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Abstract

In this thesis are shown different configurations for a space reflecting telescope realized with

the CubeSat standard, whose aim is to observe sun-grazing comets.

Firstly it is shown how these near-Sun comets can be observed in theUV spectrum, observing

the first line of emission of the Hydrogen that is produced from the ice presents on the surface

of these comets. Based on the distances of these comets from the hearth, some parameters for

the design of the telescope have been calculated.

Then the CubeSat’s background is briefly discussed to understand why the decision to use

this technology for the design of the telescope has been taken.

The last chapter is dedicated to the structure of the telescope, it is explained the need to

use a reflecting telescope. The basic structure and parameters of a telescope are described and

the monochromatic aberrations that could affect the images of the telescope are described with

the use of the Seidel Sum. The Ritchey-Chrétien configuration of the system is described and

the need of an off axis configuration is explained. Then has been made a first order design of

the telescope, with the use of paraxial matrices, and then the Spherical and Coma aberrations

have been corrected. Two versions of the telescope with slightly different characteristics are

proposed.

Ultimately, the necessary coating and the filter to reflect the correct wavelength are de-

scribed.
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Sommario

In questa tesi sono mostrate diverse configurazioni di un telescopio spaziale riflettente che viene

realizzato utilizzado lo standard CubeSat, questo telescopio verrà utilizzato per l’osservazione

di comete in prossimità del sole.

Inizialmente viene mostrato come queste comete possono essere osservate nello spettro

dell’ultravioletto, osservando la prima linea di emissione dell’idrogeno che viene prodotto dal

ghiaccio presente sulla superficie delle comete. In base alla distanza delle comete dalla terra

sono calcolati i parametri principali per il dimensionamento del telescopio.

Viene mostrato lo standard CubeSat per spiegare i motivi della decisione di utilizzare questa

tecnologia per la realizzazione del telescopio.

L’ultimo capitolo viene dedicato alla progettazione del telescopio e viene spiegata la neces-

sità di utilizzare un telescopio in riflessione. La struttura base di un telescopio e i suoi parametri

vengono illustrati e vengono descritte attraverso le somme di Seidel le possibili aberrazioni

monocromatiche che possono affliggere le immagini del telescopio. Viene descritta la con-

figurazione Ritchey-Chrétien del telescopio e il perché della necessità di utilizzare una configu-

razione fuori asse del telescopio. Viene poi eseguita un’analisi al primo ordine e viene effettuata

la correzione delle aberrazioni sferica e di coma. Vengono proposte due versioni del telescopio

con caratteristiche leggermente diverse.

Infine, vengono descritti i coating e il filtro necessari per l’osservazione della lunghezza

d’onda desiderata.
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Chapter 1

Introduction

A telescope is an optical element used to observe distant objects, if used on the hearth is called

terrestrial and if it is launched into space as a satellite, it is called a space telescope.

Space telescopes are an essential part of space observation since they allow to observe a

much broader electromagnetic spectrum than the one observable from the earth.

Figure 1.0.1: Atmospheric electromagnetic transmittance
Credit: Public Domain, https://commons.wikimedia.org/w/index.php?curid=1898726

As it is possible to see in the figure above, fig. 1.0.1, Gamma rays, X-rays, Ultraviolet,

far infrared and low-frequency radio are completely blocked by the earth’s atmosphere. There-

fore, these wavelengths cannot be observed from the ground and thus lays the need for space

telescopes.

Some example of already launched telescopes in these ranges are: the James Webb tele-

scope, [1], observing in the infrared; the Chandra X-Rays Observatory [2] and AGILE [3]

(Astro-Rivelatore Gamma a Immagini Leggero) launched by the Italian Space Agency that are

observing in the X-rays. The Ultraviolet and Extreme Ultraviolet are observed by solar tele-

scopes such as: the EIT (Extreme Ultraviolet Imaging telescope for the SOHO Mission) inside
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the SOHO satellite [4] (Solar and Heliospheric Observatory), the AIA (The Atmospheric Imag-

ing Assembly on the Solar Dynamic Observatory) and the EUI (Extreme Ultraviolet imaging)

inside the Solar Orbiter, [5].

But telescopes are used in space also for wavelengths that are observable from the earth, an

example is the Hubble Space telescope, [6]. This is because on earth there could be a reduced

visibility for long periods of time due to bad weather. But even with a clear sky there could be

defects in the images due to air turbulence in the atmosphere.

Despite the advantages that are achieved using a telescope placed in space rather than one

placed on earth, there are major inconveniences associated with the design and the launch of

space telescopes. These telescopes can be labour intense and time consuming to design and

produce. Typically space telescopes can weight up to hundreds of kilograms with a resulting

increase in costs. All things considered, the budget for the design, realization and launch of a

space telescope can add up to hundreds million of euros.

But in recent years, a new standard for pico-satellite called CubeSat has opened new possibil-

ities for researchers and students to access space and therefore also a new platform for designing

space telescopes. As it will be more analysed later, CubeSats are a very cost effective technol-

ogy that can be used for various applications. The downside of a space telescope realized with

this technology is its limited capability compared to telescopes realized on standard satellites.

This is because the reduced volume of these CubeSats is what allows them to be lightweight and

therefore more affordable, but it is this characteristic that imposes a limit to the equipment that

can be loaded in the pico-satellite.

In this thesis I will show some possible configurations of a reflective space telescope, which

can be realized using the CubeSat standard. The need of a space telescope, and therefore the

possible application on a CubeSat, comes from the wavelength that is observed, which is 121.6

nm. This wavelength is part of the ultraviolet range that is completely absorbed by the earth’s

atmosphere and for this reason the telescope must be placed in space.

1.1 Observation of near-sun comets

The space telescope is meant to observe near-Sun comets, but in particular it observes the first

line of the emission spectrum of the Hydrogen.

This specific wavelength is observable when comets orbit near the sun. This happens be-

cause when comets get heated up by the Sun, the ice presents in the nucleus or in the surrounding

grains sublimates into water vapor. The water vapor then get hit by the sun’s photons and by
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means of photodissociation, Hydrogen is produced. Firstly, the water vapor reacts with the in-

coming light producing Hydrogen and Hydroxyl, then the Hydroxyl reacts again with the sun’s

photons and trough a second phenomenon of photodissociation Hydrogen and Oxygen are pro-

duced, see fig. 1.1.1a and fig. 1.1.1b

(a) Water photodissociation (b) Hydroxyl photodissociation

Figure 1.1.1: Photodissociation processes
Credit: Alain Jody Corso, Metis Comets Catania

The two phenomena just illustrated can be described by the following reactions:

H2O + hν → OH +H (1.1.1)

OH + hν → O +H (1.1.2)

Successively the hydrogen just produced, also gets hit by the sun’s photons and a phenomena

of resonant scattering occur. The associated emitted wavelength corresponds to the first line of

the emission spectrum of the Hydrogen at λ = 121.6 nm. Therefore this wavelength can be as-

sociated with orbiting comets, and therefore by observing it, comets can be indirectly observed.

An example of the observation in UV of the Comet C/2021 A1 Leonard from the Solar Orbiter

can be seen in the following figure.

Figure 1.1.2: View of the Comet Leonard in UV from the Solar Orbiter, in three different
moments in time

@ESA/Solar Orbiter/Metis Team
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This particular wavelength in the UVwhen observed can also be analyzed and from the intensity

of radiation it is possible to determine the amount of water production of the observed comet.

1.1.1 Telescope parameters

The CubeSat telescope once launched can be placed in a Low Earth Orbit (LEO), its distance

from the sun can be approximated to around 150M kilometers or around 1 au (Astronomical

Unit). The comets that are to be observed at their perihelion, typically have a distance from the

hearth of around 70M to 180M kilometers. These comets, when orbiting near the sun, produce a

Hydrogen coma that surrounds them that has a typical radius of less than 100K kilometers, this

is to consider as the dimension of the object to be observed with the telescope.

Depending on the characteristic of detector used and on the quantity of pixels covered by

the image, it is possible to decide a plate scale, and therefore a focal length, for the telescope.

It is used a low price detector of 1024 by 1024 pixels, with the pixel dimension of 25 µm by 25

µm. It is decided that a comet should cover around 100 pixels when nearest to the heart.
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Figure 1.1.3: Scheme of the observation of the comet
Not to scale

Referring the scheme in fig.1.1.3, h represents the dimension of the comet’s coma, d represents

the distance of the comet from the telescope. Knowing the value of these parameters it is possible

to calculate the platescale for the telescope as follow:

Γ =
h

d

1

Opixels =
2 · 105

7 · 107
1

Opixels = 2.86 · 10−5 rad/px

= 5.92 arcsec/px ≃ 6 arcsec/px

Ultimately is decided the dimension of the telescope, it should respect the dimension of a 6U

CubeSat, 100 mm by 200 mm by 300 mm.
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Chapter 2

What are CubeSats

CubeSats are a type of picosatellite designed in 1999 by Professor Jordy Puig-Sauri of California

Polytechnic State University (Cal Poly) and Professor Bob Twiggs of Stanford University’s

Space SystemsDevelopment Lab (SSDL). CubeSats are made of multiple 10x10x10 centimeters

cubes called units abbreviated as U and that weight up to 2kg each. The purpose of the project

was creating a platform to facilitate the access to space to university students; the reduced size

of these picosatellites was the key to the success because it permitted to lower costs and time of

production.

2.1 Background

Before the CubeSat project was started, space mission were carried by only a few national space

agencies with budget of millions of dollars, but the small size of these CubeSats allow them to

be added as auxiliary payload in bigger launch vehicles and so drastically reducing once more

part of the costs.

Figure 2.1.1: RadCube a 3U CubeSat
Photo: ©ESA

Moreover the standardised structure permitted over time to produce many off the shelf available

5



components which permitted a decrease of costs and also allowed everyone to easily obtain basic

component to start a project.

CubeSats were designed in 1999 but the first launch happened only in 2003, theywere loaded

as excess cargo inside the launch vehicle Rockot KS of Eurockot Launch Services. In the fol-

lowing years more CubeSats were produced, however they were mostly designed by spacial

agencies and Universities for academic purposes as a tool for student to apply their knowledge

or for conducting experiments. But as years passed, they gained more popularity and recently

there has been an increase in CubeSats launched by tech company for commercial use such as

telecommunication services and hearth observation.

2.1.1 CubeSat Telescope

Another more recent use for CubeSat is astronomical observation so, as I will also show in this

thesis, space telescopes are miniaturized to fit inside a multiple Units CubeSat. The first project

of this kind was ASTERIA (Arcasecond Space Telescope Enabling Research in Astrophysics)

[7] a 6U CubeSat launched in 2017 from the International Space station. Due to that fact that the

Figure 2.1.2: ASTERIA CubeSat used for exoplanet observation in visible wavelength
Photo:NASA/JPL-Caltech

atmosphere absorbs some part of the electromagnetic field, space telescopes are in high demand

because they are designed to cover this portion of spectrum that earth telescopes can’t observe.

CubeSat telescopes are definitely less accurate than bigger ones but still they are being design

because their purpose is different, they are used for longer periods of observation rather than

for a single snapshot. In addition having more space telescopes of any capability can enable

astronomical researches because they provide more sources of observation.

A possible future application for CubeSat telescopes could be using several of them in co-

operation as an autonomous constellation to improve the area that they are able to observe.
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2.2 CubeSat Standard

Each CubeSat must be designed accurately and in compliance with the CubeSat Design Speci-

fication document (CDS) to make sure of the success and the safety of the CubeSat itself.

The are general specifications, electrical specifications relating to the safety features of the

electronic system and operational specifications concerning legal obligation. On the other hand

mechanical specifications are in regard of the material selected to build the casing, the rails used

to attache the CubeSat to the dispenser, the center of gravity and the weight. In this document can

be also found the CubeSat specification drawings that describe the dimensions of the different

configurations of CubeSat units that, at the moment, are six as shown in Figure 2.2.1.

Figure 2.2.1: Possible CubeSat configurations
In order from left to right: 1U, 1.5U, 2U, 3U, 6U, 12U

Credit: From CDS Document

2.3 Launch Mission

One of the most significant aspect of CubeSat is that whoever designs their picosatellite doesn’t

necessarily have to design a rocket to launch it into space, because they can request to participate

to a launch program developed by one of the several launch provider. Usually CubeSats can be

added to a launch vehicle of another mission as a secondary payload taking advantage of extra

space available. The most used approach is to put the picosatellite inside a dispenser attached

to the rockets and expelled it directly from there, but some CubeSats can also be sent to the

International Space Station and then released from there.

A typical launch for any spatial mission can be around 100 to 200 millions of euros. Instead,

this type of deployment drastically reduced the cost for the launch of the CubeSats, that can

be around 100 to 300 thousands of euros. Which in comparison to the budget needed for the a

standard launch is substentially more affordable.
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2.3.1 Poly Picosatellite Orbital Deployer

The Poly Picosatellite Orbital Deployer (P-POD) is the first deployment system designed for

CubeSats by the Cal Poly, it can contain one or more CubeSats but only up to 3 units. The

dispenser is a rectangular box with rails inside, a door and a spring mechanism; when CubeSats

are released the door opens and the springs push them out of the dispenser. The objective of this

deployment system is to attach the CubeSat securely to the rocket, to keep safe the primary load

and the CubeSats during the launch and ultimately to release the satellites into space.
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Chapter 3

Reflecting telescope

A telescope is an optical system that magnifies the image of a distant object. It can be made of

only lenses and it is called a refracting telescope, it can be made only of mirrors and it is called

reflecting telescope or it can be made of both lenses and mirrors and it is called catadioptric

telescope.

Due to the characteristics needed by the application it is necessary to design a reflecting tele-

scope. The wavelength that is observed with the telescope is λ = 121.6 nm, which is part of the

UV spectrum. The only materials that are transparent at this wavelength are MgF2 (Magnesium

Fluoride) and LiF (Lithium Fluoride). But the Lithium Fluoride is hygroscopic so it absorbs

water easily, causing a degradation in the material and therefore it cannot be used.

The only option for a refractive telescopewould be to useMagnesium Fluoride, so it is best to

opt for a reflecting telescope using Aluminium, since it is a material that has the best reflectance

in the UV. This also implies that no chromatic aberrations are introduced in the system and only

achromatic aberrations are to be corrected.

3.1 Telescope theory

The are some basic concepts that are the same in every type of telescope.

There is the objective that is the first part of the telescope, it collects the light from the outside

and it creates an intermediate image. Then follows the eye piece that takes the image from the

objective and it collimates the incoming light to form a virtual image so that it can be seen by

the eye. To not lose light between these two components the pupils of these two optical systems

must coincide. In this case an object at infinity is conjugate with an image at infinity so there

isn’t an equivalent focal length, therefore the telescope is called afocal.
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Figure 3.1.1: Example of a telescope with objective and eyepiece

The magnification of the image is described by the ratio of the semi-angle subtended by the

object (αo, see figure 3.1.1) and the semi-angle subtended by the image (αi, see figure 3.1.1),

that is also half of the Field of view:

MP =
αo

αi

Using paraxial approximation the equation above can be rewritten as:

MP =
tan(αo)

tan(αi)

=
feq
a

· a

feyepiece

=
feq

feyepiece

However the eye piece is not always present, when the telescope is not used by an operator the

images are taken by a camera, so the detector can be placed directly on the focal plane of the

objective, an example is illustrated in fig. 3.1.2. This particular configuration is used for the

design of the CubeSat telescope.
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Figure 3.1.2: Example of telescope without eyepiece
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When the eyepiece is not present, the magnification is described as Image scale, or Plate scale,

which relates the angular size of the Field of view, u see fig. 3.1.2, to the linear size of the image,

a see fig. 3.1.2:

Γ =
tanu
a

=
1

feq
(3.1.1)

It possible to understand that with a smaller focal length there are more degrees covered by each

pixel and so there is a smaller magnification. Instead with a bigger focal length, less degrees

are covered by each pixel so to achieve the same angular coverage more pixels are needed and

therefore the image is enlarged.

An other important parameter of a telescope it is the resolving power, it describes the effects

on the image of the diffraction from a circular opening. Due to refraction the image of a point

source, as for example a star, is a disk called the Airy disk. Therefore to be able to distinguished

two different point light sources they must be not too close to each other.

The minimum angular distance of two objects to be resolvable is defined is:

αR =
1.22 · λ

D

The resolving power of the telescope is instead defined as:

ρ =
1

αr

3.1.1 Achromatic Aberration

Achromatic aberrations are deformations in an object’s image. The expected imaged calculated

with paraxial optic differs from the actual image formed by the optical system. This is because,

in the paraxial approximation are considered only rays with a small angle with respect to the

optical axis and rays that are near to it, in this case the approximation of a perfectly stigmatic

image is correct. But when analyzing all the rays entering the system, therefore, also crooked

rays with respect to the optical axis and rays distant from it, this approximation is incorrect.

Monochromatic aberrations can be characterized by the difference of the actual wave front,

observed from the exit pupil, and an ideal spherical wave front, see figure 3.1.3. This wave front

difference is called wave front aberration function, which can be expressed by a polynomial

function, for every rotational symmetric optical system. The aberrations can also be described
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as the different position of the focus point in the image plane, in this case the difference is called

transversal aberration.
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Figure 3.1.3: Difference of real and ideal wavefront

The Seidel sum is a polynomial function which describes this wave front difference for the

primary, or first order, aberrations. The primary aberration, also called of third or fourth grade

aberrations from the order of the polynomial function of respectively the wave front difference

and the transversal aberration, are: spherical aberration, coma aberration, astigmatism, field

curvature and distortion.

The incoming rays are characterized by three variables: the height of the ray in the object plane,

H , and the position, expressed in circular coordinates, where the ray enters the system in the

plane of the entrance pupil, ρ and θ. The exiting rays, instead, can be characterized in terms of

wave front difference,W , or Cartesian coordinates in the image plane, TAx and TAy.

The Sedidel coefficient are parameters that relate the input rays to the total wavefront dif-

ference. Each aberration has his own contribution, that is the sum of the coefficients calculated

for each optical surface of the system.

The wave front aberration function, in terms of these Seidel parameters, is:

W (H, ρ, θ) =
1

8
SIρ

4 +
1

2
SIIHρ3 cos θ +

1

2
SIIIH

2ρ2 cos2 θ

+
1

2
SVH

3ρ cos θ +
1

4
+ (SIII + SIV )H

2ρ2 (3.1.2)

When using aspherical surfaces auxiliary terms must be added S∗
I , S

∗
II , S

∗
III , S

∗
V .

The transversal difference of the images point can be expressed in terms of the wave front dif-

ference expressed in Cartesian coordinates and the radius of the wavefront, R:

TAx = −R
∂W

∂x
TAy = −R

∂W

∂y
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The Seidel coefficient are calculated from the characteristic of the marginal ray and the chief

ray, respectively represented by values with an over line and without the over line.

Referring the image below, 3.1.4, the three parameters are defined as follow:

A = ni = n(u+ yC) = n′i′ (3.1.3)

B = ni = n(u+ yC) = n′i′ (3.1.4)

L = n(uy − uy) (3.1.5)

Referring the image below, u is the angle between the optical axis and the ray, i is the angle

between the tangent to the surface and the ray and C is equal to 1
R , where R is the radius of the

surface.
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Figure 3.1.4: Marginal ray for a generic optical surface

Spherical abberation

The spherical aberration is the only achromatic aberration that affects also rays that are parallel

to the optical axis. This aberration is caused by the change of the focal length with the distance

from the axis of the incoming rays, see fig.3.1.5. This causes the image of point light source to

be a blurred disk. The shape of the spot changes with the position of where it is observed.

f

f

Object plane

Approximated 
image plane

Correct image plane

Figure 3.1.5: Change of focal length with the height of the rays
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The curve that describes the envelope of the refracted rays is called caustic, it is possible to

observe that the minimum spot, also called circle of least confusion, is not placed on the image

focal plane but on the intersection of the caustic and the marginal ray.

The Seidel coefficients for spherical aberration are:

SI = −
∑

A2y∆
{u

n

}
S∗
I = −

∑
KC3y4∆{n}

Coma aberration

Coma is an achromatic aberration that causes the deformation of the image for rays that are tilted

with respect to the optical axis. This phenomenon is caused by the different magnifications of

object points that enter the system at different heights, see fig. 3.1.6a. This causes the image of

a point light source to have a comet shape, see fig. 3.1.6b.

f
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Approximated 
image plane

Correct image plane

(a) Change of magnification with the distance from the axis

f

(b) Image of a point source

Figure 3.1.6: Coma aberration

The Seidel coefficients for Coma aberration are:

SII = −
∑

ABy∆
{u

n

}
S∗
II = −

∑
KC3y4∆{n}y

y
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Astigmatism

Figure 3.1.7: Astigmatism

Astigmatism occurs when the light source

does not lay on the optical axis, therefore the

rays enter the system asymmetrically.

The focal length on the sagittal and tangen-

tial planes are different. Therefore the circu-

lar section of a set of rays is deformed, first is

stretched to form an oval and then a segment

where the focus of the sagittal plane is placed,

see T in figure 3.1.7. Then the section returns

to form an oval, in the place of the focus of the

tangential plane the rays are again aligned in a

segment, S in figure 3.1.7, then the rays form

an oval. Between the two focuses of the two

planes is positioned the circle of least confu-

sion, which is the smallest spot of the beam.

The Seidel coefficients for astigmatism are:

SIII = −
∑

B2y∆
{u

n

}
S∗
III = −

∑
KC3y4∆{n}

(
y

y

)2

Field curvature

In an optical system, the image plane is approximated to a plane, but this is true only for a small

portion of space near the optical axis. In fact, the stigmatic image plane is a curve, not a plane,

therefore the image presents an aberration called field curvature, see figure below, figure 3.1.8

f

f

Object plane

Approximated 
image plane

Correct image plane

Figure 3.1.8: Field curvature
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When in the system astigmatism has been corrected, the curvature is called Petzval and the

curvature results the same for both the sagittal and tangential planes.

The Seidel coefficient, for the Petzval curvature, is:

SIV = −L2
∑

C∆

ß
1

n

™

The Petzaval curvature can be corrected with a flattener lens, a plano-concave lens, which extend

the optical patch for the rays increasingly more distant from the axis.

Distortion

Distortion is an achromatic aberration that is caused by the different focal length with respect

to the off axis distance, therefore different point of the object have different magnification. Re-

ferring figure 3.1.9, the distortion can be positive 3.1.9b or negative 3.1.9c, respectively the

magnification increase or decrease with the off axis distance of the object.

(a) No distortion (b) Positive distortion (c) Negative distortion

Figure 3.1.9: Image of grid with and without distortion

The Seidel coefficients for distortion are:

SV = −
∑ B

A

[
CL2∆

ß
1

n

™
− B2y∆

{u

n

}]

S∗
V = −

∑
KC3y4∆{n}

(
y

y

)3
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Aberration in a two mirror telescope

The Seidel sums can be calculated for a two mirror system, such as a telescope, using paraxial

matrices. The resulting Seidel sums for the primary aberrations SI , SII and SIII are:

SI = 1 + k1 −
[
k2 +

(
M + 1

M − 1

)2
]
(M − 1)3A

M3
(3.1.6)

SII =
2

M2
+

[
k2 +

(
M + 1

M − 1

)2
]
(M − 1)3(1− A)

M3
(3.1.7)

SIII =
4(M − 1 + A)

M2A
−

[
k2 +

(
M + 1

M − 1

)2
]
(M − 1)3(1− A)2

M3A
(3.1.8)

M corresponds to the focal magnification, see equation 3.2.10; A is the first term of the equiva-

lent matrix of the system, see equation 3.2.1; k1 and k2 are the conic constant of the two mirrors

By zeroing one of these terms the wave front difference between the ideal and actual wave front

is removed for that particular aberration. Therefore it is possible to eliminate that particular

aberration from the system.

These Seidel sums will be used during the design of the telescope to correct some aberrations

that affect the system.
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3.2 Telescope configuration

For the design of the CubeSat telescope, as already explained, the only configuration that is

possible to apply for the purpose of this telescope is a reflecting configuration, due to the wave-

length that needs to be observed.

A Reflecting telescope can be made of two or more mirrors, in this application two mirrors are

used, see figure 3.2.1, they are called respectively primary and secondary.
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Figure 3.2.1: Example of a reflecting telescope with two mirrors
Not to scale

A reflecting telescope also does not introduce chromatic aberrations and it tends to be easier to

mount, since a mirror can be attached from the back.

The reflecting telescope that is most suitable for this application is a Ritchey-Chrétien con-

figuration. The Ritchey-Chrétien is an aplanatic telescope made of two hyperbolic mirrors and

it does not present coma or spherical aberration. This configuration also reduces the size of the

telescope and therefore it is possible to fit it in the limited volume of the CubeSat.

The CubeSat application indeed sets limits on the dimension and the placement of the two

mirrors. Using the reference system sets on the figure 3.2.1, on the x dimension is placed the

longer side of the CubeSat to be able to place the two mirrors as far as possible on opposite

sides. Then the z dimension is placed on the shortest side of the CubeSat and this creates a limit

for the dimension of the two mirrors. Ultimately the y axis represent the 200 mm side of the

CubeSat and it sets a limit for the off-axis placement of the mirrors that will be introduced later.

To design the telescope and calculate the main parameters of the optical elements, it has

firstly made a first order, or paraxial, analysis of the system using paraxial matrices. The system

is perfectly stigmatic when analyzed at the first order, to consider the effect of aberrations and

to correct them is necessary to then proceed with a separate analysis of higher grade.
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3.2.1 Paraxial design

The telescope can be represented as in the figure below, 3.2.2:

___     

___     

d     

     a   
detector   

M2     

x   

M1     

x   d     

     

M1     

M2     

a   

detector   

D     1   

D     2   

D     1   ___     
2

D     2   

2

x   

y   

z   

x   

y   

z   

     

detector   

M1     
y = D + D     1   

y = D     2   

1   2   

2   

Fov     
21   𝛼 =      

𝛼       2   

AS

PP2     

eq   f

M2     
1   f

𝛼       1   

Primary

Secondary

M2     

M1     

M2     

M1     
D     1   

D     2   

     

M1     

PP2     

eq   f

M2     

1   f

bfl

d x

Output plane   Input plane   

2   f detector   

     

M1     

PP2     

eq   f

M2     

1   f

bfl

d x

Output plane   Input plane   

2   f detector   

M1     

M2     

detector   

x   

y   

z   

detector   

x   

y   

z   

a   

Figure 3.2.2: Scheme of the telescope
Not to scale

The equivalent paraxial matrix of the system is calculated. The system is formed by two mirror

matrices and a translation matrix, where the first mirror is the input plane and the secondary is

the output plane:

First mirror :

⎛

⎝ 1 0

− 1
f1

1

⎞

⎠ Translation :

⎛

⎝1 d

0 1

⎞

⎠ Second mirror :

⎛

⎝ 1 0

− 1
f2

1

⎞

⎠

The equivalent matrix of the system can be calculated by multiplying the matrix altogether:

Meq =

⎛

⎝ 1 0

− 1
f2

1

⎞

⎠

⎛

⎝1 d

0 1

⎞

⎠

⎛

⎝ 1 0

− 1
f1

1

⎞

⎠ =

⎛

⎝ 1 d

− 1
f2

− d
f2

+ 1

⎞

⎠

⎛

⎝ 1 0

− 1
f1

1

⎞

⎠ =

=

⎛

⎝ 1− d
f1

d

− 1
f2

+ d
f2f1

− 1
f1

1− d
f2

⎞

⎠ (3.2.1)

In this system the back focal length is equal to the sum of the distance between the two mirrors

and the distance of the focus from the first mirror.

bfl = x+ d (3.2.2)

The back focal length in this case also represents the space occupied by the telescope, so it

should be less then the entire space available in the x dimension to leave room for the mounting
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of the mirrors. Using paraxial matrix theory, the back focal length can be calculated also as:

bfl = −A

C
(3.2.3)

Combining equations 3.2.2 and 3.2.3 the following equation can be obtained:

d+ x = −A

C

=

(
1− d

f1

)
feq (3.2.4)

From 3.2.4 the focal length of the first mirror can be calculated, but first the equivalent focal

length of the system must be calculated from the specification of the plate scale.

The plate scale is expressed in arcsec/px but it can be expressed in rad/mm, assuming l is the

width of one pixel of the sensor, the equation to change the unit of measurements is:

Γ [rad/mm] = Γ [arcsec/px] · π

648000
· 1
l

(3.2.5)

Now is possible to calculate feq inverting equation 3.1.1:

feq =
1

Γ
(3.2.6)

The f/# of the system can now be calculated using the results obtained in the equation 3.2.6 and

knowing that the entrance pupil of a telescope is the primary:

f/# =
feq
D1

(3.2.7)

Using the result of equation 3.2.6 and 3.2.4 the focal length of the first mirror can be calculated:

d+x =

(
1− d

f1

)
feq

f1 =
dfeq

feq − (d+ x)
(3.2.8)

The value of the radius of the mirror can be calculated as:

R1 = −2f1 (3.2.9)
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Knowing the value of feq and f1 it is possible to calculate the value of the focal magnification:

M =
feq
f1

(3.2.10)

The focal magnification can also be expressed in terms of f1, f2 and d.

Starting from the equivalent matrix of the system is possible to calculate feq as:

feq = − 1

C

feq = −1/

(
− 1

f1
+

d

f1f2
− 1

f2

)

feq =
f1f2

f1 + f2 − d
(3.2.11)

In the equation above, 3.2.11, the focal magnification is defined as:

M =
f2

f1 + f2 − d
(3.2.12)

The value of the focal magnification obtained in 3.2.10 and the result obtained in equation 3.2.12

can be used to calculate the value of the focal length of the second mirror:

f2 =
M

1−M
(f1 − d) (3.2.13)

The light hits the second mirror from right to left and therefore the sign convention results

inverted, to calculate the radius of the second mirror in the correct sign convention the result

must be multiply by −1:

R2 = −1 · (−2f2) (3.2.14)
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The diameter of the secondary can be calculated tracing the marginal ray, the graphical rep-

resentation can be seen in the figure below.
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Using paraxial matrices the marginal ray can be described as:

⎛

⎝y2

α2

⎞

⎠ =

⎛

⎝1 d

0 1

⎞

⎠

⎛

⎝ 1 0

− 1
f1

1

⎞

⎠

⎛

⎝y1

α1

⎞

⎠

=

⎛

⎝1− d
f1

d

− 1
f1

1

⎞

⎠

⎛

⎝y1

α1

⎞

⎠ (3.2.15)

In the equation above, 3.2.15, y1 corresponds to the highest point of the primary, so y1 = D1
2 , y2

corresponds to the highest point of the secondary, so y2 = D2
2 and α1 corresponds to half of the

field of view.

The field of view can be calculated from the value of the equivalent focal length, feq, the width

of a pixel, l, and the dimension of the detector, a:

a = l · 1024 (3.2.16)

tan(FoV ) ≃ FoV =
a

feq
(3.2.17)

From equation 3.2.15 and the result of equation 3.2.17 it is possible to obtain the dimension of

the secondary:

y2 =

(
1− d

f1

)
y1 + dα1
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D2

2
=

(
1− d

f1

)
D1

2
+ d

FoV

2

D2 = 2

[(
1− d

f1

)
D1

2
+ d

FoV

2

]

The first order design ends here, to calculate the conic constants of the two mirrors it is

necessary to describe also non paraxial rays to understand the effects of aberrations.

3.2.2 Aberration correction

In the Ritchey-Chrétien configuration, coma and spherical aberrations are canceled.

In the system there are still two free parameters that have not been calculated which are the conic

constants of the two mirrors. Therefore these parameters can be used to correct two aberrations,

spherical and coma.

Using the Seidel sums of the primary aberrations SI and SII for a two mirror system, see equa-

tions 3.1.7 and 3.1.6, it is possible to calculate k1 and k2, by zeroing the two terms.

By zeroing the coefficient of coma, 3.1.7, it is possible to calculate the value of the conic constant

of the second mirror:

2

M2
+

[
k2 +

(
M + 1

M − 1

)2
]
(M − 1)3(1− A)

M3
= 0

k2 = −(M + 1)2

(M − 1)2
− 2M

(M + 1)3(1− A)
(3.2.18)

From the coefficient of spherical aberration 3.1.6 it is possible to obtain the conic constant of

the primary:

1 + k1 −
[
k2 +

(
M + 1

M − 1

)2
]
(M − 1)3A

M3
= 0

k1 =

[
−(M + 1)2

(M − 1)2
− 2M

(M + 1)3(1− A)
+

(
M + 1

M − 1

)2
]
(M − 1)3A

M3
− 1

k1 =
−2A

M2(1− A)
− 1 (3.2.19)
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3.2.3 Off-axis configuration

A problem that occurs using a typical two mirror telescope, such as the one just designed, is the

obstruction that the second mirror creates on the primary. Some part of the incoming light that

should hit the primary gets stopped by the secondary, see fig. 3.2.4a .
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(a) The secondary creates a shadow on the primary
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(b) Off-axis configuration

Figure 3.2.4: Not to scale

The obstruction that the secondary creates on the primary also causes the figure of diffraction

to be bigger. Therefore the resolving power of the telescope is smaller than expected.

To avoid this problem, the solution is to realize an off-axis configuration of the Ritchey-

Chrétien. The primary and secondary mirrors are not placed one in front of the other and so the

second mirror does not create a shadow on the primary. To do so it is necessary that the mirrors

are realized using the upper half of the respective hyperbola.

By referring the image 3.2.4b the height of the primary is called D1 and the height of the sec-

ondary is called D2. The secondary must be D2 mm tall and to not create a shadow on the first

mirror the primary must be raised from the axis. Therefore the section of the hyperbola used for

the primary, has to start at a height ofD2 mm from the axis and the mirror has to beD1 mm tall.

The paraxial analysismade for the on axis configuration is correct also for this design. There-

fore the formulas used to calculated all the parameters in the first configuration can still be used

for the design of the telescope for this off axis configuration.

The only change to make, is the equation utilized to calculate the height of the secondary, since

is used the trace of the marginal ray and for this configuration the path of that ray is different.
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Considering the following scheme of the off-axis configuration of the telescope:
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Figure 3.2.5: Marginal ray of the of axis configuration
Not to scale

Using paraxial matrices the marginal ray can be described as:
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⎝ 1 0
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=
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⎝1− d
f1

d

− 1
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1
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⎝y1
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⎞

⎠ (3.2.20)

In the equation above, 3.2.20, y1 corresponds to the highest point of the primary, so y1 = D1 +

D2, y2 corresponds to the diameter of the secondary and α1 corresponds to half of the field of

view. From equation 3.2.20 it is possible to obtain the dimension of the secondary:

y2 =

(
1− d

f1

)
y1 + dα1

D2 =

(
1− d

f1

)
(D1 +D2) + d

FoV

2

D2 =

[(
1− d

f1

)
D1 + d

FoV

2

](
f1
d

)
(3.2.21)

25



3.3 First configuration

A first proposal for a design of the telescope can bemade using the formulas derived in a previous

sections Paraxial design [3.2.1], Aberration correction [3.2.2] and from the result of equation

3.2.21 for the off-axis configuration.

The telescope, as already decided before, is an off-axis Ritchey-Chrétien two mirror config-

uration. A scheme of the telescope can be seen in the following figure:
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Figure 3.3.1: Scheme of the telescope
Not to scale

The parameters given for the design are the following:

Pixel dimension : 25 µm x 25 µm

Active pixels : 1024 x 1024

Γ : 6 arcsec/px

Primary mirror (D1) : 70 mm

Dimension : 6U, 100 x 200 x 300 mm

To be able to respect the limitation for the dimension of the telescope, in this first design as a

parameter it has been decided the value of the maximum diameter of the primary, to make sure

that the mirror could be fitted inside the CubeSat.

All the parameters needed for the design of the telescope are calculated:

d = 200 mm x = 50 mm feq = 859 mm

f1 = 282 mm f2 = −122 mm R1 = −564 mm

R2 = −224 mm D1 = 70 mm D2 = 32.9 mm

k1 = −1.09 k2 = −4.91 f/# = 12.3
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3.4 Second configuration

A second configuration is proposed. The given parameters are:

Pixel dimension : 25 µm x 25 µm

Active pixels : 1024 x 1024

Γ : 7 arcsec/px

f/# : f/10

Dimension : 6U, 100 x 200 x 300 mm

A few different decision on the parameters have been made. The distance between the two

mirrors has been reduced and so the telescope occupies a smaller volume. As a parameters has

been given the f/# of the system instead of the diameter of the primary, so after the equivalent

focal length has been calculated the dimension of the first mirror is determine knowing the f/#

of the system:

f/# =
feq
D1

D1 =
feq
f/#

(3.4.1)

It is important to check that dimension of the mirror respect the specification on the dimension

of the system otherwise some parameters of the telescope must be changed.

The parameters calculated are:

d = 180 mm x = 20 mm feq = 736 mm

f1 = 247 mm f2 = −101 mm R1 = −494 mm

R2 = −202 mm D1 = 73.6 mm D2 = 31.7 mm

k1 = −1.08 k2 = −5.08

The diameter of the primary results slightly bigger than the one on the first configuration but it’s

still acceptable. From the results obtained in the second design it is also possible to notice that

this system has a shorter focal length then the first design, this results in a smaller magnification.

Also the value of the f/# results smaller then the one of the previous design, therefore more light

can enter this system.
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3.5 Coating and filter

The telescopes just designed in section 3.3 and 3.4, are to be realized using particular mirrors

that are able to reflect the desired wavelength in the Ultraviolet spectrum. To be able to reflect

the most of the entering radiation, the mirrors of the telescope should be made of a layer of

Aluminium deposited on a substrate, since Aluminium has the best reflectance in the UV. De-

pending on the deposition condition, the reflectance of the Aluminium changes, but for wave-

length shorter than 160 nm also the presence of impurities, like Al2O3 (Aluminium oxide), can

reduce the reflectance of the film [8]. Therefore the Aluminium film must be protected with a

transparent coating. This transparent coating should be made of Magnesium Fluoride since, as

explained before, is the only suitable transparent material at this wavelength. This film of Mag-

nesium Fluoride is also realized to have a thickens that realize constructive interference from

the film itself, at this wavelength the thickness is around 25 nm.

A mirror realized with a layer of Aluminium and the protective coating of Magnesium Fluoride

has a reflectance for the wavelength at 121.6 nm of around 80%, [8].

In the telescope it must be also added a filter to be able to select and observe only the desired

wavelength at 121.6 nm. This filter is needed to block all the other wavelengths that could enter

the telescope but are not needed to observe the comets. Therefore, the filter should be the size

of the primary mirror and placed in front of it so to filter all the entering light. This filter acts

like a band pass filter with a transmission peak at around 121 nm, so the only light that will

actually enter the telescope is of the correct wavelength. The filter realized with multi-layers of

Aluminium and Magnesium Fluoride has a transmittance of around 20%, [8].

Considering that the light is reflected twice inside the mirror, it is possible to calculate an

estimate of the percentage of radiation that arrives at the detector:

IDET = 80% · 80% · 20% · IIN = 12.8% IIN
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Chapter 4

Conclusion

In this thesis I described the possible application of a telescope realized inside a CubeSat whose

mission is to observe near-Sun comets in the UV spectrum. I showed the necessity for this

telescope to be launched into space and the necessity to work in reflection and not transmission.

Ultimately, I designed the telescope at the first order and showed different configurations for the

telescope.

In writing this thesis I had the opportunity to apply the knowledge acquired in a previous

course of ”Elements of Optics and applications”, by paraxially design a small telescope.

But I have also had the opportunity to learn about innovative technology, such as the Cube-

Sats, how their invention has been opening new possibilities for space application such as the

telescope discussed in this work. Moreover I have also learned the challenges of working in the

UV spectrum, having restricted possibilities of materials with a good reflectivity or transparency

and the necessity to observe these wavelengths from space.

I have also been able to start learning a few things about space observation and space appli-

cation, a new topic for me, and how comets can be observed not only in the visible spectrum but

also in the UV by their coma.
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