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Abstract

Single-image super-resolution refers to the problem of generating a high-resolution
image from a low-resolution one. The task arises in a wide number of real-world
applications, such as digital imaging software, browsers’ renders or image restora-
tion.
In the last 30 years, many different approaches have been proposed and solutions
obtaining both good perceptual quality and high evaluation metrics have been
designed. The difficulty of finding solutions able to predict detailed and realistic
textures, which are common in natural images, represents one of the largest lim-
itations in the field.
In this work we address to the problem of single-image super-resolution of de-
graded low-resolution images, where the downsampling and degradation models
are unknown. In addition, we consider the more challenging task of learning a
model for single-image super-resolution that does not require low-high resolution
image pairs during its design.
We face this task by adopting Convolutional Neural Networks, in particular we
combine adversarial learning with techniques aimed to preserve the color inform-
ation and the spatial smoothness on the produced high resolution images. We
try to implement a cyclic structure in which the images are firstly denoised and
deblurred, and then shifted to the desired scale.
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1
Introduction

In this work we address the problem of single-image super-resolution (SISR), which
consists in generating a high-resolution (HR) image from a low-resolution (LR) one.
More specifically, given a LR input image and a scaling factor, the goal of SR is to
generate a HR image with dimensions coherent with the specified scale and having
an enhanced version of the LR image as content.
The task of single-image super-resolution is useful to a number of real-world applic-
ations. A common scenario occurs when it is necessary to increase the resolution
of an image when enlarging it using graphics editors.
Another application can be found in the renders of web pages. In order to shorten
the response time of browsing web pages, images are often shown in LR form (the
so called thumbnails). The enlarged HR image is shown only when the user clicks
on the thumbnail and an HTTP request is sent to the web server. This approach
requires the HR image to be stored in a web server, and demands usage of time
and bandwidth in order to ask for and download the desired image on the user’s
machine. To save storage space, communication bandwidth and download time,
it would be desirable if the LR image is downloaded and then locally enlarged in
the user’s machine when needed.
Single-image super resolution may also come in help in the post processing of im-
ages acquired with cameras of mobile phones. Mobile phones manufacturers tend
to save money by using cheap camera hardware and then to enhance the pictures
through computer vision algorithms, for example SR techniques.
SR techniques may also be applied in the field of lossy compression. The encoder
can downsample HR images using classic approaches and subsequently encode
them using a compression algorithm (JPEG, for example). The decoder would
simply decode the LR image and then shift it to the HR domain using a SR tech-
nique.
A final application arises in the restoration of old, historic photographs, the so
called image inpainting. Besides reverting deteriorations in the photographs, it
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1. Introduction

is sometimes beneficial to also enlarge them with increased resolution for display
purposes and single-image super-resolution may come in help.
In the last 30 years, a number of solutions have been proposed and dramatic im-
provements have started to be obtained since the beginning of the deep learning
era. Recently, many deep learning models able to produce outstanding results
have been proposed. However, large room for improvement is present when deal-
ing with the problems of noisy cameras or texture reconstruction. SR techniques
are necessary, since detailed and realistic textures are present in many examples
and, as Figure 1.1 shows, classic interpolation techniques have almost no use.

(a) Original HR im-
age.

(b) Reconstruction of
the HR image via
bicubic interpola-
tion of its down-
sampled copy.

(c) Reconstruction of
the HR image via
the SISR tech-
nique in [5].

Figure 1.1: Examples of texture reconstruction.

In this work we tried to make the SR task even more challenging by choosing
to:

• Upsample up to a factor of 4, i.e. maximum value usually adopted in SR
challenges.

• Apply super-resolution to images affected by degradation and blur. The
characteristics of the smoothing and the noise are unknown, so it is not
possible to mitigate their effect through some image pre-processing.

• Train the models without using LR-HR image pairs. Hence, the training
procedure will be unsupervised.

To tackle this problem we implement a cycle-in-cycle CNN model derived from [8]
able to jointly denoise and super-resolve LR image to the desired scale. The basic
components of this approach are going to be the Generative Adversarial Networks
(GANs), whose applications have shown impressive results since they have been
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1. Introduction

proposed in 2014, and the CycleGAN framework, one of the most outstanding
works in the field of image-to-image translation.
The reminder of this thesis is organized as follows. Chapter 2 is going to introduce
the problem of super-resolution and how the SR approaches are usually classified.
It will also give an overview on the related work that has been performed on the
task in the last 30 years. To conclude, it will provide a small introduction to
Convolutional Neural Networks and to the GAN and CycleGAN frameworks, in
order to help the reader to better understand the content that will follow. Chapter
3 will describe the model that has been chosen as starting point for our experiments
and its various sub-parts, lingering also in the networks’ architectures. Chapter
4 will discuss the training techniques adopted for the models and the choice of
the hyper-parameters. Chapter 5 is going to the main results obtained from the
experiments. Finally, Chapter 6 will summarize the work that has been performed
and some conclusions will be given, along with some ideas for future works.
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2
Super-Resolution

Single-image super-resolution refers to the task of mapping an input low resolu-
tion image to a single high resolution image. Depending on how this mapping is
obtained, SR techniques can be classified in three principal approaches:

1. Inverse problem methods, where SR is seen as an ill-posed problem and
regularization tools are used to solve it.

2. Machine learning methods, that use a dictionary and aim at learning the
mapping through classic ML tools.

3. Deep learning methods, that address the problem of single-image super-
resolution by exploiting deep learning techniques, such as supervised or unsu-
pervised learning via deep convolutional neural networks (CNNs), adversarial
learning, and other procedures.

The following section will give a brief overview on the work related to the task of
single-image super-resolution that has been produced from the mid-nineties up to
now. Examples related to all the three principal approaches shall be given, but the
focus will remain on the third category, i.e. the one involving deep learning based
solutions, in particular CNNs. An overview on CNNs will be given in Section 2.2.1.
Deep learning methods can be further partitioned in two main classes: supervised
deep learning methods and unsupervised deep learning methods.
In supervised learning, the data samples used in the training procedure come to-
gether with their ground truth, which means that the real data output, the one
that the learning method should be able to reproduce (or, at least, approximate)
is available at training time. The ground truth is often used when computing the
loss function, i.e. a distance metric between the produced output and the desired
output sampled from real data.
In unsupervised learning, the ground truth is not available at training time (and
often not even at test time). The challenge posed by this kind of learning consists
in finding previously unknown patterns in the examples coming from the training
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2. Super-Resolution

set and to use these patterns to cluster the data samples into a fixed or variable
number of classes. If creation of samples has to be performed instead of classific-
ation, the learning becomes even more challenging.
Nowadays, Convolutional Neural Networks are an essential tool when facing Com-
puter Vision problems and for this reason, they will be better introduced in the
following sections. A great help in the task of data generation is given by the GAN
framework. Generative Adversarial Networks can speed up and improve the task
of samples generation by employing two networks that play an adversarial game.
The GAN framework is widely used in many SR techniques and it will be seen in
larger detail in Section 2.3. Another framework that is going to be presented in
this chapter is CycleGAN [6], a very powerful tool in the context of image-to-image
translation.

2.1 Related Work

The problem of single image super-resolution has been studied for 30 years. Early
approaches used interpolation techniques based on image statistics, as in [14] [12]
[13]. These methods tried to adapt the interpolation at higher resolution using
image statistics computed on the image at low resolution. Unfortunately, these
solutions exhibited limitations in predicting detailed textures.
Other studies [9] [10] [11] relied on natural image statistics in order to reconstruct
better high-resolution images.
More advanced works aim to learn mapping functions from the LR domain to
the HR domain using dictionaries of images’ pairs and machine learning tech-
niques [15] [16] [17].
Recently, deep convolutional neural networks (CNNs) and their powerful capabilit-
ies led to dramatic improvements in the problem of single-image super-resolution.
Since Dong et al. [18] [19] came up with deep learning based SR method outper-
forming the state of the art, many CNN architectures have been proposed.
The first CNN approaches to the super-resolution problem used to upscale the
input image via bicubic upsampling, as it is possible to see in [20] and [21], but
in these cases the architecture learnt an interpolation and not a super-resolution
technique. A different (and now more common) approach consists in feeding LR
images to a CNN containing upsampling modules at the end [22].
The ResNet architecture proposed by He et al. [4] allowed the construcion of deeper
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2. Super-Resolution

CNNs by exploiting residual blocks: the nested skip connections of residual blocks
allow fast and improved convergence by preventing the vanishing gradient prob-
lem. Ledig et al. successfully applied the ResNet architecture and set a new state
of the art for image SR with high upscaling factors (×4) with a 16 blocks deep
ResNet (SRResNet) optimized for MSE.
Minimizing the mean Squared Error is equivalent to maximize the peak signal to
noise ratio (PSNR), as it will be shown in Chapter 5, but it does not guarantee bet-
ter perceptual quality, in particular failing to reproduce texture details. Moreover,
all these SR solutions did not address the multi-scale problem: the seen SR al-
gorithms treat super resolution of different scale factors as independent problems
without considering and utilizing mutual relationships among different scales. All
those algorithms require many scale-specific networks that need to to be trained
independently to deal with various scales.
These issues are addressed by EDSR and MDSR, proposed by B. Lim et al. in [5].
In their work they develop an enhanced deep super-resolution network (EDSR)
with performance exceeding those of the state-of-the-art SR methods, which is
trained by minimizing the mean absolute error. EDSR manages to reproduce
detailed textures, guaranteeing higher perceptual quality.

In Figure 2.1 it is possible to see that EDSR outperforms both the classic bicubic
interpolation method and the SRResNet reconstruction. It preserves the detail of
the ground truth image and avoids the creation of image artifacts.
Lim addresses the problem of multi-scale SR with MDSR, a multi-scale deep super-
resolution system which can reconstruct high-resolution images of different - yet
fixed - upscaling factors in a single model. This multi-scale architecture shares
most of its variables across different scales and uses significantly fewer parameters
compared with multiple single-scale models, showing comparable performances.
A milestone not only in the field of super-resolution algorithms, but in the en-
tire deep learning era, are Generative Adversarial Networks (GANs), proposed by
Ian Goodfellow et al. in [2]. Goodfellow proposed a new framework for estimating
generative models through an adversarial process in which two networks are simul-
taneously trained: a generative model and a discriminative model. The generator
is trained by maximizing the probability of the discriminator making a mistake.
GANs were not directly thought for SR problems, but they have been exploited
in a number of different works ( [8] [23]) and for this reason they will be better
studied in Section 2.3.
The model that is going to be examined in Chapter 3, proposed by Yuan et al.
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2. Super-Resolution

(a) Example of tex-
ture from image
0853 from DIV2K
dataset [7].

(b) Bicubic interpol-
ation reconstruc-
tion.

(c) SRResNet recon-
struction.

(d) EDSR recon-
struction.

Figure 2.1: Comparison between SR algorithms. Classic methods as the bicubic inter-
polation fail to reproduce textures, SRResNet improves the reconstruction
but creates some artifacts. EDSR leads to a better reconstruction with
absence of artifacts.

in [8], addresses the problem of super-resolution of degraded images. It exploits
both the previous models (EDSR) and the GANs framework in a cycle-in-cycle
structure that allows both denoising and resolution augmentation by maintaining
a high PSNR and a good perceptual quality.
This model is going to be the starting point for our work.

2.2 Introduction to CNNs

Convolutional Neaural Networks are a class of artificial neural networks that in
the last decade has become dominant in various Computer Vision tasks.
The name Convolutional Neural Network indicates that the network employs a
mathematical operation called convolution that is a specialized kind of linear op-
eration. Convolutional networks are simply neural networks that use convolution
in place of general matrix multiplication in at least one of their layers.
CNNs are particularly suited for processing data that have a grid pattern, such as
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2. Super-Resolution

images, and they are designed to automatically and adaptively learn spatial hier-
archies of features, from low to high-level patterns. This is possible because of the
employment of some particular building blocks. Some common examples incude:
convolutional layers, pooling layers, and fully connected layers, that are designed
to automatically learn spatial hierarchies of features through a backpropagation
algorithm.
The CNN architecture includes several building blocks, such as convolution layers,
pooling layers, and fully connected layers. A typical architecture consists of repe-
titions of a stack of several convolution layers and a pooling layer, followed by a
series of fully connected layers.
In this thesis, the CNNs adopted to solve the task of super-resolution of degraded
images slightly differ from the ones just described. No fully connected layer is
going to be employed and some particular block architectures, such as Resolution
Blocks, are going to be used. The overall architecture will be better explained in
Chapter 3.

2.2.1 Convolutional Layer

Convolution is a specialized type of linear operation which in the particular case of
Convolutional Neural Networks is used for feature extraction. In the convolution
operation, a kernel (composed by a 2D matrix of numbers), is applied across the
input (denoted as input tensor). An element-wise product between each element
of the kernel and the input tensor is calculated at each location of the tensor and
summed to obtain the output value in the corresponding position of the output
tensor, called feature map. This procedure is repeated applying multiple kernels,
with different sizes, to each input tensor in order to form an arbitrary number
of feature maps. In this way, different characteristics of the input tensors can be
represented.
Some variations in the convolution operation described above can be performed.
For example, it is possible to skip over some positions of the kernel to reduce
the computational cost. This operation is called strided convolution and it can be
seen as a downsampling of the output of the full convolution function. An example
showing different types of strided convolution is represented in Figure 2.2. It is
also possible to define a separate stride for each direction of motion of the kernel.
If the input tensor is padded before being convolved, it is possible to maintain size
coherence between input and output. A common practice is to pass the output of
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2. Super-Resolution

(a) 2D convolution with kernel of size 3
and sride 1.

(b) 2D convolution with kernel of size
3 and sride 2.

Figure 2.2: Example of 2D convolutions.

the convolutional layer through a non-linear operation, called activation function.
The most common activation functions used in the deep learning field are:

• Rectified Linear Unit (ReLU), defined as

f(x) =


x if x > 0

0 otherwise
. (2.1)

• Leaky Rectified Linear Unit (Leaky ReLU), defined as

f(x) =


x if x > 0

αx otherwise
(2.2)

where α ∈ [0, 1].

• Sigmoid function, defined as

f(x) = 1
1 + e−x

. (2.3)

• Hyperbolic tangent, defined as

f(x) = e2x − 1
e2x + 1 . (2.4)

18



2. Super-Resolution

2.2.2 Pooling Layer

Pooling layers are responsible for reducing the spatial size of the Convolved Fea-
ture. This is necessary in order to decrease the computational power required to
process the data. Furthermore, it is useful for extracting dominant features which
are rotational and positional invariant, thus maintaining the process of effectively
training of the model.
The most common types of Pooling are:

• Max Pooling returns the maximum value from the portion of the image
covered by a kernel. It also performs as a noise suppressant. It discards the
noisy activations altogether and also performs de-noising along with dimen-
sionality reduction.

• Average Pooling returns the average of all the values from the portion of the
image covered by the kernel. It simply performs dimensionality reduction as
a noise suppressing mechanism.

In most cases, Max Pooling performs quite better than Average Pooling and it is
hence more used.

2.2.3 Batch Normalization Layer

Batch normalization is a method that can be used to normalize the inputs of
each layer, in order to fight the internal covariate shift problem. The internal
covariate shift is a problem that appears at the intermediate layers because of the
continuous change of the distribution of the activations during training. This slows
down the training process because each layer must learn to adapt themselves to a
new distribution in every training step.
During training time, a batch normalization layer does the following:

1. Compute mean and variance of the batch:

µB = 1
N

N∑
i=1

xi (2.5)

σ2
B = 1

N

N∑
i=1

(xi − µB)2 (2.6)
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2. Super-Resolution

2. Normalize the layer inputs using the previously calculated batch statistics:

x̄i = xi − µB√
σ2
B − ε

(2.7)

3. Scale and shift in order to obtain the output of the layer:

yi = γx̄i + β. (2.8)

The parameters ε, γ, and β have to be learned during training.

2.3 Generative Adversarial Networks

Before the invention of GANs, the largest successes in deep learning have involved
discriminative models, usually those that mapped a high-dimensional, rich sensory
input to a class label. Deep generative models had less success due to the large
complexity of the task.
In the work Generative Adversarial Nets [2], Goodfellow et al. proposed a new
framework for estimating generative models. The GAN framework sees two actors:
a generative model, that produces data samples, and a discriminative model, that
learns to determine if a sample comes whether from the model distribution or the
data distribution. The discriminator maximizes its probability of distinguishing
between real samples and generated samples, while the generator is trained to fool
it and thus to minimize that probability. This type of training can be seen as a
minimax game played by the generator and the discriminator.
To go deeper in detail we have to define:

• the generator’s distribution pg over data x;

• a prior on input noise variables pz(z);

• a function G learned by the generator, where G(z) is a mapping from the
noise distribution to the data space;

• a function D learned by the generator, where D(x) takes the value 1 if x
comes from the data distribution and 0 if it comes from the model’s distri-
bution.

20



2. Super-Resolution

The function D is trained to maximize the probability to output the correct value
to both training examples and samples from G. In the meantime, the function G
is trained to minimize the value log(1−D(G(z))). The minimax game played by
the generator and the discriminator is hence

min
G

max
D

Ex∼pdata
[log(D(x))] + Ez∼pz [log(1−D(G(z)))].

A generative adversarial network reaches its equilibrium when pg = px i.e. when
the generator is able to perfectly reproduce examples coming from the data distri-
bution. When this happens, the discriminator is not able to distinguish between
real or fake examples anymore and hence its output distribution assumes a uniform
shape taking value 0.5.
The GAN framework is powerful, and some examples generated by a deep model
applying GANs can be seen in Figure 2.3. The generated faces look almost indis-
tinguishable from pictures of real human faces. These examples, generated just 4
years after the introduction of GANs, should just give a hint about the powerful-
ness and the versatility of generative adversarial networks.

Figure 2.3: Examples of faces generated by StyleGAN [24].

Nevertheless, the GANs framework comes with some disadvantages, as the slow-
ness and the instability of the training procedure. Since the discriminator has
a simpler task, it may happen that sometimes it outperforms the generator by
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2. Super-Resolution

correctly labelling all the samples. This fact strongly affect the effectiveness of
adversarial training, since it does not allow the generator to learn the data distri-
bution and the whole minimax game leads to nothing.

2.4 CycleGAN

Image-to-image translation is a class of Computer Vision problems where the goal
is to learn the mapping between an input image from a domain X and an output
image to a domain Y using a training set of aligned image pairs. If X is the domain
of LR images and Y is the one of HR images, we see that we can exploit image-to-
image translation techniques for the task of single image super resolution. One of
the major frameworks for unsupervised image-to-image translation that we are go-
ing to use in the following chapters is CycleGAN [6]. Given one set of images from
a domain X and a different set in domain Y and assuming underlying relationship
between the domains – for example, that they are two different renderings of the
same underlying scene – CycleGAN learns to translate between domains without
paired input-output examples. In the framework, a mapping G : X → Y is learned
such as the produced output ŷ = G(x), x ∈ X, is indistinguishable from images
coming from the domain Y by an adversarial classifier able to distinguish ŷ from
y ∈ Y . This objective can induce an output distribution over Ŷ that matches
the empirical distribution pdata(y) by translating the domain X to a domain Ŷ

distributed identically to Y . However, such a translation does not guarantee that
an individual input x and output ŷ are paired up in a meaningful way, since there
are infinitely many mappings G that will induce the same distribution over y.
This issue is solved by introducing a second mapping F : Y → X trained simul-
taneously to G and by adding a cycle consistency loss, which forces F (G(x)) ≈ x
and G(F (y)) ≈ ŷ. This cycle consistency loss is thought to be placed in support
of an adversarial loss, obtained by employing two discriminators, DX and DY .
To sum up, the actors of this framework are:

• a mapping G : X → Y from the input domain to the output domain;

• a mapping F : Y → X from the output domain to the input domain;

• a discriminator DX which aims to distinguish between images x ∈ X and
images F (y), y ∈ Y ;
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2. Super-Resolution

Figure 2.4: The CycleGAN model contains two mappings, G : X → Y and F : Y → X,
and two adversarial discriminators DX and DY . DX encourages F to
shift inputs from a domain Y into outputs indistinguishable from samples
coming from X, while DY works on the opposite domain shift.

• a discriminator DY which aims to distinguish between images y ∈ Y and
images G(x), x ∈ X.

As anticipated, the loss function to be minimized during the training procedure
consists in the combination of an adversarial loss and a cycle-consistency loss. The
adversarial loss for the mapping function G is expressed as

LGAN(G,DY , X, Y ) = Ey∼pdata(y)[log(DY (y))] + Ex∼pdata(x)[log(1−DY (G(x)))],
(2.9)

where G tries to fool the discriminator by producing images G(x) similar to the
ones coming from the domain Y , whileDY aims to distinguish between real samples
from the domain Y and samples generated from the domainX. The minimax game
played by the two actors is hence

min
G

max
DY
LGAN(G,DY , X, Y ).

Similarly, for the mapping F , the objective of the game is

LGAN(F,DX , Y,X).

The cycle-consistency loss, which assures consistency in the domain shift operation,
is expressed as

Lcyc(G,F ) = E‖y∼pdata(y)[G(F (y))− y‖] + Ex∼pdata(x)[‖F (G(x))− x‖]. (2.10)
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2. Super-Resolution

The full objective is hence the sum of the adversarial losses and the cycle-consistency
loss

L(G,F,DX , DY ) = LGAN(G,DY , X, Y )+LGAN(F,DX , Y,X)+Lcyc(G,F ), (2.11)

and the training procedure is aimed to compute

G∗, F ∗ = argmin
G,F

max
DX ,DY

L(G,F,DX , DY ) (2.12)

i.e. the optimal mapping functions to perform a correct domain shift able to fool
the adversarial discriminators.
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Models

The main denoising strategy that we chose as starting point to tackle the task
of unsupervised Single-Image Super Resolution is represented in Figure 3.1. The
model is made of two nested cycles. The inner cycle learns to bring images from
a low resolution, noisy and blurred domain (X) to a low resolution noise-free and
blur-free domain (Y ). The outer cycle aims to perform a domain shift from low
resolution to high resolution domain (Z).
A cycle between two domains is intended here as a learning model able to bring
an image from a domain A to a domain B and vice versa. The need of a cyclic
structure comes from the fact that the training of the models is unsupervised, so
cycle-consistency between the input and the output of each model is needed.

Figure 3.1: Nested cycles model.

Each cycle is made of:

• a generative branch consisting in one or more CNNs. This part of the
cycle aims to produce an example which is going to be used in other parts
of the network or to be the output of the whole model.
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3. Models

• a discriminator, which aims to distinguish between artificial examples pro-
duced by the generative branch and real samples. It is going to be used to
train the generative branch in an adversarial way in order to improve the
quality of the produced samples.

• a feedback network which is necessary in the process of unsupervised
learning. It aims to reproduce the input of the network from a produced
example, thus to maintain consistency between input and output.

The main parts of the model are going to be studied in the following sections.
Section 3.1 is going to examine in depth the inner cycle. In particular it is going
to explain how the networks are linked to each other and to introduce the loss
functions that are used to train the networks. Also the architectures of the CNNs
are going to be described. Section 3.2 is going to deal with EDSR, one of the more
important blocks of the model. EDSR is responsible of the resolution augmentation
and, differently from the other networks, it is pre-trained in a supervised way.
Section 3.3 is going to better analyze the cycle-in-cycle model, its CNNs and its
loss functions.
Then we propose some modifications to the CNNs and the modules presented
before. First, in section 3.4 we propose a denoising solution to force the removal
of some image artifacts. Then, we introduce a modification to the architecture
in order to bring balance to the cycle and to improve the denosing performances,
Section 3.5. Driven by the need of a faster model in terms of training time, in
section 3.6 we slightly modify the architecture of EDSR [5]. Finally, in Section 3.7
we combine the two previous models in order to jointly perform image denoising
and super-resolution.

3.1 Denoising

The inner cycle of the CinCGAN aims to deblur and denoise a low resolution
image using a unsupervised model similar to CycleGAN. This model employs two
generators and one discriminator in the adversarial creation of a deblurred and
denoised version of an image, as it can be seen in Figure 3.2. In the figure, a
generative CNN G1 takes in input a blurred and noisy image x and learns to
produce an image ỹ.
To force the Generator G1 to produce realistic samples, it is put in a competition
against a discriminative CNN D1 whose task is to distinguish between real samples
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3. Models

Figure 3.2: Denoising model.

y and generated samples ỹ = G1(x). The generator adversarial loss is then

LLRGAN = 1
N

N∑
i=1
‖D1(G1(xi))− 1‖2 (3.1)

where N is the size of the batch used for a training iteration. The least squares
loss is used instead of the cross entropy loss because, as the authors claim in [8],
it is supposed to stabilize the training procedure.
Since the learning task is unsupervised, it is necessary to maintain consistency
between the input x and the output ỹ of the generator G1. To do so, a feedback
generator G2 is introduced. It is trained to produce a sample x′ = G2(G1(x))
which should be identical to the input x. The associated cycle consistency loss is:

LLRcyc = 1
N

N∑
i=1
‖G2(G1(xi))− xi‖2. (3.2)

In order to preserve the color of the produced images x an identity loss

LLRidt = 1
N

N∑
i=1
‖G1(yi)− yi‖1 (3.3)

can be used, as claimed in [6].
The last cost function that is added to the model is a total variation loss

LLRTV = 1
N

N∑
i=1

(‖∇hG1(xi)‖2 + ‖∇wG1(xi)‖2) (3.4)
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where ∇hG1(xi) and ∇wG1(xi) are the horizontal and vertical gradients of G1(xi).
It is used to impose spatial smoothness on the generated image ỹ.
To conclude, the generators are trained in order to minimize a weighted sum of
the loss functions that have just been introduced, i.e.

LLRtotal = LLRGAN + w1LLRcyc + w2LLRidt + w3LLRTV , (3.5)

where w1, w2, and w3 are the weight parameters for the different losses.
The discriminator instead is trained to distinguish between real (by outputting 1)
and artificial (by outputting 0) examples and his loss is defined as

LLRD = 1
2

 1
N

N∑
i=1
‖D1(yi)− 1‖2 + 1

N

N∑
i=1
‖D1(G1(xi))‖2

. (3.6)

3.1.1 Networks’ Architecture

To implement the denoising model, three Convolutional Neural Networks are
needed. The generative models share the same architecture, which can be seen
in Figure 3.3.

Figure 3.3: Architecture of the generative networks of the denoising model.

The networks start with 3 initial convolutions, each followed by a Leaky ReLU
activation with slope of 0.2. The initial convolutions are followed by 6 Residual
Blocks, each one performing a 3-layers skip. The network ends with 2 standard
convolutional layers and a final acrivation-free layer outputting 3 channels. The
number of variables which have to be optimized in order to train this type of net-
work is 609731 and they are mainly localized in the Resolution Blocks.
Since the task of the discriminator is simpler, a less complex architecture is chosen,
as Figure 3.4 shows.
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Figure 3.4: Architecture of the discriminative network of the Denoising model.

Only 5 convolutional layers and 3 Batch Normalization are employed. Its output
should be an empty matrix if the input sample is real and a matrix containing
only the value 0.9 if the input sample is artificial. Despite having only 8 layers,
the discriminator counts 2768321 variables. This is due to the large number of
filters per convolutional layer (64, 128, 256 and 512).
In total, the denoising block counts 3987783 network parameters.

3.2 Super-Resolution Module

In order to tackle the task of super resolution of denoised samples we chose to start
from the Enhanced Deep Super-Resolution (EDSR) model [5]. EDSR performs
Super-Resolution by improving the ResNet [4] model. In particular, it employs a
CNN consisting in 32 improved Resolution Blocks, whose representation can be
seen in Figure 3.5. In this type of architecture, where tens of layers are stacked
subsequently, the residual learning framework is essential to prevent the vanishing
gradient problem. The structure of the blocks employed by EDSR differs from
the one proposed in [4]. As it can be seen in Figure 3.6, the Batch Normalization
layers and the final convolution have been removed. This, according to [5], saves
GPU memory usage and improves the overall performances. In our cycle-in-cycle
approach, EDSR is placed after the denoising block and aims to increase the resol-
ution of the images by a factor ×4. EDSR is the only network in the model which
is trained in a supervised way by taking a high resolution image, downsampling it
by a factor 4 using the bicubic method, feeding the downsampled version to the
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Figure 3.5: Architecture of the EDSR model.

CNN and then computing the L1 loss for optimization purposes as

LEDSR = 1
N

N∑
i=1
‖EDSR(z′i)− zi‖1, (3.7)

where we denote as z′i the bicubic downsampled version of zi.
The EDSR model is the largest network employed in this work, counting 3248245
optimizable parameters. Its supervised training is long and more than a week of
training on a NVIDIA GTX 1080Ti GPU is needed before reaching convergence.
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(a) Classic Residual Block employed by ResNET.

(b) Residual Block used by EDSR.

Figure 3.6: Comparison between Resolution Blocks.

3.3 CinCGAN

The main cycle-in-cycle structure presented at the beginning of the chapter con-
siders the single image super-resolution problem in a general case, in the sense that
couples of images at high and low resolution are unavailable and the downsampling
method is unknown. Furthermore, the given low resolution images are blurred and
degraded by noise of unknown nature.
This unfavourable setup translates into the need of a denoising strategy and an un-
supervised learning model. Since the input images are degraded from some noise
and the characteristics of this noise cannot be known or extrapolated from the
images, it is necessary to include a denoising block in the super-resolution model.
Moreover, since the training set consists of unpaired high/low resolution images,
the learning shall be unsupervised.
Using Generative Adversarial Networks [2] and the CycleGAN [6] framework, we
implement a cycle-in-cycle model to tackle the problem of single image super-
resolution. The structure of the cycle-in-cycle model can be seen in Figure 3.7.
The inner cycle maps a low resolution image x to a clean low resolution image ỹ
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Figure 3.7: Cycle-in-CycleGAN model.

in a unsupervised way. As explained in Section 3.1, the task needs 3 convolutional
neural networks:

• a generator G1 to bring the image from the noisy low resolution domain to
the noise-free low resolution domain;

• a second generator G2 to perform the inverse task of the first one, in order
to assure consistency between the input images and the produced images;

• a discriminator D1 for adversarial training.

Then, it is necessary to investigate how to super-resolve the intermediate image ỹ
to the desired size. We stack an EDSR model, described in Section 3.2, directly
after G1. Then we use a discriminator D2 in order to perform adversarial training
and a generator G3 to maintain consistency between the input x and the output
z̃.
The losses of the model are:

• the generator adversarial loss, used to perform adversarial training by fooling
the discriminator D2:

LHRGAN = 1
N

N∑
i=1
‖D2(EDSR(G1(xi)))− 1‖2 (3.8)

• the cycle consistency loss, used to maintain consistency between the input x
and the output z̃

LHRcyc = 1
N

N∑
i=1
‖G3(EDSR(G1(xi)))− xi‖2; (3.9)
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• the identity loss, to maintain color consistency between z and its super-
resolved bicubic-downsampled version z′

LHRidt = 1
N

N∑
i=1
‖EDSR(z′i)− zi‖1 (3.10)

• total variation loss, to impose spatial smoothness

LHRTV = 1
N

N∑
i=1

(
‖∇hEDSR(G1(xi))‖2 + ‖∇wEDSR(G1(xi))‖2

)
. (3.11)

These losses are combined in the weighted sum

LHRtotal = LHRGAN + λ1LHRcyc + λ2LHRidt + λ3LHRTV , (3.12)

where λ1, λ2, λ3 are the weight parameters and it is minimized in the training
procedure.
The discriminator is instead trained to distinguish between real high resolution
samples and artificial Super-Resolution examples and therefore by minimizing the
loss

LHRD = 1
2

 1
N

N∑
i=1
‖D2(zi)− 1‖2 + 1

N

N∑
i=1
‖D2(EDSR(G1(xi)))‖2

. (3.13)

3.3.1 Networks’ Architecture

As shown in Figure 3.7, the cycle-in-cycle structure employs a total of 6 CNNs.
The inner cycle is identical to the one described in 3.1, while the outer one employs
and EDSR model (as the one described in 3.2), a discriminator and a feedback
generator.
The architecture of the discriminator is shown in Figure 3.8. It is identical to
the architecture of the discriminator of the denoising block, Figure 3.4, except
for the strides of the first 3 layers, which is set to 2. This modification does not
change the number of trainable parameters, which remains 2768321. Similarly, the
architecture of the feedback generator G3 shown if Figure 3.9 is identical to the
one of the generators employed in the denoising block, except for the filter sizes,
set from 3 to 4, and the strides of the second and the third convolution blocks,
which are set to 2 in order to perform a ×4 downsampling and hence to bring the
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Figure 3.8: Architecture of the discriminative network of the CinCGAN model.

samples back to the original size. The total number of parameters to be optimized

Figure 3.9: Architecture of the feedback network of the CinCGAN model.

in the whole model is 10671424. The training details are going to be explained in
Chapter 4.

3.4 Enhanced Discriminator

We propose a novel architecture for the denoising cycle which aims to strengthen
the feedback generator G2. This first strategy aims to correct the behavior of G2

by forcing it to produce samples closest to the ones in domain X without focusing
too much on the removal of GAN artifacts. Since G2 is originally trained just by
a cycle consistency loss focusing on the cycle X → Y → X, we upgraded the loss
in order to include also the cycle Y → X → Y as

LLRcyc = 1
N

N∑
i=1
‖G2(G1(xi))− xi‖2 + 1

N

N∑
i=1
‖G1(G2(yi))− yi‖2. (3.14)
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Figure 3.10: BD-GAN upgrades the baseline denoiser by adding a discriminator D2 for
the domain X. D2 is used to perform adversarial training on G2, bringing
balance and stability to the whole structure.

Furthermore, we feed to the discriminator D1 a stack of two images from the
domains X and Y . In this setup, D1 shall distinguish between real examples of
the form [G2(y); y] from fake examples of the form [x;G1(x)], x ∈ X and y ∈ Y .
This upgrade on the generator influences also the computation of the adversarial
loss, which now sees also the impact of G2, as

LLRGAN = 1
N

N∑
i=1
‖D1([xi;G1(xi)])− 1‖2 + 1

N

N∑
i=1
‖D1([G2(yi),yi])‖2 (3.15)

The loss of the discriminator becomes instead

LLRD,2 = 1
2

 1
N

N∑
i=1
‖D1([G2(yi); yi])− 1‖2 + 1

N

N∑
i=1
‖D1([xi, G1(xi)])‖2

. (3.16)

3.5 Bi-Directional GAN

This second strategy upgrades the CinCGAN denoiser by supporting it with an
additional discriminator. In this way we build BD-GAN, a Bi-Directional GAN
that shares the structure of the classic CycleGAN but uses different loss functions
to perform his training for domain shift. The new discriminator D2 is in charge of
distinguishing between samples coming from the domain X and examples of the
domain Y which have been degraded by G2, as Figure 3.10 shows. This archi-
tectural change comes with some modifications with regards to the loss functions.
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Now the generator adversarial loss has to be modified as

LLRGAN = 1
N

N∑
i=1
‖D1(G1(xi))− 1‖2 + 1

N

N∑
i=1
‖D2(G2(yi))− 1‖2. (3.17)

The parameters of G1 are tuned to minimize the first term of the loss, while the
second will be optimized by the parameters of G2. The cycle consistency loss
becomes the same as Equation 3.14, while the identity loss is modified as

LLRidt = 1
N

N∑
i=1
‖G1(yi)− yi‖1 + 1

N

N∑
i=1
‖G2(xi)− xi‖1. (3.18)

In this way, also G2 is forced to maintain the color informations at his output.

3.6 EDSRv2

Driven by the need to reduce the training time of EDSR and to produce samples
which better respect the color information of the input, we add to EDSR a network
skip. We simply upsample the input and we add it at the output of the CNN, as
Figure 3.11 shows.

Figure 3.11: Proposed network skip on EDSR. The upsampled input is added to the
output in order to force the network to correctly reproduce the input
colors.
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This setup, that is going to be referred as EDSRv2, performs better than the
classic interpolation approaches and the implemented EDSR network in terms of
PSNR and SSIM, as we are going to see in Chapter 5.

3.7 Joint Restoration and Super-Resolution

To jointly perform denoising and super-resolution on data degradated by unknown
noise and blur operators, we chose to work on a model that differs from the one
proposed by Yuan et al. [8].
Starting from the denoising BD-GAN model seen in the previous sections, we stack
a Super Resolution module right after the denoiser G1 and we add a discriminator
in order to perform adversarial learning on the HR domain Z. Since the training
is going to be unsupervised, we use a model to perform the domain shift Z → X

which is going to be used in order to assure cycle-consistency between the input
from the X domain and the output from the Z domain. We also employ a second
discriminator on the X domain, having become aware of the superiority on the
BD-GAN model with respect to the CinCGAN denoiser.
This model is represented in Figure 3.12. We choose EDSRv2 as super resolution

Figure 3.12: Proposed model for joint denoising and super-resolution.

module and we keep G3 and D3 as in Chapter 3.3. D4 performs the same task of
D2 and thus we choose to employ the same architecture, i.e. the one described in
Figure 3.4.
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This chapter is going to describe the dataset generation and to explain in detail
the training procedures of the models presented in the previous chapters.
In Section 4.1 we are going to introduce DIV2K, the dataset chosen to train the
models described before. It gathers 1000 images at 2K resolution, along with their
downsampled and degraded copies. This dataset is used to build the training sets
and the validation and test sets for the training of the proposed models.
Section 4.2 is going to reveal the details of the models presented in Chapter 3. In
particular, we are going to see how the denoising cycle and the EDSR model are
pre-trained and how jointly restoration and super-resolution work.

4.1 Training Data Generation

In order to train our models we choose DIV2K, the dataset used for the Super-
Resolution challenges NTIRE (CVPR 2017 and 2018) and PRIM (ECCV 2018).
In [7] a novel dataset with DIVerse 2K (DIV2K) resolution high quality images
is introduced. The dataset authors collected from the internet 1000 RGB color
images. All the 1000 images are 2K resolution, that is they have 2000 pixels on
at least one of the axes (vertical or horizontal). To ensure the diversity between
the data, images have been collected among dozens of different websites. DIV2K
covers a large diversity of contents, ranging from people, handmade objects and
environments (cities, villages), to flora and fauna, and natural scenes, including
underwater and dim light conditions.
Each image is then downsampled by a scale ×2, ×3 and ×4 in two different tracks:

• Track 1, the first set of downsampled images, is produced using a known
bicubic interpolation (function imresize of Matlab). This set has been
used to feed to the discriminative model clean examples.

• Track 2 is the result of unknown downsampling algorithm, blur and decima-
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tion. This challenging subset is the one that has been used in the denoising
experiments.

Furthermore, each track is split in Training set (80%), Validation set (10%) and
Test set (10%). Since the ground truth was absent in the Test set for domain Z,
we tested our models on the Validation set.
In order to train the Super-Resolution models described in Chapter 3, different
sets of images had to be taken from the DIV2K Tracks:

• a set of 400 degraded and ×4 downsampled images, called X training set, is
used to feed the generator G1.

• a set of 400×4 downsampled images, called Y training set, is used to train the
discriminator D1. The discriminator D1 is trained to distinguish between the
images of this set and the examples coming from the X training set cleaned
by the generator G1. The images of this training set are not the same of the
X training set, since we want unsupervised training.

• a set of 400 high resolution images (the same of Y training set), called Z
training set, is used to train the discriminator D2. D2 has to distinguish
between the samples of Z training set and samples enhanced by the gener-
ative branch and coming from the X training set.

Moreover, these sets are augmented through 90 and 270 degree rotation, and flip-
ping, bringing the size of each training set from 400 to 1200 samples. If we also
take into account the fact that the networks are trained with squared patches ran-
domly cropped from the images of the training sets, we see that the size of the
training sets grows further.

4.2 Training Details

The models presented in Chapter 3 have been implemented in Python 3.7.1 with
the support of the Tensorflow 1.10 library. This Section will not linger on the
code1 and the implementation details, but it will focus instead in the training of
the models, the choice of the parameters and the learning techniques.

1All the code can be found at https://github.com/boemd/CinCGAN.
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4.2.1 Training of the Denoising Cycle

In order to optimize the parameters of the inner cycle we chose the Adam optimizer.
Adam [3] is a method for efficient stochastic optimization that only requires first-
order gradients with little memory requirement. The method computes individual
adaptive learning rates for different parameters from estimates of first and second
moments of the gradients. Given a loss function Lt(θ), where θ is the vector of
optimization parameters and t is the time index, and given the learning rate α
and the exponential decay rates β1, β2 ∈ [0, 1), the parameters’ updates at time t
proceeds as follows:

• The gradients of the loss function at time t are computed as

gt = ∇θft(θt−1). (4.1)

• The bias corrected first and second moment estimates are updated using
moving average filters of the first order

mt = β1mt−1 + (1− β1)gt, m̂t = mt

1− βt1
, (4.2)

vt = β2vt−1 + (1− β2)g2
t , v̂t = vt

1− βt2
. (4.3)

• The weight are updated as

θt = θt−1 − α
m̂t√
v̂t + ε

. (4.4)

The learning parameters have been chosen as β1 = 0.5, β2 = 0.999 and ε = 10−8.
The learning rate α is initialized as 2 × 10−4 and then decreased by a factor 2
every 40000. The filters of the convolutional layers are initialized using a normal
distribution. The parameters used to weight the losses in Equation 3.5 are chosen
as w1 = 10, w2 = 5 and w3 = 0.5 after a process of hyperparameters tuning.
The model is trained for 400000 iterations. In each iteration a batch of 16 image
patches of size 32 × 32 × 3 are fed to the denoising cycle, and the losses are
computed. Two optimizers using the Adam algorithm optimize the parameters
of the generators G1 and G2 by respectively minimizing Equations 3.5 and 3.2,
and another Adam optimizer optimizes the parameters of the discriminator D1 by
minimizing Equation 3.6. In this way, adversarial training is performed.
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4.2.2 Training of EDSR

In order to train the EDSR network we randomly crop RGB patches of size 192×
192×3 from the Z training set and we downscale them by a factor 4. At this point
we have 48 × 48 × 3 patches to feed to the network and its ground truth, which
will be used to compute the L1 norm with the produced examples. As before,
the batch size is set as 16. The network is trained by an Adam optimizer with
parameters β1 = 0.9, β2 = 0.999 and ε = 10−8. The learning rate is initialized as
10−8 and then halved after every 2×105 iterations. The network is trained for 106

iterations.

4.2.3 Training of CinCGAN

The training of the cycle-in-cycle model is a complex operation which has been
divided in two steps. In the first step we firstly pre-train the denoising cycle and
the EDSR network and then, in the final step, we jointly fine tune the whole cycle-
in-cycle model.
In the fine tuning step we initialize G1, G2, D1 and EDSR with the weights
computed before and then in each training iteration we firstly minimize Equation
3.5 and then Equation 3.12. This alternation is better represented in Figure 4.1:
at first the networks of the outer cycle are frozen and LLRtotal is minimized as shown
in the previous sections and then, after G2 and D1 are frozen, the loss LHRtotal gets
minimized.

Adam optimizers are chosen as in Section 4.2.1 and the learning rate is set as
10−4. The losses’ weights are set as w1 = 10, w2 = 1, w3 = 0.5, λ1 = 10, λ2 = 5
and λ3 = 2, as the authors recommend in [8].
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(a) First step of the jointly restoration and super-resolution.

(b) Second step of the jointly restoration and super-resolution.

Figure 4.1: Jointly restoration and super-resolution.
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5
Results

In this section the results of the experiments performed starting from the models
presented in Chapter 3 will be presented along with the metrics used to evaluate
them.
The produced examples are evaluated by comparing them with their ground truth
by means of Peak Signal-to-Noise Ratio and Structural Similarity.
The experiments have been performed on the denoising model, on the Super-
Resolution module and on the cycle-in-cycle combination of the previous models.

5.1 Evaluation metrics

The images produced by the models described in Sections 3.1, 3.2 and 3.3 have
been evaluated with two functions, Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity (SSIM) [1]. Both functions evaluate a metric between an artificial
image and its ground truth.
The PSNR is the ratio, usually expressed in decibel, between the maximum pos-
sible power of a signal and the power of the noise that corrupts the the quality of
the image. The power of the noise between a color image Ix and its ground truth
Iy is often expressed in terms of Mean Squared Error

MSE(Ix, Iy) = 1
3MN

M−1∑
m=0

N−1∑
n=0

2∑
c=0

[Ix(m,n, c)− Iy(m,n, c)]2 (5.1)

where (M,N, 3) is the shape of the images and I(m,n, c) indicates the value of
the intensity of the pixel (m,n) and color channel c for the image I.
When the mean squared error is known, the peak signal-to-noise ratio is expressed
as
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PSNR(I, Igt) = 10 log10

 I2
max

MSE(I, Igt)

 (5.2)

= 20 log10

(
Imax

)
− 10 log10

(
MSE(I, Igt)

)
(5.3)

where Imax is the maximum value that the images can take, for example 255 if the
value of each channel of a pixel is represented with an unsigned 8-bits integer.
Usually the peak signal-to-noise ratio is used to measure the quality of the re-
construction of lossy compression algorithms, but in our scenario it is useful to
measure how the artificial image is close to the ground truth.
The PSNR is an appealing metric, since it is simple to compute, has a clear physical
meaning and it is mathematically convenient when optimizing, since the minimiza-
tion of the MSE is equivalent to the maximization of the PSNR. However, PSNR is
not a good measure to perceive visual quality. The Structural Similarity is another
measure for the similarity of two images but, differently from the PSNR, the SSIM
index does not measure absolute differences between intensity levels. SSIM takes
into account perceptual phenomena such as luminance, contrast and structure, as
explained in [1].
An example of the difference between PSNR and SSIM can be seen in Figure 5.1.

(a) Ig: image "0810" from DIV2K
blurred by a gaussian filter with
σ2 = 0.5.

(b) Ia: dummy alteration on the
corners of the blurred image Ig.

Figure 5.1: Alteration of Image "0810" from DIV2K. A small change in the image causes
a huge loss on the PSNR, while the SSIM remains almost unchanged.

We have taken an image from DIV2K, namely I0, and blurred it with a gaussian
filter, producing Ig (Figure 5.1a). The PSNR and SSIM between I0 and Ig are
44.38dB and 0.9915. If we alter the corners of Ig, as in image Ia (Figure 5.1b), we
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observe a drop of 8dB in the PSNR, which falls to 35.98, while the SSIM remains
almost unchanged at 0.9898.
This dummy example shows the how the PSNR metric is inadequate in measuring
the visual quality of an image, while the SSIM behaves better in this task.

The SSIM index is the result of the combination of 3 components, i.e.

SSIM(Ix, Iy) = l(Ix, Iy) · c(Ix, Iy) · s(Ix, Iy), (5.4)

which respectively compare luminance, contrast and structure. The function
l(Ix, Iy) compares the luminance of the two images and it is defined as

l(Ix, Iy) = (2µxµy + c1)
(µ2

x + µ2
y + c1) , (5.5)

where:

• µx, µy are the averages of Ix and Iy, i.e. the mean intensities;

• c1 = (k1Imax)2;

• k1 = 0.01 and is fixed.

It assumes values in the interval [0, 1] and touches his maximum when the input
images share the same mean, i.e. when µx = µy.
The contrast comparison function c(Ix, Iy) takes a similar form:

c(Ix, Iy) = (2σxσy + c2)
(σ2

x + σ2
y + c2) , (5.6)

where:

• σ2
x, σ

2
y are the variances of Ix and Iy, which estimates the squares of the

signals’ contrast;

• c2 = (k2Imax)2;

• k2 = 0.03 and is fixed.

The structure comparison function instead uses the correlation (inner product)
between Ix and Iy as a simple and effective measure to quantify the structural
similarity:

s(Ix, Iy) = (2σx,y + c2)
(2σxσy + c2) , (5.7)
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where σ2
x,y is the covariance of Ix and Iy.

The Structural Similarity is hence defined as

SSIM(Ix, Iy) = (2µxµy + c1)(2σxy + c2)
(µ2

x + µ2
y + c1)(σ2

x + σ2
y + c2) (5.8)

To evaluate the experiments, we chose the Matlab scoring functions 1 used
in NITRE 2018 challenge for the evaluation of the proposed solutions. The
PSNR/SSIM validation curves have been computed using a Python transposition
of those Matlab scripts.

5.2 Denoising Experiments

In this section we are going to report some of the tests and experiments that have
been carried out using the CinCGAN framework and its sub-components.

5.2.1 Baseline Denoising

The first experiments that have been performed involve the inner cycle of the
CinCGAN model, which has been presented in Chapter 3.1. As it was explained,
this module performs unsupervised denoising of low resolution image patches by
using a quasi-CycleGAN structure (Figure 3.2) and exploiting some ideal charac-
teristics of the cleaned LR images during the training phase, such as cycle consist-
ency, spatial smoothness and color preservation.
The first experiments, as depicted in Chapter 4.2.1, did not give good results both
in terms of evaluation metrics and visual perception, as it is possible to see in
Figure 5.2.

From the training statistics and the learning curves it was possible to see that
that there were no problems in the adversarial part of the training. The discrim-
inator is trained to output the value 0.9 when the example is recognized as real.
When the adversarial training is balanced and at regime, the discriminator should
output 1

2 × 0.9 = 0.45 and hence its loss should float around 0.452 ≈ 0.2, since we
are using a least squares GAN. From the plot of the discriminator loss, red line of
Figure 5.3, it is possible to see that we almost fall on this case.

1Matlab Scoring functions: https://competitions.codalab.org/my/datasets/download/
ebe960d8-0ec8-4846-a1a2-7c4a586a7378
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(a) Denoising of image "0803" from DIV2K.

(b) Denoising of image "0808" from DIV2K.

Figure 5.2: Two of the examples generated by the denoising cycle during the first ex-
periments containing the largest number of artifacts.

The average value of the loss is a bit lower than the desired one. This behavior
is justified, since the task of the discriminator D1 is simpler than the one of the
generator G1.
The most evident issue in this configuration is the vast presence of artifacts in
the output images. This kind of artifacts is a well known problem in the field of
adversarial learning and we tried to limit their presence with a simple modification
of the total loss. We added a fourth weight on the GAN component of Equation
3.5 in order to better control the impact of the adversarial loss on the total one.
The resulting loss is

LLRtotal = w0LLRGAN + w1LLRcyc + w2LLRidt + w3LLRTV . (5.9)

We tuned the new parameter w0 by trying different values and observing the trend
of the training losses and metrics.
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Figure 5.3: Discriminator losses while performing parameter tuning on w0.

In Figures 5.3 and 5.4 the values of the discriminator’s loss and the PSNRmeasured
during training are represented for some values of the parameter w0. When values
higher than 1 or lower than 0.2 are assigned to w0, the training degenerates. From
Figure 5.3 we see that the adversarial learning is quite stable on all the scenarios.

From the comparisons of the PSNRs obtained by tuning w0, we can see that
the highest PSNR is given by the lowest parameter, i.e. 0.2. This setup allows us
to obtain an average PSNR of 22.88dB and SSIM of 0.6912 on the validation set,
along with a rarefication of the adversarial artifacts, as Figure 5.5 shows.

Despite the gain in the metrics value, this approach did not led to an acceptable
solution because of 3 reasons:

• the PSNR and SSIM values were still too low, in comparison to the ones of
the noisy input images (24.07/0.7180);

• some artifacts were still present;

• the generator G2 did not learn the expected task, i.e. to map LR images to
noisy-LR images, but it learnt to remove the artifacts due to the adversarial
training. This is evident in Figure 5.6. When we feed toG2 an image denoised
by G1 (Figure 5.6a) it learns to correct the GAN artifacts, as Figure 5.6c
shows. When instead we try to shift an image from the clean LR domain to
the noisy LR domain, we see in Figure 5.6d that G2 tries to remove some non-
existing artifacts, resulting in degrading the image in a way that is different
from the expected one.
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Figure 5.4: PSNR comparison on the tuning of the parameter w0.

To solve this issue, it is necessary to further reduce the artifacts produced by
G1 and improve the performances of G2. Two solutions have been thought. In the
first one, no architectural modification is added to the framework. We just work
on the loss functions and on the input of the discriminator. The second solution
establishes a major update, since a new discriminator is added.

5.2.2 Enhanced Discriminator Denoising

This first strategy aims to correct the behavior of G2 by forcing it to produce
samples closest to the ones in domain X without focusing too much on the removal
of GAN artifacts. We tested this approach, presented in Section 3.4 on the usual
dataset, obtaining the prefixed results. As Figure 5.7 shows, G2 has stopped to
produce artifacts and started to perform the domain shift Y → X.

5.2.3 BD-GAN

This second strategy, presented in Section 3.5, upgrades the CinCGAN denoiser
by supporting it with an additional discriminator. In this way we build BD-
GAN, a Bi-Directional GAN that shares the structure of the classic CycleGAN
but uses different loss functions to perform his training for domain shift. The new
discriminator D2 is in charge of distinguishing between samples coming from the
domain X and examples of the domain Y which have been degraded by G2. In
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Ground truth Degraded Denoised

(a) Image "0805". (b) 25.147/0.6750. (c) 24.04/0.6425.

(d) Image "0827". (e) 29.31/0.8287. (f) 27.64/0.8114.

(g) Image "0842". (h) 25.97/0.8018. (i) 24.87/0.7754.

(j) Image "0866". (k) 22.89/0.6598. (l) 22.31/0.6487.

Figure 5.5: Examples of baseline denoising with a reduced impact of the adversarial
loss.
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(a) G1(x). (b) y.

(c) G2(G1(x)) (d) G2(y).

Figure 5.6: Example of misfunctioning of G2 on the image 807 of the validation split.
We refer as x to the blurred and degraded image and to y to its clean
ground truth.

this way, also G2 is forced to maintain the color informations at his output.

5.2.4 Denoising comparisons

The implemented denoising strategies have been compared both in terms of eval-
uation metrics and visual perception. The values of PSNR and SSIM are collected
in Table 5.1, where we can see that the two new solutions outperform the baseline
at least in terms of SSIM.

method PSNR (dB) SSIM
Baseline 22.85 0.6854

Baseline, w0 = 0.2 22.88 0.6912
Enhanced discriminator 22.54 0.7183

BD-GAN 23.26 0.6929

Table 5.1: Comparisons between the implemented denoising techniques in terms of eval-
uation metrics PSNR and SSIM.

By forcing the discriminator to work on a stack of noisy-clean images, we obtain
a large increment on the Structural Similarity, but we are not able to minimize
the presence of adversarial artifacts, as we can see in Figure 5.8e.
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(a) G1(x) (b) G2(y)

(c) G2(G1(x)) (d) G1(G2(y))

Figure 5.7: Action of the CNNs G1 and G2 on the image "0810" of DIV2K dataset. We
denote the blurred and degraded image as x and the clean ground truth as
y.

By adopting a BD-GAN to perform denoising, we improve both the evaluation
metrics and we reduce the amount of artifacts introduced in the cleaned images.
For this reasons we decided to implement this model also in the SR step.

5.3 Super-Resolution Experiments

The SR-module has been pre-trained in a supervised way, as explained in Chapter
4.2.1, by downsampling HR images with a scale factor equal to 4 with a bicubic
downsampling and feeding them to the CNN. Since we computed a metric between
the reconstructed images and their ground truth, the training cannot be labeled as
unsupervised. However, we did not need any HR-LR pair from any dataset, since
we generated them by ourselves.
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Ground truth Input Baseline

(a) PSNR/SSIM. (b) 25.22/0.9130. (c) 24.44/0.8960.
Baseline (w0 = 0.2) Enhanced discriminator BD-GAN

(d) 24.68/0.9040. (e) 24.31/0.8950. (f) 24.86/0.9120.

Figure 5.8: Comparison of the implemented denoising strategies with ground truth and
input in Image "0896" of DIV2K.

With this setup we trained a network able to obtain an average PSNR of 25.98
and an average SSIM of 0.7643. These results are lower than the ones obtained
with the classical interpolation techniques because of a small color shift on the
green channel that the CNN was not able to correct. Figure 5.9 shows an example
of SR performed with EDSR, along with the colormaps of the error in the RGB
channels. It is possible to deduce both from visual inspection and from MSE
analysis that the error is gathered in the green channel.

Visual inspection shows also that EDSR can better super-resolve the images with
respect to the classic interpolation methods. Figure 5.10 shows some comparisons
between HR images, EDSR super-resolution and bilinear and bicubic upsampling.
EDSR boasts a greater capability of reconstructing the edges and reproducing
textures, such as animal fur in Figures 5.10f and 5.11p, avoiding the blocking
artifacts present in the upsamplings.

An approach to solve this color problem stands in slightly modifying the EDSR
architecture by upsampling the input and then adding it at the end of the network’s
operations, as depicted in Section 3.6. EDSRv2 performs better than the classic
interpolation approaches and the implemented EDSR network in terms of PSNR
and SSIM, as Table 5.2 shows.
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(a) Image "0838" from DIV2K Dataset [7].
PSNR/SSIM.

(b) EDSR reconstruction of image 838.
28.70/0.8536.

(c) R channel.
MSE: 7.14.

(d) G channel.
MSE: 110.43.

(e) B channel.
MSE: 9.24.

Figure 5.9: Example of color failure in the reconstrucion of Image 0838 (DIV2K). The
colormaps show the RGB split of the difference of the ground truth and
the SR result. We see that the green channel is the one deviating from the
ground truth.

method bilinear bicubic EDSR EDSRv2
PSNR 26.02 26.59 25.80 27.27
SSIM 0.7323 0.7521 0.7517 0.7804

Table 5.2: PSNR and SSIM comparisons of the implemented SR techniques with the
classic interpolation methods.

5.4 Joint Denoising and Super-Resolution Experiments

To jointly perform denoising and super-resolution on data degradated by unknown
noise and blur operators, we chose to work on a model that differs from the one
proposed by Yuan et al. [8]. We employ the model presented in Section 3.7 and
we divide each training iteration in two steps:

1. In the first step we update the denoising module, i.e the networks G1, G2,
D1 and D2, by minimizing the losses seen in Section 5.2.3.

2. The second step sees the optimization of G1, G3, EDSR, D3 and D4.

From the results of table 5.3 we firstly see that when we increase the resolution
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method PSNR SSIM
bicubic 21.75 0.5737
EDSRv2 21.56 0.5643

BD-GAN + bicubic 21.32 0.5599
BD-GAN + EDSRv2 19.79 0.5141
Joint denoising and SR 20.60 0.5444

Table 5.3: Comparisons between the implemented SR techniques in terms of evaluation
metrics PSNR and SSIM.

of a noisy input, the classic bicubic upsampling works better than EDSRv2. At
first, this result may seem counter-intuitive since we saw in Table 5.2 that EDSRv2
performed better Super-Resolution than the upsampling. This is one of the typical
problems of Machine Learning: a model tested on a distribution different than the
one it was trained on, sees a dramatic decrease on the performance. In our case,
EDSRv2 was trained on clean input data coming from domain Y and tested on
domain X. This shift in the input domain causes the PSNR to lose ≈ 5.5dB.
When we directly apply EDSRv2 to data denoised by BD-GAN, we face a sim-
ilar problem: the bicubic interpolation still outperforms our CNN. This happens
because BD-GAN has still some issues and doesn’t actually perform the X → Y

with sufficient accuracy, so the input domain is not adequate.
When instead we jointly fine-tune the BD-GAN denoiser and EDSRv2 super-
resolutor as depicted in Figure 3.12, we improve the PSNR of the produced ex-
amples of ≈ 1dB.
In Figure 5.11 we can compare the reconstruction techniques implemented in this
thesis. We see that while keeping an high PSNR, the simple SR on noisy data does
not produce samples with acceptable visual quality. In particular, this approach
amplifies the blur and the degradation of the input images, as it was reasonable to
expect. When we stack BD-GAN and EDSRv2, we improve the visual quality but
we also magnify the artifacts produced by the denoiser, if they are present. This
issue induces a loss on the evaluation metrics which is partially recovered when
jointly tuning the denoiser and the SR module, as we can see in Figures 5.11e and
5.11j. The joint optimization of the two modules not only performs SR on the
denoised samples, but also acts as an artifacts mitigator, as we can see in the last
example: the artifacts produced by BD-GAN and amplified by EDSRv2, Figure
5.11s, are not present in the output of the joint optimization, Figure 5.11t.
However, much room for improvement is still present both in the detail reconstruc-
tion and in the color preservation, as we can see in Figure 5.11r.
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(a) Image "0803 from DIV2K
Dataset [7], validation split.

(b) GT:
PSNR/SSIM

(c) EDSR:
24.63/0.9202

(d) BIL:
29.63/0.8454

(e) BIC:
30.83/0.8658

(f) Image "0809" from DIV2K
Dataset [7], validation split.

(g) GT:
PSNR/SSIM

(h) EDSR:
29.47/0.6980

(i) BIL:
29.10/0.7698

(j) BIC:
30.02/0.8011

(k) Image "0843" from DIV2K
Dataset [7], validation split.

(l) GT:
PSNR/SSIM

(m) EDSR:
38.660/0.9726

(n) BIL:
26.72/0.8618

(o) BIC:
27.43/0.8704

(p) Image "0862" from DIV2K
Dataset [7], validation split.

(q) GT:
PSNR/SSIM

(r) EDSR:
31.59/0.8008

(s) BIL:
27.45/0.6034

(t) BIC:
27.96/0.6389

Figure 5.10: Comparison between a HR patch (GT), its EDSR reconstruction (EDSR)
and its bilinear (BIL) and bicubic (BIC) interpolation.
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(a) Image "0803 from DIV2K
Dataset [7], validation split.

(b) GT:
PSNR/SSIM

(c) EDSRv2:
26.09/0.8540

(d) BD+SR:
23.03/0.7680

(e) JOINT:
22.28/0.8142

(f) Image "0810" from DIV2K
Dataset [7], validation split.

(g) GT:
PSNR/SSIM

(h) SR:
22.720/0.5750

(i) BD+SR:
20.89/0.4680

(j) JOINT:
21.77/0.5480

(k) Image "0816" from DIV2K
Dataset [7], validation split.

(l) GT:
PSNR/SSIM

(m) SR:
24.47/0.6300

(n) BD+SR:
22.49/0.5781

(o) JOINT:
21.08/0.575

(p) Image "0829" from DIV2K
Dataset [7], validation split.

(q) GT:
PSNR/SSIM

(r) SR:
22.94/0.4040

(s) BD+SR:
20.59/0.3490

(t) JOINT:
20.65/0.3800

Figure 5.11: Comparison between a HR patch (GT), the EDSRv2 Super-Resolution of
the noisy input (SR), BD-GAN + EDSRv2 of the noisy input (BD+SR)
and the joint restoration and Super-Resolution of the input (JOINT).
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In this thesis I faced the problem of single-image super-resolution, i.e. the task of
generating a high-resolution image from a low-resolution one. I chose a dataset
where LR images were affected by blur, degradation and random shift of unknown
nature. Furthermore, LR-HR resolution pairs of images were not available at
training time, causing the need of an unsupervised kind of training.
Three image domains had hence to be taken in consideration:

1. Domain X of low resolution images affected by blur, noise and random shift.

2. Domain Y that included clean low resolution images.

3. Domain Z containing clean images at high resolution.

Given the complexity of the task, he problem had to be divided in sub-tasks:

• The first task consisted in learning a model to perform the shift X → Y , i.e.
to denoise images at low resolution.

• For the second task it was necessary to increase the resolution of clean LR
images, i.e. to learn a model able to bring images from domain Y to domain
Z.

• The final task consisted in jointly tune the previous models in order to per-
form the domain shift X → Z.

To accomplish these tasks we chose to rely on Generative Adversarial Networks,
more in particular on CycleGAN, a powerful framework for unsupervised image-to-
image translation, and CinCGAN, a recent technique for unsupervised single-image
super-resolution of noisy images.
The denoising of LR images was the most challenging of the sub-tasks in terms
of model stability and output quality and required the investigation of different
models. At first we implemented the CinCGAN denoiser, consisting in a generat-
ive model G1 paired to a discriminator D1 used to perform adversarial learning.
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In order to perform the task in an unsupervised way, another generative model
G3 performing the inverse mapping of G1 was added. The inverse mapping sets a
harder constraint by forcing G2(G1(x)) ≈ x, the so-called cycle consistency. To
improve the mediocre performances of this setup, we taught of two alternatives.
We firstly tried to feed the discriminator with a stack of a two images from the
domain X and Y . This allowed to perform adversarial training also on G2, im-
proving the reliability of its output.
Then we tried to bring balance to the model by adding a second discriminator and
upgrading the identity loss and the cycle-consistency loss, developing BD-GAN.
These two extentions to the CinCGAN denoiser, in particular BD-GAN, both
improved the quality and the metrics of the produced examples by reducing the
presence of artifacts and avoiding color shifts on the outputs.
In order to implement the super-resolution module, we slightly modified the EDSR
model in order to reduce the training time and improve the reliability of the color
information of the produced examples. We included a network skip in the EDSR
architecture by upsampling the input image and adding it to the output.
This solution helped us to obtain a better image quality in terms of accuracy met-
rics with respect to the classic upsampling methods and also reduced the training
time to the 20% of the time required to train classic EDSR from scratch.
In order to accomplish the final task, we chose to employ the BD-GAN denoiser
and stacking the SR module to it. We also included an inverse mapping to main-
tain cycle-consistency between the input and the output and two discriminators
for adversarial training. This setup saw the joint optimization of 8 neural networks
and was quite challenging to stabilize.
We compared its performance with just the stack of the denoiser and the SR mod-
ule and we verified an improvement in the evaluation metrics.
As regards future works, it is necessary to further improve the denoiser, since it is
the starting point of the whole process. BD-GAN needs to improve both perceptu-
ally and in terms of accuracy metrics and these improvements may be achieved by
exploring new kinds of loss functions to adjust or substitute the ones exploited in
this thesis. In particular it could be interesting to work on a new color-preserving
loss, since the identity loss implicitly enforces G(x) ≈ x.
It could be also beneficial to slim down the overall architecture, since the largest
issues we had involved the stabilization of the model.
In the end, we could also address the multiscale Super-Resolution problem by
adopting a multiscale SR module, for example MDSR.
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