

UNIVERSITA' DEGLI STUDI DI PADOVA

SCUOLA DI SCIENZE Dipartimento di Geoscienze Direttore Prof. Fabrizio Nestola

TESI DI LAUREA MAGISTRALE IN GEOLOGIA E GEOLOGIA TECNICA

MODELLAZIONE NUMERICA DEL FLUSSO NELL'ACQUIFERO FREATICO DELL'ALTA PIANURA VERONESE

ANNO ACCADEMICO 2017/2018

Relatore: Prof. Leonardo Piccinini Correlatore: Dott. Gianluca Franchi Laureanda: Gaia Baldassarre Matricola: 1141447

INDICE

- 1. INRODUZIONE
- 2. INQUADRAMENTO DELL'AREA DI STUDIO
 - 2.1 INQUADRAMENTO GEOGRAFICO
 - 2.2 INQUADRAMENTO GEOLOGICO E GEOMORFOLOGICO
 - 2.3 INQUADRAMENTO IDROGEOLOGICO
- 3. DATI IDROGEOLOGICI DI BASE
 - 3.1 RACCOLRA ED ELABORAZIONE DEI DATI LITOSTRATIGRAFICI
 - 3.2 RACCOLTA ED ELABORAZIONE DEO DATI METEO-CLIMATICI
 - 3.3 RACCOLTA ED ELABORAZIONE DEI DATI IDROGEOLOGICI
 - 3.3.1 TRASMISSIVITA' E CONDUCIBILITA' IDRAULICA
 - 3.3.2 LIVELLI IDROMETRICI
 - 3.3.3 LIVELLI FREATIMETRICI
- 4. MODELLAZIONE IDROGEOLOGICA
 - 4.1 MODELLO IDROGEOLOGICO CONCETTUALE
 - 4.2 CODICI DI CALCOLO E TIPOLOGIA DELLE SIMULAZIONI UTILIZZATE
 - 4.3 DISCRETIZZAZIONE SPAZIALE DEL DOMINIO DI MODELLAZIONE
 - 4.4 PARAMETRIZZAZIONE
 - 4.5 CONDIZIONI AL CONTORNO E DISTRIBUZIONE INIZAILE DEL CARICO IDRAULICO
 - 4.6 APPROCCIO METODOLOGICO PER LA CALIBRAZIONE
 - 4.7 RISULTATI DELLE SIMULAZIONI
- 5. CONCLUSIONI
- 6. BIBLIOGRAFIA

1.INTRODUZIONE

L'acqua è la più preziosa tra le risorse ambientali. È l'elemento essenziale per la crescita, lo sviluppo e il progresso di un paese. Il suo uso corretto da parte di tutti è **doveroso** e **necessario**.

Questa segue in natura un ciclo praticamente chiuso: attraverso l'evaporazione dalle superfici di acqua libera, dai ghiacciai e dal terreno viene immessa nell'atmosfera sotto forma di vapore acqueo che in seguito alla condensazione torna sulla superficie terrestre sottoforma di precipitazioni di varia natura. Le precipitazioni vanno a rialimentare le distese di acqua libera oppure raggiungono il suolo. Qui le acque seguono due vie: quella del ruscellamento superficiale o dell'infiltrazione nel sottosuolo. Le prime danno luogo a corsi d'acqua superficiali, le seconde alimentano le falde acquifere. Questo processo induce a considerare erroneamente la risorsa idrica come una risorsa rinnovabile ed infinita. Difatti negli anni passati, nel territorio veronese era pratica comune che ciascun utente definiva e qualificava la propria domanda e provvedeva a risolverla direttamente mediante, invasi, pozzi ed emungimenti delle acque superficiali. Nessuno contestava o entrava nel merito della congruità dei consumi con i reali fabbisogni e della giustezza di tale domanda. L'aumento incontrollato dei consumi idrici, correlato ad un esteso processo di sfruttamento dell'ambiente naturale, ha provocato uno scompenso nel ciclo dell'acqua che sembra tendere verso un graduale, ma continuo, impoverimento della risorsa idrica con gravi ripercussioni sia sul sistema naturale sia sullo sviluppo di certe aree di territorio (Piazzi, 2007).

Con tale lavoro si è cercato di riprodurre lo stato attuale dell'acquifero veronese, ricostruendo in maniera quanto più accurata il flusso all'interno di esso a partire dai dati di ricarica e prelievo. In questa situazione, che sembra presagire scenari futuri incerti, in assenza di una rigida ed estensiva applicazione di norme di tutela dell'acqua, ci si augura che tale lavoro, nel suo piccolo, possa essere d'aiuto per guidare correttamente tutti gli interventi tecnici e normativi di tutela della stessa.

2. INQUADRAMENTO DELL'AREA DI STUDIO

2.1 INQUADRAMENTO GEOGRAFICO

L'area oggetto di studio è situata nella porzione più ad Ovest della Pianura Padana, e comprende per intero la porzione pianeggiante del Comune di Verona e parte dei comuni ad esso confinanti: San Martino Buon Albergo, San Giovanni Lupatoto, Buttapietra, Sommacampagna, Bussolengo e Pescantina (FIG.1).

Capoluogo di provincia, Verona, è la seconda città del Veneto per densità di popolazione e ha un'estensione areale di circa 198.9 km². Il territorio comunale è compreso tra le quote di 691 e 36 m.s.l.m., ed è costituito da una parte collinare e una parte di pianura. L'area collinare è caratterizzata da una serie di dorsali a direzione Nord/Sud che si protendono verso la pianura, sulle quali spiccano dei brevi dossi di forma allungata o rotondeggiante. Alle dorsali s'intercala una serie di valli dirette anch'esse verso la pianura. Il limite orientale del comune corrisponde per un breve tratto al fondo della Valle di Mezzane, seguono poi verso occidente la Val di Squaranto, la Valpantena, la Valdonega, il Vajo Gallina, il Vajo di Borago, il Vajo di Quinzano, e sul confine occidentale l'ultimo tratto della valle di Negrar. Escludendo la Valpantena, che si distingue dalle altre per la maggior ampiezza anche in termini di bacino idrografico, tutte le altre valli sono site nella parte superiore e presentano pareti ripide e dirupate mentre nel tratto inferiore si allargano in ampie e dolci conoidi. Sulla superficie delle dorsali collinari si rivengono frequentemente morfologie legate al fenomeno carsico, sia superficiale che profondo. Tale fenomeno risulta legato ai

Calcari dell'Eocene medio e superiore, ma compare, se pur in forma minore, anche in altri termini della successione stratigrafica, quali Calcari Giurassici e Cretacei. In particolare, le doline, spesso molto ampie e caratterizzate dalla presenza di argille rossastre al fondo, movimentano la dolce morfologia della zona collinare. Quasi al limite tra le aree collinari e la pianura scorre il fiume Adige con un tipico andamento meandriforme, il quale è stato limitato all'interno di possenti muraglioni costruiti nel 1882, dopo ad un catastrofico evento di piena che invase quasi interamente la città, portando alla distruzione di case e ponti e provocando un numero elevato di vittime. In seguito a tale evento l'alveo fluviale venne ridimensionato e ciò portò il fiume a perdere la sua primaria importanza nel trasporto delle merci.

L'area di pianura, infine, risulta caratterizzata dall'ampio e piatto conoide dell'Adige formato dall'accumulo di materiali detritici trasportati dall'Adige stesso ed inciso da una serie degradante di imponenti terrazzi (*De Zanche & Sorbini, 1977*).

FIG.1: Area di studio.

2.2 INQUADRAMENTO GEOLOGICO E GEOMORFOLOGICO

Dal punto di vista geologico e geomorfologico l'area può essere suddivisa in due zone distinte (*Benedetti*, 2014): -area collinare-montuosa; -pianura alluvionale;

AREA COLLINARE E MONTUOSA:

La prima zona è formata dai Monti Lessini. Rilievi in prevalenza calcarei che immergono verso sud spingendosi fino ai depositi alluvionali di Alta Pianura. Tali rilievi si estendono tra le provincie di Verona e Trento per una superficie complessiva di circa 870 Km². I confini sono ben delineati dal solco della valle glaciale dell'Adige ad Ovest, dalla profonda incisione della Val dei Ronchi a Nord e dai centri urbani e le aree agricole della pianura veronese a Sud (*Nucci, 2016*). Le litologie costituenti tale area, dal basso verso l'alto, sono:

- Dolomia Principale (220-210 milioni di anni), costituisce la base dell'intera successione e affiora in superficie solo in corrispondenza dei versanti delle profonde incisioni vallive della Val di Ronchi, della Val d'Adige e della Val D'Illasi.
- Calcari grigi (200-185 milioni di anni) caratterizzati dalla presenza diffusa di bivalvi.
- Calcari Oolitici (185 175 milioni di anni) si caratterizzano per i depositi carbonatici frammisti a elementi organici quali residui fossili tipici della barriera corallina.
- Rosso Ammonitico (175 e i 135 milioni di anni), questa formazione si presenta composta da rocce dure e compatte ricchissime in fossili di ammoniti e cefalopodi indicatori di condizione di mare poco profondo.
- Maiolica (135 e i 90 milioni di anni), costituita da rocce biancastre frammiste a noduli di selce, residui di gusci e di antiche diatomee. Tale formazione è indicatrice dell'ambiente deposizionale di mare profondo.
- Scaglia Rossa e Variegata (90 e i 70 milioni di anni), litologie dal colore rossastro a causa della presenza di ossidi di ferro contenuti al suo interno.

Risalenti al Paleocene-Eocene, invece, sono i calcari di colore bianco-giallastro pochi coesivi che affiorano in alcune zone collinari della provincia di Verona e Vicenza. In fine troviamo rocce eruttive di tipo basaltico depositatesi nel Paleocene (*De Zanche et alii, 1977*).

PIANURA ALLUVIONALE:

La città di Verona è situata all'interno della zona dell'alta pianura veronese, la cui morfologia è legata principalmente all'interazione fra tre fattori differenti: la presenza del fiume Adige, le oscillazioni climatiche del Quaternario e le conseguenti variazioni di portata del corso d'acqua a carattere fluvio-glaciali. Tale zona è caratterizzata dalla presenza di un grosso conoide di origine alluvionale denominato grande Conoide dell'Adige, formatosi in seguito all'alternanza di fasi di ritiro e di espansione dei ghiacciai che occupavano la Val d'Adige e il Lago di Garda. Il conoide, facilmente individuabile, si presenta con la classica forma a ventaglio e la presenza di materiale più grossolano nella zona apicale ed una progressiva riduzione granulometrica nella zona distale, verso il limite meridionale della zona distale. Di notevole dimensione, tale corpo si estende dalla Val d'Adige fino a Legnago ed è diviso da una profonda incisione nota come "piano di divagazione dell'Adige", che assume una notevole ampiezza proprio a partire dalla città di Verona (Sorbini et alii, 1984). Sia sul Conoide che sul piano di divagazione sono state individuate e classificate numerose tracce di alvei abbandonati, che formano una fitta rete di canali intrecciati (paleoalvei). Il sottosuolo del conoide, così come quello del piano di divagazione è noto attraverso numerose perforazioni idriche, che arrivano fino alla profondità di 150 metri dal piano campagna. Questo risulta essere costituito esclusivamente da ciottoli, ghiaie, sabbie, sabbie limose e limi di origine atesina, entro cui si intercalano lenti argillose e limose.

Le alluvioni più antiche risalgono all'interglaciale Riss-Wurm e si trovano ad una quota inferiore a 78 m.s.l.m. La fase finale di costruzione del conoide è posteriore a 25.000 anni fa ed è probabilmente contemporanea alla massima espansione dei ghiacciai wurmiani. Successivamente a questa, l'Adige ha inciso il proprio conoide formando il "piano di divagazione" entro cui rimase confinato.

2.3 INQUADRAMENTO IDROGEOLOGICO

L'unità idrogeologica dell'alta pianura alluvionale veronese, tra i rilievi collinare e la zona delle risorgive, costituisce una delle più cospicue risorse idriche sotterranee del Veneto (Sorbini et alii, 1984). L'acquifero freatico indifferenziato presenta una direzione di deflusso che va da Nord-Ovest a Sud-Est e grazie all'elevata permeabilità ed omogeneità del sottosuolo, costituito principalmente da depositi ghiaioso-sabbiosi, le acque superficiali riescono facilmente ad infiltrarsi. La tavola d'acqua si trova a profondità variabile dal piano campagna in funzione del gradiente e della topografia del territorio. In linea generale la profondità della falda diminuisce da N verso la porzione SE della città, in accordo con la direzione di deflusso delle acque sotterranee. Le zone di media e bassa pianura, invece, sono contraddistinte dalla progressiva comparsa di livelli da fini a molto fini. Il sottosuolo, costituito da alternanze di orizzonti continui limoso-argillosi e strati permeabili, è caratterizzato dalla sovrapposizione di acquicludi e/o acquitardi e di acquiferi talvolta in pressione (Dal Prà & Antonelli, 1977). Dal punto di vista idrogeologico si tratta di un sistema di acquifero multi-falda. Fra l'alta e la medio-bassa pianura, vi è una zona in cui la tavola d'acqua interseca la superficie topografica con conseguente venuta a giorno delle acque sotterranee in quella che viene comunemente denominata "fascia delle risorgive" (FIG. 2).

E' stata ampiamente verificata su tutto il territorio la soggiacenza media della falda (*Dal Prà et alii, 1991*); essa varia da oltre 40 metri nell'area di massimo spessore delle alluvioni ghiaiose (Pescantina e Bussolengo) a valori minimi di 1-2 metri lungo il margine meridionali dei conoidi (Villafranca, San Giovanni Lupatoto e Spezzapietra). La superficie freatica è soggetta, inoltre, ad oscillazioni annuali e di intensità decrescente procedendo da N (8-10 metri) verso S (1-1.5 metri) (*Dal Prà & Antonelli, 1991*), legate al regime delle precipitazioni e al regime idrologico dell'Adige.

FIG. 2: Schema idrogeologico della pianura veronese.

3. DATI IDROGEOLOGICI DI BASE

3.1 RACCOLTA ED ELABORAZIONE DEI DATI LITOSTRATIGRAFICI

La prima parte, di tale lavoro, è consistita nella raccolta e nell'elaborazione di dati litostratigrafici provenienti dalla banca dati dell'*Istituto Superiore per la Protezione e la Ricerca Ambientale* (ISPRA) (<u>http://www.isprambiente.gov.it/it/banche-dati/suoloe-territorio</u>), dall'archivio del Dipartimento di Geoscienze (UNIPD), dall'archivio pozzi dell'Eni (ENI)

(http://unmig.sviluppoeconomico.gov.it/unmig/pozzi/disponibili.asp) e da uno studio condotto per conto delle acciaierie Riva dall'azienda Sinergeo (SINERGEO) per il rinnovo della concessione di derivazione di acqua da pozzi aziendali.

Il primo passo è stato quello di individuare l'area di studio e importare tali dati su di una piattaforma georeferenziata (ArcMap di Arcgis) in fromato shapefile.

Ad ogni punto ISPRA (308 punti) risulta associata una scheda descrittiva (come riportato in FIG. 3), mentre per i punti dell'UNIPD (121 punti) le informazioni sono derivate dall'archivio digitale del dipartimento.

ISPRA Verbinde på Virlande Verbinde verbinde Verbinde verbinde verbinde Verbinde verbinde verbinde Verbinde verbinde verbinde verbinde verbinde Verbinde verbinde ver			Ist	ituto Sup	periore p A	er la Pi mbient	rotezione (ale	e la Ricerca			
		Are	thivio na:	zionale de	elle i	ndagini nel sot	tosuolo (Legge 40	54/1984)	
	I	Dati ger	nerali		_		Ubicazio	ne indic	ativa d	ell'area d'	indagine
Codice: Region Provinc Comun Tipolog Quota j Anno r Numero Numero Numero Stratigi Certific Numero Longitu Latitud Longitu Latitud	I Statistical and a strategy of the second state of the second st	Anti gei D IN CA IONE CQUA 0 0 0 0 0 0 0 0 0 0 0 0 0	899289 83531 0° 53' 57. 29' 00.00 ofessioni a	57" E 0" N sta nella			Ubicazio	ine indic	ativa d	Ell'area d	indagine
				DI	IAMI	ETRI PERFORAZ	IONE				
Prog	r Da pro	fondità	(m)	A	prof	ondità (m)	Lu	nghezza	(m)	Dia	metro (mm)
1	0,00			86,00	•		86,00 315				
Prog 1	r Da pro 70,00	fondità	i (m)	A 86,00	prof	osizione filtf ondità (m) RE PIEZOMETR	Lu 16,00	nghezza	(m)	Dia 168	metro (mm)
Data	rilavamanta	Tin	alla stati	co (m)		Livelle dinemi	-a (m)	Abb		nto (m)	Partata (1/2)
zin/200	4	15.00	eno stati	co (m)	70 4	00	.o (m)	55.00	azzame	nto (m)	10 000
312 200		1.0,00				STRATIGRAFIA	0	10-142			101212
Progr	Da profondit	à (m)	A pro:	fondità (r	n)	Spessore (m)	Età ge	eologica	1	Descrizion	e litologica
1	0,00		1,00			1,00			TERR	ENO VEC	ETALE
2	1,00		45,00			44,00			MORE	ENICO W	URMIANO
3	45,00		55,00			10,00			LIMO	E ARGIL	LA
4	55,00		75,00			20,00			MORE	ENICO RI	SSIANO
5	75,00		86,00			11,00			CALC	ARI NUN	IMULITICI

FIG. 3: Scheda descrittiva di un pozzo a cura dell'ISPRA.

Le informazioni sui pozzi della SINERGEO (5 pozzi) sono stati presi dallo studio commissionato a tale ditta dalle Acciaierie Riva nel 2015.

Nel caso dei pozzi ENI (4 pozzi: Bovolone, Grezzano, Nogarole Rocca e Villafranca) le informazioni sonno state prese direttamente dal sito del Ministero dello Sviluppo Economico (http://unmig.sviluppoeconomico.gov.it/unmig/pozzi/disponibili.asp). Si tratta di sondaggi eseguiti nei primi anni del 1950 (Bovolone 1955, Grezzano e Nogarole Rocca1952, Villafranca 1954) per la ricerca di idrocarburi in Veneto.

Di ogni pozzo, poi, sono state riportati, su un foglio di lavoro Excel: codice identificativo (ID), coordinate geografiche nei sistemi di riferimento ED50 o WGS84, profondità dal piano campagna, uso, portata massima in condizioni statiche e portata massima in condizioni dinamiche, numero e posizione dei filtri, stratigrafia, e quando disponibili anche la profondità del substrato, il numero di acquitardi e il loro spessore. Per georeferenziare tali punti è stato necessario trasformare le coordinate geografiche in coordinate piane nel formato Gauss-Boaga Roma 1940, mediante il programma di conversione di coordinate TRASPUNTO. Tale programma consente la trasformazione di coordinate fra i diversi sistemi di riferimento in uso in Italia, sia in coordinate geografiche che piane (http://www.mondogis.com/traspunto.html).

Sviluppato dal Ministero dell'Ambiente, supporta i seguenti sistemi di riferimento:

- Gauss Boaga-Roma40 (Roma Monte Mario 1940) nei fusi Est e Ovest;
- ED50 (European Datum 1950) nei fusi 32 e 33;
- UTM WGS84 (World Geodetic System 1984) nei fusi 32 e 33;

In questo caso la conversione delle coordinate ha richiesto la trasformazione preliminare delle coordinate da geografiche (ED50 o WGS84) a coordinate piane.

E' stato, così, creato un secondo foglio di lavoro Excel in cui vi sono stati riportati dati quali: ID, coordinate piane nel sistema di riferimento GAUSS-BOAGA, la quota dal piano campagna ed un codice litologico identificativo. In questo modo è stato possibile reinterpretare le stratigrafie e semplificarle sulla base delle caratteristiche litologiche riportate in (TAB. 1).

CODICE	LITOLOGIA	
100	Terreno di riporto	
200	Argilla	
300	Limo	
400	Sabbia	
500	Ghiaia	
600	Roccia	

TAB. 1: Legenda litologica per la differenziazione dei vari materiali.

Questi dati, importati nel software Groundwater Modeling System (GMS; Programma per la modellazione delle acque sotterranee), hanno permesso la ricostruzione

litologica dell'acquifero veronese e la l'individuazione del substrato, necessario per la definizione del modello idrogeologico concettuale e la successiva implementazione di quello numerico.

In GMS sono state realizzate quattro sezioni idrostratigrafiche (come mostrato in FIG. 4), due dirette N-S e due W-E.

FIG. 4: Ubicazione delle sezioni idrostratigrafiche. I puntini rappresentano i pozzi dai quali sono state estrapolate le litologie.

In linea generale la litologia predominante risulta essere la ghiaia, soprattutto nella porzione più occidentale dell'area mentre spostandoci verso Sud-Est, in prossimità della zona delle risorgive, aumentano i livelli di sabbia.

In quasi tutte le stratigrafie, la continuità dei livelli di ghiaia e sabbia è interrotta da lenti di argilla dallo spessore di diversi metri mentre risultano rari i livelli di limo. Il substrato roccioso è presente solo nell'area settentrionale in prossimità delle Prealpi Venete, come mostrato nelle sezioni con direzione N-S (FIG. 5, FIG. 6).

FIG. 5: Sezione stratigrafica 1. Direzione N-S. L'ubicazione della traccia è quella riportata in FIG. 4, mentre la legenda delle litologie è presentata in TAB. 1

FIG. 6: Sezione stratigrafica 2. Direzione N-S. L'ubicazione della traccia è quella riportata in FIG. 4, mentre la legenda delle litologie è presentata in TAB. 1

In questi due esempi si può ben vedere come varia la litologia dell'acquifero spostandoci dalla zona settentrionale (con quote superiori a 160 m s.l.m.), verso quella meridionale (con quote intorno ai 50 m s.l.m.). Il corpo centrale è composto in

prevalenza da ghiaie mentre nella parte più a S aumenta il contenuto di sabbia. Tutto ciò è confermato anche nelle sezioni 3 e 4 orientate W-E (FIG. 7 e FIG. 8).

FIG. 7: Sezione stratigrafica 3. Direzione W-E. L'ubicazione della traccia è quella riportata in FIG. 4, mentre la legenda delle litologie è presentata in TAB. 1

Nella sezione 3, posta a quote maggiori, la ghiaia risulta essere la litologia predominante e i piccoli livelli di argilla, presenti nella porzione più ad E mostrano una certa continuità laterale.

FIG. 8: Sezione stratigrafica 4. Direzione W-E.. L'ubicazione della traccia è quella riportata in FIG. 4, mentre la legenda delle litologie è presentata in TAB. 1

La sezione 4, posta nella porzione più meridionale dell'area, in corrispondenza della linea delle risorgive, risulta caratterizzata da un aumento del contenuto in sabbia.

Per concludere possiamo affermare che, nonostante la presenza di lenti di argilla e sabbia discontinue, che si alternano spesso nelle successioni ghiaiose, il corpo alluvionale è caratterizzato da elevata omogeneità e dunque può essere considerato come un unico grande acquifero monostrato di tipo freatico.

3.2 RACCOLTA ED ELABORAZIONE DEI DATI METEO CLIMATICI

I dati meteo climatici sono stati utilizzati per stimare la ricarica zenitale applicata sul limite superiore del dominio di modellazione e provengono dal sito dell'*Agenzia Regionale per la Prevenzione e protezione Ambientale del Veneto* (ARPAV; http://www.arpa.veneto.it/bollettini/storico/Mappa_2018_PREC.htm?t=VR).

Per ogni stazione di misura sono stati acquisiti i dati relativi alle precipitazioni medie annue e alle temperature medie annue, nel periodo compreso tra il 1994 e il 2017, e sono state utilizzate solamente le stazioni che ricadono all'interno l'area di studio o quelle poste nelle immediate vicinanze.

Tali stazioni sono: Bardolino Calmasino, Buttapietra, Castelnuovo del Garda, Dolcè, Grezzana, Marano di Valpolicella, San Pietro in Cariano, Valeggio sul Mincio, Verona e Villafranca di Verona (FIG. 9).

FIG.9: Ubicazione delle stazioni meteo di ARPAV.

Raccolti i valori medi annui di Precipitazione (P in mm) e Temperatura (T in °C) è stato possibile calcolare l'Evapotraspirazione reale media annua (EVTr in mm), per tutti gli anni di misura e per tutte le stazioni, mediante la formula di Turc (1954):

$$EVTr_{ma} = \frac{P}{\sqrt{0.9 + \frac{P^2}{L^2}}}$$

$$L = 300 + 25 \cdot T + 0.05 \cdot T^3$$

dove:

P=precipitazione media annua (in mm)

T=temperatura media annua (in °C)

Poiché l'evapotraspirazione altro non è che la quantità di acqua di precipitazione che evapora dal terreno e torna nell'atmosfera, sottraendo il valore trovato ai valori di precipitazione media annua registrati nelle stazioni meteo, è stata calcolata la precipitazione efficace (in mm).

Quest'ultima, a sua volta, può essere scomposta in due termini distinti: ruscellamento superficiale e infiltrazione. In questo caso è stato ipotizzato un valore di infiltrazione pari al 50% della precipitazione efficace totale misurata. Questa ipotesi si basa sul fatto che essendo l'area in esame costituita in prevalenza da materiale prevalentemente grossolano (ghiaia) l'acqua che arriva al terreno tende facilmente ad infiltrarsi. Dai dati ottenuti (TAB. 2) sono stati realizzati dei grafici che mostrano l'andamento delle precipitazioni e delle precipitazioni efficaci medie annue nell'area in esame, dal 1994 al 2017 (FIG. 10 e FIG.11).

n°	Stazione	di	Quota	P media	T media (°C)	EVTr reale	P eff. media
	misura		(m)	(mm)		(mm)	(mm)
1	Bardolino		160	884.3	13.8	582.9	301.3
2	Buttapietra		39	796.8	13.5	549.7	247.1
3	Castelnuovo		120	888.5	13.2	571.2	317.3

4	Dolcè	105	1056.4	13.4	612.7	443.6
5	Grezzana	156	914.5	13.4	582.7	331.8
6	Illasi	144	939.1	13.5	589.8	349.3
7	Marano	284	964.6	13.4	591.0	373.5
8	San Pietro	127	859.7	13.4	568.0	291.7
9	Valeggio	120	891.3	14,.1	588.0	303.3
10	Verona	67	906.2	13.5	573.7	332.5
11	Villafranca	67	838.7	13.4	561.0	277.4

TAB. 2: Valori medi di precipitazione (P), temperatura (T), evapotraspirazione (EVT) e precipitazione efficace (P eff), calcolati per tutte le stazioni e le relative quote topografiche.

FIG. 10: Andamento delle precipitazioni medie in funzione della quota topografica.

Dal grafico di FIG. 10, si può vedere la relazione tra la precipitazione media e l'altitudine della stazione. In generale, si assiste ad un aumento delle precipitazioni in funzione della quota.

Fa eccezione la stazione di Dolcè, dove si ha il valore massimo di precipitazione media annua (1056.4 mm). Sebbene la stazione di Dolcè è posta a quote inferiori (105 m s.l.m.) rispetto alla stazione di Marano sul Mincio, la più elevata topograficamente (284)s.l.m.), risente molto del clima Prealpino m questa (http://www.arpa.veneto.it/temi-ambientali/climatologia/approfondimenti/il-clima-inveneto), per questo si hanno delle precipitazioni più abbondanti tipiche del clima montano. La stazione dove è stato registrato il valore minimo di precipitazione media annua, invece, è la stazione di Buttapietra (796.9 mm), che è anche quella posta alla quota più bassa (37 m s.l.m.).

Dal grafico di FIG. 11 si può osservare come l'andamento delle precipitazioni efficaci medie annue rispecchiano l'andamento delle precipitazioni.

Le stazioni poste nella parte più meridionale dell'area, come Buttapietra (stazione n°2 in TAB. 2) e Villafranca (stazione n°11 in TAB. 2) mostrano i valori più basi di precipitazione efficace, mentre si assiste ad un aumento di tale valore, spostandoci verso le Prealpi.

FIG. 11: Andamento delle Precipitazioni Efficaci medie annue in funzione della quota topografica.

Mediante l'interpolazione dei valori puntuali in GMS, è stato ricostruito l'andamento delle precipitazioni efficaci all'interno del dominio di studio e sono state riscostruite le isoiete di pioggia efficace. Per l'interpolazione è stato utilizzato l'algoritmo del Natural Neighbor. In accordo con quanto detto finora si riscontra una diminuzione dei valori di precipitazione efficace spostandosi dalle Prealpi venete fino alla zona di bassa pianura. Tutto ciò è evidenziato dalla variazione dei colori che passano gradatamente da un blu intenso al verde in FIG. 12.

FIG. 12: Andamento delle precipitazioni efficaci ricostruito mediante interpolazione in GMS

Sono stati analizzati nel dettaglio i valori di precipitazione, precipitazione efficcace e temperatura media annua per la stazione di Villafranca Veronse (FIG. 13, FIG. 14, FIG. 15, TAB. 3), la più vicina alla città di Verona ed interna all'area di studio, con lo scopo di evidenziare il regime climatico dell'area.

Anno	Precipitazione media (mm)	Temperatura media (mm)	Evapotrasp. Reale (mm)	Precipitazione efficace media (mm)
1994	689.2	13.2	520.1	169.1
1995	753.6	12.4	527.4	226.2
1996	997	12.5	588.4	408.6
1997	667.4	13.2	511.5	155.9

1998	638	13	496.1	141.9	
1999	849.6	12.9	565.7	283.8	
2000	903.4	13.6	596.7	306.6	
2001	746.2	13.5	546.7	199.5	
2002	1061	13.9	640.7	420.2	
2003	554	14.1	470.1	83.8	
2004	962.8	13.2	600.6	362.2	
2005	953.4	12.5	579.9	373.4	
2006	655	13.2	506.4	148.6	
2007	601.8	13.9	492.6	109.2	
2008	1040.8	13.8	633.8	407	
2009	880.8	14	600.4	280.4	
2010	1393	12.9	653.5	739.4	
2011	663.4	13.6	516.4	147	
2012	794.4	13.9	571.4	222.9	
2013	1119	13.5	639.1	479.8	
2014	1220.2	14.6	691.8	528.4	
2015	525	14.1	453.8	71.2	
2016	907	13.7	600.2	306.8	
2017	544.8	13.7	460.6	84.2	

TAB. 3: Valori medi di: precipitazione, temperatura, evapotraspirazione e precipitazione efficace, calcolati per la stazione di Villafranca Veronese dal 1994 al 2017.

FIG. 13: Andamento delle precipitazioni medie annue registrate nella stazione di Villafranca Veronese dal 1994 al 2017.

FIG. 14: Andamento delle temperature medie annue registrate nella stazione di Villafranca Veronese dal 1994 al 2017.

FIG. 15: Confronto tra l'andamento delle precipitazioni medie annue con le precipitazioni efficaci medie annue registrate nella stazione di Villafranca Veronese a partire dal 1994 al 2017.

Dal 1994 al 2017 si assiste ad un progressivo aumento delle precipitazioni medie annue nel pluviometro di Villafranca, (come riportato in FIG. 13). L'anno più piovoso è stato il 2010, con il valore massimo di precipitazione registrato pari a: 1393 mm, quello meno piovoso il 2015 con il valore minimo di precipitazione pari a: 525 mm.

L'andamento delle precipitazioni è direttamente correlato alle temperature registrate. Difatti il 2010, nonostante non sia stato l'anno con il valore minimo di T è stato uno degli anni più freddi con una T media annua di 12.9 °C, allo stesso modo il 2015 è stato uno degli anni più caldi con una T media annuale di 14.1 °C.

Nello specifico i valori massimi e minimi di T sono stati registrati nel 2014 (14.6°C) e nel 1995 (12.4 °C).

Il grafico di FIG. 15, mostra come l'andamento delle precipitazioni efficaci rispecchi quello delle precipitazioni medie annue, caratterizzato anch'esso da un trend crescente. Con un valore massimo registrato nel 2010 e pari a 739.4 mm, ed un valore minimo registrato nel 2015 pari a 71.2 mm.

3.3 RACCOLTA ED ELABORAZIONE DEI DATI IDROGEOLOGICI 3.3.1 TRASMISSIVITA' E CONDUCIBILITA' IDRAULICA

I dati idrogeologici utilizzati in tale lavoro provengono dalle schede dell'ISPRA e dall'archivio digitale di UNIPD.

Le informazioni utili ai fini di tale lavoro sono state trascritte in un foglio di lavoro Excel e sono:

- 1) Portata (Q in l/s), tale portata è stata individuata mediante delle prove a gradini di portata (FIG. 16). Questa prova permette di determinare la relazione che lega la portata di acqua estratta (Q) all'abbassamento prodotto (Δ) dal prelievo. In stato di riposo il livello di acqua nel pozzo corrisponde al livello statico della falda acquifera. L'azione di pompaggio dell'acqua dal pozzo provoca un progressivo abbassamento del livello fino al raggiungimento del cosiddetto livello dinamico.
- 2) Portata Massima e Portata di Esercizio espresse in $(Q_{max} e_{Qes} in l/s)$.
- 3) Posizione e lunghezza filtri espressi in (m);

A partire dai dati delle prove di pozzo sono calcolati: la Capacità Specifica (SC in m^2/s) e la Trasmissività (T in m^2/s).

Per calcolare la SC è stato necessario trasformare la portata da (l/s) a (m^3/s) e successivamente si è proceduto applicando l'Equazione (1):

$$SC = Q/\Delta (1)$$

dove:

SC= Capacità Specifica (m^2/s)

 $Q = portata (m^3/s)$

 Δ = abbassamento (m)

Ottenuti i valori di SC è stato possibile calcolare la T mediante l'Equazione (2, Fabbri & Piccinini):

dove:

T=Trasmissività (m²/s)

			Istituto Superiore per la F Ambien	rotezione e la Ricerca tale
	Archivio n	azionale delle indagini nel	sottosuolo (Legge 464/1984	0
	Dati generali	1	Ubicazione indicativa d	lell'area d'indagine
Codice: 1 Regione: Provinci: Comune: Tipologiu Opera: P Profondi Quota pod Anno res Numero Numero Numero Stratigra Certifica Numero Longitud Longitud	154332 VENETO a: VERONA : PESCANTINA a: DERFORAZIONE 00220 PER ACQUA tât (m): 80,00 : im (m): 100,00 litrazione: 2003 diametri: 2 acqua: SI acqua: SI acqua: SI servicio (M): 4,000 falde: 1 fitr: 1 piezometrie: 1 fitr: 3 zione(*): NO strafi: 2 ine WCS84 (dd): 10,874839 ne WCS84 (dd): 45,483200 ine WCS84 (dd): 45,483200 ine WCS84 (dd): 54,882300 ine WCS84 (dd): 54,882300 in			
Longitud Latitudii (*)Indica compilaz	ne WGS84 (dms): 45° 29' 17. A la presenza di un profession ione della stratigrafia	17" N tista nella		
Longitud Latitudii (*)Indica compilaz	ne WGS84 (dms): 45° 29° 17. la presenza di un profession cione della stratigrafia	17" N Lista nella DIAMETRI PERPOI	RAZIONE	
Longitud Latitudii (*)Indica compilaz	ae WGS84 (dms): 45° 29° 17. 1 la presenza di un profession ione della stratigrafia Da profondită (m)	DIAMETRI PERPOI	RAZIONE Lunghezza (m)	Diametro (mm)
Longitud Latitudi: (*)Indica compilaz Progr 1	une (robot (uns): 45° 29° 17.) a la presenza di un profession ione della stratigrafia Da profondità (m) 0,00	17" N iista nella DIAMETRI PERPOI A profondità (m) 80,00	RAZIONE Lunghezza (m) 80,00	Diametro (mm) 220
Longitud Latitudii (*)Indica compilaz Progr 1	une (robot (uns): 45° 29° 17.) a la presenza di un profession ione della stratigrafia Da profondità (m) 0,00	17" N aista nella DIAMETRI PERPOI A profondità (m) 80.00 FALDE ACQUI	RAZIONE BO,00 FFERE	Dismetro (mm) 220
Longitud Latitudii (*)Indics compilaz Progr 1 Progr	ne vroore (um): 45° 29° 17. 1 a presenza di un profession ione della stratigrafia Da profondità (m) 0,00 r Da profondità	17" N aista nella DIAMETRI PERPOI A profondità (m) \$0,00 FALDE ACQUII (m) A p	RAZIONE Lunghezza (m) 80,00 FERE rofondità (m)	Diametro (mm) 220 Lunghezza (m)
Longituć Latitudii (*)Indics compilaz Progr 1 Progr	me (robor (um)) 45° 29° 17. 1 a presenza di un profession ione della stratigrafia Da profondità (m) 0,00 r Da profondità 66,00	17" N aista nella DIAMETRI PERFOI A profondità (m) 80,00 FALDE ACQUII (m) A p 80,00	RAZIONE RAZIONE RAZIONE REFE rofondità (m) 14,1	Diametro (mm) 220 Lunghezza (m) 20
Longituć Latitudii (*)Indics compila: Progr 1 Progr	ne v GoS4 (dm3): 45° 29° 17. a la presenza di un profession ione della stratigrafia Da profondità (m) 0,00 r Da profondità 66.00	17" N aista nella DIAMETRI PERPOI A profondità (m) 80.00 FALDE ACQUII (m) 80.00 POSIZIONE FI	RAZIONE RAZIONE RAZIONE PERE rofondità (m) 14,1 LTRE	Dismetro (mm) 220 Lunghezzs (m) 20
Longitud Latitudii (*)Indics compilaz Progr 1 Progr	me vrobor (um): 45° 29° 17. 1 a presenza di un profession ione della stratigrafia Da profondità (m) 0,00 r Da profondità 66,00	17" N aista nella DIAMETRI PERPOI A profondità (m) 80.00 FALDE ACQUII (m) A p 80.00 POSIZIONE FE	RAZIONE Lunghezza (m) S0,00 FEEE rofondità (m) 14,1 LTRI Lunghezza (c)	Diametro (mm) 220 Lunghezza (m) 20
Longitud Latitudii (*)Indics compilaz Progr 1 Progr 1	me vrobov (um); 45° 29° 17. s u presenza di un profession ione della stratigrafia Da profondità (m) 0,00 r Da profondità (m) 66,00	17" N aista nella DIAMETRI PERFOI A profondità (m) 80,00 FALDE ACQUII (m) A p S0,00 POSIZIONE FII A profondità (m) 80,00	RAZIONE Lunghezza (m) S0.00 FERE rofondità (m) 14,1 LTRI Lunghezza (m) 14.00	Diametro (mm) 220 Lunghezza (m) 20 Diametro (mm) 168
Longitud Latitudii (*)Indics compilaz Progr 1 Progr 1 Progr	e WGS84 (dms): 45° 29° 17. la presenza di un profession ione della stratigrafia Da profondità (m) 0.00 r Da profondità (m) 66.00	17"N iista nella DIAMETRI PERPOI S0.00 FALDE ACQUII (m) S0.00 FOSIZIONE FI A profondità (m) S0.00 MISURE PIEZOME	RAZIONE Lunghezza (m) S0,00 FERE rofondità (m) 14,0 LTRI Lunghezza (m) TRICHE	Diametro (mm) 220 Lunghezza (m) 20 Diametro (mm) 168
Longitud Latitudii (*)Indics compilaz Progr 1 Progr 1 Progr	me vrober (um): 45° 29° 17. Ia presenza di un profession ione della stratigrafia Da profondità (m) 0.00 r Da profondità (m) 66.00 Da profondità (m) 66.00	17" N iista nella DIAMETRI PERPOI A profondità (m) 80,00 FALDE ACQUI (m) A p S0,00 FOSIZIONE FI A profondità (m) 80,00 MISURE PIEZOME tico (m) Livello dina	RAZIONE RAZIONE Lunghezza (m) S0,00 FERE rofondità (m) 14,0 LTRI LUnghezza (m) 14,00 TRICHE mico (m) Abbavam	Diametro (mm) 220 Lunghezza (m) 00 Diametro (mm) 168

FIG. 16: Esempio di una scheda dell'ISPRA in cui viene mostrato il valore di portata (nel cerchio in giallo) utilizzato nell'elaborazione dei dati idrogeologici in questo lavoro.

I 245 valori di T così ottenuti sono stati importati in GMS ed hanno permesso la realizzazione di una mappa di Trasmissività (FIG. 17) attraverso l'interpolazione dei valori puntuali a partire dall'algoritmo del Natural Neighbor.

In TAB 4 è riportata la scala grafica utilizzata che mostra il range degli intervalli e il colore attribuito a ciascun'intervallo.

n° intervallo	Range	Colore
1	0.0005	
2	0.001	
3	0.005	
4	0.01	
5	0.05	
6	0.1	

FIG. 17: Mappa della T realizzata mediante il software GMS. I puntini rappresentano i sondaggi dai quali è stata estrapolata la litologia del substrato. Vengono riportate le 4 sezioni idrostratirafiche.

Dalla mappa delle T si può vedere come tutta l'area sia caratterizzata da valori di Trasmissività abbastanza omogenei, che ricadono nel range compreso tra $0.05 e 0.01 m^2/s$.

Valori più alti di T, prossimi a $1 \text{ m}^2/\text{s}$, si hanno nella zona centrale e nella parte Nordoccidentale dell'area. Molto probabilmente si tratta di paleoalvei del fiume Adige. Mentre valori più bassi si hanno soprattutto in corrispondenza del margine settentrionale, in prossimità delle Prealpi, e quindi riconducibili ad una variazione della litologia dei materiali e all'orografia del territorio.

Per supportare tale ipotesi sono state realizzate 4 sezioni idrostratigrafiche, di cui 3 in prossimità delle zone in cui si hanno valori di T molto elevanti (sezione 1, sezione 2, sezione 3) e 1 sezione nella zona in cui si hanno valori molto bassi (sezione 4).

FIG. 18: Sezione 1, a direzione W-E.

FIG. 19: Sezione 2 a direzione W-E.

FIG. 20: Sezione 3 a direzione N-S.

FIG. 21: Sezione 4 a direzione N-S.

Nelle sezioni realizzate nelle aree con T elevata (FIG. 18, FIG. 19, FIG. 20), la presenza della ghiaia come litologia dominante giustifica valori alti e conferisce maggiore validità all'ipotesi precedentemente formulata sulla possibile presenza di paleoalvei del fiume Adige.

Allo stesso modo, nella sezione 4 (FIG. 21) la causa di valori bassi di T è attribuibile alla presenza del substrato roccioso a profondità modesta.

In entrambi i casi, possiamo dire, che le ipotesi formulate sono state verificate e validate sulla base dei dati litologici a disposizione.

3.3.2 LIVELLI IDROMETRICI

Per poter rappresentare la relazione esistente tra il Fiume Adige e l'acquifero freatico di alta pianura sono stati raccolti dati relativi ai livelli idrometrici del fiume dal 2005 al 2017. Tali dati sono disponibili sul sito dell'ARPAV

(<u>http://www.arpa.veneto.it/temi-ambientali/idrologia/dati</u>) e sono riferiti a due stazioni idrometriche situate a Verona e ad Albaredo (FIG. 22).

FIG. 22: Posizione delle stazioni di misura del Fiume Adige (Verona e Albaredo) nelle quali viene monitorato il livello idrometrico del fiume da parte di ARPAV. Il punto rosso in alto a sinistra rappresenta una stazione aggiuntiva utilizzata ai fini della realizzazione del modello per la definizione della boundary river.

Sono state riportate su un foglio di lavoro Excel tutte le misure giornaliere del livello idrometrico registrate in entrambe le stazioni e la relativa quota dello zero idrometrico, che risulta essere pari a 53.3 m s.l.m. per la stazione di Verona e 23.59 m s.l.m. per la stazione di Albaredo. Confrontando i valori medio annui del livello idrometrico

registrati nelle due stazioni (TAB. 5) si nota un andamento simile, legato al regime delle precipitazioni (FIG.23).

Livello idrometrico medio	Livello	medio	anno
annuo- Verona	idrometrico		
	annuo -Albaredo		
2.09	7.88		2007
1.76	7.36		2008
1.72	7.27		2009
1.66	7.20		2010
1.88	7.57		2011
1.86	7.64		2012
1.69	7.17		2013
1.37	6.76		2014
1.99	7.77		2015
1.89	7.75		2016
2.07	8.10		2017

TAB. 5: Valore medio annuo del livello idrometrico registrato nelle stazioni di Verona ed Albaredo dal 2007 al 2017.

FIG. 23: Confronto tra i valori di livello idrometrico medio annuo registrati nelle stazioni di Verona e di Albaredo, dal 2007 al 2017.

Ai fini della implementazione del modello numerico e della riproduzione dell'interazione acque sotterranee/acque superficiali, è stato necessario ricostruire il livello del Fiume Adige verso monte rispetto alle stazioni idrometriche disponibili.

Questo è stato posizionato in prossimità dell'intersezione tra il perimetro del dominio e il Fiume Adige, e vi è stato calcolato il livello idrometrico a partire dai valori noti nelle due stazioni di Verona ed Albaredo, ammettendo che il gradiente del fiume non subisca variazioni significative (pallino rosso in FIG. 22).

E' stato così possibile ricostruire il livello idrometrico sull'intero tratto del fiume che attraversa il dominio e calcolare il carico idraulico presso le stazioni di misura (TAB. 6).

NOME STAZIONE	CARICO IDRAULICO (m)
River IN	72.92
Stazione Adige	51.43
Stazione Albaredo	16.37

TAB. 6: Valori medi di carico idraulico (H) calcolati nelle 3 stazioni di misura.

3.3.3. RILIEVI FREATIMETRICI

La parte di raccolta ed elaborazione dati è terminata con una campagna freatimetrica nell'area di studio. Tale campagna è stata realizzata nel settembre 2018 ed è durata 7 giorni, per una media di circa 8 ore al giorno. Lo scopo di questo lavoro è stato quello di misurare la soggiacenza nei pozzi o nei piezometri per ricostruire la superficie freatica dell'acquifero.

Per prima cosa sono stati raccolti dati riguardanti le coordinate e il numero dei pozzi da misurare. Questi dati provengono dal sistema informativo del comune di Verona ("SITI"; <u>https://mapserver4.comune.verona.it/siti/</u>).

Per ogni pozzo sono state reperite le informazioni circa: ID, quota del boccaforo, profondità e coordinate. Queste ultime, presenti in coordinate piane nel sistema di riferimento Gauss-Boaga, sono state successivamente trasformate mediante il programma di conversuone TRASPUNTO, in coordinate geografiche WGS84. Questa operazione è stata necessaria per poter riportare ciascun punto su Google Maps e per poterlo facilmente localizzare una volta iniziata la campagna.

Il numero dei pozzi totali presenti nel comune, ammonta a 267, ma naturalmente non è stato possibile misurargli tutti a causa dell'inaccessibilità della gran parte di essi (FIG. 24).

FIG. 24: Ubicazione dei pozzi privati e pubblici, censiti il sistema informativo del Comune di Verona (SITI).

Di fatti, da questo punto di vista il lavoro si è rilevato poco soddisfacente. Poiché da una parte le misure nei pozzi privati sono stati impediti dalla grande ostilità dei proprietari, mentre dall'altra molti pozzi pubblici sono risultati inaccessibili.

Per realizzare la campagna freatimetrica è stato necessario munirsi di: freatimetro, metro, libretto di campagna, guanti da lavoro, cacciavite e pinze per il sollevamento di coperture o tombini.

Il freatimetro è uno strumento utilizzato per misurare la soggiacenza nei pozzi. Questo è dotato di un circuito elettrico che calato all'interno della pozzo/piezometro emette un segnale acustico a contatto con il pelo dell'acqua (FIG. 25). Il suo funzionamento è molto semplice e sfrutta le proprietà elettriche dell'acqua, una volta a contatto con il liquido, viene chiuso il circuito dello strumento ed attivato il segnale.

FIG. 25: Pozzo misurato durante la campagna freatimetrica, con gli strumenti di lavoro utilizzati: freatimetro e metro.

Una volta giunti sul posto di misura, la prima cosa fatta è stata quella di fotografare il pozzo e controllare se la posizione sul GPS fosse esatta e in caso contrario
\riposizionare correttamente il punto. Questo problema si è verificato diverse volte, poiché spesso le varie trasformazioni delle coordinate in formati differenti da quelli originali hanno fatto sì che i punti risultassero collocati in zone diverse da quelle reali. Successivamente è stata effettuata la misura freatimetrica, facendo scendere il sensore nel pozzo e misurando la soggiacenza.

I valori di soggiacenza e l'altezza del boccaforo ottenuti sono stati necessari per il calcolo del carico idraulico (H).

In questo modo è stato possibile ricostruire l'andamento del carico idraulico nell'area di studio e confrontarlo con quelli misurati durante le campagne freatimetriche precedentemente realizzate:

- dal Prof. Dal Prà e dal Dott. De Rossi nell'agosto/settembre 1986;
- dal Dott. Michele De Rossi nell'agosto del 2016; + dal Dott.
 Luca Menapace nel dicembre del 2017.

Il lavoro eseguito Da Dal Prà e De Rossi, nei mesi di agosto e settembre del 1986, è consistito in una campagna freatimetrica su 107 pozzi all'interno della pianura veronese e la ricostruzione delle isofreatiche per la determinazione della direzione del flusso idrico sotterraneo (FIG. 26). Il risultato di questo studio è stata la redazione della "Carta Idrogeologica dell'alta Pianura dell'Adige" (*Dal Prà & De Rossi, 1989*) dalla quale si individua una componente prevalente del deflusso da NW verso SE.

FIG. 26: Isofreatiche della Carta Idrogeologica dell'Alta Pianura dell'Adige (Dal Prà & De Rossi, 1986). Lo studio successivo, in ordine temporale, risale all'agosto del 2016 ed è quello condotto dal Dott. Michele De Rossi, su un totale di 31 pozzi.

Anche in questo caso è stata realizzata una mappa delle isofreatiche che in accordo con quella del 1986, mostra un flusso diretto NW-SE (FIG. 27).

FIG. 27: Carta delle isofreatiche del Dott. Michele De Rossi, carta realizzata mediante dati raccolti durante la campagna freatimetrica dell'agosto del 2016.

L'ultima campagna freatimetrica antecedente a quella realizzata per il presente lavoro di tesi, è stata realizzata nell'agosto del 2017 dal Dott. Luca Menapace su un totale di 15 pozzi (FIG 28).

Dalla mappa delle isofreatiche di Menapace si evince come, in accordo con gli studi precedenti, la quota piezometrica tende a diminuire da NW verso SE. Difatti l'andamento delle linee isofreatiche risulta essere in accordo a quelli delle mappe di Dal Prà e De Rossi del 1989 e di De Rossi del 2016.

FIG. 28: Carta delle isofreatiche del Dott. Luca Menapace, carta realizzata mediante dati raccolti durante la campagna freatimetrica realizzata nel dicembre 2017.

4. MODELLAZIONE IDROGEOLOGICA

4.1 MODELLO IDROGEOLOGICO CONCETTUALE

Il modello idrogeologico concettuale di un acquifero è una tappa fondamentale nella modellazione numerica, in esso sono schematizzate e quantificate le entrate e le uscite dell'intero acquifero o della porzione in studio (*Anderson et alii, 2015*). Sul piano orizzontale, per favorirne la rappresentazione numerica, i confini dell'area da simulare sono stati impostati su limiti idrogeologici ben definiti: il margine settentrionale coincide con i Monti Lessini, quello meridionale coincide con la linea superiore delle risorgive mentre in corrispondenza del margine occidentale è stata definita una condizione di non flusso (FIG. 29).

FIG. 29: Dominio di modellazione visto in pianta.

Lungo la verticale, l'acquifero freatico è compreso tra il piano campagna e il bedrock roccioso, ricostruito mediante le stratigrafie dell'ISPRA, dell'UNIPD e dei sondaggi ENI (FIG. 30), e risulta composto in prevalenza da rocce calcaree.

FIG. 30: Ricostruzione 3D del dominio di studio mediante le stratigrafie ISPRA, UNIPD e sondaggi ENI.

Per via dello stile di sedimentazione, da attribuire all'attività wurmiana del fiume

Adige che è all'origine della formazione del mezzo costituente l'acquifero (*Sorbini et alii, 1984*), esso è composto prevalentemente da materiali porosi ad elevata conducibilità idraulica $(10^{-3}-10^{-4} \text{ m/s})$ e presenta uno spessore mediamente non inferiore ai 200 metri (*Dal Prà el alii, 1991*).

All'interno dell'acquifero il flusso della falda ha una direzione prevalente da NW verso SE.

L'intero sistema idrogeologico è alimentato principalmente dalle dispersioni del tratto montano del fiume Adige, decine di m³/s, dalle dispersioni dei corsi d'acqua provenienti dalle valli dei Lessini, dalle infiltrazioni provenienti dalle pratiche irrigue (circa 1 m³/s) (*Boscolo & Mion, 2008*) ed infine dalle precipitazioni efficaci con valore medio annuo di 324.5 mm

Le principali vie di recapito, invece, sono rappresentate dai prelievi acquedottistici e privati che captano una portata totale pari a 1,78E+03 m³/d, e dall'affioramento della superficie freatica in prossimità della fascia delle risorgive per un totale di circa 1,88E+06 m³/d (*Sorbini et alii,1993*).

4.2 CODICI DI CALCOLO E TIPOLOGIA DELLE SIMULAZIONI UTILIZZATE

Per la simulazione del flusso delle acque sotterranee è stato utilizzato il codice tridimensionale MODFLOW-2005 (*Harbaugh, 2005*), che risolve, attraverso l'approssimazione alle differenze finite, l'equazione di flusso allo stato stazionario e/o transitorio per un fluido monofase a densità costante in un mezzo continuo, poroso e completamente saturo. L'equazione considerata deriva a sua volta dall'equazione di continuità (o Principio di Conservazione della Massa) e dalla legge di Darcy (essa è dunque ritenuta valida fin tanto che nel sistema non siano presenti flussi turbolenti), e per un acquifero confinato è formulata come segue (Equazione 3):

$$\frac{\delta}{\delta x} \left(K_{xx} \frac{\delta h}{\delta x} \right) + \frac{\delta}{\delta y} \left(K_{yy} \frac{\delta h}{\delta y} \right) + \frac{\delta}{\delta z} \left(K_{zz} \frac{\delta h}{\delta z} \right) + W = S_s \frac{\delta h}{\delta t}$$
(3)

dove:

x, y, z= coordinate spaziali t=

dimensione temporale

 K_{xx} , K_{yy} , K_{zz} = componenti principali del tensore della conducibilità idraulica [L/T], h=carico idraulico [L],

Ss=immagazzinamento specifico del mezzo poroso [L⁻¹]

W=termine che rappresenta i flussi per unità di volume in entrata (W > 0) e/o in uscita (W < 0) dal sistema acquifero $[T^{-1}]$.

L'equazione (3), abbinata alle condizioni al contorno ed alle condizioni iniziali, rappresenta il modello matematico del sistema acquifero ed è in grado di descrive il flusso sotterraneo in condizioni di equilibrio e/o non equilibrio attraverso un mezzo eterogeneo e anisotropo, assumendo che le componenti principali del tensore della conducibilità idraulica siano allineate lungo gli assi del sistema di riferimento utilizzato per la discretizzazione geometrica; inoltre l'equazione (3) impone che la somma di tutti i flussi in entrata e in uscita sia uguale alla variazione del volume di acqua immagazzinata.

L'equazione (3) può essere risolta sia per via analitica che numerica; tuttavia la risoluzione analitica è possibile solo in pochi casi e sotto forti semplificazioni, per cui sono stati introdotti diversi metodi di approssimazione numerica tra cui il metodo alle

differenze finite adottato in MODFLOW-2005. Tale metodo prevede la sostituzione delle derivate parziali con delle differenze misurabili (finite) e la risoluzione dell'equazione in punti specifici dello spazio (nodi) identificati con gli indici di riga (i), di colonna (j) e di layer (k).

Con riferimento alla FIG. 31, indicando con Δx la spaziatura dei nodi lungo le righe, l'approssimazione alle differenze finite dell'equazione (3) lungo tale direzione per un generico nodo (i, j, k) può essere formulata, considerando la spaziatura dei nodi costante, come riportato nell'Equazione (4):

$$\frac{\partial}{\partial x} \left(K_{xx} \frac{\partial h}{\partial x} \right) = \\
= \frac{1}{\Delta x} \left(K x_{i+1/2,j,k} \frac{h_{i+1,j,k} - h_{i,j,k}}{\Delta x} - K x_{i-1/2,j,k} \frac{h_{i,j,k} - h_{i-1,j,k}}{\Delta x} \right)$$
(4)

dove il termine "1/2" sta ad indicare la regione di spazio posta tra due nodi; in particolare, quando associato alla conducibilità idraulica K_x, quest'ultima è il risultato della media armonica dei valori di conducibilità idraulica assegnati ad ogni nodo.

FIG. 31: Flusso monodimensionale tra due celle adiacenti.

Analogamente, l'equazione (4) può essere formulata allo stesso modo anche per le altre due dimensioni spaziali; mentre la derivata temporale nella notazione alle differenze finite è formulata nel seguente modo, Equazione (5):

$$\frac{\partial h}{\partial t} = \frac{h_{i,j,k}^{n+1} - h_{i,j,k}^n}{\Delta t} \quad (5)$$

dove gli apici n ed n+1, indicano rispettivamente il corrente e il successivo intervallo temporale. Sebbene in MODFLOW-2005 sia stata sviluppata l'equazione in condizioni di non equilibrio (stato transitorio), è possibile comunque simulare lo stato stazionario ponendo la variazione di immagazzinamento nella parte destra dell'equazione pari a zero.

4.3 DISCRETIZZAZIONE SPAZIALE DEL DOMINIO DI MODELLAZIONE

Una volta definito il modello concettuale e scelto il tipo di codice da adottare per la modellazione, è necessario progettare e discretizzare lo spazio entro cui simulare il comportamento del sistema acquifero (o dominio di modellazione). La tipologia di cella utilizzata è di tipo block-centered, ossia con il nodo posizionato al centro della cella e con forma parallelepipeda (structured grid).

Sul piano orizzontale la spaziatura dei nodi è stata dimensionata con un passo costante di 100 m sia in x che in y.

Verticalmente, il volume compreso tra la superficie topografica al top del dominio, identificata dal DEM della Regione Veneto con maglia di 5x5 m (FIG. 32), e la superficie rappresentante il bedrock roccioso, ricostruito mediante le stratigrafie ISPRA, UNIPD e dai sondaggi ENI (FIG. 33), è stato discretizzato con un unico layer.

FIG. 32: Andamento topografico dell'area di studio, ricostruito mediante DEM 5x5 m.

FIG. 33: Substrato roccioso ricostruito mediante interpolazione delle profondità del substrato roccioso individuate attraverso le stratigrafie ISPRA, UNIPD e sondaggi ENI.

4.4 PARAMETRIZZAZIONE

Nelle simulazioni allo stato stazionario, gli unici parametri di input da immettere nel modello sono le componenti principali del tensore della conducibilità idraulica (K_{xx} , K_{yy} , K_{zz}). In MODFLOW-2005 questa operazione è effettuata immettendo il valore della conducibilità idraulica orizzontale (K_{xx}) e definendo i rapporti di anisotropia sul piano orizzontale (K_{xx}/K_{yy}) e verticale (K_{xx}/K_{zz}).

Nel caso di studio, trattandosi di un modello con un unico layer, è stata definita solamente la conducibilità idraulica orizzontale (K_{xx}), a cui è stata attribuito un valore pari a 86.4 (m/d).

4.5 CONDIZIONI AL CONTORNO E DISTRIBUZIONE INIZIALE DEL CARICO IDRAULICO

I flussi in entrata e in uscita dal modello vengono riprodotti mediante l'implementazione delle condizioni al contorno che vincolano la soluzione lungo il perimetro del modello o al suo interno.

Matematicamente esistono 3 tipi di condizioni al contorno:

- Tipo 1: carico assegnato (o condizione di Dirichlet), dove il carico relativo ad una cella o ad un gruppo di celle è impostato ad un valore fisso. Questo tipo di condizione non dà alcun controllo sul flusso (gradiente) in entrata o in uscita dal sistema.
- Tipo 2: flusso assegnato (o condizione di Neumann), con la quale si assegna ad un valore specifico la derivata del carico in una determinata direzione (flusso). Una formulazione particolare della seconda condizione di Neumann, consiste nel porre il flusso pari a zero (limite impermeabile).
- Tipo 3: flusso dipendente dal carico (o condizione di Cauchy), con la quale il flusso in entrata o in uscita dal sistema viene calcolato in funzione della differenza di carico tra la cella a cui è associata questa condizione e una cella ad essa adiacente, mediante la seguente equazione (6):

$$Q = CA(h_{bou} - h_{ijk}) (6)$$

dove:

Q= flusso per unità di superficie

 h_{bou} = carico idraulico associato alla boundary;

 h_{ijk} = carico calcolato dal modello in una generica cella adiacente alla boundary;

A= area della cella attraverso cui la filtrazione

C = conduttanza tra due celle espressa mediante l'equazione 7:

 $C = Ki_{(7)}$

Ki= permeabilità in una direzione generica ortogonale all'interfaccia tra la boundary e la cella adiacente

b= spessore dell'interfaccia.

In MODFLOW-2005 le boundaries vengono implementate attivando dei packages al codice principale; ogni pacchetto simula uno specifico tipo di stress che viene applicato al sistema (FIG. 34).

FIG. 34: Condizioni al contorno implementate mediante il modello numerico. In giallo sono stati indicati i pozzi acquedottistici e privati (WELL), in blu il Fiume Adige (RIV), in verde le risorgive (DRN) e in viola la ricarica (RCH).

I pacchetti utilizzati nel modello in oggetto sono i seguenti:

- Well (WELL), è un pacchetto concepito con lo scopo di simulare il prelievo o l'iniezione di acqua attraverso degli elementi puntuali (condizione di Tipo 2). Ogni elemento necessita di due parametri di input: il flusso volumetrico (Q) in entrata (Q > 0) o in uscita (Q < 0) dal sistema.

Mediante questo pacchetto sono stati simulati i prelievi acquedottistici e privati nell'area in esame (FIG. 35), attraverso l'implementazione dei 103 pozzi acquedottistici e dei 223 pozzi privati. Vengono di seguito riportati i valori di Q per i pozzi acquedottistici (TAB. 7) e per i pozzi privati (TAB .8). I valori di Q dei pozzi

acquedottistici sono stati forniti da Acque Veronesi e consistono nei prelievi medi degli ultimi due anni mentre quelli privati sono stati presi dal sito dell'ISPRA.

COMUNE	NOME IMPIANTO	n° pozzi	Х	Y	Q_m ³ /d
BUSSOLENGO	FERLINA	1	1646939.62	5034582.38	-5.68
BUSSOLENGO	GARBERIA	1	1642199.94	5039384.60	-189.65
BUSSOLENGO	MOLINI	2	1644431.33	5037680.13	-141.59
BUSSOLENGO	PENEZIE	2	1644300.61	5036021.37	-166.39
BUSSOLENGO	SVOLTA	2	1645285.55	5037364.46	-367.38
BUSSOLENGO	VALLAON	2	1646966.04	5036501.84	-145.49
BUTTAPIETRA	VIA ZERA	2	1655092.68	5022964.82	-169.74
PESCANTINA	BALCONI	1	1646622.69	5039940.64	-80.21
PESCANTINA	CASON	1	1646228.66	5039207.63	-459.33
PESCANTINA	PAVONCELLI	1	1646126.07	5038223.43	-129.60
PESCANTINA	SANTA LUCIA	1	1642208.93	5040153.32	-577.60
S.GIOVANNI	PIAZZA UMBERTO I	2	1660151.99	5027363.11	-143.79
LUPATOTO					
S.GIOVANNI	VIA BELLETTE	1	1658904.92	5027165.87	-368.71
LUPATOTO					
S.GIOVANNI	VIA CAMPI RAUDI	2	1660250.01	5024046.27	-140.32
LUPATOTO					
S.GIOVANNI	VIA MONTE	2	1658786.27	5029378.61	-351.89
LUPATOTO	CAREGA				
S.GIOVANNI	VIA NENNI	1	1659487.73	5027382.29	-77.06
LUPATOTO					
S.GIOVANNI	VIA UGO FOSCOLO	1	1659690.02	5027295.79	-136.65
LUPATOTO					
S. MARTINO BUON	VIA DEL LAVORO	2	1663917.92	5031412.09	-348.58
ALBERGO					
SOMMACAMPAGNA	VIA CESARINA	3	1645623.22	5030465.67	-701.47
VERONA	BASSE SAN	2	1660314.87	5032006.80	-581.08
	MICHELE				
VERONA	BASSO ACQUAR 1	6	1655545.06	5032418.03	-3190.02
VERONA	BORGO TRENTO	7	1654579.78	5035521.76	-3155.15

VERONA	Cà di David	2	1655686.24	5026448.24	-402.61
VERONA	CHIODA	5	1653734.65	5031206.96	-691.36
VERONA	FORTE PROCOLO	2	1653916.36	5035100.26	-2191.37
VERONA	GENOVESA	2	1654948.22	5028679.37	-1534.98
VERONA	MONTORIO	6	1660994.57	5035112.14	-1842.73
VERONA	PARONA	1	1652189.26	5037800.90	-2436.48
VERONA	POLIDORE	2	1656183.97	5029987.30	-522.60
VERONA	PORTA PALIO	8	1654354.02	5033302.79	-1071.65
VERONA	PORTO SAN	2	1657492.36	5032905.06	-2613.56
	PANCRAZIO				
VERONA	POZZO FERRAZZE	1	1662151.54	5034896.04	-41.48
VERONA	QUINTO	2	1657783.22	5040241.09	-272.11
VERONA	SAN MASSIMO	2	1652315.61	5034362.25	-567.61
VERONA	SANTA LUCIA -	2	1651916.09	5031766.80	-1757.52
	Fenilon				
VERONA	SERENELLI	2	1656257.88	5029053.88	-601.09
VERONA	VERONA EST	5	1661800.47	5032447.05	-2647.30
VERONA	VERONA NORD	3	1651691.66	5037449.56	-2308.56
	OVEST				
VERONA	VERONA OVEST	2	1649039.29	5033490.80	-1522.25
	BINELUNGHE				
VERONA	ZAI BORGO ROMA	2	1654687.74	5030906.38	-2142.80

TAB. 7: Valori di Q media dei pozzi acquedottistici. Dati provenienti da Acque Veronesi. Vengono specificati: comune, nome impianto, numero di pozzi per ciascun impianto di pompaggio, coordinate nel sistema di riferimento Gauss Boaga Roma 1940 e Q (in m³/d).

ID	Х	Y	Q_m3/d	uso
154162	1647083	5044215	-518.4	pozzo per acqua
154164	1647605	5045092	-345.6	pozzo per acqua
154219	1648778	5043205	-432	pozzo per acqua
154332	1646534	5038922	-14515.2	pozzo per acqua
155333	1645010	5036262	-129.6	pozzo per acqua
156833	1649196	5038429	-518.4	pozzo per acqua
156843	1648457	5038442	-864	pozzo per acqua
157114	1662127	5033129	-1728	industriale
157129	1649090	5040125	-432	pozzo per acqua

157134	1647786	5042039	-259.2	pozzo per acqua
157182	1644035	5031392	-1036.8	pozzo per acqua
158845	1646918	5036461	-4665.6	pozzo idropotabile
158850	1647703	5037250	-1123.2	pozzo per acqua
158852	1644712	5034124	-864	pozzo per acqua
158853	1645786	5034674	-1296	industriale
158854	1646788	5034574	-518.4	pozzo per acqua
158864	1646579	5036112	-172.8	pozzo per acqua
158870	1644246	5037356	-259.2	pozzo per acqua
158873	1646612	5036515	-432	pozzo per acqua
161695	1653371	5026640	-4320	industriale
161840	1646584	5044234	-604.8	industriale
161842	1647520	5045955	-864	pozzo per acqua
161876	1657232	5043690	-259.2	pozzo per acqua
161878	1658332	5042235	-129.6	pozzo per acqua
161881	1658615	5042180	-302.4	pozzo per acqua
162255	1649154	5042905	-86.4	pozzo per acqua
162256	1648723	5043697	-69.12	pozzo per acqua
162514	1656873	5044113	-302.4	pozzo per acqua
162515	1657443	5042182	-259.2	pozzo per acqua
162521	1651283	5042833	-345.6	pozzo per acqua
163030	1648906	5037835	-345.6	pozzo per acqua
163032	1645244	5041177	-5875.2	industriale
163035	1649564	5037574	-691.2	pozzo per acqua
163040	1644990	5040923	-864	pozzo per acqua
163043	1644575	5040050	-864	industriale
163056	1647310	5039157	-864	pozzo per acqua
163064	1645139	5040063	-2592	pozzo per acqua
163068	1645424	5039946	-172.8	pozzo per acqua
163108	1649417	5038279	-172.8	pozzo per acqua
163112	1648018	5038647	-388.8	pozzo per acqua
163933	1659025	5025978	-864	irriguo
164015	1659152	5026104	-1555.2	irriguo
164041	1659927	5026464	-1036.8	industriale
164042	1659389	5027067	-1123.2	industriale

164053	1659127	5027092	-1728	industriale
164144	1659572	5025003	-3456	irriguo
164149	1659146	5027216	-3801.6	industriale
164310	1664059	5031604	-432	pozzo per acqua
164314	1663265	5031213	-864	pozzo per acqua
164318	1662117	5033561	-1296	pozzo per acqua
164322	1664441	5028650	-2592	irriguo
164338	1662845	5033950	-129.6	pozzo per acqua
164343	1662928	5032440	-86.4	pozzo per acqua
164389	1650237	5041232	-691.2	pozzo per acqua
		·		
164428	1650871	5038314	-691.2	pozzo per acqua
164430	1649092	5041884	-345.6	pozzo per acqua
164433	1651063	5038443	-950.4	pozzo per acqua
164437	1647545	5041200	-302.4	industriale
164441	1647249	5042705	-172.8	pozzo per acqua
164446	1647689	5042469	-34.56	pozzo per acqua
164452	1646686	5041704	-864	pozzo per acqua
164465	1646806	5043096	-864	pozzo per acqua
164486	1646331	5042066	-691.2	pozzo per acqua
164505	1643512	5040983	-259.2	industriale
164513	1644842	5041692	-4320	pozzo per acqua
164800	1648585	5032115	-1382.4	pozzo per acqua
164801	1644777	5028444	-86.4	ricerca acqua
164803	1644798	5028476	-259.2	antincendio
164812	1645083	5028420	-259.2	ricerca acqua
164814	1644845	5028354	-86.4	ricerca acqua
164815	1645019	5028358	-259.2	ricerca acqua
164818	1645013	5028604	-259.2	ricerca acqua
164822	1644841	5028508	-259.2	ricerca acqua
164823	1642176	5028045	-864	irriguo
164883	1644964	5030734	-864	pozzo per acqua
164886	1646250	5029652	-3456	irriguo
164890	1648578	5030570	-2592	pozzo per acqua
164894	1642265	5026040	-86.4	igienico-sanitario
164899	1643943	5028796	-3456	irriguo

164900	1646655	5029105	-4320	industriale
164907	1641784	5027079	-1728	pozzo per acqua
164911	1642177	5026069	-2592	irriguo
164914	1644115	5030776	-2160	pozzo per acqua
164915	1649085	5030274	-4838.4	pozzo per acqua
164916	1646784	5029139	-2592	agricolo
164917	1646813	5028831	-2592	irriguo
164921	1646921	5028896	-4320	irriguo
164922	1646956	5028310	-4320	irriguo
164923	1643282	5030140	-7862.4	pozzo idropotabile
164924	1648652	5031128	-432	pozzo per acqua
164925	1648613	5031837	-518.4	pozzo per acqua
164931	1647725	5030767	-864	pozzo per acqua
164935	1647853	5030862	-2592	pozzo per acqua
164936	1644824	5032058	-2851.2	pozzo per acqua
164938	1646508	5028886	-2592	irriguo
164944	1646846	5030222	-2592	pozzo per acqua
164948	1645040	5029315	-2592	irriguo
164950	1640961	5027894	-1123.2	pozzo per acqua
164955	1645557	5028617	-4320	irriguo
164956	1645680	5028002	-4320	irriguo
164962	1644246	5030779	-345.6	pozzo per acqua
164964	1644397	5030782	-345.6	pozzo per acqua
164967	1649051	5030798	-1296	pozzo per acqua
164970	1646137	5030791	-4320	pozzo per acqua
165316	1640237	5021332	-216	pozzo per acqua
165318	1650386	5028607	-129.6	domestico
165320	1649538	5028618	-172.8	irriguo
165323	1645393	5026297	-1296	industriale
165325	1646368	5024590	-2851.2	antincendio
165328	1649896	5029120	-172.8	irriguo
165332	1652206	5026241	-172.8	domestico
165335	1642859	5022842	-4320	igienico-sanitario
165338	1642181	5023012	-518.4	allevamento
165340	1650450	5027775	-4579.2	irriguo
	-			

165350	1643123	5022725	-11232	antincendio
165387	1640868	5024249	-3110.4	pozzo per acqua
165390	1640699	5021127	-1382.4	pozzo per acqua
165391	1642683	5021974	-3888	irriguo
165395	1647158	5027110	-2592	irriguo
165397	1648620	5026959	-4320	irriguo
165399	1641660	5023927	-3974.4	pozzo per acqua
165407	1644994	5022799	-2160	industriale
165416	1648686	5025972	-1382.4	industriale
165433	1643328	5032827	-216	pozzo per acqua
165438	1643852	5032777	-198.72	pozzo per acqua
165445	1645526	5032754	-1296	agricolo
165447	1645164	5032437	-2851.2	pozzo per acqua
165473	1645306	5032842	-3110.4	pozzo per acqua
165475	1642351	5033762	-259.2	pozzo per acqua
165476	1644796	5033292	-864	pozzo per acqua
165479	1642760	5034913	-864	pozzo per acqua
165481	1643774	5032374	-1296	pozzo per acqua
165500	1644440	5032698	-691.2	pozzo per acqua
165511	1655268	5028293	-4320	pozzo per acqua
165569	1649252	5034261	-691.2	pozzo per acqua
165579	1659475	5033987	-5702.4	industriale
165655	1661598	5032590	-8640	pozzo idropotabile
165657	1654427	5033275	-14688	pozzo per acqua
165660	1656314	5031685	-13737.6	pozzo per acqua
165672	1654590	5035502	-5616	pozzo per acqua
165691	1655512	5032468	-10368	pozzo idropotabile
165694	1654582	5028740	-8640	pozzo idropotabile
165698	1661577	5032559	-8640	pozzo idropotabile
165707	1653485	5036247	-9676.8	pozzo per acqua
165714	1653507	5036248	-10800	pozzo per acqua
165717	1653529	5036249	-5788.8	pozzo per acqua
165718	1653486	5036216	-9590.4	pozzo per acqua
165720	1653551	5036218	-10454.4	pozzo per acqua
165723	1653484	5036277	-9676.8	pozzo per acqua
			-	

165725	1660938	5029485	-2505.6	industriale
165728	1660981	5029487	-2505.6	pozzo per acqua
165739	1654426	5033306	-11750.4	pozzo per acqua
165750	1660458	5034631	-2160	pozzo per acqua
165808	1661111	5038013	-129.6	pozzo per acqua
165815	1657490	5038539	-950.4	pozzo per acqua
165824	1657828	5038084	-864	pozzo per acqua
165839	1660089	5031224	-4320	irriguo
165854	1655681	5031793	-259.2	pozzo per acqua
165864	1657514	5028071	-4320	pozzo per acqua
165875	1657903	5030767	-1728	pozzo per acqua
165947	1649442	5036304	-864	pozzo per acqua
165949	1658241	5039824	-518.4	pozzo per acqua
165960	1655817	5035100	-259.2	pozzo per acqua
165963	1651394	5034653	-432	pozzo per acqua
165964	1658589	5038937	-1036.8	pozzo per acqua
165973	1649747	5036250	-1382.4	pozzo per acqua
165977	1650000	5036626	-3456	pozzo per acqua
165991	1652890	5030304	-864	pozzo per acqua
166012	1658389	5037419	-2592	pozzo per acqua
166168	1658299	5034915	-345.6	irriguo
166170	1653733	5029645	-259.2	pozzo per acqua
166211	1661122	5030788	-2592	pozzo per acqua
166218	1657925	5028174	-129.6	pozzo per acqua
166223	1649151	5034846	-3456	pozzo per acqua
166227	1660031	5032643	-1296	pozzo per acqua
166306	1655819	5035008	-224.64	pozzo per acqua
166308	1652112	5034608	-129.6	pozzo per acqua
166311	1657731	5028107	-172.8	pozzo per acqua
166314	1662305	5033844	-432	pozzo per acqua
166315	1655275	5035025	-259.2	pozzo per acqua
166318	1659685	5033437	-86.4	pozzo per acqua
166326	1657809	5037991	-691.2	pozzo per acqua
166331	1654558	5030591	-11491.2	pozzo per acqua
166334	1662179	5035354	-2592	pozzo per acqua

166342	1655508	5029133	-7689.6	igienico-sanitario
166357	1660940	5031956	-2160	pozzo per acqua
166362	1654276	5030585	-604.8	industriale
166366	1661232	5037522	-1555.2	pozzo per acqua
166583	1640226	5024759	-1728	pozzo per acqua
166730	1663446	5026739	-1296	irriguo
166750	1666902	5027726	-691.2	industriale
166752	1669304	5027419	-4320	irriguo
166756	1663627	5024799	-4320	domestico
166766	1663462	5024424	-4320	irriguo
166767	1663698	5024584	-4320	irriguo
166767	1663698	5024584	-4320	irriguo
166770	1662934	5024626	-43.2	domestico
166778	1666776	5029205	-1900.8	allevamento
166785	1667225	5027024	-1728	acquedottistico
166882	1648116	5036334	-4492.8	pozzo per acqua
167070	1658966	5039471	-604.8	pozzo per acqua
167073	1648330	5036494	-2592	pozzo per acqua
167113	1656975	5029601	-691.2	pozzo per acqua
167114	1659629	5035628	-518.4	pozzo per acqua
167127	1660952	5038255	-69.12	pozzo per acqua
167301	1658532	5038627	-691.2	pozzo per acqua
167311	1643653	5021471	-172.8	agricolo
170692	1654062	5034841	-432	pozzo per acqua
170736	1664394	5027938	-3024	irriguo
170744	1650953	5043041	-388.8	pozzo per acqua
170855	1645445	5042818	-432	pozzo per acqua
170856	1645608	5043284	-345.6	pozzo per acqua
170858	1645480	5043189	-604.8	pozzo per acqua
170901	1645208	5022989	-1036.8	agricolo
170903	1658980	5039780	-302.4	pozzo per acqua
171024	1648089	5040224	-172.8	pozzo per acqua
171075	1658189	5038433	-432	pozzo per acqua
171129	1647815	5040805	-475.2	pozzo per acqua
171143	1647320	5033228	-259.2	pozzo per acqua
190540	1647024	5043040	-86.4	pozzo per acqua

190572	1661058	5038383	-43.2	pozzo per acqua
190574	1660781	5034762	-691.2	pozzo per acqua
190576	1658632	5036375	-345.6	pozzo per acqua
190577	1658717	5039897	-25.92	pozzo per acqua

TAB. 8: Valori di Q media dei pozzi privati. Dati presi dal sito dell'ISPRA. Vengono specificati: nome, coordinate in formato Gauss_Boaga, portata (in m^3/d) ed uso.

FIG. 35: Condizione WELL applicata al dominio di modellazione. Distribuzione spaziale dei pozzi privati e acquedottistici.

- Recharge (RCH), è un pacchetto che simula la ricarica zenitale al sistema acquifero distribuita arealmente (condizione di tipo 2) e la ricarica laterale (condizione di tipo 1). L'unico parametro di input necessario per la sua implementazione è il valore di recharge rate (L/T) da applicare ad ogni cella. Il flusso in entrata è calcolato moltiplicando il valore di lama d'acqua per l'area della cella. Tramite questo pacchetto si è simulata la ricarica zenitale dell'acquifero derivante dall'infiltrazione delle precipitazioni e la ricarica laterale proveniente dalle valli, indicata nel modello come "alimentazione".

I valori di alimentazione sono stati impostati nel modello a partire dai valore delle isofreatiche in prossimità delle valli e sono riportati in TAB. 9, mentre i valori di infiltrazione utilizzati sono quelli riportati in TAB. 10 e sono stati calcolati mediante la Formula di Turc a partire dai valori delle precipitazioni presi dal sito dell'ARPAV.

NOME VALLE	Ricarica laterale (m)
Val Squaranto	50
Valpantena	50
Val Galina	53
Valpolicellla	57

TAB. 9: Valori di carico idraulico fissati alle baudary di 1° tipo, utilizzate per riprodurre l'alimentazione delle valli laterali.

ID	Nome	X_m	Y_m	Inf_mm
118	Bardolino Calmasino	1637949,00	5042029,00	150,68
127	Buttapietra	1657525,00	5023913,00	123,58
129	Castelnuovo del Garda	1638553,00	5035030,00	158,64
120	Dolcè	1644210,00	5051241,00	221,80
128	Grezzana	1657310,00	5041574,00	165,89
126	Illasi	1669805,00	5036401,00	174,68
124	Marano di Valpolicella	1650162,00	5045637,00	186,76
125	San Pietro in Cariano	1647513,00	5041286,00	145,86
253	Valeggio sul Mincio	1635662,00	5024463,00	151,64
452	Verona	1652782,00	5036169,00	166,26
104	Villafranca di Verona	1643529,00	5025977,00	138,68

TAB. 10. Valori d'infiltrazione utilizzati nel modello per simulare la ricarica zenitale dell'acquifero.

- River (RIV), è un pacchetto con il quale si riproduce la relazione tra le acque superficiali (corsi d'acqua in questo caso) e quelle sotterranee (condizione di Tipo 3). I fiumi interagiscono con l'acquifero drenando o apportando acqua al sistema, in funzione della differenza di carico tra il fiume e la falda. Il flusso in entrata (QRiv > 0) o in uscita (QRiv < 0) dal sistema ad opera della condizione river è determinato tramite la seguente Equazione (8):

$$Q_{Riv} = C_{Riv} A (h_{Riv} - h_{ijk})$$
(8)

dove:

 C_{Riv} = conduttanza verticale rappresentativa delle caratteristiche idrauliche del letto del fiume (Equazione 6);

 h_{Riv} =livello idrometrico assegnato del fiume (o river stage); A= area della cella attraverso cui la filtrazione; h_{ijk} = carico idraulico calcolato dal modello nella cella contenente la condizione river. Per la sua corretta implementazione è necessario immettere, oltre al valore del livello idrometrico (river stage), anche la quota del letto del fiume (river bottom) insieme ad un valore di conduttanza verticale. È necessario quindi descrivere il comportamento di questa condizione in funzione del carico idraulico calcolato al nodo della cella (h_{ijk}) rispetto alla quota del river bottom: per valori di hijk maggiori della quota del river bottom, il flusso varia linearmente, diventando negativo quando h_{ijk} è maggiore rispetto al river stage (il fiume mostra un carattere drenante); quando il carico idraulico calcolato dal modello è al di sotto del river bottom, il flusso affluente il sistema dal fiume rimane costante (nell'equazione 8, h_{ijk} viene sostituito dalla quota assegnata di river bottom, di conseguenza la differenza di carico rimane costante). Con questo pacchetto è stato implementato nel modello il corso d'acqua che attraversa il dominio di modellazione: il fiume Adige (FIG. 36). I valori di livello idrometrico utilizzati sono riportati in TAB. 5, si tratta di valori medi annui calcolati per le stazioni di Verona e Albaredo dal 2005 al 2017.

Il pallino rosso, in alto a sinistra, rappresenta una stazione idrometrica aggiuntiva necessaria per ricostruire il livello idrometrico nel tratto più a monte del fiume dove non si avevano dati a disposizione.

Il valore di conduttanza assegnato al pacchetto River è pari a $100 \text{ m}^2/\text{d}$.

FIG. 36: Condizione di tipo RIVER applicata al dominio di modellazione. I puntini in verde rappresentano le stazioni di misura del livello idrometrico a Verona e ad Albaredo. Il punto rosso in alto a sinistra rappresenta una stazione aggiuntiva utilizzata ai fini della realizzazione del modello per la definizione della boundary river.

Drain (DRN), con questo pacchetto si applica un'azione drenante al sistema (Condizione di Tipo 3). Il flusso in uscita (*Qout*) dalla condizione drain è calcolato attraverso una formulazione molto simile a quella della condizione river, (Equazione 9):

$$Q_{out} = C_{Drn} A (h_{ijk} - h_{Drn})$$
 (9)

dove:

 C_{Drn} = conduttanza associata al dreno (equazione 7); h_{Drn}

= quota del dreno (drain elevation);

A = area della cella attraverso cui avviene la filtrazione;

 h_{ijk} = è il carico idraulico calcolato dal modello al nodo relativo alla cella contenente la condizione.

Il dreno inoltre è attivo solo se il carico idraulico h_{ijk} è maggiore della drain elevation.

Nell'ambito di questo modello la condizione drain è stata usata per simulare la restituzione freatica in prossimità delle risorgive (FIG. 37). In tutti i casi la drain elevation è stata fissata pari alla quota della superficie topografica (top elevation).

FIG. 37: Condizione DRAIN applicata al dominio di modellazione.

4.6 APPROCCIO METODOLOGICO PER LA CALIBRAZIONE

I valori iniziali di conducibilità idraulica orizzontale, di conduttanza delle boundaries river e drain sono stati soggetti ad un processo di calibrazione, attraverso il quale si pone il modello di flusso nei termini di un problema inverso e nel quale si usano le variabili dipendenti dell'equazione costitutiva per ricavarne i parametri (parametri di calibrazione). Obbiettivo di questo processo è quindi di determinare il set di parametri, stress e/o condizioni al contorno che possano minimizzare le differenze tra i valori acquisiti sperimentalmente in sito (target di calibrazione) con gli equivalenti valori calcolati dal modello numerico. In questo lavoro, i target di calibrazione adottati sono rappresentati dalle misure del carico idraulico, che costituiscono l'output diretto dell'equazione di flusso. Per quantificare il grado di approssimazione della calibrazione (hard knowledge), i valori di carico idraulico misurati nei target di calibrazione e gli equivalenti valori di carico idraulico simulati vengono sottoposti ad elaborazioni statistiche che si basano sul calcolo del residuo (R) i-esimo target (Equazione 10):

$$R_i = (h_m - h_s)_i \quad (10)$$

dove:

 h_m = carico idraulico misurato;

hs = carico idraulico calcolato in un target di calibrazione.

Il parametro statistico che generalmente viene usato per quantificare la bontà di una calibrazione è lo scarto quadratico medio normalizzato (nRMS), espresso in percentuale e definito come lo scarto quadratico medio (*RMS*) rapportato al range dei valori misurati (equazione 11 ed equazione 12):

$$RMS = \left[\frac{1}{n}\sum_{i=1}^{n}R_{i}^{2}\right]^{0.5}$$
 (11)

$$nRMS = \frac{RMS}{h_{m\,max} - h_{m\,min}} \tag{12}$$

Tradizionalmente si considerano calibrati i modelli in cui nRMS scende sotto al 10% (*Anderson et alii, 1992*). Tuttavia, una buona approssimazione delle misure sperimentali non implica necessariamente che la soluzione sia comunque accettabile, in quanto, per poterla ritenere tale, è necessario altresì che i parametri stimati siano consistenti con la realtà fisica del sistema acquifero che si intende simulare. Per cui, i risultati ottenuti attraverso la calibrazione devono essere sistematicamente valutati sulla base della loro ragionevolezza idrogeologica; tale valutazione si basa su tutte le informazioni che si hanno a disposizione derivanti dalla conoscenza geologica e idrologica del sito in oggetto (soft knowledge).

Il metodo utilizzato in questo lavoro per calibrare il modello è il metodo della calibrazione quantitativa manuale (detto anche *trial and error*) e la sua esecuzione, finalizzata a fornire una soluzione indiretta al modello inverso, prevede di modificare i parametri di input e di rifare il *run* del modello, tante volte fin quando non si raggiunge il grado di approssimazione desiderato.

I dati utilizzati per calibrare il modello (observation point) sono quelli relativi alle freatimetrie di Dal Prà e De Rossi, realizzate nell'agosto/settembre del 1986. Si è deciso di utilizzare tali dati, e non quelli relativi a campagne freatimetriche più recenti, poiché sono i più abbondanti e di conseguenza coprono meglio l'area di studio (FIG. 38).

FIG. 38: Distribuzione degli observation point all'interno dell'area di studio.

Il parametro sul quale si è incentrato il processo di calibrazione è la Conduttanza (espressa in m^2/d) associata alle boundary del Fiume Adige e delle risorgive. I valori che inizialmente sono stati utilizzati sono quelli riportati in (TAB. 11). Non sono stati modificati, invece, i valori di ricarica laterale (TAB. 9).

BOUNDARY	CONDUTTANZA (m ² /d)
Fiume Adige	100
Risorgive	86.4

TAB. 11: Valori di conduttanza assegnati alle boundaries durante la fase di calibrazione manuale.

Facendo girare il modello con i valori di TAB. 11 si è ottenuta una soluzione che graficamente si poteva ritenere accettabile, ma che non lo era dal punto di vista statistico, poiché il valore di nRMS era superiore al 10%, si è così proceduto a modificare i valori di C delle varie boundaries.

Dal punto di vista grafico, si può dire che il modello è stato correttamente calibrato quando, tutti o quasi tutti, i calibration target appaiono verdi. I calibration target sono rappresentati mediante delle barre collocate di fianco di ciascun observation point (FIG. 39).

FIG. 39: Calibration target.

Il centro corrisponde al valore di carico idraulico osservato, il top è dato dal valore di carico osservato più l'intervallo d'errore, che nel caso in esame è pari ad 1 m, mentre il bottom è dato dal carico osservato meno l'intervallo. Se la barra coincide perfettamente con il target di calibrazione sarà colorata in verde. Se questa è fuori dal

target di calibrazione, ma l'errore è inferiore al 200% sarà colorata in giallo, mentre se l'errore è maggiore del 200% sarà colorata di rosso.

Tutto ciò altro non è che un aiuto visivo che indica in che zona o su che boundary del modello agire, poiché, come detto in precedenza, il parametro che realmente esprime la qualità della calibrazione è l'nRMS. Sono stati fatti diversi tentavi, aumentando o diminuendo il valoro di C, in base alla necessità di far entrare più o meno acqua attraverso le boundary e calcolando volta per volta l'nRMS.

Si è agito inizialmente sulla linea delle risorgive, successivamente si è passati a modificare il valore del fiume Adige. Sia la linea delle risorgive che il fiume Adige sono stati divisi in più segmenti (5 segmenti per la linea delle risorgive e 2 per il fiume Adige). In questo modo è stato possibile lavorare solamente sulle zone dove le barre apparivano rosse. Il miglior risultato di calibrazione, con un valore del nRMS pari al 0.749, ossia del 7.5%, si è ottenuto attribuendo il valore di 10 m²/d al primo tratto del fiume Adige, lasciando invariato (a 100 m²/d) il valore sul secondo tratto, e aumentando a 100 m²/d il valore di C sulla linea delle risorgive. Una volta terminato il processo di calibrazione, il software ha prodotto come output uno scatter plot (FIG. 40) in cui vengono confrontati i valori dei carichi osservati con i valori dei carichi calcolati. Più i punti sono disposti vicino alla retta, più l'errore associato è piccolo, più sono lontani più è grande.

In questo caso si può vedere come i punti tendono a distribuirsi intorno alla retta, ciò sta a significare che il modello è sufficientemente calibrato.

FIG. 40: Scatter plot di calibrazione ottenuto con i dati freatimetrici di Dal Prà e De Rossi. Confronto tra i valori di carico idraulico osservati e calcolati dal modello.

4.6 RISULTATI DELLE SIMULAZIONI

La calibrazione del modello è stata eseguita a partire dai dati di Dal Prà e De Rossi, risalenti alla campagna freatimetrica del 1986. Come detto in precedenza il motivo per cui si è scelto di usare tali dati è da attribuire al fatto che si tratta della campagna con più misure featimetriche. Dal processo di calibrazione è stato possibile ricostruire l'andamento del carico idraulico dell'area in esame (FIG. 41).

FIG. 41: Andamento del carico idraulico ottenuto dal processo di calibrazione.

Si può osservare come il carico idraulico si abbassa progressivamente da NW, dove si ha il valore massimo di 59 m s.l.m., verso SE, dove si ha il valore minimo di 25 m s.l.m.

Si tratta di una ricostruzione che riproduce quanto più fedelmente il regime idraulico dell'area seppur con qualche incertezza (come mostrato in FIG. 42).

Come si può vedere da tale immagine, nonostante il modello sia stato calibrato correttamente con un valore del nRSM inferiore al 10% sono presenti ancora dei calibration target di colore rosso. Questo risultato è dovuto ai dati a disposizione. Nel caso del fiume Adige, difatti, non è stato possibile reperire informazioni riguardo alle due dighe presenti nel tratto considerato, e quindi sul gradiente idrometrico del fiume in questi tratti.

Inoltre, non si avevano dati riguardo il livello idrometrico del fiume nel punto in cui entra nel dominio (pallino rosso di FIG. 22), il quale è stato ricostruito a partire dai valori medi calcolati nelle stazioni di Verona ed Albaredo.

Un altro dato mancante era quello relativo alla ricarica zenitale, ossia all'infiltrazione. Si è ipotizzato, sulla base della litologia estremamente permeabile dell'area in esame, che la quantità di acqua di precipitazione che s'infiltra nel terreno sia pari al 50% del totale di precipitazione mentre il restante 50% provoca il deflusso superficiale.

Infine, anche nel caso dell'alimentazione laterale, i dati utilizzati non provengono da fonti certe ma sono stati ipotizzati a partire dai valori delle isofreatiche più vicine alle condizioni al contorno.

FIG. 42: Risultato della calibrazione dei dati di Dal Prà e De Rossi.

Naturalmente tutto ciò ha influito sul risultato finale della calibrazione ma si può comunque affermare che il modello è riuscito a riprodurre in maniera abbastanza fedele la realtà idrogeologica dell'area in esame.

Mantenendo i valori di C usati per la calibrazione dei dati di Dal Prà, il modello è stato poi verificato anche con gli observation points derivati dai dati di De Rossi, di

Menapace e con quelli acquisiti nell'ambito del presente lavoro. In questo caso la soglia di accettazione del nRMS è stata aumentata al 15% visto il minor numero di

punti e l'incertezza sulla quota di riferimento stimata a partire dal del 5x5 m della Regione Veneto.

Nel caso di De Rossi è stato calcolato un nRMS pari al 14.7% e dalla soluzione grafica ottenuta (FIG. 43) si può affermare che i valori di C usati per calibrare il modello di Dal Prà siano adatti anche per tali dati. I dati di Menapace sono stati scartati poiché il valore del nRMS era superiore al 15% (pari al 17.35%).

FIG. 43: Risultato della calibrazione dei dati di De Rossi.

Nel caso di De Rossi si può vedere come questa soluzione produca un miglioramento in prossimità delle risorgive, dove i calibration target sono diventati quasi tutti verdi, ma, viceversa, produce un peggioramento in quelli posti nelle vicinanze del fiume. Lo scatter plot ottenuto dalla calibrazione dei dati di De Rossi mostra come anche in questo caso i punti tendono a disporsi intorno alla retta seppur in maniera più dispersa, ciò significa che il modello può considerarsi sufficientemente calibrato (FIG. 44).

44: Scatter plot ottenuto con i valori delle freatimetrie di De Rossi.

Dalla calibrazione dei dati freatimetrici acquisiti nell'ambito di questo studio si è ottenuto un valore di nRMS pari al 13,33% e la soluzione grafica che ne è risultata è quella mostrata in (FIG. 45). Seppur graficamente sembra essere quella peggiore il valore del nRMS conferma la bontà della calibrazione.

FIG. 45: Risultato della calibrazione dei dati acquisiti per il presente studio.

Anche dallo scatter plot realizzato con questi ultimi dati si può osservare come i punti tendono a disporsi in prossimità della retta. Sebbene qualche punto se ne discosta in modo abbastanza evidente (FIG. 46).

FIG. 46: Scatter plot ottenuto con i valori di carico idraulico rilevati per il presente studio.

Dal punto di vista grafico si può vedere come le soluzioni ottenute dalle freatimetrie di Dal Prà e De Rossi del 1986 e quelle di De Rossi del 2016 hanno dato dei risultati molto simili (FIG. 42, FIG. 43) a differenza di quella acquisita per il presente studio (FIG. 45) dove quasi tutti i calibration target sono apparsi rossi. Molto probabilmente questo risultato è dovuto al fatto che le freatimetrie di Dal Prà e De Rossi sono state entrambe realizzate nel periodo estivo (agosto), seppur di anni differenti, mentre i rilievi per questa tesi sono stati realizzati nel periodo autunnale (fine settembre/inizio ottobre). Periodi diversi comportano anche delle condizioni idrodinamiche diverse, in estate la falda tende ad abbassarsi a causa delle scarse precipitazioni e l'aumento delle temperature, mentre in autunno le precipitazioni aumentano e le temperature scendono con conseguente risalita del livello freatico.

Si può dunque supporre che i valori delle boundary con i quali viene calibrato un modello relativo ad uno specifico periodo dell'anno non è detto che possono andar bene anche per simulazioni in periodi differenti.

Dunque, è possibile ipotizzare che la similarità dei risultati riscontrata nei modelli di dal Prà e di De Rossi siano attribuibili al fatto che le misure piezometriche utilizzate per la calibrazione, sono state effettuate in condizioni idrogeologiche e meteoclimatiche abbastanza simili, sebbene siano state eseguite a trent'anni di distanza.

5. CONCLUSIONI

Dagli studi condotti sul territorio dell'alta pianura veronese è stato realizzato un modello numerico che simula l'andamento del flusso all'interno dell'acquifero freatico. Per fare ciò è stato necessario partire da un'analisi preliminare della natura geologica ed idrogeologica del sottosuolo.

Per determinare l'assetto geo-litologico sono state ricostruite le stratigrafie di 439 pozzi. Tutti i dati stratigrafici sono stati caricati in un unico database dal quale sono state estratte le informazioni utili per la realizzazione di sezioni geologiche che mostrano la stratigrafia dell'area e per la ricostruzione del bedrock roccioso, utilizzato come limite inferiore del modello. Da quest'analisi il corpo alluvionale risulta formato prevalentemente da materiali sciolti a granulometria grossa, ghiaioso sabbiosi, con una permeabilità media molto elevata, sebbene sono largamente diffusi livelli limosoargillosi che possono arrivare anche ad alcuni metri di spessore, ma che non presentano una continuità laterale in grado di separare idraulicamente l'acquifero freatico. Successivamente sono stati analizzati i dati meteo-climatici per la ricostruzione del regime termico e delle precipitazioni nell'area di studio. Da questi dati emerge come negli ultimi anni siano aumentante sia le precipitazioni che le temperature, queste ultime in maniera anche molto accentuata. Infine, sono stati elaborarti i dati idrogeologici che hanno fornito informazioni riguardo la trasmissività dell'acquifero, il carico idraulico e il livello idrometrico del Fiume Adige.

Tutte queste informazioni sono state necessarie per la redazione, da prima di un modello idrogeologico concettuale, e successivamente per l'implementazione del modello numerico.

Tale modello è stato calibrato sui dati freatimetrci di Dal Prà e De Rossi del 1986. E' stato ricostruito l'andamento del carico idraulico all'interno dell'area di studio, che in accordo con studi precedenti, presenta una direzione del flusso che va da NW verso SE. Sebbene i dati a disposizione fossero al quanto limitati, si può affermare che il modello riproduca fedelmente il regime idrogeologico dell'area. Di fatti dal risultato della calibrazione si è ottenuto un valore del nRMS pari 7.5% che attesta la capacità della simulazione di riprodurre il deflusso delle acque sotterranee.

Successivamente il modello è stato verificato con i dati freatimetrici acquisiti durante le campagne di misura eseguite da De Rossi nel 2016 e dalla campagna realizzata quest'anno nell'ambito del presente lavoro di tesi. Per queste simulazioni è stata alzata la soglia limite del valore del nRMS al 15%, ciò è stato necessario perché i dati raccolti erano minori e di conseguenza l'errore associato alla calibrazione risultava maggiore. Interessante è il confronto tra le simulazioni con i dati di Dal Prà e con quelli di De Rossi realizzate, la prima nell'agosto del 1986 e la seconda nell'agosto del 2016, le quali hanno prodotto risultati simili molto probabilmente dovuti al fatto di essere state realizzate nello stesso periodo dell'anno.

Con questo lavoro si è cercato di ricostruire nel modo quanto più realistico il flusso delle acque all'interno dell'acquifero veronese a partire dai dati a disposizione. Questo dunque potrà essere aggiornato e migliorato qualora si venga in possesso di nuovi dati o utilizzato per scopi gestionali e ambientali nella tutela di una delle più importanti e preziose risorse idriche del Veneto.
6. BIBLIOGRAFIA

Anderson M.P., Woessner W.W., Hunt R.J., 2015. *Applied Groundwater Modeling*. *Simulation of flow and advective transport*. San Diego, California.

Benedetti L.,2014. Polo Fieristico Veronese S.p.a..Studio di compatibilità geologica, geomorfologica e idrogeologica.

Boscolo C. & Mion F., 2008. Le acque sotterranee della pianura veneta. I risultati del progetto SAMPAS.

Dal Prà & De Rossi,1989. *Carta Idrogeologica dell'Alta Pianura dell'Adige*. Dip. Geol. Univ. Padova, SELCA, Firenze.

Dal Prà A. & Antonelli R., 1977. *Ricerche idrogeologiche e litostratigrafiche nell'alta pianura alluvionale del fiume Adige*.

Dal Prà A., De Rossi P., Furlan F., Siliotti A., Zangheri P., 1991. *Il regime delle acque sotterranee nell'alta pianura veronese*.

De Zanche V., Sorbini L., Spagna V., 1977. *Geologia del territorio del Comune di Verona*. Mem. Mus. Civ. St. Nat. Di Verona, II^o serie, Sez. Sc. della Terra, n. 1, Stamperia Valdonega, Verona.

Fabbri P. & Piccinini L., 2013. «Assessing transmissivity from specific capacityin an alluvial aquifer in the middle Venetian plain (NE Italy)»

Harbaugh, 2005. MODFLOW-2005, The U.S. Geological Survey Modular GroundWater Model—the Ground-Water Flow Process:U.S. Geological Survey Techniques and Methods 6-A16. In Modeling techniques.

Nucci E., 2016. Ente fiere Verona.

Piazzi O., 2007. Rapporto sullo stato dell'ambiente della provincia di Verona.

Sorbini L., Accorsi C. A, Bandini Mazzanti M, Forlani L., Gandini F., Meneghel M., Rigoni A, Sommaruga M, 1984. *Geologia e Geomorfologia di una porzione della Pianura a Sud-Est di Verona*. Mem. Mus. Civ. St. Nat. Di Verona, II° serie, Sez. Sc. della Terra, n. 2, Cooperativa Tipolitografica Nova Stampa, Verona.

Sorbini L., Accorsi C. A., Bandini Mazzanti M., Castellani E., Ferrari A., Consolaro S., Forlani L., Marchesini M., Parolotti L., Peretti A., Sauro U., Torri P., Zambrano R., Zampieri D., Zorzon R., 1993. *Geologia, Idrogeologia e qualità dei principali acquiferi Veronesi*. Mem. Mus. Civ. St. Nat. Di Verona, II° serie, Sez. Sc. della Terra, n. 4, Tipolitografia Gutemberg, Povegliano (VR).

Turc, 1954. Formula per il calcolo dell'EVTr