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Abstract
Dipartimento di Ingegneria Industriale

MSc in Aerospace Engineering

Robust Design Optimisation of S-Ducts under Uncertainties

by Andrea Scaramuzzi

Thanks to the increasing computational power available, Computational Fluid

Dynamics (CFD) analysis and the Multi-objective optimisation methods have be-

come increasingly important and widespread in the design engineering world in

the recent period. In fact, these calculation and optimisation tools have allowed

a tremendous improvement in the performances of aerodynamic aircraft elements

such as wings or engine intakes. Over the past years, robust optimisations have

become very popular. The aim of this new type of optimisation is to consider the

sensitivity of the output results to small variations in the operating conditions or in

the manufacturing constraints. In order to study such sensitivities, it is necessary

an accurate and efficient method to quantify uncertainty in physical processes. In

this context, the study of the behaviour of the flow in an S-duct intake has been

conducted following the previous studies performed by Rigobello [1], D’Ambros [2],

Dal Magro [3]. In particular, the purpose of all the above-mentioned research has

been to optimize the shape of the duct in order to improve its performances. This

project is the natural prosecution of these works. For this reason, in this thesis,

the main objective has been to extend the robust design optimisation for S-ducts

with more uncertainties input (Inlet velocity, flux deviation, bending angle) and

output (pressure recovery and swirl). The study of uncertainties is a very complex

topic and in literature it is possible to find different strategies to calculate their

propagation to the final output results. Two different non-intrusive Polynomial

Chaos techniques have been chosen: the non-intrusive point collocation and the

non-intrusive spectral projection. The results of these two techniques have been

compared to each other. For the first time, a manufacturing uncertainty (bending

angle) has been introduced and its influence to the performances was analysed.

Moreover, to analyse more S-ducts more quickly, a robust optimisation cycle was
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implemented with a machine learning state-of-the-art technique developed by Lon-

gato [4].



Sommario

In questa tesi di laurea magistrale, cinque cicli di ottimizzazione robusta, più un

sesto ciclo di ottimizzazione supportato da Machine Learning, sono stati sviluppati

con lo scopo di migliorare le performance aerodinamiche di una presa particolare

dinamica curvilinea chiamata S-duct. Il presente lavoro è stato supervisionato dal

Professor Timoleon Kipouros dell’ Univeritá di Cranfield (UK), ed un tempo pari

a 6 mesi è stato necessario per programmare i codici e trovare i risultati finali.

Come giá anticipato nell’ Abstract, lo studio del comportamento di un flusso d’

aria all’interno di un’ S-duct, é stato condotto seguendo i precedenti lavori di Rigo-

bello, D́ Ambros e Dal Magro. L’obbiettivo principale di questa tesi é quello di

estendere l’ottimizzazione robusta, già precedentemente implementata, con mag-

giori incertezze in ingresso (velocità d’ingresso, deviazione del flusso, angolo di

bending) e in uscita (pressure recovery e swirl).

Nel primo capitolo, i principali parametri fisici sono stati descritti ed analizzati.

Inoltre, é stata data una panoramica generale dello stato dell’arte delle S-ducts ed

una panoramica storica dei precedenti lavori riguardanti questo tipo particolare di

prese dinamiche.

Nel capitolo due, il lettore è stato introdotto alla comprensione teorica dei con-

cetti di Ottimizzazione e Incertezza. In piú , é son stati ben spiegati e formu-

lati dal punto di vista matematico l’ottimizzazione con singolo oggetto (SOO) e

l’ottimizzazione multi-oggetto (MOO), in presenza e non di incertezze in ingresso.

Alla fine di questo capitolo é stata data una definizione esaustiva di ottimizzazione

robusta.

Nel capitolo tre é stato studiato il complesso meccanismo della quantificazione

e valutazone delle incertezze. Un’ intera panoramica teorica é stata data al let-

tore, introducendo e successivamente analizzando con discreto dettaglio le tecniche

di quantificazione più comuni con l’aiuto di esempi. Infine sono stati presentati

schemi pratici delle due tecniche utilizzate in questa tesi.

Nel capitolo quattro, sono stati analizzati i principali algoritmi usati nei problemi

di ottimizzazione, in particolare il Tabu Search ovvero quello utilizzato in questi

mesi di lavoro.

Nel capitolo cinque é stato presentato il caso di studio. Dunque é stata esaminata
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la geometria di partenza detta baseline, la parametrizzazione utilizzata nei vari

cicli di ottimizzazione robusta, la mesh, le condizioni al contorno dell’analisi cfd e

le incertezze in ingresso ai diversi cicli implementati. Alla fine di questo capitolo

é stata infine compilata una precisa lista di tutti i parametri di ingresso per ogni

ciclo di ottimizzazione robusta sviluppato.

Nell’ultimo capitolo, il sei, sono state divulgate tutte le analisi di post-processing

effettuate sui design di interesse, distinguendo i risultati ottenuti in base alle due

tecniche di quantificazione delle incertezze utilizzate (NIPC, NISP). Nelle Appen-

dici finali A,B,C,D,E sono presenti passaggi e schemi con cui sono stati costruiti i

cinque codici.
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Introduction

In this MSc thesis, five robust optimisation cycles plus one machine learning op-

timisation problem were developed in order to improve the aerodynamic perfor-

mances of S-ducts intakes. The following work was supervised by Dr. Timoleon

Kipouros at Cranfield University (UK) and it took 6 months to implement all the

codes and to find the respective results. As it is written in the Abstract, the study

of the behaviour of the flow in an S-duct intake has been conducted following the

previous studies performed by Rigobello [1], D’Ambros [2], Dal Magro [3], and the

main objective of this thesis has been to extend the robust design optimisation

for S-ducts with more uncertainties input (Inlet velocity, flux deviation, bending

angle) and output (pressure recovery and swirl).

In the first chapter, the main physical parameters have been analysed and a gen-

eral overview of the S-duct state-of-the-art and an historical overview of previous

works about S-ducts intakes is given.

In chapter two a theoretical introduction about Optimisation and Uncertainties

has been given to the reader. In this section, the optimisation problem formulation,

its division into SOO (Single-objective optimisation) or MOO (Multi-objectives

optimisation) problems and their mathematical formulation in presence or not of

uncertainties are well explained. At the end of this chapter has been given an

exhaustive definition of robust optimisation.

In the third chapter, the complex task of the uncertainties quantification has been

underlined. The entire theoretical overview and some of the most common tech-

niques and examples have been presented. Moreover, practical schemes of two

techniques have been reported to help the reader to understand the topic.

In chapter four, all the optimization algorithms have been analysed, in particular

the Tabu Search, which was used in these studies.

In chapter five, the case study has been explained. In particular the geometry,

the parametrization, the mesh, the cfd analysis and the uncertainties taken into

1
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account. The geometry that was used is similar to the one utilized in Wellborn

[6] experiment, and Delot [11], while the parameterization is the same used in

D’Ambros [2]. At the end of this chapter, a precise list of all the five optimisation

starting parameters was given.

In chapter six, all the results have been disclosed, and in particular, the results of

all the optimizations implemented with two different uncertainties quantification

technique (NISP and NIPC), have been compared.

Finally in the Appendices A,B,C,D,E there are schemes that help the reader to

better understand how the five codes have been implemented.



Chapter 1

S-duct state-of-the-art

S-duct intakes are a particular type of inlet for modern aircraft propulsion systems,

and they are so called because they are characterized by a bended shape. In mili-

tary applications, this kind of intakes has been adopted in order to reduce mass,

size, fuel consumption and to increase reactivity and engine operations range. In-

stead, in the civil field the S-duct represents a design solution approached by some

aircraft manufacturers to get less noise, drag and lowering the engine position

compared to straight through design. On the other hand, the particular shape of

these intakes creates complex aerodynamics distortions at the AIP, that compro-

mise the engine performances. The latter can be categorized as: Total Pressure

distortion, Swirl Angle and Total Temperature distortion.

1.1 Total Pressure losses

The definition of the total pressure is: the pressure value when the fluid element

is brought to rest isoentropically [5]. The total pressure can be defined as:

Ptot = Pstatic +
1

2
ρυ2, ρ = cost (1.1)

Ptot = Pstatic

[
1 +

(k − 1)

2
M2

] k
k−1

, ρ 6= cost (1.2)

The total pressure losses throughout a diffusing duct are generally described with

the Pressure Recovery (PR) parameter. In general, this is defined as the ratio

3
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between the average total pressure at the Aerodynamic Interface Plane (AIP) and

inlet total Pressure:

PR =
PAIP

Ptot,in
(1.3)

The total pressure losses are caused by the cross-section growth and by the duct

bends. These two geometry conditions create an adverse pressure gradient that

subsequently leads to flow separation and causes a reverse flow and vortices forma-

tion. As a matter of fact, turning the flow, as generally known, leads to boundary

layer thickening and to a next separation of the fluid from the S-duct walls. The

flow detachment, in diffusing S-duct, is placed right after the first bend and it oc-

cupies a wide downstream region generating a big wake, as proved by Wellborn’s

experiment [6]. It is important to underline that in all this thesis we will refer to

the pressure recovery with another coefficient defined as follow:

CP = 1− PR (1.4)

1.2 Swirl

Swirl is a parameter that determines the distortion of the flow. Considering cylin-

drical coordinates, it is possible to divide the velocity vector in tangential (Uθ)

and axial (Uz) components and to define the swirl as follow:

α = arctan

(
Uθ,AIP
Uz,AIP

)
(1.5)

From equation 1.5 it is easy to understand why the swirl represents the distortion

of the flow. In fact, it is the angle between the local velocity vector and the normal

vector in the AIP plane. In figure 1.1 it is possible to see a schematic representa-

tion of the swirl angle.

According to the literature, it is considered positive if it has the same direction

of the rotation of the compressor. El-Sayed et al. in [7] affirms how the swirl

phenomenon might cause severe problems in the aircraft engine, such as vibra-

tions and surge. In fact, swirl phenomenon occurs specifically when the engine

is installed inside the aircraft fuselage and the intake is connected with the core

thanks to a double bend or a S-shaped duct like in our work.



Chapter 1. S-duct state-of-the-art 5

Figure 1.1: Representation of swirl angle.

Finally, it is necessary to specify that, in general, several typologies of swirl exist

and they are identified as follows: Bulk Swirl, Paired Swirl, Tightly-Wound Vortex,

Cross-Flow Swirl.

Figure 1.2: Swirl Classification.

1.2.1 Bulk Swirl

Bulk swirl occurs when the entire flow in the AIP is rotating in the same direction

as it is represented in Figure 1.3. If the flow rotates in the same direction of

the engine, it is called co-rotating swirl, otherwise it is named counter-rotating

swirl. This phenomenon is the consequence of a non-symmetrical inlet pressure

distribution that forces the fluid to rotate in a single direction. The co-rotating

bulk swirl occurs when a vortex is ingested into the engine, on the other hand, the

counter-rotating bulk swirl is internally generated.
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Figure 1.3: Bulk Swirl.

1.2.2 Paired Swirl

This type of swirl is the most important because it is the most common swirl that

takes place in a bended duct. The paired swirl consists of two or more paired

vortices rotating in opposite directions. If the vortices have the same magnitude,

the swirl is called twin swirl, otherwise offset paired swirl (Figure 1.4).

Figure 1.4: Offset Paired Swirl.

Its formation can be explained by simple considerations about the pressure and
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momentum fields throughout a bended duct. Figure 1.5 can assist the understand-

ing of the phenomenon. In figure 1.5.B it is possible to see the velocity distribution

Figure 1.5: Formation of a paired swirl in a bended duct.

in a pipe. The value of the velocity is equal to zero at the walls, and it is maximum

in the flow core. The natural consequence is that even the momentum distribu-

tion is either not uniform and there is a zone (the core) that have an high energy.

When the flow travels through the bend, the core stream flow (high momentum

flow) is pushed towards the upper wall by the centrifugal force (or better it tries

to maintain the position, thanks to the higher momentum, until it finds the up-

per wall). This behaviour forces the low momentum flow to slip around the duct

walls in a circular motion toward the internal bend as shown in figure 1.5.B. This

phenomenon is not the only one that occurs. In fact, always thanks to the cen-

trifugal force, when the flow travels through the bend, the pressure has to increase

at the upper (external) wall and to decrease at the lower wall. Thus, a pressure

gradient is created like in Figure 1.5.A. It is important to remark that the two

phenomena are not separated, but superimposed. This is how the bend creates

two counter-rotating vortices.
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1.2.3 Tightly-Wound Vortex

It is essential to make a further consideration: this typology of swirl is created by

several mechanisms, but all of them are characterized by three common elements

that are: a stagnation point, a source of vorticity in the surrounding flow field and

a flow sink. The Figures 1.6(a) and 1.6(b) exemplify two examples of what just

explained. Specifically, in the first one we can see the stagnation point and the

flow sink in the ground. In the second figure, the upstream disturbances in the

flow field are the reason of the ingestion of fuselage and wing tip vortices.

(a)

(b)

Figure 1.6: Example of tightly-wound vortex.
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1.2.4 Cross Swirl

This peculiar swirl is very close to the paired swirl just previously described.

However, the main difference is that the velocity is uniform in the cross flow

direction. In [8] is written that it is common to find this type of swirl in straight

inlet ducts with the flow directions normal to the motion of the aircraft. Usually,

it can be observed in lift fans, turboshaft and turboprop with bifurcated intake

ducts.

Figure 1.7: Cross-flow swirl distribution in a lift-fan installation. Source: [8]

1.3 DC60

The DCθ is a distortion parameter that represents the variation of the total pres-

sure across the engine face. It has been derived by Rolls Royce and used extensively

in the European fighter programs Tornado (Stocks and Bissinger, 1981) and Eu-

rofighter (Bissinger and Jost, 2000) as reported by [9]. It is important to define

this parameter because in this way we can quantify the total pressure distortion

at the AIP. The DC60 is defined as follows:

DCθ =
P tot,AIP − P tot,θ

qf,AIP
(1.6)

Where P tot,θ is the lowest average total pressure of all sectors in the AIP (so it

correspond to the worst sector), P tot,AIP and qf,AIP are the average total pressure
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and the dynamic head, respectively, at AIP. θ is the angular value of the sector

and 60◦ or 15◦ are the value of θ that are most used.

Figure 1.8: Example of DC60.

1.4 Historical Review

In order to determine the behaviour of the flow field throughout and at the exit

of S-ducts, several experimental campaigns have been conducted over the years.

The whole history of experimental test is well described in [10].

One of the very first experimental research was conducted by Weske. He studied

the pressure and velocity field at the exit of elbow-shaped ducts with the final

aim of improving the knowledge on aircraft intakes design parameters. The main

finding was that the most influential parameter for the pressure drop downstream

of the ducts was, more than the offset, the ratio between the exit and the inlet

duct radii.

The effects of flow separation and skin friction on the pressure recovery were ex-

amined by John R. Henry in 1944, elaborating results from previous experimental

investigations.
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The presence of the two contra-rotating vortices at the exit of s-shaped intakes

was investigated in detail only later, with the works of P.Bansod and R.W. Guo

on simplified models of engine inlets.

All of the above reported experimental investigations have the goal to build a

more concrete knowledge of the complex aerodynamic phenomena of s-shaped

ducts. Most of these studies were conducted with simplified models, thick bound-

ary layer and incompressible flow. Moreover, in some studies, the duct’s radius

was constant, so it did not involve the diffusion phenomena throughout the duct,

hence reducing the presence of separation.

1.4.1 Wellborn experiment

A consistent breakthrough in the physical knowledge of the s-duct aerodynamics

was achieved thanks to the experimental and computational campaigns performed

by Wellborn [6] in the 1993. In these studies, both the effects of compressibility

and diffusion were taken into account. All of the tests were performed at NASA

Lewis Research Center. The settling chamber conditioned the incoming flow in the

Figure 1.9: Schematic representation of Wellborn experiment.

following way. Air was drawn into the chamber through a large bell-mouth open-

ing. A perforated spreader cone mixed the inlet flow. A coarse mesh conditioning

screen reduced mean flow non uniformities. A honeycomb-screen combination

removed large scale turbulence fluctuations. A seamless contraction section uni-

formly accelerated the flow from the settling chamber. An area contraction ratio

of 59 to 1 ensured a low turbulence intensity flow and nearly uniform flow at the

test section entrance. The test section for this experiment consisted of the dif-

fusing S-duct and two constant area duct extensions. The first extension (10.21



Chapter 1. S-duct state-of-the-art 12

cm diameter) served as the interface between the contraction exit and the S-duct

entrance. The second extension (12.57 cm diameter) conveyed the flow from the

S-duct to the exhaust region. The second extension was able to rotate about its

centerline, when the facility was shut down. Each extension was 76.2 cm long and

had the same internal surface finish as the S-duct. The exhaust section contained

a circular cross-section pipe, a mass flow plug and a sub-atmospheric plenum. The

purpose of the mass flow plug was to delete the influences of the exhaust plenum

on the test section.

It must be remarked that a double circular arc diffusing duct was designed (Fig.1.9),

with the aim to develop and study a complex three dimensional velocity field and

flow separation. Visualization techniques and pressure measurements were used

to investigate the flow. 220 pressure transducers at different stream-wise and cir-

cumferential positions were used to register the wall static pressure throughout the

duct. Three- and five-hole probes were used to measure total pressure, static pres-

sure and flow direction at different planes (planes A, B, C, D and E in Fig.1.10)

for numerous radial and circumferential positions. The inlet Mach number was

set to 0.6 and the Reynolds number of the inlet free-stream at 2.6 · 106. The

study demonstrated the strong coupling between the boundary layer and the flow

at the core of the duct. A vast separated region downstream of the first bend

was observed. Furthermore, the curvature of the duct was found to be responsible

of the generation of pressure-driven secondary flow which eventually induced the

creation of the two contra-rotating vortices downstream.

Figure 1.10: S-duct pressure contour on planes A, B, C, D and E.
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1.4.2 Delot experiment

The Delot analysis [11], conducted in 2006 are the starting point to understand how

to simulate a flow in a S-duct. Delot based her study on scaled-down Wellborn’s

S-duct geometry carrying out several computational tests to define the best set

up that best reproduces real flow. She compared several meshes, solver codes and

turbulence models; the project stated that Fluent solver best matches the separate

region and well predicts low pressure region. For the purpose of our analysis, it is

crucial to remind an important statement that she postulated after her research:

the fluent solver well represents the separated region and the low pressure region,

but the PR coefficient is higher than the one of the real flow.

Figure 1.11: Scheme of Delot experiment.

1.4.3 Recent S-duct studies

In order to understand the simulation done in this thesis, we have to analyse the

previous work done by Rigobello Aurora [1], R.Tridello [12], Alessio D’ Ambros [2]

and Davide Dal Magro [3]. Alessio D’Ambros and Davide Dal Magro are the most
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important sources and the most recent. Precisely, D’Ambros research consisted in

the optimization of the Delot geometry considering two objective functions: the

pressure losses (CP ) and the swirl (α). Instead Dal Magro research goal was the

implementation of a robust optimisation cycle with an uncertainty input (Inlet

Velocity) and two objective functions output: the CPmean and CPstdv.



Chapter 2

Optimisation and Uncertainties

Optimisation problems are present in everyday life. One common example, at

the basis of optimisation theory, is the well-known Travelling Salesman Problem.

Given a list of cities that a salesman has to visit to sell goods to customers, the

question is how to find the shortest route that passes through every city and returns

to the initial point. The more variables are introduced, the more complicated and

highly non-linear the problem will become. Nowadays, optimisation is a very

general automated design technique. When a designer faces to this technique for

the first time, it is important to take into account that an optimisation problem

is implemented in cycles, and all of them are composed of three main processes:

design analysis, results evaluation and new design creation. The design analysis

process is to determine the response of a specified design when it is subjected to

a certain combination of input parameters. In other words, the goal is to find the

value of one or more variables of interest. An example is to find the output pressure

recovery of an S-duct as a result of certain fluid properties inputs at the inlet area.

Instead, the results evaluation and the new design creation processes are used to

verify if the last design is an optimum, and to create a new design for the next

iteration. Efficient algorithms are therefore required to do the last two steps. At

the end of the optimisation, the optimum design result will have the characteristics

to satisfy specified performance and manufacturing constraints. In a numerical

optimisation, we call design variables those parameters that can be changed in the

system, while the code is searching for the best design that minimize or maximize

one or more specific characteristics called objective functions. In mathematical

terms, a simple deterministic optimisation problem can be stated as follows: given

an independent variable x ∈ R called design variable, and an objective function

15
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f(x), the goal of a optimisation cycle is to automatically change the design variable

in order to find a certain x∗ such that f(x∗) is a global minimum or maximum

(it depends on the problem we are analysing). In a more general case, x can be

a design vector of design variables x = (x1, . . . , xn) ∈ Rn. If only one objective

function is present, the optimisation is said to be single-objective (SOO), otherwise

is a multi-objective optimisation (MOO). The design to be acceptable it must also

satisfy certain requirements. These requirements are called design constraints.

Moreover, it must be remarked that a global optimum design might even not

exist for complex problems: in these situations a decision maker comes into play

by choosing one solution that may be of particular interest with respect to the

others. This chapter starts with a brief review of various definitions, hence the

focus is given to the mathematical difference between deterministic and stochastic

optimisation problem and to the definition of Robust optimisation. After that

we will see how the various single and multi-objective robust optimisation are

mathematically implemented.

2.1 Optimisation problem formulation

Problem formulation is normally the most difficult part of the process. It is the

selection of design variables, constraints, objectives, models and uncertainties.

� Design variables: Design variables are entities that can change the shape

or properties of the system within a specified range during an optimisation

design study. The design variables you create affect only the shape of the

design system. For example, the control points of a parametrized S-duct can

be considered design variables. In general, design variables can be continu-

ous, discrete or boolean. They are often bounded, in fact, they often have

maximum and minimum values. Depending on the solution method, these

bounds can be treated as constraints or separately.

� Constraints: A constraint is a condition that must be satisfied to make the

design feasible. Examples of constraints in a S-duct design can be related to

manufacturing. Or, if after an iteration, the result of one or more objective

functions exceed a certain value, that design is discarded.
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� Objective functions: An objective is a variable of interest that has to

be maximized or minimized. For example, a designer may wish to maxi-

mize performance or minimize weight. Many solution methods work only

with single objective. The designer normally weights the various objectives

and sums them to form a single objective. But other methods allow multi-

objective optimization, such as the calculation of a Pareto front, which will

be defined in Chapter 3.

� Models: The designer must also choose models to relate the constraints

and the objectives to the design variables. These models are dependent on

the discipline involved. They may be empirical models, such as a regression

analysis of aircraft prices, theoretical models, such as from computational

fluid dynamics. When the designer chooses the models, he must trade off

the model fidelity with the computational time.

� Uncertainties: They are potential deficiencies in any phase or activity of

the modelling process and they are due to lack of knowledge. Uncertain-

ties are entirely stochastic and they are divided into aleatory uncertainties,

which are intrinsically variable and often represented by probability density

functions (PDFs), and epistemic uncertainties, which are usually due to a

deliberate simplification or lack of understanding the modelled phenomena.

An example is deliberately ignoring coupling effects to simplify models. This

work will focus on aleatory uncertainties only, and for the moment, it is eas-

ier to think to them like random variable ζ. In Chapter 3 uncertainties will

be better described and we will understand their quantifications.

2.2 Single and Multi-objectives problem

Once the design variables, constraints, objectives and the models have been chosen,

the designer has to take into account the presence or not of uncertainties variables.

Based on this, single and multi-objectives optimisation problem can be expressed

in a deterministic or stochastic mathematical way.
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2.2.1 Deterministic optimisation problem

Now we consider an objective function f(x), where x ∈ X represents vector of

design variables. A single-objective minimisation problem is formulated in general

as:

f(x∗) ≤ f(x) ∀ x ∈ X

s.to g(x) ≤ 0, h(x) = 0
(2.1)

where g(x) and h(x) are constraints vectors and X is a set called design space.

As we can see, this is a deterministic single-objective problem where the objective

function is only one, and there’s no uncertainties input ζ.

Now we consider a set of objective functions [f1(x); f2(x); . . . fm(x)] where x ∈ X
represents a vector of design variables. A deterministic multi-objective minimisa-

tion problem is formulated as follow:

min
X

[f1(x); f2(x); . . . fm(x)] ∀ x ∈ X

s.to g(x) ≤ 0, h(x) = 0
(2.2)

where, like before, g(x) and h(x) are constraints vectors and X is a set called

design space.

The underlying difference between the single objective function and the MOO is

that the latter does not provide an optimal solution that can ensure that all the

objective functions are optimized.

2.2.2 Stochastic optimisation problem

In presence of uncertainties, the conventional deterministic optimisation becomes

an optimisation under uncertainties. The designer has to take into account possi-

ble probabilistic information of these variables like the probability density function
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(PDF) or the cumulative density function (CDF), which represents the identity

card data of a design analysed under uncertainty. As said before this topic will be

addressed in Chapter 3.

Now we consider an objective function f(x, ζ), where x ∈ X represents vector of

design variables and ζ ∈ Ω is vector of random variables: ζ = (ζ1, . . . , ζn). Each

element of ζ can be a design variable or another parameter. A single-objective

minimisation problem is formulated in general as:

f(x∗, ζ) ≤ f(x, ζ) ∀ x ∈ X, ζ ∈ Ω

s.to g(x) ≤ 0, h(x) = 0
(2.3)

where g(x) and h(x) are constraints vectors and X, Ω are sets respectively called

design space and random space.

Now we consider a set of objective functions [f1(x, ζ); f2(x, ζ); . . . fm(x, ζ)] where

x ∈ X represents a vector of design variables, and ζ ∈ Ω is vector of random

variables. A deterministic multi-objective minimisation problem is formulated as

follow:

min
X

[f1(x, ζ); f2(x, ζ); . . . fm(x, ζ)] ∀ x ∈ X, ζ ∈ Ω

s.to g(x) ≤ 0, h(x) = 0
(2.4)

where, like before, g(x) and h(x) are constraints vectors and X, Ω are sets respec-

tively called design space and random space.

It must be remarked that each fi(x, ζ) is a random quantity induced by ζ, and as

said before, it is not possible to find a unique solution that simultaneously optimise

(in this case minimise) each objective function.
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2.3 Robust Optimisation

As said in the previous sections, single and multi-objective optimisation aims at

finding the design that maximises (or minimises) one or a certain set of objective

functions. Optimised designs, however, may be very sensitive to small variations

in the manufacturing or operating conditions: such variations can even be de-

structive in terms of drastic reductions of the objective functions. Davide Dal

Magro et al., for instance, demonstrated in [3] how an optimised S-duct remark-

ably change its Pressure Recovery value when the Velocity input number deviated

from the mean value. Since uncertainty is everywhere and, by definition, cannot

be predicted, a scrupulous designer must take it into account when he’s perform-

ing a robust optimisation, i.e. an optimisation that considers the sensitivity to

uncertainty. The goal of robust optimisation is connected to the idea that in the

presence of (input) uncertainty, the optimal design should be relatively insensitive

(small output uncertainty). Consider, for instance, the plot in figure 2.1: for the

same input variable variation ±δ, the objective function variations ∆ and ∆′ are

considerably different on the two optimum points. Point B is the goal of the robust

optimisation, i.e. a robust design, because is less sensitive to input uncertainty.

It must be remarked that the latter may not necessarily coincide with the global

optimum (point A in figure 2.1).

Figure 2.1: The effect of uncertainties on the objective function. Source: [13].
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Mirjalili et al. [13] provided an overview of several approaches to perform a robust

optimisation:

� Type I (expectation measure): the objective function is averaged in a neigh-

bourhood of the solution, finding an expectation measure that replaces the

‘crude’ objective function value in the optimisation;

� Type II (variance measure): the original objective functions are optimised

here, but the process is subject to an additional constraint on the variance of

the solution. In other words, any found optima must not exceed a pre-defined

variation ∆ in the objective functions space;

� Hybrids of Type I and II: an average weighted on the importance of the

neighbourhoods distributions is computed on the objective functions to find

the expected measure.

An alternative to the above methods (that could although be seen as a Type II,

variance measure approach), utilised in [14, 15], is to directly consider as objec-

tive functions the stochastic properties, i.e. mean and standard deviation, of the

variable of interest. In this case the goal is to maximise (or minimise) the mean

µ and always minimise the standard deviation σ. It is easy to see that with this

approach a robust optimisation is always multi-objective: even for one variable of

interest, two objective functions, the mean and the standard deviation, have to be

considered.

The above cited approach has been chosen to perform a robust optimisation in

this work. In fact, the explicit calculation (and visualisation) of the stochastic

properties of the output can give the designer a more detailed overview of the

problem, allowing more rational choices. Hence, accurate and efficient tools to

model uncertainty and compute the stochastic properties of a random process are

necessary: these will be discussed in Chapter 3.

2.3.1 Alternative Robust MOO

The alternative method mentioned above, can be written in the following mathe-

matical form:
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
min
X

µ(x)

min
X

σ2(x)

s.to g(x) ≤ 0, h(x) = 0

(2.5)

where µ is the mean, σ is the standard deviation and g(x), h(x) are constraints

vectors.

With this approach, one variable of interest (one objective) is splitted in two ob-

jective functions, the mean and the standard deviation. In this case a challenge

is posed by the increase in dimensionality. Indeed, an original m multi-objective

problem turns into m× n multi-objective problem, where n is the number of the

statistical moments (stochastic properties) used in the problem formulation. In

the above system, n = 2 (µ, σ) and m = 1.

2.4 Dominance concept

In the previous sections we underlined that the aim of a MOO is to optimise (min-

imise or maximise) not only one, but a set of objective functions. However, it is

not possible to find an unique solution that simultaneously optimise each objective

function. To better understand this concept let’s introduce the dominance concept

as reported in [3].

In a minimisation problem with two objective functions, the design solution x∗A

dominates a design solution x∗B if the following statement is verified:

fj(x
∗
A) ≥ fj(x

∗
B) ∀ j = 1, . . . ,m (2.6)

where m is the number of objective functions.

If fj(x
∗
A) < fj(x

∗
B) for at least one j = 1, . . . ,m and vice versa, then both x∗A and

x∗B are non-dominated solutions.

The non dominated solutions are chosen and are considered as Pareto-optimal

set, in fact all these points have the peculiarity that if one objective function

improves, the other gets worse. At the end of the optimisation process, the best
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non-dominated solutions are usually represented as a Pareto front such the one

in figure 2.2. In figure 2.2, the Pareto front is two-dimensional because it is a

result of a two objectives optimisation. The notion of Pareto optimal front can be

extended to an arbitrary number of objectives, but visualising a Pareto front in

more than three dimensions can be challenging.

Figure 2.2: Example of a Pareto-optimal set (Pareto Front highlighted in dark
grey). Source: [16].





Chapter 3

Uncertainty quantification

Over the past decades, thanks to the continuously increasing of the computational

power available, Computational Fluid Dynamics (CFD) has become a convenient

and trustworthy alternative to experimental tests to solve complex engineering

problems. However, it is well known that reality cannot be modelled without

errors and uncertainties. For this reason, Walter and Huyse in [17] pointed out

the AIAA definitions of error and uncertainty:

� Error: A recognisable deficiency in any phase of or activity of modelling

and simulation that is not due to lack of knowledge.

� Uncertainty: A potential deficiency in any phase or activity of the mod-

elling process that is due to lack of knowledge.

A further subdivision of these two categories has then been defined by Oberkampf

and Helton in [18]. An error can be either acknowledged or unacknowledged. Ac-

knowledged errors can be, for examples, finite arithmetic precision in a computer

or the discretisation of a continuous process. In this the analyst is typically aware

of the magnitude of these deficiencies, nevertheless he/she can choose to accept

them because of the excessive cost needed for the correction. Conversely, unac-

knowledged errors are deficiencies which the analyst is not aware of, but they are

recognisable, such as errors in the source code of a program. Uncertainty can be

further subdivided in aleatory and epistemic:

� Aleatory: Quantities affected by aleatory uncertainty can take values that

will randomly change from time to time, but these are in a known range and

25
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follow a known or assumable distribution. These uncertainties are commonly

modelled with Probability Distribution Functions (PDFs).

� Epistemic: Epistemic uncertainty is caused by any lack of knowledge in any

phase of the modelling process. For instance, the simple assumption of mod-

elling an aleatory uncertainty with a particular PDF is a source of epistemic

uncertainty, or, more generally, it can arise from assumptions introduced in

the mathematical model or simplifications related to the correlation between

physical processes. In order to correct epistemic uncertainties, therefore,

more knowledge of the physical process is necessary (e.g. more experimental

data).

This work will focus on aleatory uncertainty only. Oberkampf and Helton then

stated the most common occurrences of uncertainty in engineering problems:

� parametric: these mainly include physical or chemical parameters. They

are usually modelled with a Probability Distribution Function (PDF) if there

is enough knowledge or must be guessed from the analysis.

� modelling: these include the uncertainties that occur when there are some

inadequate understanding of the model implemented for physical/chemical

processes. The typical example could be an uncompleted amount of data.

� scenario abstraction: these include all the parameters that are not take

into account in the simulations, but that can occur.

Another classification of uncertainty has been made by Huyse et al. in [19], ac-

cording to the impact and the frequency of an event (figure 3.1).

The task of uncertainty quantification and management (from now on the term

aleatory will be omitted) can be significantly costly and key in many engineering

designs, hence it must be carefully performed. In order to model uncertainty the

literature gives us several schemes and methodologies. All of them are possible to

be applied but now take a further look to stochastic methodologies.
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Figure 3.1: Uncertainty classification according to [19].

3.1 Stochastic approaches for aleatory uncertainty

quantification

The stochastic approach is based on the main assumption that the uncertainty

input variable has to be considered as random ζ, and with a probability distribu-

tion function. This assumption implies that also the output variable f(x, ζ) will

be random with its own PDF. It must be remarked that, in the general case, there

could be more than one input uncertainty variables and/or multiple outputs. As

stated in [18], a classical mathematical model is considered deterministic, in the

sense that for every fixed input it will produce a unique value for every output

variable. Hence, to obtain a stochastic model of the process, it is necessary to

run the deterministic model a certain number of times. In this section the most

common stochastic schemes are analysed.

3.1.1 Monte Carlo Method

As reported in [20], the basic Monte Carlo Method follows a very simple approach:

� sample the input variables following a known (or assumed) probability dis-

tribution.

� compute the deterministic output for each of the sampled input values.
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� build a probability density function for the output variables.

Furthermore, this method has some positive peculiarities, such as:

� the method converge to the precise stochastic solution.

� the solutions are not directly linked to the number of the random variables.

� the method is easy to be implemented.

� it is applicable in any sort of problem and it does not need to be modified.

In many papers, in order to deeply understand the Monte Carlo Method, it is used

the following example: determine the unknown surface of a lake contained in a

square of known side, as shown in figure 3.2(a). The problem can be solved by

(a) Lake of unknown surface. (b) Random shots on the square.

Figure 3.2: Determination of the surface of a lake with random shots.

randomly shooting with a cannon inside the square and count the shots landed on

earth Nearth. If N is the total number of shots, the surface of the lake Slake can

be approximated by:
Slake
Sterrain

=
N −Nearth

Nearth

(3.1)

where Sterrain is the known surface of the square. It is clear that the above esti-

mation is accurate if the number of shots is high and uniformly distributed.

The Monte Carlo Method is known to converge to the exact stochastic solution

for an infinite number of samples. For this reason, it is frequently used as a base

for comparison with other methods.
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Nevertheless, the two major drawbacks of this scheme are the need for a good

random numbers generator (to obtain a uniform distribution of the ‘shots’) and,

most of all, the slow convergence rate. The latter is of the order of 1/
√
N with N

being the number of samples. As a matter of fact, the integration with very high

time-consuming optimisation processes (e.g. CFD simulations) becomes infeasible.

3.1.2 Taylor Series Method

This model performs the Taylor Expansion of the output variables around the

mean value [20]. It is usually more efficient and fast than Monte Carlo Method

(depending on the derivatives evaluation), but it shows some issues in the treat-

ment of highly non-linear or discrete functions, and it is not accurate in zones far

from the mean value [21].

3.1.3 Sigma Point

Presented by Padulo et al. in [21] and [22], the Sigma Point is a stochastic method.

The main idea is that is better to approximate the inputs value rather than the

outputs. In order to do that, the procedure consists in choosing the sigma points,

that are input points, symmetrically distributed around the mean value. As a

result, the deterministic models will be computed only for these points. Usually,

the random variable is Gaussian and it is called ξ. If µξ is the mean and σξ the

standard deviation.

ξ0 = µξ (3.2)

ξp± = µξ ± hspσξ (3.3)

The coefficient hsp is arbitrarily chosen by the user and all the sampling points

depend on this parameter. This method has been successfully tested by Moro in

[15], even though it has been shown that results heavily depend upon the choice

of hsp.
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3.1.4 Polynomial Chaos

The Polynomial Chaos scheme (PC) views the inputs and the outputs random

variables as an infinite summation of terms where it is possible to identify deter-

ministic coefficients multiplied for random basis polynomials. This theory has its

fundamentals on the homogeneous chaos written by Wiener in [23], and it is based

on the assumption that a second-order random process (i.e. a process with a finite

variance σ2), as the majority of the engineering process, can be expressed in terms

of orthogonal polynomials.

Several types of polynomials are used to implement the polynomial Chaos, but the

original ones is the Hermite Polynomials in terms of Gaussian random variables.

In fact, this concept has been generalized by Xiu and Karniadakis, into every or-

thogonal polynomials that belong to the Askey-Scheme, only after 64 years the

Weiner article. The generalization has been made also for some other general PDF

that are not included in the Askey-Scheme [24].

The Polynomial chaos is a method that is used in many works, especially to in-

tegrate an optimization work, as in [25–27], and it is very attractive because of

its very high convergence rate (exponential or quasi-exponential). However, many

issues have been observed [28]:

� an analytical PDF must exist for every uncertain variable. If not known, it

must be guessed;

� it is computational efficient for a small number of random variables only;

� it is intrusive, i.e. it requires modifications in the solver.

In order to solve some of these issues many modifications have been made, in

particular on the intrusiveness. In fact in this thesis, we will use non intrusive

variant of the Polynomial Chaos.

3.2 Polynomial Chaos formulation

Polynomial chaos expansion is based on the homogeneous chaos developed by

Wiener [23]. Wiener used Hermite polynomials in terms of Gaussian random

variables as the basis for an expansion of random processes. The Cameron–Martin
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theorem [29] proved that the expansion could represent any second-order random

process in terms of orthogonal polynomials.

3.2.1 Hermite polynomials chaos

With the Hermite polynomials, a second-order process X(θ) can be expanded as

follow:

X(θ) = a0H0 +

+
∞∑
i1=1

ai1H1(ξi1(θ)) +

+
∞∑
i1=1

i1∑
i2=1

ai1i2H2(ξi1(θ), ξi2(θ)) +

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3H3(ξi1(θ), ξi2(θ), ξi3(θ)) +

+ . . . (3.4)

where Hn(ξi1 , . . . , ξin) denote the Hermite polynomials of order n in terms of the

multi-dimensional independent standard Gaussian random variables ξ = (ξi1 , . . . , ξin)

with zero mean and unit variance. Instead, ai1 . . . ain are deterministic coefficients.

The above equation is the discrete version of the original Wiener polynomial chaos

expansion, where the continuous integrals are replaced by summations. The gen-

eral expression of the polynomials is given by:

Hn(ξi1 , . . . , ξin) = (−1)ne
1
2
ξT ξ ∂n

∂ξi1 · · · ∂ξin
e−

1
2
ξT ξ (3.5)

For example, if ξ = (ξ1), the one-dimensional Hermite polynomials are:

Ψ0 = 1, Ψ1 = ξ, Ψ2 = ξ2 − 1, Ψ3 = ξ3 − 3ξ, . . . (3.6)

and if ξ = (ξ1, ξ2), the two-dimensional Hermite polynomials are:

Ψ0 = 1, Ψ1 = ξ1, Ψ2 = ξ2, Ψ3 = ξ2
1−1, Ψ4 = ξ1ξ2, Ψ5 = ξ2

2−1, . . . (3.7)
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For notational convenience, equation 3.4 can be rewritten as:

X(θ) =
∞∑
j=0

âjΨj(ξ) (3.8)

where there is a one-to-one correspondence between the functions Hn(ξi1 , . . . , ξin)

and Ψj(ξ) and also between the coefficients âj and ai1 . . . ain .

For clarity, the two-dimensional expansion is shown here, both in the fully ex-

panded form (See Eq 3.4):

X(θ) = a0H0 + a1H1(ξ1) + a2H1(ξ2) + a11H2(ξ1, ξ1)+

+ a12H2(ξ2, ξ1) + a22H2(ξ2, ξ2) + · · · (3.9)

and in the simplified form (see Eq 3.8):

X(θ) = â0Ψ0 + â1Ψ1 + â2Ψ2 + â3Ψ3 + â4Ψ4 + â5Ψ5 + · · ·

= â0 + â1ξ1 + â2ξ2 + â3(ξ2
1 − 1) + â4(ξ1ξ2) + â5(ξ2

2 − 1) + · · · (3.10)

The polynomial basis Ψj of Hermite-Chaos forms a complete orthogonal basis, i.e.:

〈ΨiΨj〉 =
〈
Ψ2
i

〉
δij (3.11)

where δij is the Kronecker delta and 〈·, ·〉 denotes the ensemble average, which

correspond to the inner product in the Hilbert space of Gaussian variables:

〈f(ξ)g(ξ)〉 =

∫
Ω

f(ξ)g(ξ)W (ξ)dξ (3.12)

where W (ξ) is the weighting function corresponding to the polynomial basisΨj.

For the Hermite polynomials this weighting function is:

W (ξ) =
1√

(2π)n
e−

1
2
ξT ξ (3.13)

The Hermite polynomials are paired with the Gaussian distribution because Her-

mite polynomials are expressed in terms of Gaussian variables and, by definition,

these polynomials are orthogonal to the weighting function W (ξ) which has the

form of the multi-dimensional independent Gaussian probability distribution with

unit variance. [30].
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3.2.2 Generalisation to any random distribution

The Cameron-Martin theorem assures the Wiener-Hermite chaos exhibits an ex-

ponential convergence rate when applied to Gaussian distributions. However, for

general non-Gaussian random inputs, such as Beta or Uniform distributions, the

convergence rate is not fast and in some cases the convergence rate is, in fact,

severely deteriorated. [30]. In order to deal with more general random inputs,

we introduce the Wiener-Askey polynomial chaos expansion as a generalization of

the original Wiener-Chaos expansion. Similar to equation 3.4, we represent the

general second-order random process X(θ) as:

X(θ) = a0I0 +

+
∞∑
i1=1

ci1I1(ζi1(θ)) +

+
∞∑
i1=1

i1∑
i2=1

ci1i2I2(ζi1(θ), ζi2(θ)) +

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ci1i2i3I3(ζi1(θ), ζi2(θ), ζi3(θ)) +

+ . . . (3.14)

where In(ζi1 , . . . , ζin) denotes the Wiener-Askey polynomials of order n in terms

of the multi-dimensional random variables ζ = (ζi1 , . . . , ζin) and ci1 . . . cin are

deterministic coefficients.

Again for notational convenience, we rewrite Eq 3.14 as:

X(θ) =
∞∑
j=0

ĉjΦj(ζ) (3.15)

where there is a one-to-one correspondence between the functions In(ζi1 , . . . , ζin)

and Phij(ζ) and their coefficients ĉj and ci1 . . . cin . The orthogonality relation of

the Wiener-Askey polynomial chaos takes the form:

〈ΦiΦj〉 =
〈
Φ2
i

〉
δij (3.16)
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where δij is the Kronecker delta and 〈. . . 〉 is the ensemble average, which corre-

sponds to the inner product in the Hilbert space of the variables ζ.

〈f(ζ)g(ζ)〉 =

∫
Ω

f(ζ)g(ζ)W (ζ)dζ (3.17)

As stated in [24], some polynomials from the Askey scheme have as weighting

functions W (ζ) the same as the PDF of certain random distributions. As a matter

of fact, it is convenient to choose the type of random variables ζ according to their

probability distributions, as shown in table 3.1.

Table 3.1: Types of random variables and their corresponding chaos.

Random variables ζ Wiener-Askey chaos Φ (ζ) Support

Continuous Gaussian Hermite Chaos (−∞,+∞)
Gamma Laguerre Chaos [0,+∞)

Beta Jacobi Chaos [a, b]
Uniform Legendre Chaos [a, b]

Discrete Poisson Charlier Chaos {0, 1, 2, . . . }
Binomial Krawtchouk Chaos {0, 1, . . . , N}

Negative Binomial Meixner Chaos {0, 1, 2, . . . }
Hypergeometric Hahn Chaos {0, 1, . . . , N}

3.3 Example: Stochastic ODE

The below example reports the overall procedure applied to a simple ODE.

Consider the following ordinary differential equation:
dy

dt
= −ky

y(0) = ŷ
(3.18)

where the coefficient k = k(θ) is a random variable with a Gaussian distribution.

Therefore the Wiener-Hermite chaos and its specific notations will be used. k has

a mean µk and a standard deviation σk, and it is possible to explicit it as:

k(θ) = µk + σkξ1(θ) (3.19)

where θ is the random variable dimension, and ξ1(θ) is the value of the random

variable depending, in this specific example, on the Gaussian distribution. In order
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to simplify the notation, the ξ1(θ) is rewritten as ξ, since the random variable taken

into account in this case, is one dimensional.

Treating the problem as stochastic, the Wiener-polynomial chaos expansion is

applied to both the random variable k(θ) and the solution y(t, θ):

k(θ) =
∞∑
i=0

kiΨi(ξ), y(t, θ) =
∞∑
i=0

yi(t)Ψi(ξ) (3.20)

For practical applications, the infinite summations must be truncated to a finite

number. The new upper summation limit depend on the number of random di-

mensions and the desired order of the polynomials:

P + 1 =
(n+ p)!

n!p!
(3.21)

where P is the new upper summation limit, p the desired order of the polynomials,

and n the number of random dimensions. Therefore, we obtain:

k ≈
P∑
i=0

kiΨi(ξ), y ≈
P∑
i=0

yi(t)Ψi(ξ) (3.22)

The above expansion can be considered a spectral expansion where the stochastic

process is divided into random basis polynomials and deterministic coefficients (ki

and yi(t)).

Substituting equations 3.22 in the original equation 3.18, the resulting differential

equation becomes:

P∑
i=0

dyi(t)

dt
Ψi(ξ) = −

P∑
i=0

P∑
j=0

ki yj(t) Ψi(ξ)Ψj(ξ) (3.23)

The truncation inevitably introduces error, and a Gelerkin projection is used to

ensure that the error is orthogonally projected to the reduced Hermite polynomial

basis Ψl. We will do this by taking the inner product of the equation with each

basis 〈 · ,Ψl〉: 〈
P∑
i=0

dyi(t)

dt
Ψi, Ψl

〉
= −

〈
P∑
i=0

P∑
j=0

ki yj(t) ΨiΨj, Ψl

〉
(3.24)

where l = 0, 1, . . . , P .

Remembering the orthogonality equation 3.11, the left hand side of the equation is
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always equal to zero, except when i = l, therefore, it becomes dyl(t)
dt
〈Ψ2

l 〉. Instead,

the right hand side doesn’t reduce because the orthogonality relation doesn’t work

to the inner product of three polynomials. Therefore we obtain:

dyl(t)

dt
= − 1

〈Ψ2
l 〉

P∑
i=0

P∑
j=0

ki yj(t) eijl (3.25)

where eijl = 〈ΨiΨjΨl〉 and l = 0, 1, . . . , P . The formula of inner product 3.17

allows the calculation of 〈Ψ2
l 〉 and 〈ΨiΨjΨl〉, and removes all the random param-

eters from the equations. In this way, we will have a set of P + 1 deterministic

equations where the polynomial chaos coefficients yj are the unknowns.

In this specific case, the P + 1 equations can be further simplified thanks to the

known behaviour of k(θ), so the coefficients ki can be computed.

k(θ) = µk + σkξ ≈
P∑
i=0

kiΨi(ξ) (3.26)

If the right hand side is expanded:

k(θ) = µk + σkξ = k0 + k1ξ + k2(ξ2 − 1) + · · · (3.27)

it can be seen that k0 = µk, k1 = σk and ∀i > 1, ki = 0.

If a third order chaos is used (p = 3), since the present problem has only one

dimension (n = 1), according to equation 3.21, P + 1 = 4. At the end, if we put

l = 0 and we calculate the summation with index i, equation 3.25 is reduced to:

dy0(t)

dt
= −µk

P∑
j=0

yj(t) 〈Ψ0ΨjΨ0〉 − σk

P∑
j=0

yj(t) 〈Ψ1ΨjΨ0〉 (3.28)

Hence, the first equation of the system is

dy0(t)

dt
= − µk[y0(t) 〈Ψ0Ψ0Ψ0〉+ y1(t) 〈Ψ0Ψ1Ψ0〉+

+ y2(t) 〈Ψ0Ψ2Ψ0〉+ y3(t) 〈Ψ0Ψ3Ψ0〉] +

− σk[y0(t) 〈Ψ1Ψ0Ψ0〉+ y1(t) 〈Ψ1Ψ1Ψ0〉+

+ y2(t) 〈Ψ1Ψ2Ψ0〉+ y3(t) 〈Ψ1Ψ3Ψ0〉] (3.29)

All the other P deterministic equations can be found for l = 1, . . . , P . After that,

once the system is resolved and all the yi coefficients are determined (y0, y1, y2 and
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y3), they can be substituted back into the original y(t; θ) expansion displayed in

equation 3.22:

y(t, θ) = y0(t) + y1(t)Ψ1(θ) + y2(t)Ψ2(θ) + y3(t)Ψ3(θ) (3.30)

The first statistic moment, the mean, is the first polynomial chaos coefficient:

µy = y0(t) (3.31)

whilst the standard deviation can be computed as:

σy =

√√√√ P∑
j=1

y2
j (t)

〈
Ψ2
j

〉
(3.32)

Assuming k is a Gaussian random variable, having thus probability density func-

tion

f(k) =
1√
2π
e−x

2/2 (3.33)

therefore µk = 0 and σk = 1, Xiu and Karniadakis in [24] calculated the solution of

the problem, reported in figure 3.3. The power of the Polynomial Chaos method

Figure 3.3: Plot of the polynomial chaos coefficients up to order 4 for the
example ODE. Source: [24].

is clear when it is considered that, for all the PDFs reported in table 3.1, an
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exponential or quasi-exponential convergence rate is achieved, meaning that the

error decreases exponentially with the PC order. Ghisu et al. in [31] showed that it

is also possible the use of nonstandard probability density functions, even though

the exponential convergence is not granted.

3.4 Non-intrusive methods

In paragraph 3.1.4 the intrusiveness of the Polynomial Chaos method has been

presented as the major drawback. This is now more clear by looking at equation

3.29: in order to solve directly the deterministic system and find the PC coef-

ficients, the intrusive Polynomial Chaos method requires to directly modify the

code of a deterministic solver. This can be inconvenient and complex, especially

if the problem deals with complicated analyses as CFD simulations. In order to

overcome this issue, several non-intrusive approaches have been proposed and can

be found in literature: the common idea is to treat the deterministic solver as a

black box, and find the PC coefficient after having run the necessary deterministic

code.

Figure 3.4: Schematic of the non-intrusive methods.

In the present work, three non-intrusive schemes have been analysed.

3.4.1 Non-Intrusive Spectral Projection

Non Intrusive Spectral Projection (NISP) is based on the observation that the

PC coefficients for a variable a (i.e., a0, . . . , aP ) can be obtained by projecting the
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deterministic solution onto the PC basis Φi and using the orthogonality relation

3.11.

a =
∞∑
i=0

aiΦi

〈a, Φi〉 =

〈
∞∑
i=0

aiΦi,Φi

〉

ai =
〈a, Φi〉
〈Φ2

i 〉
(3.34)

Now we change the above equation with a new nomenclature:

ai =

〈
ad(ζ), Φi

〉
〈Φ2

i 〉
(3.35)

where ad(ζ) represents the deterministic solution corresponding to a particular

realization ζ = (ζ1, . . . , ζn), and n is the number of random dimensions. After

that, if we apply the inner product (Eq 3.17) to the equation 3.35 we will have the

following equation form for the PC coefficients:

ai =

〈
ad(ζ)Φi

〉
〈Φ2

i 〉
=

∫
Ω

· · ·
∫

Ω

[
ad(ζ)

Φi(ζ)

〈Φ2
i 〉

n∏
k=1

W (ζk)

]
dζ1 . . . dζn (3.36)

where W is the weighting function. The above integral can be approximated

using the Gaussian quadrature method, by sampling each random variable ζi in

m Gaussian quadrature points.

ai =
m∑

m1=1

· · ·
m∑

mn=1

ad(ζm1 , . . . , ζmn)
Φi(ζm1 , . . . , ζmn)

〈Φ2
i 〉

n∏
k=1

ωmk
(3.37)

With the new mathematical notations, ζmk
corresponds to the old one-dimensional

random variable notation ζi when k = 1 . . . , n. Instead, with mk = 1, . . . ,m we

define the m couples (ζmk
, ωmk

) that comes from sampling each one-dimensional

random variable. In fact, the two elements of these m couples are respectively the

Gaussian quadrature point and it’s weight.

Moreover, it must be remarked that the Gaussian quadrature sampling depends

on the probability distribution of the random variable. For example, if the latter

follows a Gaussian distribution, the quadrature sampling will be called Hermite-

Gauss quadrature. On the other hand, if the random variable follows a Beta distri-

bution, the Gaussian quadrature sampling will be called Jacobi-Gauss quadrature.
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The process involves the following steps:

1. define the behaviour of the uncertainties input variable (PDF), the random

variables (in this example ζmk
) is sampled in m points using the Gaussian

quadrature technique;

2. compute the basis functions Φi with i = (0, . . . , P ) and the weights ω for

each m quadrature points;

3. for each m sampled input variable, compute the deterministic solutions

ad(ζ1), . . . , ad(ζm);

4. the polynomial chaos coefficients are then computed with the equation 3.37

Following the indications of Le Maitre [32], the Gauss-Hermite quadrature requires

m = p + 1 (p being the Polynomial Chaos order) sample points for each random

variable to be exact, therefore the total number of deterministic solutions required

is (p+ 1)n, that are notably higher than the P + 1 solves required by the intrusive

Polynomial Chaos presented in the previous sections. This remark introduces the

so called curse of dimensionality from which the NISP is affected: the number of

deterministic solves grows exponentially with the number of random dimensions.

Even though they could easily become a quite high number, they are considerably

less than the solves required by Monte Carlo Method [17].

3.4.2 Non-Intrusive Point-Collocation

The Non-Intrusive Point-Collocation method (NIPC) has been proposed for the

first time by Hosder et al. in [33]. This method consists in sampling P +1 colloca-

tion points from the random vector ζ = (ζ1, . . . , ζn), and running the deterministic

solver for each of these collocation points. In contrast to NISP, this new method

does not need a Galerkin projection but it directly solves a linear system in order

to find the NIPC coefficients:
Φ0(ζ0) Φ1(ζ0) · · · ΦP (ζ0)

Φ0(ζ1) Φ1(ζ1) · · · ΦP (ζ1)
...

...
. . .

...

Φ0(ζP ) Φ1(ζP ) · · · ΦP (ζP )




a0

a1

...

aP

 =


ad(ζ0)

ad(ζ1)
...

ad(ζP )

 (3.38)
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As we can see, the vector on the right hand side contains the deterministic results

computed for each sample input, and to find them we need to compute the inverse

of the polynomial chaos matrix.

~a = Φ−1 ~ad (3.39)

Nevertheless its solution is non unique, it depends on the sampling of the P + 1

collocation points.

Sampling can be performed following several procedures. Hosder in [34] studied

three widely used techniques:

� Random Sampling: this is the easiest technique, but the results obtained are

not accurate [34].

� Latin Hypercube Sampling: this is an algorithm that divides in P+1 sections

the cumulative density function, and randomly selects one point for each

section. In this way, all the portions of the input range are represented. We

have to specify that this technique is more accurate than the random ones

[35].

� Hammersley Sampling: this algorithm is based on the prime numbers, and

its output results unique [36].

The number of function evaluations needed with NISP and NIPC is plotted against

the number of random variables and the PC order in figure 3.5.

For a small number of random variables the evaluations required by the two meth-

ods are comparable, but there is a notable difference when n increases. This

constitutes the great advantage of the NIPC method, that is not being subjected

to the curse of dimensionality : in fact, it needs only P + 1 deterministic solves,

with P computable from equation 3.21. Oversampling is also possible: in this case

the system 3.38 is solved using the least squares method. Hosder in [34] showed

that with 2(P + 1) collocation points instead of the required P + 1, NIPC gives

more accurate results, however the computational cost increases.
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Figure 3.5: Function evaluations needed with NIPC and NISP methods.
Source: [34].

3.4.3 Sparse Grid

This method has been proposed by [37] to alleviate the curse of dimensionality.

It is based on the Smolyak algorithm that strategically approximates multivariate

functions by tensor products of univariate interpolating formulas, avoiding com-

plex multivariate rules. A grid of points (sparse grid) is then constructed and the

PC coefficients are evaluated at those points. The Sparse Grid method has been

successfully used in conjunction with generalised Polynomial Chaos by Walter in

[38]: it has shown a fully exponential convergence rate for many test functions with

10 dimensions, allowing a fast calculation of the PC coefficients. If the problem

deals with many uncertain variables, therefore, Sparse Grid constitutes a promis-

ing methodology to be integrated with PC for uncertainty quantification.
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Optimisation Algorithms

In chapter 2 it was remarked that two of the three main processes, results evalua-

tion and new design creation, are performed by an optimisation algorithm. In fact,

the aim of the algorithm is to decide how to change the decision variable (design

variables input) in order to find better solutions. There are different typologies of

algorithm, and according to EL-Sherbeny, [39], they can be classified into:

� exact algorithms: they look for the exact mathematical solution. Most of

the time, these algorithms are not easy to be implemented, and the difficul-

ties increase with the increment of the complexity of the problem. Another

problem is the time they required in order to be programmed.

� heuristic algorithms: they look for an immediate and approximated solu-

tion that can be considered satisfactory for practical purposes. The problem

of this kind of algorithm is that the solution is usually coarse and so, im-

provable. An example is the trial and error procedure;

� metaheuristic algorithms: In this algorithm the decision of how to change

the decision variable is guided by a strategy, that explores the design space,

and that tries to be as efficient as possible.

As said at the end of chapter 2, it does not exist a solution point (i.e. a design)

that minimizes two objective functions at the same time. As a consequence, it is

necessary a decision maker that express a preference between the two objective

functions or choose a compromise.

According to Miettinen [40], the role of the decision maker in multi-objective

43
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optimisations allows another classification of the available algorithms present in

literature:

� no-preference methods: the decision maker does not play a role, i.e.

the compromise is selected randomly, which basically means without any

strategy.

� a priori methods: the decision maker selects the compromise solution a

priori, so without waiting the results of the simulations. However, the main

problem with this type of method is that it may have too optimistic or too

pessimistic expectations, because the decision maker unknowns the results.

� a posteriori methods: in this typology of algorithm the decision maker

makes an overview of the results before choosing the solutions. In order to

do that, it is created a Pareto-optimal set, as it is possible to see in the figure

2.2. The main advantage is the acquisition of consciousness in the choice,

but the drawback is the computational time that is requested.

� interactive methods: in these approach the decision maker is allowed to

interact with the process while it is running, by expressing preferences and

‘guiding’ the algorithm to the desired direction.

This work is focused on a posteriori, metaheuristic methods. The most common

families of these methods include simulated annealing, genetic algorithms and

Multi-Objective Tabu Search.

4.1 Simulated Annealing

This concept has been proposed for the first time by Kirkpatrick in 1983 [41]. The

idea comes from the observance of the physical behaviour of a metal when it cools

down from the liquid state and undergoes a solidification process. If the process

is slow enough, the crystals tend to go towards a configuration of minimal energy.

The Simulated Annealing method exploits this concept employing an algorithm

where a new solution is searched starting randomly from the current state: if the

new solution is better than the current, it is automatically accepted. Otherwise,

it is accepted with a certain probability (the ‘temperature’) that is decreased with

time. In this way, bad solutions are accepted with less and less probability, and it
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allows the algorithm to converge to the good solution. Simulated Annealing has

a very slow convergence rate, therefore it is inadequate for the current study that

is characterised by many time-consuming CFD analyses.

4.2 Genetic Algorithms

Presented by Mitchell [42], the algorithms of this family try to reproduce an evo-

lution of a population according to the Darwin theory. They are based on the

principle that strong parents produce best children. Therefore, the strongest mem-

bers of the actual population are selected and crossed over to generate children

that ideally will be stronger than the parents. The strongest available children are

then taken as parents for the next iteration and the procedure is repeated until a

very strong population (the optimal solution) is generated. To better explain the

concept, we consider the following example taken from [42].

It is supposed a string of 8 bits to be the variable of interest: the objective is

to form a string of all ones. A genetic algorithm to solve the problem can be

performed as follows:

1. Start with a random generation of an initial population. In this example,

suppose the latter is composed by four individuals:

A = 11101110;

B = 10100101;

C = 00010000;

D = 01000100.

2. Evaluate the fitness of the current individuals (corresponding to the objec-

tive functions evaluation). Here the fitness is represented by the quantity of

ones in the string, therefore:

f(A) = 6;

f(B) = 4;

f(C) = 1;

f(D) = 2.
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3. Select two candidates couples that will form the parents. The probability

of selection increases with increasing fitness. Suppose that here the couples

A/B and B/D are selected.

4. Cross over the two couples of parents to generate two couples of children.

The cross over takes place with a user-defined probability in a randomly

chosen bit: this action exchanges the digits before and after the chosen bit.

Suppose that here both couples are crossed over: couple A/B after the fifth

digit to form E/F and couple B/D after the second digit to form G/H. The

new population will be:

E = 11101101;

F = 10100110;

G = 10000100;

H = 01100101.

5. Mutate the new population at each locus with a user-defined probability,

usually very low. In this example the mutation is represented by the flip of

the digit from 0 to 1 or vice versa. Suppose that in the population E, F,

G, H only the last bit of individual H is mutated to 0. Therefore H now is

01100100 = H’ and the final population is:

E = 11101101;

F = 10100110;

G = 10000100;

H’ = 01100100.

6. The fitness of the new population is: f(E) = 6;

f(F) = 4;

f(G) = 2;

f(H’) = 3.

Note that, even though in the first two individual the fitness has not changed,

the global average has increased from 13/4 to 15/4. The iteration of the

process from step 3 will bring, after a certain number of repetitions, all four

strings to be 11111111.

A more complex and engineering-based discussion of the genetic algorithm goes

beyond the scope of this work. For more details, the reader should refer to [42].
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Applications of genetic algorithms in multi-objective optimisations can be found

in [13, 43–48].

4.3 Tabu Search

The Tabu Search was first proposed by Glover in 1989 [49]. It is an efficient

method that exploits the usage of three types of memories to intelligently explore

the design space. Recently visited points (i.e. recently designs) are not allowed to

be selected as next move (flagged as tabu) to prevent cycling moves. It has been

proven to be accurate and efficient [50], along with having already been carried

out by [15, 16, 51–53]. In this work, a multi-objective optimisation using Tabu

Search has been performed.

Several variants of the Tabu Search exists in literature: the version used here has

been proposed by Kipouros et al. [50] and implemented in the software Multi-

Objective Tabu Search (MOTS ). As stated at the beginning of the section, three

types of memories are used during the search:

� Short Term Memory: it contains all the recently visited points that are

marked as tabu, in the sense that they cannot be visited again.

� Medium Term Memory: it contains the current Pareto Front points (i.e

current Pareto-optimal set). This is the starting point for the intensification

move: if the current search is not giving good solutions, one point from the

actual Pareto-optimal set is selected as the next point, therefore focusing the

search in promising zones.

� Long Term Memory: it contains all the visited points since the beginning

of the algorithm. It is accessed when a diversification move is required: if the

intensification moves are not successful, the search is moved towards other

regions of the design space.

The Tabu Search algorithm starts from an initial design provided by the user, then

a Hooke and Jeeves (H&J) move [54] is performed to explore the design space. If

one new point is better than the current, it is automatically accepted as the next

point. If two or more new points dominate the current, one of them is randomly

selected as the next move. If none of them dominates the current, the search is
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directed towards different zones and the comparison is performed again. A third

move, the step-reduction move, is performed if neither the intensification nor the

diversification have been successful. In fact, the search starts again from one point

of the current Pareto-optimal set (i.e current Pareto Front) and the step size of

the H&J move is reduced, in order to further improve the optimal set.

A visual description of the H&J move and the usage of the memories is shown in

figure 4.2. On the other hand, the complete flow chart of the MOTS algorithm,

taken from [50], is shown in figure 4.1. The latter has been simplified here. In fact

the real one contains checks on the step size reduction and on the diversification

move, to prevent too big changes.

Figure 4.1: The MOTS flow chart. Source: [50].
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Figure 4.2: The MOTS memories and the H&J move. Source: [50].

4.4 Selected software description

The algorithm used here is coded in Python and allows the user to easily integrate

its modules for the constrain handling and the objective function evaluation, which

is crucial to the integration of non-intrusive uncertainty quantification techniques

such as Non Intrusive Spectral Projection and Non Intrusive Point Collocation.

In order to perform an optimisation in a reasonable amount of time, even when

the evaluation procedure is performed by a set of complex and time consuming

tools such as ANSYS ICEM and ANSYS Fluent, the MOTS software used here

integrates the multi-process approach through the Master and Slaves paradigm.

The brain of the optimiser is located on the Master process. It chooses the moves

to be performed and the configurations to be evaluated. On the other hand, the

multiple Salves performs the work of setting up the evaluation environment for

their specified configuration and run ICEM and Fluent (which is effectively the

most time consuming step of an optimisation loop). Then it returns the objective

functions to the Master that decides what next move should be. This kind of

scheme is called Functional Decomposition. This method is also combined with

the usual Domain Decomposition used by Fluent to perform a CFD simulation on
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multiple cores. In the best case, the optimisation uses nslaves× nf luent+ 1cores

in the server.



Chapter 5

Case Study: S-duct optimisation

with uncertainties

The aim of this work is to improve the robust optimisation of a S-duct made

by Davide Dal Magro [3]. In the previous work, Dal Magro focused his studies

using as uncertainty input the inlet velocity, as objective functions to minimise,

the CPmean and the CPstdv (i.e. CPstandard−deviation), and finally as constraints

the Swirl mean and the Swirl standard deviation. Now instead, the optimisation

problem has been improved with more combinations of uncertainties input and

output, that we will better explain later in this chapter. The optimization, and in

particular the uncertainties quantification, is made with two different non intrusive

techniques: NIPC and NISP, in order to compare the final results and to not focus

the studies on only one uncertainties quantification method. The geometry of

the baseline, the parameterisation, the mesh, the CFD parameters and all the

optimisation problem implemented will be analysed in this chapter.

5.1 Baseline geometry configuration

The baseline geometry configuration is defined as the starting design point of the

optimisation cycle. The first geometrical S-duct model, implemented as baseline

configuration, was designed by Wellborn et al. [6] and reviewed by Delot [11] and

D’Ambros [2] in order to simplify the parametrisation of the geometry.

51
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5.1.1 Wellborn geometry

The duct centerline is defined by two planar circular arcs with same radii R, and

subtended angles θmax/2. Its coordinates are defined by the following equations:

For 0 ≤ θ ≤ θmax/2

xcl = R sin θ

ycl = R cos θ −R (5.1)

zcl = 0

For θmax/2 ≤ θ ≤ θmax

xcl = 2R sin θmax/2−R sin(θmax − θ)

ycl = 2R cos θmax/2−R cos(θmax − θ)−R (5.2)

zcl = 0

All cross-section perpendicular to the centerline are circular with radius defined

as follow:

r

r1

= 1 + 3

(
r2

r1

− 1

)(
θ

θmax

)2

− 2

(
r2

r1

− 1

)(
θ

θmax

)3

(5.3)

where r1 and r2 are the inlet and the outlet radius respectively. Both centerline

and radius distribution are a function of the angle θ. The value of θmax, R, r1 and

r2 reported in table 5.1.

Table 5.1: Wellborn S-Duct baseline geometry parameters.

Parameter Value

θmax 60◦

R 102.1 cm
r1 10.21 cm
r2 12.57 cm



Chapter 5. Case Study: S-duct optimisation with uncertainties 53

Figure 5.1: Wellborn baseline geometry. Source: [6].

5.1.2 Delot geometry

This baseline geometry is similar to the Wellborn one. In fact, they have the same

mathematical construction but different values of θmax, R, r1 and r2. Their values

are the same of the Delot experiment [11] and they are reported in table 5.2. In

Table 5.2: Delot baseline geometry parameters.

Parameter Value

θmax 60◦

R 0.6650m
r1 0.0665m
r2 0.0820m

order to increase the uniformity in the inlet condition and to obtain more accurate

results, two additional parts have been introduced by [55]:
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1. at the inlet, a cylindrical duct eight times longer than the inlet radius. Its

purpose is to ensure uniform inlet conditions.

2. at the outlet, a cylindrical duct six times longer than the outlet radius. Its

purpose is to guarantee that the outlet conditions do not have any influence

on the upstream flow.

Figure 5.2 represents a section of the overall baseline geometry in the x− y plane,

the symmetry plane of the duct. The values of the parameters have been reported

in table 5.3.

Table 5.3: Modified Delot baseline geometry parameters.

Parameter Value

Offset 60◦

LS−duct R
Linlet 8r1

Loutlet 6r1

LAIP = Linlet + LS−duct + r1 9r1 +R
LTot = Linlet + LS−duct + Loutlet 14r1 +R

Figure 5.2: Modified Delot baseline geometry. Source: [2].

In this thesis, the Modified Delot Baseline geometry has not been used as start-

ing point for all the implemented robust optimisation cycles. In fact the true

starting Baseline geometry used in this work is a little bit different from the one

described above (i.e Modified Delot Baseline). This difference is due to the new

parametrisation adopted by D’Ambros in his work [2].
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5.2 Geometry parametrisation

The purpose of parametrisation is to reduce the number of geometric parameters

(decision variables) necessary to draw the geometry, in order to reduce the overall

optimization computational cost. Furthermore, parametrisation should also allow

an efficient modification of the shape of the S-Duct. As it is reported in [55],

the FFD (Free Form Deformation) is the method employed to parametrise and

deform the baseline geometry. In general, it consists of embedding the considered

geometry into a 3D parallelepipedic lattice regularly subdivided which, nodes are

called control points (Figure 5.3).

Figure 5.3: S-duct parallelepipedic lattice (Dotted lines represent the duct
projection). Source: [2].

The position of each point of the geometry is mathematically described by a

weighted sum of the control points position as follow:

Xffd =

l,m∑
i,j=0

Bi(s)Bj(t)Pij (5.4)

where:

� Xffd is a vector containing the Cartesian coordinates of the S-duct displaced

point.
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� l,m are the numbers of control point in S and T direction respectively.

� Bk(u) are the Bernstein polynomials of degree 3.

� s, t are the generic coordinate in the S − T system of reference

(0 ≤ s ≤ 1, 0 ≤ t ≤ 1).

� Pij is a vector containing the Cartesian coordinates of the control point.

In this work and also in [2, 3], the general FFD method used in [55], was simplified

and modified as follow:

� we decide to design and simulate only half of the S-duct in order to reduce

the computational cost. In fact Wellborn [6] and Delot [11] demonstrated

that the stream flow is symmetric respect to the x− y plane.

� we consider the cylindrical ducts added after and before the S-Duct, as man-

ufacturing constraints. This means that the only part to be parametrised is

the S-Duct itself.

� Since there is nothing inside the duct, the best position for the control point

would be on the surface of the S-Duct. Following this reasoning, and working

with the Modified Delot’s surface geometry, l = 7 equally spaced semicircular

cross-section perpendicular to the centerline were defined and, on each of

them, m = 6 equally spaced control points were placed. In this way, this

solution does not represent a parallelepipedic lattice.

The main problem of placing the control points in this new way occurs when the

FFD is performed (i.e. point control interpolation, Equation 5.4). The result

surface we obtain is similar but not equal to the Modified Delot surface (Figure

5.4). To obtain a closer baseline result to the Modified Delot geometry, D’Ambros

modified the control points position as follow:

� In every cross-section, the deformed geometry is described by a Bezier inter-

polation curve.

Xffd =
m∑
i=0

Bj(t)Pi (5.5)

Fixed m = 6, and imposing the following constraints:
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Figure 5.4: Generic cross section (P1 . . . P6 control points). Source: [2].

* y′P1
= −r

* y′P1
= y′P2

: tangency condition

* zP3 = zP4 : symmetry condition

* zP2 = zP5 : symmetry condition

* y′P3
= −y′P4

: symmetry condition

* y′P5
= y′P6
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where r is the semicircle radius in each cross section, D’Ambros inverted

equation 5.5 in order to find the control points position that interpolate the

Modified Delot cross sections as near as possible. After some calculations he

obtained:
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� In order to guarantee tangential condition at the inlet and at the outlet,

D’Ambros copied and translated the control points in the inlet section l1

shortly after, and the control points in the outlet section l7 shortly before.

This means that cross sections l1, l2 and cross sections l6, l7 are identical.
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As we said, in previous works [55] the parametrisation of the same baseline geom-

etry was performed with a 3D parallelepipedic lattice, and this method allowed

to recreate the precise baseline geometry. Now instead, with the parametrisation

of D’Ambros, even tough the starting baseline is similar but not identical to the

Modified Delot’s one, this new parametrisation method permits to modify the ge-

ometry of the S-duct with more accuracy compared to the other previous works.

Figure 5.5: D’Ambros Baseline geometry.

5.2.1 Parametrisation Degrees of Freedom

The degrees of freedom (dof) of the new parameterization can be defined as follow

[2]:

� The control point in the first two cross-section from the S-Duct inlet and the

last two before the outlet are fixed. This is due to manufacturing constraints.

� in every other cross-section we have:
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– Point on the symmetry plane (P1, P6) can only move on the symmetry

plane x− y (2dof).

– To maintain tangency condition, point P2 and P5 have the same x and

y coordinates as P1 and P6 respectively. They can move only in z-

direction (1dof).

– point P4 and P5 can move in all the space (3dof)

This means that every cross-section have 12 dof. In previous work [55], 36 dof were

imposed. Therefore, to maintain the same number, three cross-sections between

the two fixed section at the inlet and outlet were imposed in our parametrisation.

This is why previously we set l = 7. All the 36 parameters described above are

free to move inside an imaginary box that encloses the S-Duct:

* x-direction: between S-Duct inlet and outlet.

* y-direction: [−10.5r1, 9r1].

* z-direction: [−4.5r1, 9r1].

5.2.2 Control Points constraints

In addition to the parametrisation constraints, the following were defined in order

to avoid infeasible geometry during optimization:

1. for line upper (UP) and lower (DW) curves in the symmetry plane:

yUP (x) > yDW (x) (5.9)

2. if yP4 < yP3 :

yP4 − yP3 < r1 (5.10)

3. with XPj
(i) we indicate the j control point x-range in the generic i cross-

section:

XPj
(i− 2) ≤ XPj

(i) ≤ XPj
(i+ 2) (5.11)
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Figure 5.6: Control point starting position.

5.3 Flow Simulation

The analysis that we carried out is a steady state RANS simulation, with the AN-

SYS Fluent solver. The K −ω SST model was adopted in the optimization study

since it provided similar results at a reasonable computational cost, compared to

the four-equation transition SST model, that is the best match with experimental

data [2]. During the optimization, the simulations were carried out running the

first 200 iterations with the first order of solution accuracy for all the flow param-

eters. For the next 500 iterations all the parameters were set to the second order.

A total of 700 iterations was performed in order to secure every residual below

10−5.

The boundary conditions are the same applied by Delot [11] and also in D’Ambros

e Dal Magro [2, 3]. However, the main difference is that in this thesis we introduce

more than one uncertainty variables that will be discussed later. The boundary

conditions of Delot are reported in table.
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Table 5.4: Delot S-duct boundary conditions parameters.

Parameter Value

Inlet total pressure 88.744 kPa
Inlet static pressure 69.575 kPa

Outlet static pressure 78.982 kPa
Total temperature 286.2K

5.4 Mesh

To built the mesh, it was decided to emulate the mesh created by Dal Magro

[3] in order to extend and improve his robust optimisation study and to compare

the final results. It was decided to adopt the software ICEM. The mesh was

created with the same topology of [11], and D’Ambros changed the number of

nodes. D’Ambros noticed that as the number of mesh cells increased, the results

of the CFD simulations were getting closer and closer to the experimental result.

Moreover, with a number of cells greater than 1.7×106, the numerical results seem

to start to oscillate around an average value as we can see in figure 5.8. Thanks

to this, D’Ambros chose to set the number of celle to 1.8 × 106. For every new

geometry created by the optimiser, every mesh shares the same general properties

in order to guarantee comparable results. An H-grid structure was imposed in the

center of the duct section and an O-grid structure around the walls (Figure 5.7).

Figure 5.7: Cross-section mesh topology. Source: [2].



Chapter 5. Case Study: S-duct optimisation with uncertainties 62

The first layer thickness on the wall was imposed to ensure that the y+ would be

smaller than 1 over the full domain: with a first layer thickness of 2 × 10−6 we

obtained a maximum y+ of about 0.8. The expansion ratio from the wall was set

equal to 1.05. The number of nodes in each cross-section is approximately 6000,

while the number of cross-sections is 360.

(a)

(b)

Figure 5.8: PR and α as a function of the number of mesh elements. The red
solid line in (a) represent the experimental result from [55]. Source: [2].
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5.5 Uncertainties variables

The first step of an uncertainty quantification is the knowledge of the behaviour of

the variable, that means defining its probability density function. Thanks to the

research conducted by Liatsikouras [56], one of the parameter chosen as uncertainty

is the Inlet velocity. Its mean value is equal to the inlet velocity of Delot, and

it follows a Gaussian distribution. The other two main uncertainties used in this

work are the flux inlet deviation and the bending angle of the S-duct. The first one

refers to the possible inlet velocity deviation respect to the main axial direction. It

is easy to understand that this uncertainty is strictly related to the Inlet velocity

and its purpose is to extend the speed range at the input of the S-duct. As we

know, in reality the inlet velocity is not necessarily perfectly axial but it can be

slightly deviated. The mean value chosen for the flux deviation is zero and it

follows a Gaussian distribution. The last but not least uncertainty parameter is

the bending angle of the S-duct, a manufacturing variable that is normally set to

60◦ (θmax) in the baseline geometry. In literature, there are no references about the

uncertainty quantification of this variable. To overcome this lack of knowledge,

we supposed a Gaussian distribution for the θmax variable, in fact the bending

tubes technique is always affected by some manufacturing errors like the elastic

springback.

5.6 NIPC and NISP Robust optimisations

The robust optimizations implemented in this thesis has been computed using two

non intrusive polynomial chaos techniques:

� Non intrusive Spectral Projection (NISP).

� Non intrusive Point collocation (NIPC).

Now we analyse all the NIPC and NISP robust optimisation problems imple-

mented:

1. One uncertainty input (Inlet Velocity), four objective functions outputs

(CPmean, CPstdv, Swirlmean, Swirlstdv) and two constraints (Swirlmean <
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5◦, Swirlstdv < 1◦).

This problem has been built with the following parameters:

� Uncertainty in the Inlet Velocity v. n = 1.

� µv ≈ 196.53 m/s , σv = 10 m/s.

� PC order p = 3.

� Type polynomial: Hermite Chaos (Gaussian random input)

The sampling technique used for the NIPC method is the latin Hypercube

Sampling (LHS). Remembering the Non Intrusive Point Collocation theory

and the Equation 3.21, P + 1 = 4 deterministic evaluations are necessary to

find the P + 1 = 4 PC coefficients and to model the stochastic outputs. As

a matter of fact, Inlet Velocity was sampled 4 times.

On the other hand,, for the NISP method was used the Hermite-Gauss

quadrature sampling technique. To evaluate the P + 1 = 4 PC coefficient

and find the stochastic outputs, the NISP method needs (p+ 1)n determin-

istic solutions and m = p + 1 samples for each uncertainty. In this case

(p+ 1)n = P + 1 = 4 and m = p+ 1 = 4.

2. Two uncertainties input (Inlet velocity, Inlet flux deviation), two objective

functions (CPmean, CPstdv) and two constraints (Swirlmean < 5◦, Swirlstdv <

1◦).

This problem has been built with the following parameters:

� Uncertainty in the Inlet Velocity v and Inlet Flux Deviation β. n = 2.

� µv ≈ 196.53 m/s , σv = 10 m/s.

� µβ = 0◦ , σβ = 3◦ m/s.

� PC order p = 2.

� Type polynomial: Hermite Chaos (Gaussian random input)

Like before, the sampling technique used for the NIPC method is the latin

Hypercube Sampling (LHS). This time, in order to find the P + 1 = 6 PC

coefficient and to model the stochastic outputs, it is necessary to perform

P + 1 = 6 deterministic evaluations. As a matter of fact, the Inlet Velocity

and the Inlet Flux Deviation were sampled 3 times, forming 9 possible pairs

(32). Of these nine couples, P + 1 = 6 has been chosen.
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Instead, for the NISP method was used the Hermite-Gauss quadrature sam-

pling technique like before. Now (p + 1)n = 9 deterministic solutions and

m = p+ 1 = 3 samples for each uncertainty are needed to find the P + 1 = 6

PC coefficient and to model the stochastic outputs. It is possible to observe

that with more than one uncertainty input, the NISP method needs more

deterministic evaluation than the NIPC method, hence the computational

cost increases.

In figure 5.9, the Robust optimisation loop implemented to solve the two problem

described above is shown.

Figure 5.9: Robust optimisation loop scheme.

3. Two uncertainties input (Inlet velocity, Bending angle), two objective func-

tions (CPmean, CPstdv) and two constraints (Swirlmean < 5.5◦, Swirlstdv <

1◦).

This problem has been built with the following parameters:

� Uncertainty in the Inlet Velocity v and Bending angle α. n = 2.
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� µv ≈ 196.53 m/s , σv = 10 m/s.

� µα = θmax = 60◦, σα = 4◦ m/s.

� PC order p = 2.

� Type polynomial: Hermite Chaos (Gaussian random input)

In this optimisation problem, only the NIPC method has been used to eval-

uate the stochastic output, and P + 1 = 6 deterministic solver has been

performed in order to find the P + 1 = 6 PC coefficients. The LHS tech-

nique was performed to sample the two input uncertainties.

In figure 5.10 the Robust optimisation loop implemented to solve the problem with

the manufacturing uncertainty is shown.

Figure 5.10: Robust optimisation loop scheme with manufacturing uncer-
tainty.
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Results

From now on, robust optimizations with a single input uncertainty will be called

1D, while those with two input uncertainties will be labeled as 2D.

As explained at the end of Chapter 5, three robust optimisation problems plus

a Machine Learning optimisation cycle were performed. The first two robust

optimisation problems (1D, 2D) were both implemented with two uncertainties

quantification techniques (NIPC, NISP). On the other hand, the third one, the

manufacturing problem (MNF), was implemented only with the NIPC technique.

During the project, a Machine Learning optimisation cycle was developed in order

to collect more data from the 1D and 2D optimisation problems and speed up

the research of optimum designs. In total, five robust optimisations cycles plus a

Machine learning one, were implemented:

� NIPC 1D, 2D

� NISP 1D, 2D

� NIPC MNF

� ML 1D,2D

6.1 1D Robust Optimisation Problem

The 1D optimisation problem is characterised by the following starting parameters:

67
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� Uncertainty input: Inlet Velocity with mean µv ≈ 196.53 m/s and stan-

dard deviation value σv = 10 m/s. This uncertainty variable is described

with a Gaussian PDF.

� Objective Functions: CPmean, CPstdv, Swirlmean, Swirlstdv

� Constraints: The mean and the standard deviation values of the Swirl were

setted as constraint. Swirlmean < 5◦, Swirlstdv < 1◦.

� Polynomial Chaos type and order: the typology is the Hermite Chaos

polynomial and the order p is set to 3.

6.1.1 NIPC 1D

To implement the NIPC 1D cycle, the uncertainty input was sampled with the

Latin Hypercube Sampling technique (LHS). The MOTS software was stopped

after having successfully evaluated 324 configurations. As explained at the end of

Chapter 5, the NIPC uncertainty quantification technique needs P +1 determinis-

tic evaluations to find the PC coefficients and the stochastic outputs (i.e objective

functions). In this case the number of evaluations were equal to four. This means

that 324 × 4 = 1296 CFD Fluent simulations converged. The time for a single

fluent evaluation is ≈ 38.5 minutes, so the time that was necessary to obtain all

these results was ≈ 830 hours. However, the amount of time above estimated does

not take into account all the configurations that were analysed but subsequently

discarded if they did not respect the Swirl mean and Swirl standard deviation

constraints or if a structured geometry mesh was not possible to be created by

ANSYS ICEM. The amount of discarded design is 51.

As mentioned at the end of Chapter 2 it is not possible to represent a Pareto

optimal front with more than three dimensions (i.e objective functions). To over-

come this issue, the post processing analysis was also supported with the use of a

Parallel coordinates software developed by Cambridge University.

To better understand the complexity of a four dimensional Pareto front plot

it is possible to imagine it thinking of a cube. On each face of the cube, is

plotted a bi-dimensional Pareto front: CPstdv − CPmean, Swirlstdv − Swirlmean,

CPmean− Swirlmean, CPstdv − Swirlstdv, CPmean− Swirlstdv, Swirlmean−CPstdv.

Three of these six cube faces were plotted:



Chapter 6. Results 69

Figure 6.1: NIPC 1D: CPstdv, CPmean.

Figure 6.2: NIPC 1D: Swirlstdv, Swirlmean.
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Figure 6.3: NIPC 1D: Swirlmean, CPmean.

In the three Pareto front figures 6.1 6.2 6.3, the bi-dimensional Pareto optima de-

sign points of each faces are highlighted in red, the starting geometry (i.e Baseline)

in green and all the MOTS evaluated designs in blue.

It is important to underline that these bi-dimensional plots are not good to rep-

resent a multi-dimensional Pareto front and its optimum designs. As a matter

of fact, from these three figures, only the Best design were chosen and analysed:

Best CPmean, Best CPstdv, Best Swirlmean, Best Swirlstdv. These four Best design

are so labelled because only one of their four objective functions has the overall

minimum value. The results of the Best designs and the Baseline are shown in

table 6.1:

Table 6.1: NIPC 1D Best design results.

Design CPmean CPstdv Swirlmean Swirlstdv

Best CPmean 0.025957 0.006592 2.577800◦ 0.212810◦

Best CPstdv 0.028601 0.006284 4.326070◦ 0.077612◦

Best Swirlmean 0.029442 0.007285 2.28655◦ 0.140704◦

Best Swirlstdv 0.026427 0.007081 2.963150◦ 0.003968◦

Baseline 0.02905 0.007574 4.283636◦ 0.223726◦
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Only the use of the parallel coordinates technique can help the designer to find

the designs that try to minimise all the four objective functions simultaneously:

the trade-off designs.

In fact, thanks to the parallel coordinates plot (figure 6.21), other four designs

were chosen and analysed, but only one of them was highlighted in this thesis.

The Parallel Coordinates is a very powerful tool. It was developed with the aim

to give to the designer the possibility to see all the evaluated design space in all its

dimensions (in this thesis 36 design parameters), and to link each design geometry

(composed by 36 design parameters) with its objective functions. In other words,

this tool allows to choose the designs that minimise all the four objective functions

simultaneously and to verify if there are zones of the design space that have not

been fully evaluated. The results of the chosen trade-off designs are illustrated in

table 6.2:

Table 6.2: NIPC 1D optima designs (trade-off designs) results obtained with
the use of the parallel coordinates.

Design CPmean CPstdv Swirlstdv Swirlstdv

optima 1 0.026596 0.006719 2.39949◦ 0.078154◦

optima 2 0.02657 0.006755 2.45296◦ 0.066027◦

optima 3 0.026618 0.006708 2.5533◦ 0.073955◦

optima 4 0.026634 0.006725 2.58439◦ 0.076555◦

Baseline 0.02905 0.007574 4.283636◦ 0.223726◦

It is very important to specify that the output values of the objective functions,

obtained from the NIPC 1D (and also for the NIPC 2D) optimisation loop, are

slightly different from the ones obtained after the post-processing analysis of the

chosen designs. These small differences in the results are the effect of two events:

1 The sampled velocities were not recorded during the optimisations loop.

2 The LHS method chose randomly the inlet velocity values inside the cumu-

lative density function curve (CDF).

In other words, the sampled inlet velocities of the post-processing design analysis

are different from the optimisation cycle ones. It must be remarked that the above

mentioned effect does not occur in the NISP optimisation cycles because of the

different nature of the Hermite-Gauss quadrature sampling. In fact, the latter

chooses always the same values inside the Gaussian probability density function
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(PDF). From now, until the end of the thesis, all the contour drawings will refer

to the post-processing objective function values.

6.1.1.1 NIPC 1D: Best CP mean

The first configuration taken into account in this paragraph is the design that

has achieved the best overall result in terms of CPmean. Table 6.3 highlights the

differences between the objective functions values obtained from the optimisation

loop and the post-processing analysis ones. Moreover, the same table shows the

impact that different inlet velocities had to the Swirlmean and Swirlstdv values.

Table 6.3: NIPC 1D Best CPmean: differences in the objective functions values
due to the nature of the LHS sample technique.

Design CPmean CPstdv Swirlmean Swirlstdv

Optimisation 0.025957 0.006592 2.577800◦ 0.212810◦

Post-proc. 0.025958 0.006738 3.657614◦ 0.491281◦

Baseline 0.02905 0.007574 4.283636◦ 0.223726◦

Figure 6.4: NIPC 1D Best CPmean: PR contour comparison at the AIP.
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In figure 6.4, it is possible to see the pressure recovery value (PR) evaluated at the

AIP surface for each inlet velocity sample. The order is from the lowest velocity,

top left, to the highest one, bottom right. The left half of each AIP contours

drawing represents the pressure recovery at the AIP surface of the baseline. On

the other hand, the right one represents the deformed one.

It is possible to observe that in all the four contour comparison, the values of the

Pressure recovery of the deformed design are higher than the baseline values. In

fact, in table 6.4, all the values of CP = 1 − PR that were found for each inlet

velocity sample, are reported.

Table 6.4: NIPC 1D Best CPmean: CP value for each velocity sample.

CP Baseline NIPC 1D Best CPmean Improvement

Sample 1 0.02278 0.01932 −15.15%
Sample 2 0.024020 0.02458 +2.33%
Sample 3 0.030367 0.02678 −11.81%
Sample 4 0.040817 0.03240 −20.62%

In figure 6.4 the deformed geometry shows two zones with the lowest value of

pressure recovery instead of only one present in the Baseline configuration. This

phenomenon is due to the presence of a sharp lateral widening of the sections near

the AIP that allows the formation of a new area of detachment of the flow (figure

6.5). In this new detachment area the pressure recovery decreases as the inlet

Figure 6.5: NIPC 1D Best CPmean: Lateral convexity.
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velocity increases. Moreover, the two flow detachment areas tends to become one

as the velocity increases. In fact, it is possible to imagine that as the velocity

increases, the flow has more and more difficulties in adhering to the side wall.

The Swirl mean and standard deviation angle, as already explained, were used

in the NIPC 1D robust optimization not only as objective functions but also as

constraints. The trend of the swirl in the AIP is illustrated in the figure 6.6. The

differences between the deformed geometry and the baseline are not so evident. It

can be observed that in the deformed design, as velocity increases, the secondary

swirl area, attached to the S-duct wall, tends to get closer and to link with the

primary zone in the middle.

For S-ducts intakes, another important parameter is the DC60 and DC15. These

Figure 6.6: NIPC 1D Best CPmean: Swirl contour comparison at the AIP.

values are not taken into account as objective functions inside all the optimization

cycles, but it is interesting to observe how they have changed with respect to the

baseline (figure 6.7 6.8). The DC60 did not improve, but with a smaller sectors

distortion analysis (i.e DC15), it is possible to see how the DC15 values, of the

deformed design, increased in the angle range 100◦ ≤ θ ≤ 140◦. This variation

is due to the presence of a secondary flow detachment area that lowers the value

P tot,θ and increases the numerator of equation 1.6.



Chapter 6. Results 75

Figure 6.7: NIPC 1D Best CPmean: DC60.

Figure 6.8: NIPC 1D Best CPmean: DC15.
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6.1.1.2 NIPC 1D: Best CP stdv

Now we look at the Best CPstdv design configuration. The following table 6.5

highlights the differences between the objective functions values obtained from

the optimisation loop and the post-processing analysis ones.

Table 6.5: NIPC 1D Best CPstdv: differences in the objective functions values
due to the nature of the LHS sample technique.

Design CPmean CPstdv Swirlmean Swirlstdv

Optimisation 0.028601 0.006284 4.326070◦ 0.077612◦

Post-proc. 0.028585 0.006652 4.314047◦ 0.160728◦

Baseline 0.02905 0.007574 4.283636◦ 0.223726◦

Figure 6.9: NIPC 1D Best CPstdv: PR contour comparison at the AIP.

In figure 6.9 it is very easy to understand why this design has the Best CPstdv. In

fact, the deformed design changes its PR values more slowly than the baseline ones.

This trend is evident when we look at the contour colors in the flow detachment

area that is located at the bottom of all the half sections.
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In the Swirl contour the differences between the samples are not evident and

moreover, the deformed geometry has the same Swirl behaviour of the Baseline

(figure 6.10).

Figure 6.10: NIPC 1D Best CPstdv: Swirl contour comparison at the AIP.

Figure 6.11: NIPC 1D Best CPstdv: DC60.
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Figure 6.12: NIPC 1D Best CPstdv: DC15.

In the DC15 plot (figure 6.12), the red (Baseline) and the black (optimized) curves

are almost superimposed in the angle range 135◦ ≤ θ ≤ 180◦. This is usually

the case in which the two geometries have a very similar behaviour in the flow

detachment area.

6.1.1.3 NIPC 1D: Best Swirl mean

The third configuration to analyse is the Best Swirlmean design. In table 6.6, the

differences between the objective functions values obtained from the optimisation

loop and those obtained from the post-processing analysis are displayed.

Table 6.6: NIPC 1D Best Swirlmean: differences in the objective functions
values due to the nature of the LHS sample technique.

Design CPmean CPstdv Swirlmean Swirlstdv

Optimisation 0.029442 0.007285 2.28655◦ 0.140704◦

Post-proc. 0.029454 0.007275 2.289931◦ 0.138313◦

Baseline 0.02905 0.007574 4.283636◦ 0.223726◦
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Figure 6.13: NIPC 1D Best Swirlmean: PR contour comparison at the AIP.

The design configuration taken into account shows in figure 6.13 the formation of

a secondary (side wall) and a tertiary (up wall) flow detachment areas.

In this case, the secondary area is more evident compared to the Best CPmean

design before being analysed. In fact, if in the CPmean design, the new secondary

area seemed like an arm of the primary one, now the two areas are almost com-

pletely distinct. Also here, the birth of this new flow detachment area is due to

the presence of a lateral convexity in the sections near the AIP (figure 6.14(a)).

Moreover, it is possible to see that this convexity is not as big as the Best CPmean

design.

On the other hand, the birth of a small third flow detachment area is due to a

bottleneck section near the AIP, located on the upper wall of the S-duct (figure

6.14(b)).

A big improvement was obtained in the Swirl values. It is possible to observe in

figure 6.15 that in all the four contour comparison, the values of the Swirl of the

deformed design are lower than the baseline values and the secondary swirl area

(side wall) is disappeared. In fact, in table 6.7, all the values of Swirl that were

found for each inlet velocity sample are reported.
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(a) Lateral convexity

(b) Bottleneck.

Figure 6.14: NIPC 1D Best Swirlmean: Lateral convexity and bottleneck.

The DC15 plot of the Best Swirlmean design has better results than the Baseline

ones (figure 6.16) for 0◦ ≤ θ ≤ 30◦ and for 105◦ ≤ θ ≤ 135◦, where there is the

second flow detachment area. Moreover, the values of DC15 improved a little for

135◦ ≤ θ ≤ 180◦. This improvement is due to a narrower primary detachment

zone. Instead, the DC60 had no improvements.

Table 6.7: NIPC 1D Best Swirlmean: Swirl value for each velocity sample.

Swirl Baseline NIPC 1D Best Swirlmean Improvement

Sample 1 4.09554◦ 2.17297◦ −46.94%
Sample 2 4.13263◦ 2.23661◦ −45.88%
Sample 3 4.32343◦ 2.24825◦ −48.00%
Sample 4 4.63012◦ 2.46851◦ −46.69%
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Figure 6.15: NIPC 1D Best Swirlmean: Swirl contour comparison at the AIP.

Figure 6.16: NIPC 1D Best Swirlmean: DC15.



Chapter 6. Results 82

6.1.1.4 NIPC 1D: Best Swirl stdv

The fourth configuration to analyse is the Best Swirlstdv design. In table 6.8, the

differences between the objective functions values obtained from the optimisation

loop and those obtained from the post-processing analysis are displayed.

Table 6.8: NIPC 1D Best Swirlstdv: differences in the objective functions
values due to the nature of the LHS sample technique.

Design CPmean CPstdv Swirlmean Swirlstdv

Optimisation 0.026427 0.007081 2.963150◦ 0.003968◦

Post-proc. 0.026412 0.007121 2.962503◦ 0.005442◦

Baseline 0.02905 0.007574 4.283636◦ 0.223726◦

Figure 6.17: NIPC 1D Best Swirlstdv: PR contour comparison at the AIP.

The Best Swirlstdv design has good results for all the four objective functions

(table 6.8), in particular, the Swirlmean, and the Swirlstdv are very low and it is

possible to see the effects into the Swirl Contour plot (figure 6.18).

Moreover, the effects of these good results are also visible in the DC60 plot. The

sector 60◦÷ 120◦ has a distortion ≈ 0 in all the four sub-plots, and also the sector

120◦ ÷ 180◦ has improved (figure 6.19).
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Figure 6.18: NIPC 1D Best Swirlstdv: Swirl contour comparison at the AIP.

Figure 6.19: NIPC 1D Best Swirlstdv: DC60.
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The only thing to highlight in the DC15 plot 6.20 is the improvement of the values

for 145◦ ≤ θ ≤ 180◦. In fact, it is quite easy to see in figure 6.17 that the primary

detachment zone of the deformed geometry is smaller than the baseline one.

Figure 6.20: NIPC 1D Best Swirlmean: DC15.

6.1.1.5 NIPC 1D: Parallel coordinate optima design

As said before, only the use of the parallel coordinates technique can help the

designer to find the designs that try to minimise all the four objective functions

simultaneously. In this section, the first optima design of table 6.2 was analysed.

Table 6.9: NIPC 1D optima 1: differences in the objective functions values
due to the nature of the LHS sample technique.

Design CPmean CPstdv Swirlmean Swirlstdv

Optimisation 0.026596 0.006719 2.39949◦ 0.078154◦

Post-proc. 0.026610 0.006714 2.399510◦ 0.079944◦

Baseline 0.02905 0.007574 4.283636◦ 0.223726◦

The cause of the presence of a second big flow detachment zone (figure 6.22) is

well highlighted in figure 6.23.
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Figure 6.21: NIPC 1D: Parallel Coordinate.
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Figure 6.22: NIPC 1D Best optima 1: PR contour comparison at the AIP.

Figure 6.23: NIPC 1D optima 1: Lateral bending.
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The Swirl contour plot in figure 6.24 has excellent results. The deformed design

has no high swirl angle values and also there are small differences between the four

deformed sub-plots.

Figure 6.24: NIPC 1D optima 1: Swirl contour comparison at the AIP.

Figure 6.25: NIPC 1D optima 1: DC60.
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The DC60 has good values. In figure 6.25 the sector 60◦ ÷ 120◦ has a distortion

value ≈ 0 in all the four sub-plots, and also the sector 120◦ ÷ 180◦ has improved.

The behaviour of the DC60 is similar to the Best Swirlstdv design that was analysed

before. The DC15 sub-plots (figure 6.26) show as the small size of the primary

Figure 6.26: NIPC 1D optima1: DC15.

flow detachment area allows the improvement of the DC15 values (i.e 145◦÷180◦).

On the contrary, it is not possible to say the same thing of the secondary flow

detachment area because it improves some sectors but makes others worse inside

the range 90◦ ÷ 140◦.

6.1.2 NISP 1D

To implement the NISP 1D cycle, the uncertainty input was sampled with the

Hermite-Gauss Sampling technique (HG). The MOTS software was stopped af-

ter having successfully evaluated 317 configurations. As explained at the end of

Chapter 5, the NIPC uncertainty quantification technique needs (p + 1)n deter-

ministic evaluations to find the P + 1 PC coefficients and the stochastic outputs

(i.e objective functions). In this case the number of evaluations were equal to four.

This means that 317 × 4 = 1268 CFD Fluent simulations converged. The time
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for a single fluent evaluation is ≈ 37.5 minutes, so the time that was necessary

to obtain all these results was ≈ 801 hours. However, the amount of time above

estimated does not take into account all the configurations that were analysed but

subsequently discarded if they did not respect the Swirl mean and Swirl standard

deviation constraints or if a structured geometry mesh was not possible to be cre-

ated by ANSYS ICEM. The amount of discarded design is 63.

However, also here, the amount of time above estimated does not take into ac-

count all the configurations that were analysed but subsequently discarded for the

same reasons already listed for the NIPC 1D. The post processing analysis was

carried out following the same procedure adopted for the NIPC 1D. To help the

reader to understand the problem of a four-dimensional Pareto front, three faces

(i.e bi-dimensional Pareto front) of the imaginary cube were plotted (figure 6.27

6.28 6.29 ). From these three plots, four Best designs were chosen and analysed.

At the end, other eight optima designs were chosen and analysed with the sup-

port of the parallel coordinates in figure 6.40, but only one was highlighted in the

thesis. In tables 6.10 6.11, all the chosen designs were listed.

Figure 6.27: NISP 1D: CPstdv, CPmean.
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Figure 6.28: NISP 1D: Swirlstdv, Swirlmean.

Figure 6.29: NISP 1D: Swirlmean, CPmean.
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Table 6.10: NISP 1D Best design results.

Design CPmean CPstdv Swirlmean Swirlstdv

Best CPmean 0.025992 0.006918 3.87643◦ 0.224438◦

Best CPstdv 0.026057 0.006840 3.965730◦ 0.171665◦

Best Swirlmean 0.030804 0.007695 2.974180◦ 0.238561◦

Best Swirlstdv 0.035583 0.008600 3.186860◦ 0.017106◦

Baseline 0.029124 0.007765 4.283883◦ 0.224200◦

Table 6.11: NISP 1D optima designs (trade-off designs) results obtained with
the use of the parallel coordinates.

Design CPmean CPstdv Swirlstdv Swirlstdv

optima 1 0.027629 0.00716 3.34194◦ 0.200365◦

optima 2 0.02909 0.007742 3.2847◦ 0.185958◦

optima 3 0.028994 0.007722 3.28496◦ 0.190507◦

optima 4 0.028924 0.007706 3.26762◦ 0.189412◦

optima 5 0.029106 0.007754 3.3046◦ 0.200914◦

optima 6 0.028883 0.007741 3.28847◦ 0.192288◦

optima 7 0.02883 0.007734 3.27152◦ 0.190673◦

optima 8 0.028556 0.00764 3.1264◦ 0.195091◦

Baseline 0.029124 0.007765 4.283883◦ 0.224200◦

6.1.2.1 NISP 1D: Best CP mean

The first configuration taken into account in this paragraph is the design that

has achieved the best overall result in terms of CPmean for the NISP 1D. Table

6.12 highlights the differences in the objective functions values between the Best

CPmean design and the Baseline.

Table 6.12: NISP 1D Best CPmean: differences in the objective functions
values between the Best CPmean design and the Baseline.

Design CPmean CPstdv Swirlmean Swirlstdv

Best CPmean 0.025992 0.006918 3.87643◦ 0.224438◦

Baseline 0.029124 0.007765 4.283883◦ 0.224200◦

In table 6.12 and in figure 6.30 it is possible to see how the CPmean value drastically

improved. In fact, in table 6.13, are reported all the values of CP = 1− PR that

were found for each inlet velocity sample. On the other hand, the flow detachment

area became higher and narrower than the Baseline one.
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Figure 6.30: NISP 1D Best CPmean: PR contour comparison at the AIP.

Figure 6.31: NISP 1D Best CPmean: Swirl contour comparison at the AIP.
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Table 6.13: NISP 1D Best CPmean: CP value for each velocity sample.

CP Baseline NISP 1D Best CPmean Improvement

Sample 1 0.01411 0.01288 −8.72%
Sample 2 0.02329 0.02084 −10.52%
Sample 3 0.03423 0.03041 −11.16%
Sample 4 0.05134 0.04637 −9.68%

There were no important improvements for parameters DC15 and DC60. The

same was for the swirl in figure 6.31. The only thing to note is that the central

swirl zone of the deformed geometry is longer than the baseline one and the lower

swirl area has a less swirl magnitude.

6.1.2.2 NISP 1D: Best CP stdv

Now we consider the Best CPstdv design configuration. Table 6.14 highlights the

differences in the objective functions values between de Best CPstdv design and

the Baseline.

Table 6.14: NISP 1D Best CPstdv: differences in the objective functions values
between the Best CPstdv design and the Baseline.

Design CPmean CPstdv Swirlmean Swirlstdv

Best CPstdv 0.026057 0.006840 3.965730◦ 0.171665◦

Baseline 0.029124 0.007765 4.283883◦ 0.224200◦

(a) PR contour (b) Swirl contour.

Figure 6.32: NISP 1D Best CPstdv: Contour sub-plots.
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The Best CPstdv design and the Best CPmean design have very similar Pressure

Recovery and Swirl contour sub-plots (figure 6.32 6.30 6.31). On the other hand,

the value of the DC60 has improved in the sector 60◦ ÷ 120◦ (figure 6.33) and the

same was for the DC15 sectors in the range 60◦ ≤ θ ≤ 120◦ in figure 6.34.

Figure 6.33: NISP 1D Best CPstdv : DC60.

Figure 6.34: NISP 1D Best CPstdv: DC15.
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6.1.2.3 NISP 1D: Best Swirl mean

The third configuration to analyse is the Best Swirlmean design. In table 6.15, the

differences in the objective functions values between de Best Swirlmean design and

the Baseline are displayed.

Table 6.15: NISP 1D Best Swirlmean: differences in the objective functions
values between the Best Swirlmean design and the Baseline.

Design CPmean CPstdv Swirlmean Swirlstdv

Best Swirlmean 0.030804 0.007695 2.974180◦ 0.238561◦

Baseline 0.029124 0.007765 4.283883◦ 0.224200◦

Figure 6.35: NISP 1D Best Swirlmean: PR contour comparison at the AIP.

In this design configuration, the value of the CPmean is worse than the baseline

one, but it is interesting to analyse the shape of the lowest pressure recovery area

in figure 6.35. The origin of this shape is probably attributable to the particular

geometry of the duct inlet, which is clearly visible in figure 6.36. Figure 6.36 shows

the axial velocity magnitude inside the entire S-duct when the velocity inlet is the
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maximum one of the four samples. This means that the boundary conditions of

the axial velocity plot were the same of the bottom right contour sub-plot of figure

6.35.

Figure 6.36: NISP 1D Best Swirlmean: Axial velocity in the S-duct.

In the axial velocity plot, the presence of a second region of flow detachment is

clearly visible on the up wall and it is also distinguishable in the fourth pressure

recovery contour sub-plot.

A good Swirl contour result was obtained, mostly for low inlet velocity (figure

6.37). But as the inlet velocity increases, the swirl behaviour worsens. This

phenomenon is confirmed by the high Swirlstdv value and also from table 6.16.

Figure 6.37: NISP 1D Best Swirlmean: Swirl contour comparison at the AIP.



Chapter 6. Results 97

Table 6.16: NISP 1D Best Swirlmean: Swirl value for each velocity sample.

Swirl Baseline NISP 1D Best Swirlmean Improvement

Sample 1 3.84619◦ 2.56679◦ −33.26%
Sample 2 4.11063◦ 2.79463◦ −32.01%
Sample 3 4.43925◦ 3.12398◦ −29.63%
Sample 4 4.89146◦ 3.70047◦ −24.35%

6.1.2.4 NISP 1D: Best Swirl stdv

The fourth configuration to analyse is the Best Swirlstdv design. In table 6.17, the

differences in the objective functions values between de Best Swirlstdv design and

the Baseline are displayed.

Table 6.17: NISP 1D Best Swirlstdv: differences in the objective functions
values between the Best Swirlstdv design and the Baseline.

Design CPmean CPstdv Swirlmean Swirlstdv

Best Swirlstdv 0.035583 0.008600 3.186860◦ 0.017106◦

Baseline 0.029124 0.007765 4.283883◦ 0.224200◦

Figure 6.38: NISP 1D Best Swirlstdv: PR contour comparison at the AIP.
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In this new design configuration, the pressure recovery contour (figure 6.38) is

similar to the Best Swirlmean one (figure 6.37). Moreover, the CPmean value has

worsened considerably. On the other hand, good results were obtained from the

swirl contour. The four deformed swirl contours are almost identical and for the

firs time the high swirl value area (in the middle) has completely disappeared in

figure 6.39.

Figure 6.39: NISP 1D Best Swirlstdv: Swirl contour comparison at the AIP.

6.1.2.5 NISP 1D: Parallel coordinate optima design

In this section, the first optima design of table 6.11 was analysed.

Table 6.18: NISP 1D optima 1: differences in the objective functions values
between the optima 1 design and the Baseline.

Design CPmean CPstdv Swirlmean Swirlstdv

optima 0.027629 0.00716 3.34194◦ 0.200365◦

Baseline 0.029124 0.007765 4.283883◦ 0.224200◦
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Figure 6.40: NISP 1D: Parallel Coordinate.
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The PR contour plot(figure 6.41) and the Swirl contour plot (figure6.42) are very

similar to the contour plots of the NISP 1D Best CPmean design (figure 6.30, 6.31).

Figure 6.41: NISP 1D optima 1: PR contour comparison at the AIP.

Figure 6.42: NISP 1D optima 1: Swirl contour comparison at the AIP.
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The only difference between the two designs can be found in the Swirl values.

These values are closer to zero in the first 90◦ of the optima 1 contour sub-plots

design. Good values of the DC60 were obtained in the second and third sector

(i.e 60◦ ÷ 180◦), mostly in the third and fourth velocity sample (figure 6.43). On

the other hand, the DC15 had an excellent improvement of its values for all the

sectors inside the range 45◦ ≤ θ ≤ 180◦ (figure 6.44).

Figure 6.43: NISP 1D optima 1: DC60.

Figure 6.44: NISP 1D optima 1: DC15.
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6.2 2D Robust Optimisation Problem

The 2D optimisation problem is characterised by the following starting parameters:

� Uncertainty input: Inlet Velocity with mean µv ≈ 196.53 m/s and stan-

dard deviation value σv = 10 m/s. Inlet Flux Deviation with mean µβ = 0◦

m/s and standard deviation value σβ = 3◦ m/s. These two uncertainties

variables are described with a Gaussian PDF.

� Objective Functions: CPmean, CPstdv

� Constraints: The mean and the standard deviation values of the Swirl were

setted as constraints. Swirlmean < 5◦, Swirlstdv < 1◦.

� Polynomial Chaos type and order: the typology is the Hermite Chaos

polynomial and the order p is set to 2 to lower the computational cost.

6.2.1 NIPC 2D

To implement the NIPC 2D cycle, the two uncertainties input were both sampled

with the Latin Hypercube Sampling technique (LHS). The MOTS software was

stopped after having successfully evaluated 192 configurations. As explained at

the end of Chapter 5, the NIPC uncertainty quantification technique needs P + 1

deterministic evaluations to find the PC coefficients and the stochastic outputs

(i.e objective functions). In this case the number of evaluations were equal to six.

This means that 192 × 6 = 1152 CFD Fluent simulations converged. The time

for a single fluent evaluation is ≈ 43.9 minutes, so the time that was necessary

to obtain all these results was ≈ 843 hours. However, the amount of time above

estimated does not take into account all the configurations that were analysed but

subsequently discarded if they did not respect the Swirl mean and Swirl standard

deviation constraints or if a structured geometry mesh was not possible to be

created by ANSYS ICEM. The amount of discarded designs is 54.

This time the objective functions are two and a bi-dimensional Pareto front plot is

sufficient to show all the MOTS evaluated points and the optimised designs. The

Pareto front that was obtained is illustrated in figure 6.45.

The numerical results of the six points of the Pareto front are reported in the table

6.19.
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Figure 6.45: NIPC 2D: Pareto front.

Table 6.19: NIPC 2D optima designs results obtained from the Pareto front
figure 6.45.

Design CPmean CPstdv

optima 1 0.025545 0.006739
optima 2 0.025393 0.009743
optima 3 0.025622 0.006689
optima 4 0.025713 0.006539
optima 5 0.025565 0.006715
optima 6 0.025538 0.007068

Baseline 0.028905 0.007768

Three of the six configurations were analysed and they will be labelled as follow:

� NIPC 2D: Best CPmean design (optima 2 of table 6.19)

� NIPC 2D: Best CPstdv design (optima 4 of table 6.19)

� NIPC 2D: Trade-off design (optima 1 of table 6.19)
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6.2.1.1 NIPC 2D: Best CP mean

The first configuration taken into account in this paragraph is the optima design

that has achieved the best result in terms of CPmean. Table 6.20 highlights the

differences between the objective functions values obtained from the optimisation

loop and the post-processing analysis ones. Moreover, we can see how these differ-

ences are greater in comparison with the NIPC 1D and this is due to the presence

of a second uncertainty (i.e Inlet Flux Deviation). But this latter statement is not

always true, it depends on the inlet sampled couple.

Table 6.20: NIPC 2D Best CPmean: differences in the objective functions
values due to the nature of the LHS sample technique.

Design CPmean CPstdv

Optimisation 0.025393 0.009743
Post-proc. 0.025643 0.006805

Baseline 0.028905 0.007768

Figure 6.46: NIPC 2D Best CPmean: PR contour comparison at the AIP.

In figure 6.46, it is possible to see the pressure recovery value (PR) evaluated at the

AIP surface for each inlet velocity and flux deviation sampled couple. The order
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of the sub-plots is random because the couples of the two sampled uncertainties

were chosen randomly. In Appendix B it is possible to find how these uncertainties

couples were chosen. As in the NIPC 1D and NISP 1D post-processing analysis,

the left half of each AIP contours drawing represents the pressure recovery at the

AIP surface of the baseline, instead the right one represents the deformed one.

It is possible to observe that in all the six contour comparison, the values of the

Pressure recovery of the deformed design are higher than the baseline values. In

fact, in table 6.21, all the values of CP = 1−PR that were found for each sampled

couple of inlet velocity and flux deviation are reported.

Table 6.21: NIPC 2D Best CPmean: CP value for each sampled couple.

CP Baseline NIPC 2D Best CPmean Improvement

Sample 1 0.02324 0.02308 −0.7%
Sample 2 0.02960 0.0293 −1.0%
Sample 3 0.02897 0.01727 −40.38%
Sample 4 0.03347 0.02950 −11.86%
Sample 5 0.02341 0.01712 −26.87%
Sample 6 0.03277 0.02326 −29.02%

Figure 6.47: NIPC 2D Best CPmean: DC60.
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The DC60 values in figure 6.47 have improved in the second and third sector (i.e

60◦÷ 180◦ ) and also the DC15 in figure 6.48 has improved a lot in all the sectors

with θ ≥ 70◦. Moreover, their values have reached ≈ 0 in the sectors inside the

range 70◦ ÷ 100◦.

Figure 6.48: NIPC 2D Best CPmean: DC15.

Figure 6.49: NIPC 2D Best CPmean: Swirl contour comparison at the AIP.
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6.2.1.2 NIPC 2D: Best CP stdv

Now we look at the Best CPstdv design configuration. The following table 6.22

highlights the differences between the objective functions values obtained from

the optimisation loop and the post-processing analysis ones.

Table 6.22: NIPC 2D Best CPstdv: differences in the objective functions values
due to the nature of the LHS sample technique.

Design CPmean CPstdv

Optimisation 0.025713 0.006539
Post-proc. 0.025808 0.007090

Baseline 0.028905 0.007768

Figure 6.50: NIPC 2D Best CPstdv: PR contour comparison at the AIP.

In figure 6.50 it is possible to see the formation of a new flow detachment area

and in table 6.23 all the values of CP = 1−PR that were found for each sampled

couple of inlet velocity and flux deviation are reported.
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Table 6.23: NIPC 2D Best CPstdv: CP value for each sampled couple.

CP Baseline NIPC 2D Best CPstdv Improvement

Sample 1 0.02324 0.02714 +16.78%
Sample 2 0.02960 0.03103 +4.83%
Sample 3 0.02897 0.01956 −32.48%
Sample 4 0.03347 0.03078 −8.04%
Sample 5 0.02341 0.01936 −17.30%
Sample 6 0.03277 0.03110 −5.10%

Similary to the Best CPcmean design, also the DC60 values of the Best CPstdv in

figure 6.51 have improved in the second and third sector (i.e 60◦ ÷ 180◦ ).

The same was for the DC15 values in figure 6.52 for all the sectors with θ ≥ 70◦.

Moreover, its values have reached ≈ 0 in the sectors inside the range 70◦÷ 100◦.

Figure 6.51: NIPC 2D Best CPstdv: DC60.
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Figure 6.52: NIPC 2D Best CPstdv: DC15.

Figure 6.53: NIPC 2D Best CPstdv: Swirl contour comparison at the AIP.
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6.2.1.3 NIPC 2D: Trade-off design

The last analysed configuration is the trade-off between the Best CPmean design

and the Best CPstdv one. The following table 6.24 highlights the differences be-

tween the objective functions values obtained from the optimisation loop and the

post-processing analysis ones.

Table 6.24: NIPC 2D Trade-off: differences in the objective functions values
due to the nature of the LHS sample technique.

Design CPmean CPstdv

Optimisation 0.025545 0.006739
Post-proc. 0.025676 0.006818

Baseline 0.028905 0.007768

Figure 6.54: NIPC 2D Trade-off: PR contour comparison at the AIP.

The great improvement in the DC15 values of the sectors between 65◦÷ 125◦ and

in the DC60 value of the middle sector (i.e 60◦÷ 120◦) are very interesting (figure

6.55 6.56).
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Figure 6.55: NIPC 2D Trade-off: DC60.

Figure 6.56: NIPC 2D Best Trade-off: DC15.
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6.2.2 NISP 2D

To implement the NISP 2D cycle, the two uncertainties input were sampled with

the Hermite-Gauss Sampling technique (HG). The MOTS software was stopped

after having successfully evaluated 135 configurations. As explained at the end of

Chapter 5, the NIPC uncertainty quantification technique needs (p + 1)n deter-

ministic evaluations to find the P + 1 PC coefficients and the stochastic outputs

(i.e objective functions). In this case the number of evaluations were equal to nine.

This means that 135 × 9 = 1215 CFD Fluent simulations converged. The time

for a single fluent evaluation is ≈ 38.8 minutes, so the time that was necessary

to obtain all these results was ≈ 785 hours. However, the amount of time above

estimated does not take into account all the configurations that were analysed but

subsequently discarded if they did not respect the Swirl mean and Swirl standard

deviation constraints or if a structured geometry mesh was not possible to be cre-

ated by ANSYS ICEM. The amount of discarded designs is 30.

The objective functions are two as in the NIPC 2D, and a bi-dimensional Pareto

front plot is sufficient to show all the MOTS evaluated points and the optimised

designs. The Pareto front that was obtained is illustrated in figure 6.57.

Figure 6.57: NISP 2D: Pareto front.
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The numerical results of the ten points of the Pareto front are reported in the

table 6.25.

Table 6.25: NISP 2D optima designs results obtained from the Pareto front
figure 6.57.

Design CPmean CPstdv

optima 1 0.025891 0.00663
optima 2 0.027287 0.006499
optima 3 0.025833 0.006637
optima 4 0.02558 0.00666
optima 5 0.027304 0.006472
optima 6 0.026155 0.006546
optima 7 0.026566 0.006508
optima 8 0.025929 0.006595
optima 9 0.02604 0.006568
optima 10 0.025994 0.006578

Baseline 0.028973 0.007522

Three of the six configurations were analysed and they will be labelled as follow:

� NISP 2D: Best CPmean design (optima 4 of table 6.25)

� NISP 2D: Best CPstdv design (optima 5 of table 6.25)

� NISP 2D: Trade-off design (optima 7 of table 6.25)

In the three subsequent analyses, it will not be possible to show all the plots

obtained from the three analysed designs. This is due to the excessive number

of samplings carried out (i.e nine), which has drastically increased the number of

contour sub-plots per figure. Therefore, it was decided to show only single plots

referring to a single sampling of the nine for the DC60 and DC15 values.

Furthermore, there will not be any descriptions for the pressure recovery and swirl

results of the three designs because their contour plots are very similar between

them. This choice was made to avoid the risk of having a part of the thesis with

redundant figures.

Only the contours of the Best CPmean design will be plotted in order to show at

least one to the readers.
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6.2.2.1 NISP 2D: Best CP mean

The first configuration taken into account in this paragraph is the optima design

that has achieved the best result in terms of CPmean for the NISP 2D. Table

6.26 highlights the differences in the objective functions values between the Best

CPmean design and the Baseline.

Table 6.26: NISP 2D Best CPmean: differences in the objective functions
values between the Best CPmean design and the Baseline.

Design CPmean CPstdv

Best CPmean 0.02558 0.00666

Baseline 0.028973 0.007522

Figure 6.58: NISP 2D Best CPmean: PR contour comparison at the AIP.

It is important to specify that in the NISP 2D, the order of the sub-plots follows

the order of the sampled couples. As a matter of fact, the velocity value increases

row by row, while the Flux deviation increases column by column. There was fair

improvements in the DC60 and DC15 parameters. In the following plots (figure
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6.59 6.60), we can observe the DC60 and DC15 values of every sector for one of the

nine samples. At least, there were no improvements in swirl values (figure 6.61).

Figure 6.59: NISP 2D Best CPmean: DC60 values for only one sample.

Figure 6.60: NISP 2D Best CPmean: DC15 values for only one sample.
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Figure 6.61: NISP 2D Best CPmean: Swirl contour comparison at the AIP.

6.2.2.2 NISP 2D: Best CP stdv

The second configuration taken into account is the optima design that has achieved

the best result in terms of CPstdv. Table 6.27 highlights the differences in the

objective functions values between the Best CPstdv design and the Baseline.

Table 6.27: NISP 2D Best CPstdv: differences in the objective functions values
between the Best CPstdv design and the Baseline.

Design CPmean CPstdv

Best CPstdv 0.027304 0.006472

Baseline 0.028973 0.007522

For the first time ever, in the deformed design, there were DC60 and DC15 values

better than the baseline one in all the sectors for all the samples. However, these

values are not close enough to zero. As said before, only one DC60 and DC15 plot

of only one sample was displayed.
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Figure 6.62: NISP 2D Best CPstdv: DC60 values for only one sample.

Figure 6.63: NISP 2D Best CPstdv: DC15 values for only one sample.
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6.2.2.3 NISP 2D: Trade-off design

The last analysed configuration is the trade-off between the Best CPmean design

and the Best CPstdv one. Table 6.28 highlights the differences in the objective

functions values between the Best CPstdv design and the Baseline. There is nothing

Table 6.28: NISP 2D Trade-off: differences in the objective functions values
between the Trade-off design and the Baseline.

Design CPmean CPstdv

Trade-off 0.026566 0.006508

Baseline 0.028973 0.007522

to highlight in this configuration, because all the plot results and values are very

similar to the NISP 2D Best CPmean design.

6.3 Manufacturing Robust Optimisation Prob-

lem

For the first time ever, a manufacturing uncertainty input was inserted in a robust

design optimisation problem for S-ducts. This new uncertainty parameter is the

Bending Angle, and together with the inlet velocity, they are the input couple

of uncertainties of this robust optimisation problem. In other words, another

2D problem was implemented and analysed, and the following are the starting

parameters:

� Uncertainty input: Inlet Velocity with mean µv ≈ 196.53 m/s and stan-

dard deviation value σv = 10 m/s. Bending angle with mean µα = θmax = 0◦

m/s and standard deviation value σα = 4◦ m/s. These two uncertainty vari-

ables are described with a Gaussian PDF.

� Objective Functions: CPmean, CPstdv

� Constraints: The mean and the standard deviation values of the Swirl were

setted as constraint. Swirlmean < 5.5◦, Swirlstdv < 1◦.

� Polynomial Chaos type and order: the typology is the Hermite Chaos

polynomial and the order p is set to 2.
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The Non Intrusive Point Collocation method (NIPC) was used as uncertainties

quantification method. The reasons of this choice are the following:

� The LHS sampling technique randomly samples the uncertainties input. In

this way a new configuration is tested every time.

� The NIPC method is not affected by the course of dimensionality.

In the next sections we will see which uncertainty quantification method was cho-

sen, and how the the output objective functions values and the behaviour of the

fluid inside the duct were influenced by the Bending Angle uncertainty input.

6.3.1 NIPC MNF

To implement the NIPC MNF cycle, the two uncertainties input were both sam-

pled with the Latin Hypercube Sampling technique (LHS). The MOTS software

was stopped after having successfully evaluated 69 configurations. As explained at

the end of Chapter 5, the NIPC uncertainty quantification technique needs P + 1

deterministic evaluations to find the PC coefficients and the stochastic outputs

(i.e objective functions). In this case the number of evaluations were equal to

six. This means that 71× 6 = 426 CFD Fluent simulations converged. The time

for a single fluent evaluation is ≈ 49.6 minutes, so the time that was necessary

to obtain all these results was ≈ 342 hours. However, the amount of time above

estimated does not take into account all the configurations that were analysed but

subsequently discarded if they did not respect the Swirl mean and Swirl standard

deviation constraints or if a structured geometry mesh was not possible to be cre-

ated by ANSYS ICEM. The amount of discarded designs is 52, the 42.9% of the

total evaluated ones. As a matter of fact, the two constraint in the Swirl mean and

standard deviations, are very stringent. Moreover, in this new robust optimisation

cycle, for each sampled values of the Bending angle, a new different geometry was

built. In this way, ANSYS ICEM had to built for six times (i.e six deterministic

evaluation) different structured mesh. Therefore, this high variability in the ge-

ometry and mesh was the second cause of the high amount of discarded design.

In fact, ANSYS ICEM was often not able to create a structured mesh for each

sampled values of the Bending angle.
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It must be remarked that this manufacturing robust optimisation work is not fin-

ished yet because more data need to be collected in order to find better results.

As the other 2D problems, the objective functions are two and a bi-dimensional

Pareto front plot is sufficient to show all the MOTS evaluated points and the op-

timised designs. The Pareto front that was obtained is illustrated in figure 6.64.

Figure 6.64: NIPC MNF: Pareto front.

The optima results obtained from the cycle were only two (table 6.29), and this

was due to the low number of successfully evaluated designs.

Table 6.29: NIPC MNF optima designs results obtained from the Pareto front
figure 6.64.

Design CPmean CPstdv

optima 1 0.023966 0.006108
optima 2 0.024336 0.006098

Baseline 0.026676 0.007418
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Despite the few designs evaluated so far, the first results are encouraging. In

fact, the 0.025 threshold for the CPmean values has been broken maintaining the

standard deviation values in the average of those seen so far. As in the NIPC 1D

and NIPC 2D optimisation loops, it is very important to specify that the output

values of the objective functions obtained from the NIPC MNF optimisation loop

are slightly different from the ones obtained after the post-processing analysis of

the chosen optima designs. As a matter of fact, also here the sampled velocities

and bending angles were not recorded during the optimisation loop. Moreover

as we know, the LHS method chooses randomly the inlet velocities and bending

angles values inside their own CDF.

6.3.1.1 NIPC MNF: optima 1

The first configuration taken into account in this paragraph is the optima 1 de-

sign. Table 6.30 highlights the differences between the objective functions values

obtained from the optimisation loop and the post-processing analysis ones.

Table 6.30: NIPC MNF Best optima 1: differences in the objective functions
values due to the nature of the LHS sample technique.

Design CPmean CPstdv

Optimisation 0.023966 0.006108
Post-proc. 0.024038 0.006146

Baseline 0.026676 0.007418

As in the NIPC 2D, the order of the contour sub-plots is random because the

couples of the two sampled uncertainties were chosen randomly.

In the contour figure 6.65, it is not easy to see the improvement in the CP values.

As a matter of fact, in table 6.31, all the values of CP = 1− PR that were found

for each inlet sampled couple of uncertainties are reported, in order to help the

reader to understand and see the improvements.

The swirl values have not improved and we can see it in figure 6.68. Moreover, it

is interesting to observe how the DC60 an DC50 values have changed a lot from

sample to sample but it is not possible to say that the values have improved (figure

6.66 6.67).
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Figure 6.65: NIPC MNF optima 1: PR contour comparison at the AIP.

Table 6.31: NIPC MNF optima 1: CP value for each velocity sample.

CP Baseline NIPC MNF optima 1 Improvement

Sample 1 0.02796 0.0257 −8.08%
Sample 2 0.01897 0.0286 +50.76%
Sample 3 0.018945 0.0195 −2.93%
Sample 4 0.02802 0.0191 −31.83%
Sample 5 0.03031 0.0285 −5.97%
Sample 6 0.03045 0.0255 −16.25%
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Figure 6.66: NIPC MNF optima 1: DC60.

Figure 6.67: NIPC MNF optima 1: DC15.
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Figure 6.68: NIPC MNF optima 1: Swirl contour comparison at the AIP.

6.3.1.2 NIPC MNF: optima 2

The first configuration taken into account in this paragraph is the optima 2 de-

sign. Table 6.32 highlights the differences between the objective functions values

obtained from the optimisation loop and the post-processing analysis ones.

Table 6.32: NIPC MNF Best optima 2: differences in the objective functions
values due to the nature of the LHS sample technique.

Design CPmean CPstdv

Optimisation 0.024336 0.006098
Post-proc. 0.024357 0.006181

Baseline 0.026676 0.007418

The physical behaviour of the optima 2 configuration is very similar to that of the

optima 1 and all the two designs plots and objective functions results confirm this



Chapter 6. Results 125

similarity. In fact, the two designs are very close to each other in the Pareto front

(figure 6.64) and therefore it is normal that they behave in similar way.

If we had evaluated more points inside the design space, then we would have,

probably analysed different designs with recognizable physical behaviours.

In table 6.33, all the values of CP = 1−PR that were found for each inlet sampled

couple of uncertainties are reported.

Table 6.33: NIPC MNF optima 2: CP value for each velocity sample.

CP Baseline NIPC MNF optima 2 Improvement

Sample 1 0.02796 0.0250 −10.59%
Sample 2 0.01897 0.0301 +58.67%
Sample 3 0.018945 0.0303 +59.93%
Sample 4 0.02802 0.0298 +6.35%
Sample 5 0.03031 0.0254 −16.20%
Sample 6 0.03045 0.0211 −30.71%

From table 6.33, we can observe that the CP results of the optima 2 design are not

always better than the Baseline ones, though they have a remarkable difference

in the CPmean result. This is due to the randomly nature of the LHS sampling

technique.

Figure 6.69: NIPC MNF optima 2: DC60.
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Figure 6.70: NIPC MNF optima 2: DC15.

Figure 6.71: NIPC MNF optima 2: PR contour comparison at the AIP.
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6.4 MOTS Machine Learning optimisation

A Machine learning optimisation cycle was developed in collaboration with Mat-

tia Longato. Unfortunately, this optimisation cycle is partially developed but it is

correct to mention it because we obtained the first predicted Pareto front results

from it.

The aim of this machine learning cycle is to support the above mentioned robust

optimisation problems in order to speed up the research of new optima designs.

First of all, two-thirds of the evaluated designs and their respective results were

collected from the above mentioned robust optimisation problems and used to

built a prediction model (i.e an algorithm) for two objective functions (CPmean,

CPstdv). After that, these models were implemented inside a MOTS (Multi- ob-

jective Tabu Search) and used to predict the objective functions values of new

design configurations created by the loop.

It must be remarked that as first prediction model for S-duct built so far, it was

decided to use as input variables only the 36 design parameters without consider-

ing the input uncertainties. This choice gave us the possibility to use the results

of all the 1D and 2D problems to build the model.

The MOTS software was stopped after having successfully evaluated 500 configu-

rations. The pareto front that was obtained is displayed in figure 6.72.

Figure 6.72: MOTS Machine Learning Pareto front
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The prediction of the results of the new designs is accurate only if these new

designs are located, in the design space, near the ones used to built the model.

In other word, the further we move away from the design space used to build the

model, the more inaccurate will be the results.

Therefore, we decided to evaluate and predict only 500 new designs because in

this way it was possible to evaluate the new designs that share, more or less, the

same design space as the ones used to build the model.

No post-processing analysis on the optima design has been made because the

accuracy of this Machine Learning optimisation cycle is not too high. In order

to improve the accuracy in the predicted results, it would be better if also the

uncertainties variables were added as input parameters to create the prediction

model.



Chapter 7

Conclusion

In this thesis many objectives have been pursued. The existent robust optimisation

of Dal Magro [3] was extended developing 5 different robust optimisations cycles

with two different Non Intrusive uncertainty quantification techniques (NIPC and

NISP). The 1D problems or better those problems with only one uncertainty input

(Inlet Velocity) have been developed and improved with the addition of other

two important objective functions (Swirlmean and Swirlstdv) to the existing ones

(CPmean and CPstdv). The results obtained from the 1D problems are encouraging.

In fact, good values of all the four objective functions were obtained simultaneously

with excellent improvements, mostly in the swirl.

Another step forward has been made with the development of the 2D problems,

or better those problems with two input uncertainties. To develop these kinds of

problems, a good comprehension of the Non Intrusive uncertainty quantification

techniques was required.

The Inlet Flux deviation has been the second uncertainty input to be added. In

the 2D problem, it was decided to minimise only two objective functions (CPmean,

CPstdv) in order to speed up the research of the optima designs performed by the

algorithm (Tabu Search).

Good CPmean results were obtained from the NIPC 2D and NISP 2D cycles A

good improvement in the CPmean values was also achieved if compared to the ones

obtained by Dal Magro in his 1D problem [3].

For the first time, a manufacturing uncertainty in the bending angle was added

to the input uncertainties. This new manufacturing uncertainty together with the

Inlet Velocity uncertainty were quantified with the NIPC technique and used as the

input of a new 2D problem labelled NIPC MNF. Very interesting and encouraging

129
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results were found with a very big improvement in the CPmean objective function.

However, it is correct to specify that the research of the optima designs of this

problem is not completed. In fact, one of my future works will be to finish the

research and analysis of the optima designs for a publication.

The last work realised in this thesis is the implementation of a Machine Learning

algorithm inside an optimisation problem in order to support the above mentioned

robust optimisation cycles and to speed up the research of new optima designs.

At the moment, this is a preliminary work because only the design parameters

were used as input to build the prediction model but the Pareto front obtained is

very promising. In the next future, The Machine learning optimisation cycle will

be developed and completed with the addition of the uncertainties as input of the

model.

In fact, this last purpose, together with the NIPC MNF will be the main focus of

my next scheduled publication.
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Appendix A

NIPC 1D

The NIPC 1D work-flow is presented below. One uncertainty input (Inlet velocity),

four objective functions output (CPmean, CPstdv, Swirlmean, Swirlstdv, ). This

optimisation problem was constructed with the following parameters:

� Uncertainty in the Inlet Velocity, n = 1.

� µv = 196.53 m/s, σv = 10 m/s, v(ξ) = µv + ξσv where ξ is a Gaussian

random variable.

� PC order p = 3.

� Type polynomial: Hermite chaos.

According to equation 3.21, P + 1 = 4 deterministic evaluations are needed to

model the stochastic output. The Inlet velocity was sampled with LHS, giving:

v0, v1, v2, v3 (A.1)

The CFD analysis was then performed with these four samples, finding:

CP (v0), CP (v1), CP (v2), CP (v3)

α(v0), α(v1), α(v2), α(v3)
(A.2)

From the Polynomial chaos theory it was possible to write:

CP (ξi) = a0 + a1ξi + a2(ξ2
i − 1) + a3(ξ3

i − 3ξi), i = 0, . . . , 3 (A.3)
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and a linear system of equations was then built:
Ψ0(ξ0) Ψ1(ξ0) Ψ2(ξ0) Ψ3(ξ0)

Ψ0(ξ1) Ψ1(ξ1) Ψ2(ξ1) Ψ3(ξ1)

Ψ0(ξ2) Ψ1(ξ2) Ψ2(ξ2) Ψ3(ξ2)

Ψ0(ξ3) Ψ1(ξ3) Ψ2(ξ3) Ψ3(ξ3)



a0

a1

a2

a3

 =


CP (v0)

CP (v1)

CP (v2)

CP (v3)

 (A.4)

Where

Ψ0 = 1

Ψ1 = ξ

Ψ2 = ξ2 − 1

Ψ3 = ξ3 − 3ξ

(A.5)

and where

ξi =
vi − µv
σv

, i = 0, . . . , 3

Here of course the vector ξ = ξ because there is only one uncertainty and ξ was

sampled 4 times. By solving the linear system the PC coefficients ai can be found:

a0, a1, a2, a3, (A.6)

The same linear system was built for the Swirl (α) and the four PC coefficient bi

was found.

Thanks to equation A.3 and remembering that 〈Ψ2
i 〉 = i!:

µCP = a0

µα = b0

(A.7)

σCP =

√√√√ P∑
i=1

a2
i 〈Ψ2

i 〉

σα =

√√√√ P∑
i=1

b2
i 〈Ψ2

i 〉

(A.8)
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Figure A.1: NIPC 1D workflow.





Appendix B

NIPC 2D

The NIPC 2D work-flow is presented below. Two uncertainties input (Inlet Ve-

locity, Inlet Flux Deviation), two objective functions output (CPmean, CPstdv)

The following parameters were chosen:

� Uncertainty in the Inlet Velocity and Inlet flux deviation, n = 2.

� µv = 196.53 m/s, σv = 10 m/s, v(ξ) = µv + ξσv where ξ is a Gaussian

random variable.

� µβ = 0◦, σβ = 3◦, β(ξ) = µβ + ξσβ where ξ is a Gaussian random variable.

� PC order p = 2.

� Hermite chaos.

According to equation 3.21, P + 1 = 6 deterministic evaluations are needed to

model the stochastic output and to find the P + 1 = 6 PC coefficients. In this

case the standard random vector is a 1× 2 vector:

ξ = (ξv, ξβ) (B.1)
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And the basis functions are:

Ψ0 = 1

Ψ1 = ξv

Ψ2 = ξβ

Ψ3 = ξ2
v − 1

Ψ4 = ξvξβ

Ψ5 = ξ2
β − 1 (B.2)

Like in the 1D case, the two uncertain variables were sampled with LHS. To obtain

the required 6 samples of ξ, 3 samples for both variables were computed. In this

case:

v0,

v1,

v2,

β0

β1

β2

(B.3)

This leads to a maximum of 9 possible combinations: 6 of them were chosen

randomly to form the samples of ξ:

ξ0 = (ξv0 , ξβ0)

ξ1 = (ξv0 , ξβ1)

ξ2 = (ξv0 , ξβ2)

ξ3 = (ξv1 , ξβ1)

ξ4 = (ξv1 , ξβ2)

ξ5 = (ξv2 , ξβ2)

(B.4)

where

ξvi =
vi − µv
σv

ξβi =
βi − µβ
σβ

(B.5)

Note that, according to Hosder [34], the choice of the combinations is up to the

user. He demonstrated that better results are achieved by using more samples than

the required P + 1 (in this case the linear system is solved in the least squares

sense): however, given the limited amount of time available for the optimisation,
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only 6 samples were used in this work.

At this point the procedure was similar to the 1D case. The CFD analysis was

performed for the 6 samples giving:

CP (v0, β0)

CP (v0, β1)

CP (v0, β2)

CP (v1, β1)

CP (v1, β2)

CP (v2, β2)

(B.6)

At the end, the linear system of equations was solved and the PC coefficients were

found:

a0, a1, a2, a3, a4, a5 (B.7)

Thanks to the following equation:

CP (ξvi , ξβi) = a0 + a1ξvi + a2ξβi + a3

(
ξ2
vi
− 1
)

+ a4 (ξviξβi) + a5

(
ξ2
βi
− 1
)

(B.8)

and the relation 〈Ψ2
i 〉 = i!, it was possible to find the two objective functions:

µCP = a0

σCP =

√√√√ P∑
i=1

a2
i 〈Ψ2

i 〉
(B.9)

However, it should be remarked that the PC expansion has been stopped at the

second order here, hence for a more correct comparison with the 1D case the same

PC order should be used.





Appendix C

NISP 1D

The NISP 1D work-flow is presented below. One uncertainty input (Inlet velocity),

four objective functions output (CPmean, CPstdv, Swirlmean, Swirlstdv, ). This

optimisation problem was built with the following parameters:

� Uncertainty in the Inlet Velocity, n = 1.

� µv = 196.53 m/s, σv = 10 m/s, v(ξ) = µv + ξσv where ξ is a Gaussian

random variable.

� PC order p = 3.

� Type polynomial: Hermite chaos.

According to the NISP theory, (p + 1)n = 4 deterministic evaluations and and

m = p+ 1 = 4 samples for each uncertainty were necessary to find the P + 1 = 4

PC coefficient and to model the stochastic output.

The sample points and weights were obtained through the Gaussian quadrature

method. In Python, the Hermite-Gauss quadrature samples function gives to the

user two arrays output. The first one contains the Gaussian random variable

samples, instead the second one contains the respectively weights.

ξ0,

ξ1,

ξ2,

ξ3,

ω0

ω1

ω2

ω3

(C.1)

145



Appendix C. NISP workflow 146

It is important to underline that the value of ξi needs to be corrected by multiplying

it by
√

2 because the Hermite-Gauss quadrature samples function, in Python,

samples the Gaussian random variable following a different weighting function:

W (ξ) = e−x
2

(C.2)

To return to the original Gaussian weighting function this step was necessary.

After that, to determine the PC coefficients for the CP and Swirl it was possible

to simplify equation 3.37 as follow:

ai =
1√
π

4∑
k=1

CP (vk)
Ψi(
√

2ξk)

i!
ωk (C.3)

bi =
1√
π

4∑
k=1

α(vk)
Ψi(
√

2ξk)

i!
ωk (C.4)

where:

� CP (vk) and α(vk) are the results of the CFD analysis for each sample with

vk = µv +
√

2ξσv.

� Ψi(
√

2ξk) are the Hermite polynomials in terms of
√

2ξk

� 1/
√
π factor is necessary because of the different weighting function adopted

in Python.

With the PC coefficient ai it was possible to find the final objective functions:

µCP = a0

µα = b0

(C.5)

σCP =

√√√√ P∑
i=1

a2
i 〈Ψ2

i 〉

σα =

√√√√ P∑
i=1

b2
i 〈Ψ2

i 〉

(C.6)

In figure C.1 there is a schematic representation of the NISP workflow. It was

taken from Moro’s work [15].
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Figure C.1: NISP 1D workflow.





Appendix D

NISP 2D

The NISP 2D work-flow is presented below. Two uncertainties input (Inlet Veloc-

ity, Inlet Flux Deviation), two objective functions output (CPmean, CPstdv)

The following parameters were chosen:

� Uncertainty in the Inlet Velocity an Inlet flux deviation, n = 2.

� µv = 196.53 m/s, σv = 10 m/s, v(ξ) = µv + ξσv where ξ is a Gaussian

random variable.

� µβ = 0◦, σβ = 3◦, β(ξ) = µβ + ξσβ where ξ is a Gaussian random variable.

� PC order p = 2.

� Hermite chaos.

According to the NISP theory, (p + 1)n = 9 deterministic evaluations and m =

p + 1 = 3 samples for each uncertainty were necessary to find the P + 1 = 6 PC

coefficient and to model the stochastic output.

The sample points and weights of the two uncertainties input were obtained as it

was described also in Appendix C for the NISP 1D, and from them it is possible

to create nine combinations of (ξvi , ξβi)

It is important to underline that all the values of ξvi , ξβi need to be corrected by

multiplying them by
√

2 because the Hermite-Gauss quadrature samples function,

in Python, samples the Gaussian random variable following a different weighting
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function like in Appendix C for the NISP 1D. To find the PC coefficients it was

used the modified equation 3.37:

ai =
1√
π
n

[
m∑

m1=1

· · ·
m∑

mn=1

CP (
√

2ξm1 , . . . ,
√

2ξmn)
Ψi(
√

2ξm1 , . . . ,
√

2ξmn)

〈Ψ2
i 〉

n∏
k=1

ωmk

]

To help the reader, the above equation can be written for the a1 coefficient as

follow:

a1 =
1
√
π

2

1

1!
[H]

where:

H = +CP (
√

2ξv0 ,
√

2ξβ0)Ψ1(
√

2ξv0 ,
√

2ξβ0)ωv0ωβ0+

+ CP (
√

2ξv0 ,
√

2ξβ1)Ψ1(
√

2ξv0 ,
√

2ξβ1)ωv0ωβ1+

+ CP (
√

2ξv0 ,
√

2ξβ2)Ψ1(
√

2ξv0 ,
√

2ξβ2)ωv0ωβ2+

+ CP (
√

2ξv1 ,
√

2ξβ0)Ψ1(
√

2ξv1 ,
√

2ξβ0)ωv1ωβ0+

+ CP (
√

2ξv1 ,
√

2ξβ1)Ψ1(
√

2ξv1 ,
√

2ξβ1)ωv1ωβ1+

+ CP (
√

2ξv1 ,
√

2ξβ2)Ψ1(
√

2ξv1 ,
√

2ξβ2)ωv1ωβ2+

+ CP (
√

2ξv2 ,
√

2ξβ0)Ψ1(
√

2ξv2 ,
√

2ξβ0)ωv2ωβ0+

+ CP (
√

2ξv2 ,
√

2ξβ1)Ψ1(
√

2ξv2 ,
√

2ξβ1)ωv2ωβ1+

+ CP (
√

2ξv2 ,
√

2ξβ2)Ψ1(
√

2ξv2 ,
√

2ξβ2)ωv2ωβ2 (D.1)

With the PC coefficient ai it was possible to find the final objective functions:

µCP = a0

σCP =

√√√√ P∑
i=1

a2
i 〈Ψ2

i 〉
(D.2)
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NIPC 2D Manufacturing

The NIPC 2D Manufacturing work-flow is presented below. Two uncertainties in-

put (Inlet Velocity, Bending Angle), two objective functions output (CPmean, CPstdv)

The following parameters were chosen:

� Uncertainty in the Inlet Velocity and Bending Angle, n = 2.

� µv = 196.53 m/s, σv = 10 m/s, v(ξ) = µv + ξσv where ξ is a Gaussian

random variable.

� µα = 60◦, σα = 4◦, α(ξ) = µα + ξσα where ξ is a Gaussian random variable.

� PC order p = 2.

� Hermite chaos.

According to equation 3.21, P + 1 = 6 deterministic evaluations are needed to

model the stochastic output and to find the P + 1 = 6 PC coefficient. In this case

the standard random vector is a 1× 2 vector:

ξ = (ξv, ξα) (E.1)
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And the basis functions are:

Ψ0 = 1

Ψ1 = ξv

Ψ2 = ξβ

Ψ3 = ξ2
v − 1

Ψ4 = ξvξβ

Ψ5 = ξ2
β − 1 (E.2)

The two uncertain variables were sampled with LHS. To obtain the required 6

samples of ξ, 3 samples for both variables were computed. In this case:

v0,

v1,

v2,

α0

α1

α2

(E.3)

This leads to a maximum of 9 possible combinations: 6 of them were chosen

randomly to form the samples of ξ:

ξ0 = (ξv0 , ξα0)

ξ1 = (ξv0 , ξα1)

ξ2 = (ξv0 , ξα2)

ξ3 = (ξv1 , ξα1)

ξ4 = (ξv1 , ξα2)

ξ5 = (ξv2 , ξα2)

(E.4)

where

ξvi =
vi − µv
σv

ξαi
=
αi − µα
σα

(E.5)

Note that, according to Hosder [34], the choice of the combinations is up to the

user. He demonstrated that better results are achieved by using more samples than

the required P + 1 (in this case the linear system is solved in the least squares

sense): however, given the limited amount of time available for the optimisation,

only 6 samples were used in this work.
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At this point the procedure was similar to the others NISP 1D and 2D cases. The

CFD analysis was performed for the 6 samples giving:

CP (v0, α0)

CP (v0, α1)

CP (v0, α2)

CP (v1, α1)

CP (v1, α2)

CP (v2, α2)

(E.6)

At the end, the linear system of equations was solved and the PC coefficients were

found:

a0, a1, a2, a3, a4, a5 (E.7)

Thanks to the following equation:

CP (ξvi , ξαi
) = a0 + a1ξvi + a2ξαi

+ a3

(
ξ2
vi
− 1
)

+ a4 (ξviξαi
) + a5

(
ξ2
αi
− 1
)

(E.8)

and the relation 〈Ψ2
i 〉 = i! was possible to find the two objective functions:

µCP = a0

σCP =

√√√√ P∑
i=1

a2
i 〈Ψ2

i 〉
(E.9)
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