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Abstract

English version: Colorectal cancer (CRC) is one of the leading causes of death worldwide

and continues to pose a critical public health challenge, demanding precise early detection

and intervention. Colonoscopy, the diagnostic examination aimed at exploring the inner

walls of the colon to discover any tumour masses, is an effective method to decrease

mortality incidence. Emerging techniques, such as advanced image analysis driven by

neural networks, hold promise for accurate diagnosis. However, studies have reported

that, for various reasons, a certain percentage of polyps are not correctly detected during

colonoscopy. One of the most important is the dependency on pixel-level annotations,

which requires a lot of computational resources, making necessary innovative solutions.

This thesis introduces strategies for improving polyp identiĄcation. For this purpose, the

main techniques involve the so-called Explainable AI tools for analyzing saliency maps and

activation maps, through several state-of-the-art visual saliency detection algorithms and

Gradient-weighted Class Activation Mapping (Grad-CAM). In addition, a neural network

for segmentation with DeepLabV3+ architecture is used, in which bounding boxes are

provided on the training images, within a weakly supervised framework.

Italian version: Il cancro del colon-retto (CRC) ‘e una delle principali cause di morte

a livello mondiale e continua a rappresentare una sĄda critica per la salute pubblica,

richiedendo una precisa e tempestiva diagnosi e un intervento mirato. La colonscopia,

ovvero lŠesame diagnostico volto a esplorare le pareti interne del colon per scoprire even-

tuali masse tumorali, ha dimostrato essere un metodo efficace per ridurre lŠincidenza di

mortalit‘a. Le tecniche emergenti, come lŠanalisi avanzata delle immagini tramite reti neu-

rali, sono promettenti per una diagnosi accurata. Tuttavia, alcuni studi hanno riportato

che, per varie ragioni, una certa percentuale di polipi non viene rilevata correttamente

durante la colonscopia. Una delle pi‘u importanti ‘e la dipendenza dalle annotazioni a

livello di pixel, che richiede molte risorse computazionali; per questo si rendono necessarie

soluzioni innovative. Questa tesi introduce alcune strategie per migliorare lŠidentiĄcazione
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dei polipi. A tal Ąne, le tecniche principali utilizzate coinvolgono i cosiddetti metodi di

Explainable AI per lŠanalisi delle mappe di salienza e di attivazione, attraverso diversi

algoritmi di rilevamento della salienza visiva e la Gradient-weighted Class Activation

Mapping (Grad-CAM). Inoltre, viene utilizzata una rete neurale per la segmentazione

con architettura DeepLabV3+, in cui vengono fornite le bounding box sulle immagini di

addestramento, in un contesto debolmente supervisionato.
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Chapter 1

Introduction

1.1 Contextualization of the Topic

Colon polyps are initial indicators of colorectal cancer, which ranks among the most

prevalent forms of cancer [1]. In Italy, in 2021, colorectal cancers were the third neo-

plasm in men and the second in women [2]. Detecting these precancerous growths during

screening holds critical importance, as their early identiĄcation and accurate diagnosis

are important factors for effective treatment and lowering mortality rates [3]. Research

indicates that a simple 1% increase in polyp detection could potentially lead to a 3%

reduction in the incidence of colon cancer [4]. Currently, colonoscopy is the established

standard diagnostic examination in clinical practice for detecting abnormal tissue within

the gastrointestinal tract. However, the precision of this procedure is contingent upon

the physicianŠs skill and demands substantial effort. Thus, the clinical prevention of col-

orectal cancer underscores the need for automated methods capable of pinpointing all

existing polyps with a high degree of accuracy. The Ąeld of artiĄcial intelligence and ma-

chine learning has seen widespread application in semantically segmenting polyps within

medical imagery.

Figure 1.1.1 presents two instances of colonoscopy images depicting polyps and their

corresponding segmentations. Traditional segmentation methods have historically em-

ployed techniques like geometric analysis and frame-based models [5], or a hybrid approach

integrating contextual and shape-based strategies [6]. Nevertheless, these methodologies

often struggle to capture holistic global context information and are less robust when com-

pared with intricate scenarios, mainly due to their reliance on manually designed features

[7].

3



(a) (b) (c) (d)

Figure 1.1.1: Two examples of the content of the Polyp-Box-Seg [8] dataset for the
semantic segmentation of polyps: (a)(c) original images; (b)(d) ground
truth.

1.2 Aim and Objectives of the Thesis

The primary purpose of this thesis is to enhance and reĄne the methodology employed for

the segmentation of polyps in colonoscopy images, focusing on a speciĄc weakly supervised

approach, typical in the medical Ąeld. The fundamental goals of this thesis are the

following:

• to examine the foundational principles concerning the segmentation of medical im-

ages and the key role assumed by neural networks within this context;

• to analyze the advantages of weakly supervised learning techniques and the help

given by methods of Explainable AI such as Saliency Map and Grad-CAM, in terms

of improving the accuracy related to polyp segmentation;

• to construct a valid strategy to adapt these speciĄc techniques to the domain of

colonoscopy images;

• to perform a set of experiments to evaluate the effectiveness of the created method-

ologies, with a focus on quantitative and qualitative metrics;

• to perform a comparative analysis that contrasts the results of the proposed new

improvement methodologies with the initial approach;

• to understand if there can be further work starting from the methods developed.

1.3 Overview of the Index

This particular section seeks to provide a general preview of the structural composition

and content allocation of this thesis. The thesis is structured into several distinct sections

and sub-sections, each with a speciĄc purpose that contributes to the overall aims and

objectives of the thesis.
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The initial sections are dedicated to the creation of a solid basic structure, explaining

the fundamental concepts related to the segmentation of medical images, the integration of

neural networks in this speciĄc Ąeld, and the new methodologies used. This is fundamental

for an in-depth exploration of the distinct methodologies of weakly supervised learning,

in particular the applications of Saliency Maps and Grad-CAMs, which are seen as the

main techniques for improved polyps segmentation.

The core of this thesis focuses on the development and adaptation of these method-

ologies in the particular context of colonoscopy imaging. This involves the use of iterative

learning, the generation of segmentation masks, and their enhancement through the inte-

gration of the methodologies mentioned above. The theoretical and technical foundations

of each methodology are precisely outlined.

Subsequent sections outline the steps of implementation and experimentation. This

includes the explanation of the experimental environment, the implementation of the

devised methodologies, and the testing protocols used.

The last sections deal with the experimental results, followed by a comparative analysis

that seeks to emphasize how the approaches developed perform concerning the basic

approach. The closure of this thesis is punctuated by an enumeration of useful references

for further clariĄcation.
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Chapter 2

Theoretical Foundations

2.1 Concepts of Medical Segmentation

Medical image segmentation constitutes a crucial element in medical image processing.

This process involves the subdivision of an image into anatomical regions of interest,

allowing healthcare providers to obtain detailed and accurate information to diagnose

medical conditions, plan treatments, and monitor disease progression.

The main goal of segmentation is to precisely delineate anatomical structures within

images, thus enabling the identiĄcation and localization of tumours, organs, tissues, and

other relevant features. This level of detail is particularly essential when it comes to

individualized diagnosis and treatment, as it helps to accurately identify anatomical vari-

ations among patients and provide a clear view of the sizes and locations of structures

within the body.

Traditionally, medical anatomical segmentation was performed manually, requiring

the surgeon to carefully trace the contours, slice by slice, through an entire stack of MRI

(Magnetic Resonance Imaging) or CT (Computed Tomography) images. Thus, there is a

strong need to develop a solution that can automate this difficult process [9].

Medical image segmentation has been revolutionized by the adoption of neural net-

works, and advanced machine learning algorithms that can recognize complex patterns in

images, paving the way for more accurate and efficient segmentation solutions.
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2.2 ArtiĄcial Neural Networks for Segmentation

2.2.1 Image Segmentation task

Image segmentation plays a critical role in the Ąeld of computer vision, aiming to par-

tition an image into meaningful and distinguishable regions or objects. This task holds

fundamental importance across various applications, including object recognition, track-

ing, detection, medical imaging, and robotics. Numerous techniques exist, spanning from

traditional methodologies to those driven by deep learning approaches [10]. There exist

eight distinct types of segmentation modes applicable in the context of medical imaging

[11]:

• Instance segmentation,

• Semantic segmentation,

• Panoptic segmentation,

• Thresholding,

• Region-based segmentation,

• Edge-based segmentation,

• Clustering segmentation,

• Foundation Model segmentation.

We dealt with semantic segmentation. Semantic segmentation involves labelling each

pixel within an image. This process generates a densely labelled image, which can then

be processed by an artiĄcial intelligence application to create a segmentation mask. In this

mask, pixel values [0, 1, ...255] are converted into class labels [0, 1, ...n], clearly delineating

different parts of the image.

A myriad of approaches have been developed to address the challenges of semantic seg-

mentation. Notably, Convolutional Neural Networks (CNNs) have risen to prominence

due to their capacity to capture complex spatial features [9]. In the realm of medical

image segmentation, semantic segmentation techniques contribute to accurate organ de-

lineation, lesion detection, and treatment planning. Subsequent Sections will delve into

diverse neural network architectures, including CNNs, and their applications in medical

segmentation tasks.
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2.2.2 Multi-Layer Perceptron (MLP)

MLPs (Multi-Layer Perceptrons) are artiĄcial neural networks that deĄne a loop-free ori-

ented graph. This kind of neural network is characterized by the presence of multiple

layers composed of computational units called artiĄcial neurons. These neurons are ar-

ranged in sequence, connected through weights that regulate the inĆuence of transmitted

data.

These networks are part of the feed-forward neural networks family: the data Ćow

proceeds from input nodes to output nodes without creating cycles. The initial input

passes through neurons in the Ąrst layer, known as the input layer. Next, computations

proceed through intermediate layers, called hidden layers, and end up in the last layer,

known as the output layer. In each neuron, inputs are weighted and summed, and an

activation function is applied, according to the formula:

y = f(b +
n∑

i=0

wi · xi) (2.2.1)

where b is the bias; wi is the i−th weight parameter; xi is the i−th input; f is the activation

function and it must respect certain properties, including non-linearity, continuity, and

differentiability:

• Non-linearity: the activation function must be non-linear because if not, the network

would only be able to represent linear functions (since any combination of linear

functions will still be a linear function). Furthermore, if the activation function

were linear, several levels of perceptrons could be condensed into one (again by the

same property of combination of linear functions),

• Continuity and Differentiability: the activation functions must also exhibit qualities

of continuity and differentiability. This is important during the backpropagation

process with optimizers using gradient descent (i.e. Stochastic Gradient Descent

with Momentum, Adam), where the gradient of the objective function is calculated;

here, if the activation function is not linear and differentiable, this operation is not

possible.

Figure 2.2.1 visually explains this element of a basic neural network.

This conĄguration of weighted connections and activation functions gives the MLP

the ability to learn complex relationships between inputs and outputs. By training the

MLP on a dataset, the weights of connections between neurons can be reĄned, enabling

the network to generate accurate predictions or classiĄcations on new inputs. The MLP is
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widely used in multiple domains, including pattern recognition, natural language analysis,

computer vision, and others.

Figure 2.2.1: Representation of an artiĄcial neuron.

2.2.3 Convolutional Neural Network (CNN)

Convolutional neural networks (CNNs) represent a class of deep learning models widely

used in the Ąeld of image recognition and computer vision. This type of network is

inspired by the structure of the human visual system and has proven particularly effective

in automatically extracting features from complex images. Convolutional neural networks

(CNNs) differ in adopting shared weights and local connections between layers; this means

that connection weights are shared among groups of neurons and that each neuron in a

subsequent layer is inĆuenced only by a limited subset of neurons in the previous layer.

This pattern of local connections allows a signiĄcant reduction in the total number of

connections in the network, thus reducing training time and facilitating the creation of

deeper networks. Shared weights, replicated in different parts of the image, are called

Ąlters. Typically, many Ąlters are created for each layer, and each Ąlter is applied to the

entire image, allowing speciĄc features to be extracted from it.

CNNs are composed of several layers, each of which has a speciĄc role in processing

visual information. Convolutional layers perform the convolution operation, in which

Ąlters are applied to detect patterns and features in images:

S(x, y) = (I ∗K)(x, y) =
m∑

i=1

n∑

j=1

I(x + i, y + j) ·K(i, j) (2.2.2)

where:

• (I∗K)(x, y) represents the value of the resulting pixel at the position of the convolved

image,
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• I is the image input (or feature map) in the convolutional layer,

• K is the kernel or convolutional Ąlter,

• m and n are the dimensions of the kernel,

• x and y are the coordinates of the pixel in the convolved image.

To perform a convolution it is often necessary to use other steps and other properties

typical of the convolution operation such as Stride and Padding to optimize the output:

• Stride is a property of the convolution operation in which the Ąlter is made to run

over the input volume not with unit steps (default) but with a larger step (called

Stride). Stride reduces the size of the feature maps in the output volume and

consequently, the number of connections; small Strides (e.g., 2 or 4) can increase

efficiency at the cost of a slight penalty in accuracy.

• Padding is a property of the convolution operation that allows the user to adjust

the size of feature maps by adding an edge to the input volume (null values). The

Padding parameter denotes the thickness of the edge. Padding is useful for Ąltering

the side pixels of the image; without Padding all edge pixels are analyzed by a very

small number of Ąlters, since these Ąlters cannot leave the input matrix, thus leading

to a reduction in output size and a loss of information.

Next, the pooling layers reduce the spatial dimension of the extracted features, contribut-

ing to the reduction of computational complexity. The extracted features are then linked

to the fully connected layers, where classiĄcation and label assignment to the images take

place.

A key aspect of CNNs is their learning using the backpropagation method, which allows

Ąlter weights to be automatically adapted during the training phase. This characteristic

allows CNNs to autonomously learn increasingly complex and speciĄc patterns during

the training process on a large dataset. CNNs have demonstrated outstanding results

in various tasks, such as object recognition, face detection, medical image analysis, and

many others, solidifying them as key tool in the development of advanced computer vision

applications.
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2.3 Training Modalities

2.3.1 Training

In machine learning, ŤtrainingŤ represents the process by which a model is instructed to

recognize patterns and relationships in the data. During training, the model is exposed

to input data along with the corresponding output values. The model adjusts its internal

parameters iteratively to reduce the discrepancy between its predictions and actual output

values. This process involves optimization algorithms and loss functions that guide the

model toward more accurate predictions.

2.3.2 Supervised and Unsupervised Training

In supervised learning, the training data consists of input and output pairs. The model

learns to map inputs into outputs by observing the relationships between them in the

training data. The goal is to have a model that can generalize this mapping to make

accurate predictions about new, unseen data.

In the case of polyps image segmentation, a set of images (input) is used as a training

set to train the model, which also needs an accurate segmentation mask provided by a

physician (output). This last factor makes training particularly time-consuming since the

creation of accurate segmentation masks takes a considerable amount of time.

Unsupervised learning involves training a model on input data without explicit output

labels. The goal is to discover patterns, structures, or relationships within the data.

Common tasks include clustering, in which the model groups similar data together, and

dimensionality reduction, in which the model reduces data complexity while preserving

important information.

2.3.3 Weakly Supervised Training

Weakly supervised learning is an approach that lies between fully supervised and unsu-

pervised learning. This approach is used in scenarios where obtaining accurate labels

for training data is difficult or expensive. Instead of using fully labelled data, weakly

supervised learning exploits partially labelled or noise-affected data.

Often, this approach employs heuristics, constraints, or probabilistic models to infer

approximate labels from the available weak annotations. For example, in the context

of polyp detection, if only whole-image-level labels are available (such as ŤpositiveŤ or

ŤnegativeŤ), with no further details about each polyp, weak supervision techniques could
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be used to identify regions within images that are likely to correspond to the labelled

classes.

Using this approach, we can teach the model to recognize areas within the images

that might represent polyps, even though we do not have detailed information about

each individual. In practice, the model could learn to identify common visual features

associated with polyps, such as shape or hue, and use them to highlight possible areas

of interest. This type of approach allows the model to help identify polyps, even in the

absence of precise annotations for each formation.

Learning with weak supervision may be useful in scenarios where labelling large

amounts of data is impractical, but a form of supervision is still available, like medi-

cal image segmentation.

2.4 Explainable AI (XAI) tools

Explainable AI (XAI) is a set of tools and techniques that allows human users to better

understand why an artiĄcial intelligence model generates certain decisions by describing

how it works. This kind of approach is extremely useful in the context of neural networks

or machine learning models because they are black-box models that have no interpretabil-

ity and do not reveal any information about their internal workings; this explainability

can help developers to ensure that the system is working as expected or, in general, to

verifying the systemŠs functionality. In the following Section, two widely used techniques

in the XAIŠs context, namely Saliency Maps and Class Activation Maps (CAMs) will be

introduced.

2.4.1 The concept of Interpretability

First of all, it is important to deĄne what Interpretability is and its importance in the

context of machine learning models.

DeĄning mathematically what interpretability is, becomes complex. One interesting

explanation of interpretability was proposed in [12], and points out that it concerns the

degree to which a person can understand the cause and the reasons behind a decision.

Interpretability and explainability are closely related. Interpretability is used more

often in the context of machine learning, instead, Explainability is used more in the

context of deep neural networks and deep learning.

Increasing the level of interpretability of a machine learning model makes it easier to

13



understand the reasons that drive its decisions or predictions. A machine learning model

is considered more interpretable than another if the reasons behind its decisions are more

easily understood than the other modelŠs decisions.

Now letŠs try to understand more about why interpretability is important. In predic-

tive modeling, you have to make a choice: do you want to know what is predicted, or

to understand why the prediction was made? In some cases, you donŠt care about the

reason behind a decision; it is enough to know that predictive performances on a test

dataset are good. But sometimes, in other situations, knowing the ŠwhyŠ can help you

learn more about the problem, the data, and the reason why a model might fail. The

need for interpretability arises from a lack of formalization of the problem [13], which

means that for some problems it is not enough to get the prediction (ŤwhatŤ). The model

must also explain how it arrived at that prediction (ŤwhyŤ) because a correct prediction

only partially solves the original problem [14]. Practitioners seek interpretability for three

main reasons [15]:

• Debugging: understanding where or why predictions go wrong and running Ťwhat-

ifŤ scenarios can improve model robustness and eliminate bias;

• Guidelines: black-box models may violate corporate technology best practices and

personal preference;

• Regulations: some government regulations require interpretability for sensitive ap-

plications such as in Ąnance, public health, and transportation.

Model interpretability addresses these concerns and increases trust in the models in situ-

ations where explanations for predictions are important or required by regulation. Inter-

pretability is typically applied at two levels [15]:

• Global Methods: these interpretability methods provide an overview of the most

inĆuential variables in the model based on input data and predicted output. In

contrast to local methods, global methods can explain how a model works even

without probing its functionality on a speciĄc set of inputs;

• Local Methods: these interpretability methods explain a single prediction result.

The methods that will be presented in the following Sections are all local.

2.4.2 Theory of Saliency Detection and Saliency Maps

Saliency maps are visual representations or images that highlight the most important or

relevant regions within an image: the brightness of a pixel represents how salient that
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pixel is (the brightness of a pixel is directly proportional to its saliency). These regions

are typically those that most attract the attention of humans or are crucial to a particular

task, such as object recognition or segmentation [16]. It is generally a grayscale image.

An example of a saliency map is shown in Figure 2.4.1.

The concept of ŤsaliencyŤ in images refers to distinctive features, such as pixels of

special interest or regions of high resolution, that capture attention in visual processing.

These unique features help identify visually appealing areas within an image.

Saliency maps were initially proposed by neuroscientists Laurent Itti, Christof Koch,

and Ernst Niebur in their study of a visual attention system, inspired by the behaviour

and the neuronal architecture of the early primate visual system. These visual attention

models are a part of the methodologies used in this work and mainly concern the use of

the Spectral Saliency Map [17] and the Itti-Koch Saliency Map [18].

The computation of a Saliency Map Ąrst goes through the application of Saliency

Detection algorithms, which aim at Ąnding salient objects in an image.

The approaches used in this thesis are based entirely on the research work of Boris

Schauerte [19], who has made available a Matlab toolbox that allows direct calculation of a

spectral saliency map by implementing several state-of-art saliency detection algorithms.

His work is based on other research studies including [17] [20] [21] [22] [23].

Figure 2.4.1: Example of Saliency Map [24].

Spectral Saliency Map

A Spectral Saliency Map is a type of saliency map that highlights regions in an image

according to their frequency content. It uses the concept that regions with higher fre-

quency content tend to attract more attention from human observers. For example, edges,

textures, colours, and Ąne details in an image often have higher frequency components.
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By analyzing the spectral characteristics of an image, a Spectral Saliency Map can be

generated to emphasize these areas.

In this context is important to explain the work performed by Xiaodi Hou and Liqing

Zhang [17], whose aim was to present an innovative method for saliency detection based on

a technique called ŤSpectral ResidualŤ. The method assumes that salient regions in images

have higher residual frequency spectra than their surroundings. The authors propose to

calculate the Fourier transform of the image and to compute the difference between the

frequency spectrum and a Ąltered version of it. This spectral residual is then used to

generate a saliency map.

More precisely, letŠs suppose to have an image I(x). The Spectral Saliency Map is

obtained in a few steps:

A(f) = ℜ (F [I(x)])

P(f) = ℑ (F [I(x)])

L(f) = log (A(f))

R(f) = L(f)− hn(f) · L(f)

S(x) = g(x) · F−1 [exp(R(f) + P(f))]2

(2.4.1)

where:

• A(f) is the amplitude of the Fourier transform F [I(x)] of the image,

• P(f) is the phase of the Fourier transform F [I(x)] of the image,

• L(f) is the log spectrum representation of the image,

• R(f) is the spectral residual (hn(f) is a local Ąlter of size n), and

• F , F−1 denote the Fourier Transform and Inverse Fourier Transform, respectively.

As we can see, the calculated spectral residual is used to generate the Spectral Saliency

Map. In this map, the highest values correspond to the regions of the image that have

signiĄcant discrepancies from the surrounding context in terms of frequency spectrum.

Figure 2.4.2 shows an example of a Spectral Saliency Map with Discrete Cosine Transform

(DCT) algorithms.

Itti-Koch Saliency Map

The Itti-Koch Saliency Map is a method for generating saliency maps. It is based on a

biological architecture, shown in Figure 2.4.3, proposed by Koch and Ullman [18]. This

16



Figure 2.4.2: Example of Spectral Saliency Map with DCT algorithms, computed into
an image of the dataset Polyp-Box-Seg [8].

approach takes into account various factors such as intensity, colour, and orientation of

pixels to determine which areas in an image are most salient. The Itti-Koch method

attempts to simulate the early stages of visual attention in the human brain.

It is based on the so-called Şfeature integration theoryŤ, explaining human visual search

strategies [25]. As we can see from Figure 2.4.3, the input image is Ąrst decomposed into

a set of topographic feature maps, speciĄcally colours, intensity, and orientations maps,

that will be described in detail later. After that, nine spatial scales are created using

dyadic Gaussian pyramids [26] which progressively apply a low-pass Ąlter and sub-sample

the input image, obtaining image-reduction factors ranging from zero to eight octaves.

Next, Center-surround differences (deĄned as ⊖) between a ŞcenterŤ Ąne scale c and

a ŞsurroundŤ coarser scale s is computed: the center is a pixel at scale c ∈ 2, 3, 4, and

the surround is the corresponding pixel at scale s = c + δ, with δ ∈ 3, 4. The across-scale

difference between two maps is obtained by interpolation to the Ąner scale and point-by-

point subtraction. Instead, the across-scale addition between two maps consists of the

reduction of each map to a speciĄc scale and point-by-point addition. Using multiple

scales not only for c but also for δ = s− c, enables a sort of multi-scale feature extraction

[18].

Given the red (r), green (g), and blue (b) channels of the input image, an intensity

image I is obtained as I = (r + g + b)/3 (I is used to create a Gaussian pyramid I(s),

where s ∈ [0..8] is the scale). The Ąrst set of feature maps regards the intensity contrast.

Here, they generate a set of six maps (c, s), with c ∈ 2, 3, 4 and s = c + δ, with δ ∈ 3, 4:

(c, s) = ♣I(c)⊖ I(s)♣ (2.4.2)
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Figure 2.4.3: General architecture of the Itti-Koch model. The Figure is taken from
[18].

After that, another four colour channels are created:

R = r − (g + b)/2 for red,

G = g − (r + b)/2 for green,

B = b− (r + g)/2 for blue, and

Y = (r + g)/2− ♣r − g♣/2− b for yellow

(2.4.3)

A second set of feature maps is similarly constructed for the colour channels:

RY(c, s) = ♣(R(c)−G(c))⊖ (G(s)−R(s))♣ (2.4.4)

BY(c, s) = ♣(B(c)− Y (c))⊖ (Y (s)−B(s))♣ (2.4.5)

where RY(c, s) are designed to account for both red/green and green/red double oppo-

nency at the same time, instead BY(c, s) for blue/yellow and yellow/blue double oppo-

nency.
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Finally, the third set of feature maps regards the orientations: local orientation infor-

mation is obtained from I using oriented Gabor pyramids O(σ, θ), where σ ∈ [0..8] rep-

resents the scale and θ ∈ [0◦, 45◦, 90◦, 135◦] is the orientation. Orientation feature maps,

O(c, s, θ), encode local orientation contrast between the centre and surround scales:

O(c, s, θ) = ♣O(c, θ)⊖O(c, s, θ)♣. (2.4.6)

In total, 42 feature maps are created: six for intensity, 12 for colour, and 24 for orientation

[18].

Next, there is a normalization process that involves a normalization operator N (.),

which favours maps in which is present a small number of strong peaks (salience locations),

while suppressing maps that contain a high number of equal peaks. SpeciĄcally, the

normalization operator N (.) consist of:

• normalizing the values in the map to a Ąxed range [0..M ], to eliminate modality-

dependent amplitude differences,

• Ąnding the location of the global maximum M in the map and computing the average

m of all other local maxima,

• globally, multiplying the map by (M −m)2.

In this way, only local maxima of activity (meaningful/salience activations regions in the

map) are considered.

After that, feature maps are combined into three ŞconspicuityŤ/ŤsaliencyŤ maps, I for

intensity, C for colour, and O for orientation, at the scale (σ = 4) of the saliency map.

These conspicuity maps are obtained through across-scale addition (deĄned as ⊕):

I = ⊕4
c=2 ⊕c=4

s=c+3 N (I(c, s))

C = ⊕4
c=2 ⊕c+4

s=c+3 [N (RG(c, s)) +N (BY(c, s))]

O =
∑

θ∈[0◦,45◦,90◦,135◦]

N (⊕4
c=2 ⊕c+4

s=c+3 N (O(c, s, θ)))

(2.4.7)

Finally, these three saliency maps are normalized and summed into the Ąnal output
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saliency map:

S =
1

3
(N (I) +N (C) +N (O)) (2.4.8)

Figure 2.4.5 shows the difference between the spectral saliency map and the Itti-Koch

approach.

Figure 2.4.4: Example of saliency map with Itti-Koch approach, computed into an im-
age of the dataset Polyp-Box-Seg [8].

2.4.3 Theory of Class Activation Maps (CAMs)

Class Activation Map (CAM) is an Explainable AI approach used for CNNs. It is an in-

terpretation method for neural networks that can visualize features and concepts learned,

and explain the individual predictions [14].

It was introduced by Zhou et al. [27] and their work involved the analysis and evalu-

ations based on neural networks structured in a similar way to the ŠNetwork in NetworkŠ

(NIN) architecture [28]. In these networks, the usual stack of fully connected layers at the

end of the model was replaced by a distinct layer called Global Average Pooling (GAP).

This Global Average Pooling (GAP) layer essentially averages the activations of each fea-

ture map and aggregates these averages into a vector, which is then output. A weighted

sum of this vector is then fed to the Ąnal softmax layer.

This architecture allows highlighting the important regions of the image by projecting

back the weights of the output on the convolutional feature maps. Figure 2.4.6 shows this

process.

Instead, Gradient-weighted Class Activation Map (Grad-CAM) is a more versatile

explainable technique than CAM, that can be used to help understand the predictions

made by a deep neural network [29] and therefore to produce visual explanations for any
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Figure 2.4.5: Comparison between Spectral and IttiŠs approach. In each group we have
1) the input image, 2) the saliency map generated by spectral residual, 3)
the saliency map generated by IttiŠs approach, and 4) the labelled map
(we are not interested in this map at the moment). The Figure is taken
from [17].

arbitrary CNN.

Grad-CAM determines the importance of each neuron in a network prediction by

considering the gradients of the target Ćowing through the deep network. Grad-CAM

computes the gradient of a differentiable output, for example, class score, concerning the

convolutional features in the chosen layer. The gradients are pooled over space and time

dimensions to Ąnd the neuron importance weights. These weights are then averaged across

each activation map to determine which features are most important in the prediction and

to give us an importance score [30].

Suppose to have an image classiĄcation network with yc as output, representing the

score for class c, and want to compute the Grad-CAM map for a convolutional layer

Ak
i,j with k feature maps (channels), where i,j represent pixels coordinates. The neuron
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Figure 2.4.6: Class Activation Mapping. The Figure is taken from [27]

importance weight is:

αc
k =

Global Average Pooling
︷ ︸︸ ︷

1

N

∑

i

∑

j

∂yc

∂Ak
i,j

︸ ︷︷ ︸

Gradients
via backprop

(2.4.9)

where N is the total number of pixels in the feature map. Finally, to obtain the Grad-

CAM map Lc
Grad−CAM we multiply each activation map by its importance score and sum

the values, within a ReLU activation function:

Lc
Grad−CAM = ReLU


∑

k

αc
kAk



︸ ︷︷ ︸

linear combination

(2.4.10)

The ReLU activation function ensures that only features with a positive impact on the

target class are considered. The output is thus a heat-map for the speciĄed class, which

is the same size as the feature map.

Typically Grad-CAM is a technique most commonly used for classiĄcation tasks. How-

ever, it is also possible to apply this technique to semantic segmentation tasks: we can

compute the Grad-CAM map by replacing yc with

∑

(i,j)∈S

yc
ij, (2.4.11)

where S is the set of pixels of interest and yc
ij is 1 if pixel (i, j) is predicted to be of class
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c, 0 otherwise [30].

Figure 2.4.7 provides a visual comparison between the heat-maps of Class Activation

Maps (CAMs) and Gradient-weighted Class Activation Maps (Grad-CAMs).

2.5 Loss functions

This Section will present the main loss functions used to train the Ąnal model.

2.5.1 Generalized Dice loss

Generalized Dice Loss is a loss function designed to address the problem of class imbalance

in medical segmentation tasks [32]. In this context, the foreground may be much smaller

than the background, leading to class imbalance.

The Generalized Dice similarity coefficient measures the overlap between two seg-

mented images, and it is based on Sørensen-Dice similarity:

SDS =
2♣X ∩ Y ♣
♣X♣+ ♣Y ♣ (2.5.1)

where X, Y are two sets and ♣X♣, ♣Y ♣ are the cardinalities of the two sets.

Generalized Dice Loss tackles the class imbalance problem by controlling the contri-

bution that each class makes to the similarity, and this is done by weighting each class:

GDL = 1− 2
∑K

k=1 wk

∑M
m=1 YkmTkm

∑K
k=1 wk

∑M
m=1 Y 2

km + T 2
km

(2.5.2)

where Y is the image, T is the corresponding ground truth, K is the number of classes,

M is the number of elements along the Ąrst two dimensions of Y , and wk is a class-

speciĄc weighting factor. When working with imbalanced data sets, class weighting helps

to prevent the more prevalent classes from dominating the similarity score [33].

2.5.2 Binary Cross-Entropy (BCE) loss

The Binary Cross-Entropy Loss is a loss function especially used in binary classiĄcation

problems. The Binary Cross-Entropy (BCE) loss measures the divergence between pre-

dicted probabilities and true labels using the logarithmic loss function. It evaluates how
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Figure 2.4.7: Comparison between CAM and Grad-CAM concerning the original image.
The two Figures are taken and adapted from [31].
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close or far the predicted probabilities are from the actual true values. It is computed as:

BCE = − 1

N

N∑

i=1

[yi · log(pi) + (1− yi) · log(1− pi)] (2.5.3)

where yi is the prediction and pi is the true one. This makes it an ideal choice for ad-

dressing binary classiĄcation problems, as it provides a measure of the modelŠs capability

to distinguish between the two classes.

2.6 Optimizer methods

This section will present the main optimizer methods used to train the Ąnal model.

2.6.1 Stochastic Gradient Descent with Momentum (SGDM)

Stochastic Gradient Descent with Momentum (SGDM) is an optimization algorithm used

to train neural networks. It is a variant of the standard Stochastic Gradient Descent

(SGD) algorithm, which introduces the concept of ŤmomentumŤ to accelerate the conver-

gence of the objective function and reduce the oscillation during optimization.

Initially, model parameters, such as weights and bias, are initialized randomly, to zero,

or by speciĄc methods such as Xavier/Glorot [34]. The network parameters (weights and

bias) are updated using the Gradient Descent algorithm with momentum to minimize the

loss function by iteratively moving a small amount in the negative gradient direction (the

direction of maximum decrease in the objective function), updating the new momentum:

v(i+1) = αv(i) − η(i)

K

K∑

k=1

∇J(xk, tk; w(i)) (2.6.1)

wi+1 = w(i) + v(i+1) (2.6.2)

where v(i+1) is the new momentum, η(i) is the learning rate, αv(i) is the previous mo-

mentum. Finally, α is a factor that expresses the velocity: the larger α concerning the

learning rate, the more previous gradients affect the current update, so we have a stronger

momentum.

The key concept of momentum is that, unlike standard Stochastic Gradient Descent

(SGD), which takes constant steps along the gradient, momentum accumulates the gradi-

ents of previous iterations into an (implicit) weighted sum, keeping track of the directions

in which the gradient is headed. This allows the algorithm to overcome small local minima
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in the loss function.

2.6.2 Adaptive Moment Estimation (Adam)

Adam (Adaptive Moment Estimation) is an optimization method introduced in [35] that

computes the adaptive learning rate for each parameter by combining the concepts of

momentum and adaptive gradient. The update rule is based on the value of the gradient

at time t and the moving averages of the gradient and its square. More precisely, the

Adam method deĄnes the two Exponential Moving Averages (EMAs) mt (Ąrst moment)

and ut (second moment) as:

mt = ρ1mt−1 + (1− ρ1)gt (2.6.3)

ut = ρ2ut−1 + (1− ρ2)g
2
t (2.6.4)

Where gt is the gradient at time t, g2
t is the square of the gradient in terms of the

square of its components, ρ1 and ρ2 are hyper-parameters representing the exponential

decay rate for the Ąrst moment and the second moment (usually set at 0.9 and 0.999,

respectively); initially the moments are initialized to 0: mt = ut = 0.

Since the values of the two moving averages may be minimal because of their initializa-

tion to zero, especially in the Ąrst iterations, the authors of the Adam method proposed

a new version that presents a correction to the two moments:

m̂t =
mt

(1− ρt
1)

(2.6.5)

ût =
ut

(1− ρt
2)

(2.6.6)

Finally, the last update for each parameter θt of the network is:

θt = θt−1 − λ
m̂t√
ût + ϵ

(2.6.7)

where is the learning rate, is a very small positive number to prevent a possible division

by 0 (usually ϵ = 10− 8).
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Chapter 3

Baseline Strategy: Network

Architecture and Initial

Improvement

3.1 Neural Network Architecture

The model tested uses a network with DeepLabV3+ architecture. DeepLabV3+ is an

advanced encoder-decoder model that uses sophisticated convolutional neural networks

for segmenting images and capturing precise details. This third version of the DeepLab

project, developed by Google Research, has proven effective in addressing complex chal-

lenges related to image interpretation and producing highly accurate segmentations [36].

Figure 3.1.2 shows a total view of the architecture of DeepLabV3+.

The core of DeepLabV3+ is based on deep convolutional neural networks (CNNs), that

work as a backbone, making use of a speciĄc architecture as a feature extractor. Com-

mon choices for the basis are ResNet, MobileNet and Xception architecture. This choice

allows the model to capture details at different levels of abstraction, greatly improving

the accuracy of segmentation.

A key element of DeepLabV3+ is the use of atrous (or dilated) convolutions, which

expand the modelŠs Ąeld of view without swelling the overall number of parameters. This

kind of convolution operation is used in the ASPP (Atrous Spatial Pyramid Pooling)

module. Furthermore, to improve the quality of segmentation maps, DeepLabV3+ uses

skip connections. These connections combine low-level features from the Ąrst layers of

the network with high-level features from later layers. This combination helps maintain
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Ąne details while incorporating global context.

The following Sections will go on to talk speciĄcally about the encoder-decoder com-

position of the DeepLabV3+ model, focusing on the Atrous Spatial Pyramid Pooling

(ASPP) module.

3.1.1 Atrous Spatial Pyramid Pooling (ASPP) module

The Atrous Spatial Pyramid Pooling (ASPP) module represents a crucial advancement

within DeepLabV3+. This component combines different representations of the same

image by using multiple parallel atrous convolutional layers (or dilated convolutional

layers), each with different dilation rates; this allows the representation of the same feature

using different receptive Ąelds and catches various contextual details at multiple scales

[37]. This integration enables the model to encompass objects of different sizes present in

the image. The Atrous Spatial Pyramid Pooling (ASPP) module plays a pivotal role in

achieving accurate segmentations across different scales of objects.

Within the ASPP module, as we already said, atrous convolutions play the role of

extracting features from different areas of the image, but with the focus placed on different

scales. The varying dilation rates of atrous convolutions determine the Ąeld of view of

operations. Higher dilation rates correspond to a wider Ąeld of view, while lower rates

allow Ąner details to be captured.

The dilated convolutions are very similar to the standard ones: they differ only by

the presence of the dilation rate r, which expresses the space that must be skipped in the

input matrix to obtain the desired convolution according to the formula:

S(x, y) = (I ∗K)(x, y) =
m∑

i=1

n∑

j=1

I(x + r · i, y + r · j) ·K(i, j) (3.1.1)

where:

• (I ∗K)(x, y) represents the value of the resulting pixel at the position (x,y) of the

convoluted image,

• I is the image input (or feature map) in the convolutional layer,

• K is the kernel or convolutional Ąlter,

• m and n are the dimensions of the kernel K,

• x and y are the coordinates of the pixel in the convolved image,
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• r is the dilation rate, which determines the space between kernel pixels during

convolution.

As we can see, these convolutions can be dilated to sample input pixels with adjustable

spacing. This helps to capture information at different scales without increasing the com-

putational cost too much. Figure 3.1.1 visually shows the dilated convolution operation.

Atrous convolutions are critical for understanding structures and relationships in the

image: they maintain spatial resolution and capture local and global context within the

image. At lower dilation levels, atrous convolutions capture Ąne, local details, such as

contours or textures. At higher levels of dilation, they capture more general and global

information, such as object shapes or backgrounds.

Figure 3.1.1: Atrous Spatial Pyramid Pooling (ASPP). To classify the centre pixel (or-
ange), ASPP exploits multi-scale features by employing multiple parallel
Ąlters with different rates. The effective Field-Of-Views are shown in dif-
ferent colors [38].

3.1.2 Encoder-Decoder Architecture

The encoder-decoder architecture of DeepLabV3+ is carefully designed to address the

challenges of semantic segmentation in images. This architecture leverages an intelligent

combination of components to capture accurate details and improve image understanding

at different scales.

The encoder is the starting point of this architecture. Here, the initial image is pro-

cessed through a backbone neural network, that is composed of a series of convolutional

layers, i.e. ResNet, MobileNet, and Xception architecture. Each layer is designed to de-

tect speciĄc features in the image, such as edges and textures. This progressive feature

extraction helps the model to understand the image at a higher level by identifying key
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elements. During this process, the image also undergoes size reductions through pooling.

After the encoder, the extracted features enter the Atrous Spatial Pyramid Pooling

(ASPP) module. This module is crucial because it helps the model capture contextual

details at different spatial scales.

In the decoding phase, the architecture focuses on detail reconstruction. The features

obtained from the Atrous Spatial Pyramid Pooling (ASPP) module are enlarged through

up-sampling operations. In this stage is important to restore details lost in previous steps

and recover the original resolution of the image. Meanwhile, skip connections allow the

model to carry information back from the encoder to the decoder, helping to maintain a

consistent understanding of the image.

At the end of the architecture, we obtain a segmentation map that assigns semantic

labels to pixels in the image. Each pixel is classiĄed according to its class, enabling

accurate segmentation.

Figure 3.1.2: DeepLabV3+ architecture for semantic segmentation [39].

3.1.3 Details of architecture used

The adopted architecture includes the following components: Ąrst we have ResNet50 as

the backbone, so the input feature map has a size of 224 · 224 · 3; next there are various

stages of encoder downsampling until we reach the feature map size of 14 ·14 ·2048. After

these steps, we Ąnd the Atrous Spatial Pyramid Pooling (ASPP) module section, where

several layers extracted from different resolutions are depth-concatenated, resulting in

feature maps of size 14 · 14 · 1024.
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In the decoder upsampling section, an initial volume of 56 · 56 · 256 is obtained, Ąnally

arriving at the initial resolution of 224 · 224 · 2, which represents our binary segmentation

mask. The model has a total of about 43.9 million parameters (including weights and

biases) that can be trained.

3.2 Initial Improvement of Masks

In this Section, we will provide an overview of the initial method employed to improve

the performance of our model.

3.2.1 Iterative learning

The chosen training approach used is based on weak supervision, where our network is

trained on a speciĄc dataset of colonoscopy images called the Polyp-Box-Seg dataset. To

be precise, we selected 1040 images, constituting 80% of the total 1300 images (that have

ground truth information), plus an additional set of 2770 images (that have only bounding

box annotations).

Our training process follows an iterative methodology aimed at gradually reĄning the

modelŠs performance and capabilities. The beginning of each iteration is composed of two

phases:

• the generation of the segmentation masks for images that lack them,

• the use of these new masks as targets during the training process of that speciĄc

iteration.

This iterative loop, characterized by the alternation between mask generation and train-

ing, is preserved for a predeĄned number of cycles (precisely, eight iterations). The general

objective of this iterative process is the incremental enhancement and reĄnement of the

quality and precision of the masks produced by the model.

Three images are shown in Figure 3.2.1: the Ąrst is a segmentation mask generated

at the Ąrst iteration, followed by the one generated at the seventh iteration, ending with

the target mask, which is what we aim to generate.
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(a) Iteration n.1 (b) Iteration n.7 (c) Target mask

Figure 3.2.1: Segmentation masks at different stages of training [40].

3.2.2 Masks generation

To start the weakly supervised training process, it is necessary to generate the masks that

will serve as targets for iterative learning, even though they initially will not be accurate.

The generation of the masks is divided into several steps:

• Initial Mask Predictions: the mask generation process is based on predictions from

a pre-trained model, represented by DeepLabV3 (ResNet50 as a backbone). This

model has been trained using a fully supervised approach on the Kvasir-SEG dataset.

All training details will be presented in the next Sections.

• Bounding Box Alignment: a key step involves the alignment of mask components

with the conĄnes of the corresponding bounding box. This procedure is illustrated

in Figure 3.2.2, in the second row.

• Accuracy veriĄcation: this involves verifying that the generated mask completely

covers no less than 30% of the entire area of the bounding box. Alternatively, in

images where the mask generated does not meet the accuracy criteria established in

the previous step, the mask will be considered inadequate and therefore replaced.

This replacement involves the introduction of a circular mask, characterized by a

diameter equivalent to 4/5 of the smaller dimension of the bounding box. This kind

of mask is presented in Figure 3.2.2, in the third row.

3.2.3 Details of various iterations

First of all, it is necessary to list all the details of the training options used to train the

pre-trained model on the Kvasir-SEG dataset: training was carried out with mini-batches

of size 50 for a maximum of 25 epochs, with a learning rate of 0.01 characterized by a drop

factor of 0.2, using the Stochastic Gradient Descent with Momentum (SGDM) method as

an optimizer with momentum equal to 0.9. Afterwards, a Generalized Dice loss function
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Figure 3.2.2: Example of model-generated masks, starting from the top: (1) the mask
generated is accurate, (2) the generated mask needs to be cropped, (3)
the mask generated occupies too little space of the bounding box, so it is
discarded [40].

with an L2-Regularization factor equal to 0.005 is used.

Regarding the Ąnal baseline model, trained with weakly supervised learning, we use

iterative training for a total of 8 iterations using Adam as an optimizer and Generalized

Dice as a loss function, presented in Section 2.5.1. SpeciĄcally, the Ąrst 2 iterations use

mini-batches size of 127 for a maximum of 20 epochs and a learning rate (LR) Ąxed at

0.0001. Then we proceed with 6 more iterations of a maximum of 6 epochs each, but in

this case, the learning rate will be multiplied by 0.1 in order to reduce oscillations as the

model becomes more accurate.

In all iterations, data augmentation has been applied. Generally, this is a strategy

that allows us to reduce the phenomenon of over-Ątting, and also it allows us to limit the

problems consequent to having small datasets [41].

In detail, data augmentation consists of creating new data by applying transforma-

tions, generally translations, rotations, clippings, and horizontal and vertical Ćips to all
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training images. In this thesis, we used: translations in a range of -20 and +20 pixels on

the x-axis and y-axis, Ćips on both axes, rotations between -20 and +20 degrees, zoom-in

and zoom-out for scale values between 0.9 and 1.2.
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Chapter 4

Methods developed: Algorithms for

Improving Segmentation Masks

4.1 Saliency Maps

The improvement methods involving saliency maps are based on the use of MatlabŠs

Spectral Visual Saliency Toolbox, which contains the implementations of several state-of-

the-art visual saliency detection algorithms.

In particular, we used the spectral saliency multichannel function, which implements

spectral algorithms (FFT, DCT) for multi-channel saliency map computation. A detailed

description of the function and its input parameters are as follows:

spectral_saliency_multichannel(

image,

saliency_map_resolution,

algorithms,

smap_smoothing_filter_params,

cmap_smoothing_filter_params,

cmap_normalization,

extended_parameters,

do_figures

);

where:

• image is the input image on which we compute the saliency map,
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• saliency map resolution is the target saliency map resolution,

• algorithms is a list of spectral algorithms (several algorithms are available: ŠfftŠ,

Šfft:whiteningŠ, Šfft:residualŠ, ŠdctŠ, Šquat:fft:pqftŠ, Šquat:fft:eigenpqftŠ, Šquat:fft:eigensrŠ,

Šquat:dctŠ, Šquat:dct:fastŠ, Šfft:whitening:multiŠ,Šfft:residual:multiŠ, Šquat:dct:multiŠ,

Šquat:pqft:multiŠ, Šquat:fft:eigensr:multiŠ, Šquat:fft:eigenpqft:multiŠ, ŠittiŠ, ŠgbvsŠ, ŠldrcŠ,

ŠldrccbŠ),

• smap smoothing filter params controls the smoothing Ąlter applied to the saliency

map,

• cmap smoothing filter params controls the smoothing Ąlter applied to the con-

spicuity map,

• cmap normalization controls the normalization of the conspicuity map;

• extended parameters allows to specify any additional parameters speciĄc to the

algorithm used,

• do figures controls whether or not output Ągures are displayed.

SpeciĄcally, two algorithms were used for this work among all available:

•
′dct′ uses the Discrete Cosine Transform (DCT) algorithms and DCT-based image

signatures to calculate the saliency of each channel separately and then averages the

result,

•
′itti′ uses the Itti-Koch method, explained in Section 2.4.2, to compute the saliency

for the given image.

It should be added that for this type of approach, image pre-processing was done using

an anisotropic diffusion Ąlter, which has the advantages of reducing noise in images,

improving contrast and emphasizing contours. It is a type of edge-preserving Ąlter. Is

widely used in medical image processing to improve the visibility of anatomical structures.

Each improvement method developed in this work was created from the support of

the main reĄnement approach, explained in Section 3.2. No changes were made to the

architectural parameters of the network and its training components.

4.1.1 Base Spectral Saliency Map

The Base Spectral Saliency Map approach (called SPECTRAL) is divided into three

stages involving, respectively, the computation of the Spectral Saliency Map, its normal-
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ization and the identiĄcation of false positives and false negatives, to improve the Ąnal

segmentation mask:

1. The Spectral Saliency Map is calculated by modifying parameters such as saliency map

resolution and smap smoothing filter params: the resolution of a saliency map

is set to 1
4

of the initial image size, to have a good balance between a too coarse

and a too precise resolution (note that the saliency maps are rescaled to the size of

input images after its computation, to facilitate the successive procedures); Ąnally

a rotationally symmetric Gaussian lowpass Ąlter of size equal to 9 with a standard

deviation of 2.5 is used on the output saliency map;

2. Next, the Saliency Map is normalized. First, we calculated the dynamic range of

the values in the saliency map (the difference between the maximum value and the

minimum value), then we subtracted the minimum value from each element in the

saliency map and Ąnally divided it by the dynamic range; thus the saliency map

includes values between 0 and 1:

spectral saliency map−min(spectral saliency map(:))

max(spectral saliency map(:))−min(spectral saliency map(:))
(4.1.1)

3. The Ąnal step concerns the identiĄcation of false positives and negatives given two

speciĄc thresholds t1 and t2; this is done by using two multiplicative constants k1

and k2 (k2 = 1−k1), equal to 0.1 and 0.9 respectively, which are useful in calculating

the above-mentioned thresholds:

t1 = k1 ×max(saliency map)

t2 = k2 ×max(saliency map)
(4.1.2)

where max(saliency map) indicates the maximum value included in the saliency

map.

SpeciĄcally, false positives are detected if the corresponding value of the pixel in the

mask is 1 and if the value of the saliency map in the same pixel is inferior or equal

to the threshold t1, and therefore it is not signiĄcantly important at the saliency

level.

On the other hand, false negatives are detected if the corresponding value of the

pixel in the mask is 0 and if the value of the saliency map of the same pixel is greater

than or equal to the threshold t2, and so, it is important at the saliency level.

Finally, we compute the Ąnal binary segmentation mask given by the union between
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the generated mask (the mask given by the initial reĄnement) and the pseudo mask

computed in this step.

Algorithm 1: Spectral Saliency Map

1 saliency map resolution ← [size(img)*0.25, size(img,2)*0.25];
2 smap smoothing Ąlter params ← ŠgaussianŠ, 9, 2.5;
3 saliency map ← spectral saliency multichannel(ŠdctŠ, ...);
4 saliency map ← (saliency map−min(saliency map(:)))/(max(saliency map(:

))−min(saliency map(:)));
5 saliency map ← resize(saliency map);
6 k1 ← 0.1;
7 k2 ← 1 - k1;
8 threshold ← k1 × max(saliency map);
9 false positives ← (pred mask == 1) ∧ (saliency map ≤ threshold);

10 cleaned mask ← pred mask;
11 cleaned mask (false positives) ← 0;
12 threshold ← k2 × max(saliency map);
13 false negatives ← (pred mask == 0) ∧ (saliency map ≥ threshold);
14 cleaned mask (false negatives) ← 1;
15 ref mask ← cleaned mask ∨ pred mask;

(a) (b) (c) (d)

Figure 4.1.1: Examples of segmentations: (a) input image, taken from the dataset CVC-
ClinicDB [42], (b) ground truth respective to the image, (c) mask obtained
by the basic method, explained in Section 3.2, (d) mask obtained by Spec-
tral approach.

An example of segmentation masks is shown in Figure 4.1.1 so that comparisons can be

made. In addition, Algorithm 1 is a brief pseudocode representing the approach used for

improving a segmentation mask by use of the Spectral saliency map.

4.1.2 Superpixels Spectral Saliency Map

The Superpixels Spectral Saliency Map approach (called SPECTRAL SUPERPIXELS)

is divided into four stages involving, respectively, the computation of the N superpixel
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segments of the 2-D image, the computation of the Spectral Saliency Map, its normal-

ization and the identiĄcation of the most salient superpixel regions, to improve the Ąnal

segmentation mask:

1. The N superpixels of the input image are computed by using the Simple Linear

Iterative Clustering (SLIC) algorithm [43], which groups pixels into regions with

similar values; after this step, we will obtain a series of segments of pixels from the

input image; N is set to 120;

2. Next, the Spectral Saliency Map is computed as before by modifying saliency map

resolution and smap smoothing filter params parameters;

3. After that, the Saliency Map is normalized as before by using Formula 4.2.2;

4. The Ąnal step concerns the identiĄcation of the most salient superpixel regions;

this step is performed by determining a global threshold using OtsuŠs method [44]

and analyzing the average of the pixel values contained in each image segment; the

segment is added to the Ąnal segmentation mask if this average is greater than or

equal to the previously calculated global threshold. Finally, we compute the Ąnal

binary segmentation mask given by the union between the generated mask (the

mask given by the initial reĄnement) and the pseudo mask computed in this step.

Algorithm 2: Superpixels Spectral Saliency Map

1 saliency map resolution ← [size(img,1), size(img,2)];
2 smap smoothing Ąlter params ← ŠgaussianŠ, 9, 2.5;
3 num superpixels ← 120;
4 segments ← SLIC superpixels(img, num superpixels);
5 ref mask ← zeros(size(img,1), size(img,2));
6 saliency map ← spectral saliency multichannel(ŠdctŠ, ...);
7 saliency map ← (saliency map−min(saliency map(:)))/(max(saliency map(:

))−min(saliency map(:)));
8 threshold ← OTSU threshold(saliency map);
9 for i = 1 to num superpixels do

10 segment mask ← (segments == i);
11 median segment mask ← mean(saliency map (segment mask));
12 if median segment mask ≥ threshold then
13 ref mask ← ref mask + segment mask;

14 ref mask ← ref mask ∨ pred mask;

An example of segmentation masks is shown in Figure 4.1.2 so that comparisons can be

made. In addition, Algorithm 2 is a brief pseudocode representing the approach used
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(a) (b) (c) (d)

Figure 4.1.2: Examples of segmentations: (a) input image, taken from the dataset CVC-
ClinicDB [42], (b) ground truth respective to the image, (c) mask obtained
by the basic method, explained in Section 3.2, (d) mask obtained by Spec-
tral and Superpixels segmentation approach.

for improving a segmentation mask by use of the Spectral saliency map with Superpixels

segmentation.

4.1.3 Itti-Koch Spectral Saliency Map

The Itti-Koch Spectral Saliency Map approach (called SPECTRAL ITTI) is divided into

Ąve stages involving, respectively, the computation of the Itti-Koch Saliency Map, the

computation of the Spectral Saliency Map, their normalization, the computation of a

saliency map obtained as a weighted sum between them, and the identiĄcation of false

positives and false negatives to improve the Ąnal segmentation mask:

1. The Itti-Koch Saliency Map is computed by modifying parameters such as saliency map

resolution and smap smoothing filter params: since this type of map brings with

it many features regarding colour, intensity and orientation of pixels, the resolution

was set to 1
4

of the original image size; this was done to balance the large amount

of information computed by this method; Ąnally a rotationally symmetric Gaussian

lowpass Ąlter of size equal to 9 with a standard deviation of 2.5 was used on the

output saliency map, as before;

2. Next, the Spectral Saliency Map is computed as before by modifying saliency map

resolution and smap smoothing filter params parameters;

3. After that, the Itti-Koch and Spectral Saliency Map are normalized as before by

using Formula 4.2.2;

4. Then takes place the computation of a single and unique saliency map given by the

weighted sum of the two previously computed and normalized maps: two weights

w1, w2 were used, with w1 set to 0.6 and w2 to 0.4 (w2 = 1−w1); the saliency map
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is computed as follows:

saliency map = w1 × itti saliency map + w2 × spectral saliency map; (4.1.3)

It was chosen to give more weight to the Itti-Koch Saliency Map than to the Spectral

Saliency Map, because of the information content that the map offers;

5. The Ąnal step concerns the identiĄcation of false positives and negatives given two

speciĄc thresholds t1 and t2 as before; this is done by using two multiplicative

constants k1 and k2, equal to 0.1 and 0.9 (k2 = 1−k1); the thresholds are computed

as in Formula 4.1.2. Finally, we compute the Ąnal binary segmentation mask given

by the union between the generated mask (the mask given by the initial reĄnement)

and the pseudo mask computed in this step.

Algorithm 3: Itti-Koch Spectral Saliency Map

1 saliency map resolution ← [size(img,1)*0.25, size(img,2)*0.25];
2 smap smoothing Ąlter params ← ŠgaussianŠ, 9, 2.5;
3 itti saliency map ← spectral saliency multichannel(ŠittiŠ, ...);
4 itti saliency map ← (itti saliency map−min(itti saliency map(:

)))/(max(itti saliency map(:))−min(itti saliency map(:)));
5 spectral saliency map ← spectral saliency multichannel(ŠdctŠ, ...);
6 spectral saliency map ← (spectral saliency map−min(spectral saliency map(:

)))/(max(spectral saliency map(:))−min(spectral saliency map(:)));
7 w1 ← 0.6;
8 w2 ← 1 - w1;
9 combined map ← w1 ×itti saliency map + w2 ×spectral saliency map;

10 combined map ← resize(combined map, [size(img,1), size(img,2)]);
11 k1 ← 0.1;
12 k2 ← 1 - k1;
13 threshold ← k1 ×max(combined map);
14 false positives ← (pred mask == 1) ∧ (combined map ≤ threshold);
15 cleaned mask ← pred mask;
16 cleaned mask (false positives) ← 0;
17 threshold ← k2 ×max(combined map);
18 false negatives ← (pred mask == 0) ∧ (combined map ≥ threshold);
19 cleaned mask (false negatives) ← 1;
20 ref mask ← cleaned mask ∨ pred mask;

An example of segmentation masks is shown in Figure 4.1.3 so that comparisons can be

made. In addition, Algorithm 3 is a brief pseudocode representing the approach used for

improving a segmentation mask by use of the Spectral and Itti-Koch saliency map.
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(a) (b) (c) (d)

Figure 4.1.3: Examples of segmentations: (a) input image, taken from the dataset CVC-
ClinicDB [42], (b) ground truth respective to the image, (c) mask obtained
by the basic method, explained in Section 3.2, (d) mask obtained by Spec-
tral and Itti-Koch approach.

4.2 Class Activations Maps (CAMs)

The improvement methods involving Gradient-Class Activations Maps (Grad-CAMs) are

based on the use of MatlabŠs function gradCAM , which computes the Grad-CAM im-

portance map, where areas in the map with higher positive values correspond to regions

of input data that contribute positively to the prediction. A detailed description of the

function and its input parameters are as follows:

gradCAM(

net,

X,

classNames,

featureLayer,

reductionLayer,

OutputUpsampling

);

where:

• net is the trained network;

• X is the input data, speciĄed as a numeric array. For 2-D image data, X must be a

h-by-w-by-c array, where h, w, and c are the height, width, and number of channels

of the network input layer, respectively;

• classNames is a list of the class labels to use for computing the Grad-CAM map;

• featureLayer is the name of the feature layer used to extract the feature map when

computing the Grad-CAM map;

• reductionLayer is the name of the reduction layer used to extract output activations
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when computing the Grad-CAM map;

• OutputUpsampling, is the output upsampling method. For these method, the
′bicubic′ interpolation was to produce a smooth map;

Each improvement method developed in this work was created from the support of the

main reĄnement approach, explained in Section 3.2. Consequently, the architectural and

training parameters were not changed.

4.2.1 Gradient-Class Activations Maps (Grad-CAMs): Ąrst vari-

ant

The Ąrst variant of the Gradient-Class Activations Maps (Grad-CAMs) approach (called

GRADv1) is divided into six stages involving, respectively, the adaptation of the image

to the input layer of the pre-trained network, the computation of two Grad-CAM maps

based on speciĄc feature layers, the computation of a score map obtained as a weighted

sum between the two previous maps, their normalization and, Ąnally, the computation of

a binary segmentation mask obtained as the intersection between using a threshold map

and the mask predicted by the model:

1. The adaptation of the image to the input layer of the pre-trained model is done by

resizing the image using the speciĄc dimensions of the modelŠs input layer;

2. Next, there is the computation of two Grad-CAM maps: the Ąrst, which we will call

score map 1 was computed using the ŠcatAsppŠ layer of the model as the feature

layer. The ŠcatAsppŠ layer is a deep concatenation of the outputs of four previous

Re-LU layers present in the ASPP module, explained in Section 3.1.1; the choice to

use this layer was made because typically the last layer that collects the outputs of

the ReLU layers is used as feature layer and also because in this way we provide a

map with information about where the network puts most attention in the image.

The second, which we will call score map 2 was computed using the Šdec relu4Š layer

as a feature layer, which corresponds to the fourth ReLU output layer of the modelŠs

decoder; the choice of this layer was because it gives us information about the shape

of the segmentation. As a reduction layer, the Šsoftmax-outŠ layer was used for both

activation maps: typically, for classiĄcation and segmentation tasks, this layer is

usually the Ąnal soft-max layer;

3. Then takes place the computation of a single and unique activation map given by

the weighted sum of the two previous maps: two weights w1, w2 were used, with w1
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set to 0.3 and w2 to 0.7 (w2 = 1− w1); the activation map is computed as follows:

score map = w1 × score map 1 + w2 × score map 2 (4.2.1)

It was chosen to give more weight to the map that contains information regarding

the shape of the segmentation because the network attention information is very

strong;

4. After that, the activation map is normalized. First, we calculated the dynamic range

of the values in the saliency map (the difference between the maximum value and

the minimum value), then we subtracted the minimum value from each element in

the saliency map and Ąnally divided it by the dynamic range; thus the saliency map

includes values between 0 and 1:

score map−min value

max value−min value
(4.2.2)

where score map is the activation map, min value is the minor element inside the

map and max value the maximum;

5. Next, the threshold activation map is computed. A global threshold such as OtsuŠs

threshold was used to threshold the activation map obtained from the previous step;

then the resulting mask was resized with the initial dimensions of the input images;

6. Finally, the Ąnal mask is obtained by taking the common pixels between the mask

predicted by the model and the mask obtained from the previous step;

(a) (b) (c) (d)

Figure 4.2.1: Examples of segmentations: (a) input image, taken from the dataset CVC-
ClinicDB [42], (b) ground truth respective to the image, (c) mask obtained
by the basic method, explained in Section 3.2, (d) mask obtained by Grad-
CAM (Ąrst variant) approach.

An example of segmentation masks is shown in Figure 4.2.1 so that comparisons can be

made. In addition, Algorithm 4 is a brief pseudocode representing the approach used for

improving a segmentation mask by use of the Grad-CAM.
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Algorithm 4: Gradient-Class Activations Maps (Grad-CAMs): Ąrst variant

1 input size ← net.Layers(1).InputSize(1);
2 resized img ← resize(img, [input size, input size ]);
3 class names ← [ŠoneŠ, ŠzeroŠ];
4 feature layer 1 ← ŠcatAsppŠ;
5 reduction layer ← Šsoftmax-outŠ;
6 upsample type ← ŠbicubicŠ;
7 score map 1 ← gradCAM(net, resized img, class names, reduction layer,

feature layer 1, upsample type);
8 class names ← [ŠoneŠ, ŠzeroŠ];
9 feature layer 2 ← Šdec relu4Š;

10 score map 2 ← gradCAM(net, resized img, class names, reduction layer,
feature layer 2, upsample type);

11 w1 ← 0.3;
12 w2 ← 1 - w1;
13 weighted score map ← (w1 × score map 1 + w2 × score map 2)/2;
14 norm weighted score map ← normalizeGradCAM(weighted score map);
15 threshold ← OTSU threshold(img);
16 thresh score map ← norm weighted score map ≥ threshold;
17 thresh score map ← resize(thresh score map,[size(img,1), size(img,2)]);
18 Ąnal mask ← thresh score map ∧ pred mask;

4.2.2 Gradient-Class Activations Maps (Grad-CAMs): second

variant

The second variant of Gradient-Class Activations Maps (Grad-CAMs) approach (called

GRADv2) is divided into six stages involving, respectively, the adaptation of the image

to the input layer of the pre-trained network, the computation of some Grad-CAM maps

based on speciĄc feature layers, the computation of a score map obtained as the aver-

age of the previous maps, their normalization and, Ąnally, the computation of a binary

segmentation mask obtained as the intersection between a threshold map and the mask

predicted by the model:

1. The adaptation of the image to the input layer of the pre-trained model is done as

before;

2. Next, there is the computation of some Grad-CAM maps: different encoder activa-

tion layers were used, starting from intermediate to deep layers, along with the cor-

responding decoder ones. In order, the following layers were used as feature layers:

some intermediate convolutional layers such as Šres3c branch2bŠ, Šres4c branch2bŠ

and corresponding Re-LU output layers such as Šactivation 19 reluŠ, Šactivation 31
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reluŠ: these layers lie between the Ąrst layers, which capture low-level features such

as edges and colours, and the deeper layers, which capture high-level features. The

middle layers can represent a combination of low-level and high-level features.

Next, deeper convolutional and Re-LU output layers such as Šres5c branch2bŠ, Šac-

tivation 49 reluŠ, and ŠcatAsppŠ: deeper convolution layers tend to capture higher-

level features and more complex image concepts; may contain more abstract and

discriminating information for our classes of interest. Generally, activations layers

are useful for highlighting regions with strong activations.

Finally, we have Šdec c2Š, Šdec relu2Š, Šdec c4Š, Šdec relu4Š, and Šdec crop2Š: these

layers represent the last stages of your network and are responsible for transposing

the convolutional output to achieve higher resolution segmentation. By using these

layers, we can have a better localization of discriminating features for the ŠoneŠ and

ŠzeroŠ classes in our image.

As a reduction layer, the Šsoftmax-outŠ layer was used for both activation maps, as

before;

3. Then takes place the computation of a single and unique activation map given by

the average of the previous maps;

4. After that, the activation map is normalized as before;

5. Next, the threshold activation map is computed as before by using OtsuŠs threshold;

6. Finally, the Ąnal mask is obtained by taking the common pixels between the mask

predicted by the model and the mask obtained from the previous step;

(a) (b) (c) (d)

Figure 4.2.2: Examples of segmentations: (a) input image, taken from the dataset CVC-
ClinicDB [42], (b) ground truth respective to the image, (c) mask obtained
by the basic method, explained in Section 3.2, (d) mask obtained by Grad-
CAM (second variant) approach.

An example of segmentation masks is shown in Figure 4.2.2 so that comparisons can be

made. In addition, Algorithm 5 is a brief pseudocode representing the approach used for

improving a segmentation mask by use of the Grad-CAM.
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Algorithm 5: Gradient-Class Activations Maps (Grad-CAMs): second variant

1 input size ← net.Layers(1).InputSize(1);
2 resized img ← resize(img, [input size, input size ]);
3 class names ← [ŠoneŠ, ŠzeroŠ];
4 feature layers ← [ Šres3c branch2bŠ, Šactivation 19 reluŠ, Šres4c branch2bŠ,

Šactivation 31 reluŠ, Šres5c branch2ŠŤ, Šactivation 49 reluŠ, ŠcatAsppŠ, Šdec c2Š,
Šdec relu2Š, Šdec c4Š, Šdec relu4Š, Šdec crop2Š, ];

5 reduction layer ← Šsoftmax-outŠ;
6 upsample type ← ŠbicubicŠ;
7 combine grad map ← zeros(size(resized img, 1), size(resized img, 2));
8 for i← 1 to numel(feature layers) do
9 feature layer ← feature layers (i);

10 score map ← gradCAM(net, resized img, class names, reduction layer,
feature layer, upsample type);

11 combine grad map ← combine grad map + score map;

12 combine grad map ← combine grad map/numel(feature layers);
13 norm score map ← normalizeGradCAM(combine grad map);
14 threshold ← 0.4 × max(norm score map);
15 thresh score map ← norm score map ≥ threshold;
16 thresh score map ← resize(thresh score map, [size(img,1), size(img,2)]);
17 Ąnal mask ← thresh score map ∧ pred mask;

4.2.3 Gradient-Class Activations Maps (Grad-CAMs) and Adap-

tive Region Growing (ARG)

The variant of Gradient-Class Activations Maps (Grad-CAMs) approach that uses also

the Adaptive Region Growing algorithm (called GRAD ARG) takes inspiration from the

work of Yuhan Xie et al. [45] and it is divided into three parts: detection, growth and

segmentation. In the detection part, we exploit the information given by the weak labels,

i.e., the bounding boxes; then we carry out the computation of Grad-CAM on the image

given the bounding box to generate a meaningful heat-map representing the networkŠs

attention in the image box. In the growth part, we use a highly thresholded heat-map

as initial seed points; according to the grayscale information in the bounding box, an

adaptive regional growth is performed to obtain pseudo-labels. In the segmentation part,

we compute the Ąnal binary segmentation mask given by the intersection between the

generated mask and the pseudo mask after post-processing:

1. In the detection part, we exploited all the information given by the weak labels,

i.e., the bounding boxes, by cropping the input image and considering only the part

contained in the bounding boxes. In this image, we calculated an activation map
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using Grad-CAM, making use of the Šdec relu4Š layer as the feature layer, Šsoftmax-

outŠ as the reduction layer and ŠbicubicŠ interpolation as the output upsampling

method. The obtained heat-map was then normalized using the Formula in 4.2.2 and

thresholded with a high conĄdence threshold of about 80%. Considering that there

may be positioning errors in the heat-map, we exploit grayscale image information

to remove some seed points: we Ąrst compute the OtsuŠs threshold θ for the image

box, and then we eliminate all seed points below this threshold, to guarantee the

accuracy of seed points. These can be described with the following Formula:

rect heatmap(x, y)′ =







1, rect heatmap(x, y) ≥ θ

0, rect heatmap(x, y) ≤ θ
(4.2.3)

The resulting binary map represents the initial seed points used as input to the

Adaptive Region Growing algorithm.

2. After that, there is the growth part, in which the Adaptive Region Growing (ARG)

algorithm is involved. The idea behind this algorithm is the concept of connectivity:

starting from initial seed points, group pixels or sub-regions into larger regions based

on a merging rule (or predicate) until a stopping rule is reached.

We set the stopping condition of adaptive region growth as:

♣Pnew − PS̄♣ ≤ ϵ

Pnew ≥
Pf̄ + Pb̄

2

ϵ = (Pf̄ − Pb̄)× ratio

(4.2.4)

where Pnew denotes the grayscale of new point in growing, PS̄ denotes the aver-

age grayscale of seeds, Pf̄ and Pb̄ denote the average grayscale of foreground and

background and ratio denotes a parameter used to include in the growth pixels

of background (we set ratio to 0.2). The union of Formulas 4.2.4 constitutes the

boundary conditions for growth. The pseudo-code of the Adaptive Region Growing

algorithm for pseudo mask generation is shown in Algorithm 6;

3. Next we have the segmentation part where the Ąnal binary segmentation mask is

generated: after generating the pseudo mask we decided to apply post-processing

to it, which consists of identifying the connected components (blobs), among them

considering only the largest ones and apply a morphological dilate operation on the

Ąnal mask. As a last step we performed an intersection operation between the mask

predicted and reĄned by the approach explained in the Section 3.2 and the pseudo
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mask generated in this step.

This approach differs from the others because a slight change was made in the training

components: the Binary Cross-Entropy (BCE) loss function, explained in Section 2.5.2,

was summed to the Generalized Dice loss function, explained in Section 2.5.1.

Algorithm 6: Adaptive Region Growing algorithm for pseudo mask generation

Input : Initial seed points Pseeds

Output : Pseudo mask Pgrown

Initialization: grown points set Pgrown = Pseeds; directions set D =
¶(−1,−1), (0,−1), (1,−1), (1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0)♢;

1 for row in Pseeds do
2 for col in Pseeds do
3 Pseed = Pseeds[0];
4 foreach direction in D do
5 Pnew = Pseed + direction;

6 if (♣Pnew − PS♣ ≤ ϵ or Pnew ≥
P

f
+P

b

2
) then

7 Pseeds = Pseeds ∪ Pnew;
8 Pgrown = Pgrown ∪ Pnew;

9 return Pgrown

Algorithm 7: Gradient-Class Activations Maps (Grad-CAMs) and Adaptive
Region Growing (ARG)

1 pred mask ← get mask(net, img);
2 generated mask ← initial reĄnement(pred mask);
3 img box ← rect bb(img);
4 seed pints ← get seed points(img box);
5 pseudo mask ← adaptive region growing(seed pints);
6 Ąnal mask ← compute mask union(pseudo mask, generated mask);

An example of segmentation masks is shown in Figure 4.2.3 so that comparisons can be

made. In addition, Algorithm 7 is a brief pseudocode representing the approach used for

improving a segmentation mask by use of the Grad-CAM and Adaptive Region Growing.
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(a) (b) (c) (d)

Figure 4.2.3: Examples of segmentations: (a) input image, taken from the dataset CVC-
ClinicDB [42], (b) ground truth respective to the image, (c) mask obtained
by the basic method, explained in Section 3.2, (d) mask obtained by Grad-
CAM and Adaptive Region Growing approach.
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Chapter 5

Experiments and Results

5.1 Datasets

Pixel-wise image segmentation is a highly demanding task in medical image analysis. In

practice, it is difficult to Ąnd annotated medical images with corresponding segmentation

masks. For this reason, this kind of problem requires high-quality training datasets. The

types of data available for colorectal polyp detectors include, for the most part, static

photos extracted from live video streams.

This Section analyzes the standard datasets typically used to test polyp detection

models, and the dataset used to train our model. In Table 5.1.1, a summary of all the

datasets is presented. In order to be able to test our developed models and understand

their performance, we used the following datasets:

• Kvasir-SEG: The Kvasir-SEG dataset (size 46.2 MB) is an open-access dataset of

1000 gastrointestinal polyp images and their corresponding ground truth segmenta-

tion mask, manually annotated by a medical doctor and then veriĄed by an experi-

enced gastroenterologist [46]. The resolution of the images contained in Kvasir-SEG

varies from 332x487 to 1920x1072 pixels.

• CVC-ClinicDB: The CVC-ClinicDB (size 5.22 MB) is an open-access dataset con-

taining 612 images of polyps associated segmentation mask manually produced by

experts with a resolution of 384×288, taken from 31 colonoscopy sequences [42].

Typically used for testing due to the limited number of samples.

• CVC-ColonDB: The CVC-ColonDB (size 91.2 MB) is another polyps dataset con-

taining 380 images with the respective segmentation mask, with a resolution of
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574x500 [47]. Typically used for testing due to the limited number of samples.

• CVC-300: The CVC-300 (size 31.7 MB) is a dataset consisting of 300 colorectal

endoscopy images, a subset of CVC-ColonDB [47]. Typically used for testing due

to the limited number of samples.

• ETIS-LaribPolypDB: The ETIS-LaribPolypDB (size 176 MB) dataset contains 196

images with a Ąxed resolution of 1225x966, with polyps extracted from 34 sequences

with 44 different polyps [48]. Typically used for testing due to the limited number

of samples.

In order to train our developed models, we used the following dataset:

• Polyp-Box-Seg: The Polyp-Box-Seg dataset (size 46.2 MB) contains 4070 colonoscopy

images with 640x480 resolution from over 2000 patients. A subset of 1300 elements

is equipped with the corresponding manually annotated mask, while the remaining

component has a bounding box. The images in this dataset were hand-selected from

videos of colonoscopies so that each image contains a unique polyp. This is to re-

duce the correlation between images and thus to decrease the possible intra-patient

polyp similarity bias. The images in this dataset contain polyps of different sizes

and morphologies and come from each portion of the colorectum [49].

Table 5.1.1: Summary of all Colon-rectal Polyp Datasets used.

Dataset Number of Samples Resolution Size (MB)

Kvasir-SEG 1000 332x487 to 1920x1072 46.2
Polyp-Box-Seg 4070 640x480 46.2
CVC-ClinicDB 612 384x288 5.22
CVC-ColonDB 380 574x500 91.2
CVC-300 300 574x500 31.7
ETIS-LaribPolypDB 196 1225x966 176

5.2 Performance Indicators

This Section will present the performance indicators used to assess the models created.

All the metrics are based on the computation of a confusion matrix for a binary

segmentation mask, which contains the number of True Positive (TP), False Positive (FP),

True Negative (TN), and False Negative (FN) values. The kind of prediction ranges span

from zero (worst) to one (best). Our goal is to score the similarity between the predicted

segmentation (actual prediction) and the labelled segmentation (actual ground truth).
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First of all, the confusion matrix is a tabular representation used to evaluate the

performance of a classiĄcation model, especially in binary classiĄcation problems (where

there are two classes). The matrix shows the relationship between the predictions made

by the model and the true class labels of the data, as we can see from Figure 5.2.1.

The confusion matrix is composed of 4 key elements:

• True Positive (TP): represents the number of times in which the model correctly

predicts the positive class,

• False Positive (FP): represents the number of times in which the model correctly

predicted the positive class when it was negative,

• True Negative (TN): represents the number of cases in which the model correctly

predicted the negative class,

• False Negative (FN): represents the number of times in which the model did not

correctly predict the negative class when it was positive.

Now we can deĄne the evaluation metrics used for our models in the testing phase:

• Intersection over Union (IoU, also called Jaccard coefficient): is the area of the

intersection over the union of the predicted segmentation and the ground truth:

IoU =
Area of overlap

Area of union
=

TP

TP + FP + FN
(5.2.1)

• Dice: is calculated by dividing twice the area of the intersection between the pre-

dicted mask and the ground truth mask by the sum of the areas of the two masks:

Dice =
2× Area of overlap

Total Area
=

2TP

2TP + FP + FN
(5.2.2)

• Precision: is the number of True Positive samples divided by all positive samples:

Precision =
TP

TP + FP
(5.2.3)

• Recall: is the number of True Positive samples divided by the number of all samples

that should have been identiĄed as positive:

Recall =
TP

TP + FN
(5.2.4)
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Predicted

Positive Negative

Positive TP FN
Actual

Negative FP TN

Figure 5.2.1: The Confusion Matrix.

• F2 Score: is a measure that assigns greater weight to accuracy than to recall:

F2 =
(1 + β2)× Precision× Recall

(β2 × Precision) + Recall
(5.2.5)

where β is a factor that controls the importance of precision versus recall. A larger

β value assigns greater weight to precision.

• Accuracy: is the number of correct predictions, that is the number of correct positive

and negative predictions divided by the total number of predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.2.6)

5.3 Training and Testing Protocol

This Section will brieĆy present the protocols used for training and testing the created

models, including the backbone neural network.

First, the backbone was trained on the Kvasir-SEG dataset. To evaluate the goodness,

and thus the various metrics, of the models we created, was used a speciĄc training and

testing protocol. In the training protocol, the model underwent a training phase using

the Polyp-Box-Seg dataset, consisting of the images speciĄed in Section 3.2.1 (80% of the

total images). Next, all models have been tested in the same Polyp-Box-Seg dataset (20%

of the total images).

The testing protocol involved the preliminary test phase of the models on the Ąve

datasets typically used in the medical Ąeld of colorectal polyp segmentation, called CVC-

ClinicDB, CVC-ColonDB, CVC-300, ETIS-LaribDB; here, to accelerate the development

of the various models, the most promising ones in the preliminary test phase were then

used in the iterative learning, with the procedure previously described.
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5.4 Working Environment

For the actual implementation of the models, MATLAB 9.14 (R2023a) was used, equipped

with Computer Vision Toolbox, Deep Learning Toolbox, Image Processing Toolbox, Par-

allel Computing Toolbox, Statistics and Machine Learning Toolbox, Image Processing

Toolbox, Spectral Saliency Toolbox. Along with these Toolboxes, the Graph-Based Visual

Saliency (GBVS) package was installed on MATLAB to take advantage of the Itti-Koch

Saliency Map computation.

The machine used for training is the ŠbladeŠ server installed at our Department, con-

Ągured to satisfy computing resource requests from users; speciĄcally, the train and test

protocol was performed on an Nvidia Titan RTX GPU or Nvidia RTX 3090 GPU, with

10G of maximum memory.

The training process took a different number of total hours, depending substantially

on the type of model trained. The baseline took 5 hours for full training; methods relying

on a saliency map took 10-12 hours for full training; methods relying on Grad-CAM

took 36-38 hours, except Adaptive Region Growing, which instead took 10-11 hours to

complete the training.

5.5 Results

In this Section, we report the experimental results carried out to assess the various ap-

proaches developed, explained in the previous chapter. Before going into the details of the

speciĄc results obtained from each model developed and the related tables and graphs,

it is important to highlight again the general context of the work, including the work

environment, explained in Section 5.4, and the training and testing protocols, explained

in Section 5.3.

We will begin with an overall presentation of the performances of the developed models,

including the baseline, and the main trends observed in the results followed by a brief

examination of them. Then, we will move on to a discussion of the results obtained,

making an analysis based on metrics listed in Section 5.2 and a comparison with the

initial baseline reĄnement method.

5.5.1 Results presentation

We will now present the results obtained from the models developed. For a clear under-

standing, we will present graphs showing the trend of the metrics used during the various
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5.5.2 Results Discussion

We will now discuss the results presented in the previous Sub-Sections. Initially, we are

going to compare methods using Saliency Maps with methods using Grad-CAMs and

see how the performance indicators change. Then, we will compare each model with

the BASELINE approach, trying to see if there are any promising methods among those

developed. We will use the average value of each metric for each method developed so that

we can also deĄne stability, convergence and if there has been an overall improvement.

Figure 5.5.8 can be useful to have a visual understanding of the performance of each

metric respectively the methods developed.

First, letŠs start by comparing methods that use the Saliency Map approach. For the

results shown in Tables 5.5.2, 5.5.3 and 5.5.4 we can note that the SPECTRAL SUPERP-

IXELS model seems to have generally high performance among the three methods in

the last iteration. The Dice score, Recall and F2-Score metrics are among the highest,

indicating a good ability of the model to capture relevant features in the data. Overall

accuracy is constant, and in the last 3 iterations, it increases a lot, overtaking the other

two models. Instead, the SPECTRAL model has better results in terms of IoU and

Precision. On the other hand, the SPECTRAL ITTI model shows signiĄcant variation in

metrics between runs, with some performance that is signiĄcantly better than others. For

example, the Recall seems to reach a high value in the fourth iteration and stay stable

until the end. Overall accuracy is generally high, but there may be some sensitivity to

speciĄc data features or parameter conĄgurations.

It is important to note that the spectral algorithms used to calculate saliency maps

highlight more the parts of the input image that contain an abrupt change in colour or

brightness. This is typical of colorectal images, which may have light reĆections in the

colon wall due to the probeŠs light used to perform the colonoscopy and illuminate the

affected area. This may be the reason for no excellent performances, because these areas

may not have polyps.

After that, we analyze the GRADv1 and GRADv2 models. From the results shown

in Tables 5.5.5 and 5.5.6, we can note that, in terms of Precision and Recall, GRADv2

has slightly higher values than GRADv1. However, GRADv1 has a higher F2-Score than

GRADv2, indicating a better ability to balance Precision and Recall. Overall accuracy

is similar between the two methods, with GRADv2 slightly higher. In summary, the

two methods seem to have similar performance, with GRADv2 showing slight superiority.

However, these differences may not be statistically signiĄcant to determine a modelŠs

behaviour.
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Certainly, we can say that the slight improvement we had with GRADv2 comes from

the use of more useful information in generating the activation map, given by the layers

taken at the initial, intermediate and deep levels of our base model, as explained in Section

4.2.2.

Table 5.5.1 presents a summary of the performances concerning the BASELINE model.

We use this data as a basis for a brief comparison with metrics from the other methods

developed:

• SPECTRAL: In Table 5.5.2 is presented a summary of the performances concern-

ing the SPECTRAL model. The results are similar to those of the BASELINE,

with higher Overall accuracy. IoU and Dice are also good, indicating a good overlap

between predictions and labels. F2-Score is not so good: although SPECTRAL is

better in terms of Precision, it is not better in terms of Recall, so this weighs a lot

on the F2-Score computation.

• SPECTRAL SUPERPIXELS: In Table 5.5.3 is presented a summary of the per-

formances concerning the SPECTRAL SUPERPIXELS model. This model seems

to perform slightly better concerning BASELINE, in general; in fact, we have small

improvements in each metric.

• SPECTRAL ITTI: In Table 5.5.4 is presented a summary of the performances

for the SPECTRAL ITTI model. This model seems to perform slightly worse con-

cerning BASELINE, in general; in fact, we have small improvements only in terms

of Precision and Overall accuracy. IoU, Dice, F2-score and Recall are still good, but

worse respectively to BASELINE.

• GRADv1, GRADv2: In Table 5.5.5 and 5.5.6 are presented a summary of the

performances for the GRADv1 and GRADv2 model. Concerning the GRADv1

model, the results are similar to those of BASELINE, with higher Overall accuracy

and Precision. IoU and Dice are also good. Only F2-Score and Recall perform

worse. Instead, GRADv2 has better performance in terms of Iou, Dice, Precision

and Overall accuracy, but it maintains the same trend as ŠGRADv1Š in terms of

F2-Score and Recall.

• GRAD ARG: In Table 5.5.7 is presented a summary of the performances for the

GRAD ARG model. As we can see from the graphs 5.5.8, the IoU and Dice scores

are better than any other method, indicating a good overlap between predictions

and labels. This model has better performances also in Precision and Overall ac-

curacy for BASELINE, but it seems to have difficulty improving Recall without
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compromising Precision, and this behaviour spoils also the F2-Score.

We can say that most methods can maintain or improve performance compared to BASE-

LINE in some of the metrics evaluated. All methods seem to produce fairly good results

in terms of IoU, Dice, and Overall Accuracy. Recall and Precision metrics vary among

the methods, with some methods scoring higher in these metrics than others. Analyz-

ing other metrics than Overall accuracy, we can see that GRAD ARG gets higher scores

than all the other methods on IoU and Dice metrics, respectively, which are important

as overlap metrics as well as Precision. The other method that overtakes the others is

SPECTRAL SUPERPIXELS on F2-Score and Recall metrics, respectively, which is im-

portant for balancing false negatives against false positives in the binary segmentation

mask. Finally, the highest Overall accuracy is given by the GRADv2 method, which is

closest to 0.98 at the last iteration of iterative learning.

There are differences between the results obtained with the different methods and

this could be due to various factors, including the speciĄc approach developed, weight

management, optimizer, maximum number of epochs and other training parameters. The

results of some methods, like SPECTRAL, GRADv2 and GRAD ARG appear to be not

so stable across iterations. For these methods, it might be useful to increase the number

of re-training to achieve some sort of convergence.

In summary, iterative learning with different interpretation techniques can lead to

signiĄcant improvements in model performance, but the choice of methods must be guided

by the speciĄc nature of the problem, as segmentation of colonoscopy images is a very

complicated task by its nature.

To summarize, using various explainable techniques in iterative learning can enhance

model performance. However, itŠs important to select the appropriate methods based on

the complexity of the problem at hand, and its nature: the segmentation of colonoscopy

images is a very complicated task by its nature.
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Chapter 6

Conclusions

The conclusions of this thesis are now drawn, having come to the end of the presentation

and discussion of the results. In this thesis, we conducted an in-depth investigation in

the Ąeld of medical image segmentation, a crucial element in the Ąeld of medical image

processing, particularly when used in the context of colon polyps and colorectal cancer,

which ranks among the most prevalent forms of cancer nowadays. Precise segmentation of

anatomical structures in medical images plays a key role in guiding clinical interventions,

treatment planning and patient assessment.

This thesis is focused on the examination of two of the most important explainable

AI-based methodologies that aim to improve image segmentation in our speciĄc domain,

exploiting weak supervised semantic segmentation. To address this complex challenge, we

developed several methods, including SPECTRAL, SPECTRAL SUPERPIXELS, SPEC-

TRAL ITTI, GRADv1, GRADv2 and GRAD ARG. These methods exploited both saliency

maps and Grad-CAM maps, attempting to capture relevant image features and salient

image regions to improve segmentation accuracy. Through a series of experiments, we

evaluated the performance of each method in terms of IoU, Dice score, F2-Score, Preci-

sion, Recall and Overall accuracy.

The results obtained revealed several interesting trends. For example, methods based

on Grad-CAM, such as GRADv2 or GRAD ARG showed great potential in improving

segmentation, with high performance on several metrics. On the other hand, Saliency

Map-based methods, such as SPECTRAL SUPERPIXELS, showed a slight advantage in

terms of F2-Score and Recall. However, it is important to note that the differences be-

tween these methods may not be statistically signiĄcant in determining model behaviour,

due to variability in metrics during re-training iterations. The robustness of each method
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depends on its ability to maintain consistent performance on different images. The re-

sults indicate that no method is consistently superior to BASELINE in all metrics. This

represents a lack of robustness in the results.

6.1 Future Works

One of the possible future paths could focus on exploring other methods of Explainable

AI, such as Occlusion Sensitivity, LIME, etc., or focus on approaches involving a fusion

of saliency map and Grad-CAM-based methods. An example would be to try to combine

what good has been achieved with SPECTRAL SUPERPIXELS and GRAD ARG and

observe the results, noting whether there is an improvement or not.

In addition, considering the complex nature of colonoscopy images, another possible

way could be to explore even more deeply the scientiĄc literature in this context and

observe new methods that can take advantage of the weak labels.

In conclusion, this thesis sought to bring improvements to already well-tested and

high-performing methodologies in the Ąeld of medical image segmentation of colorectal

polyps by offering explainable AI-based approaches. The work remains open to possible

interesting developments.
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