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Abstract 

The regulation of biological processes within each single cell governs all the main cellular 

mechanisms aimed at the development, differentiation, and proper maintenance of the cell 

itself. It determines, at the tissue level and more generally at the organism level, the actual 

role assumed by the cell. It is of vital interest to the scientific and biological community to 

establish precisely how such regulatory processes are concretized in various cell types, 

whether they are considered healthy or diseased. Understanding these mechanisms necessarily 

involves identifying and sequencing the gene products that each cell synthesizes and 

possesses at a given moment. The technique at the core of this cellular study is called single-

cell analysis, which is capable of generating multi-omics data that represent all the main 

regulatory mechanisms occurring within the isolated and analyzed cells. This technology can 

be considered as the basis for a more accurate study of the roles' heterogeneity exploited by 

cells within their respective tissues. In this regard, an effective representation of such 

processes is provided by gene regulatory networks, a tool of particular interest to the 

biological and scientific community. However, the inference of such networks remains an 

unresolved issue, with methods that are not simultaneously effective and efficient. This 

situation is further complicated by the need to study data from single-cell analyses and multi-

omics data, which have a significantly larger dimension than the sequencing data obtained 

from previous generation technologies.  

This work aims to analyze two bioinformatics methods for the inference of gene regulatory 

networks, highlighting their biological potentials and computational limits. Of particular 

interest, in evaluating these methods for real applicability in experiments with single-cell and 

multi-omics data, is the scalability of the processes used by such software. This property is 

also evaluated based on the possibilities for parallelization that these software packages 

present already in their implementation.  

This analysis aims to evaluate potential computational improvements, also utilizing the 

capabilities of parallel computing on GPU architectures. The main tools used to implement 

these modifications are software libraries considered state-of-the-art in parallel computing, 

coupled with GPU structures capable of fully exploiting their potential.  

The improved versions of the two bioinformatics methods show significantly reduced 

execution times compared to those obtained from the original version, with comparable use of 

memory and resources.  
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1. Introduction   

The ability of a cell to differentiate itself and to modify its biological processes in response to 

external stimuli is a fundamental characteristic of living organisms [1,2,3]. The instructions 

for performing these adaptive mechanisms are encoded within DNA, owned by each cell of 

the same organism. Despite sharing an identical genetic blueprint, cells can perform highly 

specialized functions, fulfilling distinct roles in the same organism. This apparent paradox is 

explained by the central dogma of biology [4,5], which states the unidirectional flow of 

genetic information: from DNA to RNA, through the transcription process, and from RNA to 

protein via translation. This tightly regulated process controls the protein synthesis, enabling 

the cell to orchestrate all the biological pathways essential for the organism. The synthesis of 

a specific protein can be up or downregulated or modulated by the promotion or the inhibition 

of the expression of each gene contained in the DNA. 

Gene expression is the process through which a specific gene product is synthesized and 

involves multiple layers of regulation, including signal transduction and post-transcriptional 

modification [6,7]. Among these, transcriptional regulation has an important role: the 

regulation of the transcription process can be modulated by specialized proteins, such as 

repressors and promoters. In this set of controlling proteins, a fundamental role is exploited by 

the Transcription Factors (TF). These proteins can bind to specific sites in the DNA sequence 

(regulatory or binding sites), and orchestrate the regulation of the downstream target genes. 

The transcriptional activity of these genes, reflected in the quantity of RNA transcripted and 

subsequently translated into protein, depends directly on the action of this type of protein. 

Transcription factors, as proteins themselves, are subject to a multitude of regulatory 

mechanisms, including feedback loops and interactions with other signaling molecules. This 

further degree of regulation adds a complexity layer to this fundamental biological process 

and underlines the importance of all the TFs involved.    

For the scientific community, understanding the details of regulatory processes and 

comprehensively evaluating the biological mechanisms occurring within the cells of a 

considered sample can be considered a crucial goal. In this sense, the development of a model 

capable of representing these regulatory processes in a structured and biologically meaningful 

form is essential and has found a realization in the gene regulatory network (GRN) [8,9]. 

Visualized in Figure 1, this representation can collect all the interactions among all the 

regulatory components, such as TF, and repressors, using a coherent structure.  
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Figure 1: Graphical representation of a GRN: each node is a gene, a protein, or a biological 

process, and each arc represents the regulation executed from one node on the other. Image 

taken from [10]. 

The evaluation of the gene regulation of a given sample can be conducted by quantifying the 

RNA copies produced within the sample9s cells, through a next-generation sequencing 

technique called RNA-seq [11,12]. This analysis can be classified as next-generation 

sequencing because exploits a high-throughput approach to sequence a massive number of 

reads, fragments of 50 to 400 bases obtained by the double-stranded DNA complementary to 

the RNA analyzed fragments (ds-cDNA). While the first part of this procedure is executed in 

vivo in a wet lab and has as output the sequences of the basis of each read considered, the so-

called secondary analysis is executed in silico and, after steps needed to identify which gene 

is responsible for the presence of each read, generates as output a gene expression matrix. 

This matrix is composed of the amount of RNA copies associated with each gene (the rows) 

and each sample (the columns). One of the most relevant parameters of this matrix is the 

sequencing depth: the number of RNA copies annotated for each sample.  

Once the expression matrix has been generated, the tertiary analysis can be executed aiming 

to obtain relevant information about the statistically significant differences among all the 

samples considered, such as the differential abundance of a set of genes of a specific sample 

subset. This last phase has become even more significant thanks to a new sequencing 

approach: the single-cell technology.  

1.1 Single-cell technology 

A relevant limitation of the sequencing and analysis methods presented so far is the inability 

to capture the biological materials synthesized at the individual cellular level. The specific 

biological processes that each cell carries out in response to external stimuli or during its 

differentiation are aggregated together and consequently obscured. This limitation hinders the 
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identification and high-resolution representation of the heterogeneity exhibited by individual 

cells within a sample, a critical feature in organisms where cellular differentiation is an 

impactful property.  

The sequencing technique that has revolutionized these aspects, changing the perspective 

from analyzing groups of cells to considering each cell as a distinct and separable element, is 

single-cell technology [13]. This technique can be defined and recognized as a cellular-level 

sequencing process capable of quantifying the biological products synthesized by each cell 

within a sample. This technology goes beyond just the analysis and sequencing of the cellular 

transcriptome; it extends its potential to the characterization of the proteome and genome of 

individual cells, opening a new and revolutionary way to evaluate the biological processes 

occurring in the examined tissue at the moment of detection. 

This technique was developed with the idea and goal of highlighting the specific biological 

processes of each cell belonging to the considered tissue or sample, in particular, to evaluate 

all the biological compounds, such as proteins, nucleic acids like RNA in its various forms, 

and DNA, that a cell possesses at the time of analysis. The key principles that distinguish this 

technique from previous ones can be identified as follows:  

• Cell isolation: Each cell considered in this type of analysis results distinctly separated 

from others, ensuring a more accurate representation of sample heterogeneity and 

avoiding biological contamination between distinct cells.  

• Measurement sensitivity: The biological compounds of each cell can be quantified 

more precisely, despite the different scales of quantities they represent compared to 

the genetic and protein materials measured by sequencing technologies that operated 

at the level of cell groups.  

• Cellular resolution: Single-cell technology prioritizes the identification of biological 

materials assembled at the cellular level. This key principle must be actualized through 

the ability to distinguish cellular differences, even when they are minimal, such as in 

cells with similar functions and where comparable biological mechanisms are applied. 

The first fundamental step in conducting a single-cell sequencing analysis is the identification 

and isolation of cells deemed biologically relevant from the target organism. This phase can 

be executed through several techniques that, all presenting high sensitivity and cellular 

resolution, can accurately preserve the heterogeneity of the sample. Common single-cell 

isolation techniques include sorting, which, through fluorescence (FACS) or magnetism 

(MACS), can label with detectable antibodies selected cells considered interesting for study 
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during the identification phase; microfluidics, in which individual cells are isolated using 

miniaturized devices for the flow of microscopic fluids; and micromanipulation, where 

micropipettes and lasers are used to collect the biological materials contained within the 

identified cells. Once the relevant cells for the considered study case are identified and 

isolated, the collected biological material has to be sequenced. The characteristics of this 

phase naturally differ based on the type of biological material that has been collected from the 

cells, which usually, given the scientific relevance of such topics, involves the proteome, 

genome, or transcriptome. Transcriptome analysis is particularly important and interesting as 

it provides critical insights into the biological processes occurring within each cell, 

characterizing its role in the context of the analyzed sample [14]. 

This sequencing technology focuses on the gene expression of each cell considered in the 

reference sample. The main biological material of interest for this analysis is the messenger 

RNA (mRNA) produced during the transcription phase of the genetic information contained 

within the DNA. Considering the process carried out to perform this analysis, the isolation of 

individual cells and the extraction and purification of the mRNA are followed by the 

amplification and conversion of this nucleic acid into complementary DNA (cDNA) through 

the reverse transcription reaction. To ensure stability and traceability, each cDNA read is 

uniquely tagged with a molecular barcode (UMI). This barcode allows the association of each 

read with its cell of origin, preserving essential cell-specific information during subsequent 

processing. Following this initial phase, sequencing is carried out using high-resolution 

sequencers such as Illumina or Nanopore. The characteristics and advantages of NGS 

technologies can also be applied in this type of analysis, ensuring the sequencing of a large 

number of reads and thus representing even low-expressed genes within individual cells. [15]  

The bioinformatics pipeline following this sequencing phase is similar to the one usually 

employed for bulk cell transcriptome analysis. The main activities that can be identified in 

this pipeline, in order of execution, are data pre-processing to remove technical errors and 

low-quality sequencing reads; quantification of gene expression by associating each read with 

the gene from which it was transcribed; cell clustering, where subgroups or communities of 

cells with similar transcriptomic characteristics can be identified from the gene expression 

matrix, or evaluating differences in the abundance of detected gene expression; and finally, 

visualizing and biologically interpreting the results through dimensionality reduction 

operations and statistical analysis of the obtained data.  

At the end of the secondary analysis process, a gene expression matrix is generated where 

each column is uniquely associated with the gene expression of a single cell, providing the 
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possibility to analyze the heterogeneity of the considered cell sample with high resolution and 

high sensitivity, characteristics that are entirely unattainable using previous sequencing 

technologies. Another significant advantage of this type of technology is its applicability; in 

fact, this method imposes no limits regarding the type of cells whose transcriptome can be 

analyzed, leading to a series of possible case studies ranging from the spatial analysis of 

tumor processes to the investigation of the development of drug resistance in specific cells.  

Despite the evident advantages that this technique brings to the study of the transcriptome, 

some limitations can become important challenges to the application of this technology, such 

as:   

• Complexity in sample preparation, requiring high accuracy and sensitivity during the 

initial phase of isolation and processing of messenger RNA fragments;  

• Cost and need for advanced instrumentation, requiring highly specialized laboratory 

tools;  

• Management of extremely large datasets, due to the increase in data collected from 

cellular-level analysis, which can become a significant limitation regarding 

computational capacity, especially in the case of comparing gene expression between 

different patient groups;  

• The necessity of specialized bioinformatics software to analyze this type and large 

volume of data, an aspect that programs must manage in terms of both time efficiency 

and memory usage.  

While this sequencing technique provides data about the gene expression on an individual cell 

level, other analyses generate information about other relevant aspects of the molecular 

biology of the sample considered. For example, the study of the genome, the proteome, the 

microbiome, and the epigenome can produce relevant notions able to characterize the 

biological processes of the considered organisms. A holistic approach able to combine all 

these types of data, generically called 8multi-omics9 data, is the horizon for the scientific 

community. This new type of approach needs to interface with, not only different data types 

but also, an unprecedented scale of data. The complex biological big data, originating from 

the combination of multi-omics data, introduces a unique set of challenges: to be analyzed it 

demands significant computational requirements (in terms of optimized software and 

advanced hardware) that can become the bottleneck for the entire workflow analysis process. 

A relevant case study in which the computational requirements can be considered as a 

possible process limitation is the GRN inference.  
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1.2 Gene Regulatory Network Inference 

The ability to infer biologically significant GRNs has become essential for the scientific 

community. A reliable GRN that accurately represents the biological processes in a patient9s 

cell sample can provide critical insights. In particular, areas and purposes where the inference 

of this tool can be decisive include the analysis of the characteristics of GRNs associated with 

patients suffering from diseases that have altered regulation of expression, such as diabetes, 

cancer, or autoimmune disorders. It is therefore evident that the representative capacity of a 

GRN should be regarded as the main characteristic to be obtained from the inference of the 

network itself.  

Despite the importance of this tool and the attention of the scientific community towards the 

development and research in this field, some elements slow down or prevent the 

implementation of a representative and efficient GRN inference method, especially when 

using data not derived from single-cell technologies [16,17].  

The first issue is biological complexity: developing an inference method that can accurately 

represent biological processes despite the inability to capture the intrinsic cellular 

heterogeneity of the samples and tissues analyzed in a case study becomes a challenging 

problem. In particular, the gene expression deduced from bulk data analysis represents a 

cumulative view of all the biological processes occurring within the cells composing the 

sample, and thus the inference of a network from this type of data will not be able to represent 

the intrinsic heterogeneity of the sample itself. An additional layer of complexity in GRN 

inference is represented by the non-linearity of gene regulations. Indeed, the mechanisms that 

orchestrate regulatory processes cannot all be effectively inferred using a linear model, as 

there are many biological mechanisms regulated through activation or repression thresholds. 

These types of regulation do not guarantee a proportional relationship between changes in the 

expression of a transcription factor (TF) and the actual changes in the expression of the target 

gene. Another example of biological complexity that is challenging to represent using additive 

models is regulation through protein complexes: TFs can be combined to carry out their 

regulatory functions and the variation of just one of these components does not directly cause 

a proportional increase in gene expression unless it is adequately assisted with the regulation 

of the other TFs.  

Alongside these biological limitations, there is a computational problem: considering the need 

to represent the regulation of several genes in the order of tens of thousands, the amount of 

data to be inferred4i.e., the weight of each arc connecting two generic nodes4becomes 
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difficult to manage in terms of execution time and memory required when using sequential 

computational approaches. In addition to these two significant limitations, other problems 

arise, such as the effects of noise or the incompleteness of sequencing data on the inferred 

network, the difficulty of scientifically validating whether the obtained network is 

representative of the acquired biological sample or the challenge of inferring and interpreting 

GRNs based on an approach that uses only one type of data.  

Over the years, various methods for inferring these types of networks have been implemented, 

based on approaches that tackled this problem from different perspectives, yielding methods 

with differing characteristics and performances. The first approach is based on calculating the 

correlation between the expression of each pair of genes, leveraging statistical tools such as 

Pearson's correlation coefficient. This set of methods aims to identify the nature of regulatory 

relationships assuming a dependency (linear in the case of calculating Pearson's correlation 

coefficient, non-linear when using Spearman's correlation coefficient [18,19]) between each 

regulatory gene and its respective target gene. Such an assumption, as explained previously, is 

reductive for a significant number of biological mechanisms, preventing the inferred networks 

from effectively representing more complex or indirect regulatory relationships.  

Another type of approach for inferring GRNs is based on linear regression methodologies 

[20]. By leveraging the potential of regression techniques or penalized regression, such as 

LASSO and elastic net, it is possible to infer the regulatory relationships between regulatory 

genes and target genes, resulting in GRNs that are more representative than those obtained 

through simpler methods. 

One of the most recent and relevant approaches has been achieved with Bayesian networks 

[21]: probabilistic models that leverage directed acyclic graphs (DAGs) to represent, in this 

case, the conditional dependencies inferred among the considered genes. This approach, 

despite the high computational cost in the case of large datasets, proves particularly effective 

in inferring the relationships of gene expression regulation, maintaining robustness even with 

noisy input datasets. Another improvement that this approach has implemented, compared to 

the previously presented, is the ability to model and infer causal relationships between genes, 

establishing which one regulates the other. The main limitations of this methodology lie in the 

indispensable use of directed acyclic graphs, which consequently prevent the representation of 

cyclic regulatory biological processes, and the computational inefficiency in the case of large 

datasets. This latter limitation, in particular, is the most stringent from the perspective of 

computational biology, which is oriented towards analyzing large quantities of data, such as 

those originating from single-cell analyses or multi-omics approaches. 
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1.3 Gene Regulatory Network Inference on single-cell RNA sequencing data 

The inference of a GRN aimed at accurately representing the regulatory biological processes 

of gene expression at the cellular level is currently one of the most important fields of 

research and development in computational biology. The ability to infer GRNs from single-

cell gene expression data would be considered a fundamental tool for studying, analyzing, and 

validating scientific theories regarding the mechanisms that lead each single cell to 

characterize the synthesis of its genetic products, such as RNA and proteins. The advantages 

and possibilities that this tool could bring are related to the level of resolution that this type of 

data, provided as input, can guarantee, along with the use of a biologically representative tool 

such as a GRN [22]. These can be summarized as: 

A more accurate representation of the heterogeneity of a biological sample: By isolating, 

characterizing, and abstracting the processes that occur in every single cell, rather than relying 

on the cumulative gene expression of bulk data, it is possible to represent the heterogeneity 

within a sample in a specific and accurate GRN.  

Creating GRNs representing the metabolic processes of transition and differentiation: By 

considering only the cells that are differentiating, such as stem cells, or that are changing their 

gene expression, as in the case of tumor cells, the GRN obtained would represent the common 

processes regulating such complex mechanisms.  

Obtaining GRNs of specific cells: By enhancing accuracy at the single-cell level, the study of 

cellular biological processes can be directed towards specific cells deemed scientifically 

relevant, whose gene expression could not be identified by considering the common 

properties of bulk cells.  

The methods that have been studied and developed for the inference of GRNs from gene 

expression data can also be applied to this particular data type. At the same time, the 

limitations and issues characterizing these methods are amplified by the different scales of 

complexity that this type of biological data presents. In particular, methods that rely on 

calculating the correlation between gene pairs to establish the expression regulation present 

additional limitations when applied to scRNA-seq data: due to the heterogeneity of these data, 

inferring the potentially unique mechanisms regulating the processes of each single cell 

becomes even more complex. Linear regression models can improve their performance in 

terms of biological accuracy by leveraging a greater amount of data; however, they remain 

limited by the requirement of linearity of the relationship in gene expression regulation. 
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Similarly, Bayesian models, despite the robustness to noise commonly found in single-cell 

data and the capacity to represent more complex and realistic gene regulatory relationships 

than previous models, have representation limitations due to the need to use directed acyclic 

networks. Another fundamental limitation of this approach is the computational scalability, 

which hinders the real applicability of these methods on significant-sized datasets, such as 

those produced by single-cell sequencing.  

More advanced approaches for inferring networks from scRNA-seq data leverage the 

potential of machine learning and deep learning to describe gene regulatory relationships 

more accurately and complexly. In particular, algorithms like SCENIC [23] or GRNBoost2 

[24] are optimized for analyzing large quantities of data, and algorithms that utilize Graph 

Neural Networks [25] represent a significant increase in inference capabilities, even for the 

most intricate gene relationships. However, the limitations that these methodologies present 

are difficult to overcome, as they are due to the intrinsic nature of these approaches, such as 

the training phase requirements: is challenging to provide in practical reality a considerable 

amount of data distinct from those used for the real application of the algorithms; and the 

difficult biological validation of the results represented within the inferred networks. 

Using single-cell gene expression data as a starting point introduces additional challenges to 

the already complex task of GRN inference. These challenges arise from the inherent 

characteristics of single-cell data, such as technical sequencing errors and the sparsity of the 

gene expression matrix, which typically results from the nature of gene expression and 

technical limitations of single-cell RNA sequencing (scRNA-seq) technologies [26]. To 

address these issues, it is essential to implement robust preprocessing and noise reduction 

strategies. Key approaches include the imputation of Non-Biological Zeros and data 

normalization[27,28]. By applying these preprocessing techniques, the biological 

representativeness of scRNA-seq data can be significantly enhanced, providing a more 

reliable foundation for GRN inference. 

Other complexities related to the study of scRNA-seq data cannot be easily overcome. 

Limitations such as the high dimensionality of these data have significant impacts on the 

actual efficiency that GRN inference algorithms can aspire to achieve. Indeed, despite the 

capacity of certain inference methods to handle large amounts of gene expression data as 

input, the main obstacle is the temporal and memory efficiency that such approaches can 

reach using their sequential implementation. An algorithm capable of inferring a GRN from a 

large single-cell sequencing dataset within an impractical timeframe or requiring excessive 
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memory is of limited practical utility. The computational efficiency of such methods, using 

scRNA-seq data as a starting point for inference, becomes fundamentally important in this 

application. [29] 

1.4 Study presentation 

From this brief overview of two of the most current objectives of the biological and 

bioinformatics scientific community, the inference of GRN and the effective integration of 

scRNA-seq data into the analysis pipeline, it is evident that there is a need for a tool capable 

of performing these tasks while respecting the time and memory constraints imposed by the 

real applicability of such methods. The main problem that unites all the methods presented for 

the inference of GRN from single-cell data is the scalability of these approaches to gene 

expression matrices with a potentially much higher cell count than those generally considered 

for bulk data bioinformatics analysis.  

Once the importance and complexity inherent to this topic are established, it is necessary to 

consider an implementation approach for the realization and optimization of inference 

methods that can handle this scale of biological data and, at the same time, integrate 

information from different data types to ensure the biological significance and relevance of 

the results. In this perspective, this study aims to analyze and optimize two algorithms, 

PANDA and LIONESS [30,31], capable of generating, from multi-omics data, GRNs that 

represent the biological processes characterizing the considered sample-specific GRNs 

associated with individual samples or, in the case of input scRNA-seq, individual cells. This 

study focuses on leveraging parallel computation to execute the most resource-intensive tasks 

associated with this pair of methods, optimizing both computation time and memory usage. 

This choice aims to obtain inference algorithms with scalability that allows the workflow to 

remain executable in real analysis contexts.  

This study begins with a presentation of the main software suites developed to efficiently 

manage parallel computing through the use of GPU architectures. The software presented in 

Chapter 1 represents the state-of-the-art in this computational field, and its presentation aims 

to highlight all the performance potential when applied to important processes commonly 

performed sequentially, even in the bioinformatics field, such as Whole Exome Analysis.  

Following the presentation of the state-of-the-art parallel computational methods, the two 

GRN inference algorithms are introduced, focusing on the characteristics that make them 

scientifically interesting, such as the message-passing approach underlying PANDA or the 

possibility of inferring sample-specific GRNs using LIONESS. A detailed explanation of the 
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mathematical tools that ensure the biological significance of the inferred networks is then 

presented, outlining all the steps involved in these two workflows.  

Given the importance of the scalability issue for the study case of scRNA-seq data in the 

applicability of GRN inference algorithms, it is necessary to evaluate the performance in 

response to variations of biologically and computationally significant parameters, such as the 

cell count, the hardware setup, and the sparsity of the regulation matrices. The results 

obtained will be evaluated based on the execution times associated with each part of the 

program, the memory occupied, the actual scalability, and the impact of the already 

implemented parallelization.  

Once the performance analysis of these methods is completed, a code analysis, aimed at 

parallelizing the processes identified as time-limiting in the previous study, is presented. This 

implementation takes advantage of the capabilities of the parallel computing packages 

exposed in Chapter 1, assigning the identified processes to software that represents the state-

of-the-art computational fields. Finally, this study presents an evaluation of the improvements 

that such modifications have on the temporal performance of the two algorithms, comparing, 

using the same input dataset size and hardware structure, the scalability of this optimized 

version with the previously analyzed implementation of PANDA.  

The presentation of the results obtained through parallelization, along with the limitations 

characterizing the version proposed in this study and the possible future developments, 

represent the final part of this work. This study lays the groundwork for future improvements 

to these biologically and computationally interesting algorithms to enhance their scalability 

and applicability in significant cases of multi-omics single-cell data studies. 
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2. GPU Computing Technologies 

Due to the increasing amount of biological data obtainable through single-cell sequencing 

techniques and the decreasing price of next-generation sequencing (NGS), the ability to 

extract and interpret relevant biological information has become a computational challenge, 

with computing power being a major limitation. This problem can be addressed by utilizing 

GPU computing technologies developed in the last decade. 

In the following paragraphs, some of the main parallel computing applications created for 

omics data analysis will be presented. 

 

2.1 Nvidia Parabricks  

Parabricks is a suite of high-performance GPU computing and deep learning algorithms for 

NGS data processing [32,33]. It represents the main Nvidia product for designing a parallel 

bioinformatics pipeline involving all the secondary genomics analysis steps. This workflow 

includes, for instance, the alignment, the variant calling phase but also pre-processing, and the 

quality check process. Using its greater computational power, Parabricks can perform these 

fundamental genomics steps achieving previously unattainable performances in terms of 

throughput time and cost savings. 

The next paragraphs will present (i) the main characteristics of this suite, (ii) the algorithms 

composing Parabricks, (iii) its hardware, software, and system requirements, (iv) the 

performances achieved in terms of execution time, memory memory usage and cost saving 

achieved.  

2.1.1 Main Features 

The main features of Parabricks are: 

• GPU acceleration: The use of GPU instead of clusters of central processing units is 

the most relevant and interesting characteristic of Parabricks, it allows the execution of 

several classical biological processes in a fraction of the time and costs needed by a 

sequential corresponding framework, hiding the complexities related to the design of a 

parallel data architecture; 

• Correspondence with the well-known sequential algorithms: Parabricks doesn9t aim to 

revolutionize the reasoning at the basis of the most important genomics procedures, it 

provides the possibility to compute the same methodologies using a parallelized 

version of them; 
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• Modularity, flexibility, and compatibility: given Parabrick9s structure: a suite of 

algorithms divided into sets based on the function, each process can be inserted in a 

bioinformatics workflow not necessarily using in all the steps the same type of 

processing units. Indeed, the input and output formats required by the GPU algorithms 

stay equal to the ones used in the sequential approach, guaranteeing compatibility 

between CPU and GPU-based processes. These characteristics provide flexibility to 

this product; 

• Working on Short and Long Reads: the algorithms provided by Parabricks can handle 

the short reads produced by second-generation sequencers, such as Element, Illumina, 

MGI, Singular, Thermo Fisher e Ultima, but also the long reads sequenced by Oxford 

Nanopore and PacBio. This feature expands the possibility of using Parabricks for 

different purposes: assembling genomes from various samples and analysing the DNA 

sequences efficiently, saving costs; 

• Availability as Docker image: Parabricks is deployed using a Docker image (and it can 

be imported as a singularity image if necessary); 

• Running from the Command Line: each program that composes this product can be 

executed from the command line specifying input file, output directories, and the 

optional flags. 

2.1.2 Software Overview 

The software included in Parabricks can execute read alignment, processing and quality 

control (QC), and variant calling [34]. All these procedures use the potentialities of the GPU 

computation, guaranteeing the quality standard achieved by the well-known sequential 

version and compatibility with them.  

The following table (Table 1) is reported: the main 6 categories in which Parabricks can be 

divided (already cited), the names of the algorithms composing each category, and a brief 

description of their computation. The last category is <Pipeline=: it includes software obtained 

by the concatenation of several individual algorithms, and its execution can be done using 

using a single command. 
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Category Algorithm  Description 

Alignment 

fq2bam (bwa-mem) 

Run bwa-mem, co-ordinate sorting, marking 

duplicates, and Base Quality Score 

Recalibration 

fq2bam_meth 

Run bwa-meth compatible alignment, co-

ordinate sorting, marking duplicates, and 

Base Quality Score Recalibration 

fq2bamfast (bwa-mem) 

Run newly optimized version of bwa-mem, 

co-ordinate sorting, marking duplicates, and 

Base Quality Score Replication 

rna_fq2bam (STAR) 

Run RNA-seq data: starting from a FASTQ 

file, it performs the alignment with STAR 

algorithm and produces as output a BAM 

file.  

MiniMap2 

Align long read sequences against a large 

reference database to convert FASTQ to 

BAM/CRAM 

Preprocessing 

applybqsr 
Apply BQSR report to a BAM file and 

generate a new BAM file 

bam2fq Convert a BAM file to FASTAQ 

bqsr Collect BQSR report on a BAM file 

bamsort Sort a BAM file 

markdup Identifies duplicate reads 

Variant 

Calling 

deepvariant 
Run GPU-DeepVariant for calling germline 

variants 

deepsomatic 
Run GPU-DeepSomatic for calling somatic 

variants 

haplotypecaller 
Run GPU-HaplotypeCaller for calling 

germline variants  

mutectcaller 
Run GPU-Mutect2 for tumor-normal 

analysis 

starfusion 

Identify candidate fusion transcripts 

supported by Illumina reads using the 

STAR-Fusion algorithm. 



24 
 

Quality 

Check 

bammetrics Collects WGS Metrics on a BAM file 

collectmultiple metrics 
Collect multiple classes of metrics on a 

BAM file 

GVCF 

Processing 

indexgvcf Index a GVCF file 

dbsnp Annotate variants based on a dbsnp 

genotypegvfc Convert a GVCF to VCF 

prepon 
Build an index for PON file, which is the 

prerequisite to performing mutect pon 

postpon 
Generate the final VCF output of doing 

mutect pon 

Pipelines 

deepvariant_germline 
Run the germline pipeline from FASTQ to 

VCF using a deep neural network analysis 

germline (GATK germline 

pipeline) 

Run the germline pipeline form FASTQ to 

VCF 

pacbio_germline 

Run the germline pipeline from FASTQ to 

VCF by aligning long read sequences with 

minimap2 and using a deep neural network 

analysis 

somatic (Somatic Variant 

Caller) 

Run the somatic pipeline from FASTQ to 

VCF 

Table 1: Parabricks algorithms' categories and descriptions, from Nvidia 

Documentation [34] 

2.1.3 Requirements 

To execute all the algorithms included in the suite Parabricks these are the requirements, 

taken from the Nvidia documentation [32], to be satisfied: 

Hardware Requirements 

Any NVIDIA GPU that supports CUDA architecture 70, 75, 80, 86, 89 or 90 and has at least 

16GB of GPU RAM. NVIDIA Parabricks has been tested on the following NVIDIA GPUs: 

▪ V100 

▪ T4 

▪ A10, A30, A40, A100, A6000 

▪ L4, L40 

▪ H100, H200 
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▪ Grace Hopper Superchip 

The fq2bam tool requires at least 24 GB of GPU memory by default; the --low-memory 

option will reduce this to 16 GB of GPU memory at the cost of slower processing. All other 

tools require at least 16 GB of GPU memory per GPU. 

System Requirements: 

▪ A 2 GPU system should have at least 100GB CPU RAM and at least 24 CPU threads. 

▪ A 4 GPU system should have at least 196GB CPU RAM and at least 32 CPU threads. 

▪ A 8 GPU system should have at least 392GB CPU RAM and at least 48 CPU threads. 

Software Requirements 

The following are software requirements for running Parabricks: 

▪ An NVIDIA driver with version 525.60.13 or greater. 

▪ Any Linux Operating System that supports Nvidia-docker2 Docker version 20.10 (or 

higher) 

2.1.4 Performances 

In this paragraph, the Parabricks9 performances will be presented considering the time and 

cost savings obtained by studies executed on different settings of processor unities. The 

category of algorithms chosen as a reference for the comparison between CPU and GPU 

performance is the 8Pipeline9 set because each element in it represents a complete secondary 

analysis going from a FASTQ file and producing as output a VCF file. In particular, the 

results presented in the following section are provided by the execution of 8germline9 (cited in 

Table 1), composed of BWA-MEM, bamsort, markdup, applybqsr, and a Variant Caller 

algorithm (DeepVariant or HaplotypeCaller).  This choice is justified by the will to show 

clearly the impact of a parallel approach on entire workflows, therefore a specific analysis of 

the savings produced by every single step included in the germline set of algorithms is not 

provided and is beyond our interests.  

The machine settings considered are 32 vCPU, 2 GPU, 4 GPU, and 8 GPU. The results in 

terms of times are presented in Figure 2. 
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Figure 2: Runtimes of germline pipeline (with different Variant Caller algorithm) on CPU 

and GPU machines. Image taken from [35] 

The time results are followed by the cost savings in terms of cost per exome analyzed, as 

reported in Figure 3.  

 

Figure 3: Cost per Exome (USD) using sequential (gray) and parallel (green) approaches. 

Image taken from [35] 

2.2 Nvidia Rapids  

Nvidia Rapids is a suite of libraries and APIs for the tertiary analysis of biological data, 

performing processes like the loading and pre-elaboration of the datasets but also the plot 

representations of the workflow results, including machine learning processes essential for 

tasks such as network analysis [36,37]. This product is based on Nvidia CUDA-X, a series of 

software that can optimize the performances of AI and High-Performance Computing 

applications using the opportunities given by a GPU setting. In particular, Rapids uses the 

CUDA primitives to increase the efficiency of low-level computation hiding the complexities 

of working with the GPU programs. 
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2.2.1 Main Features 

The principal characteristics of Rapids are:  

 Open-source: The source code of this product is freely available and editable, the main 

consequence is the community of programmers (not only from Nvidia Group) 

designing new features and reporting and fixing bugs; 

 General Purposes: Rapids is created for a parallel approach to the main data analysis 

processes, not only for bioinformatics applications; 

 Sequential Correspondence: Each package contained in Rapids Library is the parallel 

version of well-known sequential software and with these share the functions9 names 

and in general the related APIs. This approach provides two significant results: (i) 

there are few different code lines between sequential and parallel versions of these 

procedures, (ii) the use of the Python language and interface hides the programming 

complexity related to the GPU computations; 

 Scientific Workflow: When Rapids is used in a scientific process, it supports the entire 

data analysis workflow providing a set of software divided into these 5 macro-areas: 

data loading, pre-elaboration, machine learning algorithms, plot analysis and 

visualization; 

 Interoperability with frameworks: Rapids libraries can easily be inserted in different 

scientific frameworks such as Apache Spark, Dask, Numba but also with deep 

learning frameworks like PyTorch, TensorFlow, and Apache MxNext. 

2.2.2 Software Overview 

As cited in the previous paragraphs, Rapids is divided into libraries representing each 

parallelization of a well-known sequential library and therefore regarding different aspects of 

data analysis, management, and visualization. The most bioinformatics relevant ones are 

presented in the Table 2. 
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Library API Language Tasks 

cuDF PANDAs Python/C++ Dataset Management: loading, joining, 

aggregating, filtering, and otherwise 

manipulating data 

cuML Scikit-learn Python/C++ Machine learning algorithms designed for data 

science and analytical tasks (e.g. Clustering, 

Dimensionality Reduction, Linear Models for 

Regression or Classification) 

cuPlot NetworkX Python/C++ Plot analysis algorithms (e.g. Centrality, 

Community, Link Analysis and Prediction, 

Sampling, Traversal, Structure) 

cuXFilter DashBoard Python Data Visualization and filtering 

cuPy Numpy Python Array Operations 

Table 2: Rapids libraries that can be used in a genomic pipeline 

It9s important to clarify that cuPy library is not included in the Rapids suite, despite the shared 

features like being the parallelization of a vastly used product like Numpy. Nvidia supports 

the development of cuPy but doesn9t hold the property on it.   

2.3 Rapids-singlecell  

Rapids-singlecell is a GPU-accelerated tool designed for scRNA-seq analysis using Rapids 

libraries and cuPy as a starting point to obtain a parallel substitute to the state-of-art sequential 

single-cell analysis methods [38]. In particular, the ecosystem containing Rapids-singlecell 

isn9t a general-purpose suite, like in the previous cases, is a specific bioinformatics set of 

tools: scverse. Rapids-singlecell emulates and converts in a set of GPU-accelerated processes 

the most relevant tools contained in the programming ecosystem scverse, guaranteeing 

compatibility. 

2.3.1 scverse and anndata 

In the next paragraphs, scverse and anndata libraries will be briefly presented to clarify how 

some of the software and the main data formats of the sequential processes can be transposed 

in a parallel approach [39,40].  

The core of scverse project is based on the design of omics data analysis tools, able to 

describe the main properties of spatial omics, regulatory genomics, trajectory inference, and 

visualization. These processes are divided into several packages, the ones considered 

foundational are scanpy (for analyzing single-cell gene expression in anndata format), muon 
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(framework for multimodal omics analysis), scvi-tools (machine learning algorithms using 

PyTorch and anndata), scirpy (for the analysis of T-cell receptors or B-cell receptors from 

scRNA sequencing data) and squidpy (for the visualization of spatial molecular data). 

Anndata is a Python library introducing the management of a widely used data structure: the 

annotated data object. Let9s describe all the components, represented in Figure 4, of this 

object: 

 X: Sparse or dense matrix containing the gene expression data, with rows representing 

genes and columns representing cells. Using the function 8layer9 it9s possible to create 

modified versions of the raw count matrix without losing it and guaranteeing the same 

relationship between the new generated version and the annotation matrices had by the 

initial matrix.  

 obs and var: PANDAs dataframes for various annotations (var refers to gene 

annotations and obs for cell annotations) about the data, such as gene names and IDs, 

cell barcodes and metadata, and cluster assignments.  

 obsm, varm and uns: Results of various analysis steps, such as dimensionality 

reduction or clustering, are stored: in obsm if they are structured and associated with 

cells, in varm if they are structured and associated with genes, or in uns if the results 

are dictionaries in the form of unstructured data. 

 obsp and varp: dataframes containing pair information about genes and cells observed, 

such as distances, similarity score or any other measure of cell comparison in the case 

of obsp or measures of gene comparison in the case of varp.  
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Figure 4: Anndata structure representation. Image taken from [40] 

 

2.3.2 Rapids-singlecell Features and Performances 

Rapids-singlecell considers a parallel version of anndata, cunndata represented in Figure 5, as 

the main data format on which all the packages can execute their functions. The structure of 

this parallel version replicates all the anndata9 features: the presence of a datamatrix X 

divided into several layers and described by several annotations matrices related to genes and 

cells, the opportunity of using a dictionary for the unstructured information, the correlated 

dimensions and indexing of each described cunndata9s matrix. The main difference between 

these two formats is that cunndata matrix X and its layers are stored on the GPU as CuPy 

sparse matrices, instead of being stored on the local memory; this change provides faster and 

more efficient computations on the count matrix. All the annotation matrices are stored in the 
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host memory, except for the pair-wise information matrices, obsp and varp, which are not part 

of the data structure and can be consulted only using external references.  

 

Figure 5: Representation of cunndata structure. Image taken from [41] 

Given this parallel data structure, the Rapids-singlecell team recreated some of the most 

biologically relevant functions from scverse. For instance, from Scanpy, they implemented 

UMAP, nearest neighbors on the GPU, and accelerated plot-based clustering using Leiden 

and Louvain. From scvi-tools, they included functions for embedding single-cell data, and 

they are now adding Squidpy functions to this suite of libraries. This process of adapting well-

known sequential algorithms to the new data architecture has resulted in performance 

improvements with speed factors ranging from 4x to over 60x compared to the sequential 

algorithm times on a dataset of 500,000 cells, as reported in Table 3. 
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Function CPU GPU (A100) GPU (3090) Speedup  

Preprocessing 305 s 28 s 169 s 10x 

PCA 86 s 3.7 s 35 s 23x 

Neighbors 74 s 17.1 s 18.3 s 4.3x 

UMAP 281 s 6.7 s 7.6 s 60x 

Louvain 283 s 4.5 s 5.7 s 62x 

Logistic Regression 452 s 33 s 63 s 13x 

Table 3: Performances of CPU and GPU-based algorithm on a dataset of 500.000 cells [41] 
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3. Gene Regulatory Network Inference 

One of the primary objectives within the bioinformatics community is to attain a profound 

understanding of the intricate biological processes that govern the phenotype of a specific cell 

or sample. A single entity, such as a gene or a pathway, cannot sufficiently elucidate the 

phenotype exhibited by a cell; a more holistic perspective is required to comprehend the 

underlying mechanisms. Consequently, constructing a network that represents the gene 

expression regulating all cellular mechanisms has become a priority in systems biology. 

Indeed, the inference and analysis of a representative plot are essential tools, allowing 

biologically meaningful structures to be distilled into significant network patterns and, more 

broadly, features. 

This type of plot is known as a GRN and aims to capture these cellular processes by 

leveraging the influence that each gene exerts on others. Specifically, this structure is modeled 

using network entities such as "nodes" representing the genes, "edges" representing the 

inferred interactions, and "weights" representing the type of interaction between two genes, 

such as activation, repression, or absence of regulation. 

In this chapter, we present a GRN inference algorithm called "PANDA" in detail, considering 

the importance of a multi-omics approach in this context. We will discuss the input required, 

provide a step-by-step analysis of PANDA9s computation, and describe the output 

produced4a network that globally represents the features of all the samples considered. The 

second algorithm discussed in this chapter, "LIONESS", addresses the limitation of having a 

GRN that captures only shared processes. Instead, LIONESS computes several sample-

specific gene regulatory plots, following the same detailed presentation structure. Finally, we 

provide some applications and considerations regarding these two algorithms. Specifically, by 

using increasing size benchmarks to evaluate both algorithms' performance, we can highlight 

their limitations and propose potential solutions. 

3.1 PANDA Algorithm 

The GRN models able to integrate different data types have reached significant results, 

representing efficiently the complex biological systems considered as references. The 

accuracy of these models stems from the successful amalgamation of information through the 

integration process, providing a more profound understanding of the complex molecular 

processes underlying biological systems than models using a single data type alone. One of 

the most prominent strategies for integrating multiple data types is the Message-Passing 

approach. This approach is utilized in various gene regulation model procedures, such as 
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estimating signaling pathways or parameters related to physical network models. In this 

method, the data types are treated as entities that send and receive "messages" containing 

information aimed at developing a cumulative data structure. 

PANDA (Passing Attributes between Networks for Data Assimilation) is a GRN inference 

algorithm within the collection of open-source methods known as NetworkZoo [42]. In this 

collection, several algorithms elaborate different aspects of the GRN inference process, such 

as the normalization of the RNA-seq data or the analysis of the community properties of the 

GRN produced. NetworkZoo represents a significant set of tools for the inference and 

analysis of GRN elaborated considering as input multi-omic data, and it is adaptable to 

several programming languages, such as Python, R, MATLAB, and C.  This study will 

consider only the two algorithms presented in this chapter, PANDA and LIONESS, and the 

Python implementation of this suite, called netZooPy.  

By utilizing multiple sources of <omics= data, as specified in the Input section, PANDA 

generates a Transcription Factor-by-Gene matrix that can be readily converted into a 

biologically accurate GRN. This software implements the concept of merging information 

from diverse data sources through an iterative message-passing approach. 

Compared to previous methods, the primary innovation introduced by the PANDA algorithm 

is the iterative update of all data sources. Once pieces of information are extracted from these 

sources, they are considered as messages that are processed and shared with all other nodes. 

This iterative refinement, represented in Figure 6, enhances the representation of biological 

pathways within the distinct data structures. 
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Figure 6: PANDA's workflow: from the loading and initialization of the input matrices (1) to 

the Responsibility and Availability Estimation (2), followed by the update of the two networks 

P and C (3). This process is repeated until convergence (4) and produces a GRN. 
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PANDA takes as input three matrices, each of which can be replaced with a 8None9 value if 

the user chooses not to provide one or more of them. Each matrix collects information about 

one of the relationships among the considered entities: Transcription Factors (TFs) and 

Regulated Genes. 

• Transcription Factors-by-Gene Regulatory Matrix (W0): This matrix records 

known relationships between TFs and regulated genes. These relationships are 

identified by comparing the promoter regions of the genes and the transcription factor 

binding sites (TFBS). If the TFBS are within a specified size window, the TF is 

considered to regulate the gene expression. 

• TF-by-TF Cooperativity Network (P0): Based on a protein-protein interaction (PPI) 

matrix, this table represents the relationships between pairs of proteins that can form 

multi-protein complexes to regulate specific genes. This matrix can be generated from 

data collected through in vitro experiments, text mining, or computational inference 

and is used in the algorithm as the primary source of information regarding potential 

indirect gene regulation by complex TFs. 

• Expression Co-regulatory Matrix (C0): Derived from an expression matrix, this 

matrix computes the pairwise Pearson Correlation Coefficient (PCC) for each pair of 

genes. The final result is a gene-by-gene matrix that captures the correlation between 

genes. This correlation is useful in the PANDA computation because genes regulated 

by the same TFs are expected to exhibit correlated gene expression patterns. 

PANDA9s primary method for inferring the GRN involves the iterative update of the input 

matrices to maximize the agreement among them. This process aims to compute biologically 

accurate and consistent predictions regarding the influence of each gene on the expression of 

others. In this sense, two initial formal definitions are needed to define rigorously the concept 

of agreement between two vectors representing information about genes, and all the modeled 

relations among genes. 

The concept of agreement between data of different networks is defined and quantified in 

PANDA using the Tanimoto Similarity: 

��(þ̅, ÿ̅) = þ̅ÿ̅√||þ̅||2 + ||ÿ̅||2 + |þ̅ÿ̅| = ∑ þÿÿ ÿÿ√∑ þÿÿ 2 + ∑ ÿÿÿ 2 + |∑ þÿÿ ÿÿ| 
This formula expresses the similarity between two z-score normalized vectors () that represent 

two sets of network edge weights. When applied to the vectors associated with edges in two 
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different networks, a Tz value near 1 indicates a strong positive agreement between them. 

Conversely, a Tz value around 0 suggests no significant similarity, and a negative Tz value, 

which can range down to -1, indicates an inverse relationship between the two networks. 

To elaborate: 

• Positive Agreement (Tz ≈ 1): This suggests that the two networks share a similar 

pattern of edge weights, indicating that the regulatory relationships between genes are 

consistent across both networks. 

• No Agreement (Tz ≈ 0): This indicates that there is little to no similarity in the edge 

weights between the two networks, suggesting that the regulatory relationships differ 

significantly. 

• Negative Agreement (Tz ≈ -1): This signifies that the edge weights in one network are 

inversely related to those in the other, implying that regulatory relationships are 

oppositely oriented between the two networks. 

This measure of similarity is crucial in the iterative update process of PANDA, ensuring that 

the final inferred GRN maximizes the agreement among the integrated data sources, thereby 

producing a more accurate and biologically relevant network 

The second formal set of definitions, as clarified by Figure 7, is about the nodes and edges 

types: PANDA configures two types of nodes in the considered networks: <effector= and 

<target=. The elements in the first set exploit an influence on the expression of the genes 

considered in the second group, modeling the biological relation between the Transcription 

Factors and the Genes regulated by them. Given these two different entities, the expression of 

the genes is governed by the influence of the effectors in two different ways: <directly=, a set 

of TFs is responsible for the regulation of these affected nodes in a relation defined as <routes 

of affection=; <indirectly=, a TF can create a protein complex to regulate genes not directly 

influenced by it, in this case, the two TFs perform a <cooperative effect= on the considered 
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gene, or, given two genes with similar expression is possible that they are targets of the same 

group of effectors, exploiting a <co-affection= relationship between them. 

Figure 7: This figure represents the two types of nodes (effectors and targets) and the three 

types of edges (direct and indirect route of affection) of a GRN considered by PANDA. 

 

Let9s now explain PANDA9s workflow step-by-step in detail, as represented in Figure 6. 

1st Step: Initialization of the Networks 

The first step is the initialization of three different networks from the input matrices: The 

values collected in these matrices, P0, W0, and C0, are standardized using a Z-score 

computation across both rows and columns, guaranteeing the same scale for all the tables. 

These are from now on considered networks describing the regulation between Transcription 

Factors in the Cooperative Network (P), between Genes in the Co-regulatory Network (C), 

and between each TF and each Gene in the Regulatory Network (W).  

2nd Step: Responsibility and Availability 

While the values contained in W represent the direct regulation operated by the effectors to 

the targets, the undirected influences, described previously and represented plotically in 

Figure 8, need two additional parameters to be taken into account in the global regulation 

effect. Therefore, let9s consider the <cooperative effect= that a Transcription Factor i can 

have, through the formation of a protein complex with other TFs, on a target gene j: this is not 

reported in any of the input networks but can be modeled considering a compositional effect 
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and quantified in the <Responsibility= value Rij. To do that, a similarity score between all the 

edges linking the TF i with all the other TFs, Pi. , and the edges between all the TFs and the 

gene j, W.j , is computed using the Tanimoto relation:    

�ÿĀ = ��(�ÿ.,ÿ.Ā) = ∑ �ÿ�� ÿ�Ā√∑ (�ÿ�� )2 + ∑ (ÿ�Ā)� 2 + |∑ �ÿ�� ÿ�Ā| 
The second type of undirected regulation has been previously called <co-affection= and is 

present when the same transcription factor regulates two different genes. When this happens, 

it9s notable that the regulation of these two genes assumes comparable features, underling the 

relation given by being the targets of the same effector. Using the Tanimoto similarity, is 

possible to measure, through the edges9 weights, how much this effect influences the 

regulation of a gene i by the action of a TF j. In this sense, let9s consider the genes targeted by 

j (Wj.) and all the genes co-regulated with gene i (C.i): when a generic gene k is targeted by j 

and co-regulated with i the scalar product WjkCki is different from 0 and contributes to 

generate a more significant availability value Aij. 

�ÿĀ = ��(ÿĀ., �.ÿ) = ∑ ÿĀāā �āÿ√∑ (ÿĀāā )2 + ∑ (�āÿ)ā 2 + |∑ ÿĀāā �āÿ| 

 

Figure 8: Considering a TF i and a target gene j, two measures, Responsibility and 

Availability, are computed to estimate the undirected regulation of j by i. 
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3° Step: Estimation and Updating 

When these two quantities related to phenomena are computed, the estimation ÿ�ÿĀ of these 

undirected regulation effects is obtained as the mean value between Aij and Rij: 

ÿ�ÿĀ = �ÿĀ + �ÿĀ2  

This value will be added to the previous regulation value Wij
(t) in proportion to a learning rate 

α (in ]0,1[), to obtain an updated version for the next iteration (t+1): ÿÿĀ(þ+1) = (1 2 �)ÿÿĀ(þ) + �ÿ�ÿĀ(þ) 
The message-passing approach, finalized to find agreement among the 3 different data types, 

in this algorithm is expressed in the updating of the regulatory network W and then also of 

cooperativity and co-regulatory ones. Therefore, once the new version of W is estimated 

based on the computation of responsibility and availability, it9s time to estimate the new 

matrices P and C. 

Matrix P is updated considering that the values representing the regulation executed by each 

transcription factor can be different from an iteration to the following, therefore is necessary 

to consider how these new features can generate new information about TF co-regulation. 

This is done considering the similarities between the edges of two different effectors, i and j: 

�ÿĀ = ��(ÿĀ.,ÿÿ.) = ∑ ÿĀāā ÿÿā√∑ (ÿĀāā )2 + ∑ (ÿÿā)ā 2 + |∑ ÿĀāā ÿÿā| 
And then updating the value associated with them in the next iteration, namely Pij

(t+1): �ÿĀ(þ+1) = (1 2 �)�ÿĀ(þ) + ���ÿĀ(þ) 
Similarly, knowing how each relation between TF and gene changes by a single iteration, the 

co-regulated genes can present different features that can be quantified by estimating and 

updating the similarity between the regulation of each pair of genes i and j: 

�ÿĀ = ��(ÿ.ÿ,ÿ.Ā) = ∑ ÿāÿā ÿāĀ√∑ (ÿāĀā )2 + ∑ (ÿāÿ)ā 2 + |∑ ÿāĀā ÿāÿ| 
�ÿĀ(þ+1) = (1 2 �)�ÿĀ(þ) + ��̃ÿĀ(þ) 
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When all the values in all the three matrices are updated, the process is iteratively repeated 

until convergence, which is guaranteed, is achieved.  

The output returned is a matrix where each row identifies a transcription factor-gene pair, 

followed by two values: the motif value, a binary number representing the presence of this 

association in the original motif matrix W0; and the weight of this effector-target9s edge. 

3.2 LIONESS Algorithm  

The network inferred by PANDA9s computation is a plot representing the biological 

processes involved in the gene expression of a given group of samples. This data structure is 

valuable because it can transform a biological question (such as the differences between two 

groups of gene expressions) into a mathematical analysis (identifying patterns and pathways 

differentially present in two networks), thereby facilitating the integration and management of 

data from multiple sources. 

This approach ensures accurate and biologically meaningful results when the differentially 

expressed pathways are common within the samples of the same group and thus present in the 

consensus. However, processes that cause phenotype changes in a single sample, or in a 

subset of samples, are not easily detectable by analyzing the aggregate network of samples. 

This limitation is significant in several contexts. For instance, in single-cell differential 

expression estimation, the goal is to identify the unique active gene regulatory processes that 

define the specific phenotype and functions of individual cells within a tissue. Similarly, 

recognizing the distinct regulatory mechanisms in an individual within a group exhibiting 

slight phenotypic differences can be challenging. 

To overcome this limitation, NetworkZoo developed LIONESS (Linear Interpolation to 

Obtain Network Estimates for Single Samples), an algorithm designed to estimate sample-

specific plots from an aggregate network using a linear interpolation approach and 

represented in Figure 9. LIONESS is intended to be applied after PANDA9s computation, 

thereby enhancing the algorithm's capabilities. This creates a suite of software tools that can 

infer GRNs from multi-omics data for both groups of samples and for subsets of them, 

particularly enabling the accurate estimation of sample-specific GRNs. 



42 
 

 

Figure 9: LIONESS Workflow, given the same set of input matrices described for PANDA, 

LIONESS produces N sample specific GRN. 

Input 

The inputs LIONESS requires are (i) the gene expression matrix, in which each column 

represents a sample and each row a gene; (ii) the protein-protein interaction (PPI) matrix, 

defining the interaction among TF; (iii) the Transcription Factors-by-Gene Regulatory Matrix 

presenting the relationships between TFs and regulated genes. Note also that the aggregate 

regulatory network produced as output by inference algorithm as PANDA can be passed as 

input to LIONESS, if this happens the first step of its workflow is skipped because already 

satisfied.  

Mathematical explanation 

The main assumption on which the entire algorithm works is that the aggregate network taken 

as input is obtained by a linear combination of the N samples9 contributions. In particular, if 

we consider a value e associated with an edge going from gene i to gene j in the aggregate 

network α (eij
(α)), it can be modeled as the sum of the same edges9 values (eij

(s)) belonging to 

the N sample networks weighted by a scalar factor ws
(α) characterizing the impact that the 

generic s sample network has on the global network α. 

�ÿĀ(�) =∑ýý(�)�ÿĀ(ý)�
ý=1  
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The sum of all the sample networks9 weights is set equal to 1, as specified in the next 

equation: 

∑ýý(�) = 1�
ý=1  

The LIONESS's final goal is to obtain N sample-specific networks, which can be declined in 

the computation of the weights associated with each single edge composing the network. The 

weight of the edge of a generic sample network q can be calculated using the values 

associated with the plot obtained by considering all the samples except q, as explained in the 

following procedure. 

The edges in the network α-q can be defined similarly to before, with a different distribution 

of weights for the other networks. 

�ÿĀ(�2�) =∑ýý(�2�)�ÿĀ(ý)�
ý≠�  

Where:∑ ýý(�2�) = 1�ý≠�  

From these two definitions, let9s compute the generic weight edge eij
(q) 

In particular, let9s subtract these equations and rearrange them: 

�ÿĀ(�) 2 �ÿĀ(�2�) =∑ýý(�)�ÿĀ(ý)�
ý=1 2∑ýý(�2�)�ÿĀ(ý)�

ý≠�  

= ý�(�)�ÿĀ(�) +∑ýý(�)�ÿĀ(ý)�
ý≠� 2∑ýý(�2�)�ÿĀ(ý)�

ý≠�  

= ý�(�)�ÿĀ(�) +∑(ýý(�) 2 ýý(�2�))�ÿĀ(ý)�
ý≠�  

 Finally, let9s isolate eij
(q): 

�ÿĀ(�) = 1ý�(�) [�ÿĀ(�) 2 �ÿĀ(�2�) +∑(ýý(�2�) 2 ýý(�))�ÿĀ(ý)�
ý≠� ] 

 Knowing that: �ÿĀ(�2�) = ∑ ýý(�2�)�ÿĀ(ý)�ý≠�  



44 
 

�ÿĀ(�) = 1ý�(�) [�ÿĀ(�) +∑ýý(�)�ÿĀ(ý)�
ý≠� ] 

 

It9s now necessary to clarify the values associated with the sample network contribution 

weights. We can assume the existence of a relation between ws
(α) and ws

(α-q) using a constant 

C: ws
(α)=Cws

(α-q), now it9s possible to construct the following chain of equations: 

1 =∑ýý(�2�) =�
ý≠� ∑ýý(�) = ý�(�) +∑ýý(�) = ý�(�) + �∑ýý(�2�) = ý�(�) + ��

ý≠�
�
ý≠�

�
ý=1  

Finally, let9s substitute these results in the previous formula and let9s consider the weights 

associated with each sample network: these can be established by estimating the quality 

scores of the data for individual samples, or, in the absence of this information or similar 

measures, with the further assumption that in the aggregate network α each sample network 

influences it equally (therefore ý�(�) = 1�): 

�ÿĀ(�) = 1ý�(�) [�ÿĀ(�) 2 �∑ýý(�2�)�ÿĀ(ý)�
ý≠� ] 

�ÿĀ(�) = 1ý�(�) [�ÿĀ(�) 2 (1 2 ý�(�))�ÿĀ(�2�)] 
�ÿĀ(�) = 1ý�(�) [�ÿĀ(�) 2 �ÿĀ(�2�)] + �ÿĀ(�2�) �ÿĀ(�) = �[�ÿĀ(�) 2 �ÿĀ(�2�)] + �ÿĀ(�2�) 

 

The final result of this mathematical study is that each sample-specific network edge can be 

modeled using only two estimations: the weight of the same edge in the aggregate network 

and the weight of the same edge in the network obtained using all the samples except the 

considered one. This result can now be applied to the algorithm, representing the most crucial 

theoretical notion exploited by LIONESS, which doesn9t depend on the inference method 

used to estimate the aggregate network.  
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Step-by-Step Algorithm and Output 

LIONESS9 workflow can be expressed as the sequence of the following steps: 

1. Aggregate GRN Inference: The gene expression matrix and the other two optional 

tables (Transcription Factors-by-gene regulatory matrix and TF-by-TF cooperativity 

network) are given as arguments to the network inference algorithm, the result is the 

GRN representing the processes shared by all the samples; in this first phase other 

inference algorithms different than PANDA can be used; 

2. Sample-specific Network inference loop: For each sample present in the considered 

gene expression, an execution of the inference algorithm PANDA is needed to 

compute the network composed by all the samples except for the one thought.  

3. Linear Interpolation: The weights of the edges in the aggregate network and of the 

networks computed in the previous point are used to estimate the weights of the 

sample-specific plots.  

The output of this workflow are N sample-specific networks represented, as in the case of the 

aggregate network, as a matrix in which each row defines a pair of gene j and transcription 

factor i and the value of the regulation that i exploits on j. These N matrices can be easily 

translated into GRN and used as primary elements to perform plot analysis, discovering 

biologically meaningful features using a mathematical approach.  
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4. PANDA Performance 

This chapter describes the experiments conducted and the results obtained from the execution 

of the two previously introduced algorithms, PANDA and LIONESS, across various 

experimental conditions. The objective of this analysis is to evaluate which are the tasks 

optimizable in terms of execution time and memory required. Assessing and analyzing the 

performance of each algorithm becomes, in this sense, essential and several computational 

aspects can be inferred by varying:  

• the hardware configuration, using CPU and GPU setups; 

• the datasets used, ranging from 8toy9 datasets provided by the netZooPy project to a 

dataset of dimensions comparable to realistic single-cell data; 

• the intrinsic characteristics of the datasets, including variations in the frequency of 

protein complex formation and the number of genes regulated by the same TF.

The experiments are followed by a comprehensive analysis of results, discussing performance 

metrics, limitations, and encountered challenges. 

It is important to note that version 0.8 of netZooPy was used in this analysis[43]. This version 

was selected because it is automatically installed via pip, whereas the latest version, 0.10, 

requires a specific installation procedure. 

4.1 Hardware Setups 

To compare the performance of sequential versus parallel approaches, various hardware 

configurations were selected to support all necessary experiments and effectively address the 

research questions. Specifically, the following hardware setups were employed: 

• 1 Intel Xeon Gold 5118 CPU 

• 1 Nvidia RTX 3090 GPU 

• 1 Nvidia A40 GPU 

In particular, the GPUs are used considering in all the following experiments one single core, 

and, when the functions contained by the tested programs cannot support a GPU computation 

a CPU is used to compute it.  

4.2 Datasets 

The primary objective of testing this GRN inference algorithm is to assess its scalability, 

using a set of datasets with an increasing cell count while maintaining also certain crucial 

features constant throughout the experiments. These criteria are essential due to the nature of 
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the scRNA-seq matrix analysis: usually, a high number of cells are required to characterize 

the status of a single patient, therefore when the research is aimed to discover specific patterns 

potentially shared by all the patients of the same cohort, comparisons among groups of 

patients become essential, obtaining an expression matrix with a number of cells in the order 

of hundreds of thousands or millions. The requirement to maintain specific features constant 

ensures comparability among the conducted experiments and at the same time, it9s supported 

by biological constraints as the natural fixed upper bound of the number of genes; in this way, 

the only variable is cell count, minimizing the influence of other factors that could confound 

the analysis. 

The starting point for the PANDA performance analysis is a dataset published by the 

netZooPy development team, here called 8Toy9 dataset, intended for testing the software 

available in the netZooPy library. The dataset dimensions are detailed in Table 4. As it is 

designed specifically for testing purposes, this dataset lacks the properties of a realistic 

biological dataset, especially concerning the dimensions of the expression matrix, which are 

not comparable to those typically associated with single-cell data. This difference in purposes 

and dimensions prevents the possibility of obtaining significant results by comparison with 

the other dataset, limiting its usability in this analysis. 

A public gene expression dataset was selected to analyze the time and memory performance 

with greater biological relevance, matching the characteristics of a real-world RNA 

sequencing matrix. Specifically, the dataset analyzed in Tirosh et al. (GEO ID: GSE72056), 

which has been used for annotation development and cell communication studies, captures 

gene expression at the cell level across diverse melanoma profiles, holding substantial 

biological significance due to the nature of the cells involved, such as those with drug-

resistance properties observed in specific cell populations. The dataset dimensions (shown in 

Table 1 under the label 84k9) differ substantially from those of the preliminary <toy= dataset 

but still fall short of typical single-cell data scales, consequentially the performance analysis 

regarding the GRN generation starting from this data cannot be generalized and the necessity 

of gene expression matrices with a higher number of cells remains. The biological 

characteristics represented in this dataset will be analyzed and abstracted to generate different 

simulated gene expression matrices with the dimensions decided a priori. 

Due to this specific set of requirements, simulated datasets were generated with controlled, 

measurable characteristics to identify and quantify the contribution of each feature on the 

algorithm9s performance in terms of time and memory usage. A dataset simulator was 

developed with the following assumptions: 



49 
 

• Sparsity of the Expression Matrix: the proportion of zero values in the expression 

matrix 3 a key characteristic of single-cell data - in the simulation is set to 80% 

and is randomly distributed across all the genes; 

• Sequencing Depth: the total count of RNA sequences mapped to genes is held 

constant, equal to the average sequencing depth measured in the real dataset; 

• Number of genes regulated by a single Transcription Factor: Based on biological 

knowledge, this parameter is randomly drawn from a uniform distribution, with 

each TF regulating between 200 and 1,000 genes; 

• Number of Transcription Factors cooperating in the same Protein Complex: 

This parameter, also informed by biological insights, is a random value drawn 

from a uniform distribution, ranging from 5 to 20 TFs capable of forming a protein 

complex with a given TF; 

• Distribution of the expression data: For RNA sequencing data, the Negative 

Binomial and Poisson distributions are common fits to approximate realistic gene 

expression values in the simulated dataset; 

• Distribution of the regulation and coregulation data: the selection of which 

genes are regulated by which TFs and of which TFs can cooperate to create a 

protein complex has been left to a random choice by the simulator; 

Certain choices, such as using a specific distribution or ignoring the specific pairing of genes 

and TFs, may not yield highly refined datasets. However, for the purposes of this study4

assessing algorithm performance and usability4these simplifications are unlikely to 

significantly affect the quantitative aspects of computation, which are the primary focus of the 

results. 

The assumptions outlined have produced dataset features that fall into two distinct categories: 

constants across all experiments4such as the Sparsity of the Expression Matrix, Sequencing 

Depth, and the distributions of expression, regulation, and co-regulation data, as determined 

by biological knowledge4and variable features, used to assess the performance of PANDA 

and LIONESS under different regulatory and co-regulatory conditions of the transcription 

factors. 

These choices resulted in a set of matrices with the characteristics summarized in Table 4. 

The number of genes in the Gene Expression Matrix is maintained consistently from the real 

dataset (referred to as '4k' in the table and subsequent sections) to reflect a realistic gene count 
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for an expression matrix, independently of cell count. The number of cells, however, is scaled 

across datasets, serving as the primary variable in this analysis. 

The Motif Data and Protein-Protein Interaction (PPI) Matrices comprise a total of four 

matrices (two for each type) simulated based on the regulatory and co-regulatory assumptions 

previously presented and from now on considered as features hypothetically able to influence 

the algorithm9s performance. Specifically, the first pair of matrices models a more 

comprehensive interaction profile, while the second pair is sparser, with fewer interactions. 

This reduced interaction scenario characterizes the datasets labeled 8half9 in the following 

table, reflecting a less dense regulatory network. 

 Gene Expression 

Matrix 

Motif Data PPI matrix 

Dataset Genes Cells TF Gene 

Regulated 

TF Interactions 

Toy 1000 51 87 14597 74 238 

1k 23688 1000 1444 855452 869 10450 

1k half 23688 1000 1457 429286 864 5079 

4k 23688 4645 1444 855452 869 10450 

4k half 23688 4645 1457 429286 864 5079 

10k 23688 10000 1444 855452 869 10450 

50k 23688 50000 1444 855452 869 10450 

100k 23688 100000 1444 855452 869 10450 

Table 4: Dimensions and name of each produced or considered dataset. 

4.3 Time and memory analysis 

This section presents all the results, in terms of execution time and memory usage, of the 

GRN computation performed by the PANDA algorithm. Each presented value has to be 

considered as the average value of a set of experiments reproduced several times in the same 

conditions specified. The final part of this section includes the complete set of experimental 

data from which all the presented plots are obtained. 

4.3.1 Time performance 

One of the key aspects of the PANDA execution is the amount of time in which it can 

converge and consequently generate a GRN representative of the matrices provided in the 

input. This aspect can become a critical bottleneck in the practical usability of this tool in a 
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hypothetical biological pipeline and its scalability to the number of cells considered in the 

expression matrix is the primary focus of the analysis here presented.  

The first analysis centers on the difference between the time performance achieved by 

sequential execution of the PANDA algorithm, obtained using a single CPU, and a parallel 

approach, exploited using two types of GPUs and a multi-core CPU setup, as previously 

outlined in this chapter. The plots below (Figure 10) show the four most time-consuming 

tasks into which the PANDA algorithm can be divided. While performance results achieved 

using the <Toy Dataset= are not indicative of PANDA9s scalability, the other five plots offer, 

in this sense, much more valuable insights, leading to the following considerations: 

• Parallelization of the PANDA loop task: this task is designed to be optimized, in 

terms of time efficiency, through parallel processing. It benefits significantly from 

both GPU and multi-core CPU configurations, but in particular, the GPU approach 

demonstrates high parallelism potential, achieving more efficient processing compared 

to single-core implementations. 

• Independence of PANDA loop task time to the cell count: As the number of cells 

increases changing datasets, the execution time of the PANDA loop remains 

unaffected, due to the fixed dimensions of the matrices after the initial normalization; 

• Dependence of the correlation matrix computation to the cell count: the time 

associated with this task is directly influenced by cell count, increasing with the 

increment of the number of cells. There are no constant differences between sequential 

and parallel computation and, more in general, there is no predictable behavior; 

• Dependence of the loading expression matrix task to cell count: this task can become 

a time-significant element as the number of cells increases, but presents constant 

performance across all the types of processors used, indicating that hardware 

differences have little impact on time efficiency;  

• Insignificance of normalization step in time consumption: Across all the experiments 

conducted, this normalization task doesn9t contribute significantly to the overall time 

consumption, leading to the conclusion that it can be excluded in the considerations 

for the code optimization. 
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Figure 10: Comparison across all the datasets of the PANDA time performance, divided into 

tasks. 
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Dataset Task 
Hardware Setup 

CPU 10xCPU A40 RTX 

1k 

Loading expression matrix 1,3 s 1,3 s 1,5 s 1,2 s 

Correlation matrix computation 14,5 s 7,8 s 19,8 s 20,1 s 

Network normalization 46,9 s 46,1 s 26,9 s 24,4 s 

Executing the PANDA loop 142 s 741,9 s 164,1 s 156 s 

4k 

Loading expression matrix 17,6 s 82 s 23,3 s 16,5 s 

Correlation matrix computation 50,6 s 18,1 s 134 s 77,1 s 

Network normalization 46,8 s 46,6 s 31,8 s 25,1 s 

Executing the PANDA loop 1500,3 s 795,6 s 188 s 165 s 

10k 

Loading expression matrix 34,4 s 32,0 s 28,4 s 36 s 

Correlation matrix computation 87,6 s 15,7 s 68,7 s 146 s 

Network normalization 46,5 s 46,6 s 16,2 s 26,5 s 

Executing the PANDA loop 1421 s 674,8 s 161 s 147 s 

50k 

Loading expression matrix 514 s 545,3 s 544,6 s 600 s 

Correlation matrix computation 424,9 s 59,2 s 745,3 s 807,8 s 

Network normalization 67 s 64,9 s 31,3 s 33,1 s 

Executing the PANDA loop 1465,8 s 682,2 s 163,5 s 148,8 s 

100k 

Loading expression matrix 1133,7 s 1156,3 s 993,4 s 1171,5 s 

Correlation matrix computation 787,8 s 111,9 s 646,8 s 551,6 s 

Network normalization 50,4 s 48,4 s 17,7 s 27,1 s 

Executing the PANDA loop 1362,3 s 638,8 s 152 s 141,9 s 

Table 5: Time performance of all the hardware setups considered divided by Dataset passed 

as input. 

The following analysis examined the impact of interaction matrix (Motif Data and PPI 

Matrix) dimensions on PANDA9s time performance. This set of experiments aimed to 

determine whether edge sparsity in the two co-regulatory networks affects the convergence 

time within the <PANDA Loop= task or if this process remains stable regardless of edge 

density. To test these hypothetical changes, two sparser versions of the Motif Data and of the 

PPI Matrix were simulated, each with an interaction frequency among TFs and between TFs 
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and genes reduced to half of the original, as described in the previous section. PANDA was 

then applied on these matrices and considering two different expression data matrices (<1k= 

and <4k=).  

The results of this analysis (shown in the plots of Figure 11 and described in Table 6), 

represented by the following plots, indicate no significant difference in the execution time 

between the original and the sparser version of the co-regulatory networks, suggesting that 

these matrix dimensions do not influence the core GRN computation. Code analysis confirms 

that the co-regulatory matrices are not directly involved in these steps and therefore do not 

impact their time complexity.

 

Figure 11: Comparison between time performance obtained by the use of the original co-

regulatory matrices and their halved versions. 
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Dataset Task 
Hardware setup 

CPU 10xCPU A40 RTX 

1k half 

Loading expression matrix 1,3 s 1,3 s 1,4 s 1,5 s 

Correlation matrix 

computation 
14,6 s 7,8 s 32,4 s 23 s 

Network normalization 47 s 47,4 s 33,9 s 28,7 s 

Executing the PANDA loop 1416,1 s 666 s 170,4 s 152 s 

4k half 

Loading expression matrix 16,5 s 15,9 s 12,6 s 17,6 s 

Correlation matrix 

computation 
50,9 s 18,3 s 38,2 s 77,5 s 

Network normalization 47,7 s 46,8 s 16,3 s 24,7 s 

Executing the PANDA loop 1623 s 799,1 s 184,6 s 169 s 

Table 6: Time performance of all the hardware setups considered for the 1k half and 4k half 

datasets. 

4.3.2 Memory usage 

The second part of the experiments focuses on the memory occupied by the computation of 

PANDA algorithm. While the time effort, even in the worst cases analyzed, can be usually 

considered manageable in real-world applications, being in the order of hours, the memory 

usage can be a more significant bottleneck as the dimensions of the expression matrix 

increase.  

In this set of experiments, all available flags allowing to minimize memory computation were 

enabled. It9s important to underline, however, that these options are not compatible with 

PANDA computations within the LIONESS pipeline. This is due to this last algorithm 

requirement for executing a high number of operations on the original matrices, which 

prevents discarding them as suggested by the memory-saver configurations.  

 

Figure 12: Comparison of memory usage in the three different hardware setups and with 

increasing count cells. 
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Hardware Setup Dataset 

1k 4k 10k 50k 100k 

CPU 26,46GB 27,97GB 29,06GB 45,89GB 66,15GB 

A40 14,21GB 20,3GB 16,8GB 37,67GB 59,51GB 

RTX 14,45 GB 20,13GB 16,87GB 39,15GB 59,51GB 

Table 7: Memory usage among all the hardware setups for the considered datasets. 

This set of data (Figure 12 and Table 7) reveals a consistent trend across all three different 

hardware configurations: there is an increasing trend between the memory usage and the 

expression matrix dimension in all the simulated datasets. However, due to the limited 

number of data points, it remains unclear whether this relationship is linear or otherwise, 

preventing precise determination of the scaling coefficient governing this trend. The 

exception for this relationship across all three cases is the dataset with around 4 thousand 

cells, which shows unexpectedly high memory usage. These anomalies correspond with the 

only real dataset considered, suggesting that it has features influencing the use of memory that 

have been not considered in the simulation of the other dataset, leading to this different 

memory occupancy data. 

4.3 Results Analysis 

From the previously exposed analysis, it has been possible to obtain the following 

considerations about the core algorithm characteristics: 

• Message Passing Approach: the foundational principle of the algorithm, the message 

passing approach, achieves convergence within a finite number of steps, generating a 

GRN that integrates all the information contained in the three input matrices with a 

certain grade of concordance; 

• Designed parallelism: PANDA9s parallelism can be exploited through two different 

hardware setups [36]: 

 using a multi-core CPU approach: the time required for the PANDA loop 

computation by 10 cores of the considered CPU is half of the time required by 

the single-core CPU. This cannot be considered a significant improvement 

because of the proportion between the increment of resources and the time 

efficiency obtained;  
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 using a GPU approach: using these specific hardware setups, the time 

complexity of the PANDA9s loop can be reduced to one-tenth of the one 

registered to compute the same process using a sequential approach; 

• Partial Task Parallelization: the only task optimized in the parallel version is the 

execution of PANDA loop, while tasks such as the loading of the expression matrix 

and the computation of the correlation matrix are not, becoming a limiting factor as 

the dimensions of the data increase; 

• Stability of PANDA loop execution time: the time required for this task depends 

solely on the size of the correlation matrix created from the expression matrix passed 

as input. Since this is a square matrix with dimensions equal to the number of genes 

considered, the time complexity of this task is independent of the cell count variations; 

• Independence from the sparsity of the coregulation matrices: the set of tests 

executed for the comparisons between the performance related to input with motif and 

PPI data and their half versions, confirm the independence of the algorithm9s time 

complexity from their dimensions; 

• Intrinsic parallelization in correlation matrix computation: Although not explicitly 

optimized for parallel processing, this task benefits the use of a package in which the 

parallel computation is designed, achieving, in the case of multi-core hardware setup, 

time performance from 3 to 7 times lower than the ones reached by all the other 

setups; 

• Memory usage: there9s a general trend, presented in Plot 4, for all the statistics related 

to memory occupied by the computation of the simulated dataset. However, this trend 

seems not to be followed by the real dataset, raising the possibility of not being able, 

in the simulation phase, to fully capture all memory-relevant features; 

• Sequential Nature of the PANDA loop: Although the message-passing approach used 

in the PANDA loop produces biologically meaningful results, it is inherently 

sequential, with the number of loop iterations representing a lower bound on the 

algorithm9s critical length. 

 

Based on these considerations, this study has explored ways to increase this tool9s scalability 

in terms of computational time. All the limitations identified by this analysis presented in this 

chapter have been considered as a starting point in developing modified versions of specific 

parts of PANDA. It9s crucial to underline that not all the considerations done in this paragraph 

have led to modifications; some features have been considered too relevant to modify, 
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maintaining them in the form in which they have been proposed originally, for instance, the 

loop structure on which the message passing approach has been exploited. Others, regarding 

memory occupancy improvement or implementing a multi-GPU approach, were not pursued 

during the development of this work but can represent promising directions on which there is 

room for improvement.  

4.4 LIONESS 

The second algorithm considered for the analysis of GRN inference performance is 

LIONESS. It, as described in the earlier chapters, utilizes as input the PANDA object 

produced by the omnibus software, and for each cell (or, more generally, sample) within the 

expression matrix creates a specific GRN. It9s clear that some of the memory-saving options 

used by PANDA, cannot be applied to this program because require the deletion of the 

original expression matrix, which LIONESS requires at the start of each computation. 

The structure of this program has features more adaptable to parallelization compared to 

PANDA9s: the computation of each GRN sample-specific can be executed in parallel, not 

depending on the results of the other steps, relying only on the aggregate network produced 

by the initial PANDA execution. The primary limit on the parallelization of this algorithm 

appears to be the hardware setup used, offering also a multi-GPU procedure to decrease 

further the time performance. These premises have not been followed by encouraging results: 

the time complexity of the computation executed on a sequential approach using the <1k 

Dataset= required over 2 hours, while the memory requested by the use of a GPU exceeded 

the already large amount of memory allowed to the computation (>200GB). Consequently, 

these results have forced the stop of the testing on all the larger datasets, not producing data 

on which analysis can be exploited.  

The code simplicity, along with various attempts to mitigate time and memory complexity 

(such as limiting output to two sample-specific GRNs instead of generating one for each 

sample), suggest that the tested package version (netZooPy 0.8) may not be optimized for 

large-scale or high-sample computations. 

While the tests and the analysis on this second algorithm have not produced the expected 

results, it9s essential to signal that all the limitations presented for PANDA are equally 

pertinent for LIONESS. These represent important points on which all the improvements can 

generate a significant impact also on LIONESS, due to the high number of calls of PANDA 

required by this algorithm. Therefore, while the implementation of LIONESS seems to be the 

most concrete and relevant problem, an optimization of the code and a parallelization of some 
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PANDA tasks can lead to a couple of usable (in terms of time and space required) tools, able 

to generate sample-specific GRNs starting from expression matrices with a high number of 

samples. 
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5. Improvements to the PANDA Algorithm 

The preceding analysis highlighted the intrinsic limitations of the PANDA algorithm, which 

can have scalability issues considering datasets with biologically relevant and realistic cell 

counts. Consequently, the next phase of this study involves identifying specific sections of the 

code to modify, focusing on the most time-intensive tasks that are likely to become critical 

bottlenecks in single-cell applications. These tasks can be identified with whose performance 

directly depends on the number of cells in the expression matrix, specifically: the loading of 

the expression matrix and the computation of the correlation matrix. 

In contrast, the main PANDA loop is excluded from this consideration due to its consistent 

time performance, which is influenced solely by the number of genes in the dataset. 

Furthermore, the loop has already exploited parallelization by the NetworkZoo programmer 

team, using GPU architectures for Tanimoto similarity computation and the update function. 

Finally, this chapter will present a comparative analysis of the execution times for these two 

tasks4matrix loading and correlation computation4between the improved implementation 

and the original version, providing insights into the results achieved through GPU 

parallelization of these tasks. 

5.1 Loading the Expression Matrix  

The loading of the expression matrix, identified as one of the most time-intensive tasks in the 

earlier analyses, requires a deeper examination of the implemented code. Specifically, the 

results from tests conducted across various hardware configurations reveal no substantial or 

consistent performance differences between the sequential approach and the use of parallel 

architecture: multi-core CPU and GPUs load the expression matrix at the same time required 

by a sequential approach. This observation indicates that the current function used for this 

task 4 read_csv from the PANDAs library4 lacks optimization for parallel processing. 
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Pseudo-code 1: Improved version of the loading of the expression matrix 

To address this limitation, it is necessary to design an improved implementation capable of 

simultaneously loading distinct sections of rows (referred to as "chunks") and subsequently 

merging them into a unique data frame. Initially, the developed solution, shown in Pseudo-

code 1, determines the total number of rows in the input text file containing the expression 

matrix, counting the number of row delimitators. The program divides the dataset into evenly 

sized chunks based on the number of processors available for the parallel computation. Each 

chunk is then read simultaneously by individual processors, using 8pandas.read_csv9 function, 

the same employed in the original implementation. Finally, the chunks are concatenated to 
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reconstruct the complete expression matrix, which is required for the PANDA algorithm 

input. 

 

Figure 13: Comparison between the time performance, across all the datasets, achieved using a 

sequential approach (blue) and a parallel approach using a multi-core CPU (black) 

Hardware 

setup 

Dataset 

1k 4k 10k 50k 100k 

CPU 1.32 s 17.61 s 34.5 s 514 s 1133.78 s 

10xCPU 0.76 s 8.7 s 17.12 s 148.09 s 329.43 s 

Table 8: Time performance, across all the datasets, of loading expression matrix task using CPU and 

multi-core CPU. 

Figure 13 and Table 8 demonstrate that the improved implementation for loading the 

expression matrix achieves significant time efficiency compared to the sequential algorithm. 

While the performance of the two approaches is comparable for datasets with fewer than 

10,000 cells, the time-saving advantage of the improved program becomes increasingly 

significant as the cell count rises. For datasets such as 850k9 and 8100k9, the parallel approach 

reduces execution time to approximately one-fourth or one-fifth of that required by the 

sequential method. This different time complexity is given by the use of simultaneous 

processors and is mitigated by the time needed for the concatenation of all the chunks, a task 

not required by the original code. 
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In this loading optimization, the GPU architectures achieve results comparable to the ones 

obtained by the multi-core CPU approach and, therefore, are not presented in Figure 13 and 

Table 7. Indeed, the parallelization of this code section is implemented by dividing the data 

frame into chunks and employing a sequential function to read each of them simultaneously, 

unable to support a GPU architecture and leading to the conduction of this task by CPUs with 

the number of cores specified by the programmer. As a result, the performance differences are 

due to the different hardware setups and are not consistent and substantial.  

The improvement produced by this different approach changes drastically the impact of this 

task on the general amount of time consumed and, considering also that: (1) the tests here 

presented indagate only parallelism exploited by a multi-core CPU, (2) in all the LIONESS 

workflow this task is executed once; this reduction of the time consumed to one-fourth of the 

original version can be considered a substantial improvement. 

 

5.2 Calculating the Correlation Matrix   

The computation of the correlation matrix has been identified as another key task with 

important room for improvement. This consideration is given, not only by the large times 

registered and by their general increasing trend, but also by the type of calculation needed to 

generate the correlation matrix. Each cell of this output matrix is produced by the calculation 

of the Pearson correlation coefficient, ρXY , of the two genes, X and Y, taken as coordinates of 

the new matrix, expressed by this formula: 

ρXY = �ÿĀ�ÿ�Ā  

where �ÿ is the standard deviation of the row associated with the gene X in the expression 

matrix, and �ÿĀ is the covariance between the genes X and Y. A notable feature of this 

computation is the independence between coefficients. For instance, calculating ρĀā does not 

depend on the computation of ρĀĂ, with all required standard deviations precomputed. This 

independence underscores the high degree of parallelizability inherent in this task. In the 

PANDA algorithm, the correlation matrix is computed using the corrcoef function from the 

NumPy library. This function, as shown in the plot presented in Figure 14 and from data in 

Table 9, already exploits some level of parallelism.  These observations indicate that, while 

the original implementation benefits from parallel computation, further optimization could 
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yield even more substantial efficiency improvements using a parallel approach able to exploit 

the GPU potentialities in an improved version. 

 

Figure 14: Comparison across time performance of correlation matrix computation of the original 

version using: CPU (sequential approach), and 10 cores of CPU (parallel approach). 

Hardware 

setup 

Dataset 

1k 4k 10k 50k 100k 

CPU 14,5 s 50,6 s 87,6 s 424,9 s 787,88 s 

10xCPU 7,87 s 18,6 s 15,76 s 59,21 s 111 s 

Table 9: Time performance achieved by CPU and multi-core CPU structures across all the datasets 

for the correlation matrix computation task with the original implementation. 

The modifications implemented focused on the application of the GPU computation on this 

task. Specifically, the NumPy library, traditionally used for this task, was replaced with CuPy, 

a GPU-accelerated library from the Rapids ecosystem. This change abled the shift of the 

correlation computation job from the CPU to the GPU, with tests conducted using two 

hardware configurations: NVIDIA RTX and A40 GPUs. 

The results, presented in the plot shown in Figure 15 and in Table 10, highlight the 

comparison of the performance between the improved version (GPU-based computation) and 

the original version (best-performing CPU-based setup, the multi-core CPU). For datasets 

with smaller cell counts, the execution times across all implementations, original and 



66 
 

improved, can be considered equivalent. However, as the dataset size increases, the 

advantages of GPU acceleration become increasingly significant, with both the RTX and A40 

allowing the improved configuration to achieve lower execution times than the original 

version. Notably, there is no substantial performance difference between the RTX and A40 

GPUs, as both achieve comparable speedups over the multi-core CPU approach.  

 

Figure 15: Comparison across the time performance achieved by the original implementation using 

10 cores of the CPU(black line) and the improved implementation using RTX (red line), A40 (green 

line) GPUs for the correlation matrix computation task. 

Hardware 

setup 

Dataset 

1k 4k 10k 50k 100k 

10xCPU 7,87 s 18,16 s 15,76 s 59,21 s 111 s 

RTX 4,4 s 12 s 23 s 35,54 s 68 s 

A40 5,49 s 14,1 s 24 s 38,34 s 74 s 

Table 10: Times performed by 10xCPU, RTX, and A40 architecture across all the datasets to compute 

the correlation matrix, using the two different implementations, the original and the improved. 

 

The modifications introduced to improve this code section provide significant results, 

lowering notably its time consumption. Specifically, these results assume privileged 

importance not only because of the demonstrative potentialities, underling effectively the 
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power of a parallel approach compared to the traditional computational way of solving 

problems, but also for the consequences on the two GRN inference algorithms, PANDA and 

LIONESS. For PANDA, these are relevant updates because allow the use of the GPU setup 

without time efficiency problems related to preliminary tasks; for LIONESS, the 

improvements are even more critical, as the algorithm requires the computation of a 

correlation matrix for each individual sample in the dataset. 

In conclusion, these modifications, regarding only targeted sections of code enable the 

parallelization of the two most time-consuming tasks identified by the analysis. This not only 

reduces the time required for each computation but also establishes a parallelized framework 

that can support further optimization efforts, leading to inference sample-specific GRN 

algorithms able to elaborate realistic single-cell matrices in an acceptable amount of time.  

5.3 Results Achieved 

This paragraph presents the difference in terms of time consumed in the PANDA workflow 

between the original GPU implementation of this inference GRN algorithm and the proposed 

improved version. 

16.a) 
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16.b)

 

16.c)
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16.d)

 

16.e)

 

Figure 16 (a,b,c,d,e): Comparison between the time consumption of the PANDA algorithm and of the 

modified version. 

Figure 16 compares the performance achieved through the parallelization of the 2 preliminary 

tasks with the time consumption of the PANDA original algorithm. While in the case of a 
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dataset with a cell count equal or lower than 10 thousand (Figure 16 a,b,c) the differences are 

not significant, for the largest expression matrices (Figure 16 d, e) considered the time gains 

reach the following results: 

• Loading expression matrix: The improved version is at least three times faster than 

the sequential approach in the 50k and 100k Datasets, respectively; 

• Correlation matrix computation: the use of the GPU architecture can lead to the 

execution of this task 2 times faster than the multi-core CPU setting and from 7 to 

over 10 times faster than the sequential approach, using as reference the two most 

large datasets and depending on the hardware setup considered.   

In conclusion, the obtained results demonstrate how the GRN inference workflow can be 

analyzed and improved in different tasks, such as the ones modified in this version, achieving 

a more scalable and efficient product. In particular, this study proves the potentialities and the 

applicability of the state-of-the-art general-purpose GPU software applied to the bioinformatic 

field, enabling the handling of multi-omic data with reasonable time consumption.  
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6. Conclusion 

This study aims to analyze the advantages and limitations of an inference GRN algorithm, 

PANDA, and a sample-specific GRN inference software, LIONESS, evaluating the possible 

applications of parallel computing and GPU optimization to enhance their computational 

performance. Initially, there is a presentation of the state-of-the-art GPU technology 

applications in the bioinformatic field: they can be considered pivotal in the future 

development of bioinformatic pipelines. These suites of software can change drastically the 

process of analyzing NGS data in each step (secondary and third analysis) of the genomic 

pipeline, allowing the computation of fundamental biological tasks, such as the Whole Exome 

Analysis, in a fraction of the time normally required by the sequential approach.  

Once this parallel ecosystem excursus is completed, the focus is maintained on the two core 

algorithms, PANDA and LIONESS. This couple of software is based on the message-passing 

approach: an iterative process having the goal of finding a network with the highest possible 

accordance among the data matrices used as input, representing the relations between TFs and 

regulated genes.  

This explanation is followed by the performance analysis of PANDA in terms of time 

consumed and memory occupied. All the tests have been conducted on a set of datasets 

simulated from a real one, abstracting its main characteristics, such as the sparsity of the 

matrix and the sequencing depth. The variables whose impact has been evaluated in this 

analysis are (1) the hardware setup, using CPU, multi-core CPU, and two different GPUs; (2) 

the cell count of the expression matrix; (3) the sparsity of regulation between a specific TF 

and the genes, and among TFs.  

Memory usage follows an increasing trend as the cell count increases; it9s relevant to 

underlining the tendency of the only real dataset, 4k, to require a value of memory higher than 

the one expected by the trend of the other datasets, behavior confirmed among all the 

hardware setups tested. The time analysis has revealed how the co-regulation matrix 

dimensions don9t affect the execution time, and how the total time required by PANDA is 

subdivided among all the relevant tasks that compose it. In particular, the loading of the 

expression matrix, the correlation matrix computation, and the PANDA loop dominate the 

time complexity, presenting designed parallel optimization only for this last task.  

For the first two tasks, some parallel improvements have been proposed considering, using 

parallel computing strategies exploiting multi-core CPU and GPU. Finally, in the following 
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paragraphs, the results obtained are compared with the original performance, and the potential 

future improvements are described.  

6.1 Limitations and potential future improvements   

While the modifications previously discussed have led to significant improvements, several 

aspects represent relevant limitations for the real applicability of these couple of tools. At the 

same time, these can be considered as opportunities for future improvements to optimize 

further the scalability of this software. These aspects, divided by argument, are:   

• Optimization of the expression matrix loading: the modifications have reduced the 

time consumption of the parallel approaches. However, from the previous comparison, 

this task results still dominate, in terms of time, among all the other tasks as the cell 

count increases. Potential future improvements are the evaluation, implementation, 

and test of the state-of-the-art GPU-optimized I/O functions for the loading of 

matrices; 

• Optimization of the correlation matrix computation: this task is directly dependent 

on the cell count, therefore can be useful to consider: 

 Testing specialized specific bioinformatic packages, such as Rapids-singlecell, 

different from the general-purpose ones used in this study, to evaluate 

theoretically and practically the time and memory performance; 

 A multi-GPU approach, evaluating which packages can store and operate on 

large matrices; 

• Redesign of the PANDA loop structure: Evaluate how this typically sequential 

strategy can be rethought as a parallel process, aiming to design a more efficient way 

of representing this workflow using a parallel architecture;  

• Optimization of the memory usage: this aspect represents the main limitation after the 

modifications provided to alleviate the time consumption problems, therefore it would 

be important to:  

 Establish the dependence between the memory usage and the dimensions of 

the input matrices; 

 Evaluate how the internal variables and matrices are stored and distributed in a 

GPU;  

• LIONESS analysis: 

 Evaluate and solve the problems that have hindered the testing of this 

algorithm, in particular, the motivation behind the high time and space 

consumption associated with a not significantly large expression matrix; 
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 Execute a performance analysis among different hardware setups looking for 

the software limitations and the potential optimizations; 

 Manage efficiently the allocations of the variables and matrices, guaranteeing 

continuity with the memory architecture used for the PANDA algorithm. 

 

With these analyses and this set of potentialities concretized, PANDA and LIONESS will be 

finally able to perform GRN inference on large single cell RNA-seq data with limited 

computational burden.  
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