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Introduction

It should come as no surprise that the concept of mutation is of primary impor-
tance when discussing cancer. To anyone not knowing the rudiments of cancer
phenomenology, it should suffice to know that cancer is originated when one or
more healthy cells undergo some key somatic mutations to their chromosomes, and
consequently become significantly different from the surrounding, healthy cells.

The insurgence of cancer disrupts the cellular environment: healthy tissues
form a network of interactions that are finely tuned in order to avoid any possible
deleterious effect, such as the extinction of one particular type of cell. Cancer,
however, introduces many uncontrolled interactions with the healthy tissues. As
a result, its impact on the network is almost always dramatic.

It is possible to think of the different types of cells as species in an ecologic
environment: different types of healthy cells behave like different species interact-
ing with each other. Cancer can be thought of as an additional species, which
interacts with the network by favoring some species, damaging others, or both
at the same time. However such interactions may be shaped, they are generally
disruptive, in that they tend to prevent the ecologic system from attaining the
“healthy” equilibrium [2].

By taking into account these effects on the cellular environment, one could
summarize cancer’s hallmarks as follows [4]:

• a self-sustained growth signalling caused by the so called oncogenes. Tumors
can proliferate without needing any external stimuli;

• insensibility to growth-inhibition signals caused by oncosuppressors. In healthy
cells, excessive proliferation is countered by specific molecules, which inhibit
growth. Tumors, however, may not respond to these molecules;

• evasion of apoptosis, that is, the cell’s “programmed death” mechanism;

• an unlimited replicative potential;

• alteration of metabolism and inducted angiogenesis, the physiological process
by which new blood vessels are formed from preexisting ones;
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• the ability of evading the immunitary system and invading healthy tissues,
causing metastasis, the spread of cancer from the primary site to a secondary
one; for example, a colorectal cancer might spread to the lungs through blood
vessels.

All of these common traits of cancer are originated from chromosomal muta-
tions, the effect of which can significantly vary from one another. All in all, there
is a wide spectrum of possible mutations; some are more impactful than others
and, most importantly, not all of them have a strictly positive effect on the cancer
cell.
It is worth noting from now that, since the evolutionary process has been a long
one, somatic alterations are far more likely to cause harm to the cell rather than
bringing beneficial traits: a mutation, being a largely random event, will most
likely disrupt the existent and well-oiled mechanisms rather than introduce a novel,
advantageous feature.
The most interesting distinction one can make when discussing these alterations,
is to classify them strictly on behalf of their effect on the cell’s fitness, that is, the
cell’s reproductive advantage (or disadvantage). The easiest way to carry out this
distinction is to coarsely divide between deleterious alterations and advantageous
ones. Little further distinction is then given to alterations of analogous effect but
with different magnitude.
With these concepts in mind, one can then define two different types o mutations:
drivers and passengers [1]. The names are rather self-explaining: a driver mutation
is a rare, advantageous mutation that confers its bearer an improved phenotype
(that is, the set of an organism’s observable characteristics); the aforementioned
increased birth rate, for example, could be the result of a driver mutation having
taken place. Passengers mutations, on the other hand, are alterations which have
deleterious effects on the cell’s fitness: they could provoke an immunitary response
(effectively neutralising one of cancer’s hallmarks, as discussed above), or make it
more weak to pharmacological treatment.
The discovery and cataloguing of driver mutations has been one of the most sought
after topics in genome-wide cancer sequencing. Drivers compose only a minimal
fraction of all the possible (and observed) mutations. Moreover, they are some-
what recurring: different patients show many similar mutations, involving the
same genes, loci (fixed positions on a chromosome) or pathways (an ensemble of
molecular regulators that interact with each other and with other elements of a
cell in order to regulate gene expression, that is, how much of the information
carried by a gene is used by the cell itself).
Passengers, on the other hand, have not shared this same spot in the limelight. As
they are not as easily trackable, are much more likely to happen and are far less
incisive on cancer progress, they have been generally neglected.
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Figure 1: A schematic overview of the steps leading to CRC. These key mutations can
be thought of as drivers. To be precise, they are actually the first to arise, being the
responsibles for the initial outbreak. Image taken from Kumar, Abbas, Aster, “Robbins
and Cotran Pathologic Basis of Disease”, Elsevier-Saunders, 2014, 9th ed. [4]

Take colorectal cancer (CRC), for instance. The mutations responsible for
its arisal have been described rather precisely; they follow a somewhat schematic
order.

1. The first mutation involves the APC gene, disrupting its preventive function
and resulting in the accumulation of the protein β-catenin;

2. The accumulation results in allele deactivation. It is then the gene K-RAS
that gets mutated, leading to increased proliferation;

3. It is then the gene TP-53 to be mutated; as a result, defective cells are no
longer killed.

What about passengers? While their single effect is small, they greatly outnumber
drivers; and yet, they are often left out of the picture. The question, then, is the
following: how do passengers influence cancer development?

The situation we intend to study is that of a generic, although inspired by CRC,
established cancer population of small size. We do not intend to study the initial
setting of the neoplastic growth, but rather its evolution, under the assumption
that two main types of mutation are possible, namely drivers and passengers [1].
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The study will be carried out through stochastic simulations that will take
into account the features described until now. Cancer cells will be subject to the
following events:

• reproduction: the produced offspring will inherit all and only the features
exhibited by the parent cell. This means that a cancer cell will simply double
itself;

• mutation: a mutation event can occur, simultaneous to birth. Both advan-
tageous and deleterious mutations will be possible, but of the two newborn
cell, only one will be mutated, and with only one mutation;

• death: a cell might simply die, leaving its space to a luckier fellow.

In this thesis, two different scenarios will be studied using this general idea: in
the first place, cancer will be studied as a standalone population; then, such a
population will be studied as part of a network.

In the single population cancer model, the general biological model will be
more precisely discussed. Stochastic simulations will be then described, and some
preliminary outcomes will be shown. An estimation of a key factor in the evolution
of cancer, the critical population size Ncrit., will follow. Lastly, possible cures based
on the critical size will be tested.

In the second part, cancer will be part of a biological network where interactions
of cancer with healthy cells will be present. This is loosely based on bone tissue,
where this kind of dynamics has been previously observed and studied [2]. A brief
discussion of the new dynamics will follow.

The parameters of the model are inferred from actual data.
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Chapter 1

The single population cancer
model

1.1 The outlines of the biological model

The stochastic model that is going to be studied from now on is the one briefly
introduced above [1]. The neoplastic population is composed of a certain number
of individuals. Each of them is characterized by the number of driver and passenger
mutations. These mutations can be acquired while reproducing, and are inherited
by the cell’s offspring. There are then 4 key events we are going to consider; each
of them will happen with a certain rate. Once again, to recap, a single cell can:

• give birth to two identical copies of itself; the rate for this happening depends
on the cell’s fitness, as will be shown later;

• give birth to two cells, one of which will be an identical copy, while the other
one will present an additional passenger mutation. This event’s rate is not
dependent on the cell’s parameters;

• give birth to two cells, one of which will be an identical copy, while the
other one will present an additional driver mutation. This event’s rate is not
dependent on the cell’s parameters;

• die, with a rate linked to the population’s size.

The likelihood of both birth and death events depends on the number of driver
and passenger mutations in each cell; it is also directly linked to the effect of
the environment (for example, a better access to blood vessels should grant a
better proliferation; on the other hand, less oxygenation should hamper the cell’s
progress).
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1. THE SINGLE POPULATION CANCER MODEL

In order to capture these first observations, the first and simplest hypothesis is
to assume that all drivers (conversely, all passengers) confer the same advantage
(conversely, disadvantage). If that is the case, then it becomes possible to charac-
terize both birth and death rates for each cell via the number of drivers, d, and
passengers, p, as well as the population size N :

B(d, p,N) D(d, p,N)

Let us name sp the disadvantage conferred by each passenger mutation, and sd
the advantage of a driver. Then, by posing yet another assumption, which is
aggregating the genetic component into the birth function, and only leaving the
environmental effects to factor into the death function, which is an admittedly gross
oversimplification of many size-related variables that influence and determine cell
death, the following expressions can be used:

B(d, p) =
(1 + sd)

d

(1 + sp)
p D(N) =

N

K
(1.1)

where K is the initial equilibrium size (reflecting the cancer microenvironment at
the moment of the onset). Such a choice of functions may seem arbitrary, and
this suspicion is partly true. However, the specific analytic formulas used have
little consequence on the resulting dynamics. If the rates are chosen so that an
additional driver (conversely, passenger) mutation increases (decreases) birth rate,
then the qualitative behaviour of the resulting model will be similar to the one
employed here.

Some other important parameters that will be used are:

• the mutation rate µ, which measures how likely to occur a mutation of any
type is; measured in mutations per nucleotide (nt) per division, it is assumed
constant, with a value µ ≈ 10−8nt−1division−1;

• the target sizes, one for drivers, Td, and one for passengers, Tp. These two
parameters take into account the number of loci that, if altered, give rise to
either a driver or a passenger mutation. As only a “handful” of mutations
can result in actual benefits to the cell, whereas deleterious mutations have
many more ways to arise, we can expect Td to be significantly lower than Tp.
A rough estimate gives Td ≈ 700 nt, while Tp ≈ 5× 106 nt.
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1.2. Description of the stochastic model

Figure 1.1: A visual representation of the four events that each cell can undergo. Juxtaposed
to each event is the rate at which it happpens.
Birth rate B(d, p) (eq. 1.1) depends on both the number of mutations and their strength, so
that more drivers equate to an increased rate, while more passengers decrease it.
Death rate D(N) (eq. 1.1) is only dependent on the population size N and on the equilibrium
size, K; as population increases, so does the death rate, as to simulate environmental effects.
The rates for the two types of mutations, µTd and µTp, are only dependent on the mutation rate
µ and the target sizes Td, Tp. The former measures how likely a mutation is to occur, while the
latter measure the number of nucleotides which, if mutated, lead to either a driver or passenger
mutation.

It’s worth noting that, if we consider a population at the equilibrium size, com-
posed of inividuals with no mutations, we get a result that, hopefully, is convincent
enough, as both death and birth functions are equal to 1: the equilibrium is, at
least intially, preserved.

1.2 Description of the stochastic model

The stochastic model for cancer evolution which was described above has been
given in terms of probability rates. Thus, it is worth to spend a few lines in order
to explain how rates relate to the dynamics of the model [6].

One may think of the occurrence of cell division, death and mutation events
as points on the real half line R+, representing time. Let us denote with Xi, i =
1, 2, 3, 4 the random position of the time points where a transition of type i =
1, 2, 3, 4 takes place. Here, types 1,2,3,4 correspond respectively to cell division,
death, driver and passenger accumulation.

In order to shorten notations, let us set

λ1 = B(d, p), (1.2)

λ2 = D(N), (1.3)

λ3 = µTd, (1.4)

λ4 = µTp. (1.5)

Stating that a generic event Z has rate λz means that

P(Z ∈ dt) = λzdt+O(dt2), (1.6)
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1. THE SINGLE POPULATION CANCER MODEL

with an infinitesimal dt.
In order to achieve such a process, a possible approach (based on the Colouring

Theorem, [5]) is to simulate a single process on R+, which we shall denote as X,
with rate

Λ =
4∑

k=1

λk.

Such a process will only determine where one generic event occurs, but not the
type of transition involved (Figure 1.2).

Figure 1.2: A representation of how the points of a generic process Z may be distributed
on the real half line R+. There are no distinction between events.

0 t

To differentiate between the four possible types of event, we compute the fol-
lowing probability:

pi =
λi∑4
k=1 λk

.

By doing so, each event will be of type i with probability pi. As a consequence,
the following holds true:

P(Xi ∈ dt) = P(X ∈ dt)pi (1.7)

=
(
Λdt+O(dt2)

) λi
Λ

(1.8)

= λidt+O(dt2) (1.9)

The result can be visualized as in Figure 1.3.

Figure 1.3: A representation of how the points of four generic processes Zi, i = 1, 2, 3, 4
may be distributed on the real half line R+. The different colors represent the different
types of events. Their overall distibution is the one determined by the process Z in
Figure 1.2.

0 t

To recap, the model is as follows:
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1.2. Description of the stochastic model

• choose a time interval dt on R+;

• evaluate how many events occurred in the time interval;

• choose a type for each event, based on the probabilities pi.

Simulations

The most crucial aspect for simulations lies in calculating the rates. Birth and
death functions have already been introduced; birth depends on the genetic outfit
of the cell, while death follows population size linearly. The mutation events,
however, are somewhat different: they are not dependent on the cell or on the
population at large. As one could expect, the probability of developing a mutation
is largely independent from either population size or previous mutations . As a
consequence, by using the parameters introduced before, these fixed rates are:

• µTp ≈ 5× 10−2division−1 for passengers;

• µTd ≈ 7× 10−6division−1 for drivers;

As a result, mutations are more frequent in large populations. If by evolution we
mean the process which leads cancer to change its overall genetic composition,
accumulating driver and/or passenger mutations, then evolution becomes faster
and faster as population size grows.

In the end, the four rates are B(d, p) for birth, D(N) for death, µTp for pas-
senger mutations and µTd for driver mutations.

The first test has been carried out with the following parameters:

Table 1.1: The parameters used.

Parameter Value

N 1000
K 1000
sp 0.001
sd 0.1
µTp 5× 10−2division−1

µTd 7× 10−6division−1

Results are shown in Figure 1.4. The dynamics of the evolution is interest-
ing. There are some steep increases in population size, intertwined with longer,
although less steep, decreases. An increase in population size means that the birth
function, for a brief transient, is “overpowering” the death function. We can then
infer that these increases are due to the appearance of a driver mutation in one
cell.

13



1. THE SINGLE POPULATION CANCER MODEL

Figure 1.4: An example of the behaviour of the population. The sawtooth shape is due
to driver and passenger mutations: the appearance of a driver causes a steep increase in
population size, while passenger accumulation causes a less steep decrease. These two
processes are interwined.
Parameters in Table 1.1.
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1.2. Description of the stochastic model

This particular individual will then be able to reproduce more than its peers;
the resulting clonal expansion, which is the progressive take over of the whole
population by one particular mutated group of cells, will increase the population
size N . As a consequence, cells that have not developed a similar increase in fitness
will find themselves struggling to stay alive, as the death function, being linear in
N and equal for all cells, takes its greatest toll on these, now comparatively weaker,
cells. Passengers, on the other hand, tend to accumulate in all cells. Figure 1.5
describes this accumulation process. The depicted section takes place between two
driver-caused expansions. As iterations progress, the population becomes more
and more filled with passengers, as the varying colour proves.

Figure 1.5: In x axis are iterations, while in y axis is population size. At each iteration,
the overall population (represented by the green , bold line) is composed of cells with
varying numbers of passengers. Each different colour represents the number of individ-
uals with a certain number of passengers. Each of these “classes” of cells expands and
then disappears, as passenger mutations are accumulated at every iteration.
Population size and number of iterations are deliberately small, as not to cramp the
figure.

A result of the clonal expansion is the “hitchhiking” of passengers; the ones
in the cell which developed the driver will then be present in all the cells of the
population. Clonal expansion, and as a consequence, hitchhiking, can be visualized
by analyzing the population in terms of number of cells per “passenger class”, that
is, the number of cells that have a precise number of passenger mutations. To do so,
population has been divided into these classes before, during and after the fixation
of a driver mutation. The results show that, before and after the driver-caused
expansion, population is rather dishomogeneous: there are many passenger classes,

15



1. THE SINGLE POPULATION CANCER MODEL

most of them are composed of a sizeable number of individuals. However, during
the expansion, the number of classes is strongly reduced: the population becomes
almost homogeneous, as the cell which has developed the driver mutation takes
over the whole population, replacing the individuals which have not developed
such a mutation. This situation is in good agreement with well studied cancer
populations [7]: amongst different classes, the one with the higher fitness prevails.

Figure 1.6: The simulation from which the analysis of passenger classes was carried
out. The driver-caused expansion which was analyzed is the one at (approximately)
iteration 5000.

5000 10000 15000 20000
Iteration

500

1000

1500

2000

2500

3000

Population size

Figure 1.7: The composition of the population, in terms of number of passenger muta-
tions, at iteration 5180, right before the expansion. Note how many different peaks are
present; the population is composed of many subtypes of cancer cells.
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20
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1.2. Description of the stochastic model

Figure 1.8: The composition of the population, in terms of number of passenger muta-
tions, at iteration 5280, during the clonal expansion. Note how there is only one peak:
population is now homogeneous, as there are few, very similar subtypes.
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Figure 1.9: The composition of the population, in terms of number of passenger mu-
tations, at iteration 5500, long after the expansion has ceased. Note how the population
is once again dishomogeneous, as many peaks are once again present.
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Reiterating simulations without changing any parameter leads to different kinds
of outcome. Growth can be very fast, as seen in Figure 1.10; a large number of
driver mutations arise quickly; the population grows accordingly. Growth can
also be much slower, (Figure 1.11); if no driver mutation appears, population will
decrease because of diminished fitness, a result of passenger accumulation. A burst
of driver mutations makes so that, in the end, cancer grows back to its original
size.
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1. THE SINGLE POPULATION CANCER MODEL

Figure 1.10: Parameters for this simulation in Table 1.1. In this simulation, the
population develops many driver mutations in a short period of time. As a result, the
increased population size makes it more likely that further mutations appear. As the
simulation ended, cancer had grown to approximately four times its original size.

Figure 1.11: Parameters for this simulation in Table 1.1. For the first half of this
simulation, population does not develop driver mutations. As the size decreases, so does
the likelihood of further mutations appearing. Only in the end does cancer seem to avoid
extinction, thanks to many driver mutations appearing in a short lapse, increasing birth
rate and consequently population size.
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1.2. Description of the stochastic model

Comparation of different models

Having established the first rough properties of this model, the next step is to
variate some more intrinsic features.

The first modification was carried out by relaxing the hypothesis on sp and
sd. By not assuming them to be the same for each mutation, they were instead
drawn each time from a probability distribution. The ones that were tested are the
Lognormal (Figure 1.12), the Exponential (Figure 1.13) and the Gamma (Figure
1.14) distributions. These distributions were chosen because a value drawn from
them will always be positive; as such, they constitute good examples of the effect
of randomly chosen sp and sd. Analytical forms and the chosen parameters can be
found in Table 1.2.

Table 1.2: The distributions used and their parameters.

Distribution Formula Parameters

Lognormal LN (x|µ, σ) = 1√
2πσx

exp
(
− (lnx−µ)2

2σ2

) µpass. = 0.001

σ = 1

Exponential exp(x|µ) = e−µxµ
µdriver = 0.1

µpass. = 0.001

Gamma Γ(x|θ, k) = xk−1e−
x
θ

θkΓ(k)

θdriver = 0.1

θpass. = 0.001

k = 2

Qualitatively, the results are not significantly different from the initial model.
The most evident difference lies, of course, in the magnitude of the “jumps” that
the population is subject to after the arisal of each driver. Since the effect of these
mutations is not fixed, such aleatory behaviour is not surprising. When it comes
to the decline caused by the accumulation of passengers, however, the fixed effect
model and the variable one are pretty much identical. This is not unexpected,
though. When a particularly deleterious passenger arises, its effect on the cell’s
fitness is so dramatic that such a mutation is quickly weeded out by selection. On
the other hand, if a passenger’s effect is small enough, it is effectively neutral. Only
slightly deleterious mutations cause a visible decrease in the population’s size.
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1. THE SINGLE POPULATION CANCER MODEL

Figure 1.12: Except for sp, parameters can be found in Table 1.1.
Simulation with sp drawn from a Lognormal distribution, LN p(x|µ = sp, σ = 1); formula
and parameters in Table 1.2. The simulation is qualitatively similar to the one with fixed
sp.

Figure 1.13: Except for sp and sd, parameters can be found in Table 1.1.
Simulation with sp and sd drawn from an exponential distribution, expd,p(x|µ = sp,d);
formula and parameters in Table 1.2. The simulation is qualitatively similar to the one
with fixed sp and sd; however, since each driver mutation gives a random advantage, the
increases in population size caused by driver mutations have random heights.

20



1.2. Description of the stochastic model

Figure 1.14: Except for sp and sd, parameters can be found in Table 1.1.
Simulation with sp and sd drawn from a Gamma distribution, Γp,d(x|k = 2, θ = sp,d);
formula and parameters in Table 1.2. The simulation is qualitatively similar to the
one with fixed sd and sp; differences can be found in the magnitude of the increases in
population size due to driver mutations. In the last portion of this simulation, cancer
population exceeded the limit size of 10000 individuals; as a consequence, the run was
stopped, thus producing the straight segment.

Another modification was then to change the death function. A Gompertz -like
function was tested, with the following analytical form:

D(N) = log

(
1 +

N

K

)

This function takes into account finite resources for the population. For small val-
ues of N

K
, it will behave almost linearly. Greater differences are observed for higher

values of the population size N . However, these differences are not qualitatively
interesting: the dynamics stays the same (Figure 1.15).

The starting model, then, seems to capture the essential features of a driver-
passenger cancer model: population evolves through quick expansions, caused by
driver mutations, and through slow decreases, caused by passenger accumulation.
The main advantage of the starting model lies in its relative simplicity: by as-
suming sp and sd constant, an approximated analytical tractation can be carried
out.
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1. THE SINGLE POPULATION CANCER MODEL

Figure 1.15: Parameters can be found in Table 1.1. Simulation with Gompertzian
death rate, D(N) = log

(
1 + N

K

)
. The results are qualitatively similar to the ones where

D(N) is linear.

Exploring the parameters’ ranges

Having established the stochastic model, some parameters were varied and their
effect on the evolution was recorded. Amongst all possible variations, the most
interesting ones involve the following:

• the equilibrium size K: this value is extremely important in determining the
equilibrium levels between driver-caused expansions;

• the mutation strength sp, more evidently linked to the birth function.

The parameter sd was initially deemed not as interesting; its effects, being directly
observable, are also more predictable (it will be shown in (1.55), however, that this
is not exactly the case). The initial tests were centered around testing the model
for different values of sp. The effect of this change is visible in the steepness of the
decrease between the driver-caused expansions.
For very low values of sp, the decrease is almost unnoticeable (Figure 1.16); in this
situation, passengers are effectively neutral. Their accumulation will not have a
dramatic impact.
As the values of sp increase, so does the steepness. A kind of sweetspot is found
for sp in the ranges from 0.003-0.01: the decrease is stronger in this spectrum of
values (Figure 1.18). Interestingly, in most iterations, the population appears to
be headed towards extinction (Figure 1.17).
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1.2. Description of the stochastic model

Figure 1.16: Except for sp, all parameters can be found in Table 1.1. In this simulation,
sp = 0.0001; notice how there is no downward slope between driver-caused expansions,
as passenger mutations have such a small disadvantage that they can be considered
effectively neutral mutations.

Figure 1.17: Except for sp, all parameters can be found in Table 1.1. In this simulation,
sp = 0.003; there is a fast decline, and the population settles on a very low level. Cancer
has spontaneously disappeared: as such, spontaneous remission is achieved.
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1. THE SINGLE POPULATION CANCER MODEL

Figure 1.18: Except for sp, all parameters can be found in Table 1.1. In this simulation,
sp = 0.007. Decrease is not as sharp as in the previous simulation; however, there is no
explosive growth either. The steepness of the decrease caused by passenger accumulation
is very high.

Figure 1.19: Except for sp, all parameters can be found in Table 1.1. In this simulation,
sp = 0.05. Despite the great disadvantage conferred by passengers, in this simulation
cancer thrived as if the disadvantage were close to none. This can be explained in terms
of excessive disadvantage: as each passenger is so damaging, cells with a passenger
mutation are eliminated too quickly to expand.
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1.3. Estimation of the critical population size Ncrit.

However, the trend that seemed to directly link higher values of sp to faster
decreases does not hold forever. As a certain threshold is surpassed, the steepness
will once again become less and less noticeable (Figure 1.19).

By modifying K, while keeping all other parameters as they appear in Table
1.1, similar changes reappear (Figure 1.20). Population slowly progresses towards
extinction, and the few driver mutations that arise through the simulation are not
sufficient to avoid this fate.

Figure 1.20: Except for sp, all parameters can be found in Table 1.1. Simulation with
K = 500; just by changing the equilibrium size, population seems to be headed towards
extinction, as driver mutations are too few to counter passenger accumultion.

Such a behaviour suggests that some kind of critical size exists, which roughly
determines the evolution at large.

1.3 Estimation of the critical population size Ncrit.

As it was previously shown, some combinations of the parameters sp and K seem
to be linked to spontaneous remission. It can be shown, using basic population
dynamics and many simplifying assumptions, that under a critical population size
the evolution will mostly progress towards spontaneous extinction [1].

The first step in order to formulate an analytical form for the critical population
is invoking a rather harsh assumption:

B(d, p) = D(N) (1.10)
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1. THE SINGLE POPULATION CANCER MODEL

This condition means that, at a given time, birth and death events are even. In
this case, the process takes the shape of the so called “Moran process”.

The Moran process

Consider a population of finite size N , composed of individuals (potentially of
different types) which are subject to random and independent birth and death
events. In each time step, an individual is randomly chosen for reproduction and
one for death. In doing so, the offspring of the former replaces the latter, leading
to a stochastic model with constant size. This model makes analytical treating
feasible, at the cost of a general simplification.

In this model, the accumulation of driver and passenger mutations are con-
sidered as independent processes. By doing so, we can write the variation in
population size as:

dN

dt
= vd + vp (1.11)

where vd and vp represent the change due to driver and passenger fixation 1 respec-
tively. The main goal is now to find meaningful expressions for these velocities,
reducing them to functions of the model’s parameters.

Rates

Drivers and passengers arise respectively with rates µTdN and µTpN ; this means
that drivers’ and passengers’ rates differ only because of the target size.

Fixation probabilities

Fixation probability is, intuitively, the probability of reaching a state in which the
population is entirely composed of a single type of cells; in our model, it is the
probability of a particular mutation taking over the whole population.

For a more formal definition, and the derivation of an expression for the fixation
probability, let us consider a birth-death process of fixed size N , with two different
types of cells, named A and B, which can die and reproduce without mutation: A
produces A, while B produces B [3].

The only stochastic variable is the number of A-type cells, i. The number of
B-type is therefore N − i. The resulting Moran process is defined on the state
space i = 0, ..., N . In each time step, the state variable i can change to either i−1
or i + 1, or remain unchanged. Let us denote αi the probability of a transition
from i to i + 1, and βi the probability of a transition from i to i − 1. We have

1This term will be properly defined later.
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1.3. Estimation of the critical population size Ncrit.

αi + βi ≤ 1, so that the probability of remaining in state i is given by 1− αi − βi.
The states i = 0 and i = N are called “absorbing states”, meaning that once
the process reaches either of them, no further change can be achieved (unless, of
course, a new mutation arises). Therefore, we have α0 = 0 and βN = 0. Denoting
by xi the probablity of reaching state N when starting from i, we have

xi =


0, if i = 0

αixi+1 + βixi−1 + (1− αi − βi)xi, if 1 ≤ i ≤ N − 1

1, if i = N

(1.12)

If we now introduce the variables

yi = xi − xi−1 (1.13)

γi =
βi
αi

(1.14)

for i = 1, ..., N , and substitute them in 1.12, we find

yi+1 =
βi
αi
yi = γi yi (1.15)

By using (1.15) recursively, we find y1 = x1− x0 = x1, y2 = γ1x1, y3 = γ1γ2x1 and
so forth; as a consequence,

yj = x1

j−1∏
k=1

γk (1.16)

Since
N∑
j=1

yj = x1 − x0 + x2 − x1 + ...+ xN − xN−1 = xN − x0 = 1, (1.17)

it holds that

x1 (1 + γ1 + γ1γ2 + γ1γ2γ3 + ...) = 1, (1.18)

from which

x1 =
1

1 +
∑N−1

i=1

∏i
j=1 γj

. (1.19)

Note that this expression is already sufficient to the problem at hand, as it gives
the probability that a mutation fixates starting from 1 individual. A further gen-
eralization, however, is possible. Indeed, let us consider the following equation:

xi =
i∑

j=1

yj = y1 +
i∑

j=2

yj = x1 +
i∑

j=2

yj (1.20)
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1. THE SINGLE POPULATION CANCER MODEL

Inserting (1.16) into this last sum, we find

i∑
j=2

yj =
i∑

j=2

x1

j−1∏
k=1

γk = x1

(
i−1∑
j=1

j∏
k=1

γk

)
(1.21)

which, substituted into (1.20) leads us to the following expression for xi:

xi = x1

(
1 +

i−1∑
j=1

j∏
k=1

γk

)
. (1.22)

Using (1.19), we have

xi =
1 +

∑i−1
j=1

∏j
k=1 γk

1 +
∑N−1

i=1

∏i
j=1 γi

(1.23)

thus giving the more general fixation probability starting from i individuals. As
we have already pointed out, we are interested in the fixation probability ρA of
one A-type cell, taking over N − 1 B-type cells. Thus, the formula we are going
to use is

ρA = x1 =
1

1 +
∑N−1

j=1

∏i
j=1 γj

. (1.24)

For a simple Moran process, assuming both types of cells have equal fitness, the
probabilities αi and βi can be easily derived. In the state i (meaning that there
are i A-type cells), the probability of choosing an A-type cell (for either birth or
death) is given by i

N
, whereas for a B-type it is given by N−i

N
. As a result, we have

four possible outcomes at any given time step:

• two A-type cells are chosen for death and birth; this happens with probability(
i
N

)2
. The resulting transition is from state i to state i;

• two B-type cells are chosen for death and birth; this happens with probability(
N−i
N

)2
. Once again, the resulting transition is from state i to state i;

• an A-type cell is chosen for death, whereas a B-type cell is chosen for birth;
this happens with probability i(N−i)

N2 . The resulting transition is from state i
to state i− 1;

• a B-type cell is chosen for death, whereas an A-type cell is chosen for birth;
this happens with probability i(N−i)

N2 . The resulting transition is from state i
to state i+ 1.
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1.3. Estimation of the critical population size Ncrit.

In this case, αi = βi = i(N−i)
N2 , with the obvious consequence of having γi = 1 for

every i. When substituted in 1.19, we find

x1 =
1

1 +
∑N−1

j=1

∏i
j=1 γj

=
1

1 +
∑N−1

j=1 1
=

1

N
(1.25)

This result is not surprising; since all individuals reproduce and die in the same
rates, the probability of one particular individual taking over the whole population
is precisely 1

N
. However, we are interested in a more realistic situation: what if

the A-type, as a consequence of its mutation, obtained a different fitness value?
To be more precise, let us suppose that B-type cells have fitness 1, while A-type
cells have fitness r. Depending on the value of r, we can distinguish three possible
scenarios:

• r > 1 → selection favors A;

• r = 1 → neutral drift;

• r < 1 → selection favors B.

In order to reflect this fitness change, we have to modify the probabilities of choos-
ing A or B for reproduction:

• an A-type is chosen for reproduction with probability ri
(ri)+N−i ;

• a B-type is chosen for reproduction with probability N−i
(ri)+N−i ;

• an A-type is chosen for death with probability i
N

;

• a B-type is chosen for death with probability N−i
N

.

We can now calculate αi and βi for this process. A simple calculation, analogous
to the one performed above, gives the following expressions:

αi =
ri

(ri) +N − i
N − i
N

(1.26)

βi =
N − i

(ri) +N − i
i

N
, (1.27)

leading to

γi =
1

r
. (1.28)
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1. THE SINGLE POPULATION CANCER MODEL

Therefore, by using (1.23), the probability of being absorbed in state N when
starting in state i is given by

xi =
1− 1

ri

1− 1
rN

, (1.29)

and the fixation probability of a single A-type cell in a population of N −1 B-type
individuals is

ρA = x1 =
1− 1

r

1− 1
rN

. (1.30)

For an advantageous mutation, in the limit of N � 1, the following approximation
will prove useful:

ρA
N→∞−−−→ 1− 1

r
. (1.31)

In our model, the increased fitness that comes with a driver mutation (conversely,
the decrease produced by a passenger mutation) is represented by the parameters
sd (respectively, sp). By definition, we have

r = 1 + sd (1.32)

r = 1− sp (1.33)

The latter, in particular, can be further approximated: since in the model at hand
passengers are only slightly deleterious, r ≈ 1. As a consequence, we can finally
compute the fixation probabilities of driver (πd) and passenger (πp) mutations:

πd =
sd

1 + sd
≈ sd, (1.34)

πp ≈
1

N
. (1.35)

Variation in population size

Once fixated, a mutation leads to a variation in the population size, which can
be quantified by invoking the homeostasis condition already introduced in (1.10).
The alterations in the population size are:

∆Nd = Nd+1 −Nd, (1.36)

∆Np = Np+1 −Np, (1.37)
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1.3. Estimation of the critical population size Ncrit.

where the pedices identify the population sizes at equilibrium when d + 1 or d
drivers are present, or, similarly, when p+ 1 or p passengers are fixated.
To find ∆Nd, let us invoke condition (1.10) in states d and d+ 1:

B(d, p;Nd) = D(Nd) (1.38)

B(d+ 1, p;Nd+1) = D(Nd+1). (1.39)

Recalling the analytical forms of B(d, p; ·) and D(N), it follows that

B(d+ 1, p;Nd+1) =
(1 + sd)

d+1

(1 + sp)
p = B(d, p;Nd) · (1 + sd) (1.40)

B(d+ 1, p;Nd+1) = D(Nd) · (1 + sd) (1.41)

Since

B(d+ 1, p;Nd+1) = D(Nd+1) (1.42)

it holds true that

D(Nd+1) = D(Nd) · (1 + sd) (1.43)

and thus, expanding the right hand member with respect to N to the first order,
we have

D(Nd+1) ≈ D(Nd) +
∂D(Nd)

∂N
∆Nd. (1.44)

Since D(N) = N
K

, this expansion can be written as

D(Nd+1) ≈ D(Nd) +
∆Nd

K
(1.45)

By equating this last expression to the one obtained in (1.43), we have

D(Nd) +
∆Nd

K
≈ D(Nd) + sdD(Nd) (1.46)

∆Nd

K
≈ sd

N

K
(1.47)

∆Nd ≈ Nsd (1.48)

By applying the same reasoning to ∆Np, but this time using the following relation:

D(Np+1) = B(d, p+ 1;Np+1) =
(1 + sd)

d

(1 + sp)
p+1 =

B(d, p;Np)

(1 + sp)
=

D(Np)

(1 + sp)
(1.49)

and once again expanding the leftmost member with respect to N to the first
order, we find

∆Np ≈ −Nsp. (1.50)
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1. THE SINGLE POPULATION CANCER MODEL

Estimation of the critical population size

We are now ready to find the analyitical expression for the critical population size.
We have:

• the fixation probabilities:

πd ≈ sd πs ≈
1

N

• the rates at which mutations arise:

µTdN µTpN

• the variation in the population size caused by the fixation of a mutation:

∆Nd ≈ Nsd ∆Np ≈ Nsp

The variation in the population size in a time unit is then the product of these
factors; as a consequence, we can write

vd = µTdN · sd ·Nsd (1.51)

vp = µTpN ·
1

N
· (−Nsp) . (1.52)

By substituting these expressions in equation (1.11), we find

dN

dt
= µTds

2
dN

2 − µTpspN (1.53)

= µTpspN

(
N

Ncrit.

− 1

)
(1.54)

where

Ncrit. =
Tpsp
Tds2

d

. (1.55)

Ncrit. represents an unstable fixed point: the population will decline for N < Ncrit.,
and will, on the other hand, increase if N > Ncrit..
Of course, one should not expect this formula to be precise; the number of approx-
imations used makes so that this is just a rough indication of where the threshold
actually is.
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Testing the formula

Formula (1.55) can be tested. The interesting parameters (sp and K) were once
again varied, in order to collect many samples around the predicted critical size.

As the algorithm is time-expensive, simulations were not carried out until the
eventual remission, nor were they unrestricted: a limit of 15000 iterations and a
maximum population size of 10000 individuals were established, in order to get a
rough estimate of the behaviour. The results seem to prove that approximation
(1.55) for Ncrit. is rough but meaningful. Populations well under that size mani-
fested a tendency of either stationary behaviour or, more rarely, explosive growth.
Populations above, instead, are almost always headed towards unrestricted growth.

1.4 Further testing and possible cures

As demonstrated, the appearance of a critical size is roughly described by equation
1.55:

Ncrit. =
Tpsp
Tds2

d

.

This suggests some possible testing: by modifying sp and µ, the critical size would
change accordingly, hopefully leading to spontaneous remission even in situations
where cancer size would leave few hopes.

In order to prove this, the model was modified: the evolution followed the same
parameters as before, but, halfway, µ was changed first to 5 times its original value,
and then to 50. In the first case, the effect is the opposite of the intended one, as
population quickly expands. In the second, the outcome is completely different:
size quickly increases, only to then become stable.

A similar procedure was then followed, but this time the modified parameter
was sp, which, halfway the simulation, was set to 5 times its starting value (Figure
1.23).

Such a great success was not always repeated when a surgery-like event was
simulated. To do so, the population was halved at once; however, the success of
this operation strictly depends on the size that was reached by cancer at the time
of the surgery. Roughly twice the critical size is required for the survival of the
cancer. As a consequence, remission is not always granted.
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1. THE SINGLE POPULATION CANCER MODEL

Figure 1.21: All parameters can be found in Table 1.1. In this simulation, µ was
changed to five times its original value. However, this had an unwanted effect on the
evolution of cancer, as it was made faster by the change.

Figure 1.22: All parameters can be found in Table 1.1. In this simulation, µ was
changed to fifty times its original value. However, this had an unexpected effect: the
population became stationary, despite reaching a higher value. Despite the increased
likelihood of mutations happening, the population does not increase nor does it decrease;
cancer seems to have reached a chronic but stable condition.
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Figure 1.23: All parameters can be found in Table 1.1. In this simulation, sp was
changed to five times its original value. This is clearly more effective than the aforemen-
tioned change in µ (Figures 1.21 and 1.22).

Figure 1.24: In this simulation, population was halved halfway through the evolution.
As the cancer had not grown more than twice the critical size, this led to a hinted
remission.
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1. THE SINGLE POPULATION CANCER MODEL

Figure 1.25: In this simulation, cancer had already outgrown the limit of 2Ncrit.. The
operation was quickly forgotten, as cancer continued its growth.

By looking at these results, a hypothetical cure where passengers are targeted
seems the most promising one.
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Chapter 2

Cancer in a network with healthy
cells

2.1 The biological framework

In the following section, a neoplastic population the likes of which have been
extensively described above, is placed into an interacting network. The biggest
inspiration for such a model comes from multiple myeloma bone disease (MM)
[2]. As the name suggests, this particular kind of cancer arises in the bone tissue.
The main feature of this microenvironment is the presence of two main types
of interactive cells, namely osteoblasts (OB) and osteoclasts (OC)1. Simply put,
osteoblasts are responsible for the building of the bone, while osteoclasts are the
ones that destroy it. This kind of relationship between these two components is
responsible for the bone’s exceptional properties of self reparation, renewal and
adaptability, as old tissue is continuously replaced by newer one. Furthermore,
the relation between the two populations is symbiotic: each of them promotes the
development of the other.

Multiple myeloma bone disease disrupts this refined mechanism: the cancer
cells, named MM, act as a third (and rather unwated) actor, and interact with
OC and OB cells in a somewhat counterintuitive way. They maintain a symbiotic
relatioship with OC cells, promoting their growth and being favored in turn. On
the other hand, they damage OB cells, receiving no harm from them in turn.

As strange as it may seem, however, game theory studies on this model suggest
that the symptoms of multiple myeloma are caused by the overtaking of MM cells
on the general population, rather than by the deleterious effect on OB cells. An

1Osteocytes, the cells which compose tha large majority of the bone’s living matter, are not
as interesting to consider, as their role is rather “static”: they are produced and destroyed by
OCs and OBs, but they do not directly take part in the network.
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2. CANCER IN A NETWORK WITH HEALTHY CELLS

Figure 2.1: A visual representation of the biological model at hand. Image adapted
from [2].

attempt will be made to capture the features of the deterministic model, and at
the same time maintaining the key driver-passenger duality.

2.2 Description of the new stochastic model

The new stochastic model is an extension of the former. Identifying the population
sizes by their respective names, and putting Tot = OB + OC + MM , birth and
death rates for each group of cells will be modelled as in Table 2.1. Each death
rate follows the linear formula already used for cancer cells; K<pop> is each group’s
equilibrium size. The interaction parameter α describes the normal dynamics
between healthy cells, whereas β describes the interaction between MMs and OCs.
Finally, δ describes the damage caused by MMs to OBs.

Table 2.1: The new rates.

Cell pop. Birth rate Death rate

OC 1 + α·OB+β·MM
Tot

OC
KOC

OB 1 + α·OC−δ·MM
Tot

OB
KOB

MM B(d, p) + β·OC
Tot

MM
KMM

Table 2.2: The parameters used.

Parameter Value

sd 0.1
sp 0.003
K 1000
α 1
β 2
δ 0.5

Ncrit. ≈ 2100

As birth rate is now increased because of the interaction term β·OC
Tot

, the previous
critical population size estimate Ncrit. is not expected to hold true any longer. A
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test is carried out (Figure 2.2), with a combination of parameters sp and K that,
in the single cancer population, would correspond to N < Ncrit.; interaction terms
have weights α, β and δ that correspond to an enhanced interaction between
MMs and OCs when compared to the one between OCs and OBs, and to a weak
deleterious effect of MMs on OBs. Specific values are collected in Table 2.2.

Figure 2.2: The blue line represents OB cells, the orange one represents OC cells
and the green one represents MM cells. In this simulation, cancer progress is slowly
but surely heading towards remission. The small “bumps” that can be seen along the
trajectory are driver mutations arising; however, their effect is trumped by the overall
reduction caused by passenger accumulation. The birth rate of MM cells is increased by
the interactions with the healthy cells; however, these interactions are not sufficient to
avoid the reduction that cancer is undergoing.

Further testing with increasingly higher interaction parameters led to no progress
in terms of observing an eventual cancer growth. For instance, in Figure 2.3, β = 4,
while all other parameters were left unchanged. The resulting evolution bears a
strong resemblance to the one in Figure 2.2.
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2. CANCER IN A NETWORK WITH HEALTHY CELLS

Figure 2.3: The blue line represents OB cells, the orange one represents OC cells and
the green one represents MM cells. In this simulation, all parameters can be found in
Table 2.2, except for β, which was set to 4. Behaviour is qualitatively similar to the one
depicted in Figure 2.2, as cancer size is relatively constant throughout the simulation.
Drivers and passengers alike do not influence evolution as they previously did in the
single population model.

10000 20000 30000 40000 50000 60000 70000
Iteration

5000

10000

15000

20000

Population size

By trying to decrease the interaction parameters and by simultaneously dou-
bling the mutation strength of both drivers and passengers, however, cancer be-
haved similarly to what has been observed previously in the single population
model. In Figure 2.4, the parameters used are those that can be found in Table
2.2. However, now sp = 0.006 and sd = 0.2. The resulting dynamics allows cancer
to reach the threshold size of 10000 individuals in a relatively brief interval. This
time, unlike in Figure 2.3, driver mutations are significant enough to cause clonal
expansions. The reason for doubling sp and sd is to be found in the relative advan-
tage that is conferred by drivers and passengers. In the single population model,
both B(d, p) and N(K) were initially close to 1. The appearance of either a driver
or a passenger had a relative impact on the fitness of the order of, respectively,
10% and 0.1%. In this model, however, the interaction terms are added to what we
may refer to as the “intrinsic” birth rate, that is, the function B(d, p). As can be
seen in these simulations, the interaction terms make so that the intial equilibrium
between birth and death events for cancer is set at approximately 5000 individuals
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(Figure 2.3). As a result, we can infer that the rates of both birth and death are
approximately equal to 5. In this scenario, an increase of approximately 0.1 in
the intrinsic birth rate will lead to no appreciable increase. Similarly, passengers’
impact will be less noticeable in this situation, and they will be effectively neu-
tral. Thus, both the absence of sharp increases in cancer population size and the
avoidance of an eventual remission are explained in terms of how sd and sp relate
to birth and death rates as a whole. By resetting the interaction terms to the
ones in Table 2.2, and simultaneously doubling sp and sd, a situation similar to
the initial single population model was achieved. The effect of mutations is now
much clearer.

Figure 2.4: The blue line represents OB cells, the orange one represents OC cells and
the green one represents MM cells. In this simulation, all parameters can be found in
Table 2.2, except for sp and sd, which were set to 0.006 and 0.2 respectively. Behaviour
of cancer is qualitatively similar to the ones depicted in the single population model.
Note how OCs and OBs are influenced by the increasingly higher cancer population.
The last, flat portion of this graph is due to the reaching of the threshold size of 10000
individuals by cancer; as a result, cancer was deemed to be growing to the eventual
demise of the hyopthetical patient, and the simulation was stopped.

The results of simulations the likes of which have been depicted above (Figures
2.2 and 2.3), however, suggest a hypothetical “chronic” scenario [7]. Cancer, in
these simulations, is not able to grow over the size that interactions dictated. As
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a consequence, in this conditions, chronicity is attained.
It seems then that a necessary condition for a driver-passenger influenced cancer

to grow in a network is for mutation strength sd and interaction terms to be in a
ratio such that the fitness increase granted by drivers is approximately 10% of the
total, as was determined in Figure 2.4. This is not, however, a lower bound; it is
merely a sufficient ratio.
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Conclusions

The model discussed in this thesis resulted to adequately describe the progress
of cancer. Its key features, namely the occurrence of spontaneous remission, dor-
mancy and growth are observed in cancer; also, the fact that, at least initially,
cancer has a somewhat homogeneous composition, can be found in this model, as
after a driver-caused expansion, the population is primarily composed of cells with
that particular driver mutation. Moreover, this model provides an explanation for
the “hitchhiking” phenomenon. Passenger mutations which rise in a cell where a
driver has just appeared will spread to the whole population because of the effect
of such driver, despite not giving their host any advantage, and rather being dele-
terious.
All of these features are consequence solely of the driver-passenger duality: no
other mechanism was necessary to have these peculiarities arise. Indeed, one may
investigate whether all of the features of the present model are necessary and, if
that were not the case, which features could be removed without disrupting the
present qualitative behaviour. For instance, since cells with a different number of
drivers are regarded as different species, the model studied in this thesis has poten-
tially infinitely many species. If such complication could be avoided, an analytical
approach could be more feasible.

The study of a cancer population in a network has shown significant difference
when compared to a single cancer population model. The most interesting one is
that the formula for the critical size that was found for a single cancer population
does not hold true any longer.

One possible research direction could consist in a coarse graining of this model,
by approaching it via a branching-process with only three species. By dividing the
cancer population in three different classes on behalf of their birth rate, one could
schematically represent the distinction between cells where passengers’ effects are
predominant, cells which have an approximate balance between the two types
of mutation’s effects, and lastly cells for which drivers’ effects are dominant. By
doing so, a computationally tractable model might be attained; however, the actual
agreement between such a model and the one studied in this thesis should be tested
beforehand.
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