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Abstract

Weak measurements are considered fundamental for sharing the nonlo-
cality of an entangled two-qubit state between several sequential observers.
In this thesis work, we show that this is not necessarily true. Indeed
it is possible to share the nonlocality using only standard projective
measurements, without the need for any quantum ancilla. We will first
show that two sequential observers can both violate the CHSH inequality
when the initial state is a maximally entangled two-qubit one and all the
observers are allowed to share classical randomness. Afterward, we will
determine the optimal trade-off relation between the CHSH parameters
in the same scenario. We also show that two sequential violations can
be reached without the need of sharing classical randomness, but using
only projective measurements and local randomness. Secondly, we will
study what happens if the initial state is non-maximally entangled and
we will show that not only it is always possible to have two sequential
violations with a partially entangled state, but that in some cases these
states make larger sequential violations. Lastly, we prove that it is also
possible for three sequential observers to violate the CHSH inequality.
These results show that standard, projective, measurements are a simple
and useful resource for sharing quantum nonlocality between sequential
observers.
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Chapter 1

Introduction

Since the beginning of the 20th century Quantum Mechanics has changed the way
we conceive the world revealing new interesting phenomena and leading to the
research for new models and theories to describe them. Among the various new fields
born thanks to the discovery of Quantum Mechanics we can acknowledge Quantum
Information theory. Information theory is the field that studies how information can
be quantified, stored, and processed. Its foundations can be traced back to 1948,
when C. E. Shannon published ”A mathematical theory of communication” [2] and
has gained popularity ever since. The study of this field has deeply affected our
lives allowing for the development of many tools we use daily. Quantum Informa-
tion theory, on the other hand, proposes this study when the system considered is
quantum mechanical. Indeed by considering a quantum system to carry informa-
tion, researchers have introduced plenty of new protocols both for computing and
for cryptography. While quantum computing is still at an early stage, quantum
cryptography implementations are being achieved more and more often. Although
there are still some technological limitations, such as the distance limit at which
a quantum key can be efficiently broadcast with current technologies, the birth of
several companies proposing quantum cryptography devices makes it reasonable
that in the near future quantum cryptography will become more and more used.

In this thesis, we are going to study one of the most peculiar characteristics of
quantum mechanics: non-locality. As we will see more in detail in the following
sections, non-locality is indeed a useful resource to be used in quantum cryptography
systems. When performing quantum cryptography protocols, it is important to
consider the fact that the state and the devices used might be not reliable, i.e. they
can be imperfect and behave differently from what the user wishes. To overcome
this problem the idea of device-independent quantum cryptography has been born.
In this scenario the user does not trust the used devices, seeing them as black boxes.
This way the security proof of the quantum protocol will be independent of the
device used. With this aim, in 1998 Mayers and Yao [3] proposed the concept of
self-testing quantum apparatus. The idea is that the user does not assume the
apparatus to be trusted in any way and that its properties are uniquely determined
on the basis of their input-output statistics. A particularly useful test for self-testing
the honesty of a device is the Bell test. To perform this kind of test, non-locality is
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CHAPTER 1. INTRODUCTION

a fundamental resource.

In this scenario, we are going to study the possibility to share a non-local correlation
between sequential observers sharing a two-qubit entangled state. In particular,
we are going to propose a new way of performing this task in contrast with the
standard method widely found in the literature. Indeed the standard procedure
involves the use of sophisticated measurements, namely positive operator-valued
measures (POVMs), whose implementation typically requires additional ancillary
qubits. In our protocol instead, all the observers will be allowed to use only standard
projective measurements which are much easier to implement. In this work we are
first going to prove the validity of this protocol and study its limits in the case there
are only three observers. Moreover, we are going to study what happens if the initial
shared state is a general two-qubit pure state instead of a maximally entangled one.
Finally, we are going to present an example showing the possibility to use it also
when the observers are four. The importance of this work is firstly to point out that
the common knowledge that POVMs are necessary to share non-locality between
sequential observers is wrong. In addition to this conceptual statement, this thesis
proposes a new easier way to perform this task.

In the following sections, we are going to introduce some useful mathematical
tools used in quantum information as well as concepts like Bell inequalities and in
particular the Clauser-Horne-ShimonyHolt (CHSH) inequality. Afterward, we are
going to introduce the idea of sharing non-locality between sequential observers.
Finally, in the following chapters, we are going to the main part of the thesis, in
which we analyze and discuss what happens when the observers can only perform
standard projective measurements.

1.1 Tools and concepts for Quantum Information

In this section, we are going to present some useful tools and concepts used when
dealing with quantum information. In particular, we are introducing the qubit and
the way to represent it, the idea of non-locality, Bell inequalities with a particular
focus on the CHSH inequality, and finally quantum measurements.

This introductory section does not pretend to describe exhaustively all the topics
presented, which lie outside the aim of this thesis work. We are indeed trying only
to give an idea of the objects we are going to talk about and use.

1.1.1 Qubits

In classical information theory, the basic unit of information is the bit. It represents
a logical state assuming one of two possible values, namely 0 and 1. Similarly, in
quantum information theory the basic unit is the qubit (quantum bit). It represents
the state of a system, such as a two-level system, belonging to the Hilbert space
H ∼= C2, having as basis vectors |0⟩ and |1⟩. The peculiar characteristic of the qubit
is that it is not bound to be only in the basis states, it can be a linear combination
of them. In this case, we say that the qubit is in a superposition. The qubit state
|ψ⟩ can be thus generally written as:
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CHAPTER 1. INTRODUCTION

|ψ⟩ = α |0⟩+ β |1⟩ (1.1)

where α and β are complex coefficients satisfying the normalization constraint
|α|2 + |β|2 = 1. Since quantum states are defined up to a global phase, it is possible
to impose the condition α ∈ R and rewrite the state as

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
β |1⟩ (1.2)

where θ and ϕ are real numbers. We can interpret these angles as spherical coordinates
and identify the point a⃗ = (sin θ cosϕ, sin θ sinϕ, cos θ) on the Bloch sphere. This
is a unit sphere in R3 having the computational basis vectors {|0⟩ , |1⟩} as the z-axis,

as x-axis the vectors {|+⟩ = |0⟩+|1⟩√
2
, |−⟩ = |0⟩−|1⟩√

2
} and {|R⟩ = |0⟩+i|1⟩√

2
, |L⟩ = |0⟩−i|1⟩√

2
}

for the y-axis. The vector a⃗ is the Bloch vector associated with the state |ψ⟩. In
figure 1.1 we report a representation of the Bloch sphere.

Figure 1.1: Bloch sphere representation.

We are also going to represent qubits with the matrix representation. In this
representation, we associate the computational basis vectors with

|0⟩ =
(
1
0

)

|1⟩ =
(
0
1

)

(1.3)

which are the eigenvectors of the Pauli matrix σz.

The states we have used so far are only pure states. To talk about more general
states, namely mixed states, it is necessary to introduce the density matrix formalism.
In this formalism, the state can be written as

ρ =
1

2
(1 + r⃗ · σ⃗) = 1

2
(1 + rxσx + ryσy + rzσz) (1.4)
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CHAPTER 1. INTRODUCTION

where 1 is the identity matrix and σx, σy and σz are the Pauli matrices

1 =

(
1 0
0 1

)

σx =

(
0 1
1 0

)

σy =

(
0 −i
i 0

)

σz =

(
1 0
0 −1

)

(1.5)

The real vector r⃗ = (rx, ry, rz) is the Bloch vector of the state and it represents the
state in the Bloch sphere. Vectors with ∥r⃗∥ = 1 represent pure states. Mixed states
are represented by vectors with ∥r⃗∥ < 1, thus inside the sphere.

1.1.2 Composite systems and entanglement

To introduce the representation of the state of a composite quantum system we
can start again by comparing it with its classical counterpart. In the classical case,
when we consider a system composed of n basic systems we simply obtain a n-bit
string of 0s and 1s. In the quantum case, the state of a composite system belongs to
the Hilbert space obtained as the tensor product of the sub-system Hilbert spaces.
Considering n qubits each in a Hilbert space H ∼= C2, the state of the total system
|Ψ⟩ belongs to

HTOT = H ⊗H ⊗ · · · ⊗H
︸ ︷︷ ︸

n times

=

n⊗

H ∼= C
2n (1.6)

Thus, the state of the composite system is represented by a 2n-component complex
vector. If the total state can be written as the tensor product of the states of the
sub-systems, the state is called separable. For example, if we consider a 2-qubit
system, the total state |Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩, with |ψ1⟩ and |ψ2⟩ states of the two single
qubits, is separable. When it is not possible to write the total state in this way, the
state is not separable, it is entangled. For example, if we consider again a 2-qubit
system, the state Ψ = |00⟩+|11⟩√

2
is entangled.

Entanglement highlights the non-local nature of quantum theory. If for example we
consider the 2-qubit entangled state Ψ = |00⟩+|11⟩√

2
and we measure the value of the

first qubit, the outcome will be either 0 or 1 and this will also determine the value
of the second qubit.

This quantum theory result does not satisfy the principle of locality stating that an
object is directly influenced only by what happens in its immediate surroundings.
For this reason, Einstein, Podolski and Rosen published the 1935 paper ”Can
Quantum-Mechanical Description of Physical Reality Be Considered Complete?”
[4] considering the theory of quantum mechanics theory incomplete due to this
violation of the locality principle. Indeed, they argued that, since information can
not travel faster than light, it is impossible that an action taken on a particle, such
as measuring the first qubit of Ψ, could affect instantaneously another particle, such
as the second qubit of Ψ. They stated that ”If, without in any way disturbing a
system, we can predict with certainty (i.e., with probability equal to unity) the value
of a physical quantity, then there exists an element of physical reality corresponding
to this physical quantity.”. From this, they stated that the second particle must
already have a precise value before the measurement. The reason the observer does
not know this value is due to his lack of knowledge of some ”hidden variable” not
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included in the theory. Theories trying to explain quantum mechanics results by
including hidden variables are referred to as local hidden variable theories.

1.1.3 Bell theorem and CHSH inequality

In 1964, John Stewart Bell published ”On the Einstein Podolsky Rosen paradox”
[5] where he mathematically proved that the correlations between measurement
outcomes predicted by quantum mechanics are incompatible with local hidden
variable theories. Moreover, he stated that ”If [a hidden-variable theory] is local it
will not agree with quantum mechanics, and if it agrees with quantum mechanics it
will not be local.”[6], thus a non-local structure is an essential characteristic of any
theory reproducing the predictions of quantum mechanics.

In particular, Bell considered the problem in which two independent observers per-
form measurements on two separated entangled particles and proved mathematically
that, if the outcome of these measurements depends on some local hidden variables,
the correlation between the outcomes is upper bounded. On the other hand, if we
take into consideration quantum mechanics, the correlations can violate this inequal-
ity. This result is called Bell’s theorem and the inequality is called Bell inequality.
Beginning with this proof, several other versions of Bell inequality have been found.
The first experiment showing a violation of a Bell inequality was accomplished by
Freedman and Clauser [7]. Afterward, many other experiments has been carried out
to test Bell’s theorem, confirming that entangled states can violate Bell’s inequalities.
Between them we cite the experiment by Aspect, Dalibard and Roger [8].

In this thesis, we are going to consider the Clauser-Horne-Shimony-Holt (CHSH)[9]
inequality. To introduce this inequality we consider the Bell experiment schematically
reported in 1.2.

Figure 1.2: CHSH scenario - Alice (A) and Bob (B) share the two-qubit entangled state Ψ.
Depending on their input value x and y, they obtain the outputs a and b, respectively.

In this experiment, a two-qubit entangled state is prepared. Each of the two qubits is
sent to an independent observer. These observers, referred to as Alice and Bob, can
choose one between two local measurements to perform on their half of the entangled
state. In particular, they choose between two input values x ∈ {0, 1} and y ∈ {0, 1}
for Alice and Bob respectively, and perform the corresponding measure. Thus, we
are denoting as Ax and By Alice’s and Bob’s observables. The measurement outcome
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are labelled as a ∈ {0, 1} for Alice and b ∈ {0, 1} for Bob.
The CHSH parameter can be defined as

S =
∑

x,y=0,1

(−1)xy⟨AxBy⟩ = ⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0⟩ − ⟨A1B1⟩ (1.7)

where with ⟨·⟩ we indicate the expectation value.

If the system can be described by a local hidden variable theory, we can write the
CHSH inequality S ≤ 2. On the other hand, if we consider quantum mechanics the
CHSH parameter can reach the Tsirelson’s bound S ≤ 2

√
2. This boundary can be

reached when Alice measures along two orthonormal basis vectors and Bob along the
diagonal directions. For example, for the state |ϕ+⟩ = |00⟩+|11⟩√

2
Alice can measure

A0 = σx and A1 = σz, while Bob B0 = −σx+σz√
2

and B1 = σx−σz√
2

. In the quantum

case, we can rewrite the CHSH parameter as

S = Tr [ρ ((A0 +A1)⊗B0)] + Tr [ρ ((A0 −A1)⊗B1)] (1.8)

where ρ is the state shared between Alice and Bob and Tr is the trace operator.
These inequalities are fundamental for self-testing devices. Indeed when obtaining
a CHSH inequality violation, we can deduce some properties of the state and the
measurements that produced that violation. For example, if we reach the Tsirelson’s
bound we can affirm that the measurements are like the ones just reported, up to a
global rotation.

1.1.4 Weak measurements

When an observer measures a quantum state it perturbs it. Weak measurements are
a means for an observer to gain some partial information on a system while disturbing
it only a bit. There will be a trade-off relation between how much information can
be extracted from a system and how much the system is disturbed. On one hand,
the weaker the measurement, the less information can be extracted, but the less the
system is perturbed. The weakest measurement is the trivial measurement in which
the observer simply does not perform any measurement, gaining no information, but
leaving the state unperturbed. On the other hand, the stronger the measurement
the more information can be obtained and the system is perturbed. The strongest
measurement possible is the projective measurement, in which we obtain all the
information of the state, but we project it on the measurement operator eigenspace.
Practically, to perform this kind of measurement, it is necessary to weakly couple
the system with the measurement device (usually called ancilla). The information
will be obtained by measuring the ancilla.

Mathematically this kind of measurement can be described by a positive operator
valued measure (POVM) {Mi}. If the dimension of the Hilbert space they are acting
on is finite and the number of elements in the POVM is n, the POVM is simply a set
of n positive semi-definite Hermitian matrices satisfying the completeness relation
∑n

i=1Mi = 1. Each element Mi of the set is associated with the measurement
outcome i. When performing a measurement on the state ρ, the probability of
obtaining the outcome i is Pi = Tr [ρMi].
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In the case of two-outcome measurements, a POVM simply becomes an ordered pair
of positive semi-definite matrices (M0,M1) such that M0 +M1 = 1.

Given an observable O having only two possible values (for simplicity we can refer
to them as 0 and 1), we can write the POVM associated with it as {Mi}i=0,1 such
that M0 −M1 = O. This relation together with the completeness relation allows us

to write M0 =
1+O
2 and M1 =

1−O
2 , thus Mi =

1+(−1)iO
2 .

A more complete description of weak measurements can be found in [10].

1.1.5 Quantum channels and Kraus operators

A quantum channel is a completely positive, trace-preserving map that transforms a
state (represented by its density matrix) into another state, Φ : ρ→ ρ′. To describe
the action of this map it is possible to use the Kraus operators Ki:

ρ′ = Φ(ρ) =
∑

i

KiρK
†
i (1.9)

For the channel to be trace-preserving, the Kraus operators must satisfy the condition
∑

iKiK
†
i = 1. If we consider the POVM {Mi}, the Kraus operators representing

the quantum instrument are such that Mi = K†
iKi. As long as the operators satisfy

the previous relations, they do have not a univocal definition, thus we can use the
Lüders rule and choose Ki =

√
Mi [11].

In this thesis, we are going to consider projective measurements, which satisfy the
additional property M2

i = Mi. In this case Ki =
√
Mi = UiMi where Ui is an

arbitrary unitary operator.

1.2 Sequential CHSH scenario

Up to this point, we only considered only two observers: Alice and Bob. In this
section, we are going to introduce a more general problem that involves more
observers on one of the two sides.

Since the work of Silva et. al., [12], extensive research has been conducted on
whether it is possible to re-use the post-measurement state of a Bell experiment to
share nonlocality between several sequential observers. As in the standard scenario,
the maximally entangled two-qubit state is shared between two initial observers
Alice and Bob(1). They can both perform local measurements on their half of
the state. Afterward, Bob(1) can relay his post-measurement state to another
independent observer Bob(2) who can also perform a local measurement, relay the
post-measurement state to another observer, and so on. Each Bob has have his own
input yi ∈ {0, 1} and output bi ∈ {0, 1}. This scenario is schematically reported in
figure 1.3.

Lots of research has been carried out on whether it is possible for each of these
Bob(i) to violate the CHSH inequality together with Alice both in theory [13–23]
and experiment [24–28]. A brilliant result recently obtained by Colbeck and Brown
[29] is that an arbitrary number of Bob can achieve a CHSH violation with Alice.
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Figure 1.3: Sequential CHSH scenario - Alice (A) and a first Bob (B(1)) share the two-qubit
entangled state Ψ. They both measure their half of the state. After his measurement B(1),
relays the post-measurement state to B(2), who measures it and so on.

To perform such a task, weak measurements are considered to be fundamental.
Indeed a projective measurement leaves the state separable, making it impossible for
other subsequent observers to violate the CHSH inequality. On the other hand, by
interacting weakly with the state, it is possible to tune the amount of non-locality
used to violate the CHSH inequality and the amount left for the other observers.

Using the notions introduced in 1.1, we are now going to write the CHSH parameter
for each Bob.
Consider the set two-outcome observables {Ax, B

(1)
y1 , . . . , , B

(n)
yn } with x = {0, 1},

yi = {0, 1} for i = 1, . . . , n. The CHSH parameter Sk between Alice and Bob(k) is

Sk = Tr
[

ρ(k)
(

(A0 +A1)⊗B
(k)
0

)]

+Tr
[

ρ(k)
(

(A0 −A1)⊗B
(k)
1

)]

(1.10)

where ρ(k) is the state received by Bob(k).

To write this state we need to write the Kraus operators associated with the previous
measurements. Each observable is associated with the measurement operators

Aa|x and B
(k)
bk|yk , for Alice and Bob(k) respectively. We denote as K

(k)
bk|yk the Kraus

operators that represent the instrument used by Bob(k) to realise the measurement

B
(k)
bk|yk =

(

K
(k)
bk|yk

)†
K

(k)
bk|yk .

Since each Bob acts independently, Bob(k+1) is ignorant of the input and output
values of Bob(k), yk and bk. Then state shared between Alice and Bob(k+1) is Bob(k)’s
post-measurement state averaged over yk and bk. The state shared by Alice and
Bob(k+1) can be obtained by the recursive relation

ρ(k+1) =
1

2

∑

bk,yk=0,1

(

1 ⊗K
(k)
bk|yk

)

ρ(k)
(

1 ⊗K
(k)
bk|yk

)†
(1.11)

In chapters 2 and 3, we will use a slightly different notation for simplicity. Since
we are going to consider only two observers other than Alice, we are going to call
them Bob and Charlie. Bob’s and Charlie’s measurements, corresponding to the
observables By and Cz with y, z = {0, 1}, will be noted simply as Bb|y and Cc|z.

16



CHAPTER 1. INTRODUCTION

With this notation, we can rewrite equation (1.11) as

ρAC =
1

2

∑

b,y=0,1

(
1 ⊗Kb|y

)
ρAB

(
1 ⊗Kb|y

)†
(1.12)

highlighting that ρAB is the state shared between Alice and Bob, while ρAC between
Alice and Charlie.

As for the CHSH parameters, we can rewrite them as:

SAB = Tr [ρAB ((A0 +A1)⊗B0)] + Tr [ρAB ((A0 −A1)⊗B1)] (1.13)

SAC = Tr [ρAC ((A0 +A1)⊗ C0)] + Tr [ρAC ((A0 −A1)⊗ C1)] (1.14)
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Chapter 2

Double violation

In this chapter, we will show that it is possible to have two sequential violations of
the CHSH inequality between independent parties measuring one half of a two-qubit
state using exclusively projective measurements.

First of all, we can observe that in the case of a single qubit, the only possible
projective measurements are either basis measurements i.e. measurements in the
direction of a certain Bloch vector {B0|y, B1|y} = {|v⃗⟩ ,

∣
∣−⃗v

〉
}, corresponding to a

rank-1 projection, or trivial identity projections {B0|y, B1|y} = {1, 0}, for which the
measurement outcome does not depend on the state. When these measures are
performed on one qubit o an entangled pair, the former measurement makes the
whole post-measurement state separable, thus it disentangles it, while the latter
leaves it unchanged.

Since both Alice and Charlie do not need to relay their post-measurement state to
anyone they can simply perform basis projections and consume all the entanglement
making the state separable. As for Bob, since he can perform only a combination of
the measurements just described, he can use one of three different strategy types:

(I) Both measurements are rank-1 projection, thus the state becomes separable.
This way Bob can violate the CHSH inequality, but, being the state separable,
it is not possible to have a second violation.

(II) Both measurements are trivial i.e. identity measurements. In this case, it is
not possible to obtain a first violation, while the second one is possible.

(III) One measurement is trivial and the other is a basis projection. Since one
measurement is the identity, one output is simply discarded. Thus a first
violation will be impossible, but a second one is still possible.

As we have just observed, these strategies, individually, can not achieve more than
one CHSH inequality violation. The idea is to overcome these unsuccesses by
exploiting classical shared randomness between the parties. This way it is possible
to stochastically combine these individually unsuccessful strategies to achieve the
two sequential violations of the CHSH inequality.

Practically this means that before the beginning of the experiment, the parties need
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to share a correlated string of classical data, such as a sequence of random numbers.
These data will allow them to decide which strategy to choose for each run of the
experiment. Let λ = 1, 2, 3 be the variable stating which strategy to use. It is subject
to some probability distribution {pλ}3λ=1. We can redefine the CHSH parameter as
the expectation value

SAB =

3∑

λ=1

pλS
(λ)
AB (2.1)

where S
(λ)
AB is the CHSH parameter between Alice and Bob as defined in equation

(1.13). Analogously we can define the CHSH parameter S
(λ)
AC between Alice and

Charlie.

This scenario is schematically represented in figure 2.1.

Figure 2.1: Sequential CHSH scenario - Alice (A) and a first Bob (B(1)) share and measure
the two-qubit entangled state Ψ. Afterwards, B(1) relays the post-measurement state to
B(2), who measures it and so on. Before the beginning of the experiment, all the observers
can share a string of classically correlated data λ.

In the following, we are going to consider as initial state shared between Alice and
Bob |ϕ+⟩ = |00⟩+|11⟩√

2
, where |0⟩ and |1⟩ are the eigenstate of σz with eigenvalue 1

and -1 respectively.

Since all the states and measures we are going to consider lay on a 2D plane, we can,
without loss of generality, restrain the problem to the XZ-disc of the Bloch sphere
(the y component will be always 0).

2.1 Proof of principle

To begin with, we are proving that both Bob and Charlie can violate the CHSH

inequality simply by using a strategy of type (I) to maximize S
(1)
AB, and (III) to

maximize S
(3)
AC and combining them afterward. Since we are not using strategy (II),

p2 is set to 0 and we can simply write p1 = p and p3 = 1−p. We are going to consider
the simple case SAB = SAC . In general, we are not interested in this condition,
but it simplifies the calculation and it is enough to show that both parameters
can be greater than 2 at the same time. The strategies we are using present some
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parameters, which we will use for the maximization process. Finally we are going to
find p to combine the strategies together such that S(1) = S(2).

Strategy type (I) (λ = 1): We start by choosing the observables. In particular Alice’s
observables are A0 = σx+σz√

2
and A1 = σx−σz√

2
, Bob’s are B0 = cosϕσx + sinϕσz

and B1 = sinϕσx + cosϕσz and Charlie’s are C0 = C1 = cosϕσx + sinϕσz for a
certain angle ϕ ∈ [0, 2π). As already mentioned in 1.1.5, Bob is allowed to perform
a unitary operation which can depend on both Bob’s input and output Uyb after
the measurement. In this case, we choose them to be independent of the output
b. When the input y = 0 we choose the identity operator, U0 = 1, which means
that no operation is performed on the measured state. As for the other input,

U1 = ei(ϕ−
π
4 )σy , which, for a state having 0 y-component as in this case, is simply a

rotation of −π/4 of the state in the XZ-plane.

We can use eq. (1.10) to compute the CHSH parameters for this strategy, obtaining

S
(1)
AB = 2

√
2 cosϕ (2.2)

To compute the state shared between Alice and Charlie, ρAC we can use eq. (1.11).
Since we are using projective measurements the Kraus operator can be simply

written as Kb|y = UyBb|y, where Bb|y =
1+(−1)bBy

2 is the measurement operator
associated with the observable By. From these calculations, we obtain the second
CHSH parameter

S
(1)
AC =

√
2 (cosϕ+ sinϕ) (2.3)

Now we can maximize S
(1)
AB, finding S

(1)
AB = 2

√
2 when ϕ = 0. If we choose this

measurement angle, the second CHSH parameter results in S
(1)
AC =

√
2.

Strategy type (III) (λ = 3): In this case we choose as observables A0 = cos θσx +
sin θσz and A1 = cos θσx−sin θσz for a certain angle θ, B0 = 1 and B1 = σz, C0 = σx
and C1 = σz. In this case, Bob does not perform any unitary transformation of the
state after the measurement. Following the steps performed for the first strategy we
obtain the following CHSH parameters

S
(3)
AB = 2 cos θ (2.4)

S
(3)
AC = 2 sin θ + cos θ (2.5)

Maximizing S
(3)
AC , we find S

(3)
AC =

√
5 for θ = arctan 2 and S

(3)
AB = 4√

5
.

We want to use the two strategies just found to compute the final CHSH parameters
as defined in equation (2.1). Being p and 1− p the probabilities to use strategies (I)
and (III) respectively, we obtain

SAB = pS
(1)
AB + (1− p)S

(3)
AB = 2

√
2p+

4 (1− p)√
5

(2.6)

SAC = pS
(1)
AC + (1− p)S

(3)
AC =

√
2p+

√
5(1− p) (2.7)
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To verify that it is possible for both SAB and SAC to exceed 2, it is sufficient to check
whether their value when SAB = SAC is greater than 2. Imposing this condition we

find the value p =
√
5

5
√
2+

√
5
≈ 0.240 which leads to SAB = SAC = 6

√
10

5
√
2+

√
5
≈ 2.039,

which is indeed greater than 2.

This simple computation shows that it is indeed possible for two observers performing
sequential measurements on one half of a two-qubit maximally entangled state
|ϕ+⟩ to both violate the CHSH inequality, when classical correlation between the
measurement choices is present.

2.2 Optimal trade-off

Let’s consider once again Alice and Bob sharing the maximally entangled state
|ϕ+⟩ = |00⟩+|11⟩√

2
.

Since the qubit is not relayed to anyone afterward, the optimal measurements
for Alice are always rank-1 projective. This corresponds to Alice measuring the
observables A0 = a⃗0 · σ⃗ and A1 = a⃗1 · σ⃗ with ∥a⃗x∥ = 1, x = 0, 1.

Every rotation of the vectors a⃗0 and a⃗1 can be absorbed into a global rotation of
Bob’s measurements via the relation O ⊗ 1 |ϕ⟩ = 1 ⊗ OT |ϕ⟩. For this reason, we
can simply choose a⃗0 = (cos θ, 0, sin θ) and a⃗1 = (cos θ, 0,− sin θ) and restrict the
problem to the unit disk identified by the interception between the XZ-plane and
the Bloch sphere.

To do so we introduce the unnormalized states remotely prepared by Alice on
Bob’s side ρa|x. These correspond to the eigenvectors of Alice’s observables, namely

ρa|x = 1
4 (1 + (−1)aa⃗x · σ⃗). We observe that, since Alice’s measurement operators

are trace-one and that the local state is maximally mixed, p (a|x) = Tr
[
ρa|x

]
= 1/2.

We will now rewrite the equation for the CHSH parameter in a slightly different, more
convenient, way. Firstly, from the definition of the unnormalized states remotely
prepared by Alice on Bob’s side ρa|x, we define ρx = ρ0|x − ρ1|x = a⃗x·σ⃗

2 . Using this
definition for ρx, the CHSH parameter between Alice and Bob becomes

SAB =
∑

x,y=0,1

(−1)xy Tr [ρxBy] (2.8)

Considering that Cz = 2C0−1 and remembering how the state ρAC can be obtained
evolving ρAB from equation (1.12), we can rewrite SAC as

SAC =
1

2

∑

x,z=0,1

(−1)xz
∑

y,b

Tr
(

Uby

√

Bb|yρx
√

Bb|yU
†
byC0|z

)

(2.9)

Now we want to study the trade-off relation between SAB and SAC when Bob’s
measurements are projective, namely they satisfy Bb|yBb′|y = δb,b′Bb|y. As already
discussed we can choose without loss of generality the Kraus operators in the
form Kb|y = UbyBb|y. Remembering also that the trace is cyclic the second CHSH

22



CHAPTER 2. DOUBLE VIOLATION

parameter becomes

SAC = cos θ
∑

y,b

Tr
(

Bb|yσXBb|yU
†
byC0|0Uby

)

+ sin θ
∑

y,b

Tr
(

Bb|yσZBb|yU
†
byC0|1Uby

)

(2.10)

Also in this case we chose Charlie’s measurements to be projective since, as in Alice’s
case, he does not need to relay the qubit to anyone afterward.

In the following, we are examining the three strategies we discussed at the beginning
of this chapter one by one.

2.2.1 Strategy type (I)

As already discussed, this strategy corresponds to Bob performing two projections
on basis vectors. We also remember that since Bob’s measurement breaks the
entanglement, this kind of strategy allows for a first Bell inequality violation SAB > 2,
but not a second one SAC > 2.

By defining the rank-one projectors Pzyb = U †
byC0|zUby we can rewrite equation

(2.10) as

SAC = cos θ
∑

y,b

Tr
(
Bb|yσXBb|yP0yb

)
+ sin θ

∑

y,b

Tr
(
Bb|yσZBb|yP1yb

)
(2.11)

We can now write an upper bound for the parameter SAC by assuming that P0yb is
aligned with the eigenvector with the largest eigenvalue of the operator Bb|yσxBb|y
and, analogously P1yb is aligned with Bb|yσzBb|y. The upper bound on SAC can be
written as

SAC ≤ cos θ
∑

y,b

λmax

[
Bb|yσXBb|y

]
+ sin θ

∑

y,b

λmax

[
Bb|yσZBb|y

]
(2.12)

where λmax

[
Bb|yσxBb|y

]
and λmax

[
Bb|yσzBb|y

]
are the largest eigenvalues ofBb|yσxBb|y

and Bb|yσzBb|y respectively.

Observe that an operator defined as P (u⃗ · σ⃗)P , with P rank-one projector, is a
rank-one operator itself. Thus the operators Bb|yσxBb|y and Bb|yσzBb|y are rank-one
and their spectra have the form (λ, 0). For this reason we can write their largest
eigenvalue as λmax [P (u⃗ · σ⃗)P ] = max{0,Tr [(u⃗ · σ⃗)P ]}.

Since Tr [(u⃗ · σ⃗)P ] is the expectation value of the observable u⃗ · σ⃗ in the state P ,
we can expect that in the case P = Bb|y this expectation value will be identical for
b = 0 and b = 1, but with opposite signs, being one positive and one negative. For
this reason, we expect that each of the two terms in equation (2.12) will have a
contribution only from one value of b for each y value.

Finally, since when choosing Alice’s measurement we decided to restrict the problem
to the XZ-plane, the optimal choice for the Bloch vectors associated with Bob’s
measurements lay in the same plane, thus we can write b⃗y = (cosϕy, 0, sinϕy). With
these choices, we can rewrite a simplified version for both the CHSH parameter

23



CHAPTER 2. DOUBLE VIOLATION

between Alice and Bob SAB and equation (2.12)

SAB = (⃗a0 + a⃗1) · b⃗0 + (⃗a0 − a⃗1) · b⃗1 = 2 cos θ cosϕ0 + 2 sin θ sinϕ1 (2.13)

SAC ≤ cos θ (| cosϕ0|+ | cosϕ1|) + sin θ (| sinϕ0|+ | sinϕ1|) (2.14)

These relations show that the pair (SAB, SAC) is fully characterized by the variables
(θ, ϕ0, ϕ1).

As a first thing, we want to recover the classical boundary. To do so we can simply
choose ϕ0 = ϕ1 = −θ, which leads to SAB = 2 cos (2θ) and SAC = 2. While θ ∈ [0, π4 ]
we recover 0 ≤ SAB ≤ 2 and SAC = 2. This choice is optimal because, being Bob’s
measurements both rank-1, the state relayed to Charlie is separable and can not
violate the CHSH inequality, it can reach the value of 2 at the best.

Moving to the non-classical range 2 ≤ SAB ≤ 2
√
2, we are now going to look for the

maximum value obtainable by SAC for a certain SAB. To do so, we are going to
prove that for every pair (SAB, S

′
AC) obtained with (θ, ϕ0, ϕ1), there exists another

pair (SAB, SAC), such that SAC ≥ S′
AC , obtained with (θ = π

4 , ϕ0 = ϕ, ϕ1 =
π
2 − ϕ)

for some ϕ ∈ [0, π2 ], thus this triple is the optimal choice for (θ, ϕ0, ϕ1).

Firstly, since the value for SAB should not change with this choice of the parameters,
ϕ satisfy

2 cos θ cosϕ0 + 2 sin θ sinϕ1 = 2
√
2 cosϕ (2.15)

When ϕ0 = 0, ϕ1 = π
2 and ±θ = π

4 the left-hand-side of equation (2.15) is maxi-

mized/minimized and becomes ±2
√
2. Now we want to show that with this choice

of ϕ we have SAC ≥ S′
AC . This last condition becomes

cos θ (| cosϕ0|+ | cosϕ1|) + sin θ (| sinϕ0|+ | sinϕ1|) ≤
√
2 (cosϕ+ sinϕ) (2.16)

In the range of our interest, without loss of generality, we can simplify this relation
and drop the absolute values by taking ϕ0, ϕ1 ∈ [0, π2 ].

After rearranging the disequality, squaring both sides and substituting ϕ via equation
(2.15), we obtain

cos2 θ
(
cos2 ϕ0 + cos2 ϕ1

)
+sin θ2

(
sinϕ20 + sinϕ21

)
+sin(2θ) sin (ϕ0 + ϕ1) ≤ 2 (2.17)

We can finally differentiate the left-hand side with respect to ϕ0 and ϕ1 respectively
and look for the maximum. We find that both the derivatives have two joint roots,
one at θ = π

4 , ϕ0 + ϕ1 = π
2 , and the other at θ = ϕ0 = ϕ1. In both cases, the

derivative with respect to θ vanishes. Both these solutions bring to a maximum
value for the left-hand-side of equation (2.17) equal to 2, thus proving the inequality
to hold.

Hence, we can choose parameters such that θ = π
4 , ϕ0 = ϕ and ϕ1 = π

2 − ϕ. This
brings us to the relations

SAB = 2
√
2 cosϕ (2.18)

SAC ≤
√
2 (cosϕ+ sinϕ) (2.19)
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To obtain the trade-off relation, we can simply substitute the former equation into
the latter and obtain

SAC ≤ SAB

2
+

1

2

√

8− (SAB)2 (2.20)

Since the inequality is tight, this trade-off relation is optimal. To prove the tightness
of the inequality it is sufficient to observe that the strategy (I) proposed in section
2.1 has exactly this trade-off. We can also observe that the maximum of SAC occurs
at SAB = 2 and gives SAC = 2. This means that at the endpoint of its interval
of validity, which is 2 ≤ SAB ≤ 2

√
2, this function meets the classical trade-off we

already found in 0 ≤ SAB ≤ 2.

A plot of the optimal trade-off relation for this strategy type is reported in blue
in figure 2.2. In the figure are also plotted two black dashed lines highlighting
the classical bound {SAB, SAC} = {2, 2} and two light green lines highlighting the
Tsirelson’s bound {SAB, SAC} = {2

√
2, 2

√
2}.
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Figure 2.2: Trade-off relation between the CHSH parameters SAB and SAC for strategies
of type (I) (blue). The dashed black and green lines represent the classical and Tsirelson’s
bounds respectively.

2.2.2 Strategy type (II)

We can now move to the second strategy, in which Bob performs only trivial projective
measurements. With this strategy we do not expect any CHSH violation for Bob,
only SAC can be greater than 2. This corresponds to deterministically choosing a
value for b based on y without taking into consideration the quantum state. The
operators representing this kind of measurement are (1, 0) which gives always b = 0
as output, or (0, 1) giving always the output b = 1. From the expression for SAB

given in equation (2.9) it is immediate to find that SAB = 0. In the case in which also
Alice performs trivial (identity) measurements the value for SAB could be increased
to SAB = 2, but this would imply that SAC ≤ 2. Even though this case exists, it is
not interesting in our context since this does not lead to any CHSH violation at all.
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We want to find an expression for SAC in the case in which Alice performs rank-1
projective measurements and, thus SAB = 0. Since Bob’s instrument becomes only a
unitary operator, the post-measurement state becomes ρ′ = 1

2

∑

y(1⊗Vy)ϕ+(1⊗V
†
y )

where Vy is the operator in {U0y, U1y} associated to the only possible output (unit
probability event) of Bob’s measurements. It is trivial to see that an optimal choice
can simply be Vy = 1, which leaves the state unperturbed, ρ′ = ϕ+. If we consider
Alice and Charlie now, we are in a simple Bell scenario and, thus Charlie can reach
the Tsirelson bound SAC = 2

√
2 by performing the measurements σX and σZ , while

Alice chooses as measurement angle θ = π
4 . It is interesting to observe that contrary

to the first and the third strategies, in which, as we will see, we can find a trade-off
relation between SAB and SAC , this trivial strategy trade-off is simply the point:
(SAB, SAC) = (0, 2

√
2).

2.2.3 Strategy type (III)

We recall that this kind of strategy consists in Bob performing one trivial (identity)
measurement and one basis projection. With this strategy we expect only Charlie
to be able to violate CHSH.

Firstly we observe that the CHSH parameter is invariant the following under coordi-
nate permutations: {y → ȳ & a → ā if x = 1} and {b → b̄ if y = 0 & x → x̄ &
a → ā} where with the bar we denote the bit-flip operation. For this reason, we
can, without loss of generality, assign to the input y = 0 the single outcome b = 0,
meaning that the first observable B0 = 1, while the second measurement will be a
basis projection corresponding to the observable B1 = b⃗ · σ⃗, where b⃗ is a unit Bloch
vector. Thus the operators associated with the measurements can be written as

B0|0 = 1, B1|0 = 1 and Bb|1 =
1
2

(

1 + (−1)b⃗b · σ⃗
)

.

As for the unitaries implemented by Bob’s measurements, thanks to the invariance
under a global rotation of the unitaries Uby, we may fix a reference one, in this case,
we choose U00 = 1. We can also notice that, since B1|0 = 0, the post-measurement
state will not depend on the choice of U10. Moreover, for y = 1 we can use some
considerations pointed out when considering the first strategy. In particular, we
remember that, given a unit vector u⃗, the eigenvector of Bb|y(u⃗ · σ⃗)Bb|y corresponding
to its largest eigenvalue is identical for both b = 0 and b = 1, with one positive
eigenvalue and the other zero.

Remembering from equation (2.10) that the unitaries aim to align the projectors
C0|0 and C0|1 with the eigenvectors of Bb|y(u⃗ · σ⃗)Bb|y. Since, as just discussed, these
eigenvectors do not depend on b, we can optimally choose U01 = U11 ≡ U1.

As discussed in the first strategy, since the states remotely prepared for Bob by
Alice are in the XZ-plane, thus it is optimal for him to choose b⃗ = (cosϕ, 0, sinϕ).
So the first CHSH parameter is SAB = 2 sin θ sinϕ. Taking into consideration
the considerations just made on the unitaries, we remain with only one unitary.
We can optimally take it as a rotation in the XZ-plane, U1 = eiµσy . Finally,
writing Charlie’s measurements in terms of Bloch vectors, always in the XZ-plane,
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c⃗z = (cosϕz, 0, sinϕz), we can write the second CHSH parameter as

SAC =
1

2
cos θ (cos(2µ+ 2ϕ− ϕ0) + cos(2µ− ϕ0) + 2 cosϕ0)+

+
1

2
sin θ (sin(2µ+ 2ϕ− ϕ1)− sin(2µ− ϕ1) + 2 sinϕ1) (2.21)

Deriving this expression with respect to µ, ϕ0, ϕ1, ϕ, one finds out that when
ϕ0 = µ = 0 and ϕ = ϕ1 = π

2 all the derivatives vanish and, considering the
concavity of the manifold, we can deduce that this set of variables, which gives
SAC = cos θ + 2 sin θ, is optimal. We observe that ϕ = π

2 is a maximum also for
SAB leading to SAB = 2 sin θ. Comparing these two final expressions for the CHSH
parameters we find the optimal trade-off relation which is

SAC = SAB +

√

1− (SAB)2

4
(2.22)

From this equation we see that when SAB = 4√
5
, SAC is maximized and we have

S2 =
√
5 > 2. When SAB < 4√

5
, which means θ < arcsin 2√

5
, this solution is not

optimal. Anyway, SAB < 4√
5
the optimal trade-of is simply given by SAC =

√
5 with

no dependence on SAB. Indeed this is the maximum value SAC can assume when
the only constraint on Bob’s measurements is the rank, thus the strategy. Indeed, if

we set ϕ0 = 0, ϕ = ϕ1 = π
2 and µ = 1

2 arccos
( √

5−sin θ
sin θ+cos θ

)

, we obtain SAC =
√
5 for

every value of θ, while leaving SAB free to change.

In figure 2.3 we report the plot of the optimal trade-off relation for this strategy
type in yellow. In the figure are also plotted two dashed black and a green line
highlighting the classical bound {SAB, SAC} = {2, 2} and the Tsirelson’s bound
SAC = 2

√
2 respectively.
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Figure 2.3: Trade-off relation between the CHSH parameters SAB and SAC for strategies of
type (III) (yellow). The dashed black and green lines represent the classical and Tsirelson’s
bounds respectively.
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2.2.4 Mixing via shared randomness

We are now going to combine stochastically these three projective strategies to find
the optimal trade-off between SAB and SAC .

We start by observing that apart from the case (II) in which we found a single point
in the plane, the other two trade-offs are concave functions.

The mixing of such functions via shared randomness is their linear combination with
all non-negative coefficients which sum up to 1. This is justified if we remember that
the combination coefficient associated with a function corresponds to the probability
of using that strategy. Performing such a combination is equivalent to finding the
convex hull of the set defined by the functions.

In the following, we are considering this mixing procedure case by case.

Mixing (II) and (III)

We start remembering that the optimal trade-off for strategy (II) and (III) are

respectively the point (0, 2
√
2) and the function SAC = SAB + 1

2

√

4− S2
AB.

For simplicity, in the following, we are going to consider the variable x and its
function f(x) instead of SAB and SAC respectively.

Thanks to the geometrical considerations we just made, we only need to look for
the line tangent to the function f(x) = x+ 1

2

√
4− x2 and passing through the point

(0, 2
√
2). To find the point of tangency we need to solve the equation

f(x1)− 2
√
2 = f ′(x1)(x1 − 0) (2.23)

where f ′(x) is the first derivative of f . Since SAB > 0, we can consider only the

positive solution obtaining the point (x1, f(x1)) = (
√

7
2 ,

1
2
√
2
+
√

7
2). It is important

to notice that the point of tangency we found x1 =
√

7
2 is greater than 4√

5
. Indeed,

when we studied case (III) we discussed that equation (2.22) represents the trade-off
only when SAB > 4√

5
, while for 0 < SAB < 4√

5
the trade-off is simply SAC =

√
5.

Returning to the original notation, we write the tangent line as

SAC =

(

1−
√
7

2

)

SAB + 2
√
2 (2.24)

which will be the boundary we are looking for in the interval 0 ≤ x ≤
√
7
2 .

In figure 2.4 we report in yellow the trade-off between SAB and SAC for type III.
The red line is its tangent line passing through the point defined by strategy type
II, (0, 2

√
2). The black points highlight this point and the point of tangency. As in

previous figures, we also reported with black and green dashed lines the classical
and Tsirelson’s bounds.
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Figure 2.4: Tangent line (red) to the trade-off relation for strategies of type (III) (yellow)
passing through the point (0, 2

√
2). The dashed black and green lines represent the classical

and Tsirelson’s bounds respectively.

Mixing (I) and (III)

Now we move to the mixing of the two non-trivial strategies. Thus we are looking
for the line tangent to both the trade-off functions.

For simplicity, instead of equations (2.20) and (2.22) we are going to consider the

functions f(x) = x+
√

1− x2

4 and g(x) = x
2 + 1

2

√
8− x2.

To find the points of tangency (x1, f(x1)) and (x2, g(x2)) we need to solve the two
equations

f ′(x1) = g′(x2) =
f(x1)− g(x2)

x1 − x2
, (2.25)

where f ′ and g′ are the first derivative of f and g respectively. The solution is

x1 = 3

√

2

5
x2 = 4

√

2

5
. (2.26)

Going back to the original notation we find the tangent

SAC =
√
10− SAB

2
(2.27)

In between the two points of tangency, namely 3
√

2
5 ≤ SAB ≤ 4

√
2
5 , this is another

portion of the boundary.

In figure 2.5 we report in yellow and blue the optimal trade-off between SAB and SAC

for type (III) and type (I) strategies respectively. The green line between them is
their common tangent line and the black points highlight the points of tangency. As
in previous figures, we also reported with black and green dashed lines the classical
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and Tsirelson’s bounds.
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Figure 2.5: Common tangent line (green) to the trade-off curves for strategies of type (I)
(blue) and (III) (yellow). The dashed black and green lines represent the classical and
Tsirelson’s bounds respectively.

Mixing (I) and (II)

We can now compute the tangent to the curve given by (2.20) through the point
(0, 2

√
2) as already done previously.

Instead of writing the curve as in (2.20) we use g(x) = x
2 + 1

2

√
8− x2 and look for

the tangency point by solving

g(x1)− 2
√
2 = g′(x1)(x1 − 0) (2.28)

and choosing the positive solution.

The point of tangency results to be (
√
6,

√
2+

√
6

2 ). And the tangent can be written as

SAC =
(1−

√
3)SAB

2
+ 2

√
2 (2.29)

As we can see in figure 2.6, this line (pink) is inside of the region described by the
previously calculated curves (dashed red, yellow, and green lines), thus it is not
going to be part of the boundary. This means that it is always possible to obtain a
better trade-off by mixing other strategies, thus we are not going to use this case.
In the plot, we highlighted points A, B, C, and D in which the function defining
the boundary changes. In the subplot, we highlighted a region in which the optimal
trade-off is simply given by choosing deterministically a strategy of type III. We are
going to better discuss this region in the following.
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Figure 2.6: Plot - Tangent line (solid pink line) to the trade-off curve for strategies of type
(I) (solid blue line) passing through the point (0, 2

√
2). This line is always under the curves

obtained by mixing strategies of type (II) and (III) (dashed red line between A and B), (II)
and (III) (dashed green line between C and D) or deterministically using type (III) (dashed
yellow between B and C). The dashed black and green lines represent the classical and
Tsirelson’s bounds respectively. Subplot - Zoom on the region between points B and C.

Intermediate regions

Up to now, we found the optimal trade-off in the intervals 0 ≤ SAB ≤
√

7
2 and

3
√

2
5 ≤ SAB ≤ 4

√
2
5 . To cover the complete interval 0 ≤ SAB ≤ 2

√
2 we need to

determine the optimal trade-off in

√

7

2
< SAB < 3

√

2

5
(2.30)

4

√

2

5
< SAB ≤ 2

√
2 (2.31)

Since these intervals are not covered by the mixture of different strategies, the
boundary in those regions is simply a deterministic strategy. In particular, in the
interval (2.30) the deterministic strategy (III) is optimal, thus in that interval,
the boundary is represented by equation (2.22). As for the other interval, the
deterministic the optimal deterministic strategy is (I), thus the boundary is given
by (2.20). The complete boundary of the set (SAB, SAC) reachable by means of
projective measurements and with shared randomness is given by the four-part
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piecewise function

SAC =







(

1−
√
7
2

)

SAB + 2
√
2 if 0 ≤ SAB ≤

√
7
2

SAB + 1
2

√

4− (SAB)2 if
√

7
2 < SAB < 3

√
2
5√

10− SAB

2 if 3
√

2
5 ≤ SAB ≤ 4

√
2
5

SAB

2 + 1
2

√

8− (SAB)
2 if 4

√
2
5 < SAB ≤ 2

√
2

(2.32)

This function is represented in figure 2.7. In the plot, we report as dashed lines the
trade-off relations found for strategies of type (I) and (III) when they are not part
of the boundary. The solid lines form the boundary, while the black points highlight
the passage from one definition interval to another one. The colors of the lines are
the same used in the previous plots, namely yellow for type III, blue for type I, red
for a combination of (II) and III, and green for the combination of (I) and III. In the
subplot, we highlight the region where the boundary is reached by deterministically
choosing type (III) strategies.
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Figure 2.7: Plot - Boundary of the set (SAB , SAC) reachable under projective measurements
and shared randomness (solid lines). The color of the lines corresponds to the strategy
needed to reach it: yellow for type III, blue for type I, red for a combination of (II) and III,
and green for the combination of (I) and III. The dashed lines are the relations obtained in
cases (I) (blue) and (III) (yellow) when they are not part of the boundary. The black points
highlight the change in the definition of the function. Subplot - Zoom on the region where
strategy (III) is part of the boundary.
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2.3 Only local randomness

In the above protocols, we have exploited some classical shared randomness. We are
now going to show, with an example that this useful resource is not strictly necessary.
Indeed even classically independent parties, thus with no shared randomness, can
reach at least two sequential CHSH violations using projective measurements. In
this case, the observers are only allowed to generate classical randomness locally.
This corresponds to replacing the collective variable λ with a triple of variables
associated with Alice, Bob, and Charlie respectively (λA, λB, λC). The independence
of the observers can be expressed by the factorization of the probability, namely
p(λ) = p(λA)p(λB)p(λC).

In this quantum strategy, we are allowing only Bob to use local randomness, while
Alice and Charlie will not use it.

Alice’s and Charlie’s observables are A0 =
√
3
2 σX + 1

2σZ , A1 = cos(2)σX − sin(2)σZ ,
C0 = cos

(
2π
3e

)
σX − sin

(
2π
3e

)
σZ , C1 = cos

(
1
3

)
σX + sin

(
1
3

)
σZ . Bob, instead, can

randomly choose between two strategies, labeled λB ∈ {0, 1}. The probability for
him to use the strategy λB = 0 is q = p(λB = 0). When λB = 0, Bob measures

B
(0)
0 = cos

(
2
17

)
σX + sin

(
2
17

)
σZ and B

(0)
1 = σX+σZ√

2
. Then he applies the unitary

operators U
(0)
00 = U

(0)
10 = 1 and U

(0)
01 = U

(0)
11 = e−

2π
27

iσY . When λB = 1, Bob measures

B
(1)
0 = 1 and B

(1)
1 = σX+σZ√

2
. Then he applies U

(1)
00 = e−

5π
81

iσY , U
(1)
10 = 1 and

U
(1)
01 = U

(1)
11 = e−

2π
27

iσY .

If we look for the condition SAB = SAC , we find the solution q ≈ 0.358, which gives
SAB = SAC ≈ 2.046 > 2, thus a double violation of the inequality.

It is interesting to point out that, since in this case Alice and Charlie do not rely on
any shared randomness, from their point of view this experiment is identical to the
standard CHSH scenario. The remarkable difference is that Bob can decide which
set of observables to measure, independently from Alice and Charlie.
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Chapter 3

Partially entangled state

In the standard CHSH scenario maximally entangled states are necessary to reach
the largest CHSH parameter. We are now going to show that in the sequential
scenario when using projective measurements, this is not true anymore. Thus we are
going to study the same scenario as in chapter 2 if, instead of using the initial state
|ϕ+⟩ = |00⟩+|11⟩√

2
, we use the pure state |ψφ⟩ = cosφ |00⟩+ sinφ |11⟩ with φ ∈ [0, π4 ].

As in the previous case, we can restrict Alice’s and Charlie’s measurement to the
XZ-plane without loss of generality. As for Bob’s measurements, we can restrict
them on that plane too when they are represented by rank-1 operators.

Firstly, we are going to describe some analytical strategies producing couples of CHSH
parameters outside the boundary described by equation (2.32). These strategies
will show that, in certain cases, with partially entangled states it is possible to
outperform maximally entangled ones. Afterwards, we are proving that every pure
state |ψφ⟩ can produce a couple (SAB, SAC) > (2, 2).

3.1 Outperforming maximally entangled states

3.1.1 Strategy type (I)

To start we remember that in this strategy type Bob performs two rank-1 projective
measurements.

In the following, we are going to present a particular strategy. We were not able to
numerically obtain any type (I) strategy better than this, for any value of the angle
φ.

Alice’s observables of this strategy are A0 = σX and A1 = σZ , while Bob’s ones are
B0 = cosϕσX + sinϕσZ and B1 = cosϕσX − sinϕσZ . Finally Charlie’s observables
are C0 = cosϕσX + sinϕσZ and C1 = − cosϕσX − sinϕσZ . The unitaries used by

Bob after the measurements are Uby = Uy with U0 = 1 and U1 = ei(ϕ−
π
2
)σY . The
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CHSH parameters obtained from these measurements are

SAB = 2 (cosϕ sin(2φ) + sinϕ) (3.1)

SAC = 2 sinϕ (3.2)

Finding sinϕ from the first equation and substituting it into the second one we find

SAC =
1

1 + sin(2φ)2

(

SAB + sin (2φ)

√

4
(

1 + sin (2φ)2
)

− (SAB)2

)

(3.3)

As expected, it we choose φ = π
4 we recover (2.20). In this case, we could not find

any evidence that partially entangled states could produce larger violations than
maximally entangled ones. In figure 3.1, we report this trade-off relation for some φ
values.
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π
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S
A
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Figure 3.1: Type (I) strategy trade-off for partially entangled states for some values of φ.

3.1.2 Strategy type (II)

In this case, Bob can only perform trivial measurements. The strategy we are going to
describe is the optimal one for this kind. Since Bob observables are B0 = B1 = 1, the
first CHSH parameter is SAB = 2⟨A0 ⊗ 1⟩ = 2Tr

[
A0

(
cos2 φ |0⟩⟨0|+ sinφ2 |1⟩⟨1|

)]
.

When Alice measures A0 = σZ , the parameter becomes SAB = 2 cos (2φ), which is
optimal because 0 and 1 are eigenvectors of sigma z. To choose Charlie’s mea-
surements we consider that the optimal CHSH parameter value for any state

|ψφ⟩ is 2
√

1 + sin (2φ)2 [30]. This can be reached if we let Charlie measure

C0 = cosϕσx + sinϕσz and C1 = − cosϕσx + sinϕσz with ϕ = arctan(sin(2φ)).
From this, we can deduce that the strategy is optimal. We can conclude that optimal
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type (II) strategies produce

SAB = 2 cos (2φ) (3.4)

SAC = 2

√

1 + sin (2φ)2 (3.5)

Inverting the first equation and substituting φ = 1
2 arccos

(
SAB

2

)

in the second one

we find the trade-off relation

SAC =
√

8− (SAB)2 (3.6)

Even if, being deterministic, this strategy cannot produce double violations, we
can observe that it can outperform what is attainable with maximally entangled
states. Indeed, comparing this function with the boundary we found for maximally
entangled states in equation (2.32), we find the former exceeds the latter when
0 < SAB < h where

h =
8
√
2

113

(

7
√
7− 2

)

≈ 1.65 (3.7)

In figure 3.2 we report the plot of this trade-off together with the boundary function.
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2.8

SAB

S
A
C

Figure 3.2: Type (II) strategy trade-off for partially entangled states φ (blue) compared
with the boundary function (red).

3.1.3 Strategy type (III)

In this case, Bob has one trivial and one rank-1 projective measurement. Also, we are
going to show that there exist strategies producing couples (SAB, SAC) laying outside
the boundary for the maximally entangled state. We are doing so by presenting
an example strategy. Again these points will not be double violations since we are
considering a deterministic strategy.

The measurements are Ax = (−1)x cos θσX +sin θσZ for Alice, B0 = 1 and B1 = σX
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for Bob, C0 = σZ and C1 = σX for Charlie. Bob is not required to perform any
unitary operation after his measurement (Uby = 1). The expressions for the CHSH
parameters in this case are

SAB = 2 sin (θ + 2φ) (3.8)

SAC = sin θ + 2 cos θ sin (2φ) (3.9)

Inverting the first one we find θ = π− 2φ− arcsin
(
SAB

2

)

. Substituting this relation

in the second one we obtain

SAC = sin (2φ)

√

1−
(
SAB

2

)2

(1− 2 cos (2φ)) +
SAB

2

(

2 sin (2φ)2 + cos (2φ)
)

(3.10)
Maximizing this last equation over φ we find an expression for the optimal angle φ

φ = arccos




1

4

√
√
√
√9−

√

g(SAB) +

√

33− g(SAB) +
8S2

AB
√

g(SAB)



 (3.11)

where

g(x) = 11 + h(x) + (121− 24x2)/h(x)

h(x) =
(

8x4 − 396x2 + 8x2
√

x4 + 117x2 − 484 + 1331
)1/3

(3.12)

The optimal trade-off for this strategy, which is not, in general, the best for all
strategies of type (III), can be recovered by substituting this expression for φ in
equations (3.12).

To show that this strategy can outperform what is obtainable by the maximally
entangled state we can simply compare the trade-off obtained with the boundary
in equation (2.32). As shown in figure 3.3 this is the case between points A and
B, hence while 1.84 ≲ SAB ≲ 1.99. Observing how the angle φ changes with SAB,
we notice that the entanglement becomes weaker when SAB increases and reaches
φ ≈ 0.686 for SAB ≈ 1.99.

We studied this strategy because it brings an analytic expression for the trade-off.
We also numerically searched over general quantum strategies of this kind. As a
result, we found that for any value of SAB, the improvement in SAC is at most
2× 10−3.

3.1.4 Double violation

Now we report an immediate way to see that with partially entangled states it is
possible to outperform the result found with maximally entangled states. We can
simply consider the three strategies presented in the previous sections and use shared
randomness to combine them. Using equations (3.1), (3.2), (3.4), (3.5), (3.8) and
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Figure 3.3: Plot - Type (III) strategy trade-off for partially entangled states φ (blue)
compared with the boundary function (red). Subplot - Zoom of the region where a partially
entangled state can outperform a maximally entangled one.

(3.9) obtain the following CHSH parameters

SAB = 2(p1 sin(2φ) cosϕ+ p1 sinϕ+ p2 cos(2φ) + p3 sin(θ + 2φ)) (3.13)

SAC = 2p1 sinϕ+ 2p2 cos(2φ) + p3 sin θ(2 sin(2φ) + 1) (3.14)

where p1, p2, and p3 are the probabilities to use the strategies of type (I), (II), and
(III) respectively.

We can consider the simple case in which ϕ = 2φ, θ = 2φ, and p2 = 0. With these
simplifying assumptions and remembering that p1 + p2 + p3 = 1, the relations for
SAB and SAC become

SAB = 2p1 sin(2φ) + (2− p1) sin(4φ) (3.15)

SAC = sin(2φ)(1 + p1 + 2(1− p1) sin(2φ)) (3.16)

If we now consider the angle φ = 7π
36 and impose the condition SAB = SAC , we

find that for p1 ≈ 0.644 SAB = SAC ≈ 2.136. Even if these choices for the strategy
parameters are sub-optimal, this CHSH value is larger than what it is possible to
obtain with maximally entangled states. Indeed if we impose the same SAB = SAC

constrain to equation (2.32), we find SAB = SAC = 2.108 < 2.136.

To better see how certain states can outperform maximally entangled ones, we
considered generic measurements for Alice, Bob, and Charlie, unitaries for Bob as
well as the distribution {pλ}3λ=1. Then we numerically maximized SAC for a given
value of SAB.
In figure 3.4 we illustrate the results of this maximization for some fixed values of φ
together with the boundary given by equation (2.32). Notice that for both φ = π

6
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and φ = 2π
9 we found many points going beyond the boundary. In particular, as

shown in the right plot of figure 3.4 the angle φ = 2π
9 presents an improvement also

in the double violation region.
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Figure 3.4: Left - Numeric optimization of a generic strategy for some values φ together
with the boundary function (red). Right - Focus on the double violation region for φ = 2π

9 .

3.2 Double violation with generic pure entangled states

Now we are going to show that every pure entangled state |ψφ⟩ can produce a
double CHSH violation. We are proving this by considering only combinations of
strategies of type (I) and (II) for simplicity. In particular, we are going to consider
the strategies described in section 3.1.1 and 3.1.2. We are looking for the tangent
line to the trade-off equations (3.3) passing through the point described by (3.4) and
(3.5). Given this tangent, we can find its intersections with the lines SAB = 2 and
SAC = 2. Finally, we can check whether the non-fixed coordinate of these points is
greater than 2. If this is the case for both the points, we can conclude that there
exists a region in the (SAB, SAC)-plane inside which we find both CHSH parameters
violate the Bell inequality.

More in detail, to find the tangent we start by looking for the point of tangency
(x1, f(x1)) by solving the following equation

f(x1)− yP = f ′(x1)(x1 − xP ) (3.17)

where the function f(x) is simply equation (3.3) with the substitution SAB → x,
xP and yP are the coordinates of the point given by equations (3.4) and (3.5).

f(x) =
1

1 + sin2(2φ)

(

x+ sin(2φ)

√

4
(

1 + sin(2φ)2
)

− x2

)

(3.18)

(xP , yP ) =

(

2 cos (2φ) , 2

√

1 + sin (2φ)2
)

(3.19)

Once obtained the point x1, the tangent line is simply t(x) = f ′(x1)(x− x1) + f(x1).
Finally we can find the coordinates of the intersection points SAC(SAB=2) = (2, t(2))
and SAB(SAC=2) =

(
t−1(2), 2

)
where t−1(x) is the inverse function of t(x).
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Unfortunately, both the expression for the tangent and these points are cumbersome,
so we do not report it. On the other hand, we are going to plot the y-coordinate
of SAC(SAB=2) and the x-coordinate of SAB(SAC=2) as a function of φ in figure 3.5.
From the plot it is already possible to observe that these curves are greater than 2
for φ ̸= 0, thus when φ ̸= 0 both SAB and SAC exceed the local bound.

To be more quantitative we can expand the expression for these curves for φ ≈ 0.
We find

SAB(SAC=2) = 2 + 4
(√

2− 1
)

φ2 +O(φ3) (3.20)

SAC(SAB=2) = 2 + 2
(

2−
√
2
)

φ2 +O(φ3) (3.21)

This proves that both interception points are above the local bound, thus that for
φ ̸= 0 the tangent passes through the double violation region, namely (SAB, SAC) > 2,
in the (SAB, SAC)-plane.

SAB(SAC=2)

SAC(SAB=2)
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2.10

2.15
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φ
Figure 3.5: Dependendence of the points SAC(SAB=2) and SAB(SAC=2) as a function of φ
for the tangent line between the curve (3.18) and the point (3.19). For φ ̸= 0 both the
curves are always greater than 2, thus the tangent passes through the double violation region
(SAB , SAC) > 2.
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Chapter 4

Triple violation

Now we are going to present evidence that it is possible to reach 3 CHSH violations
in the scenario in which, apart from Alice, we have three sequential observers on
Bob’s side. The initial state we are going to consider is again maximally entangled,
specifically |ϕ+⟩ = |00⟩+|11⟩√

2
. For this mean, we are switching back to the more

general formalism used in section 1.2. This way we are going to call the observers
Alice, Bob(1), Bob(2) and Bob(3), their input x, y1, y2 and y3 and their output a, b1,
b2 and b3, each in {0, 1}, respectively. With this formalism their observables are

Ax, B
(1)
y1 , B

(2)
y2 , B

(3)
y3 and the measurements operators Aa|x, B

(1)
b1|y1 , B

(2)
b2|y2 and B

(3)
b3|y3 .

Moreover, we are going to write the CHSH parameters between Alice and Bob(1),

Bob(2) and Bob(3) as S
(λ)
1 , S

(λ)
2 and S

(λ)
3 respectively and for each value of λ.

We can repeat an argument similar to the one already made at the beginning of
chapter 2. In this case, though, while Alice is still allowed to perform two basis
projections, i.e. rank-1 measurements, and make the state separable, the second Bob
is not. Indeed after the measurement, the second Bob will relay his post-measurement
state to the third Bob. Bob(3) on the other hand will not relay his post-measurement
state to anyone, thus he does not need to save any entanglement. For this reason, he
can perform two basis projections too. As for Bob(1) and Bob(2), they can perform
a combination of trivial measurements and basis projections generalizing what is
discussed in chapter 2. Afterward, they are allowed to apply unitary operators before
sending the state to the following Bob. In the following, we are not going to give
a complete description of the problem. We only intend to show a simple strategy
producing 3 violations. Since in this example we are going to use only three kinds of
strategies, we are not going to present all the possible combinations.

In particular, we are going to consider three cases:

• λ = 1 is the analogous of the first case considered in chapter 2. In this case,
all the observers perform two basis projections. We can expect a Bell violation
for the first CHSH parameter S1, but not for the following ones.

• λ = 2 provides for the second violation, S2 > 2. Indeed in this case Bob(1)

performs a trivial and a rank-1 measurement allowing a violation for S2, but
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not for S1. Afterwards, Bob
(2) and Bob(3) performs two rank-1 measurements.

Since all the state arriving to Bob(3) is separable, S3 can not violate the Bell
inequality.

• λ = 3 allows the third violation, S3 > 2. In this case both Bob(1) and Bob(2)

perform one trivial and one rank-1 measurement. Finally only Bob(3) performs
two basis projections, thus S1 and S2 show a violation, but S3 can.

4.1 Example strategy

We are now proposing a strategy showing that it is possible to reach three sequential
violations. We built this strategy using the cases just described such that each case
provides for a CHSH violation, while the other two parameters only nearly fail for
this purpose.

When λ = 1, Alice’s observables are Ax = σX+(−1)xσZ√
2

and Bob(1)’s ones are

B
(1)
0 = cosϕσX + sinϕσZ , B

(1)
1 = sinϕσX + cosϕσZ . Moreover he applies the

unitaries U
(1)
0 = 1 and U

(1)
1 = ei(ϕ−

π
4
)σY with U

(1)
b1y1

= U
(1)
y1 . The other two Bob

both measure B
(2)
y = B

(3)
y = cosϕσX + sinϕσZ independently of y and do not

use unitaries. The three CHSH parameters obtained are S
(1)
1 = 2

√
2 cosϕ and

S
(1)
2 = S

(1)
3 =

√
2 (cosϕ+ sinϕ).

When λ = 2 we can choose the following observables Ax = cos ϕ̂σX + (−1)x sin ϕ̂σZ ,

B
(1)
0 = 1 and B

(1)
1 = σZ . Bob

(2) andBob(3) perform the same measurements, namely

B
(2)
0 = B

(3)
0 = σX andB

(2)
1 = B

(3)
1 = σZ . In this case, none of the observers performs

any unitary (U = 1). With these choices we obtain the parameters S
(2)
1 = 2 sin ϕ̂,

S
(2)
2 = cos ϕ̂+ 2 sin ϕ̂ and S

(2)
3 = cos ϕ̂

2 + sin ϕ̂.

Finally, if λ = 3 Alice measures Ax = cos ϕ̃σX + (−1)x sin ϕ̃σZ . Bob
(1) and Bob(2)

perform the same measurements B
(1)
0 = B

(2)
0 = 1 and B

(1)
1 = B

(2)
1 = σZ , and

Bob(2) measure B
(3)
0 = σX and B

(3)
1 = σZ . As in the previous case, no unitaries are

used. The CHSH parameters obtained with these measurements are S
(3)
1 = 2 sin ϕ̃,

S
(3)
2 = 2 sin ϕ̃ and S

(3)
3 = 1

2

(

cos ϕ̃+ 4 sin ϕ̃
)

.

The final CHSH parameter is obtained by combining the parameters obtained for
each value of λ as

Si = p1S
(1)
i + p2S

(2)
i + p3S

(3)
i (4.1)

where Si with i = {1, 2, 3} is the CHSH parameter between Alice and Bob(i), p1, p2
and p3 are the probabilities associated with λ = 1, λ = 2 and λ = 3 respectively.

There are several choices for the angles and probabilities to reach three sequential
violations.

For example, we can choose as measurement angles
(

ϕ, ϕ̂, ϕ̃
)

=
(
31π
132 ,

88π
245 ,

16π
33

)
and

impose the condition S1 = S2 = S3 ≡ S. From the condition we get the values for
the probabilities p1 ≈ 0.086, p2 ≈ 0.019 and p3 ≈ 0.895 and for the CHSH parameter
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S ≈ 2.0023. Although this is not a large violation, it still shows that three sequential
violations are possible.
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Chapter 5

Conclusions

We have proven the incorrectness of the common knowledge that sees weak measure-
ments as necessary to produce multiple sequential violations of the CHSH inequality.
Indeed we have shown that by allowing the observers to use some shared classical
randomness it is possible to use projective measurements to obtain at least three
sequential violations. Notice that the shared randomness does not modify the funda-
mental structure of CHSH, indeed this only affects the strategy type the observers
are going to use. Once decided the type, for each strategy the observers can choose
independently which measurements to perform. We have also studied in detail the
optimal trade-off obtainable between the CHSH parameters in the case that there are
only two sequential observers. Lastly, we have considered what happens if the party
shares a generic two-qubit pure entangled state, instead of a maximally entangled
one. In this case, we have shown that not only it is always possible to reach a double
CHSH violation, but a non-maximally entangled state can outperform maximally
entangled ones. These results are relevant not only from a conceptual point of view
but can also be applied in the self-testing scenario. Indeed, it is possible to certify
whether measurement devices implement weak measurements by comparing the
CHSH parameters with the results of this thesis [31].
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