

UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA DELL9INFORMAZIONE

Master Degree: Computer Engineering

Curriculum: Bioinformatics

Computational methods to analyze biological networks

from transcriptomics data

Academic Year: 2024-2025

Graduation Date: 5th December 2024

Student:

Lucchiari Alessandro

Supervisors:

Prof. Baruzzo Giacomo, PhD

Prof. Di Camillo Barbara, PhD

Dott. Cesaro Giulia

2

3

4

5

Abstract

The regulation of biological processes within each single cell governs all the main cellular

mechanisms aimed at the development, differentiation, and proper maintenance of the cell

itself. It determines, at the tissue level and more generally at the organism level, the actual

role assumed by the cell. It is of vital interest to the scientific and biological community to

establish precisely how such regulatory processes are concretized in various cell types,

whether they are considered healthy or diseased. Understanding these mechanisms necessarily

involves identifying and sequencing the gene products that each cell synthesizes and

possesses at a given moment. The technique at the core of this cellular study is called single-

cell analysis, which is capable of generating multi-omics data that represent all the main

regulatory mechanisms occurring within the isolated and analyzed cells. This technology can

be considered as the basis for a more accurate study of the roles' heterogeneity exploited by

cells within their respective tissues. In this regard, an effective representation of such

processes is provided by gene regulatory networks, a tool of particular interest to the

biological and scientific community. However, the inference of such networks remains an

unresolved issue, with methods that are not simultaneously effective and efficient. This

situation is further complicated by the need to study data from single-cell analyses and multi-

omics data, which have a significantly larger dimension than the sequencing data obtained

from previous generation technologies.

This work aims to analyze two bioinformatics methods for the inference of gene regulatory

networks, highlighting their biological potentials and computational limits. Of particular

interest, in evaluating these methods for real applicability in experiments with single-cell and

multi-omics data, is the scalability of the processes used by such software. This property is

also evaluated based on the possibilities for parallelization that these software packages

present already in their implementation.

This analysis aims to evaluate potential computational improvements, also utilizing the

capabilities of parallel computing on GPU architectures. The main tools used to implement

these modifications are software libraries considered state-of-the-art in parallel computing,

coupled with GPU structures capable of fully exploiting their potential.

The improved versions of the two bioinformatics methods show significantly reduced

execution times compared to those obtained from the original version, with comparable use of

memory and resources.

6

Index

Abstract ... 5

Index ... 6

1. Introduction .. 9

1.1 Single-cell technology ... 10

1.2 Gene Regulatory Network Inference ... 14

1.3 Gene Regulatory Network Inference on single-cell RNA sequencing data 16

1.4 Study presentation .. 18

2. GPU Computing Technologies ... 21

2.1 Nvidia Parabricks ... 21

2.1.1 Main Features ... 21

2.1.2 Software Overview ... 22

2.1.3 Requirements .. 24

2.1.4 Performances .. 25

2.2 Nvidia Rapids .. 26

2.2.1 Main Features ... 27

2.2.2 Software Overview ... 27

2.3 Rapids-singlecell ... 28

2.3.1 scverse and anndata .. 28

2.3.2 Rapids-singlecell Features and Performances .. 30

3. Gene Regulatory Network Inference .. 33

3.1 PANDA Algorithm .. 33

3.2 LIONESS Algorithm ... 41

4. PANDA Performance ... 47

4.2 Datasets .. 47

4.3 Time and memory analysis .. 50

4.3.1 Time performance .. 50

4.3.2 Memory usage .. 55

4.3 Results Analysis ... 56

4.4 LIONESS ... 58

5. Improvements to the PANDA Algorithm ... 61

5.1 Loading the Expression Matrix ... 61

7

5.2 Calculating the Correlation Matrix .. 64

5.3 Results Achieved ... 67

6. Conclusion .. 71

6.1 Limitations and potential future improvements ... 72

Bibliography ... 75

Acknowledgments .. 78

8

9

1. Introduction

The ability of a cell to differentiate itself and to modify its biological processes in response to

external stimuli is a fundamental characteristic of living organisms [1,2,3]. The instructions

for performing these adaptive mechanisms are encoded within DNA, owned by each cell of

the same organism. Despite sharing an identical genetic blueprint, cells can perform highly

specialized functions, fulfilling distinct roles in the same organism. This apparent paradox is

explained by the central dogma of biology [4,5], which states the unidirectional flow of

genetic information: from DNA to RNA, through the transcription process, and from RNA to

protein via translation. This tightly regulated process controls the protein synthesis, enabling

the cell to orchestrate all the biological pathways essential for the organism. The synthesis of

a specific protein can be up or downregulated or modulated by the promotion or the inhibition

of the expression of each gene contained in the DNA.

Gene expression is the process through which a specific gene product is synthesized and

involves multiple layers of regulation, including signal transduction and post-transcriptional

modification [6,7]. Among these, transcriptional regulation has an important role: the

regulation of the transcription process can be modulated by specialized proteins, such as

repressors and promoters. In this set of controlling proteins, a fundamental role is exploited by

the Transcription Factors (TF). These proteins can bind to specific sites in the DNA sequence

(regulatory or binding sites), and orchestrate the regulation of the downstream target genes.

The transcriptional activity of these genes, reflected in the quantity of RNA transcripted and

subsequently translated into protein, depends directly on the action of this type of protein.

Transcription factors, as proteins themselves, are subject to a multitude of regulatory

mechanisms, including feedback loops and interactions with other signaling molecules. This

further degree of regulation adds a complexity layer to this fundamental biological process

and underlines the importance of all the TFs involved.

For the scientific community, understanding the details of regulatory processes and

comprehensively evaluating the biological mechanisms occurring within the cells of a

considered sample can be considered a crucial goal. In this sense, the development of a model

capable of representing these regulatory processes in a structured and biologically meaningful

form is essential and has found a realization in the gene regulatory network (GRN) [8,9].

Visualized in Figure 1, this representation can collect all the interactions among all the

regulatory components, such as TF, and repressors, using a coherent structure.

10

Figure 1: Graphical representation of a GRN: each node is a gene, a protein, or a biological

process, and each arc represents the regulation executed from one node on the other. Image

taken from [10].

The evaluation of the gene regulation of a given sample can be conducted by quantifying the

RNA copies produced within the sample9s cells, through a next-generation sequencing

technique called RNA-seq [11,12]. This analysis can be classified as next-generation

sequencing because exploits a high-throughput approach to sequence a massive number of

reads, fragments of 50 to 400 bases obtained by the double-stranded DNA complementary to

the RNA analyzed fragments (ds-cDNA). While the first part of this procedure is executed in

vivo in a wet lab and has as output the sequences of the basis of each read considered, the so-

called secondary analysis is executed in silico and, after steps needed to identify which gene

is responsible for the presence of each read, generates as output a gene expression matrix.

This matrix is composed of the amount of RNA copies associated with each gene (the rows)

and each sample (the columns). One of the most relevant parameters of this matrix is the

sequencing depth: the number of RNA copies annotated for each sample.

Once the expression matrix has been generated, the tertiary analysis can be executed aiming

to obtain relevant information about the statistically significant differences among all the

samples considered, such as the differential abundance of a set of genes of a specific sample

subset. This last phase has become even more significant thanks to a new sequencing

approach: the single-cell technology.

1.1 Single-cell technology

A relevant limitation of the sequencing and analysis methods presented so far is the inability

to capture the biological materials synthesized at the individual cellular level. The specific

biological processes that each cell carries out in response to external stimuli or during its

differentiation are aggregated together and consequently obscured. This limitation hinders the

11

identification and high-resolution representation of the heterogeneity exhibited by individual

cells within a sample, a critical feature in organisms where cellular differentiation is an

impactful property.

The sequencing technique that has revolutionized these aspects, changing the perspective

from analyzing groups of cells to considering each cell as a distinct and separable element, is

single-cell technology [13]. This technique can be defined and recognized as a cellular-level

sequencing process capable of quantifying the biological products synthesized by each cell

within a sample. This technology goes beyond just the analysis and sequencing of the cellular

transcriptome; it extends its potential to the characterization of the proteome and genome of

individual cells, opening a new and revolutionary way to evaluate the biological processes

occurring in the examined tissue at the moment of detection.

This technique was developed with the idea and goal of highlighting the specific biological

processes of each cell belonging to the considered tissue or sample, in particular, to evaluate

all the biological compounds, such as proteins, nucleic acids like RNA in its various forms,

and DNA, that a cell possesses at the time of analysis. The key principles that distinguish this

technique from previous ones can be identified as follows:

• Cell isolation: Each cell considered in this type of analysis results distinctly separated

from others, ensuring a more accurate representation of sample heterogeneity and

avoiding biological contamination between distinct cells.

• Measurement sensitivity: The biological compounds of each cell can be quantified

more precisely, despite the different scales of quantities they represent compared to

the genetic and protein materials measured by sequencing technologies that operated

at the level of cell groups.

• Cellular resolution: Single-cell technology prioritizes the identification of biological

materials assembled at the cellular level. This key principle must be actualized through

the ability to distinguish cellular differences, even when they are minimal, such as in

cells with similar functions and where comparable biological mechanisms are applied.

The first fundamental step in conducting a single-cell sequencing analysis is the identification

and isolation of cells deemed biologically relevant from the target organism. This phase can

be executed through several techniques that, all presenting high sensitivity and cellular

resolution, can accurately preserve the heterogeneity of the sample. Common single-cell

isolation techniques include sorting, which, through fluorescence (FACS) or magnetism

(MACS), can label with detectable antibodies selected cells considered interesting for study

12

during the identification phase; microfluidics, in which individual cells are isolated using

miniaturized devices for the flow of microscopic fluids; and micromanipulation, where

micropipettes and lasers are used to collect the biological materials contained within the

identified cells. Once the relevant cells for the considered study case are identified and

isolated, the collected biological material has to be sequenced. The characteristics of this

phase naturally differ based on the type of biological material that has been collected from the

cells, which usually, given the scientific relevance of such topics, involves the proteome,

genome, or transcriptome. Transcriptome analysis is particularly important and interesting as

it provides critical insights into the biological processes occurring within each cell,

characterizing its role in the context of the analyzed sample [14].

This sequencing technology focuses on the gene expression of each cell considered in the

reference sample. The main biological material of interest for this analysis is the messenger

RNA (mRNA) produced during the transcription phase of the genetic information contained

within the DNA. Considering the process carried out to perform this analysis, the isolation of

individual cells and the extraction and purification of the mRNA are followed by the

amplification and conversion of this nucleic acid into complementary DNA (cDNA) through

the reverse transcription reaction. To ensure stability and traceability, each cDNA read is

uniquely tagged with a molecular barcode (UMI). This barcode allows the association of each

read with its cell of origin, preserving essential cell-specific information during subsequent

processing. Following this initial phase, sequencing is carried out using high-resolution

sequencers such as Illumina or Nanopore. The characteristics and advantages of NGS

technologies can also be applied in this type of analysis, ensuring the sequencing of a large

number of reads and thus representing even low-expressed genes within individual cells. [15]

The bioinformatics pipeline following this sequencing phase is similar to the one usually

employed for bulk cell transcriptome analysis. The main activities that can be identified in

this pipeline, in order of execution, are data pre-processing to remove technical errors and

low-quality sequencing reads; quantification of gene expression by associating each read with

the gene from which it was transcribed; cell clustering, where subgroups or communities of

cells with similar transcriptomic characteristics can be identified from the gene expression

matrix, or evaluating differences in the abundance of detected gene expression; and finally,

visualizing and biologically interpreting the results through dimensionality reduction

operations and statistical analysis of the obtained data.

At the end of the secondary analysis process, a gene expression matrix is generated where

each column is uniquely associated with the gene expression of a single cell, providing the

13

possibility to analyze the heterogeneity of the considered cell sample with high resolution and

high sensitivity, characteristics that are entirely unattainable using previous sequencing

technologies. Another significant advantage of this type of technology is its applicability; in

fact, this method imposes no limits regarding the type of cells whose transcriptome can be

analyzed, leading to a series of possible case studies ranging from the spatial analysis of

tumor processes to the investigation of the development of drug resistance in specific cells.

Despite the evident advantages that this technique brings to the study of the transcriptome,

some limitations can become important challenges to the application of this technology, such

as:

• Complexity in sample preparation, requiring high accuracy and sensitivity during the

initial phase of isolation and processing of messenger RNA fragments;

• Cost and need for advanced instrumentation, requiring highly specialized laboratory

tools;

• Management of extremely large datasets, due to the increase in data collected from

cellular-level analysis, which can become a significant limitation regarding

computational capacity, especially in the case of comparing gene expression between

different patient groups;

• The necessity of specialized bioinformatics software to analyze this type and large

volume of data, an aspect that programs must manage in terms of both time efficiency

and memory usage.

While this sequencing technique provides data about the gene expression on an individual cell

level, other analyses generate information about other relevant aspects of the molecular

biology of the sample considered. For example, the study of the genome, the proteome, the

microbiome, and the epigenome can produce relevant notions able to characterize the

biological processes of the considered organisms. A holistic approach able to combine all

these types of data, generically called 8multi-omics9 data, is the horizon for the scientific

community. This new type of approach needs to interface with, not only different data types

but also, an unprecedented scale of data. The complex biological big data, originating from

the combination of multi-omics data, introduces a unique set of challenges: to be analyzed it

demands significant computational requirements (in terms of optimized software and

advanced hardware) that can become the bottleneck for the entire workflow analysis process.

A relevant case study in which the computational requirements can be considered as a

possible process limitation is the GRN inference.

14

1.2 Gene Regulatory Network Inference

The ability to infer biologically significant GRNs has become essential for the scientific

community. A reliable GRN that accurately represents the biological processes in a patient9s

cell sample can provide critical insights. In particular, areas and purposes where the inference

of this tool can be decisive include the analysis of the characteristics of GRNs associated with

patients suffering from diseases that have altered regulation of expression, such as diabetes,

cancer, or autoimmune disorders. It is therefore evident that the representative capacity of a

GRN should be regarded as the main characteristic to be obtained from the inference of the

network itself.

Despite the importance of this tool and the attention of the scientific community towards the

development and research in this field, some elements slow down or prevent the

implementation of a representative and efficient GRN inference method, especially when

using data not derived from single-cell technologies [16,17].

The first issue is biological complexity: developing an inference method that can accurately

represent biological processes despite the inability to capture the intrinsic cellular

heterogeneity of the samples and tissues analyzed in a case study becomes a challenging

problem. In particular, the gene expression deduced from bulk data analysis represents a

cumulative view of all the biological processes occurring within the cells composing the

sample, and thus the inference of a network from this type of data will not be able to represent

the intrinsic heterogeneity of the sample itself. An additional layer of complexity in GRN

inference is represented by the non-linearity of gene regulations. Indeed, the mechanisms that

orchestrate regulatory processes cannot all be effectively inferred using a linear model, as

there are many biological mechanisms regulated through activation or repression thresholds.

These types of regulation do not guarantee a proportional relationship between changes in the

expression of a transcription factor (TF) and the actual changes in the expression of the target

gene. Another example of biological complexity that is challenging to represent using additive

models is regulation through protein complexes: TFs can be combined to carry out their

regulatory functions and the variation of just one of these components does not directly cause

a proportional increase in gene expression unless it is adequately assisted with the regulation

of the other TFs.

Alongside these biological limitations, there is a computational problem: considering the need

to represent the regulation of several genes in the order of tens of thousands, the amount of

data to be inferred4i.e., the weight of each arc connecting two generic nodes4becomes

15

difficult to manage in terms of execution time and memory required when using sequential

computational approaches. In addition to these two significant limitations, other problems

arise, such as the effects of noise or the incompleteness of sequencing data on the inferred

network, the difficulty of scientifically validating whether the obtained network is

representative of the acquired biological sample or the challenge of inferring and interpreting

GRNs based on an approach that uses only one type of data.

Over the years, various methods for inferring these types of networks have been implemented,

based on approaches that tackled this problem from different perspectives, yielding methods

with differing characteristics and performances. The first approach is based on calculating the

correlation between the expression of each pair of genes, leveraging statistical tools such as

Pearson's correlation coefficient. This set of methods aims to identify the nature of regulatory

relationships assuming a dependency (linear in the case of calculating Pearson's correlation

coefficient, non-linear when using Spearman's correlation coefficient [18,19]) between each

regulatory gene and its respective target gene. Such an assumption, as explained previously, is

reductive for a significant number of biological mechanisms, preventing the inferred networks

from effectively representing more complex or indirect regulatory relationships.

Another type of approach for inferring GRNs is based on linear regression methodologies

[20]. By leveraging the potential of regression techniques or penalized regression, such as

LASSO and elastic net, it is possible to infer the regulatory relationships between regulatory

genes and target genes, resulting in GRNs that are more representative than those obtained

through simpler methods.

One of the most recent and relevant approaches has been achieved with Bayesian networks

[21]: probabilistic models that leverage directed acyclic graphs (DAGs) to represent, in this

case, the conditional dependencies inferred among the considered genes. This approach,

despite the high computational cost in the case of large datasets, proves particularly effective

in inferring the relationships of gene expression regulation, maintaining robustness even with

noisy input datasets. Another improvement that this approach has implemented, compared to

the previously presented, is the ability to model and infer causal relationships between genes,

establishing which one regulates the other. The main limitations of this methodology lie in the

indispensable use of directed acyclic graphs, which consequently prevent the representation of

cyclic regulatory biological processes, and the computational inefficiency in the case of large

datasets. This latter limitation, in particular, is the most stringent from the perspective of

computational biology, which is oriented towards analyzing large quantities of data, such as

those originating from single-cell analyses or multi-omics approaches.

16

1.3 Gene Regulatory Network Inference on single-cell RNA sequencing data

The inference of a GRN aimed at accurately representing the regulatory biological processes

of gene expression at the cellular level is currently one of the most important fields of

research and development in computational biology. The ability to infer GRNs from single-

cell gene expression data would be considered a fundamental tool for studying, analyzing, and

validating scientific theories regarding the mechanisms that lead each single cell to

characterize the synthesis of its genetic products, such as RNA and proteins. The advantages

and possibilities that this tool could bring are related to the level of resolution that this type of

data, provided as input, can guarantee, along with the use of a biologically representative tool

such as a GRN [22]. These can be summarized as:

A more accurate representation of the heterogeneity of a biological sample: By isolating,

characterizing, and abstracting the processes that occur in every single cell, rather than relying

on the cumulative gene expression of bulk data, it is possible to represent the heterogeneity

within a sample in a specific and accurate GRN.

Creating GRNs representing the metabolic processes of transition and differentiation: By

considering only the cells that are differentiating, such as stem cells, or that are changing their

gene expression, as in the case of tumor cells, the GRN obtained would represent the common

processes regulating such complex mechanisms.

Obtaining GRNs of specific cells: By enhancing accuracy at the single-cell level, the study of

cellular biological processes can be directed towards specific cells deemed scientifically

relevant, whose gene expression could not be identified by considering the common

properties of bulk cells.

The methods that have been studied and developed for the inference of GRNs from gene

expression data can also be applied to this particular data type. At the same time, the

limitations and issues characterizing these methods are amplified by the different scales of

complexity that this type of biological data presents. In particular, methods that rely on

calculating the correlation between gene pairs to establish the expression regulation present

additional limitations when applied to scRNA-seq data: due to the heterogeneity of these data,

inferring the potentially unique mechanisms regulating the processes of each single cell

becomes even more complex. Linear regression models can improve their performance in

terms of biological accuracy by leveraging a greater amount of data; however, they remain

limited by the requirement of linearity of the relationship in gene expression regulation.

17

Similarly, Bayesian models, despite the robustness to noise commonly found in single-cell

data and the capacity to represent more complex and realistic gene regulatory relationships

than previous models, have representation limitations due to the need to use directed acyclic

networks. Another fundamental limitation of this approach is the computational scalability,

which hinders the real applicability of these methods on significant-sized datasets, such as

those produced by single-cell sequencing.

More advanced approaches for inferring networks from scRNA-seq data leverage the

potential of machine learning and deep learning to describe gene regulatory relationships

more accurately and complexly. In particular, algorithms like SCENIC [23] or GRNBoost2

[24] are optimized for analyzing large quantities of data, and algorithms that utilize Graph

Neural Networks [25] represent a significant increase in inference capabilities, even for the

most intricate gene relationships. However, the limitations that these methodologies present

are difficult to overcome, as they are due to the intrinsic nature of these approaches, such as

the training phase requirements: is challenging to provide in practical reality a considerable

amount of data distinct from those used for the real application of the algorithms; and the

difficult biological validation of the results represented within the inferred networks.

Using single-cell gene expression data as a starting point introduces additional challenges to

the already complex task of GRN inference. These challenges arise from the inherent

characteristics of single-cell data, such as technical sequencing errors and the sparsity of the

gene expression matrix, which typically results from the nature of gene expression and

technical limitations of single-cell RNA sequencing (scRNA-seq) technologies [26]. To

address these issues, it is essential to implement robust preprocessing and noise reduction

strategies. Key approaches include the imputation of Non-Biological Zeros and data

normalization[27,28]. By applying these preprocessing techniques, the biological

representativeness of scRNA-seq data can be significantly enhanced, providing a more

reliable foundation for GRN inference.

Other complexities related to the study of scRNA-seq data cannot be easily overcome.

Limitations such as the high dimensionality of these data have significant impacts on the

actual efficiency that GRN inference algorithms can aspire to achieve. Indeed, despite the

capacity of certain inference methods to handle large amounts of gene expression data as

input, the main obstacle is the temporal and memory efficiency that such approaches can

reach using their sequential implementation. An algorithm capable of inferring a GRN from a

large single-cell sequencing dataset within an impractical timeframe or requiring excessive

18

memory is of limited practical utility. The computational efficiency of such methods, using

scRNA-seq data as a starting point for inference, becomes fundamentally important in this

application. [29]

1.4 Study presentation

From this brief overview of two of the most current objectives of the biological and

bioinformatics scientific community, the inference of GRN and the effective integration of

scRNA-seq data into the analysis pipeline, it is evident that there is a need for a tool capable

of performing these tasks while respecting the time and memory constraints imposed by the

real applicability of such methods. The main problem that unites all the methods presented for

the inference of GRN from single-cell data is the scalability of these approaches to gene

expression matrices with a potentially much higher cell count than those generally considered

for bulk data bioinformatics analysis.

Once the importance and complexity inherent to this topic are established, it is necessary to

consider an implementation approach for the realization and optimization of inference

methods that can handle this scale of biological data and, at the same time, integrate

information from different data types to ensure the biological significance and relevance of

the results. In this perspective, this study aims to analyze and optimize two algorithms,

PANDA and LIONESS [30,31], capable of generating, from multi-omics data, GRNs that

represent the biological processes characterizing the considered sample-specific GRNs

associated with individual samples or, in the case of input scRNA-seq, individual cells. This

study focuses on leveraging parallel computation to execute the most resource-intensive tasks

associated with this pair of methods, optimizing both computation time and memory usage.

This choice aims to obtain inference algorithms with scalability that allows the workflow to

remain executable in real analysis contexts.

This study begins with a presentation of the main software suites developed to efficiently

manage parallel computing through the use of GPU architectures. The software presented in

Chapter 1 represents the state-of-the-art in this computational field, and its presentation aims

to highlight all the performance potential when applied to important processes commonly

performed sequentially, even in the bioinformatics field, such as Whole Exome Analysis.

Following the presentation of the state-of-the-art parallel computational methods, the two

GRN inference algorithms are introduced, focusing on the characteristics that make them

scientifically interesting, such as the message-passing approach underlying PANDA or the

possibility of inferring sample-specific GRNs using LIONESS. A detailed explanation of the

19

mathematical tools that ensure the biological significance of the inferred networks is then

presented, outlining all the steps involved in these two workflows.

Given the importance of the scalability issue for the study case of scRNA-seq data in the

applicability of GRN inference algorithms, it is necessary to evaluate the performance in

response to variations of biologically and computationally significant parameters, such as the

cell count, the hardware setup, and the sparsity of the regulation matrices. The results

obtained will be evaluated based on the execution times associated with each part of the

program, the memory occupied, the actual scalability, and the impact of the already

implemented parallelization.

Once the performance analysis of these methods is completed, a code analysis, aimed at

parallelizing the processes identified as time-limiting in the previous study, is presented. This

implementation takes advantage of the capabilities of the parallel computing packages

exposed in Chapter 1, assigning the identified processes to software that represents the state-

of-the-art computational fields. Finally, this study presents an evaluation of the improvements

that such modifications have on the temporal performance of the two algorithms, comparing,

using the same input dataset size and hardware structure, the scalability of this optimized

version with the previously analyzed implementation of PANDA.

The presentation of the results obtained through parallelization, along with the limitations

characterizing the version proposed in this study and the possible future developments,

represent the final part of this work. This study lays the groundwork for future improvements

to these biologically and computationally interesting algorithms to enhance their scalability

and applicability in significant cases of multi-omics single-cell data studies.

20

21

2. GPU Computing Technologies

Due to the increasing amount of biological data obtainable through single-cell sequencing

techniques and the decreasing price of next-generation sequencing (NGS), the ability to

extract and interpret relevant biological information has become a computational challenge,

with computing power being a major limitation. This problem can be addressed by utilizing

GPU computing technologies developed in the last decade.

In the following paragraphs, some of the main parallel computing applications created for

omics data analysis will be presented.

2.1 Nvidia Parabricks

Parabricks is a suite of high-performance GPU computing and deep learning algorithms for

NGS data processing [32,33]. It represents the main Nvidia product for designing a parallel

bioinformatics pipeline involving all the secondary genomics analysis steps. This workflow

includes, for instance, the alignment, the variant calling phase but also pre-processing, and the

quality check process. Using its greater computational power, Parabricks can perform these

fundamental genomics steps achieving previously unattainable performances in terms of

throughput time and cost savings.

The next paragraphs will present (i) the main characteristics of this suite, (ii) the algorithms

composing Parabricks, (iii) its hardware, software, and system requirements, (iv) the

performances achieved in terms of execution time, memory memory usage and cost saving

achieved.

2.1.1 Main Features

The main features of Parabricks are:

• GPU acceleration: The use of GPU instead of clusters of central processing units is

the most relevant and interesting characteristic of Parabricks, it allows the execution of

several classical biological processes in a fraction of the time and costs needed by a

sequential corresponding framework, hiding the complexities related to the design of a

parallel data architecture;

• Correspondence with the well-known sequential algorithms: Parabricks doesn9t aim to

revolutionize the reasoning at the basis of the most important genomics procedures, it

provides the possibility to compute the same methodologies using a parallelized

version of them;

22

• Modularity, flexibility, and compatibility: given Parabrick9s structure: a suite of

algorithms divided into sets based on the function, each process can be inserted in a

bioinformatics workflow not necessarily using in all the steps the same type of

processing units. Indeed, the input and output formats required by the GPU algorithms

stay equal to the ones used in the sequential approach, guaranteeing compatibility

between CPU and GPU-based processes. These characteristics provide flexibility to

this product;

• Working on Short and Long Reads: the algorithms provided by Parabricks can handle

the short reads produced by second-generation sequencers, such as Element, Illumina,

MGI, Singular, Thermo Fisher e Ultima, but also the long reads sequenced by Oxford

Nanopore and PacBio. This feature expands the possibility of using Parabricks for

different purposes: assembling genomes from various samples and analysing the DNA

sequences efficiently, saving costs;

• Availability as Docker image: Parabricks is deployed using a Docker image (and it can

be imported as a singularity image if necessary);

• Running from the Command Line: each program that composes this product can be

executed from the command line specifying input file, output directories, and the

optional flags.

2.1.2 Software Overview

The software included in Parabricks can execute read alignment, processing and quality

control (QC), and variant calling [34]. All these procedures use the potentialities of the GPU

computation, guaranteeing the quality standard achieved by the well-known sequential

version and compatibility with them.

The following table (Table 1) is reported: the main 6 categories in which Parabricks can be

divided (already cited), the names of the algorithms composing each category, and a brief

description of their computation. The last category is <Pipeline=: it includes software obtained

by the concatenation of several individual algorithms, and its execution can be done using

using a single command.

23

Category Algorithm Description

Alignment

fq2bam (bwa-mem)

Run bwa-mem, co-ordinate sorting, marking

duplicates, and Base Quality Score

Recalibration

fq2bam_meth

Run bwa-meth compatible alignment, co-

ordinate sorting, marking duplicates, and

Base Quality Score Recalibration

fq2bamfast (bwa-mem)

Run newly optimized version of bwa-mem,

co-ordinate sorting, marking duplicates, and

Base Quality Score Replication

rna_fq2bam (STAR)

Run RNA-seq data: starting from a FASTQ

file, it performs the alignment with STAR

algorithm and produces as output a BAM

file.

MiniMap2

Align long read sequences against a large

reference database to convert FASTQ to

BAM/CRAM

Preprocessing

applybqsr
Apply BQSR report to a BAM file and

generate a new BAM file

bam2fq Convert a BAM file to FASTAQ

bqsr Collect BQSR report on a BAM file

bamsort Sort a BAM file

markdup Identifies duplicate reads

Variant

Calling

deepvariant
Run GPU-DeepVariant for calling germline

variants

deepsomatic
Run GPU-DeepSomatic for calling somatic

variants

haplotypecaller
Run GPU-HaplotypeCaller for calling

germline variants

mutectcaller
Run GPU-Mutect2 for tumor-normal

analysis

starfusion

Identify candidate fusion transcripts

supported by Illumina reads using the

STAR-Fusion algorithm.

24

Quality

Check

bammetrics Collects WGS Metrics on a BAM file

collectmultiple metrics
Collect multiple classes of metrics on a

BAM file

GVCF

Processing

indexgvcf Index a GVCF file

dbsnp Annotate variants based on a dbsnp

genotypegvfc Convert a GVCF to VCF

prepon
Build an index for PON file, which is the

prerequisite to performing mutect pon

postpon
Generate the final VCF output of doing

mutect pon

Pipelines

deepvariant_germline
Run the germline pipeline from FASTQ to

VCF using a deep neural network analysis

germline (GATK germline

pipeline)

Run the germline pipeline form FASTQ to

VCF

pacbio_germline

Run the germline pipeline from FASTQ to

VCF by aligning long read sequences with

minimap2 and using a deep neural network

analysis

somatic (Somatic Variant

Caller)

Run the somatic pipeline from FASTQ to

VCF

Table 1: Parabricks algorithms' categories and descriptions, from Nvidia

Documentation [34]

2.1.3 Requirements

To execute all the algorithms included in the suite Parabricks these are the requirements,

taken from the Nvidia documentation [32], to be satisfied:

Hardware Requirements

Any NVIDIA GPU that supports CUDA architecture 70, 75, 80, 86, 89 or 90 and has at least

16GB of GPU RAM. NVIDIA Parabricks has been tested on the following NVIDIA GPUs:

▪ V100

▪ T4

▪ A10, A30, A40, A100, A6000

▪ L4, L40

▪ H100, H200

25

▪ Grace Hopper Superchip

The fq2bam tool requires at least 24 GB of GPU memory by default; the --low-memory

option will reduce this to 16 GB of GPU memory at the cost of slower processing. All other

tools require at least 16 GB of GPU memory per GPU.

System Requirements:

▪ A 2 GPU system should have at least 100GB CPU RAM and at least 24 CPU threads.

▪ A 4 GPU system should have at least 196GB CPU RAM and at least 32 CPU threads.

▪ A 8 GPU system should have at least 392GB CPU RAM and at least 48 CPU threads.

Software Requirements

The following are software requirements for running Parabricks:

▪ An NVIDIA driver with version 525.60.13 or greater.

▪ Any Linux Operating System that supports Nvidia-docker2 Docker version 20.10 (or

higher)

2.1.4 Performances

In this paragraph, the Parabricks9 performances will be presented considering the time and

cost savings obtained by studies executed on different settings of processor unities. The

category of algorithms chosen as a reference for the comparison between CPU and GPU

performance is the 8Pipeline9 set because each element in it represents a complete secondary

analysis going from a FASTQ file and producing as output a VCF file. In particular, the

results presented in the following section are provided by the execution of 8germline9 (cited in

Table 1), composed of BWA-MEM, bamsort, markdup, applybqsr, and a Variant Caller

algorithm (DeepVariant or HaplotypeCaller). This choice is justified by the will to show

clearly the impact of a parallel approach on entire workflows, therefore a specific analysis of

the savings produced by every single step included in the germline set of algorithms is not

provided and is beyond our interests.

The machine settings considered are 32 vCPU, 2 GPU, 4 GPU, and 8 GPU. The results in

terms of times are presented in Figure 2.

26

Figure 2: Runtimes of germline pipeline (with different Variant Caller algorithm) on CPU

and GPU machines. Image taken from [35]

The time results are followed by the cost savings in terms of cost per exome analyzed, as

reported in Figure 3.

Figure 3: Cost per Exome (USD) using sequential (gray) and parallel (green) approaches.

Image taken from [35]

2.2 Nvidia Rapids

Nvidia Rapids is a suite of libraries and APIs for the tertiary analysis of biological data,

performing processes like the loading and pre-elaboration of the datasets but also the plot

representations of the workflow results, including machine learning processes essential for

tasks such as network analysis [36,37]. This product is based on Nvidia CUDA-X, a series of

software that can optimize the performances of AI and High-Performance Computing

applications using the opportunities given by a GPU setting. In particular, Rapids uses the

CUDA primitives to increase the efficiency of low-level computation hiding the complexities

of working with the GPU programs.

27

2.2.1 Main Features

The principal characteristics of Rapids are:

 Open-source: The source code of this product is freely available and editable, the main

consequence is the community of programmers (not only from Nvidia Group)

designing new features and reporting and fixing bugs;

 General Purposes: Rapids is created for a parallel approach to the main data analysis

processes, not only for bioinformatics applications;

 Sequential Correspondence: Each package contained in Rapids Library is the parallel

version of well-known sequential software and with these share the functions9 names

and in general the related APIs. This approach provides two significant results: (i)

there are few different code lines between sequential and parallel versions of these

procedures, (ii) the use of the Python language and interface hides the programming

complexity related to the GPU computations;

 Scientific Workflow: When Rapids is used in a scientific process, it supports the entire

data analysis workflow providing a set of software divided into these 5 macro-areas:

data loading, pre-elaboration, machine learning algorithms, plot analysis and

visualization;

 Interoperability with frameworks: Rapids libraries can easily be inserted in different

scientific frameworks such as Apache Spark, Dask, Numba but also with deep

learning frameworks like PyTorch, TensorFlow, and Apache MxNext.

2.2.2 Software Overview

As cited in the previous paragraphs, Rapids is divided into libraries representing each

parallelization of a well-known sequential library and therefore regarding different aspects of

data analysis, management, and visualization. The most bioinformatics relevant ones are

presented in the Table 2.

28

Library API Language Tasks

cuDF PANDAs Python/C++ Dataset Management: loading, joining,

aggregating, filtering, and otherwise

manipulating data

cuML Scikit-learn Python/C++ Machine learning algorithms designed for data

science and analytical tasks (e.g. Clustering,

Dimensionality Reduction, Linear Models for

Regression or Classification)

cuPlot NetworkX Python/C++ Plot analysis algorithms (e.g. Centrality,

Community, Link Analysis and Prediction,

Sampling, Traversal, Structure)

cuXFilter DashBoard Python Data Visualization and filtering

cuPy Numpy Python Array Operations

Table 2: Rapids libraries that can be used in a genomic pipeline

It9s important to clarify that cuPy library is not included in the Rapids suite, despite the shared

features like being the parallelization of a vastly used product like Numpy. Nvidia supports

the development of cuPy but doesn9t hold the property on it.

2.3 Rapids-singlecell

Rapids-singlecell is a GPU-accelerated tool designed for scRNA-seq analysis using Rapids

libraries and cuPy as a starting point to obtain a parallel substitute to the state-of-art sequential

single-cell analysis methods [38]. In particular, the ecosystem containing Rapids-singlecell

isn9t a general-purpose suite, like in the previous cases, is a specific bioinformatics set of

tools: scverse. Rapids-singlecell emulates and converts in a set of GPU-accelerated processes

the most relevant tools contained in the programming ecosystem scverse, guaranteeing

compatibility.

2.3.1 scverse and anndata

In the next paragraphs, scverse and anndata libraries will be briefly presented to clarify how

some of the software and the main data formats of the sequential processes can be transposed

in a parallel approach [39,40].

The core of scverse project is based on the design of omics data analysis tools, able to

describe the main properties of spatial omics, regulatory genomics, trajectory inference, and

visualization. These processes are divided into several packages, the ones considered

foundational are scanpy (for analyzing single-cell gene expression in anndata format), muon

29

(framework for multimodal omics analysis), scvi-tools (machine learning algorithms using

PyTorch and anndata), scirpy (for the analysis of T-cell receptors or B-cell receptors from

scRNA sequencing data) and squidpy (for the visualization of spatial molecular data).

Anndata is a Python library introducing the management of a widely used data structure: the

annotated data object. Let9s describe all the components, represented in Figure 4, of this

object:

 X: Sparse or dense matrix containing the gene expression data, with rows representing

genes and columns representing cells. Using the function 8layer9 it9s possible to create

modified versions of the raw count matrix without losing it and guaranteeing the same

relationship between the new generated version and the annotation matrices had by the

initial matrix.

 obs and var: PANDAs dataframes for various annotations (var refers to gene

annotations and obs for cell annotations) about the data, such as gene names and IDs,

cell barcodes and metadata, and cluster assignments.

 obsm, varm and uns: Results of various analysis steps, such as dimensionality

reduction or clustering, are stored: in obsm if they are structured and associated with

cells, in varm if they are structured and associated with genes, or in uns if the results

are dictionaries in the form of unstructured data.

 obsp and varp: dataframes containing pair information about genes and cells observed,

such as distances, similarity score or any other measure of cell comparison in the case

of obsp or measures of gene comparison in the case of varp.

30

Figure 4: Anndata structure representation. Image taken from [40]

2.3.2 Rapids-singlecell Features and Performances

Rapids-singlecell considers a parallel version of anndata, cunndata represented in Figure 5, as

the main data format on which all the packages can execute their functions. The structure of

this parallel version replicates all the anndata9 features: the presence of a datamatrix X

divided into several layers and described by several annotations matrices related to genes and

cells, the opportunity of using a dictionary for the unstructured information, the correlated

dimensions and indexing of each described cunndata9s matrix. The main difference between

these two formats is that cunndata matrix X and its layers are stored on the GPU as CuPy

sparse matrices, instead of being stored on the local memory; this change provides faster and

more efficient computations on the count matrix. All the annotation matrices are stored in the

31

host memory, except for the pair-wise information matrices, obsp and varp, which are not part

of the data structure and can be consulted only using external references.

Figure 5: Representation of cunndata structure. Image taken from [41]

Given this parallel data structure, the Rapids-singlecell team recreated some of the most

biologically relevant functions from scverse. For instance, from Scanpy, they implemented

UMAP, nearest neighbors on the GPU, and accelerated plot-based clustering using Leiden

and Louvain. From scvi-tools, they included functions for embedding single-cell data, and

they are now adding Squidpy functions to this suite of libraries. This process of adapting well-

known sequential algorithms to the new data architecture has resulted in performance

improvements with speed factors ranging from 4x to over 60x compared to the sequential

algorithm times on a dataset of 500,000 cells, as reported in Table 3.

32

Function CPU GPU (A100) GPU (3090) Speedup

Preprocessing 305 s 28 s 169 s 10x

PCA 86 s 3.7 s 35 s 23x

Neighbors 74 s 17.1 s 18.3 s 4.3x

UMAP 281 s 6.7 s 7.6 s 60x

Louvain 283 s 4.5 s 5.7 s 62x

Logistic Regression 452 s 33 s 63 s 13x

Table 3: Performances of CPU and GPU-based algorithm on a dataset of 500.000 cells [41]

33

3. Gene Regulatory Network Inference

One of the primary objectives within the bioinformatics community is to attain a profound

understanding of the intricate biological processes that govern the phenotype of a specific cell

or sample. A single entity, such as a gene or a pathway, cannot sufficiently elucidate the

phenotype exhibited by a cell; a more holistic perspective is required to comprehend the

underlying mechanisms. Consequently, constructing a network that represents the gene

expression regulating all cellular mechanisms has become a priority in systems biology.

Indeed, the inference and analysis of a representative plot are essential tools, allowing

biologically meaningful structures to be distilled into significant network patterns and, more

broadly, features.

This type of plot is known as a GRN and aims to capture these cellular processes by

leveraging the influence that each gene exerts on others. Specifically, this structure is modeled

using network entities such as "nodes" representing the genes, "edges" representing the

inferred interactions, and "weights" representing the type of interaction between two genes,

such as activation, repression, or absence of regulation.

In this chapter, we present a GRN inference algorithm called "PANDA" in detail, considering

the importance of a multi-omics approach in this context. We will discuss the input required,

provide a step-by-step analysis of PANDA9s computation, and describe the output

produced4a network that globally represents the features of all the samples considered. The

second algorithm discussed in this chapter, "LIONESS", addresses the limitation of having a

GRN that captures only shared processes. Instead, LIONESS computes several sample-

specific gene regulatory plots, following the same detailed presentation structure. Finally, we

provide some applications and considerations regarding these two algorithms. Specifically, by

using increasing size benchmarks to evaluate both algorithms' performance, we can highlight

their limitations and propose potential solutions.

3.1 PANDA Algorithm

The GRN models able to integrate different data types have reached significant results,

representing efficiently the complex biological systems considered as references. The

accuracy of these models stems from the successful amalgamation of information through the

integration process, providing a more profound understanding of the complex molecular

processes underlying biological systems than models using a single data type alone. One of

the most prominent strategies for integrating multiple data types is the Message-Passing

approach. This approach is utilized in various gene regulation model procedures, such as

34

estimating signaling pathways or parameters related to physical network models. In this

method, the data types are treated as entities that send and receive "messages" containing

information aimed at developing a cumulative data structure.

PANDA (Passing Attributes between Networks for Data Assimilation) is a GRN inference

algorithm within the collection of open-source methods known as NetworkZoo [42]. In this

collection, several algorithms elaborate different aspects of the GRN inference process, such

as the normalization of the RNA-seq data or the analysis of the community properties of the

GRN produced. NetworkZoo represents a significant set of tools for the inference and

analysis of GRN elaborated considering as input multi-omic data, and it is adaptable to

several programming languages, such as Python, R, MATLAB, and C. This study will

consider only the two algorithms presented in this chapter, PANDA and LIONESS, and the

Python implementation of this suite, called netZooPy.

By utilizing multiple sources of <omics= data, as specified in the Input section, PANDA

generates a Transcription Factor-by-Gene matrix that can be readily converted into a

biologically accurate GRN. This software implements the concept of merging information

from diverse data sources through an iterative message-passing approach.

Compared to previous methods, the primary innovation introduced by the PANDA algorithm

is the iterative update of all data sources. Once pieces of information are extracted from these

sources, they are considered as messages that are processed and shared with all other nodes.

This iterative refinement, represented in Figure 6, enhances the representation of biological

pathways within the distinct data structures.

35

Figure 6: PANDA's workflow: from the loading and initialization of the input matrices (1) to

the Responsibility and Availability Estimation (2), followed by the update of the two networks

P and C (3). This process is repeated until convergence (4) and produces a GRN.

36

PANDA takes as input three matrices, each of which can be replaced with a 8None9 value if

the user chooses not to provide one or more of them. Each matrix collects information about

one of the relationships among the considered entities: Transcription Factors (TFs) and

Regulated Genes.

• Transcription Factors-by-Gene Regulatory Matrix (W0): This matrix records

known relationships between TFs and regulated genes. These relationships are

identified by comparing the promoter regions of the genes and the transcription factor

binding sites (TFBS). If the TFBS are within a specified size window, the TF is

considered to regulate the gene expression.

• TF-by-TF Cooperativity Network (P0): Based on a protein-protein interaction (PPI)

matrix, this table represents the relationships between pairs of proteins that can form

multi-protein complexes to regulate specific genes. This matrix can be generated from

data collected through in vitro experiments, text mining, or computational inference

and is used in the algorithm as the primary source of information regarding potential

indirect gene regulation by complex TFs.

• Expression Co-regulatory Matrix (C0): Derived from an expression matrix, this

matrix computes the pairwise Pearson Correlation Coefficient (PCC) for each pair of

genes. The final result is a gene-by-gene matrix that captures the correlation between

genes. This correlation is useful in the PANDA computation because genes regulated

by the same TFs are expected to exhibit correlated gene expression patterns.

PANDA9s primary method for inferring the GRN involves the iterative update of the input

matrices to maximize the agreement among them. This process aims to compute biologically

accurate and consistent predictions regarding the influence of each gene on the expression of

others. In this sense, two initial formal definitions are needed to define rigorously the concept

of agreement between two vectors representing information about genes, and all the modeled

relations among genes.

The concept of agreement between data of different networks is defined and quantified in

PANDA using the Tanimoto Similarity:

��(þ̅, ÿ̅) = þ̅ÿ̅√||þ̅||2 + ||ÿ̅||2 + |þ̅ÿ̅| = ∑ þÿÿ ÿÿ√∑ þÿÿ 2 + ∑ ÿÿÿ 2 + |∑ þÿÿ ÿÿ|
This formula expresses the similarity between two z-score normalized vectors () that represent

two sets of network edge weights. When applied to the vectors associated with edges in two

37

different networks, a Tz value near 1 indicates a strong positive agreement between them.

Conversely, a Tz value around 0 suggests no significant similarity, and a negative Tz value,

which can range down to -1, indicates an inverse relationship between the two networks.

To elaborate:

• Positive Agreement (Tz ≈ 1): This suggests that the two networks share a similar

pattern of edge weights, indicating that the regulatory relationships between genes are

consistent across both networks.

• No Agreement (Tz ≈ 0): This indicates that there is little to no similarity in the edge

weights between the two networks, suggesting that the regulatory relationships differ

significantly.

• Negative Agreement (Tz ≈ -1): This signifies that the edge weights in one network are

inversely related to those in the other, implying that regulatory relationships are

oppositely oriented between the two networks.

This measure of similarity is crucial in the iterative update process of PANDA, ensuring that

the final inferred GRN maximizes the agreement among the integrated data sources, thereby

producing a more accurate and biologically relevant network

The second formal set of definitions, as clarified by Figure 7, is about the nodes and edges

types: PANDA configures two types of nodes in the considered networks: <effector= and

<target=. The elements in the first set exploit an influence on the expression of the genes

considered in the second group, modeling the biological relation between the Transcription

Factors and the Genes regulated by them. Given these two different entities, the expression of

the genes is governed by the influence of the effectors in two different ways: <directly=, a set

of TFs is responsible for the regulation of these affected nodes in a relation defined as <routes

of affection=; <indirectly=, a TF can create a protein complex to regulate genes not directly

influenced by it, in this case, the two TFs perform a <cooperative effect= on the considered

38

gene, or, given two genes with similar expression is possible that they are targets of the same

group of effectors, exploiting a <co-affection= relationship between them.

Figure 7: This figure represents the two types of nodes (effectors and targets) and the three

types of edges (direct and indirect route of affection) of a GRN considered by PANDA.

Let9s now explain PANDA9s workflow step-by-step in detail, as represented in Figure 6.

1st Step: Initialization of the Networks

The first step is the initialization of three different networks from the input matrices: The

values collected in these matrices, P0, W0, and C0, are standardized using a Z-score

computation across both rows and columns, guaranteeing the same scale for all the tables.

These are from now on considered networks describing the regulation between Transcription

Factors in the Cooperative Network (P), between Genes in the Co-regulatory Network (C),

and between each TF and each Gene in the Regulatory Network (W).

2nd Step: Responsibility and Availability

While the values contained in W represent the direct regulation operated by the effectors to

the targets, the undirected influences, described previously and represented plotically in

Figure 8, need two additional parameters to be taken into account in the global regulation

effect. Therefore, let9s consider the <cooperative effect= that a Transcription Factor i can

have, through the formation of a protein complex with other TFs, on a target gene j: this is not

reported in any of the input networks but can be modeled considering a compositional effect

39

and quantified in the <Responsibility= value Rij. To do that, a similarity score between all the

edges linking the TF i with all the other TFs, Pi. , and the edges between all the TFs and the

gene j, W.j , is computed using the Tanimoto relation:

�ÿĀ = ��(�ÿ.,ÿ.Ā) = ∑ �ÿ�� ÿ�Ā√∑ (�ÿ��)2 + ∑ (ÿ�Ā)� 2 + |∑ �ÿ�� ÿ�Ā|
The second type of undirected regulation has been previously called <co-affection= and is

present when the same transcription factor regulates two different genes. When this happens,

it9s notable that the regulation of these two genes assumes comparable features, underling the

relation given by being the targets of the same effector. Using the Tanimoto similarity, is

possible to measure, through the edges9 weights, how much this effect influences the

regulation of a gene i by the action of a TF j. In this sense, let9s consider the genes targeted by

j (Wj.) and all the genes co-regulated with gene i (C.i): when a generic gene k is targeted by j

and co-regulated with i the scalar product WjkCki is different from 0 and contributes to

generate a more significant availability value Aij.

�ÿĀ = ��(ÿĀ., �.ÿ) = ∑ ÿĀāā �āÿ√∑ (ÿĀāā)2 + ∑ (�āÿ)ā 2 + |∑ ÿĀāā �āÿ|

Figure 8: Considering a TF i and a target gene j, two measures, Responsibility and

Availability, are computed to estimate the undirected regulation of j by i.

40

3° Step: Estimation and Updating

When these two quantities related to phenomena are computed, the estimation ÿ�ÿĀ of these

undirected regulation effects is obtained as the mean value between Aij and Rij:

ÿ�ÿĀ = �ÿĀ + �ÿĀ2

This value will be added to the previous regulation value Wij
(t) in proportion to a learning rate

α (in]0,1[), to obtain an updated version for the next iteration (t+1): ÿÿĀ(þ+1) = (1 2 �)ÿÿĀ(þ) + �ÿ�ÿĀ(þ)
The message-passing approach, finalized to find agreement among the 3 different data types,

in this algorithm is expressed in the updating of the regulatory network W and then also of

cooperativity and co-regulatory ones. Therefore, once the new version of W is estimated

based on the computation of responsibility and availability, it9s time to estimate the new

matrices P and C.

Matrix P is updated considering that the values representing the regulation executed by each

transcription factor can be different from an iteration to the following, therefore is necessary

to consider how these new features can generate new information about TF co-regulation.

This is done considering the similarities between the edges of two different effectors, i and j:

�ÿĀ = ��(ÿĀ.,ÿÿ.) = ∑ ÿĀāā ÿÿā√∑ (ÿĀāā)2 + ∑ (ÿÿā)ā 2 + |∑ ÿĀāā ÿÿā|
And then updating the value associated with them in the next iteration, namely Pij

(t+1): �ÿĀ(þ+1) = (1 2 �)�ÿĀ(þ) + ���ÿĀ(þ)
Similarly, knowing how each relation between TF and gene changes by a single iteration, the

co-regulated genes can present different features that can be quantified by estimating and

updating the similarity between the regulation of each pair of genes i and j:

�ÿĀ = ��(ÿ.ÿ,ÿ.Ā) = ∑ ÿāÿā ÿāĀ√∑ (ÿāĀā)2 + ∑ (ÿāÿ)ā 2 + |∑ ÿāĀā ÿāÿ|
�ÿĀ(þ+1) = (1 2 �)�ÿĀ(þ) + ��̃ÿĀ(þ)

41

When all the values in all the three matrices are updated, the process is iteratively repeated

until convergence, which is guaranteed, is achieved.

The output returned is a matrix where each row identifies a transcription factor-gene pair,

followed by two values: the motif value, a binary number representing the presence of this

association in the original motif matrix W0; and the weight of this effector-target9s edge.

3.2 LIONESS Algorithm

The network inferred by PANDA9s computation is a plot representing the biological

processes involved in the gene expression of a given group of samples. This data structure is

valuable because it can transform a biological question (such as the differences between two

groups of gene expressions) into a mathematical analysis (identifying patterns and pathways

differentially present in two networks), thereby facilitating the integration and management of

data from multiple sources.

This approach ensures accurate and biologically meaningful results when the differentially

expressed pathways are common within the samples of the same group and thus present in the

consensus. However, processes that cause phenotype changes in a single sample, or in a

subset of samples, are not easily detectable by analyzing the aggregate network of samples.

This limitation is significant in several contexts. For instance, in single-cell differential

expression estimation, the goal is to identify the unique active gene regulatory processes that

define the specific phenotype and functions of individual cells within a tissue. Similarly,

recognizing the distinct regulatory mechanisms in an individual within a group exhibiting

slight phenotypic differences can be challenging.

To overcome this limitation, NetworkZoo developed LIONESS (Linear Interpolation to

Obtain Network Estimates for Single Samples), an algorithm designed to estimate sample-

specific plots from an aggregate network using a linear interpolation approach and

represented in Figure 9. LIONESS is intended to be applied after PANDA9s computation,

thereby enhancing the algorithm's capabilities. This creates a suite of software tools that can

infer GRNs from multi-omics data for both groups of samples and for subsets of them,

particularly enabling the accurate estimation of sample-specific GRNs.

42

Figure 9: LIONESS Workflow, given the same set of input matrices described for PANDA,

LIONESS produces N sample specific GRN.

Input

The inputs LIONESS requires are (i) the gene expression matrix, in which each column

represents a sample and each row a gene; (ii) the protein-protein interaction (PPI) matrix,

defining the interaction among TF; (iii) the Transcription Factors-by-Gene Regulatory Matrix

presenting the relationships between TFs and regulated genes. Note also that the aggregate

regulatory network produced as output by inference algorithm as PANDA can be passed as

input to LIONESS, if this happens the first step of its workflow is skipped because already

satisfied.

Mathematical explanation

The main assumption on which the entire algorithm works is that the aggregate network taken

as input is obtained by a linear combination of the N samples9 contributions. In particular, if

we consider a value e associated with an edge going from gene i to gene j in the aggregate

network α (eij
(α)), it can be modeled as the sum of the same edges9 values (eij

(s)) belonging to

the N sample networks weighted by a scalar factor ws
(α) characterizing the impact that the

generic s sample network has on the global network α.

�ÿĀ(�) =∑ýý(�)�ÿĀ(ý)�
ý=1

43

The sum of all the sample networks9 weights is set equal to 1, as specified in the next

equation:

∑ýý(�) = 1�
ý=1

The LIONESS's final goal is to obtain N sample-specific networks, which can be declined in

the computation of the weights associated with each single edge composing the network. The

weight of the edge of a generic sample network q can be calculated using the values

associated with the plot obtained by considering all the samples except q, as explained in the

following procedure.

The edges in the network α-q can be defined similarly to before, with a different distribution

of weights for the other networks.

�ÿĀ(�2�) =∑ýý(�2�)�ÿĀ(ý)�
ý≠�

Where:∑ ýý(�2�) = 1�ý≠�

From these two definitions, let9s compute the generic weight edge eij
(q)

In particular, let9s subtract these equations and rearrange them:

�ÿĀ(�) 2 �ÿĀ(�2�) =∑ýý(�)�ÿĀ(ý)�
ý=1 2∑ýý(�2�)�ÿĀ(ý)�

ý≠�

= ý�(�)�ÿĀ(�) +∑ýý(�)�ÿĀ(ý)�
ý≠� 2∑ýý(�2�)�ÿĀ(ý)�

ý≠�

= ý�(�)�ÿĀ(�) +∑(ýý(�) 2 ýý(�2�))�ÿĀ(ý)�
ý≠�

 Finally, let9s isolate eij
(q):

�ÿĀ(�) = 1ý�(�) [�ÿĀ(�) 2 �ÿĀ(�2�) +∑(ýý(�2�) 2 ýý(�))�ÿĀ(ý)�
ý≠�]

 Knowing that: �ÿĀ(�2�) = ∑ ýý(�2�)�ÿĀ(ý)�ý≠�

44

�ÿĀ(�) = 1ý�(�) [�ÿĀ(�) +∑ýý(�)�ÿĀ(ý)�
ý≠�]

It9s now necessary to clarify the values associated with the sample network contribution

weights. We can assume the existence of a relation between ws
(α) and ws

(α-q) using a constant

C: ws
(α)=Cws

(α-q), now it9s possible to construct the following chain of equations:

1 =∑ýý(�2�) =�
ý≠� ∑ýý(�) = ý�(�) +∑ýý(�) = ý�(�) + �∑ýý(�2�) = ý�(�) + ��

ý≠�
�
ý≠�

�
ý=1

Finally, let9s substitute these results in the previous formula and let9s consider the weights

associated with each sample network: these can be established by estimating the quality

scores of the data for individual samples, or, in the absence of this information or similar

measures, with the further assumption that in the aggregate network α each sample network

influences it equally (therefore ý�(�) = 1�):

�ÿĀ(�) = 1ý�(�) [�ÿĀ(�) 2 �∑ýý(�2�)�ÿĀ(ý)�
ý≠�]

�ÿĀ(�) = 1ý�(�) [�ÿĀ(�) 2 (1 2 ý�(�))�ÿĀ(�2�)]
�ÿĀ(�) = 1ý�(�) [�ÿĀ(�) 2 �ÿĀ(�2�)] + �ÿĀ(�2�) �ÿĀ(�) = �[�ÿĀ(�) 2 �ÿĀ(�2�)] + �ÿĀ(�2�)

The final result of this mathematical study is that each sample-specific network edge can be

modeled using only two estimations: the weight of the same edge in the aggregate network

and the weight of the same edge in the network obtained using all the samples except the

considered one. This result can now be applied to the algorithm, representing the most crucial

theoretical notion exploited by LIONESS, which doesn9t depend on the inference method

used to estimate the aggregate network.

45

Step-by-Step Algorithm and Output

LIONESS9 workflow can be expressed as the sequence of the following steps:

1. Aggregate GRN Inference: The gene expression matrix and the other two optional

tables (Transcription Factors-by-gene regulatory matrix and TF-by-TF cooperativity

network) are given as arguments to the network inference algorithm, the result is the

GRN representing the processes shared by all the samples; in this first phase other

inference algorithms different than PANDA can be used;

2. Sample-specific Network inference loop: For each sample present in the considered

gene expression, an execution of the inference algorithm PANDA is needed to

compute the network composed by all the samples except for the one thought.

3. Linear Interpolation: The weights of the edges in the aggregate network and of the

networks computed in the previous point are used to estimate the weights of the

sample-specific plots.

The output of this workflow are N sample-specific networks represented, as in the case of the

aggregate network, as a matrix in which each row defines a pair of gene j and transcription

factor i and the value of the regulation that i exploits on j. These N matrices can be easily

translated into GRN and used as primary elements to perform plot analysis, discovering

biologically meaningful features using a mathematical approach.

46

47

4. PANDA Performance

This chapter describes the experiments conducted and the results obtained from the execution

of the two previously introduced algorithms, PANDA and LIONESS, across various

experimental conditions. The objective of this analysis is to evaluate which are the tasks

optimizable in terms of execution time and memory required. Assessing and analyzing the

performance of each algorithm becomes, in this sense, essential and several computational

aspects can be inferred by varying:

• the hardware configuration, using CPU and GPU setups;

• the datasets used, ranging from 8toy9 datasets provided by the netZooPy project to a

dataset of dimensions comparable to realistic single-cell data;

• the intrinsic characteristics of the datasets, including variations in the frequency of

protein complex formation and the number of genes regulated by the same TF.

The experiments are followed by a comprehensive analysis of results, discussing performance

metrics, limitations, and encountered challenges.

It is important to note that version 0.8 of netZooPy was used in this analysis[43]. This version

was selected because it is automatically installed via pip, whereas the latest version, 0.10,

requires a specific installation procedure.

4.1 Hardware Setups

To compare the performance of sequential versus parallel approaches, various hardware

configurations were selected to support all necessary experiments and effectively address the

research questions. Specifically, the following hardware setups were employed:

• 1 Intel Xeon Gold 5118 CPU

• 1 Nvidia RTX 3090 GPU

• 1 Nvidia A40 GPU

In particular, the GPUs are used considering in all the following experiments one single core,

and, when the functions contained by the tested programs cannot support a GPU computation

a CPU is used to compute it.

4.2 Datasets

The primary objective of testing this GRN inference algorithm is to assess its scalability,

using a set of datasets with an increasing cell count while maintaining also certain crucial

features constant throughout the experiments. These criteria are essential due to the nature of

48

the scRNA-seq matrix analysis: usually, a high number of cells are required to characterize

the status of a single patient, therefore when the research is aimed to discover specific patterns

potentially shared by all the patients of the same cohort, comparisons among groups of

patients become essential, obtaining an expression matrix with a number of cells in the order

of hundreds of thousands or millions. The requirement to maintain specific features constant

ensures comparability among the conducted experiments and at the same time, it9s supported

by biological constraints as the natural fixed upper bound of the number of genes; in this way,

the only variable is cell count, minimizing the influence of other factors that could confound

the analysis.

The starting point for the PANDA performance analysis is a dataset published by the

netZooPy development team, here called 8Toy9 dataset, intended for testing the software

available in the netZooPy library. The dataset dimensions are detailed in Table 4. As it is

designed specifically for testing purposes, this dataset lacks the properties of a realistic

biological dataset, especially concerning the dimensions of the expression matrix, which are

not comparable to those typically associated with single-cell data. This difference in purposes

and dimensions prevents the possibility of obtaining significant results by comparison with

the other dataset, limiting its usability in this analysis.

A public gene expression dataset was selected to analyze the time and memory performance

with greater biological relevance, matching the characteristics of a real-world RNA

sequencing matrix. Specifically, the dataset analyzed in Tirosh et al. (GEO ID: GSE72056),

which has been used for annotation development and cell communication studies, captures

gene expression at the cell level across diverse melanoma profiles, holding substantial

biological significance due to the nature of the cells involved, such as those with drug-

resistance properties observed in specific cell populations. The dataset dimensions (shown in

Table 1 under the label 84k9) differ substantially from those of the preliminary <toy= dataset

but still fall short of typical single-cell data scales, consequentially the performance analysis

regarding the GRN generation starting from this data cannot be generalized and the necessity

of gene expression matrices with a higher number of cells remains. The biological

characteristics represented in this dataset will be analyzed and abstracted to generate different

simulated gene expression matrices with the dimensions decided a priori.

Due to this specific set of requirements, simulated datasets were generated with controlled,

measurable characteristics to identify and quantify the contribution of each feature on the

algorithm9s performance in terms of time and memory usage. A dataset simulator was

developed with the following assumptions:

49

• Sparsity of the Expression Matrix: the proportion of zero values in the expression

matrix 3 a key characteristic of single-cell data - in the simulation is set to 80%

and is randomly distributed across all the genes;

• Sequencing Depth: the total count of RNA sequences mapped to genes is held

constant, equal to the average sequencing depth measured in the real dataset;

• Number of genes regulated by a single Transcription Factor: Based on biological

knowledge, this parameter is randomly drawn from a uniform distribution, with

each TF regulating between 200 and 1,000 genes;

• Number of Transcription Factors cooperating in the same Protein Complex:

This parameter, also informed by biological insights, is a random value drawn

from a uniform distribution, ranging from 5 to 20 TFs capable of forming a protein

complex with a given TF;

• Distribution of the expression data: For RNA sequencing data, the Negative

Binomial and Poisson distributions are common fits to approximate realistic gene

expression values in the simulated dataset;

• Distribution of the regulation and coregulation data: the selection of which

genes are regulated by which TFs and of which TFs can cooperate to create a

protein complex has been left to a random choice by the simulator;

Certain choices, such as using a specific distribution or ignoring the specific pairing of genes

and TFs, may not yield highly refined datasets. However, for the purposes of this study4

assessing algorithm performance and usability4these simplifications are unlikely to

significantly affect the quantitative aspects of computation, which are the primary focus of the

results.

The assumptions outlined have produced dataset features that fall into two distinct categories:

constants across all experiments4such as the Sparsity of the Expression Matrix, Sequencing

Depth, and the distributions of expression, regulation, and co-regulation data, as determined

by biological knowledge4and variable features, used to assess the performance of PANDA

and LIONESS under different regulatory and co-regulatory conditions of the transcription

factors.

These choices resulted in a set of matrices with the characteristics summarized in Table 4.

The number of genes in the Gene Expression Matrix is maintained consistently from the real

dataset (referred to as '4k' in the table and subsequent sections) to reflect a realistic gene count

50

for an expression matrix, independently of cell count. The number of cells, however, is scaled

across datasets, serving as the primary variable in this analysis.

The Motif Data and Protein-Protein Interaction (PPI) Matrices comprise a total of four

matrices (two for each type) simulated based on the regulatory and co-regulatory assumptions

previously presented and from now on considered as features hypothetically able to influence

the algorithm9s performance. Specifically, the first pair of matrices models a more

comprehensive interaction profile, while the second pair is sparser, with fewer interactions.

This reduced interaction scenario characterizes the datasets labeled 8half9 in the following

table, reflecting a less dense regulatory network.

 Gene Expression

Matrix

Motif Data PPI matrix

Dataset Genes Cells TF Gene

Regulated

TF Interactions

Toy 1000 51 87 14597 74 238

1k 23688 1000 1444 855452 869 10450

1k half 23688 1000 1457 429286 864 5079

4k 23688 4645 1444 855452 869 10450

4k half 23688 4645 1457 429286 864 5079

10k 23688 10000 1444 855452 869 10450

50k 23688 50000 1444 855452 869 10450

100k 23688 100000 1444 855452 869 10450

Table 4: Dimensions and name of each produced or considered dataset.

4.3 Time and memory analysis

This section presents all the results, in terms of execution time and memory usage, of the

GRN computation performed by the PANDA algorithm. Each presented value has to be

considered as the average value of a set of experiments reproduced several times in the same

conditions specified. The final part of this section includes the complete set of experimental

data from which all the presented plots are obtained.

4.3.1 Time performance

One of the key aspects of the PANDA execution is the amount of time in which it can

converge and consequently generate a GRN representative of the matrices provided in the

input. This aspect can become a critical bottleneck in the practical usability of this tool in a

51

hypothetical biological pipeline and its scalability to the number of cells considered in the

expression matrix is the primary focus of the analysis here presented.

The first analysis centers on the difference between the time performance achieved by

sequential execution of the PANDA algorithm, obtained using a single CPU, and a parallel

approach, exploited using two types of GPUs and a multi-core CPU setup, as previously

outlined in this chapter. The plots below (Figure 10) show the four most time-consuming

tasks into which the PANDA algorithm can be divided. While performance results achieved

using the <Toy Dataset= are not indicative of PANDA9s scalability, the other five plots offer,

in this sense, much more valuable insights, leading to the following considerations:

• Parallelization of the PANDA loop task: this task is designed to be optimized, in

terms of time efficiency, through parallel processing. It benefits significantly from

both GPU and multi-core CPU configurations, but in particular, the GPU approach

demonstrates high parallelism potential, achieving more efficient processing compared

to single-core implementations.

• Independence of PANDA loop task time to the cell count: As the number of cells

increases changing datasets, the execution time of the PANDA loop remains

unaffected, due to the fixed dimensions of the matrices after the initial normalization;

• Dependence of the correlation matrix computation to the cell count: the time

associated with this task is directly influenced by cell count, increasing with the

increment of the number of cells. There are no constant differences between sequential

and parallel computation and, more in general, there is no predictable behavior;

• Dependence of the loading expression matrix task to cell count: this task can become

a time-significant element as the number of cells increases, but presents constant

performance across all the types of processors used, indicating that hardware

differences have little impact on time efficiency;

• Insignificance of normalization step in time consumption: Across all the experiments

conducted, this normalization task doesn9t contribute significantly to the overall time

consumption, leading to the conclusion that it can be excluded in the considerations

for the code optimization.

52

Figure 10: Comparison across all the datasets of the PANDA time performance, divided into

tasks.

53

Dataset Task
Hardware Setup

CPU 10xCPU A40 RTX

1k

Loading expression matrix 1,3 s 1,3 s 1,5 s 1,2 s

Correlation matrix computation 14,5 s 7,8 s 19,8 s 20,1 s

Network normalization 46,9 s 46,1 s 26,9 s 24,4 s

Executing the PANDA loop 142 s 741,9 s 164,1 s 156 s

4k

Loading expression matrix 17,6 s 82 s 23,3 s 16,5 s

Correlation matrix computation 50,6 s 18,1 s 134 s 77,1 s

Network normalization 46,8 s 46,6 s 31,8 s 25,1 s

Executing the PANDA loop 1500,3 s 795,6 s 188 s 165 s

10k

Loading expression matrix 34,4 s 32,0 s 28,4 s 36 s

Correlation matrix computation 87,6 s 15,7 s 68,7 s 146 s

Network normalization 46,5 s 46,6 s 16,2 s 26,5 s

Executing the PANDA loop 1421 s 674,8 s 161 s 147 s

50k

Loading expression matrix 514 s 545,3 s 544,6 s 600 s

Correlation matrix computation 424,9 s 59,2 s 745,3 s 807,8 s

Network normalization 67 s 64,9 s 31,3 s 33,1 s

Executing the PANDA loop 1465,8 s 682,2 s 163,5 s 148,8 s

100k

Loading expression matrix 1133,7 s 1156,3 s 993,4 s 1171,5 s

Correlation matrix computation 787,8 s 111,9 s 646,8 s 551,6 s

Network normalization 50,4 s 48,4 s 17,7 s 27,1 s

Executing the PANDA loop 1362,3 s 638,8 s 152 s 141,9 s

Table 5: Time performance of all the hardware setups considered divided by Dataset passed

as input.

The following analysis examined the impact of interaction matrix (Motif Data and PPI

Matrix) dimensions on PANDA9s time performance. This set of experiments aimed to

determine whether edge sparsity in the two co-regulatory networks affects the convergence

time within the <PANDA Loop= task or if this process remains stable regardless of edge

density. To test these hypothetical changes, two sparser versions of the Motif Data and of the

PPI Matrix were simulated, each with an interaction frequency among TFs and between TFs

54

and genes reduced to half of the original, as described in the previous section. PANDA was

then applied on these matrices and considering two different expression data matrices (<1k=

and <4k=).

The results of this analysis (shown in the plots of Figure 11 and described in Table 6),

represented by the following plots, indicate no significant difference in the execution time

between the original and the sparser version of the co-regulatory networks, suggesting that

these matrix dimensions do not influence the core GRN computation. Code analysis confirms

that the co-regulatory matrices are not directly involved in these steps and therefore do not

impact their time complexity.

Figure 11: Comparison between time performance obtained by the use of the original co-

regulatory matrices and their halved versions.

55

Dataset Task
Hardware setup

CPU 10xCPU A40 RTX

1k half

Loading expression matrix 1,3 s 1,3 s 1,4 s 1,5 s

Correlation matrix

computation
14,6 s 7,8 s 32,4 s 23 s

Network normalization 47 s 47,4 s 33,9 s 28,7 s

Executing the PANDA loop 1416,1 s 666 s 170,4 s 152 s

4k half

Loading expression matrix 16,5 s 15,9 s 12,6 s 17,6 s

Correlation matrix

computation
50,9 s 18,3 s 38,2 s 77,5 s

Network normalization 47,7 s 46,8 s 16,3 s 24,7 s

Executing the PANDA loop 1623 s 799,1 s 184,6 s 169 s

Table 6: Time performance of all the hardware setups considered for the 1k half and 4k half

datasets.

4.3.2 Memory usage

The second part of the experiments focuses on the memory occupied by the computation of

PANDA algorithm. While the time effort, even in the worst cases analyzed, can be usually

considered manageable in real-world applications, being in the order of hours, the memory

usage can be a more significant bottleneck as the dimensions of the expression matrix

increase.

In this set of experiments, all available flags allowing to minimize memory computation were

enabled. It9s important to underline, however, that these options are not compatible with

PANDA computations within the LIONESS pipeline. This is due to this last algorithm

requirement for executing a high number of operations on the original matrices, which

prevents discarding them as suggested by the memory-saver configurations.

Figure 12: Comparison of memory usage in the three different hardware setups and with

increasing count cells.

56

Hardware Setup Dataset

1k 4k 10k 50k 100k

CPU 26,46GB 27,97GB 29,06GB 45,89GB 66,15GB

A40 14,21GB 20,3GB 16,8GB 37,67GB 59,51GB

RTX 14,45 GB 20,13GB 16,87GB 39,15GB 59,51GB

Table 7: Memory usage among all the hardware setups for the considered datasets.

This set of data (Figure 12 and Table 7) reveals a consistent trend across all three different

hardware configurations: there is an increasing trend between the memory usage and the

expression matrix dimension in all the simulated datasets. However, due to the limited

number of data points, it remains unclear whether this relationship is linear or otherwise,

preventing precise determination of the scaling coefficient governing this trend. The

exception for this relationship across all three cases is the dataset with around 4 thousand

cells, which shows unexpectedly high memory usage. These anomalies correspond with the

only real dataset considered, suggesting that it has features influencing the use of memory that

have been not considered in the simulation of the other dataset, leading to this different

memory occupancy data.

4.3 Results Analysis

From the previously exposed analysis, it has been possible to obtain the following

considerations about the core algorithm characteristics:

• Message Passing Approach: the foundational principle of the algorithm, the message

passing approach, achieves convergence within a finite number of steps, generating a

GRN that integrates all the information contained in the three input matrices with a

certain grade of concordance;

• Designed parallelism: PANDA9s parallelism can be exploited through two different

hardware setups [36]:

 using a multi-core CPU approach: the time required for the PANDA loop

computation by 10 cores of the considered CPU is half of the time required by

the single-core CPU. This cannot be considered a significant improvement

because of the proportion between the increment of resources and the time

efficiency obtained;

57

 using a GPU approach: using these specific hardware setups, the time

complexity of the PANDA9s loop can be reduced to one-tenth of the one

registered to compute the same process using a sequential approach;

• Partial Task Parallelization: the only task optimized in the parallel version is the

execution of PANDA loop, while tasks such as the loading of the expression matrix

and the computation of the correlation matrix are not, becoming a limiting factor as

the dimensions of the data increase;

• Stability of PANDA loop execution time: the time required for this task depends

solely on the size of the correlation matrix created from the expression matrix passed

as input. Since this is a square matrix with dimensions equal to the number of genes

considered, the time complexity of this task is independent of the cell count variations;

• Independence from the sparsity of the coregulation matrices: the set of tests

executed for the comparisons between the performance related to input with motif and

PPI data and their half versions, confirm the independence of the algorithm9s time

complexity from their dimensions;

• Intrinsic parallelization in correlation matrix computation: Although not explicitly

optimized for parallel processing, this task benefits the use of a package in which the

parallel computation is designed, achieving, in the case of multi-core hardware setup,

time performance from 3 to 7 times lower than the ones reached by all the other

setups;

• Memory usage: there9s a general trend, presented in Plot 4, for all the statistics related

to memory occupied by the computation of the simulated dataset. However, this trend

seems not to be followed by the real dataset, raising the possibility of not being able,

in the simulation phase, to fully capture all memory-relevant features;

• Sequential Nature of the PANDA loop: Although the message-passing approach used

in the PANDA loop produces biologically meaningful results, it is inherently

sequential, with the number of loop iterations representing a lower bound on the

algorithm9s critical length.

Based on these considerations, this study has explored ways to increase this tool9s scalability

in terms of computational time. All the limitations identified by this analysis presented in this

chapter have been considered as a starting point in developing modified versions of specific

parts of PANDA. It9s crucial to underline that not all the considerations done in this paragraph

have led to modifications; some features have been considered too relevant to modify,

58

maintaining them in the form in which they have been proposed originally, for instance, the

loop structure on which the message passing approach has been exploited. Others, regarding

memory occupancy improvement or implementing a multi-GPU approach, were not pursued

during the development of this work but can represent promising directions on which there is

room for improvement.

4.4 LIONESS

The second algorithm considered for the analysis of GRN inference performance is

LIONESS. It, as described in the earlier chapters, utilizes as input the PANDA object

produced by the omnibus software, and for each cell (or, more generally, sample) within the

expression matrix creates a specific GRN. It9s clear that some of the memory-saving options

used by PANDA, cannot be applied to this program because require the deletion of the

original expression matrix, which LIONESS requires at the start of each computation.

The structure of this program has features more adaptable to parallelization compared to

PANDA9s: the computation of each GRN sample-specific can be executed in parallel, not

depending on the results of the other steps, relying only on the aggregate network produced

by the initial PANDA execution. The primary limit on the parallelization of this algorithm

appears to be the hardware setup used, offering also a multi-GPU procedure to decrease

further the time performance. These premises have not been followed by encouraging results:

the time complexity of the computation executed on a sequential approach using the <1k

Dataset= required over 2 hours, while the memory requested by the use of a GPU exceeded

the already large amount of memory allowed to the computation (>200GB). Consequently,

these results have forced the stop of the testing on all the larger datasets, not producing data

on which analysis can be exploited.

The code simplicity, along with various attempts to mitigate time and memory complexity

(such as limiting output to two sample-specific GRNs instead of generating one for each

sample), suggest that the tested package version (netZooPy 0.8) may not be optimized for

large-scale or high-sample computations.

While the tests and the analysis on this second algorithm have not produced the expected

results, it9s essential to signal that all the limitations presented for PANDA are equally

pertinent for LIONESS. These represent important points on which all the improvements can

generate a significant impact also on LIONESS, due to the high number of calls of PANDA

required by this algorithm. Therefore, while the implementation of LIONESS seems to be the

most concrete and relevant problem, an optimization of the code and a parallelization of some

59

PANDA tasks can lead to a couple of usable (in terms of time and space required) tools, able

to generate sample-specific GRNs starting from expression matrices with a high number of

samples.

60

61

5. Improvements to the PANDA Algorithm

The preceding analysis highlighted the intrinsic limitations of the PANDA algorithm, which

can have scalability issues considering datasets with biologically relevant and realistic cell

counts. Consequently, the next phase of this study involves identifying specific sections of the

code to modify, focusing on the most time-intensive tasks that are likely to become critical

bottlenecks in single-cell applications. These tasks can be identified with whose performance

directly depends on the number of cells in the expression matrix, specifically: the loading of

the expression matrix and the computation of the correlation matrix.

In contrast, the main PANDA loop is excluded from this consideration due to its consistent

time performance, which is influenced solely by the number of genes in the dataset.

Furthermore, the loop has already exploited parallelization by the NetworkZoo programmer

team, using GPU architectures for Tanimoto similarity computation and the update function.

Finally, this chapter will present a comparative analysis of the execution times for these two

tasks4matrix loading and correlation computation4between the improved implementation

and the original version, providing insights into the results achieved through GPU

parallelization of these tasks.

5.1 Loading the Expression Matrix

The loading of the expression matrix, identified as one of the most time-intensive tasks in the

earlier analyses, requires a deeper examination of the implemented code. Specifically, the

results from tests conducted across various hardware configurations reveal no substantial or

consistent performance differences between the sequential approach and the use of parallel

architecture: multi-core CPU and GPUs load the expression matrix at the same time required

by a sequential approach. This observation indicates that the current function used for this

task 4 read_csv from the PANDAs library4 lacks optimization for parallel processing.

62

Pseudo-code 1: Improved version of the loading of the expression matrix

To address this limitation, it is necessary to design an improved implementation capable of

simultaneously loading distinct sections of rows (referred to as "chunks") and subsequently

merging them into a unique data frame. Initially, the developed solution, shown in Pseudo-

code 1, determines the total number of rows in the input text file containing the expression

matrix, counting the number of row delimitators. The program divides the dataset into evenly

sized chunks based on the number of processors available for the parallel computation. Each

chunk is then read simultaneously by individual processors, using 8pandas.read_csv9 function,

the same employed in the original implementation. Finally, the chunks are concatenated to

63

reconstruct the complete expression matrix, which is required for the PANDA algorithm

input.

Figure 13: Comparison between the time performance, across all the datasets, achieved using a

sequential approach (blue) and a parallel approach using a multi-core CPU (black)

Hardware

setup

Dataset

1k 4k 10k 50k 100k

CPU 1.32 s 17.61 s 34.5 s 514 s 1133.78 s

10xCPU 0.76 s 8.7 s 17.12 s 148.09 s 329.43 s

Table 8: Time performance, across all the datasets, of loading expression matrix task using CPU and

multi-core CPU.

Figure 13 and Table 8 demonstrate that the improved implementation for loading the

expression matrix achieves significant time efficiency compared to the sequential algorithm.

While the performance of the two approaches is comparable for datasets with fewer than

10,000 cells, the time-saving advantage of the improved program becomes increasingly

significant as the cell count rises. For datasets such as 850k9 and 8100k9, the parallel approach

reduces execution time to approximately one-fourth or one-fifth of that required by the

sequential method. This different time complexity is given by the use of simultaneous

processors and is mitigated by the time needed for the concatenation of all the chunks, a task

not required by the original code.

64

In this loading optimization, the GPU architectures achieve results comparable to the ones

obtained by the multi-core CPU approach and, therefore, are not presented in Figure 13 and

Table 7. Indeed, the parallelization of this code section is implemented by dividing the data

frame into chunks and employing a sequential function to read each of them simultaneously,

unable to support a GPU architecture and leading to the conduction of this task by CPUs with

the number of cores specified by the programmer. As a result, the performance differences are

due to the different hardware setups and are not consistent and substantial.

The improvement produced by this different approach changes drastically the impact of this

task on the general amount of time consumed and, considering also that: (1) the tests here

presented indagate only parallelism exploited by a multi-core CPU, (2) in all the LIONESS

workflow this task is executed once; this reduction of the time consumed to one-fourth of the

original version can be considered a substantial improvement.

5.2 Calculating the Correlation Matrix

The computation of the correlation matrix has been identified as another key task with

important room for improvement. This consideration is given, not only by the large times

registered and by their general increasing trend, but also by the type of calculation needed to

generate the correlation matrix. Each cell of this output matrix is produced by the calculation

of the Pearson correlation coefficient, ρXY , of the two genes, X and Y, taken as coordinates of

the new matrix, expressed by this formula:

ρXY = �ÿĀ�ÿ�Ā

where �ÿ is the standard deviation of the row associated with the gene X in the expression

matrix, and �ÿĀ is the covariance between the genes X and Y. A notable feature of this

computation is the independence between coefficients. For instance, calculating ρĀā does not

depend on the computation of ρĀĂ, with all required standard deviations precomputed. This

independence underscores the high degree of parallelizability inherent in this task. In the

PANDA algorithm, the correlation matrix is computed using the corrcoef function from the

NumPy library. This function, as shown in the plot presented in Figure 14 and from data in

Table 9, already exploits some level of parallelism. These observations indicate that, while

the original implementation benefits from parallel computation, further optimization could

65

yield even more substantial efficiency improvements using a parallel approach able to exploit

the GPU potentialities in an improved version.

Figure 14: Comparison across time performance of correlation matrix computation of the original

version using: CPU (sequential approach), and 10 cores of CPU (parallel approach).

Hardware

setup

Dataset

1k 4k 10k 50k 100k

CPU 14,5 s 50,6 s 87,6 s 424,9 s 787,88 s

10xCPU 7,87 s 18,6 s 15,76 s 59,21 s 111 s

Table 9: Time performance achieved by CPU and multi-core CPU structures across all the datasets

for the correlation matrix computation task with the original implementation.

The modifications implemented focused on the application of the GPU computation on this

task. Specifically, the NumPy library, traditionally used for this task, was replaced with CuPy,

a GPU-accelerated library from the Rapids ecosystem. This change abled the shift of the

correlation computation job from the CPU to the GPU, with tests conducted using two

hardware configurations: NVIDIA RTX and A40 GPUs.

The results, presented in the plot shown in Figure 15 and in Table 10, highlight the

comparison of the performance between the improved version (GPU-based computation) and

the original version (best-performing CPU-based setup, the multi-core CPU). For datasets

with smaller cell counts, the execution times across all implementations, original and

66

improved, can be considered equivalent. However, as the dataset size increases, the

advantages of GPU acceleration become increasingly significant, with both the RTX and A40

allowing the improved configuration to achieve lower execution times than the original

version. Notably, there is no substantial performance difference between the RTX and A40

GPUs, as both achieve comparable speedups over the multi-core CPU approach.

Figure 15: Comparison across the time performance achieved by the original implementation using

10 cores of the CPU(black line) and the improved implementation using RTX (red line), A40 (green

line) GPUs for the correlation matrix computation task.

Hardware

setup

Dataset

1k 4k 10k 50k 100k

10xCPU 7,87 s 18,16 s 15,76 s 59,21 s 111 s

RTX 4,4 s 12 s 23 s 35,54 s 68 s

A40 5,49 s 14,1 s 24 s 38,34 s 74 s

Table 10: Times performed by 10xCPU, RTX, and A40 architecture across all the datasets to compute

the correlation matrix, using the two different implementations, the original and the improved.

The modifications introduced to improve this code section provide significant results,

lowering notably its time consumption. Specifically, these results assume privileged

importance not only because of the demonstrative potentialities, underling effectively the

67

power of a parallel approach compared to the traditional computational way of solving

problems, but also for the consequences on the two GRN inference algorithms, PANDA and

LIONESS. For PANDA, these are relevant updates because allow the use of the GPU setup

without time efficiency problems related to preliminary tasks; for LIONESS, the

improvements are even more critical, as the algorithm requires the computation of a

correlation matrix for each individual sample in the dataset.

In conclusion, these modifications, regarding only targeted sections of code enable the

parallelization of the two most time-consuming tasks identified by the analysis. This not only

reduces the time required for each computation but also establishes a parallelized framework

that can support further optimization efforts, leading to inference sample-specific GRN

algorithms able to elaborate realistic single-cell matrices in an acceptable amount of time.

5.3 Results Achieved

This paragraph presents the difference in terms of time consumed in the PANDA workflow

between the original GPU implementation of this inference GRN algorithm and the proposed

improved version.

16.a)

68

16.b)

16.c)

69

16.d)

16.e)

Figure 16 (a,b,c,d,e): Comparison between the time consumption of the PANDA algorithm and of the

modified version.

Figure 16 compares the performance achieved through the parallelization of the 2 preliminary

tasks with the time consumption of the PANDA original algorithm. While in the case of a

70

dataset with a cell count equal or lower than 10 thousand (Figure 16 a,b,c) the differences are

not significant, for the largest expression matrices (Figure 16 d, e) considered the time gains

reach the following results:

• Loading expression matrix: The improved version is at least three times faster than

the sequential approach in the 50k and 100k Datasets, respectively;

• Correlation matrix computation: the use of the GPU architecture can lead to the

execution of this task 2 times faster than the multi-core CPU setting and from 7 to

over 10 times faster than the sequential approach, using as reference the two most

large datasets and depending on the hardware setup considered.

In conclusion, the obtained results demonstrate how the GRN inference workflow can be

analyzed and improved in different tasks, such as the ones modified in this version, achieving

a more scalable and efficient product. In particular, this study proves the potentialities and the

applicability of the state-of-the-art general-purpose GPU software applied to the bioinformatic

field, enabling the handling of multi-omic data with reasonable time consumption.

71

6. Conclusion

This study aims to analyze the advantages and limitations of an inference GRN algorithm,

PANDA, and a sample-specific GRN inference software, LIONESS, evaluating the possible

applications of parallel computing and GPU optimization to enhance their computational

performance. Initially, there is a presentation of the state-of-the-art GPU technology

applications in the bioinformatic field: they can be considered pivotal in the future

development of bioinformatic pipelines. These suites of software can change drastically the

process of analyzing NGS data in each step (secondary and third analysis) of the genomic

pipeline, allowing the computation of fundamental biological tasks, such as the Whole Exome

Analysis, in a fraction of the time normally required by the sequential approach.

Once this parallel ecosystem excursus is completed, the focus is maintained on the two core

algorithms, PANDA and LIONESS. This couple of software is based on the message-passing

approach: an iterative process having the goal of finding a network with the highest possible

accordance among the data matrices used as input, representing the relations between TFs and

regulated genes.

This explanation is followed by the performance analysis of PANDA in terms of time

consumed and memory occupied. All the tests have been conducted on a set of datasets

simulated from a real one, abstracting its main characteristics, such as the sparsity of the

matrix and the sequencing depth. The variables whose impact has been evaluated in this

analysis are (1) the hardware setup, using CPU, multi-core CPU, and two different GPUs; (2)

the cell count of the expression matrix; (3) the sparsity of regulation between a specific TF

and the genes, and among TFs.

Memory usage follows an increasing trend as the cell count increases; it9s relevant to

underlining the tendency of the only real dataset, 4k, to require a value of memory higher than

the one expected by the trend of the other datasets, behavior confirmed among all the

hardware setups tested. The time analysis has revealed how the co-regulation matrix

dimensions don9t affect the execution time, and how the total time required by PANDA is

subdivided among all the relevant tasks that compose it. In particular, the loading of the

expression matrix, the correlation matrix computation, and the PANDA loop dominate the

time complexity, presenting designed parallel optimization only for this last task.

For the first two tasks, some parallel improvements have been proposed considering, using

parallel computing strategies exploiting multi-core CPU and GPU. Finally, in the following

72

paragraphs, the results obtained are compared with the original performance, and the potential

future improvements are described.

6.1 Limitations and potential future improvements

While the modifications previously discussed have led to significant improvements, several

aspects represent relevant limitations for the real applicability of these couple of tools. At the

same time, these can be considered as opportunities for future improvements to optimize

further the scalability of this software. These aspects, divided by argument, are:

• Optimization of the expression matrix loading: the modifications have reduced the

time consumption of the parallel approaches. However, from the previous comparison,

this task results still dominate, in terms of time, among all the other tasks as the cell

count increases. Potential future improvements are the evaluation, implementation,

and test of the state-of-the-art GPU-optimized I/O functions for the loading of

matrices;

• Optimization of the correlation matrix computation: this task is directly dependent

on the cell count, therefore can be useful to consider:

 Testing specialized specific bioinformatic packages, such as Rapids-singlecell,

different from the general-purpose ones used in this study, to evaluate

theoretically and practically the time and memory performance;

 A multi-GPU approach, evaluating which packages can store and operate on

large matrices;

• Redesign of the PANDA loop structure: Evaluate how this typically sequential

strategy can be rethought as a parallel process, aiming to design a more efficient way

of representing this workflow using a parallel architecture;

• Optimization of the memory usage: this aspect represents the main limitation after the

modifications provided to alleviate the time consumption problems, therefore it would

be important to:

 Establish the dependence between the memory usage and the dimensions of

the input matrices;

 Evaluate how the internal variables and matrices are stored and distributed in a

GPU;

• LIONESS analysis:

 Evaluate and solve the problems that have hindered the testing of this

algorithm, in particular, the motivation behind the high time and space

consumption associated with a not significantly large expression matrix;

73

 Execute a performance analysis among different hardware setups looking for

the software limitations and the potential optimizations;

 Manage efficiently the allocations of the variables and matrices, guaranteeing

continuity with the memory architecture used for the PANDA algorithm.

With these analyses and this set of potentialities concretized, PANDA and LIONESS will be

finally able to perform GRN inference on large single cell RNA-seq data with limited

computational burden.

74

75

Bibliography

[1] Sumida et al., The regulation and differentiation of regulatory T cells and their

dysfunction in autoimmune diseases, Nature, 2024.

[2] Zhu et al., Cell signaling and transcriptional regulation of osteoblast lineage commitment,

differentiation, bone formation, and homeostasis, Nature, 2024.

[3] Yokota, Osteoclast differentiation in rheumatoid arthritis, Immunological Medicine,
47(1), 6311, 2023.

[4] Haseltine et al., The RNA Revolution in the Central Molecular Biology Dogma Evolution,

Molecular Sciences, 2024.

[5] Koonin, Why the Central Dogma: on the nature of the great biological exclusion

principle, SpringerNature, 2015.

[6] Querido et al., The molecular basis of translation initiation and its regulation in

eukaryotes, Nature, 2024

[7] Goldberger, Biological Development and Regulation – Gene Expression, National Cancer
Institute, 2012.

[8] Yuan et al., Inferring gene regulatory networks from single-cell multiome data using

atlas-scale external data, Nature, 2024.

[9] Phan et al., Studying temporal dynamics of single cells: expression, lineage and regulatory

networks, Springer Nature, 2024.

[10] Hunyuh-Thu et al., Gene Regulatory Network Inference: An Introductory Survey,
SpringerNature, 2018

[11] Ozsolak et al., RNA sequencing: advances, challenges and opportunities, Nature Review
Genetics, 2011.

[12] Kumar et al., Next-Generation Sequencing and Emerging Technologies, Thieme, 2024.

[13] Wang et al., Single cell analysis: the new frontier in 8omics9, Trends in Biotechnology,
2010.

[14] Potter, Single-cell RNA sequencing for the study of development, physiology and disease,
Nature, 2018.

[15] Stegle et al., Computational and analytical challenges in single-cell transcriptomics,
Nature Review Genetics, 2015.

[16] Mercatelli et al., Gene regulatory network inference resources: A practical overview,
ScienceDirect, 2020

[17] Zhao et al., A comprehensive overview and critical evaluation of gene regulatory

network inference technologies, Briefing in Bioinformatics, 2021.

[18] Salleh et al., Reconstructing gene regulatory networks from knock-out data using

Gaussian Noise Model and Pearson Correlation Coefficient, ScienceDirect, 2015.

[19] Elembaby et al., Comparing gene regulatory inferring algorithms with different

perspective, Instrumentation, Mesure, Métrologie, 2018.

76

[20] Pirgazi et al., A robust gene regulatory network inference method base on Kalman filter

and linear regression, Plos one, 2018.

[21] Liu et al., Inference of Gene Regulatory Network Based on Local Bayesian Networks,
Plos Computational Biology, 2016.

[22] Akers et al., Gene regulatory network inference in single-cell biology, ScienceDirect,
2021.

[23] Aibar et al., SCENIC: single-cell regulatory network inference and clustering, Nature,
2017.

[24] Moerman et al., GRNBoost2 and Arboreto: efficient and scalable inference of gene

regulatory networks, Bioinformatics, 2019.

[25] Paul M. et al., Reconstruction of gene regulatory networks using graph neural network,

ScienceDirect, 2024.

[26] Kharchenko, The triumphs and limitations of computational methods for scRNA-seq,

Nature Methods, 2021.

[27] Lythal et al., Normalization Methods on Single-Cell RNA-seq Data: An Empirical

Survey, Frontiers, 2020.

[28] Bhardwaj et al., Limitations of scRNA-seq Zero-Imputation Methods for Network

Inference, OpenReview, 2024.

[29] Badia-i-Mompel et al., Gene regulatory network inference in the era of single-cell multi-

omics, Nature, 2023.

[30] Glass et al., Passing Messages between Biological Networks to Refine Predicted

Interactions, Plos One, 2013.

[31] Kuijjer et al., Estimating Sample-Specific Regulatory Networks, iScience, 2019.

[32] Web Site: Parabricks Documentation,
https://docs.nvidia.com/clara/parabricks/latest/index.html

[33] O9Connell et al., Accelerating genomic workflows using NVIDIA Parabricks,
SpringerNature, 2023.

[34] Web Site: Nvidia Parabricks Documentation, <Welcome to Nvidia Parabricks v4.3.1 3
Software Overview 3 Software Tools=,
https://docs.nvidia.com/clara/parabricks/latest/documentation/tooldocs/standalonetools.html

[35] H. Clifford & P.Vats, Accelerate Whole Exome Analysis with Deep Learning at 70%

Cost Reduction Using NVIDIA Parabricks, Nvidia Developer Blog, 2023.

[36] Web Site: Nvidia RAPIDS, https://www.nvidia.com/it-it/deep-learning-
ai/software/rapids/

[37] Hricik et al., Using RAPIDS AI to Accelerate Graph Data Science Workflows, IEEE,
2020.

[38] Web Site: Rapids-singlecell GitHub repository, https://github.com/NVIDIA-Genomics-
Research/rapids-single-cell-examples

https://docs.nvidia.com/clara/parabricks/latest/index.html
https://docs.nvidia.com/clara/parabricks/latest/documentation/tooldocs/standalonetools.html
https://www.nvidia.com/it-it/deep-learning-ai/software/rapids/
https://www.nvidia.com/it-it/deep-learning-ai/software/rapids/
https://github.com/NVIDIA-Genomics-Research/rapids-single-cell-examples
https://github.com/NVIDIA-Genomics-Research/rapids-single-cell-examples

77

[39] Web Site: scverse, https://scverse.org/

[40] Web Site: Anndata, https://anndata.readthedocs.io/en/stable/

[41] S.Dicks & C.Nolet, GPU-Accelerated Single-Cell RNA Analysis with RAPIDS-singlecell,
Nvidia Developer Blog, 2023.

[42] Web Site: Netzoopy, GitHub repository, https://github.com/netZoo/netZooPy

[43] Guebila et al., gpuZoo: Cost-effective estimation of gene regulatory networks using the

Graphics Processing Unit, NAR Genomics and Bioinformatics, 2022.

https://scverse.org/
https://anndata.readthedocs.io/en/stable/
https://github.com/netZoo/netZooPy

78

Acknowledgments

I would like to warmly thank all the people who made this important journey and project

possible.

A special thanks to Prof. Baruzzo for serving as the supervisor of this thesis, for his

availability, and for the attention he dedicated to me over the past months. My gratitude also

goes to Prof. Di Camillo for her valuable guidance during the development of this project, and

to Dott. Cesaro for her assistance in implementing the tests presented and for her readiness to

help.

I am also grateful to Dr. Loris Bertoldi for the support and advice on these topics, as well as

to the entire BMR Genomics team for allowing me to concretely apply my studies in such a

welcoming work environment.

