strain at beginning of hardening [cm] EPSH 2.3E-2  

Ultimate stress [MPa] STSU 600E6   

Ultimate strain [cm] EPSU 9.8E-2  

Lshear/diameter FALD 4.9 

Coeff A6 A6FA 

620 

620 

Coeff C CFAC 0.5 

Coeff A AFAC 0.008 

Coeff R0 ROFA 20 

Ratio Kcyclic/Kelastic BFAC 0.0116 

Coeff A1 A1FA 18.5 

Coeff A2 A2FA 0.15 
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Figure 18: cyclic steel behavior with ACIER_UNI 

 

 

3.4.2 CONCRETE  

The constitutive laws for rocks and similar materials are generally characterized by an 

asymmetric behavior in tension and compression. In particular, for the tension range, the 

stress-strain relation shows a fragile trend, with almost instantaneous rupture even for low 

values, while for the compression range, the trend passes from a linear elastic behavior to 

a softening trend, till breaking point. 

When analyzing the cyclic behavior of this material, many local phenomena are found out 

to influence the stress-strain trend, such as micro-cracking and internal sliding, and one of 

the best ways of representing all of it, is to opt for a continuum-damage-mechanics-based 

method, founded on the formulation of a thermodynamic potential. 
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Figure 19: Concrete stress-strain relation in cyclic loading 

 

3.4.2.1 THEORETICAL MODEL 

The Ricbet model chosen to fit concrete brittle behavior and cyclic loading is capable of 

coupling damage, unilateral effect and friction. 

Peculiarities of this model are that the unilateral effect is taken in account by introducing a 

closure function so that full stiffness is recovered when passing from tension to 

compression and nonlinearities in compression are not described by damage but by 

plasticity. 

Starting from the theory of irreversible thermodynamic process, the thermodynamic 

potential is chosen as :   

𝜌𝜓 =
1

2
{(1 − 𝑑)(휀𝑖𝑗 − 휀𝑖𝑗

𝑝 )𝐶𝑖𝑗𝑘𝑙(휀𝑘𝑙 − 휀𝑘𝑙
𝑝 ) + 𝑑(휀𝑖𝑗 − 휂휀𝑖𝑗

𝜋 − 휀𝑖𝑗
𝑝 )𝐶𝑖𝑗𝑘𝑙(휀𝑘𝑙 − 휂휀𝑘𝑙

𝜋 − 휀𝑘𝑙
𝑝 )

+ 𝛾𝛼𝑖𝑗𝛼𝑖𝑗} + 𝐻(𝑧) + 𝐺(𝑝) 

Where: 

d=scalar damage variable 

ε=strain tensor 

p=plasticity 
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π=internal sliding 

C=Hook tensor 

η=crack closure variable 

γ=kinematic hardening modulus 

α=kinematic hardening tensor 

H=consolidation function in tension 

G=consolidation function in compression 

One can notice that the potential is divided in two parts: one driving the elastic-plastic 

damage and the other concerning the internal sliding. 

State equations 

By differentiating the state potential, the reversible part of the mechanical behavior can be 

obtained: 

 Cauchy stress 

𝜎𝑖𝑗 =
𝜕𝜌𝜓

𝜕휀𝑖𝑗
=

−𝜕𝜌𝜓

𝜕휀𝑖𝑗
𝑝 = (1 − 𝑑)𝐶𝑖𝑗𝑘𝑙(휀𝑘𝑙 − 휀𝑘𝑙

𝑝 ) + 𝑑𝐶𝑖𝑗𝑘𝑙(휀𝑖𝑗 − 휂휀𝑖𝑗
𝜋 − 휀𝑖𝑗

𝑝 ) 

 tangent modulus Dijkl 

𝐷𝑖𝑗𝑘𝑙 =
𝜕𝜎𝑖𝑗

𝜕휀𝑘𝑙
= 𝐶𝑖𝑗𝑘𝑙 

 sliding stress  

𝜎𝑖𝑗
𝜋 =

𝜕𝜌𝜓

𝜕휀𝑖𝑗
𝜋 = 휂𝑑𝐶𝑖𝑗𝑘𝑙(휀𝑘𝑙 − 휂휀𝑘𝑙

𝜋 − 휀𝑘𝑙
𝑝 ) 

 energy rate released by the damage mechanism 

𝑌 =
−𝜕𝜌𝜓

𝜕𝑑
=

1

2
{(휀𝑖𝑗 − 휀𝑖𝑗

𝑝 )𝐶𝑖𝑗𝑘𝑙(휀𝑘𝑙 − 휀𝑘𝑙
𝑝 ) − (휀𝑖𝑗 − 휂휀𝑖𝑗

𝜋 − 휀𝑖𝑗
𝑝 )𝐶𝑖𝑗𝑘𝑙(휀𝑘𝑙 − 휂휀𝑘𝑙

𝜋 − 휀𝑘𝑙
𝑝 )} 

  thermodynamic force associated with isotropic hardening 

𝑍 =
𝜕𝜌𝜓

𝜕𝑧
=

𝑑𝐻(𝑧)

𝑑𝑧
 

 back stress 

𝑋𝑖𝑗 =
𝜕𝜌𝜓

𝜕𝛼𝑖𝑗
= 𝛾𝛼𝑖𝑗 

 thermodynamic force associated with the closure variable 

휁 =
−𝜕𝜌𝜓

𝜕휂
= 𝑑휀𝑖𝑗

𝜋 𝐶𝑖𝑗𝑘𝑙(휀𝑘𝑙 − 휂휀𝑘𝑙
𝜋 − 휀𝑘𝑙

𝑝 ) 

 thermodynamic force associated with the plastic hardening 

𝑅 =
𝜕𝜌𝜓

𝜕𝑝
=

𝑑𝐺(𝑝)

𝑑𝑝
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Flow rules 

The flow rules describe three separate threshold surfaces: 

1. Damage and isotropic hardening 

The threshold surface is: 

𝑓𝑑 = �̅� − (𝑌0 + 𝑍) ≥ 0 

The link between damage and positive extensions is due to assuming cracked behavior 

separable into two independent behaviors: cracks opening and closing are considered 

through the hydrostatic strain part of the model while the frictional sliding is modeled by the 

deviatoric part of the strain and stress tensors. The flow rules can be written starting from 

normality rules:  

�̇� = 𝜆�̇�

𝜕𝑓𝑑

𝜕�̅�
= 𝜆�̇� 

�̇� = 𝜆�̇�

𝜕𝑓𝑑

𝜕𝑧
= −𝜆�̇� 

In order to compute the Lagrange multiplier explicitly, thanks to the consistency condition 

𝑓𝑑 = 𝑓�̇� = 0, a consolidation function H(z) has to be chosen from which the following 

expressions can be obtained: 

𝑑 = 1 −
1

1 + 𝐴𝑑(�̅� − 𝑌0)
 

𝑧 + 𝑑 = 0 

 

2. Internal sliding and kinematic hardening 

The threshold surface is a function of sliding stress and back stress and there’s no initial 

threshold in order to activate the mechanism only when damage overcomes.  

𝑓𝜋 = √
3

2
(𝜎𝑖𝑗

𝜋 − 𝑋𝑖𝑗)(𝜎𝑖𝑗
𝜋 − 𝑋𝑖𝑗)𝐻(𝜎𝑘𝑘) ≤ 0 

To take in account the non-linearities managed by hysteretic effects a pseudo potential is 

chosen as follows: 

𝜙𝜋 = √
3

2
(𝜎𝑖𝑗

𝜋 − 𝑋𝑖𝑗)(𝜎𝑖𝑗
𝜋 − 𝑋𝑖𝑗) +

𝑎

2
𝑋𝑖𝑗𝑋𝑖𝑗 

And the flow rules: 

휀𝑖𝑗
�̇� = 𝜆�̇�

𝜕𝜙𝜋

𝜕𝜎𝑖𝑗
𝜋 

𝛼𝑖𝑗̇ = −𝜆�̇�

𝜕𝜙𝜋

𝜕𝑋𝑖𝑗
 



 

 
 

 

 

 

31 

 

Unilateral effect 

This effects can be defined as the stiffness recovering when switching from tension to 

compression, up to the initial undamaged one, due to the crack closure following the linear 

rule 휂 = 1 −
𝜎𝑘𝑘

𝜎𝑓
. 

 

3. Plasticity and isotropic hardening 

threshold function has been chosen as a Drucker–Prager criterion and it provides a 

satisfying description of the dilatancy 

𝑓𝑝 = (√
3

2
𝜎𝑖𝑗𝜎𝑖𝑗 + 𝛼𝑓𝑝

1

3
𝜎𝑘𝑘𝐻(𝜎𝑓 − 𝜎𝑘𝑘) − (𝑅 + 𝑓𝑐)) ≥ 0 

Where the isotropic hardening variable is 𝑅(𝑝) = (𝑎𝑟𝑝 + 𝑓𝑐)𝑒𝑥𝑝(−𝑏𝑟𝑝) − 𝑓𝑐 + 𝜎𝑓. 

It’s to note that when plasticity is activated, the internal sliding has no effects cause the 

closure function is null. 

The pseudo-potential and the normality rules are: 

𝜙𝑝 = (√
3

2
𝜎𝑖𝑗𝜎𝑖𝑗 + 𝛼𝜙𝑝

1

3
𝜎𝑘𝑘 − (𝑅 + 𝑓𝑐)) ≥ 0 

휀𝑖𝑗
�̇� = 𝜆�̇�

𝜕𝜙𝑝

𝜕𝜎𝑖𝑗
 

�̇� = −𝜆�̇�

𝜕𝜙𝑝

𝜕𝑅
 

In order to fulfill the consistency condition 𝑓𝑝 = 𝑓�̇� = 0 the flow rules have to be implicitly 

integrated with a return-mapping algorithm. 

Thanks to this constitutive law, one is able to represent the major local phenomena 

characterizing concrete when cyclically loaded, as demonstrate in the following sections. 

 

3.4.2.2 REGULARIZATION 

Brittle materials presents a typical softening behavior which, in the classical local fe 

methods leads to mesh dependency: when cracks start spreading, the resistant net area 

decreases and stresses localize. Moreover if the energy rate released by damage is 
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considered finite per unit of volume, and the element dimension tends to 0, the structure is 

supposed to fail at zero energy dissipation. 

In order to avoid the mesh dependence problems occurring in continuum damage 

mechanics based models, a nonlocal approaches have been investigated (Pijiaudier-

Cabot & Bazant, 1987) 

The ellipticity of local equilibrium equations is often lost when considering micro cracked 

elements or next to boundaries ones (Giry, Dufour, & Mazars, 2011). The principle of 

energy balance approach is to assume that a certain amount of energy is absorbed by the 

formation of a unit area of crack surface and the crack propagates when the released 

energy is greater than the stored one.  

In particularly in Hillerborg regularization approach (Hillerborg, Modéer, & Peterson) the 

crack is supposed to propagate when the tensile strength ft is reached at the tip of the 

crack, then the stress fall down following a function of the width w (when w=w1 the stress 

is back to zero). 

The energy stored in order to open the crack up to w1 is 

𝐺𝑐 = ∫ 𝜎𝑑𝑤
𝑤1

0

 

per unity of cracked area, where the function 𝜎(𝑤) could be chosen properly for each 

material. 

Concerning to the Ricbet model, the local energy rate released by damage is �̅� and it’s 

averaged over a given lc (3 or 4 times the aggregate size) vicinity , centered in the current 

Gauss’ point x, thanks to a weight function 𝛺(𝑥): 

�̅�𝑛𝑙 =
∫ �̅�(𝑥)𝜔(𝑥 − 𝑠)𝑑𝑠

Ω(𝑥)

∫ 𝜔(𝑠)𝑑𝑠
Ω(𝑥−𝑠)

 

fd becomes 𝑓𝑑
𝑛𝑙and the damage variable is rewritten. 

This procedure has been chosen because it just requires the substitution of the local 

variable of energy rate released  due to damage with an averaged one and it’s not 

increasing the computational cost. 

 

3.4.2.3 CASTEM MODEL 

The numerical implementation lies in calculating the stress increment knowing the 

thermodynamic state of the material at a given step (i). 
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After giving the fixed strain increment, the numerical scheme calculates and updates all 

the internal variables and the corresponding forces. 

The flow rules associated with damage are explicitly integrated, the internal sliding and the 

plasticity mechanisms are treated thanks to a return mapping-based algorithm. 

First of all, the variables are initialized and the thermodynamic state is given. 

 Damage and isotropic hardening 

damage is linked to positive strain so the positive part of the total strain tensor is extracted 

and then the threshold surface is tested, after calculating the energy rate YP. If 𝑓𝑑
𝑖+1 < 0,  

∆𝑑 = 0, then ∆𝑑 ≠ 0 and the damage variable is updated: 

𝑑𝑖+1 = 1 − (
𝑓𝑡

𝐸�̅�
) 𝑒𝑥𝑝 [𝐴𝑑 (

𝑓𝑡

𝐸
− �̅�)] 

and also 

𝑍𝑖+1 = �̅�𝑖+1 − 𝑌0 

One have to notice that the expressions for Y and d have been changed because of the 

choice of working whit an energy regularized version. 

 Internal sliding and kinematic hardening 

Following the return mapping-based algorithm procedure, an elastic prediction of the 

sliding stress tensor is made  

𝜎𝑖𝑗
𝜋,𝑖+1,𝑡𝑟𝑖𝑎𝑙 = 𝑑𝑖+1𝐶𝑖𝑗𝑘𝑙(휀𝑘𝑙

𝑖+1 − 휀𝑘𝑙
𝜋,𝑖 − 휀𝑘𝑙

𝑝,𝑖) 

If the postulated threshold surface is positive (𝜎𝑘𝑘 > 0) ∆휀𝑖𝑗
𝜋,𝑖 ≠ 0 and it’s linearized as 

follows: 

𝑓𝜋
𝑖+1,𝑘+1 = 𝑓𝜋

𝑖+1,𝑘 − 𝑑𝑖+1
𝜕𝑓𝜋

𝑖+1,𝑘

𝜕𝜎𝑖𝑗
𝜋,𝑖,𝑘

𝐶𝑖𝑗𝑘𝑙

𝜕𝑓𝜋
𝑖+1,𝑘

𝜕𝜎𝑖𝑗
𝜋,𝑖,𝑘

∆𝜆𝜋
𝑘 − 𝛾

𝜕𝑓𝜋
𝑖+1,𝑘

𝜕𝑋𝑖𝑗
𝑖,𝑘

𝜕𝜙𝜋
𝑖+1,𝑘

𝜕𝑋𝑖𝑗
𝑖,𝑘

∆𝜆𝜋
𝑘 ≈ 0 

The Lagrange multiplier, the sliding stress and the back stress increments can be 

computed as: 

∆𝜆𝜋
𝑘 =

𝑓𝜋
𝑖+1,𝑘

𝑑𝑖+1 𝜕𝑓𝜋
𝑖+1,𝑘

𝜕𝜎𝑖𝑗
𝜋,𝑖,𝑘 𝐶𝑖𝑗𝑘𝑙

𝜕𝑓𝜋
𝑖+1,𝑘

𝜕𝜎𝑘𝑙
𝜋,𝑖,𝑘 + 𝛾

𝜕𝑓𝜋
𝑖+1,𝑘

𝜕𝑋𝑖𝑗
𝑖,𝑘

𝜕𝜙𝜋
𝑖+1,𝑘

𝜕𝑋𝑖𝑗
𝑖,𝑘

 

 

∆𝑋𝑖𝑗
𝜋,𝑖,𝑘 = −𝛾∆𝜆𝜋

𝑘
𝜕𝜙𝜋

𝑖+1,𝑘

𝜕𝑋𝑖𝑗
𝑖,𝑘

 

∆𝜎𝑖𝑗
𝜋,𝑖,𝑘−𝑑𝑖+1∆𝜆𝜋

𝑘 𝐶𝑖𝑗𝑘𝑙

𝜕𝑓𝜋
𝑖+1,𝑘

𝜕𝜎𝑖𝑗
𝜋,𝑖,𝑘
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And finally the sliding stress and the back stress tensors can be updated until 

𝑓𝜋
𝑖+1,𝑘+1

𝑓𝜋
𝑖+1,0

< 10−8 

 Unilateral effect 

The closure function depends on 𝜎𝑘𝑘 and 𝜎𝑓 following a linear law. When the case 

𝜎𝑘𝑘 ≤ 𝜎𝑓 ≤ 0 overcomes, by using the stress-strain relation projected on the hydrostatic 

basis the following expression is obtained 

𝜎𝑘𝑘
𝑖+1 =

𝑘(휀𝑘𝑘
𝑖+1 − 휀𝑘𝑘

𝜋,𝑖+1 − 휀𝑘𝑘
𝑝,𝑖+1)

1 −
𝑘
𝜎𝑓

휀𝑘𝑘
𝜋,𝑖+1

 

And the updated Cauchy stress is then computed and updated: 

𝜎𝑖𝑗
𝑖+1 =

1

3
𝜎𝑘𝑘

𝑖+1𝛿𝑖𝑗 + 𝜎𝑖𝑗
𝑑,𝑖+1 

 Plasticity and isotropic hardening 

Once again the variables are integrated thanks to a return mapping algorithm: an elastic 

prediction of the Cauchy stress is made, where no internal sliding parameters are shown 

because of the closed cracks state. 

𝜎𝑖𝑗
𝑖+1,𝑡𝑟𝑖𝑎𝑙 = 𝑑𝑖+1𝐶𝑖𝑗𝑘𝑙(휀𝑘𝑙

𝑖+1 − 휀𝑘𝑙
𝑝,𝑖) 

The threshold surface is then calculated  and if 𝑓𝑝
𝑖+1 > 0 then ∆휀𝑖𝑗

𝑝 ≠ 0 and fp is linearized 

and the variables are updated till stop criterion is reached (Richard B. , Ragueneau, 

Cremona, & Adelaide, 2010). 

As fig. 20 shows, the numerical stress-strain relation is well fitting the experimental one. 

 

Figure 20: Numerical and experimental trends of a concrete sample under cyclic loading 
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3.4.2.4 PARAMETER VALUES 

At the end of the SMART 2008 campaign it stood out how scattered were the results of the 

different participants and it was also due to the large variability of the parameters value 

used (see for example the value of Young modulus in fig. 21).  

 

Figure 21: Young modulus variability in SMART 2008 

As a consequence of that, the organizing committee decided to prescribe the value of 

some of the concrete properties as Young modulus, Poisson ratio, fracture 

energy…(annex 2). 

Concerning the other parameters, they are suggested by experimental and numerical 

experience and they’ve been resumed in table. 

 

Table 5: concrete parameters values 

Properties Variable

s 

 

Values 

   Young Modulus E YOUN Annex 3 

Density ρ [kg/cm3] RHO 2300  

Poisson’s coeff. ν NU 0.2 

Tensile strength FT Annex 3 

Hardening modulus 1 GAM1 5.0E9 

Hardening modulus 2 A1 8.0E-6 

Closure stress [MPa] SREF -3.0E6  

Brittleness in tension ALDI Depends on Lc and GF 

Yield surface 1 AF 0.7 
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Yield surface 2 BF 

 

0.3 

Plastic potential 1 AG 0.6 

Plastic potential 2 BG 0.45 

Yield hardening 1 AC 2.52E10 

Yield hardening 2 BC 700.0 

Asymptotic stress in compression [MPa] SIGU -4.0E6  MPa 

Initial compression strength [MPa] FC 6.0E6 MPa 

Fracture energy GF Annex 3 

 

 

As for the steel parameters, the SMART 2013 project requires some simple tests on a 

concrete cube in order to verify the coherence of the values chosen, and the participants 

have to submit the results in terms of stress and strain. 

 

Here are the diagrams (𝜎, 휀) for the Ricbet model applied to the concrete object: 

 Softening in tension 
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This simple traction test shows the material fragility in tension : the improvise fall of tension 

represents the instant rupture of the concrete cube, which is characteristic of brittle 

behavior. 

 Softening in compression 

 

The shape of the compression curve is driven not by damage but by plasticity parameters. 

 Cyclic response 
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The cyclic test make evidence of the unilateral effect phenomena when compressing: the 

stiffness goes back to the initial value once the cracks are closed. 

 

 

3.4.3 REINFORCED CONCRETE 

Once again a small RC cube is tested and the model sensitivity to parameters is 

investigated, as requested by the Benchmark. 

 Cyclic response, membrane part 

 

The traction part is behaving like steel properties while the compression is mainly 

driven by concrete parameters. 
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 Cyclic response, flexion part 

 

This test didn’t make the cube reaching the peak value in compression so what could be 

seen is just an almost linear behavior. 

 

 

3.5 TIME-HISTORY ANALYSIS 

In  the pursuance of coupling the non-linear constitutive law previously described for the 

concrete, and the complex structure response due to the high seismic inputs provided, it is 

necessary to carry on the most detailed type of analysis: the time-history analysis.  

 

3.5.1 THEORY 

With the finite elements method, the dynamic problem discretization is written as: 

𝑀�̈� + 𝐶�̇� + 𝐵𝜎 = 𝐹 

where σ are the elements stresses, F are the nodal forces and B the divergence operator, 

to be solved for each time step.  

Passing to the weak form of the dynamic problem, after a spatial discretization, it 

becomes: 
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{

𝑔𝑖𝑣𝑒𝑛 𝑏 , 𝑡 𝑎𝑛𝑑 �̅� 
𝐹𝑖𝑛𝑑 𝑢 𝑠𝑜 𝑡ℎ𝑎𝑡, ∀𝜔:

− ∫ 𝜎: 휀(̿�̅�)𝑑𝑉 + ∫ �̅�
 

𝛺
. �̅� 𝑑𝑉 + ∫ 𝑡̅ 

𝜕𝛺
. �̅� 𝑑𝑆 =  ∫ 𝜌 �̅�. �̅�

 

𝛺
 𝑑𝑉 

 

𝛺

                

Because of the great difficulties in finding an analytical solution to this system, numerical 

methods had been computed, as the Finite Elements Methods for example. 

Proceeding to the spatial discretization, the local form of the real and virtual displacements 

could be written as: 

{
𝑢ℎ(휁 , 𝑡) = ∑ 𝑁𝑎

𝑛𝑒𝑙𝑡𝑠
𝑎=1 (휁)𝑈𝑎(𝑡) 

𝑤ℎ(휁 , 𝑡) = ∑ 𝑁𝑎
𝑛𝑒𝑙𝑡𝑠
𝑎=1 (휁)𝑊𝑎(𝑡)

           

Where Na represents the shape functions, Ua and Wa the nodal displacements, the real 

and virtual ones respectively. 

By using isoparametric elements, the geometric interpolation is : 

𝑥ℎ(휁 , 𝑡) = ∑ 𝑁𝑎
𝑛𝑒𝑙𝑡𝑠
𝑎=1 (휁)𝑋𝑎           

𝑋𝑎 representing the elementary element nodal coordinates  

Knowing that : 

𝐵(휁) =
𝑑𝑁𝑎(𝜁)

𝑑𝜁
 𝐽−1(휁)               

where 𝐽−1(휁) is the Jacobean matrix inverse, the strain field could be written as: 

휀ℎ(휁 , 𝑡) = ∑ 𝐵𝑎
𝑛𝑒𝑙𝑡𝑠
𝑎=1 (휁)𝑈𝑎(𝑡)           

And the weak formulation becomes : 

⋀ (𝑓𝑎𝑐𝑐,𝑒 + 𝑓𝑖𝑛𝑡,𝑒) = ⋀ 𝑓𝑒𝑥𝑡,𝑒𝑛𝑒𝑙𝑡𝑠
𝑒=1

𝑛𝑒𝑙𝑡𝑠
𝑒=1                   

with  𝑓𝑎𝑐𝑐,𝑒 ,  𝑓𝑖𝑛𝑡,𝑒 and 𝑓𝑒𝑥𝑡,𝑒 representing the acceleration forces, internal and external 

forces respectively. 

The spatial form of the problem is finally reached: 

   {
𝐹𝑖𝑛𝑑 𝑈(𝑡) 𝑎𝑛𝑑 �̈�(𝑡) 𝑠𝑜 𝑡ℎ𝑎𝑡:

⋀ 𝑀 𝑈(𝑡) + ∫ 𝐵𝑡𝜎(𝑈)𝑑𝑉 =  ⋀ ∫ 𝑁𝑡𝑏𝑑𝑉
 

𝛺
+ ∫ 𝑁𝑡𝑡̅𝑑𝑆

 

𝜕𝛺

𝑛𝑒𝑙𝑡𝑠
𝑒=1

 

𝛺
̈𝑛𝑒𝑙𝑡𝑠

𝑒=1

          

Once written the problem under this form, a temporal integration scheme has to be 

defined, as for example the Newmark’s one: this is strongly adapted to situations where 

nonlinear procedures appear and the forces are time or space-depending. 

Starting from time steps tn and tn+1, speeds and displacements are computed : 

 {𝑢𝑛+1 = 𝑢𝑛 + ∆𝑡 𝑣𝑛 + (
1

2
− 𝛽) ∆𝑡2𝑎𝑛 +  𝛽∆𝑡2𝑎𝑛+1

𝑣𝑛+1 = 𝑣𝑛 + (1 − 𝛾)∆𝑡 𝑎𝑛 +  𝛾∆𝑡  𝑎𝑛+1

       

where 𝛽 𝑎𝑛𝑑 𝛾 are two parameters from which the stability and the implicit/explicit form of 

the algorithm are depending to. 
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Remember that in explicit algorithms, the state of the system at time step tn+1 depends only 

from the state at the previous step tn, while in implicit algorithms the variables at tn+1 are 

depending both from the current and previous states. 

As an example, by setting: 

 𝛾 = 1/2 and 𝛽 = 0, an explicit and conditionally stable algorithm is obtained : 

{
𝑢𝑛+1 = 𝑢𝑛 + ∆𝑡 𝑣𝑛 +

1

2
∆𝑡2𝑎𝑛

𝑣𝑛+1 = 𝑣𝑛 +
1

2
∆𝑡 (𝑎𝑛 + 𝑎𝑛+1)

      

 𝛾 = 1/2 and 𝛽 = 1/4, an implicit and unconditionally stable algorithm is obtained 

(average acceleration method) : 

{
𝑢𝑛+1 = 𝑢𝑛 + ∆𝑡 𝑣𝑛 +

∆𝑡2

4
(𝑎𝑛 + 𝑎𝑛+1)

𝑣𝑛+1 = 𝑣𝑛 +
∆𝑡

2
( 𝑎𝑛 + 𝑎𝑛+1)

 

In general : 

Domain Stability 

γ ≤ 1/2 Instable 

1/2≤ γ  et  2β ≤ γ Conditionally stable 

1/2 ≤ γ  et  γ ≤ 2 β Unconditionally stable 

 

3.5.2 CASTEM (PASAPAS) 

The nonlinear dynamic analysis is implemented in Cast3m with the PASAPAS procedure 

(Charras & Di Paola, 2011) and it’s about the resolution of the Newmark algorithm with the 

method of mean accelerations, for which 𝛾=1/2 and 𝛽=1/4 (implicit and unconditionally 

stable).  

This procedure allows to charge the numerical model of the SMART 2013 mockup whit the 

real and detailed seismic inputs prescribed by the project, letting follow the evolution of the 

damage variable step by step. 

The inputs are given under the form of time increments and respective displacements and 

they’re applied to the hydraulics actuators corresponding points at the shaking table level. 

For every step of time increment, a table (TAB1) containing the inputs is created: 

 Model: containing the chain of all the objects describing the physic problem 

formulation, in this case it contains the geometric model of the structure and the 

elements type; 
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 Characteristics: object specifying the materials properties values, it means the type 

of constitutive law (Ricbet, Acier_uni) and the parameters illustrated in the previous 

chapters; 

 Charges: object containing the temporal evolution of the boundaries conditions, it 

consists in a list of imposed displacements given by the seismic action; 

 Times: object specifying the time steps. 

At each time step, the procedure charges the structure starting from the previous results 

(saved in WTABLE) and gives the outputs in another table: common index as time, 

displacements, stresses, deformations (the numerical model presented has no thermic 

dependence), and some complementary information as errors, convergence, saved steps, 

added internal variables. 

A general scheme of the procedure is reported in annex 3. 

 

3.5.3 SEISMIC INPUTS 

The seismic inputs are given to charge the table as vertical and horizontal displacements 

followed by yaw, roll and pitch inputs: 

 

Figure 22: rotations 

The displacements which are going to be imposed are calculated starting from those 

applied to the shaking table, combined also with given rotations, thanks to a Matlab filter:   

DX1F = DYF - 3.305*RZF; 

DX4F = DYF + 3.305*RZF; 

DY2F = DXF + 3.305*RZF; 

DY3F = DXF - 3.305*RZF; 

DZ1F = DZF + 2.125*RYF - 2.125*RXF; 

DZ2F = DZF + 2.125*RYF + 2.125*RXF; 
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DZ3F = DZF - 2.125*RYF + 2.125*RXF; 

DZ4F = DZF - 2.125*RYF - 2.125*RXF; 

Moreover the Matlab filter could also be useful for reducing the number of imposed steps 

when conducting preliminary calculations 

The filtered results could then be applied to the boundary conditions: x2, x4, y1, y3 for 

horizontal directions and z1, z2, z3, z4 for vertical solicitations. 

Because of the enormous number of time inputs provided for each run (10^4), the 

algorithm is initialized with the value of an increment filter set to 2, it means that the 

structure is charged each 2 displacement inputs. 

The firsts imposed displacements considered (RUN#9) are referring to an earthquake of 

about  0.2g. 

Secondly the whole structure had been submitted to the Northridge earthquake 

accelerogram (CA, 1994), leading to accelerations of about 1.7g. 

Then it was considered also one of the Northridge earthquake aftershocks of about 0.2g 

again, but testing the already damaged building. 

Here are reported some of the time-displacements prescribed by SMART 2013. 

 

Figure 23: imposed displacements at RUN#9 

 

3.6 DIFFICULTIES AND PROBLEMS 

The high complexity of the Cast3m model led to several problems during computation. 

A 3D elements model concerns a high number of DOF and adding a nonlinear material 

law, it makes the computational cost very heavy (in this case 6590 points…). 

-2,50E-03

-2,00E-03

-1,50E-03

-1,00E-03

-5,00E-04

0,00E+00

5,00E-04

1,00E-03

1,50E-03

2,00E-03

d
is

p
la

ce
m

e
n

ts
 

time 

dimpx1
dimpx4
dimpy2
dimpy3



 

 
 

 

 

 

44 

The FE method requires in fact to calculate the stiffness matrix for every element, 

including all the internal variables described in the material law, at each displacement 

increment and, as a result of it, the entire process demands some days to finish. 

Storing all the data at each time step occupies a large part of the computer memory so, in 

order to make the storing easier it was chosen insert an algorithm for saving data just 

every 10 load increments, which gives enough information about the displacements and 

damage history. 

Like every approximation process, a convergence criterion is needed: for the global 

problem, it’s set as |𝑓𝑒𝑥𝑡 − 𝑓𝑖𝑛𝑡| ≤ 휀 while for the local iterations the criteria are the ones 

specified above for the internal variables.  

The convergence is not reached in two cases: the maximum number of sub steps had 

been made and the residual is increasing instead of decreasing. 

Considering the weakest seismic load applied, there are no convergence problems until 

the displacements gradient is small but when it starts increasing (e.g. at time 0,9-1,5 in 

RUN#9), the fem program begins to show some difficulties: the number of damaged 

elements grows up quickly during the same load step and the convergence criterion 

diverges. The main trouble is that during this step iteration, all the values become NaN 

(Not a Number). 

The fact that reducing the imposed displacements at 0,1 led to the end of the calculation 

without any non-convergence issue might had suggest that the problem lied in the material 

law: it has been  found out that there’s a non-convexity of the threshold surfaces and it 

brings some issues during the return mapping integration (Oritz & Simo, 1986), together 

with the fact that the complex state of charge imposed is not radial. It was then decided to 

go on with the structural analysis by introducing another concrete’s law: Ricrag model. 

Similar to the previous one, it’s still based on the thermodynamic potential but it’s not able 

to take in account the unilateral effect phenomenon (stiffness gain when switching from 

tension to compression) (Richard B. , Ragueneau, Cremona, & Adelaide, 2010). 

In order to overcome the computational problems, it was suggested to go back to the 

Ricbet model and change the parameters using those (annex 4) computed at CEA (using 

the same constitutive law but applied to a plate model): 

 a smaller crack closure stress to reduce the range where the threshold surfaces 

are having shape issues; 

 a lower precision (10E-3 instead of 10E-8) to facilitate convergence. 
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The problem of reducing precision may withdraw the exact solution of the dynamic 

problem so the results are probably going to be less accurate. 
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4 RESULTS 

In the pursuance of validating the models described in the previous chapters, the results 

have to be analyzed and compared to each other. 

The time history analysis is launched for each one of the seismic inputs and the outputs 

are given in terms of: 

 Acceleration, speed and displacement along the three axes x, y and z, for every 

prescribed point of anyone of the 3 floors; 

 Stress field for all the mesh points; 

 Internal variables, including damage D, for the entire structure. 

Concerning the comparison between the numerical results and the experimental data, the 

displacements and accelerations at ground floor and at the 3rd floor are investigated. 

4.1 RUN#9 

Here are reported the RUN#9 data purchased with the Ricbet constitutive model and 

compared to the experimental data supplied from the benchmark organization committee. 

4.1.1 Displacements 

First of all, the displacements along x and y at the ground floor are compared: knowing 

that the shaking table is a very rigid body, a close similitude between the numerical and 

experimental fields could be expected, for any structure constitutive law. 

This forecast is confirmed in the graphs below: 

 

Figure 24 : Numerical and experimental displacements along x for point A, ground floor 
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Figure 25: Numerical and experimental displacements along y for point A, ground floor 
 

One can expect that at the highest level (3rd floor), the displacements should became 

wider because of mainly two factors: 

1. The asymmetric shape of the structure and the complexity of the imposed 

displacements leads to torsional behaviors, which have to be added to the simple x 

and y displacements; 

2. The constitutive law for concrete gives the structure a deformable-body behavior, 

causing loss of stiffness and incrementing the displacement field. 

This event is confirmed in the table below, where the maximum and minimum 

displacements for each second have been isolated at ground level and at 3rd floor of point 

D, which is expected to be one of the most subjected to the effects mentioned above. 

 

Table 6: Max and min displacements entity at D1 and D3 

second 

Min x Numerical [m] Min x Experimental [m] 

Ground 
level 

3rd floor Ground 
level 

3rd floor 

0 -1,9615E-04 -6,9036E-04 -5,5233E-05 -1,7244E-04 
1 -1,1412E-03 -2,7970E-03 -8,3007E-04 -2,2142E-03 
2 -1,3437E-03 -3,7837E-03 -1,1322E-03 -3,0874E-03 
3 -9,9695E-04 -2,5199E-03 -8,4115E-04 -2,3548E-03 
4 -2,0981E-03 -3,2375E-03 -1,9725E-03 -2,5053E-03 
5 -8,8933E-04 -1,6098E-03 -7,3766E-04 -1,2087E-03 
6 -4,1762E-04 -1,0186E-03 -2,0421E-04 -2,6197E-04 
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7 -3,1650E-04 -7,1540E-04 -1,5086E-04 -1,8067E-04 
8 -9,4715E-05 -3,6328E-04 -4,6644E-05 -9,5803E-05 
9 -1,1412E-03 -2,7970E-03 -5,5233E-05 -1,7244E-04 

 

second 

Max x Numerical [m] Max x Experimental [m] 

Ground 
level 

3rd floor Ground level 3rd floor 

0 5,6668E-06 -7,2383E-05 1,3892E-04 2,0757E-04 
1 1,3330E-03 2,5094E-03 1,3164E-03 2,9684E-03 
2 1,3344E-03 2,7778E-03 1,4907E-03 3,0472E-03 
3 1,8134E-03 3,6435E-03 1,8690E-03 4,0040E-03 
4 1,7267E-03 3,0067E-03 1,6226E-03 2,9506E-03 
5 7,2047E-04 9,0393E-04 7,4542E-04 1,2626E-03 
6 3,2098E-04 2,8261E-04 3,5920E-04 7,5566E-04 
7 7,8742E-05 -1,2806E-04 1,1490E-04 3,3205E-05 
8 2,9895E-05 -1,5352E-04 5,1518E-05 2,9322E-05 
9 1,3330E-03 2,5094E-03 1,3892E-04 2,0757E-04 

 

The numerical data are still in a good correspondence with the experimental ones, as 

shown in fig. 26: 

 

Figure 26: Numerical and experimental displacements along x for point A, 3rd floor 
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Figure 27: Numerical and experimental displacements along y for point A, 3rd floor 
 

4.1.2 Accelerations 

The outputs have been compared also in terms of accelerations and, as it requires two 

derivations in time since the displacements, two constant are lost and the results are 

expected to be less accurate. 

 

 

Figure 28: Numerical and experimental accelerations, point A 3rd floor 
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In order to compare the accelerations, the response spectra have been created as in fig. 

29, and it can be stated that the numerical model could be still considered trustworthy. 

 

Figure 29: Response spectra 
 

4.1.3 Damage 

The complex constitutive law chosen for the concrete nonlinear behavior lets easily identify 

the most damaged parts of the structure thanks to the damage parameter “D”, as shown in 

fig. 30. 

 

Figure 30: damage at times 0 sec, 1.4 sec, 4 sec and 8 sec 
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The damaged zones are mainly evolving during the most intense seismic inputs and they 

seems to be mostly localized: 

 around the windows corners: here there is an accumulation of stresses due to the 

absence of material. More specifically the internal variables of the concrete 

constitutive law are normally averaged in the surroundings of the nodes but the 

presence of a hole in the surface (the window in this case) makes the variables 

being averaged in less space, leading to a concentration of stresses and then 

damage.  

 At the lateral walls bases: these zones are the most solicited by the seismic action. 

In fact the presence of mass in the higher levels causes a great shear force at the 

base, augmented by the torsional effects occurring because of the asymmetric 

shape and loads. 

 In the central column: this damage localization could be explained both because of 

the same shear mechanism acting in the walls, and also because of the presence of 

a rigid floor diaphragm (not deforming in the horizontal plane). 

 

4.2 RUN#19 

This run is characterized by a strong acceleration (1.78g) so that the expected results 

should show an increment of the monitored values, such as displacements lengths, 

accelerations and damage level and area. 

Once again the numerical results seem to be well fitting the experimental ones when 

referring to the displacements field even looking at the 3rd floor. 

 

 

Figure 31: Numerical and experimental displacements along x for point C, 3rd floor 
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Figure 32: Numerical and experimental displacements along y for point A, ground floor 

 

In this case one can notice that the results are a little less accurate than the previous case, 

as the differences between the numerical and experimental peak values highlight (tab. 7): 

 

Table 7: Greater values for the difference of peak values than RUN#9 

second 
Numerical Experimental  

min x min y min x min y diff x diff y 

0 -6,7006E-04 -8,8576E-04 -6,2235E-04 -1,8468E-03 6,1653E-08 -2,6262E-06 
1 -1,8446E-04 -1,3822E-03 -3,9132E-04 -3,6652E-04 -1,1910E-07 1,7761E-06 
2 -2,1596E-03 -2,0515E-03 -2,4377E-03 -1,3528E-03 -1,2785E-06 2,3788E-06 
3 -2,5166E-03 -1,7629E-03 -2,4790E-03 -1,8037E-03 1,8828E-07 -1,4563E-07 
4 -2,0124E-03 -3,0349E-03 -2,0701E-03 -6,5445E-04 -2,3540E-07 8,7826E-06 
5 -3,3591E-03 -6,8851E-03 -5,2978E-03 -1,9911E-03 -1,6783E-05 4,3440E-05 
6 -1,2297E-02 -1,8973E-02 -1,8756E-02 -2,4486E-03 -2,0055E-04 3,5399E-04 
7 -1,3158E-02 -8,0813E-03 -2,2641E-02 -1,0311E-03 -3,3945E-04 6,4245E-05 
8 -3,2297E-02 -1,8580E-02 0,0000E+00 -2,2811E-03 1,0431E-03 3,4002E-04 
9 -3,3012E-02 -1,5066E-02 -3,1328E-02 -1,8468E-03 1,0830E-04 2,2356E-04 

10 -6,6475E-03 -7,7582E-03 -3,5857E-03 -1,8468E-03 3,1332E-05 5,6779E-05 
 

second 
Numerical Experimental  

max x max y max x max y diff x diff y 

0 5,9271E-04 5,9174E-04 1,8754E-03 8,5105E-04 -3,1656E-06 -3,7413E-07 
1 1,6068E-03 1,6261E-03 1,1787E-03 1,1713E-03 1,1926E-06 1,2720E-06 
2 8,6875E-04 1,5533E-03 3,2113E-04 1,1713E-03 6,5160E-07 1,0409E-06 
3 1,6804E-03 2,2579E-03 1,0849E-03 1,5272E-03 1,6467E-06 2,7660E-06 
4 1,5105E-03 2,4863E-03 1,7910E-03 2,1950E-03 -9,2596E-07 1,3634E-06 
5 2,8228E-03 4,7615E-03 4,4419E-03 4,9033E-03 -1,1762E-05 -1,3708E-06 
6 8,0811E-03 1,0031E-02 1,4032E-02 9,7339E-03 -1,3160E-04 5,8720E-06 
7 7,2962E-03 1,5146E-02 1,4537E-02 1,6204E-02 -1,5809E-04 -3,3178E-05 
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8 1,6715E-02 9,9989E-03 2,0910E-02 1,4693E-02 -1,5785E-04 -1,1591E-04 
9 3,8591E-02 1,3321E-02 3,6787E-02 2,3204E-02 1,3598E-04 -3,6099E-04 

10 1,5307E-02 1,6535E-02 1,1953E-02 1,4032E-02 9,1448E-05 7,6490E-05 
 

 The difference of the squares of the peak values was generally 10 times smaller in 

RUN#9, but these values are acceptable anyway. 

Comparing the global displacements history, as it stands out in fig. 33, one can notice that 

the points D and C are the most influenced by torsional effects, and that the torsional 

center lies next to point A: it could be explained thanks to the presence of the two main rc 

walls crossing in point A, giving a major value for stiffness around this corner. 

 

Figure 33: Displacements at each monitored point, 3rd level 
 

 

 

 

4.2.1 Damage 

As for the previous run, the damage-based model for concrete behavior let easily identify 

the zones in which nonlinearities occurred (fig. 34). Once again, the most injured parts are 

those at the lateral walls bases and around the windows corners, in addition to the central 

column where the horizontal slabs are anchored.  
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Figure 34: Damaged zone at the end of RUN#19 
 

4.3 RUN#23 

The last test is about an “aftershock”: a weaker earthquake occurring a few time after a big 

one. 

During the experimental tests, this seismic signal has been submitted to the structure 

already damaged by the Northridge earthquake (RUN#19). 

Knowing that the numerical model is working properly, this run could be used to mark the 

differences between a “healthy” structure and a damaged one.  

Here are reported the displacements curves: 

 

Figure 35: Numerical and experimental displacements along x for point A, 3rd floor 
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Figure 36: Numerical and experimental displacements along y for point A, 3rd floor 
 

It is clear that the experimental displacements, corresponding to a damaged structure, are 

much greater than the numerical ones, corresponding to the healthy structure. This fact 

could be explained by highlighting the fact that during an earthquake the building is going 

to damage, leading to a loss of stiffness 

 Moreover the disposition of the experimental peak values “not in phase” with those 

numerical, is confirming the stiffness loss: the structure period is strictly connected to the 

stiffness matrix through the expression 𝜔 = √𝑘 𝑚⁄  . 

 

 

 

4.4 Strength Reduction Factor 

The seismic analyses have been carried on once again by giving materials a simply linear 

elastic constitutive law and what stood out is that, for the RUN#9, the results remain the 

same as for considering nonlinear material (as shown in fig. 37): it means that during a 

0.2g earthquake, this structure mainly remained in the elastic field. 
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Figure 37: Non-linear and elastic models displacements along x, 3rd floor 
 

Considering the major intense earthquake in RUN#19, the damage evolution affects more 

seriously the building bases so that a different response between elastic constitutive law 

and the inelastic one can be easily predicted. As it is highlighted in fig 35, the elastic 

response in terms of displacements is wider despite the inelastic one: that’s because with 

the elastic constitutive law, the structure has no dissipation mechanisms and no loss of 

stiffness represented. 

 

 

Figure 38: Elastic and inelastic models displacements, point C 3rd floor 
 

In the engineering practice it means that building up a structure resisting to an earthquake 

without damaging would require bigger dimensions in design and more material quantities 

and, as a consequence of it, increasing costs. 
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On the other side it’s more common, in everyday practice, to carry on elastic equivalent 

analysis because they don’t demand very high computational costs and, in the pursuance 

of keeping in account dissipation mechanisms due to nonlinearities, several Strength 

Reduction Factors have been developed. 

One of the first developed principles is that the lateral strength, in seismic design, is much 

higher than the real lateral strength needed to keep the structure in the elastic domain and 

it can be reduced by the ratio: 

𝑅𝜇 =
𝐹𝑦(𝜇 = 1)

𝐹𝑦(𝜇 = 𝜇𝑖)
 

where above there is the lateral yielding strength for maintaining the system elastic, while 

under there’s the lateral yielding strength to maintain the displacement ductility under a 

maximum tolerance (Miranda & Bertero, 1994). 

Nowadays in the Eurocode 8 are reported specific reduction factors, which have to be 

applied to the design spectra in order to reduce the seismic forces. In this case of study in 

particular it has been chosen to calculate the reduction factor as 

𝑞 =
𝑑𝑒

𝑑𝑠
 

where ds is the average value for the interstorey drift for the nonlinear model, and de is the 

interstorey drift for the elastic model. 

Table 8: Strength reduction factor for displacements D3 
del/ds 

Min x  Min y Max x Max y 

9,9744E-01 1,0028E+00 9,3018E-01 9,9835E-01 
1,0016E+00 9,8843E-01 1,0018E+00 1,0014E+00 
9,9720E-01 9,9999E-01 9,9865E-01 1,0011E+00 
1,0004E+00 9,9875E-01 9,9787E-01 1,0004E+00 
1,0599E+00 1,0007E+00 1,0036E+00 1,0003E+00 
1,0016E+00 9,8774E-01 1,0018E+00 1,0014E+00 

  
  
  
  
  

1,0185E+00 9,2862E-01 1,1660E+00 1,1660E+00 
1,3200E+00 1,7339E+00 1,1177E+00 1,1177E+00 
1,2921E+00 9,1190E-01 1,3689E+00 1,3689E+00 
9,1867E-01 1,1040E+00 9,2552E-01 9,2552E-01 
1,7519E+00 8,3047E-01 6,9517E-01 6,9517E-01 

Average 1,1236E+00 1,0183E+00 1,0402E+00 1,0251E+00 

 

The reduction factor q found in this case corresponds to 1,12 after choosing to consider 

the major value from those calculated.  
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5 CONCLUSIONS 

The benchmark project SMART 2013 was launched with the aim of raising the knowledge 

on torsional and nonlinear behavior of RC structures in order to predict their vulnerability 

when a seismic event occurs. In order to that, the campaign organizers are charged of 

comparing and validating the various approaches used for the dynamic responses. 

The LMT Cachan is taking part to the project and built his own numerical model: 3D cubic 

elements are chosen for a more detailed representation of the perimetral walls and the 

central column, while elastic plates are modeling the floor diaphragms and beam element 

well-fitting the reinforcement steel bars. After explaining the importance of taking in 

account the shaking table, its plate elements model provided by CEA is assembled to the 

superstructure one. Once the assumptions made for the numerical model have been 

validated by a modal analysis and an elastic calibration, the nonlinear constitutive laws for 

steel bars and concrete are presented: a simple uniaxial model (Menegotto-Pinto) adapted 

to represent a cyclic behavior for the steel, and the Ricbet model for the concrete. This last 

one had been implemented to recreate softening and damage in tension, internal sliding 

and kinematic hardening with stiffness recover (unilateral effect) thanks to a cracks closure 

variable, and plasticity with isotropic hardening in compression. A regularization technique 

based on fracture energy is then explained to avoid mesh dependency. 

The time-history dynamic analysis principles are later on reported and set up with the 

prescribed seismic inputs: the numerical computation generated some problems due to the 

high computational cost required and some non-convergences caused by non-radial 

loadings.  

After having examined numerical and experimental results in terms of displacements, a 

good correspondence between the two data sets can be stated, both for the weaker and 

the strongest earthquakes. As expected, at the base level there are no remarkable 

differences between numerical and experimental displacements values, growing up when 

looking at the 3rd floor: the numerical displacements seem to be a slightly wider than the 

experimental ones but still satisfying. 

Damage is mainly localized at the structure bases, as an effect of shear and torsion 

induced by the seismic solicitations and his values are increasing as the strength of the 

earthquake increases. 

In conclusion I can say that the numerical model computed, coupling 3D elements and 

Ricbet continuum-damage-based constitutive law is capable of a very good representation 



 

 
 

 

 

 

59 

of a reinforced concrete building behavior under seismic loads, even when torsional and 

local phenomena occur. 

This procedure could then be used as a seismic behavior predictor for new and existing 

building when the knowledge of the possible zones of failure want to be arisen, especially 

when considering strategic structures such as nuclear centrals. 

This analysis model is useful also for further studies about the difference between the 

seismic response of an intact building and an already damaged one. 

More research may be conducted in the pursuance of optimizing the computational cost, 

which is actually very high, and making this model useful for ordinary seismic analyses.  
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ANNEX 1: MOCK-UP GEOMETRY 

 

 

Figure 39: Mock-up foundations 

 

 
Figure 40: Elevation walls with windows 



 

 
 

 

 

 

63 

ANNEX 2: CONCRETE PARAMETERS VALUES 

 

 

Figure 41: Concrete parameters prescribed by CEA 
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ANNEX 3: PASAPAS ALGORITHM 
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Figure 42: PASAPAS and UNPAS algorithms 

  



 

 
 

 

 

 

66 

 

ANNEX 4: CEA PARAMETERS VALUES 
 

 

Table 9: CEA concrete parameters for Ricbet 

Properties Variables Values 

Density ρ [kg/cm3] RHO 2300  

Poisson’s coeff. Ν NU 0.2 

Hardening modulus 1 GAM1 7.2E7 

Hardening modulus 2 A1 8.0E-6 

Closure stress [MPa] SREF -3.2E7  

Brittleness in tension ALDI 5.92E-3 

Yield surface 1 AF 0.72 

Yield surface 2 BF 

 

0.27 

Plastic potential 1 AG 0.63 

Plastic potential 2 BG 0.45 

Yield hardening 1 AC 3.1E10 

Yield hardening 2 BC 700.0 

Asymptotic stress in compression 
[MPa] 

SIGU -4.0E6   

Initial compression strength [MPa] FC 6.0E7  
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ANNEX 5: ACCELEROGRAMS 
 
Table 10: seismic inputs 

Run PGA (g) Type 

9 0.20 Real – Design signal - nominal 

11 0.20 Scaled – Northridge earthquake – step 1 

13 0.40 Scaled – Northridge earthquake – step 2 

17 0.80 Scaled – Northridge earthquake – step 3 

19 1.78 Real – Northridge earthquake – nominal 

21 0.12 Scaled – Northridge after shock – step 1 

23 0.37 Real – Northridge after shock – nominal 
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