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Chapter 1

Abstract

Recently electrospray thrusters have raised a new interest in their simple
adaptation to many spatial applications. As there isn’t a precise model
of how they work what I will try to do in this master thesis is to find a
mathematical model that describes them in a simple way. After exposing
some physical concepts I will study the physics of conductive liquids and
then study the dynamics of the fluid during the operation with the purpose
of calculating their propulsive parameters. In the end all the equations found
will be grouped together to implement in Matlab a code that can calculate
the performances of these thrusters with different initial conditions.
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Chapter 2

Introduction

Electrospray thrusters are electrostatic accelerators of charged particles
produced from electrified liquid surfaces. At the moment, there are three
types of electrospray thruster technologies:

1. Colloid thrusters, which are accelerators of charged droplets or
ions, using solvents such as doped glycerol and formamide [HCONH2]
as propellants;

2. Field Emission Electric Propulsion (FEEP), which makes use of
liquid metals, typically cesium (Cs) and lanthanides (Ln), and produce
positively charged metallic ions;

3. Ionic Liquid Ion Sources (ILIS), that use room-temperature molten
salts, also known as ionic liquids, and produce salt ion beams, or mix-
tures of ions and droplets.

A simple conceptual scheme of an electrospray thruster is shown in figure 2.1.
We can see the emitter, the electrode (d), the power supply that gives the
voltage V and the steady state dynamic of the conductive liquid (Taylor’s
cone, cone-jet, droplets and fragmentation).

The first form of electrospray propulsion (which can be tracked back to the
beginning of the 20th century) came in the form of colloid thrusters. They
were intensively studied from 1960 to 1975 as an alternative to normal ion
engines. Their appeal at that time rested with the large molecular mass of
the droplets, which was known to increase the thrust density of an ion engine.
This is because the accelerating voltage is:

V =
mc2

2q
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Figure 2.1: Electrospray thruster.

where:

• m: mass of a single droplet (or ion);

• q: electric charge of a single droplet (or ion);

• c: final speed reached by the droplets at the end of the applied electric
field.

If c is mission requisite then the voltage V can be increased enhancing the
ratio m/q. This also increases both the space charge limited current density
(given by the Child-Langmuir’s law):

j =
4ε0

9

√
2q

m

V 3/2

d2

and the thrust density, which is proportional to V 2 and therefore to (m/q)2

(d is the grid spacing of the electrodes). In addition to the higher thrust
density, the higher voltage also increases the efficiency since any cost-of-ion
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voltage (Vloss) becomes then less significant.
Although everything seems to work well, high ratios of m/q create serious
insulation and packaging problems, that made these devices unattractive, in
spite of their demonstrated good performance (Isp ∼ 1000 s). In addition, the
droplet generators were usually composed of arrays of a large number of indi-
vidual liquid-dispensing capillaries, each providing a thrust of the order of 1
µN. This required fairly massive arrays, further discouraging implementation.

Nowadays, after years of lay-off on the subject, a strong interest on these
devices is born again thanks to:

• the new emphasis on miniaturization of spacecraft. The very small
thrust per emitter now becomes a positive feature, allowing designs
with both fine controllability and high performance;

• the advances made by electrospray science in the following years. These
have been motivated by other applications of electrospraying such as, in
recent years, the extraction of charged biological macromolecules from
liquid samples for very detailed mass spectroscopy. These advances now
offer the potential for overcoming previous limitations on the specific
charge q/m of droplets, and therefore may allow operation at more
comfortable voltages (1-5 kV);

• the advances in micro-manufacturing technologies allow for efficient
clustering of a large number of emitter tips on a small surface, po-
tentially to the point of competing with plasma thrusters (ion or even
Hall) in achievable current density.

One essential advantage of electrospray engines for space applications is
the fact that no gas phase ionization is involved with their very small thrust
levels. In these devices, as we will see, the charging mechanisms are vari-
ations of an electric field on the surface of a conductive liquid; small sizes
naturally enhance local electric fields and facilitate this effect. In other elec-
trical engines, attempts to miniaturize them (ion engines, Hall thrusters,
arcjets) lead to the need to reduce the ionization mean free path (σionne)

−1

by increasing ne and the heat flux and energetic ion flux to walls as well; this
leads inevitably to life reductions of the device.
As stated in many propulsion books, these thrusters are presently under de-
velopment. [1]

From this overview, my supervisor and I got more keen on this subject and fi-
nally have decided to study the physics of these devices to develop a program
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for calculating their performance. The question we would like to answer is:

if I apply a given voltage to a simple electrospray thruster (with both
the geometry and the fluid properties known), how much thrust will I
get?

So, starting from what we asked, the purpose of my thesis is to create a
mathematical model to describe an electrospray thruster by studying the
equations that are already present in scientific literature. During the work
we dealt with problems of different nature: after searching for the relevant
equations to our case we realized that the mathematical problem was un-
determined (which is not surprising if one knows the embryonic state of art
of this research field). Consequently, we had to find the last equations to
create the model and implement it on a computer. My thesis, after a brief
description of the basic physics involved, explains how we have found these
equations and how they work together with the older and known physics
laws.

16



Chapter 3

Basic physics

In colloid thrusters we have an interaction between two of the biggest phe-
nomena ever: fluid mechanics and electrostatics. As I will describe in the
next chapter, an ionic fluid is a conductive liquid, or rather, a fluid that can
bring an electric current inside it. Therefore to model a conductive liquid
we must put in relation the fundamental laws of both fluid mechanics and
electrostatics.

3.1 Fluid mechanics

The most useful basic concepts of fluid mechanics to understand how an
electrospray thruster works are:

• Continuity Equation (or mass conservation);

• the Laplace equation (for the surface tension).

We can also put the momentum equation but it’s not interesting for what
concerns the ionic fluid; it is the same that describes the thrust T in the
basic propulsion physics and so it is always valid, also in our case:

T = ṁc (3.1)

The difference lies on how the thrust reacts: while in a rocket (or jet) engine
the resulting pressure distribution, given by the momentum equation, reacts

17



along the internal walls of the structure, in a colloid thruster this distribu-
tion works with capillary phenomena on the emitter’s inner surface. So we
mustn’t worry to find another equation for the thrust, but rather to under-
stand how to calculate the mass flow rate and the exhaust velocity with the
geometry of the emitter, the fluid properties and the starting voltage V .

3.1.1 Continuity Equation

The principle of mass conservation (also known as the Continuity Equa-
tion) states that the massM associated with a fluid portion that at the time
t occupies the material volume V doesn’t change with the motion of V and
its variation depends only on the number of sources or wells inside V .

Consider a finite volume V(x, t) in a space {x, t}, x ∈ R3, in which the
fluid density ρ(x, t) is defined:

ρ(x, t) = lim
dV→0

dM
dV

(3.2)

The mass inside the volume will be:

M =

∫
V
ρ(x, t) dV (3.3)

If there are no sources or wells, we can translate what is stated in the prin-
ciple above putting the total time derivative of massM equal to zero:

dM
dt

=
d

dt

∫
V
ρ(x, t) dV = 0 (3.4)

Now we meet a problem: we can’t move the time derivative into the integral
because of the time dependence of variable V . But the Reynolds’ transport
theorem helps us.

Reynolds’s transport theorem

Without showing the mathematical demonstration, the Reynolds’ trans-
port theorem permits to bring the time derivative into the integral also when
the integrating volume V is time dependent. In other words, consider a
generic function F(x, t) inside the material volume V , we can write the total

18



time derivative of the integral of F on V in the following way:

d

dt

∫
V
F(x, t) dV =

∫
V

(
dF
dt

+ F∇ • v
)
dV (3.5)

Now, recalling that the total derivative of a function F(x, t) of several vari-
ables can be written as:

dF
dt

=
∂F
∂t

+∇F •
dx
dt

=
∂F
∂t

+∇F • v

(3.6)

if we put equation (3.6) into (3.5) finally we have:

d

dt

∫
V
F(x, t) dV =

∫
V

[
∂F
∂t

+∇ • (Fv)

]
dV (3.7)

which is the most famous form of the Reynolds’ transport theorem.

So we can use equation (3.7) putting F = ρ(x, t) to obtain the integral
form of the continuity law:

d

dt

∫
V
ρ(x, t) dV =

∫
V

[
∂ρ

∂t
+∇ • (ρv)

]
dV (3.8)

If there are no sources or wells we can use equation (3.4) to find a local form
of the principle: ∫

V

[
∂ρ

∂t
+∇ • (ρv)

]
dV = 0

The integral must be null for each volume V taken into account. The only
way to get this is that the integrating function is always equal to zero, so:

∂ρ

∂t
+∇ • (ρv) = 0 (3.9)
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that represents the conservative local form of the Continuity Equation. If
we suppose a steady state motion (that means all ∂/∂t (. . . ) = 0) and an
incompressible fluid (ρ = uniform) the Continuity Equation becomes [4]:

∇ • v = 0 (3.10)

We can find also the non conservative local form of the Continuity Equa-
tion substituting (3.6) in (3.9), which is:

dρ

dt
+ ρ∇ • v = 0 (3.11)

3.1.2 Surface tension

Each liquid is characterized by its surface tension γ that is the surface
density of binding energy at the interface between a continuous body and
a material of a different nature, for example a solid, a liquid or a gas. It
derives from the one force reacting on a separation surface which presents
curvatures. It is defined as a force per unit length and it depends on both
the geometry of the surface and the material. It’s related with the pressure
difference ∆p between the two faces of the surface by the Laplace equation:

∆p = τ = γ

(
1

R1

+
1

R2

)
. (3.12)

where 1/R1 and 1/R2 are two principal curvatures of the fluid. Equation
(3.12) also states that each liquid has a specific breaking tension (τ) which,
if it’s exceeded, leads to the separation of the liquid particles. [4]
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3.2 Electrostatics
With regard to electrostatics the fundamental concepts for my thesis are:

• electric current;

• Coulomb and Gauss theorems;

• Maxwell’s equations;

• Continuity Equation;

• Child-Langmuir’s law.

Let’s go and analyze them.

3.2.1 Electric current

Operational definition

Consider a conductor of section S through which there is an orderly charge
motion. Electric current is defined as the amount of electric charge ∆q which
in the time interval ∆t crosses the surface S:

I = lim
∆t→0

∆q

∆t
=

dq

dt
(3.13)

Analytical definition

Always referring to a conductor of section S through which there is an
orderly charge motion, consider the density of the number of charge carri-
ers in a point of the section (n), each of them of charge q. Charge carriers
move at an instantaneous velocity v, called drift speed, mediated on all
carriers present at that point at that instant which is parallel or opposite to
the direction of the electric field and of several orders of magnitude less than
the thermal stirring speed of single particles. We define the electric charge
density at that point as:

σV(x, t) = n(x, t)q (3.14)

The current density at a point x at time t is the vector given by the

21



product of the electric charge density ρV(x, t) and the drift speed:

j(x, t) = ρV(x, t)v(x, t) = n(x, t)q v(x, t) (3.15)

The current density is parallel to the drift speed but its direction depends on
the charge of the carrier itself: it has the same direction of the drift speed in
case of positive charge and vice versa. The electric current across the surface
S is the flow through the surface of the electric current density:

I =

∫
S
j • n̂ dS (3.16)

in which n̂ is the normal to the surface S arbitrarily taken.

3.2.2 Coulomb and Gauss theorems andMaxwell’s equa-
tions

The Gauss’ theorem states that given a closed surface S containing any
number of electric charges (positive or negative), the flux of the electric field
E generated by the charges through this surface is equal to the ratio of the
algebraic sum of the charges contained within the closed surface and the di-
electric constant ε of the medium in which the charges are located (ε0 in the
vacuum):

ΦS(E) =

∑
qi
ε

(3.17)

If a space (or volumetric) electric charge density ρV(x, t) exists, the sum of
the charges inside the volume V with his frontier ∂V = S becomes:∑

qi =

∫
V
ρV dV (3.18)

The combination between (3.17) and (3.18) gives the integral form of the
Gauss’ theorem. As before we can find a local form of the theorem using the
divergence theorem: with the mathematical definition of flux equation (3.17)
(combined with (3.18)) becomes:∮

S
E • n̂ dS =

1

ε

∫
V
ρV dV (3.19)
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in which n̂ is the outward normal to the surface. So using the divergence
theorem for the electric field and and then equalizing the two functions inside
both integrals (which are the same) we have:∮

S
E • n̂ dS =

∫
V
∇ • E dV =

1

ε

∫
V
ρV dV (3.20)

that yields (assuming the independence of ε from V) the local form of the
Gauss’ theorem:

∇ • E =
ρV
ε

(3.21)

We can write the local form of the Gauss’ theorem not considering the elec-
tric field vector but the electric displacement vector D = εE to find an-
other helpful equation: in case of linear, homogeneous and isotropic material
(ε = constant) we can write equation (3.21) in the following way:

∇ • (εE) = ∇ •D = ρV (3.22)

in which ρV doesn’t take into account the polarization charges but only the
free charges.

The second important theorem that will be useful is the Coulomb’s theorem
which affirms that, given a conductive body whose surface is characterized
by a surface charge density σS , the electric field produced near the surface
is:

E =
σS
ε
n̂ (3.23)

where n̂ is always the normal to the body surface. In other words the the-
orem states that near a surface of a body in electrostatic equilibrium the
electric field is orthogonal to the surface.

Maxwell’s equations are a set of four equations (one of these is the Gauss’
theorem already seen) that entirely describe the behavior of the electromag-
netic phenomena. There are both the integral and the local form of these
equations but for the purposes of this thesis I’m going to consider only the
local form. Recalling that the electric displacement is D = εE and the mag-
netic induction is B = µH the differential form of Maxwell’s equations is:
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∇ •D = ρV (3.24a)

∇ •B = 0 (3.24b)

−∇× E =
∂B
∂t

(3.24c)

∇×H =
∂D
∂t

+ j (3.24d)

where j is the current density (previously defined) in the region in which E
and B exist.

3.2.3 Continuity Equation

In the same way that we have defined a continuity equation for a fluid body
we can describe a similar behavior for the electric charges which is known in
literature as the Continuity Equation of the electric charge. This principle
can be demonstrated in more than one way. I’ll demonstrate it using the first
and the last Maxwell’s equations in the above list.

Consider equation (3.24d): with the tensorial calculus if we take the di-
vergence of both sides of the equation we obtain:

∇ • ∇ ×H = 0 (3.25a)

∇ •
∂D
∂t

+∇ • j =
∂(∇ •D)

∂t
+∇ • j (3.25b)

At this point we can substitute the first Maxwell’s equation (3.24a) into
equation (3.25b) and then rewrite the fourth Maxwell’s equation applying
the divergence operator; after some calculations we obtain the local form of
the Continuity Equation for the electric charge, that is:

∂ρV
∂t

+∇ • j = 0 (3.26)
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As for the Continuity Equation for a fluid, considering a stationary state the
Continuity Equation for the electric charge assumes the form:

∇ • j = 0 (3.27)

3.2.4 Child-Langmuir’s law

Let’s now describe probably the most important concept for an electro-
spray thruster, the Child-Langmuir’s law [5]. It explains the interrelation of
the electrical and dynamical parameters in a one-dimensional model of an
ion beam.

Figure 3.1: One-dimensional ion beam.

From figure 3.1 let z be the streamwise coordinate and z = 0 the position
of the source at potential V (0) = V0. The potential V (z), the electric field
E(z) = −(dV/dz), the ion density n(z) and the velocity v(z) are all functions
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of z. In a steady state motion, equation (3.27) states that the current density
is a constant along z:

∇ • j = 0 =⇒ dj

dz
= 0

=⇒ j(z) = n(z)q v(z) = uniform

(3.28)

The ion velocity follows from the energy conservation: for ions of charge q
and mass m emitted with negligible velocity at the source the principle gives:

q[V0 − V (z)] =
1

2
mv2(z)

v(z) =

{
2q
[
V0 − V (z)

]
m

}1/2

(3.29)

The potential V is related to the charge density n by the Poisson’s law, that
is an extension of the first Maxwell’s equations:

∇2V =
d2V

dz2
= −n(z)q

ε0

= − j

ε0v(z)
= − j

ε0

{
m

2q[V0 − V (z)]

}1/2

(3.30)

This may be integrated simply multiplying by 2(dV/dz) both sides of the
equation; after calculating the primitive functions we obtain:(

dV

dz

)2

−
(
dV

dz

)2

z=0

=
4j

ε0

[
m(V0 − V )

2q

]1/2

(3.31)

To simplify the problem the electric field at z = 0 is taken equal to 0. In
this way we can calculate the highest possible current density in the beam,
a limit which can’t be overcome:

(
dV

dz

)
z=0

= 0 =⇒ j = jmax. (3.32)
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After making these assumptions equation (3.31) together with the bound-
ary conditions (3.32) leads to the following Cauchy’s problem:


dV

dz
= −2

(
j

ε0

)1/2{
m(V0 − V )

2q

}1/4

V (0) = V0

(3.33)

in which the differential equation has separate variables and therefore can
be easily solved. The final solution of (3.33) (which is unique) is:

V (z) = V0 −
[

3

2

(
j

ε0

)1/2(
m

2q

)1/4

z

]4/3

(3.34)

and if we put z = d we can find the maximum value of the current density
in the beam with a given applied voltage V0 or rather the Child-Langmuir’s
law for a one-dimensional ion beam [5]:

jmax =
4ε0

9

√
2q

m

V 3/2

d2
(3.35)

3.3 Electric propulsion

In this section the fundamental relationships of electric propulsion will be
shown. We start recalling the already known thrust equation (3.1):

T = ṁc (3.36)

in which the ions speed c can easily be calculated from the principle of energy
conservation:

c =

√
2qV

m
(3.37)
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Concerning the flow rate ṁ, we can proceed as follows: ideally an ion beam
in electrospray propulsion is made by ions with different but constant ratios
m/q: this means that their time derivative is equal to 0 which leads to the
following relationship:

d

dt

(
m

q

)
=

ṁq −mq̇
q2

= 0

=⇒ ṁq = mq̇

(3.38)

and from equation (3.13) we obtain:

ṁ = I · m
q

(3.39)

Now we are capable to calculate the thrust T . Consider a cylindrical beam
of section A: the electric current can be expressed, according to (3.16), by:

I = Aj (3.40)

So putting together equations (3.40), (3.39), (3.37) into (3.36) the result is:

T = jA

√
2mV

q
(3.41)

We can also define on the thrust density across A:

T

A
= j

√
2mV

q
(3.42)
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If we are in conditions to apply Child-Langmuir’s law, it’s possible to calcu-
late the highest thrust (or thrust density) given by the ion beam by using
equation (3.35). In this case the thrust density is:

T

A
=

ε0

2

(
4

3

V

d

)2

(3.43)

and we can see that T/A increases with V 2.

Finally we define the efficiency of the propulsion system as:

η =
T 2

2ṁV0I
(3.44)
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Chapter 4

Physics of ionic liquids

4.1 Basic physics of ionic liquids
A conductive liquid is a liquid that deforms under the action of an electric

field. This is due to the presence of charged free ions that can move freely
in the volume of the liquid and therefore generate a current density which is
related with the internal electric field by:

j = KE (4.1)

in which K is the liquid conductivity.

Consider first a flat liquid surface subjected to a strong normal electric field
E0: if the liquid is conductive an internal electric field Ei appears and free
ions with an attractive polarity will be concentrated on it’s surface as shown
in figure 4.1. Suppose a perfectly conducting liquid (εr → +∞, Ei = 0) and

Figure 4.1: Conductive liquid.
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a uniform volumetric charge density ρV . We can determine its surface charge
density σS by applying the first Maxwell’s equation (3.24a) in the integral
form to a control volume V as shown in the figure 4.2:∫

V
∇ • E dV =

∫
V

ρV
ε0

dV (4.2)

Figure 4.2: Control volume with a perfect conductor.

The first member of equation (4.2), thanks the divergence theorem, yields:∫
V
∇ • E dV =

∫
A
E • n̂ dS = E0A (4.3)

while the second member gives:∫
V

ρV
ε0

dV =
ρV
ε0

Ah. (4.4)

Now, substituting (4.3) and (4.4) in (4.2) finally we obtain the surface charge
density [1]:

σS = ρVh = ε0E0 (4.5)
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A similar effect occurs with dielectric liquids (εr < +∞) even though there
are no free charges; in this case an internal electric field Ei appears as shown
in figure 4.3 and because there aren’t free charges the first Maxwell’s law
gives: ∫

V
∇ •D dV =

∫
A
D • n̂ dS = (ε0E0 − εrε0Ei)A = 0

Figure 4.3: Control volume with a dielectric.

which yields the relationship between the internal electric field of the fluid
and the applied external electric field in the absence of free charges:

ε0E0 − εrε0Ei = 0

=⇒ Ei =
1

εr
E0

(4.6)

Now because there aren’t free charges but there are polarized charges we
can apply the Coulomb’s theorem to the volume V considering a constant
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volumetric polarization charge density ρVD to get the surface charge density
σSD for a dielectric [1]:

∫
V
∇ • E dV =

∫
V

σSD
ε0

dV

σSD = ρVDh = ε0(E0 − Ei)

(4.7)

Now combining (4.6) and (4.7) we obtain the relationship between the sur-
face charge density and the external electric field:

σSD =

(
1− 1

εr

)
ε0E0 (4.8)

which if εr → +∞ is similar to (4.5).

First recalling that only in a perfect conductor the normal and tangential
components Ein and Eit of the internal electric field are necessarily null, in
a dielectric with εr � 1 the term:

Ein =
1

εr
E0

Figure 4.4: Normal and tangential components of Ei.
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can disappear but the tangential component, if exists, must be continuous
through the interface of the liquid:

∂Eit
∂y
∈ C0.

Consider a conductive liquid with a conductivity K, normally due to the mo-
tion of the ions of both polarities. If their concentration is n+ = n− = n [m−3]
and their mobilities µ+, µ− [V/s] then:

K = ne(Z+µ+ + Z−µ−)

[
Si
m

]
. (4.9)

If there is a constant external electric field E0 applied on the gas side and
initially the surface is uncharged, then the electric field draws positive ions
to it (positive if E0 points away from the liquid) generating a variable surface
free charge density σSD at a time rate [1]:

j =
dσSD
dt

= KEi (4.10)

So applying the first Maxwell’s equation assuming a volumetric free charge
density ρVD we find:

ε0E0 − εrε0Ei = σSD (4.11)

in which eliminating Ei with equation (4.10) and set the initial conditions
of uncharged surface at the time t = 0, σSD(0) = 0, we have to solve the
following Cauchy’s problem [1]:


dσSD
dt

+
K

εrε0

σSD =
K

εr
E0

σSD(0) = 0

(4.12)

whose solution is:

σSD(t) = ε0E0(1− e−
t
τ ) (4.13)

τ it’s called ’charges relaxation time’ that is the time after which the surface
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is charged at 66% of its final value:

τ =
εrε0

K
. (4.14)

4.2 Surface stability

4.2.1 General stress state

Consider an infinitesimal element of a continuous body subject to a force
F and let’s assume that this force generates an internal stress state τ whose
resultant is the force F:

F =

∮
A
τ dS (4.15)

We assume the Cauchy’s Continuum Hypotheses that can be shortly de-
scribed by:

τ = [σ]n̂ (4.16)

where [σ] is a 3x3 symmetric tensor that describes for each point in the body
volume the total stress state. n̂ is the normal to the surface A. From the
divergence theorem we have:

F =

∮
A

[σ]n̂ dS =

∫
V
∇ • [σ] dV (4.17)

The quantity inside the last integral is called force per unit volume:

f = ∇ • [σ] (4.18a)

fj =
∂σij
∂xi

, i,j = 1,2,3 (4.18b)
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Figure 4.5: Infinitesimal element of a continuous body.

4.2.2 Maxwell’s electric stress tensor

Due to the presence of charged particles in the ionic liquids, it’s reason-
able to consider, in addition to the forces per unit volume, also the electrical
forces and the electric stress. This stress can be described in a similar way to
the previous mechanical stress taking the following electrical forces per unit
volume [3]:

f = ρVE (in the vacuum) (4.19a)

f = ρV
E
εr

(dielectric) (4.19b)

We saw that the volumetric charge density for a perfectly conducting liq-
uid is given by equation (4.5) but in general if E is not uniform or we don’t
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have a linear isotropic and homogeneous material we have:

ρV(x) =
∂(ε0Ei)

∂xi
, x ∈ V (4.20)

Substituting (4.20) in (4.19a) we obtain:

Fj =

{
∂(ε0Ei)

∂xi

}
Ej =

∂

∂xi
(ε0EiEj)− ε0Ei

∂Ej
∂xi

. (4.21)

Since the electric field is conservative then ∇× E = 0, so:

∂Ej
∂xi

=
∂Ei
∂xj

and

ε0Ei
∂Ej
∂xi

= ε0Ei
∂Ei
∂xj

=
∂

∂xj

(
1

2
ε0EkEk

)
=

∂

∂xi

(
1

2
δijε0E

2

)
.

Finally we obtain:

Fj =
∂

∂xi

(
ε0EiEj −

1

2
δijε0E

2

)
(4.22)

and, as we have defined the mechanical stress in (4.18b), we can define the
electric stress as:

σelij = ε0EiEj −
1

2
δijε0E

2 (4.23)

[σel] =

ε0E
2
1 − 1

2
ε0E

2 ε0E1E2 ε0E1E3

ε0E1E2 ε0E
2
2 − 1

2
ε0E

2 ε0E2E3

ε0E1E3 ε0E2E3 ε0E
2
3 − 1

2
ε0E

2

 (4.24)
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that is known as the Maxwell’s tensor of electrical stress [3]. We see im-
mediately that:

[σel] = [σel]T

so there are three principle directions of stress. From Coulomb’s theorem we
know that the electric field near the surface of a conductor in electrostatic
equilibrium is normal to the surface and null in the tangential directions,
so if we refer the tensor to a surface reference system like the one shown in
figure 4.6 we have:

E1 = E2 = 0

Figure 4.6: Surface reference system.

Therefore (4.24) becomes:

[σel] =
1

2
ε0E

2

−1 0 0
0 −1 0
0 0 1

 (4.25)
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where E3 = E. So the stress along x3 is:

σel =
1

2
ε0E

2 (4.26)

4.2.3 Instability

If the breaking tension is exceeded instability occurs [1]. Consider a de-
formed liquid surface: its shape will depend on the field shape and on the
initial shape and stress state that, if the fluid is quiet, is only pressure. The
charged particles will concentrate on the external protuberances, so intensi-
fying locally the electric field.

Figure 4.7: Deformed surface of a conductive liquid.

To determine the minimum electric field necessary to generate instability,
we start by assuming a sinusoidal shape of the deformed surface:

y = A cos(αx).

with α = (2π/λ). If α� 1 the external potential φ that satisfies the Laplace
equation ∇2φ = 0 with φ = 0 on the surface can be described by the sum of
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a constant electric field E0 and a small perturbation (fig.4.7):

φ(x, y) ≈ −E∞y + φ1e
−αy cos(αx). (4.27)

For φ = 0 we obtain the deformed surface:

y ≈ φ1

E∞
cos(αx) (4.28)

which presents a curvature equal to:

1

Rc

=

∣∣∣∣d2y

dx2

∣∣∣∣ = α2 φ1

E∞
cos(αx)

whose maximum is reached for cos(αx) = 1. For these values we obtain the
minimum radius of curvature:

Rc,min =
E∞
α2φ1

(4.29)

and the maximum breaking tension (or recalling tension):

τb =
γ

Rc,min
= γ

α2φ1

E∞
(4.30)

The electric field on the tips is:

Ey = −
(
∂φ

∂y

)
cos(αx)=1

= E∞ + αφ1e
−αy

and considering αy � 1 it becomes:

Ey = E∞ + αφ1 (4.31)

The electric perturbation is therefore:

δP =
1

2
ε0(E2

y − E2
∞)

=
1

2
ε0(E2

∞ + α2φ2
1 + 2E∞αφ1 − E2

∞)

∼ ε0E∞αφ1.

(4.32)
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Instability occurs if δP > τb:

ε0E∞αφ1 > γ
α2φ1

E∞

E∞ >

√
γα

ε0

(4.33)

Thus, the higher is the distance between the peaks, the less is the electric
field required to get instability. We are interested to extract the liquid from
small capillaries of diameter D so we have [1]:

λmax = 2D

αmin =
π

D

E∞ >

√
πγ

ε0D

(4.34)

For example considering formamide [HCONH2] and an emitter with the fol-
lowing geometry:

λ = 0, 05N/m

D = 0, 1mm

the minimum required electric field is:

E∞ = 1, 33 · 107 V/m.
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Chapter 5

Electrospray propulsion

5.1 Conceptual scheme
A colloid thruster is basically composed by:

• a small emitter that presents the conductive liquid inside it;

• an external electrode (with a power supply) to generate the electric
voltage V .

We will consider only cylindrical emitters and cylindrical jets to simplify the
treatment (in particular for the Taylor’s Cone phenomenon). The hypoth-
esis of one-dimensional flow will still be taken being z the one-dimensional
coordinate. A simple geometry of an electrospray thruster is given in figure
5.1 in which:

• V : applied voltage;

• D: emitter’s diameter;

• d: grid spacing of the electrodes.

The figure also shows the dynamic of the conductive liquid when the thruster
is working which can be modeled with the following sequence of events:

• Taylor’s Cone: a cone that appears only when the device is operating;

• Cone-Jet: a little cylindrical jet;

• Droplets and Fragmentation: at an unknown point the jet breaks and
droplets start to form. Together with this phenomenon there is also
the fragmentation of the droplets due to collisions of these with each
other.
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Figure 5.1: Conceptual scheme.

5.2 The Taylor’s Cone
From early experimental observations it was known that, when a strong

field is applied to the liquid coming out from the end of a tube, the liquid
surface adopts a conical shape with a very thin fast-moving jet emitted from
it apex. In 1965, G.I. Taylor explained analytically (and verified experimen-
tally) this behavior [1][8]. The basic idea is that the surface traction due to
the electric field must be balanced everywhere on the conical surface by the
pull of the surface tension:

σel = τ (5.1)

The latter is given by equation (3.12):

τ = γ

(
1

Rc1

+
1

Rc2

)
(5.2)

where 1/Rc1 and 1/Rc2 are the principal curvatures of the surface.
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Figure 5.2: Taylor’s Cone.

From differential geometry (Meusnier’s theorem) we have:

1

Rc 1

= 0

along the generator, while for sections normal to the rotation axis we have:

1

Rc2

=
cos(θ)

R
=

cos(θ)

r sin(θ)
=

cot(θ)

r
. (5.3)
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So from (5.2), (5.3) and (4.26) we obtain:

1

2
ε0E

2
n = γ

cot(θ)

r

En =

√
2γ cot(θ)

ε0r

(5.4)

The question is to find an external electrostatic field such that the cone is
an equipotential surface with the normal field varying as in equation (5.4).
Adopting a cylindrical coordinate system and owing to the cylindrical geom-
etry of the cone (∂φ/∂ψ) = 0, the Laplace equation becomes:

1

r2

∂2

∂r2
(rφ) +

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂φ

∂θ

)
= 0 (5.5)

and admits solutions of the type:

φ = APν
(
cos(θ)

)
rν + φ0 (5.6a)

φ = AQν
(
cos(θ)

)
rν + φ0 (5.6b)

where Pν(•) and Qν(•) are Legendre’s functions of the first and the second
type. Pν(•) presents a singularity for θ = π while Qν(•) for θ = 0 so only the
last solution is acceptable because we are interested to find solutions external
to the cone. So the normal field is:

En = Eθ = −1

r

∂φ

∂θ
ur

= A
dQν

d cos(θ)
sin(θ)rν−1ur

(5.7)

in which En is referred to a cone’s reference system and Eθ is referred to the
spherical coordinates.
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To find a relation like En ∝ 1/
√
r we have to set ν = 1/2, from which:

φ = AQ1/2

(
cos(θ)

)
r1/2 + φ0 (5.8)

The function Q1/2

(
cos(θ)

)
admits one single zero for:

θT = 49, 29 ◦ (5.9)

which can then be taken as an equipotential surface φ = φ0.

This value is universal and independent of both fluid properties and ap-
plied voltage [1]. Taylor (and others) have verified experimentally this value,
as long as no strong space charge effects are present, no flow, and as long as
the electrode geometry is “reasonably similar” to what is implied in equation
(5.8). The experimental fact that stable Taylor’s cones do form even when
the electrodes applying the voltage are substantially different from the shape
given by (5.8) apparently indicates that the external potential distribution
near the cone is dictated by the equilibrium condition (5.4), and that the
transition to some other potential distribution capable of matching the real
electrode shape takes place far enough from the liquid to be of little conse-
quence. We should expect however that the Taylor’s cone solution will be
disturbed by non-ideal conditions and could eventually disappear. In one
respect at least, the Taylor’s cone can’t be an exact solution: in the tip of
the cone we have:

lim
r→0

En = lim
r→0

√
2γ cot(θT )

ε0r
= +∞

that physically doesn’t make sense.

5.3 The Cone Jet
We have seen that when the electrical traction overcomes the surface ten-

sion a Taylor’s cone appears. The Taylor’s cone is a mathematical idealiza-
tion in which a liquid flow is not present on the tip, which instead happens
in reality. The idealization requires also an infinite electric field on the tip
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and a perfect electric relaxation along r. Actually this relaxation can’t be
continuous if there is a flow rate Q (typically ∼ 10−13 m3/s) starting from
the cone and forming a really thin jet (20 ÷ 50 nm). Because the liquid is
conductive this implies the existence of a current I (typically ∼ 10−9 A).

This steady state is called Cone Jet and both Q and I are constant. This
regime can be obtained with all conductive liquids, in particular with elec-
trolytic solutions. In a good highly polar solvent (εr � 1) the salt in solution
is highly dissociated (at least in low concentrations) for example lithium chlo-
ride [LiCl] in solution with formamide [HCONH2]. For higher concentrations
instead the degree of dissociation decreases.

Since the electrical conductivity K of the electrolytic solution is a finite
value, this requires the existence of a tangential electric field Er 6= 0: this
contradicts the assumption of equipotential surface especially near the tip
where the current density must be stronger. Fortunately Er � Eθ in most
of the cone.

Figure 5.3: Taylor’s Cone and Cone-Jet.
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5.3.1 Transition region

Let’s assume to have a conical structure in which because of the flow the
charges are moving slowly everywhere except near the tip of the cone and
suppose that this transition region is located at a distance r∗ from the tip.
The liquid surface ceases to be an equipotential surface when [2]:

r∗3

Q
∼ τ =

εrε0

K

namely when the time passage of the fluid becomes of the order of the charge
relaxation time τ given by equation (4.14). We obtain the characteristic di-
mension of the transition region:

r∗ =

(
εrε0Q

K

)1/3

(5.10)

Figure 5.4: r∗ and the beginning of the cone-jet.

r∗ plays a fundamental role on the scaling and understanding of electrospray
thrusters. In this region we assume that most of the surface transport will
be convected (I = IS) but still most of the surface is relaxed σS ∼ ε0En. The
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surface current IS is associated with the fluid velocity v and is characterized
by a charge density dependent only on r; from (5.10) the flow rate Q will be:

Q =
Kr∗3

εrε0

(5.11)

5.3.2 Current

Fernandez de la Mora verified experimentally that the current transported
by the cone-jet is given by [2]:

I = f(εr)

√
γKQ

εr
(5.12)

in which f(εr) ∼ 18 for εr > 40. Equation (5.12) is remarkable in sev-
eral respects:

• Current is independent of applied voltage;

• Current is independent of electrode shape;

• Current is independent of fluid viscosity even though some of the fluids
tested are very viscous.

From equation (3.39) we see that the maximum specific charge is obtained
with the minimum flow:

q

m
=

I

ρQ
=

f(εr)

ρ

√
γK

εrQ
. (5.13)
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5.3.3 Current density of the jet

For the current density we can apply the model of conducting liquids from
equation (4.10). From the continuity law (3.26) and still assuming a one-
dimensional flow in a steady state we know that j is uniform inside the
cone-jet and therefore also the electric field is constant too:

jjet(z) = uniform =⇒ Ejet(z) = uniform (5.14)

The current density remains uniform even after the cone-jet when the droplets
are formed (∇ • j = 0 everywhere in the space grid in a steady state):

jjet = jD = j = uniform (5.15)

Assuming a cylindrical jet of length Ljet and cross section Ajet = πR2
jet, the

current density and the current are related by:

I = πR2
jetj (5.16)

5.3.4 The length of the jet

Between the Taylor’s cone and the first drop we have a cylindrical jet of
radius Rjet and length Ljet. Several experiments show that if the applied
voltage increases then Ljet decreases. We can calculate the potential VD at
which the droplets begin to form in this way:

VD = V0 − EjetLjet

Ejet =
V0 − VD
Ljet

(5.17)

Assuming a semi-spherical end of the jet (still of radius Rjet) the surface
tension is given by equation (3.12):

τ =
2γ

Rjet

(5.18)
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If the electric perturbation exceeds the surface tension:

δP ≥ τ (5.19)

then the cone-jet break-up occurs. The electric perturbation is the same cal-
culated in the previous chapter and in this case its amount is:

δP =
1

2
ε0E

2
jet −

1

2
ε0E

2
∞ (5.20)

So (5.19) together with (5.17),(5.18) and (5.20) leads to:

V 2
D − 2V0VD + V 2

0 −
(

4γ

ε0Rjet

)
L2
jet = 0 (5.21)

whose solution is (we must take the solution with the minus):

VD = V0 −

√
4γ

ε0Rjet

+ E2
∞ · Ljet (5.22)

Comparing equation (5.22) with (5.17) and using the approximation (4.6)
wee see that:

Ejet ∼

√
4γ

(1− εr)ε0Rjet

(5.23)

5.3.5 Flow rate, speed and energy

The jet carries a flow rate Q which can be expressed by:

Q = Ajetv = πR2
jetv (5.24)

where v is the particle speed inside the jet. From the continuity law of fluid
mechanics we know that in a steady state (and noting that ρ = uniform
inside jet) ∇ • v = 0 and therefore, as for the current density:

vjet(z) = uniform
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Unlike what happens for the current density, particles speed after the cone-
jet doesn’t remain constant. In fact, in a steady state the continuity law
states that:

∇ • (ρv) = ∇ •Q = 0

that is the flow rate necessarily remains constant but not the speed; what
happens is that v increases while ρ decreases. Let’s call c the final speed
that the particles have when they reach the grid and vD the particle speed
in a generic point between the cone-jet break-up and the grid: the energy
conservation yields:

1

2
mc2 = qVD +

1

2
mv2 = qV +

1

2
mv2

D (5.25)

or rearranging the equation:

1

2

m

q
c2 = VD +

1

2

m

q
v2 = VD − V +

1

2

m

q
v2
D (5.26)

We can consider the last term of equation (5.26) a specific kinetic energy of
the particle that we call KD:

KD =
1

2

m

q
v2
D (5.27)

5.4 Droplet size and charge

From the nature of the Taylor’s cone, while the liquid is moving towards
the tip jet maintains an equilibrium on its surface between electrostatic and
surface tension forces. This equilibrium is disturbed near the tip but it is
reasonable to conjecture that something close to it will be sustained into the
jet and even after jet break-up into the droplets which result. If we postu-
late this for a droplet of radius RD and charge q the equilibrium condition
becomes [2]:
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1

2
ε0E

2
n =

2γ

RD

En =
q

4πε0R2
D

(5.28)

whence:

qR = 8π
√
ε0γR3/2

D (5.29)

which is known as the Rayleigh’s Limit and represents the maximum charge
that a droplet can hold (above which a coulombian explosion is expected).
It derives that the maximum ratio q/m is:(

q

m

)
max

=

(
I

ρQ

)
max

=
qR

4

3
πR3

D

(
I

ρQ

)
max

=
6
√
ε0γ

ρR3/2
D

(5.30)

However in practice a small departure from the full spherical shape will trig-
ger the instability when close to this limit. The outcome of a Coulombic
explosion is fragmentation into small spherical droplets. It can be proved
that N daughter droplets, if fragmenting symmetrically from a droplet at the
Rayleigh limit, will be charged to about 100N−1/2 % of their corresponding
limit and therefore will be stable (neglecting solvent evaporation).

Experiments have shown that the electrospray technology produces streams
of droplets charged to about 1/2 of their Rayleigh’s Limit. This can be ex-
plained taking the total energy of a droplet [2]:

E =
1

2
qφ+ 4πR2

Dγ

in which the first term is the electrostatic energy where:

φ =
q

4πε0RD
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is the scalar potential of a charge q, while the second term is the energy
associated with the surface tension.

We know that for N droplets with radius RD deriving from one droplet
mother of mass mi and charge qi the ratio q/m doesn’t change:

N =
mi

mf

qf =
qi
N

=
qi
mi

mf

(
q

m

)
f

=

(
q

m

)
i

.

So we can find N and after we can calculate the total energy of droplet
mother summing the energies of the N droplets without considering any
kind of losses:

N =
3mi

4ρπR3
D

E = N

(
1

2

q2
f

4πε0RD

+ 4πR2
Dγ + C

) (5.31)

Because both the droplets and the droplet mother are in equilibrium the to-
tal energy E must have a minimum for RD:

dE

dRD

= 0

Therefore the final results are:

RD =

[
9

ρ2

(
mi

qi

)2

ε0γ

]1/3

(5.32)

and: (
q

m

)
minE

=
3
√
ε0γ

ρR3/2
D

(5.33)
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If the droplet size RD is assumed to be known we can deduce the radius Rjet

of the jet from whose breakdown they originate. Several experiments con-
firm that this jet break-up conforms closely to the classical Rayleigh-Taylor
stability theory for uncharged jets [2][7], which predicts a ratio:

RD

Rjet

∼ 1.89 (5.34)

from which using (5.30) and (5.13) we can express the radius of the jet as a
function of the flow and fluid properties:

Rjet =
1

1.89

[
6

f(εr)

]2/3

r∗ (5.35)

This value is in the range of the data published in the literature, so it strongly
supports the validity of the arguments used. It can be also observed that
f(εr) is known to fall for less than about 40 and (5.35) constitutes a predic-
tion for a corresponding increase in the jet diameter. No direct data appear
to be available on this point.

As mentioned before a high specific charge is important to reduce the holding
voltage V0 for a given specific impulse Isp:

V0 =
c2

2

(
q

m

)−1

Note that from equation (5.13) we find:

Q ∝ C
V 2

c4

T = ρQc ∝ C
V 2

c3
.

(5.36)

So, the requirement in flow rate is more sensitive than the requirement on
the thrust. For small ∆v missions, where a high specific impulse is not im-
perative, the design can be facilitated by both reducing V and increasing Q.
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5.5 Fragmentation
It’s difficult for this thesis to take into account the effects of fragmentation,

the last phenomenon of the entire jet. We can only state that the possible
results of this thesis will be the maximum limits which can’t be overcome be-
cause fragmentation is essentially a dissipative phenomenon in which a part
of energy is lost [6]. A simple equation that we can write is:

q(V0 − VD) +
1

2
mv2 =

1

2
mc2 + ∆Efrag (5.37)

From the literature we can see that fragmentation occurs at specific potentials
during the path depending on the mass of the ions involved:

Figure 5.5: Fragmentation of the droplets.
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Chapter 6

Mathematical models

In this section we will develop simplified models to calculate the perfor-
mance of an electrospray thruster without taking into account fragmentation.
I will explain two mathematical models, the first to give a simple idea of how
my supervisor and I had operated although it isn’t a real model, the second
to try to find the right performance of the thruster.

6.1 First model

The first model we’re going to develop doesn’t consider the ion’s speed
inside the jet and their kinetic energy (v = 0 and K = 0), so the system we
have to solve is:



q

m
=

6(ε0γ)1/2

ρ
· 1

(1.89Rjet)3/2

Rjet =
1

1.89

[
6

f(εr)

]2/3(
εrε0Q

K

)1/3

I = πR2
jetj = f(εr)

√
γKQ

εr

j = KEjet

(6.1)
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that presents 4 equations and 6 unknowns (q/m, Rjet, I, j, E, Q), so we
need two more equations.

6.1.1 Modified Child-Langmuir’s Law

To find the other two equations we start saying that the maximum charge
density in the electrostatic accelerator is given by the Child-Langmuir’s law
to a flow of ions accelerated by a potential V0 with a distance d between the
source and the electrostatic grid (as stated in chapter 3):

j =
4ε0

9

√
2q

m

V
3/2

0

d2
(6.2)

This law is true only if both the electric field on the source and the ion’s
speed are null, but that is not true in this case because of the existence of
both an electric field Ejet (to simplify the demonstration I will call it just
E) and an initial speed vD of the ion. In this first model we start assuming
both Ljet ∼ 0 =⇒ VD ∼ V0 and v = 0 but considering a flow rate not null.
This is only to give an idea of how the second model will be developed. So
we have to place in equation (3.31) the following relationship:(

dV

dz

)
0

= −E (6.3)

So the equation that has to be solved is:(
dV

dz

)2

− E2 =
4j

ε0

[
m(V0 − V )

2q

]1/2

(6.4)

Let’s solve this equation. First we have to separate the variables as follows
(the sign minus is because the potential decreases along z):

dV

dz
= −

{
4j

ε0

[
m(V0 − V )

2q

]1/2

+ E2

}1/2

Placing: {
θ = V/V0 dV = V0 dθ

ξ = x/d dx = d dξ
(6.5)
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we obtain a simpler non-dimensional form of the previous equation:

−
[
1 +

4j

ε0E2

(
mV0

2q

)1/2√
1− θ

]−1/2

dθ =
Ed

V0

dξ .

Now substituting the following variables:

a =
4j

ε0E2

(
mV0

2q

)1/2

(6.6a)

b =
Ed

V0

(6.6b)

which are constants, we finally obtain the differential equation that we must
integrate:

− dθ√
1 + a

√
1− θ

= b dx (6.7)

A primitive function of equation (6.7) is:

∫
dθ√

1 + a
√

1− θ
= −4(a

√
1− θ − 2)

√
1 + a

√
1− θ

3a2
+ C

=
Θ1(θ)

a2
+ C.

So taking the complete integration along the z axis with the following bound-
ary conditions:

• for z = 0, ξ = 0, V = V0, θ = 1;

• for z = d, ξ = 1, V = 0, θ = 0.
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the final equation that we were searching is:

a2b = Θ1(1)−Θ1(0)

=
4

3

[
2 + (a− 2)

√
1 + a

] (6.8)

that is independent from the previous equations. Thus we now lack an equa-
tion to close the entire problem.

6.1.2 Dimensionless and Operating Parameter

Now we have 5 equations and 6 unknowns. We know that the only physical
quantity that we can change during the steady state is the voltage V0 so we
have to find a quantity, the Operating Parameter P.O., as a function only of
V0:

P.O. = f(V0,Fluid,Geometry)

To find this unknown function we start recalling Buckingham’s theorem (see
appendix B): we have 6 variables that depend on 4 fundamental physics quan-
tities: [m] [s] [kg] [C]. So the system can be described with 2 non-dimensional
groups as follows:

• substituting the relation for Rjet in the equation of q/m we obtain the
first dimensionless number π1:

π1 =
q

m

Q1/2ρ

γ1/2K1/2
=

f(εr)

ε
1/2
r

(6.9)
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• substituting for Rjet in the equation of j we obtain the second dimen-
sionless number π2:

π2 =
jQ1/6ε

2/3
0

γ1/2K7/6
=

1.892

π 64/3

[
f(εr)

ε
1/2
r

]7/3

(6.10)

We can rewrite the above system in a simpler form:

q

m
= π1

γ1/2K1/2

ρ
Q−1/2

j = π2
γ1/2K7/6

ε
2/3
0

Q−1/6

(6.11)

We see that for a specific fluid:
q

m

j

 = Λ1(Q)

or in other words that the quantities are functions only of the flow rate.
So from equations (6.6a), (6.6b) we can rewrite a and b as functions of Q
and V0:

a = a(Q, V0) (6.12a)

b = b(Q, V0) (6.12b)

Let’s find the first of these relations. Substituting (4.1) in (6.6a) and subse-
quently substituting equations (6.11) we find:

a =
23/2

π
1/2
1 π2

ρ1/2K7/12

ε
1/3
0 γ3/4

Q5/12 V
1/2

0 (6.13)
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In a similar way from equations (6.6b) and (4.1) we obtain:

b = π2
γ1/2K1/6d

ε
2/3
0

1

Q1/6 V0
(6.14)

Now taking the product ab5/2 we delete Q and we obtain a function depend-
ing only on V0:

ab5/2 =
23/2π

3/2
2

π
1/2
1

Kρ1/2γ1/2d5/2

ε2
0

1

V 2
0

(6.15)

that is the equation of the Operating Parameter, namely:

P.O. = ab5/2 (6.16)

This is the last equation that we were searching for and now the system is
balanced: 6 equations and 6 unknowns. Unfortunately this is a non linear
system so we can’t state that it has a unique solution; from the algebra we
can only say that the set of the solutions has measure 0.

6.1.3 Closure of the problem

We are now able to write the complete system of equations that governs
an electrospray thruster:



q

m
=

q

m
(Q)

j = j(Q)

a = a(Q, V0)

b = b(Q, V0)

a2b = Θ1(1)−Θ1(0)

ab5/2 = P.O.

(6.17)
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with Θ1(1) − Θ1(0) = g(a, b) = h(Q, V0) and P.O. = f(Q, V0). So the
solution comes from the last two equations:


a2b = Θ1(1)−Θ1(0)

ab5/2 = P.O.

(6.18)

and the problem is solved.

6.2 Second model

Considering also the initial speed v of the ions inside the jet and their
kinetic energy we can write the following equations to describe the steady
state operation:



q

m
=

6(ε0γ)1/2

ρ
· 1

(1.89Rjet)3/2

Rjet =
1

1.89

[
6

f(εr)

]2/3(
εrε0Q

K

)1/3

I = f(εr)

√
γKQ

εr

j = KE

Q = πR2
jetv

KD =
1

2

m

q
v2

(6.19)

This is a system of 6 equations with 8 unknowns (q/m,Rjet, I, j, E,Q, vD,KD),
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so we need two more equations.

6.2.1 Modified Child-Langmuir’s law

Like before, we start taking Ljet ∼ 0 =⇒ VD ∼ V0 and changing equation
(3.29) with the following equation: if we take the the energy conservation of
the motion of the droplets we have:

qV0 +
1

2
mv2 = qV +

1

2
mv2

D

vD(z) =

[
2q[V0 − V (z)]

m
+ v2

]1/2

(6.20)

Substituting equation (6.20) in Poisson’s equation we find:

d2V

dz2
= − j

ε0

[
m

2q(V0 − V ) +mv2

]1/2

. (6.21)

that can be easily integrated placing:
ψ = V0 − V +

1

2

m

q
v2 = V0 − V + KD

dψ = −dV

(6.22)

whence

d2ψ

dz2
=

j

ε0

(
m

2qψ

)1/2

. (6.23)

In the same way as we have seen before, the first integration yields:(
dψ

dz

)2

−
(
dψ

dz

)2

0

=
4j

ε0

(
mψ

2q

)1/2

(6.24)

and placing (
dψ

dz

)
z=0

= −E
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we obtain another Cauchy’s problem:

(
dψ

dz

)2

− E2 =
4j

ε0

(
mψ

2q

)1/2

ψ (0) = KD

ψ (d) = V0 + KD

(6.25)

The equation has separate variables so:(
4j

ε0

√
m

2q
ψ1/2 + E2

)−1/2

dψ = dz (6.26)

With the usual substitutions as before we take:

a =
4j

ε0E2

(
mV0

2q

)1/2

(6.27a)

b =
Ed

V0

(6.27b)

and: 
θ =

a2

V0

ψ, θ =
a2

V0

dψ

ξ = dz, ξ = d dz

(6.28)

we obtain:

dθ√
θ1/2 + 1

= a2b dξ (6.29)

A primitive function of (6.29) is:

Θ2(θ) =

∫
dθ√

θ1/2 + 1
=

4

3

(
θ1/2 − 2

)√
θ1/2 + 1 + C
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So integrating from z = 0 to z = d with the following boundary conditions:
V (0) = V0, ψ(0) = KD, θ(0) =

a2KD

V0

, ξ(0) = 0

V (d) = 0, ψ(d) = V0 + KD, θ(d) = a2

(
1 +

KD

V0

)
, ξ(d) = 1

(6.30)

finally we obtain:

Θ2

[
a2

(
1 +

KD

V0

)]
−Θ2

[
a2KD

V0

]
= a2b (6.31)

which is independent from the first six equations and so it can be added
to the initial system.

6.2.2 Dimensionless and Operating Parameter

Now we have 7 equations and 8 unknowns. As before, we search for a
function of the type:

P.O. = f(V0,Fluid,Geometry)

so similarly to the first model we start to develop the previous equations in
dimensionless form. It’s easy to prove that π1 and π2 are the same as before.
There’s also another dimensionless number due to the kinetic energy KD

(N.B: the non dimensional numbers that really describe the system remain
2. This third number it’s only useful but it’s not necessary to describe the
system): substituting for Rjet and v = v(Q) in the equation of KD we obtain
the third dimensionless number π3:

π3 =
1.894

2π268/3

[
f(εr)

ε
1/2
r

]5/3

(6.32)
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We can rewrite the above equations in a simpler form:

q

m
= π1

γ1/2K1/2

ρ
Q−1/2

j = π2
γ1/2K7/6

ε
2/3
0

Q−1/6

KD = π3
ρK5/6

ε
4/3
0 γ1/2

Q7/6

(6.33)

We can still see that for a specific fluid all the three quantities are functions
only of the flow rate: 

q

m

j

KD

 = Λ2(Q)

π3 isn’t necessary to find the equation of the Operating Parameter, but below
it will be helpful; it’s easy to prove that still:

P.O. = ab5/2 (6.34)

and the problem is mathematically closed again.
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6.2.3 Closure of the problem

The system becomes:



q

m
=

q

m
(Q)

j = j(Q)

KD = KD(Q)

a = a(Q, V0)

b = b(Q, V0)

a2b = Θ2

[
a2

(
1 +

KD

V0

)]
−Θ2

[
a2KD

V0

]

ab5/2 = P.O.

(6.35)

If we find a relation of the type:

KD

V0

=
KD

V0

(a, b)

the solution is obtained by solving together the last two equations. Let’s
begin to find another relation for the voltage starting from (6.6b):

V0 =
Ed

b
=

jd

K b

= π2
γ1/2K1/6 d

ε
2/3
0 b

Q1/6

(6.36)

from which combining it with the third equation of system (6.33) we get:

KD

V0

=
π3

π2

ρK2/3b

ε
2/3
0 γd

Q4/3 (6.37)
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Substituting equation (6.36) in (6.13) we obtain:

a =
23/2

π
1/2
1 π

1/2
2

ρ1/2K2/3d1/2

ε
2/3
0 γ1/2b1/2

Q1/3 (6.38)

that leads to:

Q4/3 =
π2

1π
2
2

64

a4b2ε
8/3
0 γ2

ρ2K8/3d2
(6.39)

Now substituting the new relationship for Q in equation (6.37) we obtain:

KD

V0

=
π2

1π2π3

64

ε2
0γ

ρK2d3
a4b3

= π∗a4b3

(6.40)

in which π∗ is another dimensionless number characterizing the ratio KD/V0.
We can rewrite equation (6.31) as:

Θ2

[
a2(1 + π∗a4b3)

]
−Θ2

[
π∗a6b3

]
= a2b. (6.41)

and placing: 
m = a6b3

a2b = m1/3

(6.42)

equation (6.41) becomes finally:

Θ2(a2 + π∗m)−Θ2(π∗m) = m1/3 (6.43)

Always from the equation (6.42) we can rewrite the Operating Parameter
as follows:

m5/6 = a4P.O. (6.44)
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So the final parametric system is:


Θ2(a2 + π∗m)−Θ2(π∗m) = m1/3

m5/6 = a4P.O.

(6.45)

which presents different solutions for different values of P.O..
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Chapter 7

Matlab programs

7.1 First implementation
In this case we are going to solve the final system of the first model with

Matlab’s function fsolve. To avoid numerical errors due to the quadratic
function sqrt we write the system (6.18) in the following way:


9a2b2 − 48b− 16a+ 48 = 0

a2b5 − P.O.2 = 0

(7.1)

The results are reported on Table 7.1, 7.2 and 7.3 and in figure 7.1. For-
mamide was used as the conductive liquid and a geometry of the emitter like
the one used in the example in the end of chapter 3 was adopted.
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1 % MAIN
2

3 % project requirements
4

5 % voltage [V]
6 V_0 = 5000:100:7000;
7

8 % electrode distance [mm]
9 d = 5;

10

11 % emitter ’s diameter [mm]
12 D = 0.1;
13

14 % input (1) = d
15 % input (2) = D
16

17 double input;
18 input = [d*10^( -3) D*10^( -3)];
19

20 fid = fopen(’project_requirements.txt’,’w+’);
21 fprintf(fid ,’%10.4f\n’,input);
22 fclose(fid);
23

24 % fluid properties
25

26 % density [kg/m^3]
27 rho = 1130;
28

29 % surface tension [N/m]
30 gamma = 0.059;
31

32 % conductivity [Si/m]
33 K = 1;
34

35 % current parameter
36 f = 18;
37

38 % relative dielectric constant
39 e = 100;
40

41 % fluid (1) = rho
42 % fluid (2) = gamma
43 % fluid (3) = K
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44 % fluid (4) = f
45 % fluid (5) = e
46

47 double fluid;
48 fluid = [rho gamma K f e];
49

50 fid = fopen(’fluid_properties.txt’,’w+’);
51 fprintf(fid ,’%10.4f\n’,fluid);
52 fclose(fid);
53

54 % physics constants
55

56 % dielectric constant [F/m]
57 e_0 = 8.85418781762*10^( -12);
58

59 % gravity acceleration [m/s^2]
60 g = 9.80665;
61

62 % taylor cone ’s angle [deg]
63 theta_t = 49.29;
64

65 % cost (1) = e_0
66 % cost (2) = g
67 % cost (3) = teta_t
68

69 double cost;
70 cost = [e_0 g theta_t*pi /180];
71

72 fid = fopen(’physics_constants.txt’,’w+’);
73 fprintf(fid ,’%10.25f\n’,cost);
74 fclose(fid);
75

76 % dimensionless numbers
77 pi = dimensionless_numbers(fluid);
78

79 % operating parameter
80 PO = operating_parameter(V_0 ,input ,fluid ,cost ,pi);
81

82 fid = fopen(’operating_parameter.txt’,’w+’);
83 fprintf(fid ,’%10.4f\n’,PO);
84 fclose(fid);
85

86 % initial point of the iterative method
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87 x_0 = [600 500];
88

89 for i = 1:((7000 - 5000)/100 + 1)
90

91 fid = fopen(’operating_parameter.txt’,’w+’);
92 fprintf(fid ,’%10.4f\n’,PO(i));
93 fclose(fid);
94

95 fun = @final_system;
96 options = optimoptions(’fsolve ’,’MaxFunEval ’ ,3000);
97 x = fsolve(fun ,x_0 ,options );
98

99 a(i) = x(1);
100 b(i) = x(2);
101

102 x_0 = x;
103

104 end
105

106 % flow rate
107 Q = flow_rate(a,V_0 ,pi,fluid ,cost);
108

109 % steady state operation
110 [E_ct , j, q_m] = steady_state_operation(Q,pi,fluid ,cost);
111

112 % propulsive parameters
113 [I, m_dot , v, T, I_sp , eta] = propulsive_parameters(q_m ,Q,V_0 ,
114 fluid ,cost);

1 % DIMENSIONLESS NUMBERS
2

3 function pi = dimensionless_numbers(fluid)
4

5 W = fluid (4)/ sqrt(fluid (5));
6

7 % pi(1) = dimensionless number of q/m
8

9 pi(1) = W;
10

11 % pi(2) = dimensionless number of j
12

13 pi(2) = W^(7/3)*0.1043;

1 % OPERATING PARAMETER
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2

3 function PO = operating_parameter(V_0 ,input ,fluid ,cost ,pi)
4

5 PO = sqrt (8*pi (2)^3)/ sqrt(pi (1))*( fluid (3)* sqrt(fluid (1)* fluid (2))
6 *input (1)^(5/2))./( cost (1)^2.* V_0 .^2);

1 % FINAL SYSTEM
2

3 function F = final_system(x)
4

5 fid = fopen(’operating_parameter.txt’);
6 Par_Op = fscanf(fid ,’%g’,[1,inf]);
7 fclose(fid);
8

9 F(1) = 9*x(1)^2*x(2)^2 -48*x(2) -16*x(1)+48;
10 F(2) = x(1)^2*x(2)^5 - Par_Op ^2;

1 % FLOW RATE
2

3 function Q = flow_rate(a,V_0 ,pi,fluid ,cost)
4

5 Q = (a*cost (1)^(1/3)* fluid (2)^(3/4)* pi(2)* sqrt(pi (1)))./(2^(3/2)
6 *fluid (3)^(7/12)* sqrt(fluid (1)).* V_0 .^(1/2)).^(12/5);

1 % STEADY STATE OPERATION
2

3 function [E_ct , j, q_m] = steady_state_operation(Q,pi ,fluid ,cost)
4

5 q_m = pi(1)* sqrt(fluid (2)* fluid (3))/ fluid (1).*Q.^( -1/2);
6

7 j = pi(2)* sqrt(fluid (2))/ cost (1)^(2/3)*( fluid (3))^(7/6)*Q.^( -1/6);
8

9 E_ct = fluid (3)*j;

1 % PROPULSIVE PARAMETERS
2

3 function [I, m_dot , v, T, I_sp , eta] = propulsive_parameters(q_m ,
4 Q,V_0 ,fluid ,cost)
5

6 I = fluid (4)* sqrt(fluid (2)* fluid (3)/ fluid (5))*Q.^(0.5);
7

8 m_dot = fluid (1)*Q;
9

10 v = sqrt (2*q_m.*V_0);
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11

12 T = m_dot.*v;
13

14 I_sp = v/cost (2);
15

16 eta = m_dot.*v.^2./(2* V_0.*I);

V0 [V] a b P.O. ·109 Q [pm3/s]

5000 562,35 555,62 4,09 5,00
5100 545,10 553,74 3,93 4,74
5200 527,73 552,32 3,78 4,48
5300 510,26 551,33 3,64 4,23
5400 492,71 550,81 3,51 4,00
5500 475,11 550,74 3,38 3,77
5600 457,47 551,13 3,26 3,55
5700 439,82 552,00 3,15 3,34
5800 422,18 553,37 3,04 3,14
5900 404,19 555,44 2,94 2,95
6000 386,25 558,06 2,84 2,76
6100 368,39 561,26 2,75 2,58
6200 353,92 562,96 2,66 2,43
6300 339,51 565,12 2,58 2,29
6400 329,11 565,03 2,50 2,18
6500 316,61 566,78 2,42 2,06
6600 305,95 567,62 2,35 1,95
6700 292,28 571,18 2,28 1,83
6800 278,77 575,24 2,21 1,71
6900 265,44 579,81 2,15 1,60
7000 252,33 584,91 2,09 1,50

Table 7.1: Dimensionless, fluid [HCONH2].
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V0 [V] q/m [C/kg] j [A/m2] ·108 E [V/m] ·108

5000 172,98 1,78 1,78
5100 177,79 1,80 1,80
5200 182,81 1,82 1,82
5300 188,05 1,83 1,83
5400 193,53 1,85 1,85
5500 199,27 1,87 1,87
5600 205,28 1,89 1,89
5700 211,59 1,91 1,91
5800 218,24 1,93 1,93
5900 225,34 1,95 1,95
6000 232,85 1,97 1,97
6100 240,80 1,99 1,99
6200 248,08 2,01 2,01
6300 255,74 2,03 2,03
6400 262,21 2,05 2,05
6500 269,84 2,07 2,07
6600 277,02 2,09 2,09
6700 286,00 2,11 2,11
6800 295,46 2,13 2,13
6900 305,45 2,16 2,16
7000 316,00 2,18 2,18

Table 7.2: Steady state operation, fluid [HCONH2].
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V0 [V] I [µA] ṁ [nkg/s] c [km/s] T [µN] Isp [s] η

5000 97,8 5,65 1,32 7,44 134,11 1.00
5100 95,1 5,35 1,35 7,21 137,32 1.00
5200 92,5 5,06 1,38 6,98 140,61 1.00
5300 90,0 4,78 1,41 6,75 143,97 1.00
5400 87,4 4,52 1,45 6,53 147,42 1.00
5500 84,9 4,26 1,48 6,31 150,97 1.00
5600 82,4 4,01 1,52 6,09 154,62 1.00
5700 79,9 3,78 1,55 5,87 158,37 1.00
5800 77,5 3,55 1,59 5,65 162,24 1.00
5900 75,1 3,33 1,63 5,43 166,28 1.00
6000 72,7 3,12 1,67 5,22 170,45 1.00
6100 70,3 2,92 1,71 5,00 174,78 1.00
6200 68,2 2,75 1,75 4,82 178,85 1.00
6300 66,1 2,59 1,80 4,64 183,05 1.00
6400 64,5 2,46 1,83 4,51 186,81 1.00
6500 62,7 2,32 1,87 4,35 190,99 1.00
6600 61,1 2,20 1,91 4,22 195,00 1.00
6700 59,2 2,07 1,96 4,05 199,62 1.00
6800 57,3 1,94 2,00 3,88 204,41 1.00
6900 55,4 1,81 2,05 3,72 209,36 1.00
7000 53,5 1,69 2,10 3,56 214,48 1.00

Table 7.3: Propulsive parameters, fluid [HCONH2].
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Figure 7.1: Propulsive parameters, fluid [HCONH2].
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The results are plotted as functions of the voltage. From a first inspec-
tion it can be seen that if T decreases then the flow rate Q decreases and
the specific impulse Isp increases, which is compatible with the current liter-
ature. It can be also seen that both I and Q have the same increasing and
decreasing properties with the voltage, that is another result in agreement
with the scientific literature. However the magnitude of the quantities is not
really compatible with the experimental data; this can be explained by our
assumption of null speed at the beginning of the jet that doesn’t take into
account a part of energy.
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7.2 Second implementation
The second implementation doesn’t resolve the entire system with fsolve

but solves the resulting equation (7.1) of variable b. Substituting (6.16) into
equation (6.8) we obtain:

48b4 − 48b3 + 16P.O.b1/2 − 9P.O.2 = 0 (7.2)

that is a parametric equation with parameter P.O. and variable b. The pro-
gram plots the function:

P.O. = f(b) (7.3)

To plot (7.3) we must fix the value of b and solve for P.O.: we take b has a
vector [1] ∗ [N ] with N chosen at will.

9P.O.2 − 16
√
bP.O.+ 48b3 − 48b4 = 0 (7.4)

The discriminant ∆/4 is equal to:

∆

4
= 64b− 432b3 + 432b4. (7.5)

Once again, not to make numerical errors due to a small discriminant (actu-
ally we don’t know the size of ∆/4 but we’re going to implement the same
algorithm as a precaution) we have to write the solution of a generic quadratic
equation Ax2 +Bx+ C = 0 in the following way:

q = −
[
B

2
+

√
∆

4

]

P.O. =
q

A

(7.6)

Domain of definition

The domain of definition of equation (7.4) is ∆/4 ≥ 0, that’s equal to:

b(64− 432b2 + 432b3) ≥ 0 (7.7)
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Setting b > 0 the domain is given by:

b3 − b2 +
4

27
≥ 0 (7.8)

that is an equation of the type Ax3 + Bx2 + Cx + D = 0. To calculate the
solutions of this equation first we have to calculate the following numbers:

Q =
A2 − 3B

9

R =
2A3 − 9AB + 27C

54

(7.9)

and then verify the condition:

Q3 −R2 ≥ 0. (7.10)

If (7.10) is true we have to calculate another quantity:

α = arccos

(
R√
Q3

)
(7.11)

The solutions will be:

x1 = −2
√
Q cos

(
α

3

)
− A

3

x2 = −2
√
Q cos

(
α + 2π

3

)
− A

3

x3 = −2
√
Q cos

(
α + 4π

3

)
− A

3

(7.12)

So let’s go find the solutions of (7.8): from (7.9) we have:

Q =
1

9
, R =

1

27
(7.13)
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and it’s easy to see that (7.10) is true and equal to 0. So equation (7.8) admit
solutions that are:

α = 0, b1 = −1

3
, b2 = b3 =

2

3
(7.14)

The domain can be written as:

b

(
b+

1

3

)(
b− 2

3

)2

≥ 0 (7.15)

whose solution is:

b ≤ −1

3
b ≥ 0. (7.16)

From the physics we know that b is a positive quantity so we can plot without
worries for b ≥ 0.

The second implementation of the method is shown below; there are dif-
ferences in the main program but the functions of the dimensionless num-
bers, operating parameter, flow rate, steady state operation and propulsive
parameters are the same as before.
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1 % MAIN 2
2

3 % project requirements
4

5 % voltage [V]
6 V_0 = 4001:100:7000;
7

8 % electrode distance [mm]
9 d = 5;

10

11 % emitter ’s diameter [mm]
12 D = 0.1;
13

14 % input (1) = d
15 % input (2) = D
16

17 double input;
18 input = [d*10^( -3) D*10^( -3)];
19

20 fid = fopen(’project_requirements.txt’,’w+’);
21 fprintf(fid ,’%10.4f\n’,input);
22 fclose(fid);
23

24 % fluid properties
25

26 % density [kg/m^3]
27 rho = 1130;
28

29 % surface tension [N/m]
30 gamma = 0.059;
31

32 % conductivity [Si/m]
33 K = 1;
34

35 % current parameter
36 f = 18;
37

38 % relative dielectric constant
39 e = 100;
40

41 % fluid (1) = rho
42 % fluid (2) = gamma
43 % fluid (3) = K
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44 % fluid (4) = f
45 % fluid (5) = e
46

47 double fluid;
48 fluid = [rho gamma K f e];
49

50 fid = fopen(’fluid_properties.txt’,’w+’);
51 fprintf(fid ,’%10.4f\n’,fluid);
52 fclose(fid);
53

54 % physics constants
55

56 % dielectric constant [F/m]
57 e_0 = 8.85418781762*10^( -12);
58

59 % gravity acceleration [m/s^2]
60 g = 9.80665;
61

62 % taylor cone ’s angle [deg]
63 theta_t = 49.29;
64

65 % cost (1) = e_0
66 % cost (2) = g
67 % cost (3) = teta_t
68

69 double cost;
70 cost = [e_0 g theta_t*pi /180];
71

72 fid = fopen(’physics_constants.txt’,’w+’);
73 fprintf(fid ,’%10.25f\n’,cost);
74 fclose(fid);
75

76 % dimensionless numbers
77 pi = dimensionless_numbers(fluid);
78

79 % second method
80

81 b = 1:100:3000;
82

83 delta_quarti = 64*b -432*b.^3 + 432*b.^4;
84

85 q = - ( -0.5*16*b.^0.5 - delta_quarti .^0.5);
86
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87 PO = q/9;
88

89 a = PO.*b.^( -2.5);
90

91 % flow rate
92 Q = flow_rate(a,V_0 ,pi,fluid ,cost);
93

94 %steady state operation
95 [E_ct , j, q_m] = steady_state_operation(Q,pi,fluid ,cost);
96

97 % propulsive parameters
98 [I, m_dot , v, T, I_sp , eta] = propulsive_parameters(q_m ,Q,V_0 ,
99 fluid ,cost);

100

101 % plot
102 plot(b,PO); xlabel(’b’); ylabel(’P.O.’);

1 % DIMENSIONLESS NUMBERS
2

3 function pi = dimensionless_numbers(fluid)
4

5 W = fluid (4)/ sqrt(fluid (5));
6

7 % pi(1) = dimensionless number of q/m
8

9 pi(1) = W;
10

11 % pi(2) = dimensionless number of j
12

13 pi(2) = W^(7/3)*0.1043;

1 % OPERATING PARAMETER
2

3 function PO = operating_parameter(V_0 ,input ,fluid ,cost ,pi)
4

5 PO = sqrt (8*pi (2)^3)/ sqrt(pi (1))*( fluid (3)* sqrt(fluid (1)* fluid (2))
6 *input (1)^(5/2))./( cost (1)^2.* V_0 .^2);

1 % FLOW RATE
2

3 function Q = flow_rate(a,V_0 ,pi,fluid ,cost)
4

5 Q = (a*cost (1)^(1/3)* fluid (2)^(3/4)* pi(2)* sqrt(pi (1)))./(2^(3/2)
6 *fluid (3)^(7/12)* sqrt(fluid (1)).* V_0 .^(1/2)).^(12/5);
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1 % STEADY STATE OPERATION
2

3 function [E_ct , j, q_m] = steady_state_operation(Q,pi ,fluid ,cost)
4

5 q_m = pi(1)* sqrt(fluid (2)* fluid (3))/ fluid (1).*Q.^( -1/2);
6

7 j = pi(2)* sqrt(fluid (2))/ cost (1)^(2/3)*( fluid (3))^(7/6)*Q.^( -1/6);
8

9 E_ct = fluid (3)*j;

1 % PROPULSIVE PARAMETERS
2

3 function [I, m_dot , v, T, I_sp , eta] = propulsive_parameters(q_m ,
4 Q,V_0 ,fluid ,cost)
5

6 I = fluid (4)* sqrt(fluid (2)* fluid (3)/ fluid (5))*Q.^(0.5);
7

8 m_dot = fluid (1)*Q;
9

10 v = sqrt (2*q_m.*V_0);
11

12 T = m_dot.*v;
13

14 I_sp = v/cost (2);
15

16 eta = m_dot.*v.^2./(2* V_0.*I);

.

The plot of function (7.3) is shown in figure 7.2: it can be seen the di-
rect proportionality of P.O. with b and so we can say, according to (6.6b),
that:

P.O. ∝ 1

V0

(7.17)

89



Figure 7.2: Function P.O. = f(b).
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Chapter 8

Conclusions

The models work differently and give different results. With a first inspec-
tion we can see that the first model works better than the second and shows
results that are of the same order of magnitude of the data in the literature
of electrospray engines. We also note that the dependence of the thrust with
the voltage it’s not correct because from equations (5.36) and (3.37):

T ∝ V 2

c3

c ∝
√
V

 =⇒ T ∝
√
V (8.1)

and it’s clear from the graphics in figure 7.1 that the thrust doesn’t have
a trend like (8.1). The deviation from the actual data can be explained by
our assumptions of absence of fragmentation and of the initial speed of the
jet: actually the jet has a speed not null and so the first model doesn’t take
into account a part of energy present in the phenomenon. However, with a
large range of initial voltages V0 and without taking into account the losses of
fragmentation it can be seen that the calculated efficiencies for each voltage
is exactly 1 so it can be said that the physics principles present are respected
and also that the program is correctly implemented.
Now, if the speed of the jet is taken into account the program shows an
unexpected behavior yielding us complex solutions, that don’t make sense.
An hypothesis after seeing step by step the program can be searched in the
complexity of the solving system: it’s possible that for some values of the Op-
erating Parameter the system doesn’t have real solutions, so the subsequent
iterations are all complex numbers. Another possibility could be the sensi-
bility of function fzero, for which with a specific initial point gives complex
solutions: for a large range of initial points the system always gives complex
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solutions so this last supposition seems to be the weakest. Unfortunately
we don’t have actual data of the Operating Parameter with which we can
compare the results, so our calculation cannot be continued without other
assumptions.

92



Appendix A

Meusnier’s theorem

In differential geometry Meusnier’s theorem states that the radius of cur-
vature Rα of an oblique flat section whose normal forms with the normal
surface an angle θ is equal to the radius of curvature Rn of the normal sec-
tion having the same tangent multiplied by the cosine of θ:

Rn cos(θ) = Rα (A.1)

Figure A.1: Meusnier’s theorem.
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Appendix B

Buckingham’s theorem

The Buckingham’s theorem (or π-theorem) states that in mathematical
terms, if we have a physically meaningful equation such as:

f(q1, q2, . . . , qN) = 0 (B.1)

where the qj are the N physical variables, and they are expressed in terms of
K independent physical units, then the above equation can be restated as:

F (π1, π2, . . . , πP ) = 0 (B.2)

where the πj are dimensionless parameters constructed from the qj by P =
N −K dimensionless equations the so called Π groups, of the form:

πi = qα1
1 · qα2

2 · ... · q
αN
N (B.3)

where the exponents αj are rational numbers (they can always be taken to
be integers by redefining πi as being raised to a power that clears all denom-
inators).
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