
Università degli Studi di Padova

Department of Mathematics ”Tullio Levi-Civita”

Master Thesis in Computer Science

Preliminary study on the use of neural
networks for the real-time detection of LFP

evoked by sensory stimuli
Master Thesis

Supervisor

Prof. Alessandro Sperduti

Master Candidate

Leonardo Amato

Academic Year 2022-2023

Leonardo Amato: Preliminary study on the use of neural networks for the real-time
detection of LFP evoked by sensory stimuli, Master Thesis, © april 2023.

Abstract

To create a neural prosthesis, multiple studies on how the brain works are necessary.
Stefano Vassaneli’s NeuroChip Lab of the University of Padova studies how the brain
responds to sensory stimulation. The laboratory carried out multiple experiments
with stimulation of the whiskers of rats to study how evoked potential can be used
for neural prostheses. My thesis work focuses on the analysis, implementation and
comparison of various deep neural network techniques for the task of labeling brain
recordings to detect evoked potentials.
The analysis focused on three types of networks: temporal convolutional networks
(TCN), gated recurrent unit (GRU) networks, and a model that uses both techniques.
To create these models, the data set was first created from recordings of the barrel
cortex of rats. The input data are the local field potential (LFP) features while the
output data are the labels of which segments contain evoked responses. The data set
was enriched in the training phase by using a data augmentation layer.
I proceeded to perform a model selection process to extract the best hyperparameters
from the models. The selected models were then compared to each other, to a set of
baseline models, and to an ensemble technique. The temporal convolutional network
was selected as the best in terms of efficacy. This model was the worst in terms of
efficiency, so a magnitude pruning process was performed to reduce the number of
parameters of the model. After pruning, the model is 10 times more efficient.
The test performed on full recordings of a test rat shows clear advantages in using
deep learning techniques. The final model Temporal Convolutional Network is capable
of identifying in real time up to 86% of the evoked responses, with high precision, low
energy consumption, and a delay of just 80 ms.

ii

Ringraziamenti

Vorrei innanzitutto ringraziare mia madre Cristina, da cui ho appreso creatività e
generosità, mio padre Gigi, che da sempre mi ha insegnato ad avere pensiero critico,
mio fratello Francesco, con cui condivido moltissimi interessi nonostante la diversa
personalità, e mia nonna Ivana, che ogni giorno arriva in bici portandoci le sue storie,
il suo ragù e il suo frico.

Un grande ringraziamento va a tutti i miei amici.
Agli amici di Cividale, Sofia, Amy, Luca e Jacopo, per la musica, le belle serate, i
discorsi sui film, per avermi sopportato fino ad ora e per esserci sempre stati.
A Davide per essere un ottimo amico e per tutte le serate passate a parlare di scienza
e storia.
A Claudia che ci ha portato la sua dolcezza dalla Spagna.
A Solmaz, con cui condivido il mio banale senso dell’umorismo, per essere l’unica per-
sona che conosco ad amare i Doors quanto me e per essere sempre stata un’ottima
amica.
A Sepide, che come me ha un profondo amore verso i gatti.
Alle le mie coinquiline Noemi e Sabrina, con cui vivere è un piacere.
Al resto dei miei amici conosciuti a Padova, Marco, Angelica, Claudia, Benedetto e
Aurora, che hanno reso questa città un po’ più casa.

Volevo ringraziare il Prof. Alessandro Sperduti, il Prof. Stefano Vassanelli, il dr.
Mattia Tambaro e la dr.ssa Claudia Cecchetto per l’aiuto offerto e l’opportunità data.

Infine, il ringraziamento più importante va alla mia ragazza Veronica, per avermi
migliorato la vita e aver reso ogni giorno più bello. Ogni ricordo dei momenti mag-
nifici passati con lei riesce a farmi sorridere anche nei momenti più difficili.

iii

Contents

Introduction vi

1 Theoretical background 1
1.1 Neuron, barrel cortex and brain signals 1

1.1.1 Neuron . 1
1.1.2 The rat barrel cortex . 3
1.1.3 Local field potential . 3
1.1.4 Multi unit activity . 4

1.2 Machine Learning and Deep Learning 5
1.2.1 Supervised Learning . 5
1.2.2 Artificial Neuron, neural network and training process 6
1.2.3 Convolutional Neural Network 9
1.2.4 Recurrent Neural Networks . 11

1.3 Classification metrics . 13

2 Data acquisition, pre-processing and analysis 15
2.1 Data acquisition . 15
2.2 Raw data structure . 16

2.2.1 Spectrum of the channels . 17
2.3 Analysis of neural signal features . 17
2.4 Features Extraction . 18

2.4.1 Extracting the LFP . 18
2.4.2 Extracting the MUA . 19
2.4.3 Extracting frequency features 20

2.5 Analysis of the data . 20
2.5.1 Average evoked potential . 20
2.5.2 Spontaneous activity . 21
2.5.3 Removing bad recordings . 21

2.6 Extracting the Stimulus response window 22
2.7 Partitioning the data for training . 23

3 Methodology and results 24
3.1 Preliminary analysis of the models . 25

3.1.1 Baseline models . 25
3.1.2 Analysis of deep learning techniques used on LFP and EEG . . 25
3.1.3 Output block . 26
3.1.4 Data augmentation layer . 28
3.1.5 Training, Validation and Test set 28

iv

CONTENTS v

3.1.6 Preliminary setup . 29
3.2 Model selection . 30

3.2.1 Selection process and results 31
3.2.2 Possible improvements . 36

3.3 Selected models . 37
3.3.1 Baseline models . 37
3.3.2 Convolutional Model . 40
3.3.3 Recurrent Model . 41
3.3.4 Mixed Model . 42
3.3.5 Ensemble Model . 43

3.4 Testing the models . 43
3.4.1 Baseline models . 43
3.4.2 Deep models . 46
3.4.3 Comparison . 51

3.5 Optimization of the convolutional model 52
3.5.1 Pruning pipeline . 53
3.5.2 Pruning results . 54
3.5.3 Possible improvements . 57

3.6 Analysis of the models with cross-validation 57
3.6.1 Baseline models . 58
3.6.2 Deep Models . 62
3.6.3 Comparison . 64

Conclusion 65

Introduction

Prof. Stefano Vassanelli’s ‘Neurochip Lab’ at the Department of Biomedical Sci-
ences (DBS) of the University Of Padova studies the various technologies and ap-
proaches required to build a functional neural prosthesis, a system capable of reading
and changing the behavior of a neural population through the use of electrical probes.
An electrical probe is a needle-shaped array of electrodes, which can be intrusively in-
troduced in the brain cortex to record the change in electrical potential. Central in the
building of such a system is the study of the various functions of the brain, such as the
response to a stimulation. All the analyses carried out by the Neurochip lab are done
on brain recordings extracted from the barrel cortex of multiple rats, i.e. the section
of the cortex that handles the inputs from the whiskers. Several studies conducted
in the laboratory focus on the potential evoked by the sensory stimulation of
the whiskers of rats. A potential evoked is a precise change in the electrical potential
of the cortex and is recorded in response to an event or stimulation. In Figure 1, a
general scheme of this recording process is illustrated.

Figure 1: Scheme of the data acquisition process. A stimulation is sent to the whisker and
neural signal and the response to the stimulation are recorded.

Two extracellular signals are used to analyze the response to whisker stimulation:

• The local field potential (LFP) is the change of potential recorded with the
use of the probes in the range 1-100Hz. The LFP contains information about
the synchronization of the activity of multiple neural population.

• The multi-unit activity (MUA) measures how many neurons touching the
probe are firing at a given instant. The MUA is extracted from the high 300-
6000Hz frequency range. It contains information about a single population of
neurons and the codification used by them to communicate.

vi

INTRODUCTION vii

My work focuses on the detection of the patterns generated in response to the stimu-
lation through the use of deep learning techniques, used on the LFP signal. The task
of the program is to label the evoked potential in the recordings, as shown in Figure
2.

Figure 2: Example of evoked potential labelling in EP (evoked potential) and not EP (not
evoked potential).

Deep learning is a branch of machine learning that focuses on the creation of deep
neural networks. A deep neural network is a multilayered model capable of learn-
ing from a data set how to extract complex features. The reason why deep learning
models generally perform better than shallow ones lies on the fact that each layer
of the model has the ability to recognize a complex sub-feature from the output of
the previous one. The model will learn the optimal pipeline of sub-feature extraction
needed for the final output feature. Within this framework, a supervised learning
approach was used, which requires the designer to specify the intended behavior that
must be learned. In this case, the behavior the model must learn is the detection of
the evoked response. Various deep learning models are currently being used to ana-
lyze brain signals, for example to predict emotions on electroencephalography data.
However, there are no studies on the use of deep learning models that are capable of
identifying the time window of the evoked potential in real time. To create a working
model, two different analyses were performed. The first analysis, used as a baseline,
was performed using linear classifiers on three types of features: the LFP signal, the
time-frequency features extracted from the LFP, and the MUA signal.
The second analysis focused on the use of deep learning. The main types of tech-
niques used are models built on Gated Recurrent Unit, Temporal Convolutional
Block, and a mixture of the two.
I have performed all the analyses, pre-processing and designed the models using MAT-
LAB 2022b.

Problem statement and Aim of the thesis
The NeuroChip Lab provided a set of recordings of rats anesthetized with urethane.
A first problem arises when we want to create a data set that will be used in a machine
learning context. It is important that the labels assigned to the data correspond to
reality. If we label a time window as an "evoked response" when there is none, the
model would learn the wrong behavior. In terms of functionality of the models other
types of problems occur. The provided recordings contain multiple evoked potential

INTRODUCTION viii

mixed with spontaneous activity of the brain. The main aim of the work is to develop a
system capable of correctly identifying the evoked potential. Spontaneous activities of
the brain are patterns of activity that occur in the absence of external stimuli. These
patterns can be really similar to those of an evoked potential. For this reason, a simple
system, such as the linear classifier, would struggle to discriminate between the two.
In addition, a further issue involves the efficient identification of the evoked potential
in real time. A system that requires a small amount of operation per second needs to
be developed to be used on a chip with a low energy and short delay requirement.

Significance of the Study
My work focuses on sensory stimuli on whiskers. However, a system with the ability
to detect evoked potential could have further uses in fields such as medicine, bio-
engineering and neuroscience. The model I have built could be yet slightly modified
to be used for detecting potential evoked by other events and stimulation, for example,
the detection of a visual or auditory stimuli, or the detection of events internal to the
brain. Currently, when conducting a study on evoked potentials, information about
each stimulation, such as instant, duration, or intensity, must be recorded; otherwise,
it would not be possible to find the evoked potentials. With a model capable of
detecting evoked potentials without the need for stimuli information, new types of
experiments could be carried out.
Furthermore, this type of model can be used in real-time closed-loop systems to restore
or improve brain functionality. Close-loop is a term that describes all techniques where
the state of the brain is iteratively analyzed and changed in an autonomous system.
These systems are often used as an alternative or in support of drug treatment for
disorders such as Parkinson’s disease or epilepsy.

Methodology
Regarding the methods employed to create the final model, I followed four main steps:
the creation of the data set, the selection and creation of the models, the comparison
between the models, and the optimization of the best one. At first, after defining and
extracting the main features from the recordings, the best recordings were selected and
those where the evoked response is too weak or not present were removed. Currently,
this is done visually with a manual selection. This process was slightly improved by
analyzing and comparing the average response of each recording.
Furthermore, a set of linear models was selected. These models were used as baseline
to analyze the improvement gained by the use of deep learning techniques.
To design the structure of deep learning models, a brief analysis of how similar models
are built for similar issues was performed. The four deep neural network architectures
that were analyzed and implemented are: a Gated Recurrent Unit network, a
Temporal Convolutional Network, a Recurrent-Convolutional mixed net-
work, which uses both GRU and convolutional layers, and an ensemble of the three.
Taking this into consideration, a model selection phase was then performed, where
I defined a set of possible networks, one for each architecture with the exception of
the ensemble. By means of the information extracted from a random search, the four
models were constructed. This search was carried out on data from all rats except
one, which was used to test and compare.
Furthermore, the best deep learning model was selected and then optimized with a

INTRODUCTION ix

magnitude pruning algorithm. Pruning is a process in which the least important parts
of a neural network are removed, leaving only the fundamental sections. The use of
pruning greatly reduced the amount of computation required by the final network.
The work was concluded with a cross-validation of the models to give a better overview
on how they perform in recordings of different rats.

Structure of the thesis
Chapter 1, Theoretical background, contains all the knowledge that I consider funda-
mental for a clear understanding of my work. Information about how neurons, barrel
cortex of the rat, local field potential, and multi-unit activity is provided in the first
section. The second section includes a brief explanation of the main concepts of deep
learning, such as neural networks, learning processes, convolutional networks, and re-
current networks. Finally, the definitions of the metrics of comparison and evaluation
are given.

Chapter 2, Data acquisition, pre-processing and analysis, focuses on the data pro-
vided by the NeuroChip lab and the creation of the final data set, which will then
be used for training. The process followed by the lab to record the data and their
content is briefly described. The following sections are centered on the definition
of the various features, such as LFP and MUA, and how they were extracted and
preprocessed. In addition, a brief analysis of the evoked response and the average
response to stimulation is given. This is followed by a brief explanation of how the
best recordings are extracted and how the data were labeled. Finally, a description
of how the data were formatted in order for them to be used by the models is provided.

Chapter 3, Methodology and results, presents how the various models used for the
detection of evoked responses were created and compared. The first section regards
the preliminary analysis required to build a functioning model. The second section
focuses on how model selection was performed, providing the results of the selection
process. In the third part, the various selected models are presented. In the fourth
section, the performance of the models on the test set are discussed and compared. In
the fifth section, the optimization of the best-performing model is discussed. Finally,
a final general comparison is made on all models with a cross-validation technique.

The Conclusion provides a brief summary of the completed work and the results
obtained. In addiction, further possible improvements of the work are mentioned, as
well as an account on the significance of the results for future researches in the field
of neural prosthesis.

Chapter 1

Theoretical background

In this chapter, a brief introduction is presented to all the topics required to fully
comprehend the work. The various topics are organized in three sections. The first
one will provide an explanation on the origin of the data, i.e. which cerebral process
generates the data used in this work and what is the information contained in it. In
the second section, an introduction will be given on the concept of machine learning
and deep learning, as well as an explanation of the main types of layer used in the
models. In the last section, the various metrics that were used for comparing the
performance of those models analyzed in this thesis are discussed.

1.1 Neuron, barrel cortex and brain signals
The data has been recorded from the extracellular space of the barrel cortex. To
understand what it contains we first need to understand what is a neuron, what is
an action potential, how action potential propagate in the extracellular space, what is
the barrel cortex and what are the local field potential and the multi unit activity.

1.1.1 Neuron
A neuron is a specialized cell that transmits electrical and chemical signals. It works
as the building block of the nervous system [1]. Its components, shown in Figure 1.1,
are the cell body, also called soma, where the nucleus is found and where most logical
"decisions" are made; the dendrites, which are the inputs of the cell; the axon, which
functions as the output of the cell. The most important section of the axon is the
terminal, which connects the neuron to other dendrites, allowing it to send signals to
other neurons. A single neuron has little computational capabilities, but when located
in a more complex network, the neural population is able to solve more complex tasks.

1

CHAPTER 1. THEORETICAL BACKGROUND 2

Figure 1.1: Scheme of the neuron and its main components.

To understand how the neuron is able to process information, we need to focus on
its membrane. The inside and outside of the cell membrane contain different concen-
trations of sodium ions, positively charged and mostly present outside, and potassium
ions, negatively charged and mostly present inside. Due to the different concentrations
in ions, when the neuron is at rest, we see a -70mv difference of potential, or voltage,
between the extracellular and intracellular space. If ions could cross the membrane,
they would balance the voltage at 0. The membrane is full of gates, also called chan-
nels, with this exact function. These gates have the ability to allow potassium or
sodium ions to flow to the other side of the membrane. The voltage-gated channels
open when a voltage threshold is reached. An action potential (AP) is a chain re-
action that is generated by these gates when a threshold of -50 mv is exceeded. AP
propagates through the membrane in one direction, from soma to axon and in some
cases to dendrites. After the action potential, there is a rebound phase that reduces
the probability that another action potential occurs. [1][2][3]
In this thesis, I will also refer to the action potential as spike and to the event of an
action potential occurring as neuron firing. An action potential is shown in Figure
1.2.

Figure 1.2: Phases of an action potential.[2]

The synapse is the connection between an axon terminal and the dendrite or the
soma of the other cell. If the synapse is inhibitory, when the action potential reaches
the terminal, it sends a chemical signal to the other cell, which activates some gates
that lead to a negative change in potential. This negative change in potential reduces

CHAPTER 1. THEORETICAL BACKGROUND 3

the probability that a subsequent action potential of the other neuron occurs. If the
synapse is excitatory, the chemical signal sent to the other cell causes the activation
of a different type of gate, leading to an increase in potential, which increases the
probability or directly causes a new action potential in the other neurons. [1][2]

1.1.2 The rat barrel cortex
The data used in this work have been extracted from the cerebral cortex of rats, more
precisely, the barrel cortex, a region of the somatosensory cortex. Somatosensory
processing handles information coming from a subset of body sensors such as touch,
pain, and temperature. The barrel cortex handles the whisker stimulation signal. A
"barrel" is present for each of the whiskers, as shown in Figure 1.3.

Figure 1.3: A) shows the position of the barrel cortex. B) shows the various whiskers and
their position. C) shows the position of each "barrel" in the barrel cortex. Each
barrel is connected to a relative whisker.[4]

Barrel cortex has six layers, ranging from the most superficial layer 1 to the deepest
layer 6. The barrels are found at layer 4 and each is connected to one whisker; whereas
other layers can receive information from multiple whiskers. The probe is inserted
directly inside one or more barrels and is capable of recording information from all
6 layers. There are two main pathways that the stimulus information travels on.
The first reaches Layer 4, the second reaches layer 5. These two layers are where the
strongest evoked potential is recorded. The barrel cortex is able to process information
about deflection of the whiskers. [5]

1.1.3 Local field potential
The local field potential (LFP) is the electric potential recorded in the extracellular
space of the cerebral cortex. It measures the activity of multiple neural populations
firing synchronously. An example of LFP signal is shown in Figure 1.4. These signals
do not contain any information about a single neuron’s firing, due to two factors.
Firstly, if multiple neurons do not fire simultaneously, the values of the action poten-
tials average out to 0. Secondly, even if there were no other interference, the action
potential of a single neuron would be too weak to be detected from afar, since it would
not be able to propagate through the extracellular without being mitigated. Therefore
LFP signals are only used to analyze the neural activity of neural populations, rather
than a single neuron.

CHAPTER 1. THEORETICAL BACKGROUND 4

Figure 1.4: Example of LFP recording.

The most important features that can be extracted from a LFP signal are the
frequency of the various oscillations. The intensity of the different oscillations gives
us various information about the type of task that the cortex is performing. Five
frequency bands are the most important in this context: Delta component at 0-4Hz,
Theta at 4-8Hz, Alpha at 8-12Hz, Beta at 12-30Hz, and Gamma at 30-100Hz. The
evoked potentials (EP) are electrical potentials that can be recorded in the LFP
and are produced by the nervous system in response to an external stimulus. Evoked
potentials differ in shape depending on the type of stimulation. There are three
main types of study around EP: visual evoked potential (VEP), EP generated in
response to visual stimulation, auditory evoked potential (AEP), generated in response
to auditory stimuli, and somatosensory evoked potential (SSEP), generated in response
to touch, pain, and temperature stimuli. In the barrel cortex, we can only record the
somatosensory potential evoked by the whisker stimulation.

1.1.4 Multi unit activity
Multi-unit activity (MUA) is a measure connected to the number of neurons firing
in a neural population at a given time[6]. It can be recorded with probes with a
high sampling rate and low noise-to-signal ratio. Whenever a neuron touching the
probe microelectrode fires, we can record an action potential. By selecting only the
negative peak of the action potentials, we are able to create a MUA signal. An example
of MUA recording is shown in Figure 1.5. These peaks are found in the 300-1000Hz
range. A spike train is the sequence of neuronal firing. The temporal pattern of a spike
train encodes information in various ways. In addition to firing rates, the temporal
pattern of spike timings also carries important information about brain functions. For
this reason, when preprocessing these data, it is important to leave both the spatial
information and the fire-rate information intact.

CHAPTER 1. THEORETICAL BACKGROUND 5

Figure 1.5: Example of MUA recording with multiple spike trains.

1.2 Machine Learning and Deep Learning
Machine Learning (ML), a subset of artificial intelligence (AI), studies how an algo-
rithm can learn a behavior or information from data. Given an ML task, we call model
an algorithm that has been trained on data to solve it. The field of Deep Learning
(DL) is a subset of machine learning centered around nerual network models with
multiple layers, each one containing multiple nodes. Each node is able to extract a
feature from the output of the previous layer to be applied as an input for the next
layer. We can look at the model as a pipeline where the input is progressively trans-
formed at each layer in order to get the important features to solve the task. Deep
learning uses nodes that mimic the functioning of the brain. The simpler node is the
artificial neuron, a function that simulates the properties of the action potential of a
neural cell. More complex nodes have been built over time, inspired by the function
of a neural population. This section will mostly focus on the ones that were used in
this work: convolutional and recurrent nodes. Convolutional layers uses array of
filters, learned from the data, to compute complex feature from local portions of the
input. For example, a convolutional layer is able to perform multiple types of edge
detection; a following layer could then use this edges features to find more complex
information about the structure of an image or of a signal. A recurrent node is a type
of node built for causal type of data, such as time sequence or text. To understand
the context of the sequence recurrent unit uses a memory block. Each time a new
input is sent to the unit, the node computes a new memory state, starting from the
current input and the previous memory state.

1.2.1 Supervised Learning
Supervised learning is a machine learning paradigm. In this paradigm data data is a
set of pairs of input and output features. The input can be, for example, an image, a
time sequence or a set of values. The output can be of the same type of the input, for
example in image-to-image or sequence-to-sequence problems, otherwise it can have
a different representation, for example, in image-to-class problems. We call "oracle"
the function that maps the input X to the output Y. We want to create a function
h(X) that can approximate the oracle function that created the original data set. The
oracle can be seen as a series of effects that, starting from the state of the environment

CHAPTER 1. THEORETICAL BACKGROUND 6

described as X, creates a measurable outcome that we can describe as Y . The field
of deep learning tries to create models capable of imitating these pipelines of effect
in order to predict the data Y starting only from X. In the context of this work, I
analyzed an isomorphic sequence-to-sequence problem, where input and output have
the same length. The input are features extracted from the raw signal of the brain
recording and the output is a signal that labels the are evoked potential.

1.2.2 Artificial Neuron, neural network and training process
As previously mentioned, an artificial neuron is the simplest unit in the field of neural
network. The artificial neuron has two sub-functions, the linear function and the acti-
vation faction. The linear function linearly transform the input vector x by applying a
dot product with the weight vector w of the neuron. To the result of the dot product
a bias term b is added.

z = x · w + b

The activation function, usually a non linear function, is applied on the output of the
dot product.

y = f (z)

Figure 1.6: Scheme of artificial neuron.

Multiple neurons can be combined in a dense layer, the most common layer of a
neural network. The reason why it is called dense, or fully connected, is given by the
fact that each output of the layer has a weight that connects it to each input of the
layer, as shown in Figure 1.7. While a single neuron computes a single value, a dense
layer is capable of computing a vector of values.

CHAPTER 1. THEORETICAL BACKGROUND 7

Figure 1.7: Scheme of a fully connected neural network.

Training process

Training a neural network is a optimization problem. In this process, we adjust the
weights and biases to minimize a cost function J . This cost function must be dif-
ferentiable and it must measure the difference between the output predicted by the
model and the target output. The backpropagation algorithm takes the output of
the cost function and computes the weight gradients [7]. The gradient is the vector
of the partial derivatives ∂J

∂w . We use the chain rule of the derivative to compute this
value. The chain rule expresses the derivative of the composition of two differentiable
functions in terms of derivatives of the two functions. So given f and g such that

h = f (x) y = g (h) = g (f (x))

we can compute
∂y

∂x
=

∂y

∂h
· ∂h
∂x

Since the cost function is a composition of multiple differentiable function, we can use
this chain rule to compute its derivative.
Now we can use the gradient to find the direction of adjustment to minimize J. Gradi-
ent descent is an optimization algorithm that is used to minimize the cost function.
This algorithm forwards the input data through the network in the forward-step and
computes the cost function. Then, backpropagation is used to compute the adjust-
ment of the weights and biases in the backward-step. These two steps are repeated
until the algorithm converges to a solution. At each iteration, the weights are changed
with the following formula:

wt = wt−1 − α · ∂J

∂wt−1

where t is the iteration, wt is the updated weights, wt−1 is the weight value in the
previous iteration and α is the learning rate. If α is too big, there is a high risk
of overshooting and missing the global minimum (the set of weights that return the
minimum cost) of J. While if α is too small, there is a high risk of local minimum
convergence. In this work, an alternative to gradient descent is used: Adaptive
Moment Estimation (ADAM) optimization [8]. The most important thing to un-
derstand about ADAM is how it improves the training process. The method computes
individual adaptive learning rates for each parameter from estimates of the first and
second moments of the gradients. This makes training more stable and faster. [9]

Activation functions

If we stack multiple dense layers with linear activation function, we end up with a
linear model, since the combination of linear function is itself a linear function. The

CHAPTER 1. THEORETICAL BACKGROUND 8

complexity of the model in this case would not scale with a deeper model. To give the
model more expressive power, we use non-linear activation functions. A non-linear
activation function has the ability to add non-linearity to the model by using non-
linear transformation of the output of the neuron. The simplest non-linear activation
is the sign function.

Sign(x) =

{︄
−1 for x ≤ 0

1 for x > 0

Sign activation has a major problem. The derivative is 0 which makes it unusable in
backpropagation, since it would make the gradient of each weight equal to 0 due to
the chain rule.
The Rectified Linear Unit (ReLU) is the most common non-linear activation func-
tion used in the hidden layers of neural networks.

ReLU(x) =

{︄
0 for x ≤ 0

x for x > 0

The derivative of ReLU for negative input is 0, while for positive output is 1. For
this reason, when using ReLU, the weights of the neurons are only when the output
is positive. This solves the problem of the sign function. However, this would mean
that most of the weights during a training iteration would not change. Another major
problem is the dying ReLU. If all pre-activation values are negative, then we would
not be able to update the weights of the node. This would make the neuron always
return 0. [10]
To fix these problems, alternatives to ReLU have been developed, where negative
values are mitigated but not set to 0. One of these alternative is the Exponential
Linear Unit (ELU):

ELU(x) =

{︄
α (ex − 1) for x ≤ 0

x for x > 0

In a binary classification context, we have targets that are either 0 or 1. To train a
model on these data, we require a final activation that returns a value in the range of
(01). For this reason, we use the Sigmoid function:

Sigmoid(x) =
1

1 + e−x

Sigmoid always returns a value in the range of 0-1 and is differentiable. Sigmoid is
sometimes used in hidden layers and to create gate-like connections. All of the models
analyzed in this thesis use Sigmoid in the output layer. [10]

Underfitting and Overfitting

Two main problems can arise when learning a model:

• Under-fitting happens when the model is too simple and it is not able to learn
the complexity of the task.

• Overfitting occurs when the model is too complex and is not able to generalize
what is being learned. In this case, the model would perform optimally on
the data with which it was trained and poorly with new examples (test and
validation data).

CHAPTER 1. THEORETICAL BACKGROUND 9

A third problem that may arise is the presence of errors in the data set. If the labels
in a classification problem are wrongly placed, then the model would try to learn the
wrong behaviours.
The optimal way to build a model is to use a complex one and regularize its behavior.
Regularization is the set of techniques that are used to prevent a complex model from
overfitting. We can either increase the size of the data set or put some constraints on
the weights. In my work, two regularization techniques are used: data augmenta-
tion, a technique that virtually increases the size of the data set by applying small
transformation on the inputs, and dropout, which randomly sets some of the output
of hidden layer to 0 in order to imitate an ensemble of simpler models. [11]

Exploding and vanishing gradients

The vanishing gradient problem and the exploding gradient problem are two issues
that can arise when training neural networks with gradient-based learning methods.
The problem of vanishing gradients occurs when gradients become too small during
backpropagation, making it difficult for the network to learn. The exploding gradient
problem occurs when gradients become too large during back-propagation, which can
cause the weights to update too much and make the network unstable. Both problems
can make it difficult for a neural network to learn and converge on a solution. There
are several ways to fix the problems of vanishing and exploding gradients in neural
networks. One way to fix the exploding gradient is to use Gradient Clipping [12]. In
this technique, we introduce a threshold value. Whenever the norm of the gradient
||g|| exceeds this threshold, the gradients is multiplied by the factor Threshold

||g|| . The
threshold must be chosen carefully; If it is too high, we would not fix the exploding
gradient, and if it is too low, we would slow down the learning. For fixing the gradient
vanishing problem we could use a better random initialization or residual connection.

Normalization Layer

The output of each node of the network has a given distribution. During the training
these distributions keep shifting and changing. This creates two problems: the training
slows down since a smaller learning rate is needed to overcome this shift in distribution;
If the pre-activation value is always negative, and we use activation like ReLU or ELU,
smaller changes are made, since the gradient is either 0 or really small. To fix this,
normalization layers are added in the pre-activation of each neuron. Normalization
can be computed on different dimensions, such as normalizing the output of all layers
(layer normalization), normalizing the output of each layer in a batch of data (batch
normalization), or normalizing the output of each layer for any given input (instance
normalization).[13][14][15]

1.2.3 Convolutional Neural Network
A convolutional neural network (CNN) is a deep learning neural network designed to
process structured arrays of data such as images or sequences. They use a mathe-
matical operation called convolution on at least one of their layers. They have three
main types of layers, which are the convolutional layer, the pooling layer, and the fully
connected layer. For this context, we will focus on 1-dimensional CNN. In a 1D CNN,
the input is a one-dimensional signal, and the convolution operation is performed over
the time dimension. The output of the convolution operation is then passed through

CHAPTER 1. THEORETICAL BACKGROUND 10

a non-linear activation function such as ReLU. The output of this layer is then passed
to another layer for further processing.[16]
Given a signal channel, a kernel is a small vector that slides over the input data and
performs the dot product with each segment of the input. A filter is a set of ker-
nels, one for each input channel. The output of the kernels convolutions are summed
together to create the output of the filter. This process is schematized in Figure 1.8.

Figure 1.8: Example of convolutional filter on a multi channel sequence input.

A moving maximum window is often added after the layer. This function, also
called max pooling, is used as a down-sampling technique, to reduce the dimensional-
ity of the data while at the same time maintaining the most important information,
the maximum activation. The main advantage of using max pooling is the translation
invariance, since it removes little variation of local portion of the data, while main-
taining the most important values. In the context of this task, we do not down-sample
the data so we can use max pooling for the translation invariance and as a further
non-linear activation.
The receptive field of a convolutional model is the window of data that the model is
able to analyze in order to predict a point. To allow the network to better understand
the context of a point in the signal, we would require a larger receptive field, but
this would also increase the number of parameters. In this thesis, a specific type of
convolutional network was used, a Temporal Convolutional Network (TCN) [17].
A TCN has the following characteristics:

• Uses 1d convolutional filters over the time dimension;

• Is causal, can only use present and past information;

• Is a sequence to sequence model, where the size of the output is the same size
as the input;

• Uses a dilation factor in deeper layer;

• Can uses skip connection between layers.

CHAPTER 1. THEORETICAL BACKGROUND 11

This model has many advantages compared to other architectures and simpler convo-
lution. The dilation factor, which adds space in-between the kernel’s weights during
the convolution, lets us increase the receptive field without increasing the number of
parameters. An example of how the receptive field is increased is shown in Figure 1.9.
Each arrow represents a parameter.

Figure 1.9: The 3 layers have the same number of parameters but different receptive fields.

The use of skip connection let us have a more stable gradient descent and faster
training. The skip connection works by adding a linear transformation of the layer
input to the layer output, as shown in Figure 1.10. This operation preserves the
gradient in deeper layers.

Figure 1.10: Scheme on how a skip connection can be created using a dense layer.

1.2.4 Recurrent Neural Networks
Recurrent Neural Networks (RNN) are a type of neural network that can process
sequential data, such as time series data or natural language text. They are called
recurrent because they perform the same task for every element of a sequence, with
the output dependent on the previous computations. The key feature of RNNs is their
ability to maintain an internal state or memory of past inputs, which allows them to
capture temporal dependencies in sequential data.
A Recurrent Unit (RU) is a building block of an RNN that processes one element of
a sequence at a time and updates its internal state based on the current input and its
previous state. The internal state is then used to compute the output for that element
of the sequence.

CHAPTER 1. THEORETICAL BACKGROUND 12

Figure 1.11: Example of Recurrent Neural Network.

The simplest RU is a fully connected network. Three different sets of weights are
used by this unit, two used to combine the previous memory state and the current
input to generate the new memory state

Ht = f(V ·Ht−1 + U ·Xt +Bh)

and one used to compute the current output given the new memory state

Yt = f(W ·Ht +By)

where f is the activation of the network. The process is schematized in Figure 1.11.
The simple recurrent model suffers from both exploding and vanishing gradient. The
model either cannot forget useless information that is propagated through time in the
memory or cannot hold in memory the useful information without dissipating it with
all the matrix multiplication. To fix this problem, gates capable of updating and reset-
ting memory have been introduced. Gates are neural networks that can output values
in the range of 0-1 and can be multiplied to other values to control the information
flow.
The most common type of RU that uses gates is the Long Short-Term Memory
(LSTM) unit, which has been shown to be effective at capturing long-term dependen-
cies in sequential data [18]. The LSTM unit, shown in Figure 1.12, uses three gates,
the input gate, the output gate and the forget gate and uses an additional memory
block called cell. The input gate determines how much new information should be
allowed into the cell state. The forget gate determines how much information should
be discarded from the cell state. The output gate determines how much information
the unit should output from the cell state to the rest of the network.

Figure 1.12: Scheme of a LSTM unit.

CHAPTER 1. THEORETICAL BACKGROUND 13

Another popular type of RU is the Gated Recurrent Unit (GRU) [19], shown in
Figure 1.13, which has fewer parameters than LSTM and has been shown to be effective
at capturing short-term dependencies. The GRU layer uses only two gates, the reset
gate and the update gate. The reset gate handles how much information flows outside
of the memory while the update gate handles how much information flows inside the
memory.

Figure 1.13: Scheme of a GRU unit.

1.3 Classification metrics
To analyze the classification ability of models, various formulas and metrics were used.
In this section, these metrics are explained. Let’s take for example a target vector of 0
and 1 that we want to generate starting from out data. Our classifier generates a vector
of 0 and 1 of the same length and we want to measure how good this classification
was. We start by computing the number of true positive TP, false positive FP, True
Negative TN, False negative FN.

• TP: is the number of points where both the target and the predicted vector are
at 1

• TN: is the number of points where both the target and the predicted vector are
at 0

• FP: is the number of points where the target is a 0 and the predicted is at 1

• FN: is the number of points where the target is a 1 and the predicted is at 0

Starting from these values, we can compute the following metrics:
Accuracy = TP+TN

TP+TN+FP+FN

Precision = TP
TP+FP

Recall = TP
TP+FN

F1− score = 2 · Precision·Recall
Precision+Recall

If the output of the classifier is not a vector of 0 and 1 but a real value vector in
which we should set a threshold to obtain the two classes, 1 for values higher than
the threshold and 0 for values below. Now all the performance that we just measured
would change with the change in threshold, as shown in Figure 1.14. What we do
now is to move threshold starting from the minimum value to the maximum. While
moving it we keep track of the precision and the recall values. If we now plot all the

CHAPTER 1. THEORETICAL BACKGROUND 14

values keeping the recall on the Y axis and the precision on the X axis, we get a recall
precision curve (not to be confused with the ROC curve), as shown in Figure 1.15.

Figure 1.14: Example on how we can change the classes by using three different thresholds.

Figure 1.15: Plot of recall and precision change when moving the threshold. In orange, we
can see the area under the curve.

If we compute the Area Under the Curve of this precision-recall curve, we have now
a good metric on the ability of the classification to predict the target. The precision-
recall curve is an optimal method of analysis, especially when the true target class is
rare.[20]
A different curve, called the Receiver Operating Characteristic (ROC), is usually used
for binary classification evaluation. However, this curve is not well suited on a strongly
imbalanced data set.
In this thesis I will often refer to the maximum F1 score obtained by moving the
threshold while computing the precision-recall curve as the max F1. The relative
precision and recall used to compute this F1 will also be presented.

Chapter 2

Data acquisition, pre-processing
and analysis

This chapter focuses on the analysis of the data and the creation of the final data set.
First, the data acquisition method and an analysis of the recorded data are briefly
described. This is followed by an analysis of the features that are required to solve the
evoked potential detection task. Furthermore, all the pre-processing steps required to
create the final data set are presented.

2.1 Data acquisition
The data has been extracted by the Neurochip lab of the University of Padova. The
rats involved in the experiments are all young adults of both genders, ranging from
an age of 25-35 days and a body weight of 90-120g. The rats are anesthetized with
an intra-peritoneal induction dose of Urethane (0.15/100 g body weight) followed by
a single additional dose (0.015/100g body weight). Each animal is positioned on a
stereotactic instrument and the head is fixed by teeth and ear bars. A window on the
skull is drilled over the position of the somatosensory barrel cortex. A single shank
probe is inserted in the middle of the window on the barrel cortex. The shape of the
cortex may vary between different rats, so it is not possible to always record from
the same barrel. For this reason in an initial setup each whisker is stimulated and
the response is analyzed. The whisker that returns the clearest and strongest evoked
potential will be the one stimulated during the experiment.

15

CHAPTER 2. DATA ACQUISITION, PRE-PROCESSING AND ANALYSIS 16

2.2 Raw data structure
The data consists in total of 48 recordings, each of which is 5 minutes long, extracted
from 25 different rats. The recording contains two vectors: brain signal and stimulation
signal. Brain signal: A 32 channel matrix of 300 seconds of the electrodes signals
at 25000Hz sampling rate. From this recording it’s possible to extract both the LFP
and the MUA signals. A sample from this signal is shown in Figure 2.1.

Figure 2.1: Section extracted from a recording. Each line represents a different channel.

Stimulation signal: A vector of 300 seconds at 25000 Hz sampling rate, recording
the impulse sent to the stimulation machine. This vector contains mostly values at
0 mV, with a peak at 3 mV lasting for 1 ms each time a stimulation is given to the
whiskers. A sample of this signal is shown in Figure 2.2.

Figure 2.2: Section of the stimulation signal.

CHAPTER 2. DATA ACQUISITION, PRE-PROCESSING AND ANALYSIS 17

The data set is divided into three parts, respectively, recorded in 2021, 2022 and
2023. The position of the probe has been moved up by one channel in 2022, therefore,
the channels in the recordings are not all aligned. Additionally, the probe has been
changed in 2022; consequently, different types of artifact may be present for each year.

2.2.1 Spectrum of the channels
With the use of the fast Fourier transform, we can analyze the brain signal to detect
artifacts and defective electrodes. In Figure 2.3, we can observe the presence of a
faulty electrode (channel 8) and a component at around 5000 and 10000 Hz. This
could be due to some noise generated by other electrical equipment present in the
laboratory. We can see that most of the LFP is in the range of 0-100Hz. For the
MUA signal, there is some variance between each recording, so it is not possible to
visualize that component on the spectrogram.

Figure 2.3: Spectrum of the channels from a 2021 recording. Channel 8, in light blue, is
full of artifacts and is different from other channels in terms of magnitude.

2.3 Analysis of neural signal features
Given the evoked potential detection task, we need to define the main features required
to solve it. A brief review of typical neural signal analysis methods was performed.
The aim of this analysis was to collect the main set of features that can be used as
input for the models. In this analysis, I was able to select the three types of feature
that contain most of the information on responses to stimuli.

Time domain of Local Field Potential: the choice of this feature is directly
correlated with the task. LFP in its raw form contains the unaltered shape of the
evoked potential. The local field potential is the main feature that was analyzed.
In this feature, we can use various techniques of evoked potential analysis, such as
event related potential, a technique in which the average potential in response to a
stimulation is computed. [21]

Time-frequency domain of Local Field Potential: The main problem of the
time domain of the LFP is that different types of activity are mixed together. The
evoked potential is not the only potential pattern contained in the signal, but those
related to other events and spontaneous activity are also recorded. The response and

CHAPTER 2. DATA ACQUISITION, PRE-PROCESSING AND ANALYSIS 18

the rest of the activity may vary in terms of frequency. By splitting the LFP into
multiple frequency bands, we could be able to extract only the frequency feature that
we are interested in and filter the rest. Two alternatives were selected to analyze
the time-frequency domain of the LFP: the simple division in the main frequency
bands Theta, Alpha, Beta, and Gamma, and the more complex use of the Continuous
Wavelet Transform (CWT). The time-frequency components of LFP are widely used
to analyze the neuron population and brain behavior in different contexts.[22][23][24]

Multi Unit Activity: as cited in the theoretical background, the MUA signal con-
tains the codification used by a neural population. Since this codification is linked to
the fire-rate of neurons, we could use this value to predict the response of a stimula-
tion.
All other features where the evoked potential can be altered were excluded.

2.4 Features Extraction

2.4.1 Extracting the LFP
To extract the LFP from the raw signal, we need to perform various steps. First,
we need to identify the frequency band that we want to extract. In this case, we
use a band-pass filter at 1-100Hz cut frequencies. In other similar works, higher cut
frequency in the range 100-300Hz are chosen. This is a study that focuses primarily
on the evoked potential, which is found in the lower frequency ranges, so we make
sure that the 1-100Hz range is good for this task. An order 4 Butterworth filter and
the filtfilt function from MatLab were used to perform this step. In Figure 2.4, we can
see the before and after of the filtering.

Figure 2.4: A plot showing the difference between a raw recording and the LFP extracted
through filtering.

A second important step is to remove artifacts and faulty channels. The one that
was detected as faulty is channel 8 in 2021 recordings and channel 3 in 2022-2023
recordings. With the aid of a simple mean between the adjacent channels, we can

CHAPTER 2. DATA ACQUISITION, PRE-PROCESSING AND ANALYSIS 19

easily remove them. Alternately, an interpolation process could be used.
To align all the recordings, a downward shift of 1 has been applied to the channels of
the 2022-2023 data. Channels in the range 27-32 were removed, since the process we
want to analyze is localized to the deeper layers, and those channels could have some
artifact.
The problem faced then concerns the size of the data. At 25000Hz the full data set
weights around 30GB and most of the information is useless since there is no compo-
nent over 100Hz. Therefore, we can now down-sample the data to 250Hz, making it
100 times smaller. In these downsampled data, each time unit will correspond to 4
ms of recording.

2.4.2 Extracting the MUA
To extract the MUA signal, a different approach is required. The first step to perform
consists in using a notch filter in the range of 300-5000Hz. The information that we
now have is mostly action potential, or spikes, and noise. We can see from Figure 2.5
the various negative peaks of the spikes in the filtered signal. To extract the instant
when a spike occurs, we first need to compute the RMS of the signal. Then we use the
threshold −α · RMS to detect the spikes, where α is in the range 3-5 and should be
chosen based on the quality of the recording. In this case a value α = 4 was used. We
find now all the points that are below the threshold. [25][26] The next step consists in
downsampling the data. We cannot simply use the down sample function; otherwise
most of the spikes would be filtered out. A moving sum window of size 100 was used.
This is done to prevent information from being lost in the downsampling phase.

Figure 2.5: A plot showing an example of original recording and the three pre-processing
steps required to generate the MUA signal.

CHAPTER 2. DATA ACQUISITION, PRE-PROCESSING AND ANALYSIS 20

Therefore, we just need to align the data from 2022-2023 and remove the faulty
channels in the same way as we operated with the LFP case.

2.4.3 Extracting frequency features
The current LFP data is 1GB in size. The Continuous Wavelet Transform increases
the size of the data size by a factor of 70. For this reason I have decided to use the CWT
layer to compute the spectrogram of the LFP directly in the models. The same will
be done for the Tetha, Alpha, Beta and Gamma divisions. I have created a new layer
that extracts these features using a Butterworth filter and the filtfilt function. More
details about these layers will be provided in the section dedicated to the description
of linear models, Section 3.3.1.

2.5 Analysis of the data
Since the two MUA and LFP data are now ready, we can proceed with a brief analysis
of what the signals contain. First, an analysis of the average response to stimula-
tion was performed. This will be followed by a brief discussion on the presence of
spontaneous brain activity, which the network should learn to filter out.

2.5.1 Average evoked potential
To compute the average response, we segment the data and align each segment where
the stimulation starts. By computing the average value between all segments, we
can now extract the average shape of the potential evoked by the stimulation. The
average evoked potential is also refered as the Event Related Potential (ERP).The
evoked potential computed in channels 1-20 of each rat are shown in Figure 2.6.

Figure 2.6: Event related potential computed on Layer 4 of the barrel cortex. Each line
represents a different rat.

The information that is most relevant for our task is the negative peak of the
LFP caused by the synchronous firing of multiple neural populations when the stimuli
signal reaches the cortex. The ERP is strongest at layers 4, 5 and 6 and the negative
peak is found in the first 40ms post-stimuli.
We can do the same for the MUA signal to see what is the average response in terms of
firing neurons. Figure 2.7 shows how even the average MUA response to stimulation
is contained in this small 40 ms range.

CHAPTER 2. DATA ACQUISITION, PRE-PROCESSING AND ANALYSIS 21

Figure 2.7: Average MUA response to stimulation computed on Layer 4 of the barrel cortex.
Each line represents a different rat.

2.5.2 Spontaneous activity
The data are full of spontaneous activity. In some cases, as in Figure 2.8, a burst of
activity occurs before stimulation and mixes with the evoked response. We can see
how the EP is barely distinguishable from the negative peaks of other spontaneous
activity.

Figure 2.8: Section of LFP recording with high levels of spontaneous activity.

2.5.3 Removing bad recordings
It should be noted that not all recordings are of good quality; some almost do not
contain any response to stimulation. Training on those recordings could just worsen
the network performance, since the models could learn that spontaneous activity is
linked to stimulation. To prevent this, we need to remove the weak response recordings.
Currently, the technique used to check if an EP is present is to visibly observe the post-
stimulation response in the recording. This system is slow and subject to operator
biases. Therefore, we could automate this process with this pipeline:

• Remove any offset from the evoked responses by filtering in the range 8-100Hz;

• Normalize data from each rat;

CHAPTER 2. DATA ACQUISITION, PRE-PROCESSING AND ANALYSIS 22

• Compute the Event Related Potential of the bottom 20 channels, which corre-
sponds to layer 4-5-6 of the barrel cortex, of each rat;

• Compute the global sum of the squares of the Event Related Potentials for each
rat. This is the score value of the rat;

• Sort all rats’ data on this score.

We can see the average evoked potentials of the various rats sorted by this value in
Figure 2.9. There is a simple reason ERP is a good metric of comparison between
recordings. If EPs are weak or frequently absent in a recording, then we would get
a weak ERP. A strong ERP is present only if the recording has frequent and strong
evoked potentials. After verifying the data, in the recording of rats with the highest

Figure 2.9: The ERPs computed on channels 1-20 on each rat. The ERPs have been sorted
by the sum of squares value.

score the evoked potentials are clearly visible in response to stimulation, while in the
recording of the rats with the worst score there are no responses in most of the cases.
To select the best recordings, two initial models, which are discussed in Section 3.1.6,
were implemented. A significant drop in validation performance was observed after
adding data from 11 worst performing rats. For this reason, these 11 recordings were
removed. After consulting the NeuroChip Lab, we agreed that in fact they had many
missing evoked potentials.

2.6 Extracting the Stimulus response window
As shown in Figures 2.6 and 2.7 the main component of the evoked response is found
in a 40 ms post-stimulus window. To create the output data, the stimulation vector
was used. From this vector we can detect where the stimulation begins and then put
at 1 all the samples in the next 40 ms and at 0 the rest of the recording. Value 1
will represent the evoked potential label, while value 0 will represent the NOT evoked
potential label. An example of an output vector is shown in Figure 2.10.

CHAPTER 2. DATA ACQUISITION, PRE-PROCESSING AND ANALYSIS 23

Figure 2.10: Example of data labelling. Each instant of the recording, shown above, is
labelled either as "evoked potential" or "not evoked potential".

2.7 Partitioning the data for training
This step consists of partitioning the data in multiple segments, one for each stimula-
tion. The division into segments centered on an event, also called epoching in neural
signal context, is usually done in EEG and LFP recordings to perform an analysis of
the response to the event. This segmentation is useful since it would lead to more
heterogeneous mini-batches, which would lead to a faster training. We can see an
example of a segment in Figure 2.11.

Figure 2.11: Example of segments. The stimulation is found at the center of the segment.

To perform the segmentation, we extract a 12 second data segment centered around
each start of stimulation. Problem that may arise from the use of this segmentization
are discussed in Section 3.1. Each segment has three labels. The first label identifies
the index of the rat created when sorting the average responses. This is used to create
cross-validation folds. The second label identifies the recording index. This is used
for normalization. The third label is the segment index. The index i refers to the i-th
stimulation of the recording. This is used to recreate the full recording starting from
this data set.Finally, a channel-wise normalization is performed for each recording.

Chapter 3

Methodology and results

This chapter will discuss the most important part of the work I have performed: the
creation of the model for the real-time detection of a stimulation.
First, an introduction to the general problem is required. From figure 3.1 we can see
how the models are structured. Given the raw data, each model uses either hand-
crafted features or learned features and detects the evoke response using a classifier.

Figure 3.1: General scheme of the evoked potential detection model.

In this chapter, all the various steps required to build the models and compare
them are discussed:

Preliminary analysis of the models: this section will focus on the definition of
the techniques and components required to build the model. In addition, all the initial
problems and solutions that were implemented are briefly described.

Model selection: Given the deep learning model found in the analysis performed
in the preliminary analysis, a model selection was performed to find a set of good
hyperparameters. This section will focus on describing the model ranges that were
tested and the results of the selection.

Selected models: All selected models are shown and described in this section.

Comparison of the models: here, the performance of the models on the test set
are presented and discussed. From the comparison of the models, the best one is
selected.

Optimization of the best model: given the best performing model, a pruning
optimization process was performed. In this section, an introduction to model pruning,
the choices, and the results of the process are discussed.

24

CHAPTER 3. METHODOLOGY AND RESULTS 25

Analysis with cross validation: At last, this section will focus on the results of
a cross-validation analysis.

3.1 Preliminary analysis of the models
As a first step, an analysis must be performed on how a model can detect evoked
potentials. The scope of this analysis was to formulate all the methods and approaches
that were later implemented. At first, the general baseline model is discussed. This
is followed by an analysis of the use of deep learning layers and methods that are
commonly used in similar works. From this analysis, all the possible components
that can be employed were mapped. All the fundamental elements that are required
for the model to work are then described, such as the output block and the data
augmentation. Finally, an initial test, which was performed to discover possible issues
that could occur in the training of the models, is briefly discussed, as well as the
implemented fixes.

3.1.1 Baseline models
All the four types of features (LFP, MUA, LFP frequency bands, CWT of the LFP)
are used as input on a different linear model. The general structure of a linear model
is the following:

• Input feature

• Single Convolutional filter

A convolutional filter was used for a simple reason. Different channels have different
delay in the negative peak of the evoked potential. By using a single convolutinal
filter, we are able to sum the channels taking in account this delay. From the analysis
conducted in Section 2.5.1 we can see that the negative peak of an EP is brief, lasting
around 5-10ms. Since we selected the window of the response to be 40ms, a max-
pooling will be introduced to extend the duration of this peak and fit the target
values. Max pooling is non-linear, but it is only going to be used in training and
testing. In real time, we would use the output of the conjugate layer as the output for
the model.

3.1.2 Analysis of deep learning techniques used on LFP and
EEG

First an analysis of the models used in similar work was performed. This analysis
mainly focuses on all deep learning techniques implemented in tasks that require LFP
or EEG data as input. The task can be in real-time or not, the attribute that the
model requires is the ability to extract features from this type of data. EEG data was
chosen as possible type of input due to its similarity to LFP. Both originate from the
same neural process, and both measure voltage. The main works that were analyzed
are the followings:

Recurrent models on hand motion identification: in this work, various recur-
rent models, including models that use GRU layers and LSTM layers, are compared
for the task of predicting the hand motion of a human subject starting from EEG

CHAPTER 3. METHODOLOGY AND RESULTS 26

recordings. All models compared achieve good accuracy in terms of detecting hand
motion. [27]

Hand kinematic decoding using a temporal convolutional network: in this
work, a temporal convolutional network is used to decode the hand kinematic of a
monkey, starting from the LFP data. This experiment using TCN demonstrates that
this model architecture is able to provide stable and high decoding performance. The
model uses temporal convolutional blocks implemented with casual dilated convolu-
tions, batch normalization, ReLU, dropout, and skip connections. [28]

Thus, we can conclude that the GRU layers, the LSTM layer and the temporal con-
volutional layers are valid methods used to decode potential-based neural signals. A
common approach employed for these types of work is the use of dropout layers and
normalization layers. In this thesis work all these techniques were tested. In addition,
a series of analyses of how the recurrent and convolutional layer could be mixed to cre-
ate more complex models was planned. Due to time constraints, only one alternative
was tested where recurrent layers are followed by convolutional layers.

3.1.3 Output block
To define the output layer of a model, we need to make various decisions based on the
task.

Loss

the response data set is composed of two possible values, 1 for the stimulus response
window and 0 for the rest of the signal. For this reason, I am using the binary cross-
entropy formula as loss.

BCE (Y, T) = − 1

|Y |

|Y |∑︂
i=1

Ti · log Yi (1− Ti) · log (1− Yi)

The loss is not enough, as there are 300 more time units with value 0 than the ones
with value 1. If we use the binary cross-entropy in the vanilla version, the model could
just always return 0 and have a really low loss. For this reason, I need to introduce
some weight for each class. First, we need to count in the full data set the number
C0 of instants that have label 0 and the number C1 of instants that have label 1.
Therefore, we proceed with the computation of the weights for the two classes.

W0 =
(C0 + C1)

2 · C0

W1 =
(C0 + C1)

2 · C1

Now we simply add the weights to the binary cross entropy formula.

W-BCE (Y, T) = − 1

|Y |

|Y |∑︂
i=1

W1 · (Ti · log Yi) +W0 · ((1− Ti) · log (1− Yi))

CHAPTER 3. METHODOLOGY AND RESULTS 27

Shifting the window

Both the convolutional and recurrent models that are being tested are causal. This
means that we cannot use any future information to predict the stimulus window. A
question arises on whether the model would require a delay of the output to correctly
find the stimulus response. Consequently, the model could never train on the data set
since there is no delay on the output vector I have created. To fix this problem, we
have two alternatives: shifting the output for all models or giving the ability to the
model to shift the output. Since it is important to analyze the delay introduced by
the model, a decision was made to use a final convolutional layer with a single filter,
in order to give the ability to shift the output accordingly to the needs of the model.
This filter will learn how to move the prediction to fit the training data, as shown
in Figure 3.2. This filter is going to be used only in the testing and training phase.
When using the model in a real-time scenario, it is not necessary.

Figure 3.2: Example on how the last convolutional layer shifts the output to fit the target.

Output block structure

The final output block that was applied to all deep models is:

• Single neuron to mix the final hidden representation of the model;

• Single kernel of 200 ms length with right padding;

• Sigmoid activation;

• Weighted binary cross-entropy loss.

During testing time, the sigmoid and loss layer will be removed. In real-time use,
the final convolutional layer will also be removed, leaving only a single neuron as the
output.
For linear models, a simpler output is used:

• Sigmoid activation;

• Weighted binary cross-entropy loss.

The linear model requires only one convolutional layer. A choice was made not to
use the shift window layer and to avoid using causal padding. If we were to use an
additional filter after the maxpooling we could increase the complexity of the model
and force the model to require non-linear processes.

CHAPTER 3. METHODOLOGY AND RESULTS 28

3.1.4 Data augmentation layer
While we expect the probe to be in a fixed position so that, for example, channels
17-20 are in layer 4, there is no guarantee that the probe is correctly placed or that the
layers are found where they are expected to be. Between recordings of different rats,
the layer may have some variation in depth. If the data from the test rat come from
probes with a different offset compared to the one present in the training data, then we
could face a loss in performance. To fix this, I have implemented a data augmentation
layer that randomly moves the channels up and down by 1. The chances of moving
up, down, or not moving are 1 in 3.
This gives us multiple advantages:

• The data set is virtually 3 times bigger. This should prevent over-fitting since
now we go from 800 stimulation to virtually 2400;

• The model gets stronger against offsets;

• The size of the data set does not change.

This layer works only in the forward phase for training. In the prediction phase, the
data never moves. An example of how this layer works can be seen in Figure 3.3.

Figure 3.3: Example on how the layer simulates multiple positions of the probe.

3.1.5 Training, Validation and Test set
Training, validation, and test set were created as follows:

• The rat with index 11 has been chosen as the test rat. All the complete uncut
recording from this rat will be used in the model comparison. The reason why
the data from this rat was chosen is because these recordings contain clear evoked
potential and frequent spontaneous activity.

• Data from the remaining 13 rats are split into 85% training set and 15% valida-
tion set. In alternative, data from 1 or 2 rats could be used as validation, but a
decision was made to use a validation sets that contains data from all rats. The
reasoning behind this choice is that, alternatively, we would have no guarantee
that the rats chosen for validation are good representative of the whole dataset.

The validation will be used for early stopping and for model selection.

CHAPTER 3. METHODOLOGY AND RESULTS 29

3.1.6 Preliminary setup
The preliminary setup was used to detect major issues early. First, two simple models
were implemented, one recurrent and one convolutional. There is no major reason
behind the choice of the shape and the parameters of these models. These models
were only used to check that the layers worked correctly and were not used later.
This section is very important to prevent future problems. As we will see, multiple
adjustments to the models were added to prevent major training problems.
The initial convolutional model, described in Table 3.1, uses convolutional layers, non-
linear activations, and poolings. The initial recurrent model, described in Table 3.2,
uses GRU layers, and non-linear activations.

layer size of filter number of filters activation pooling size of pooling
1 100 ms 16 relu max 10 ms
2 200 ms 4 relu average 40 ms

Table 3.1: Internal structure of the initial convolutional model.

layer #GRU nodes activation
1 24 relu
2 4 relu

Table 3.2: Internal structure of the initial recurrent model.

For two models, five trainings were repeated at each iteration. Any time a problem
was detected, the fixes were implemented and the 5 training were repeated on the
full training set (validation+training). This process stopped when all the models
reached a stable training. Regarding the training option, ADAM optimization, Glorot
initialization, a learning rate of 0.001 and 16 mini batches were used.

Slow and inconsistent training

As we can see in Figure 3.4, some of the trainings were fast and others much slower.
If the purpose is to train hundreds of models in the selection process, we need this
to be faster and consistent. The probability that the trained model will get similar
results after retraining is really low. One training did not achieve any results in the
convolutional case and kept returning class 0. The use of a normalization layer is very
important here to improve the training speed and stability in both the recurrent and
convolutional cases. After testing the various alternatives, I have concluded that the
best normalization for the convolutional layers is the instance normalization, while for
the recurrent layers, the layer normalization.

Exploding gradient

As shown in Figure 3.4, both initial models suffer from exploding gradient. To fix
this, the gradient clipping technique was implemented. After some testing, a value
of 16 as the gradient threshold value was found to be the optimal one, which is able
to fix the exploding gradient and does not slow down the training.

CHAPTER 3. METHODOLOGY AND RESULTS 30

Data segmentation problems

Since recurrent neural networks have a virtually unlimited receptive field, they can
use the initial state of memory to detect when the evoked response is found. The
evoked response is always found at second 6 in each segment, so the model could just
learn how to "count" to 6 and overfit on the data structure. To fix this problem, we
can just take a random 10 second window for each segment. This way, the evoked
response is randomly placed around the center of the segment, and the network is not
able to just "count" the number of seconds between the start of the segment and the
evoked response. This problem does not arise for the convolutional models, since the
receptive field is at maximum two seconds. A symmetric padding is applied on each
layer to prevent possible problems.

Prevent overfitting

In order to prevent over-fitting, two techniques, other than data augmentation, were
used. The first is the use of early stop. The output layer has been modified to use the
AUC value and not the loss as a stopping metric. The second is the use of dropout
layers. Each model analyzed in the different works uses a dropout factor in the range
of 0.2-0.5. Value 0.2 was chosen given the fact that a higher dropout rate would require
bigger and more resource-demanding models. The dropout layer is applied after the
normalization of each dense, convolutional, or recurrent layer.

Fixed Models

Now we can ensure that the models used in the next phases work correctly and that
they can achieve high performance in shorter time. As shown in blue in Figure 3.4,
the model now has a more stable and faster training. The network no longer suffers
from an exploding gradient, and different training leads to similar results.

(a) GRU model before (black) and after
(blue) the fix.

(b) Convolutional model before (black) and
after (blue) the fix.

Figure 3.4: Training progress of the models before and after the implemented solutions.

3.2 Model selection
This section will focus on the methodology and results of the model selection process.

CHAPTER 3. METHODOLOGY AND RESULTS 31

3.2.1 Selection process and results
At first a range of possible models was created. The range is divided into three major
categories, one for each general architecture:

• Convolutional: this type of model uses convolutional layers, pooling layers,
dilation, and skip connections.

• Recurrent: this type of model uses recurrent unit.

• Mixed: this type of model uses elements from both previous techniques.

For the convolutional and recurrent models, a small search for the optimal learning
rate was performed. These training parameters are then used in the rest of the search.
All models will use dropout layer at 0.2, instance normalization for convolutional layer,
and layer normalization for recurrent layers.

Convolutional model range

A first choice is in the number of convolutional layers and the use of additional fully
connected layer. The model is divided into three possible subnetworks:

• Input section: this section can use an initial dense layer that has the task of
extracting the most useful channels from the input.

• Convolutional section: this section uses convolutional layers and has a probabil-
ity of using the pooling layer, non-linear activation, dilation, and skip connec-
tions. Various layers from 3 to 6 were tested.

• Fully connected section: this section uses fully connected layer and can use
non-linear function. A number of layers from 0 to 3 were tested.

The various choices in terms of possible models created are the following:
First, there is an 80% chance that the fully connected layer was added after the input.
The range of possible neurons for this layer was uniformly chosen from the range 2-12.
Then a number of convolutional layers has been chosen in the range 3-6 with uniform
probability. The hyperparameters for each convolutional layer were extracted from
the ranges of Table 3.3.

layer size of filter # filters activation pooling size of pooling dilation
1 [20 200] ms [4 16] none-relu-elu none-avg-max [10 30] ms 1
2 [40 200] ms [4 16] none-relu-elu none-avg-max [10 30] ms 1
3 [40 240] ms [2 12] none-relu-elu none-avg-max [10 30] ms 1 or 2
4 [60 240] ms [1 8] none-relu-elu none-avg-max [10 40] ms 1 or 2
5 [100 300] ms [1 6] none-relu-elu none-avg-max [10 40] ms 1 or 4
6 [100 300] ms [1 4] none-relu-elu none-avg-max [10 40] ms 1 or 4

Table 3.3: Range of hyperparameters of the convolutional sub-network.

For the fully connected subnetwork, the range of hyperparameters described in
Table 3.4 was used.

CHAPTER 3. METHODOLOGY AND RESULTS 32

layer number of nodes type of activation
1 [4 8] none-relu-elu
2 [2 6] none-relu-elu
3 [2 4] none-relu-elu

Table 3.4: Range of hyperparameters of the fully connected sub-network.

The size of the filters, the number of filters and the size of pooling were randomly
chosen with a uniform probability. The choice of a pooling type, an activation type,
the dilation or the skip connection is global for each model. This means that there is
no model that uses both ReLU and ELU or both maximum and average pooling.
For this model, a preliminary search was conducted using learning rate in the range
0.0001-0.1 and number of mini-batch from 1 to 128.

Convolutional model search results

For the preliminary search, 40 models were trained. For learning rate any value
found in the range 0.001 to 0.01 performs well. For this reason 0.01 learning rate was
used for the rest of the search. The reason why there is little difference between a wide
range of learning rates is probably ADAM optimization, which has fewer problems with
higher learning rates. In terms of the number of mini-batches, dividing the training
set into 8 mini-batches resulted in good performance and faster training times.
For the final search, 160 models were trained. The first dense layer improved the
general performance and helped reduce the number of parameters by a lot. As shown
in Figure 3.5, the area under the curve value has increased with the addition of this
layer.

Figure 3.5: Increase in AUC with the addition of an initial dense layer.

In terms of number of nodes for this layer, there does not seem to be much different
in the range 6-12, while a small drop in performance was seen with lower values. 6
nodes were chosen.
A clear increase in performance is visible when increasing the number of convolutional
layers as shown in Figure 3.6.

CHAPTER 3. METHODOLOGY AND RESULTS 33

Figure 3.6: Increase in AUC with the use of multiple convolutional layers.

Given the time constraint, more model selection could not have been done, but
Figure 3.6 suggests that the 7 or 8 layer could lead to a further increase in the AUC
values. The models still have really good efficacy so for this reason 6 are going to be
used in the final model. In terms of number of filters, there is little difference between
the models. In the best model returned by the search there are many filters in the
first layers and less in the deeper layers. This pyramid shape model was chosen for the
final one. The best model on the selection all have small filter in the first layers, in the
40-100 ms range, and wider filters in the deeper layers, in the 160-300 ms range. The
same filter sizes are going to be used in the final model. The use of skip connection and
dilation did not improve the performance but greatly improved the training stability
and speed.
The additional dense network did not improve the performance. For this reason,
it is not going to be used in the final model. In terms of activation function, the
ReLU activation after each layer outperformed the linear and ELU activation. The
Max pooling after each layer is also a choice that greatly improves the AUC.

Recurrent model range

For the recurrent model, both the GRU and LSTM models were tested. The model
selection in this case had an additional phase where the best recurrent unit among
these two is selected. The network used an additional dense layer after input with a
range of 2-12 neurons as for the convolutional case.
The possible number of recurrent layers was uniformly selected in the range 1-6. Each
layer was extracted from the following ranges of parameters shown in Table 3.5.

layer type of unit number of recurrent nodes type of activation
1 GRU-LSTM [8 64] none-relu-elu
2 GRU-LSTM [4 32] none-relu-elu
3 GRU-LSTM [4 32] none-relu-elu
4 GRU-LSTM [4 16] none-relu-elu
5 GRU-LSTM [2 8] none-relu-elu
6 GRU-LSTM [1 4] none-relu-elu

Table 3.5: Ranges of hyper parameters of the recurrent network.

CHAPTER 3. METHODOLOGY AND RESULTS 34

As for the convolutional model, the choice of the non linear activation function is
global, while the other parameters were selected with uniform probability. The same
initial search for learning rate and minibatch size is also performed.

Recurrent model search results

A small group of 20 networks, 10 with GRU and 10 with LSTM were trained. For this
context the use of GRU units returned better performance than the use of LSTM,
as show in Figure 3.7.

Figure 3.7: AUC of LSTM based model and GRU based model.

To find the best training parameters, 40 models were trained. The best training
option that was found for the recurrent model are the same as for the convolutional
model, so learning rate of 0.01 and 8 mini-batches.
For the final search of the parameters of the models, 160 different models were trained.
The use of an initial dense layer in the recurrent model greatly improved the perfor-
mance, so it was introduced in the final one. 6 nodes were chosen in this case too,
same as the convolutional case. For the number of GRU layers we see an increase in
performance when increasing the number of layers, as shown in Figure 3.8. The use 6
GRU layers returned the highest general performance.

Figure 3.8: Increase in AUC with the addition of more convolutional layers.

CHAPTER 3. METHODOLOGY AND RESULTS 35

Regarding the convolutional model, RELU activation greatly improved the general
performance, as shown in Figure 3.9.

Figure 3.9: AUC on different types of non linear activation.

Mixed model range

The mixed model uses GRU units followed by convolutional layers. Since this step
was done after the convolutional and recurrent model search, some of the information
from previous searches was used to make this search faster. For example, there was
no need to test the initial dense layer, since both of the previous cases have shown
that there is an increase in performance in adding it. There is also no need to search
for learning rate and mini-batch size.
This model is divided into two subnetworks: the recurrent subnetwork and the con-
volutional subnetwork. For the first, 1 to 3 recurrent layers will be randomly added
with hyperparameters extracted from the values presented in Table 3.6.

layer number of GRU nodes type of activation
1 [8 64] none-relu-elu
2 [4 32] none-relu-elu
3 [4 32] none-relu-elu

Table 3.6: Ranges of hyperparameters of the recurrent sub-network.

For the convolutional subnetwork, 1 to 3 layers are selected with ranges extracted
from the ranges presented in Table 3.7.

layer size of filter number of filters type of activation type of pooling size of pooling
1 [20 100] ms [4 16] none-relu-elu none-avg-max [10 30] ms
2 [40 120] ms [4 16] none-relu-elu none-avg-max [10 30] ms
3 [40 160] ms [2 12] none-relu-elu none-avg-max [10 30] ms

Table 3.7: Ranges of hyperparameters of the convolutional sub-network.

In this case, due to the limitation found while implementing the model, I was
unable to add the skip-layer connection and the dilation factor. This should not affect

CHAPTER 3. METHODOLOGY AND RESULTS 36

the performance, as we have discussed in the convolutional model selection, but just
the number of parameters.

Mixed model search results

The main aspect of this search is the number of layers and the hyperparameters of the
layers. As for the other two previous searches, there is a clear increase in the AUC of
validation when adding both more recurrent layer and convolutional layers, as shown
in Figures 3.10 and 3.11. The use of ReLU and max pooling was chosen as for the two
previous cases.

Figure 3.10: AUC on different number of recurrent layers.

Figure 3.11: AUC on different number of convolutional layers.

3.2.2 Possible improvements
Having limited resources and time I was able to perform only a certain amount of
model training. The results of the model selection clearly show a positive trend in
performance when using deeper models. The obtained model are all well suited for
our task, but they can be improved with a more exhaustive search. Initially more
than 6 layers per model were excluded, but given the results a better search with up

CHAPTER 3. METHODOLOGY AND RESULTS 37

to 12 layers could be performed. Another type of improvement, in this case on the
mixed model, would be to expand the number of alternatives, such as using firstly the
convolutional layer and then the recurrent, or to merge the two. Other than these two
improvement that could be applied, this random search was still a major task for my
work and was able to extract a set of working final models.

3.3 Selected models
All the models that were selected are going to be presented in this section. The linear
model used as baseline are describe followed by the deep learning models.

3.3.1 Baseline models
The linear models can be created without the use of a complex model selection. In
this case linear model can be constructed without complex model selection. The only
hyper-parameters chosen were the 100 ms filter size for the layer, the learning rate
and the batch size. Each of the four models works with one of the features discussed
in Section 2.3.

Linear convolutional layer on LFP

This is the simplest model I constructed. This model uses LFP data as input and
linearly mixes the channels to find the evoked response. If this model performs well,
it would mean that we just need to filter the signal at 1-100Hz, linearly transform it
and use a threshold in order to detect the evoked response.

• Input layer

• Data augmentation layer

• 1 convolutional layer with 1 filter of size 200ms and same padding.

• max pooling of 40ms

• sigmoid activation

• weighted binary cross entropy

Linear convolutional layer on MUA

This second model uses MUA features as input. This model will check if there is any
spike burst in any given channel in relation to stimuli.

• Input layer

• Data augmentation layer

• 1 convolutional layer with filter size 200ms and same padding.

• max pooling of 40ms

• sigmoid activation

• weighted binary cross entropy

CHAPTER 3. METHODOLOGY AND RESULTS 38

Linear convolutional layer on LFP frequency bands

This model uses a layer that I have implemeted, capable of extracting the 4 frequency
bands, Tetha, Alpha, Beta, and Gamma. An example of input and output of this
layer is shown in Figure 3.12.

Figure 3.12: Example on how the filter bank layer converts the values of a channel in four
frequency bands.

The structure of the model of this model:

• Input layer

• Data augmentation layer

• Filter bank layer with 4-8Hz, 8-12Hz, 12-30Hz and 30-100Hz ranges

• 1 convolutional layer with filter size 200ms and same padding

• max pooling of 40ms

• sigmoid activation

• weighted binary cross entropy

CHAPTER 3. METHODOLOGY AND RESULTS 39

Linear convolutional layer on CWT

This model uses the CWT layer. This layer is able to compute the Continuous Wavelet
Transform of the LFP signal. This model has the ability to extract information
from any frequency bands and any channel if needed. If there is a space-frequency
correlation between the LFP and the evoked response, then this model will be able to
find it. An example on the output of the CWT Layer is shown in Figure 3.13.

Figure 3.13: Example on how the CWT layer converts the values of a channel in a spec-
trogram.

The structure of the model is:

• Input layer

• Data augmentation layer

• CWT layer with 8 voices per octave and range 0-100Hz.

• 1 convolutional layer with filter size 200ms and same padding.

• sigmoid activation

• weighted binary cross entropy

CHAPTER 3. METHODOLOGY AND RESULTS 40

3.3.2 Convolutional Model
In Figure 3.14 the complete architecture of the model is presented. This is the Tem-
poral Convolutional Model extracted from the model selection. The model uses six
layers, each one with a set of causal convolutional filter and a skip connection. The
number of filters progressively decreases with deeper layers, while the size and dilation
progressively increase. The model has in total 11’600 weights and has a receptive field
of 1 second.

Figure 3.14: Architecture of the temporal convolutional model.

CHAPTER 3. METHODOLOGY AND RESULTS 41

3.3.3 Recurrent Model
In Figure 3.14 the full architecture of the GRU model is presented. The model uses
six layers, each one containing a GRU layer and ReLU activation. In total it uses
5’000 learnable parameters.

Figure 3.15: Architecture of the recurrent model.

CHAPTER 3. METHODOLOGY AND RESULTS 42

3.3.4 Mixed Model
In Figure 3.14 the complete architecture of the Mixed model is presented. The model
uses three GRU layers with ReLU activation and three vanilla causal convolutional
layers without dilation and skip connections. In total, it uses 8’000 learnable param-
eters.

Figure 3.16: Architecture of the mixed model.

CHAPTER 3. METHODOLOGY AND RESULTS 43

3.3.5 Ensemble Model
The ensemble model is fairly simple. First, it normalizes the output of the previous
layers and sums them together. This model was added to check if the different deep
learning models described above are capable of finding different types of evoked po-
tentials. If this is the case, then the ensemble would achieve the highest efficacy of
the three with the lowest efficency.

Figure 3.17: Architecture of the ensemble model.

3.4 Testing the models
In this section, the results are presented on the test set of the various models. As
a reminder, the rat with index 11 was chosen as the test rat, and the AUC and F1
score are computed on full uncut recording extracted from this rat. To compare each
model, the precision-recall curve and the output of a full recording are used. To show
this output, which is 5 minutes long, it is divided into 30 segments centered on the
stimulation of 10 seconds each. This is not to be confused with the segmentation
process. In each output Figure, the detected EPs are going to marked in blue.

3.4.1 Baseline models
The linear models show decent ability to detect EP. All AUC values are in the range of
0.18 to 0.39. In comparison, a random output has AUC close to 0, given the different
distributions of the classes.

CHAPTER 3. METHODOLOGY AND RESULTS 44

(a) Linear model on LFP. (b) Linear model on MUA.

(c) Linear model on LFP frequency bands. (d) Linear model on CWT.

Figure 3.18: Precision-Recall curve of the linear models.

Using LFP signal

This model has shown a good ability to identify the stimulus but cannot filter out
any other similar spontaneous activity. As shown in Figure 3.18b, the model has an
AUC of 0.388 and a maximum F1 score of 0.424. At that threshold, the model was
able to find half of the evoked response, but only 1 out of three prediction is a true
positive. We can see from the output of the full recording, Figure 3.19, the main
problem of these types of models. In multiple sections the spontaneous activity bursts
are recognized as multiple evoked potentials.

CHAPTER 3. METHODOLOGY AND RESULTS 45

Figure 3.19: Output of a full recording using LFP.

Using MUA signal

The linear model on the MUA signal has the worst performance of all the models
tested.As shown in Figure 3.18a, the model has an AUC of 0.157 and a maximum F1
score of 0.267. In this case, the model cannot correctly identify most of the evoked
potentials. The reason for this is simple. If the probe is placed in the wrong barrel or
in the space between two different barrels, we would not be able to record the correct
MUA signal. For the MUA we can only detect activity if the probe is perfectly placed
in the correct barrel. From Figure 3.20 it can be seen that we are able to detect just

Figure 3.20: Output of a full recording using MUA.

Using LFP frequency bands

Using the four frequency bands, the model has shown slightly worse results than the
raw LFP. This would suggest that the spontaneous activity and the evoked potential
are found in the same frequency range. As shown in Figure 3.18c, the model has an
AUC of 0.379 and a maximum F1 score of 0.403. The output of the model, shown in
Figure 3.21, is also similar to the simpler LFP case.

CHAPTER 3. METHODOLOGY AND RESULTS 46

Figure 3.21: Output of a full recording using frequency bands.

Using CWT

The CWT model is the second worst in terms of performance. As shown in Figure
3.18d, this model has an AUC of 0.178 and a maximum F1 score of 0.304. The model
has a good ability in terms of detecting the EP, but has problem in discriminating it
to other activity. We can see from the output, shown in Figure 3.22, that the model
was not able to filter out spontaneous activity.

Figure 3.22: Output of a full recording using CWT.

3.4.2 Deep models
Using deep learning methods, we can greatly increase performance over the baseline.
In this case, as shown in Figures 3.23, we have an AUC in the range of 0.77-0.87 and
a maximum F1 score in the range of 0.73 to 0.86. These models have the ability to
detect up to 86% of stimulation.

CHAPTER 3. METHODOLOGY AND RESULTS 47

(a) Temporal Convolutional Network. (b) GRU Network.

(c) Recurrent-Convolutional Network. (d) Ensemble.

Figure 3.23: Precision-Recall curve of the deep models.

Temporal Convolutional Model

Starting with the temporal convolution model, a large increase in performance can
be seen over the baselines. As shown in Figure 3.23a, the model is able to find the
majority of the evoked responses, with an AUC of 0.871 and a maximum F1 score of
0.861. In this case, the maximum. The output of a full recording using TCN, shown
in Figure 3.24, has only 3 false negatives and 5 false positives.

CHAPTER 3. METHODOLOGY AND RESULTS 48

Figure 3.24: Output of the TCN on a full recording.

With the analysis of the average response, shown in Figure 3.25, it is possible to
calculate that the delay introduced by the model is 80 ms. The model generates a
wavelike pattern when a evoked potential is detected. This type of response has only
been seen on the convolution model during this analysis. This output may require
some post-processing in order to be correctly used, such as a moving max of the
absolute value of the output.

Figure 3.25: In black, the average response of the TCN model. In blue, a possible post-
processed signal.

GRU Model

The recurrent model has achieved performance higher than the baseline but lower
than the TCN. The model has an AUC of 0.775 and a maximum F1 score of 0.740, as
shown in Figure 3.23b. If we compare the output of this model, shown in Figure 3.26,
with the TCN, the recurrent model has higher false positive and false negative rates.

CHAPTER 3. METHODOLOGY AND RESULTS 49

Figure 3.26: Output of the GRU network on a full recording.

The delay is of just 32 ms and the response is the best in terms of quality. It is
noticeable from Figure 3.27 that the recurrent model returns a single peak just after
detecting the evoked response. This output does not require any post-processing to
be used.

Figure 3.27: Average response of the recurrent model.

Mixed Model

The mixed model has achieved performance that is slightly better than the GRU
model. The model has an AUC of 0.777 and a maximum F1 score of 0.738, as shown
in Figure 3.23c. In this case, the optimal precision and recall values chosen lead to
more false negatives and less false positives, as shown in Figure 3.28.

CHAPTER 3. METHODOLOGY AND RESULTS 50

Figure 3.28: Output of the mixed model on a full recording.

The delay calculated using the average response, shown in Figure 3.29, is 90 ms.
The model, as for the TCN, generates a wavelike pattern so some post-processing
could be required.

Figure 3.29: In black, the average response of the mixed model. In blue, a possible post-
processed signal.

Ensemble Model

The ensemble model returned results similar to the convolutional model with an AUC
of 0.831 and a maximum F1 score of 0.809, as shown in Figure 3.23d. This tells us
that the GRU and the mixed models did not learn any different feature than the TCN
one, and the correct outputs of those models are just a subsets of the correct output
of the convolutional models. As we can see from the full output, shown in Figure 3.30,
the ensemble has the same false negative as the TCN.

CHAPTER 3. METHODOLOGY AND RESULTS 51

Figure 3.30: Output of the ensemble model on a full recording.

3.4.3 Comparison

(a) Comparison of maximum F1-score. (b) Comparison of AUC.

Figure 3.31: Comparison of the efficacy of the models.

When comparing the efficacy, shown in Figures 3.31, the Temporal Convolutional
Network outperformed all the other models. Although linear models are capable of
detecting a good portion of the evoked responses, they still perform worse than deep
neural network models. The GRU network has returned the worst performance of
the deep models, followed by the mixed model. In terms of delay and number of
parameters required, the TCN is the most expensive computationally and with a
delay of 80 ms. The recurrent model is currently the best in terms of efficiency, with
the lowest number of parameters, half of the ones required by the TCN, and with a
lower delay of only 32ms. A comparison of delay and number of parameters is shown
in Table 3.8.

Model Delay #Parameters
TCN 80ms 11’600
GRU 32ms 5’000
Mixed 90ms 8’000
Table 3.8: Efficiency comparison.

CHAPTER 3. METHODOLOGY AND RESULTS 52

The Temporal Convolutional Model was selected for its high effectiveness in detect-
ing the evoked response. The next step is to make this model as efficient as possible
for a real-time scenario.

3.5 Optimization of the convolutional model
The Temporal convolutional model is the best performing one in terms of efficacy.
The model has in total 11’600 learnable weights. If each weight is used for a sum
or a multiplication, we would have an efficiency problem. With a 250Hz signal the
model would require at least 3 million operations per second, which is low for a typical
computer, but a really expensive task for a neural prosthesis.
In this final section, we analyzed whether it is possible to make this model as efficient
as possible without losing too much of its ability. In order to achieve this, we use a
technique called pruning. Pruning mainly consists in identifying the least important
weights in the model and deleting them. Due to time constraints, I was only able
to implement magnitude pruning. Techniques as the Optimal Brain Surgeon [29] or
the Optimal Brain Damage, were not implemented for time constraints reasons. OBS
uses the Hessian of the loss function to remove some of the weights and improve the
remaining one; whereas magnitude pruning ranks each weight on a magnitude value
and iteratively removes the worst and fine-tunes the remaining ones. Although simple,
magnitude pruning is capable of removing up to 90% of the weight of a model. [30].
Multiple approaches of pruning may be adopted for the convolutional model:

• Weight pruning: given a kernel, we find the least useful part of the kernel and
delete it. For example, if we have a kernel with 100 weight but only 10 are used,
then we can delete the other 90 to improve the performance. This is the most
complex one to implement.

• Kernel pruning: given a kernel, we check if the whole set of weights of the
kernel is useful; otherwise, the entire kernel is deleted.

• Filter pruning: given a filter, we check if all the kernels of the filter are useful;
otherwise, we delete the entire filter.

The best choice is the weight pruning, but the only one I was capable of using is the
filter pruning, since it is not possible to simply remove single kernels or weight from a
network in MatLab.
Now we need to define a metric to understand if a filter is "useful" to the task. There
are multiple ways to do it, but the two analyzed are the following:

• Weight magnitude: we compute the sum of the absolute values of all the
weights in a filter;

• Gradient magnitude: we forward the validation set in the model and compute
the gradient for each weight. We then multiply each gradient and each weight
and for each filter we compute the sum of the absolute value of this result.[31]

Both methods were tested and compared.

CHAPTER 3. METHODOLOGY AND RESULTS 53

3.5.1 Pruning pipeline
In order to correctly prune the model, I implemented a greedy pruning pipeline, which
is schematized in Figure 3.32. The pipeline works as follows. We iteratively checked
half of the filters, ordered by magnitude, of each layer. We remove the filter with
lowest magnitude and retrain. If the removal of a filter leads to a drop in validation
AUC of more than 5%, then we would restore that filter and move to the next layer.
Otherwise, we continue until half of the filters of the layer are removed. The process
is carried out multiple times, until it is not possible to remove any filter without
increasing the error (from now on the decrease in validation accuracy will be referred
to as the error introduced by pruning). The reason why in each iteration we stop at
half of the filters is to prevent the behavior learned by the initial layers from moving
into deeper layers, which still have a lot of filters. We can immagine a scenario were
the first layer drops from 24 filters down to 1 and all the behavior that was pruned is
relearned by filters in layer 2.

Figure 3.32: Scheme of the pruning pipeline.

CHAPTER 3. METHODOLOGY AND RESULTS 54

3.5.2 Pruning results
Weight magnitude pruning results: Using the weight magnitude, the pruning
process was able to remove 85% of the parameters before reaching the 5% error thresh-
old. The most optimized model now has 1,800 parameters compared to 11,600 of the
initial TCN. In Table 3.9 the number of filters used by the original model are compared
to the pruned one.

Layer #Filters Before Pruning #Filters After Pruning
1 24 7
2 12 4
3 8 2
4 6 2
5 4 1
6 2 1

Table 3.9: Number of filters pre- and post- pruning using weight Magnitude.

Figure 3.33, shows us the performance drop, in terms of error, caused by the
pruning of different filters. The performance of the model is stable until we pruned
around 60% of the parameters. When removing 60-80%, a clear and continuous drop
in performance can be detected.

Figure 3.33: Increase in error of the weight magnitude pruning when removing parameters.

CHAPTER 3. METHODOLOGY AND RESULTS 55

Gradient magnitude pruning results: Using the gradient magnitude the results
are much better. Using the gradient magnitude, the pruning process was able to
remove 92% of the weights before reaching the 5% validation error threshold. The
pruned model now has 910 learnable parameters. The number of filters shown in
Table 3.10 is low and significantly lower compared to the result of weight pruning.

Layer #Filters Before Pruning #Filters After Pruning
1 24 3
2 12 2
3 8 2
4 6 2
5 4 2
6 2 1

Table 3.10: Number of filters pre- and post- pruning using gradient Magnitude.

In Figure 3.34 its possible to see that the pruning is able to remove 80% of the
weights before having any drop in efficacy. In the range 80-90% we start to remove
weights that have some significance. In this example a 5% validation error threshold
was chosen, but with a 2% we would have a model with similar number of parameters
and higher performance.

Figure 3.34: Increase in error of the gradient magnitude pruning when removing parame-
ters.

CHAPTER 3. METHODOLOGY AND RESULTS 56

Pruned Model The final model pruned using the gradient magnitude technique is
now much smaller than the other deep models proposed in this work. The use of a
gradient to compute the importance of a filter had major results. As it can be seen
from Figures 3.33 and 3.34 the pruned model is able to use less and more generalized
hidden representation.

Figure 3.35: Output of layer 1 before pruning.

Figure 3.36: Output of layer 1 after pruning.

From Figure 3.37 we can look at the performance drop caused by pruning. By
avoiding the deletion of some weights we could have probably obtained higher results,
but still the pruned model had higher AUC and Max F1 score values compared to the
recurrent and the mixed models.

CHAPTER 3. METHODOLOGY AND RESULTS 57

(a) Original TCN (b) Pruned TCN

Figure 3.37: Precision-Recall curve of the pre- and post- pruning models.

3.5.3 Possible improvements
If we analyze the kernel of the first layer, shown in Figure 3.38, we can see that only
a section of each kernel is actually important for the task, while the rest has values
close to 0.

Figure 3.38: Kernels of layer 1 of the pruned model.

Weight pruning applied to subsection of kernel could further improve the general
performance. In this context, I was not able to test this implementation since con-
volutional models in Matlab must be the same in size. If we were to implement this
system on a chip, we could extract only sections of kernels that are important, using,
for instance, a moving magnitude window.

3.6 Analysis of the models with cross-validation
A final cross-validation of the models presented in Section 3.3 was performed. Com-
plete cross-validation should be performed with a different model selection for each
fold. Due to the time constraint, the decision was made to always use the architecture
found in the model selection presented in Section 3.2. A 14-fold cross-valiation was
used, where the data of each rats are used as test set in one fold and for training in
the rest of the folds, in a leave-1-out approach. This should return the general efficacy

CHAPTER 3. METHODOLOGY AND RESULTS 58

of the models in terms of detecting the EP on the data from each rat. By combining
the weights of the different folds of the same linear models, we are also able to under-
stand what channel or frequency component is used. To calculate the importance of
a channel or frequency component, we can use the average weight magnitude of each
kernel.
As for the previous comparison, only complete un-segmented recordings will be used
to compute AUC and F1. The rat 11 used as test set until now is marked in orange
in the various Figures present in this section.

3.6.1 Baseline models
Using LFP signal

As for the test set, this model has a good ability to detect EP, but cannot distinguish
them from spontaneous activity. The index 1 rat recordings have a strong average
response and little spontaneous activity. In this case, the model can find almost all
EPs. A clear trend can be seen in figure 3.39 in both AUC and Max F1. Data from
rats with a stronger average evoked response are easier to label. This trend is present
in the results of all the models. This suggests that the intensity of the average response
is a good metric to extract a good dataset as computed in Section 2.5.3.

(a) max F1 crossvalidation. (b) AUC crossvalidation.

Figure 3.39: Performance of linear model on LFP.

From the L1 of the weight of the convolutional layer, shown in Figure 3.40, we
can see which channels were used by this model. Primarily, the linear model uses the
channels from 1 to 12, linearly mixes them, and puts a threshold. The most important
channels seem to be the channels from 1 to 7. Here we find the strongest response
with less spontaneous activity.

CHAPTER 3. METHODOLOGY AND RESULTS 59

Figure 3.40: Magnitude of the kernels of the LFP linear model.

Using MUA signal

As discussed in the test results, we can only use MUA when we are sure that the
needle is perfectly placed. On almost half of the recordings, the model cannot detect
10% of the EP.

(a) max F1 crossvalidation. (b) AUC crossvalidation.

Figure 3.41: Performance of linear model on MUA.

The importance of the input channels is shown in Figure 3.42. Differently from
other models, this has his most important kernels on the channels 18-20. These
channels are expected to touch the Layer 4 of the barrel cortex. Thus, as expected,
the model finds a strongest neural activity in that section. The second section with
more activation seems to be the Layer 5a, from channel 10 to 17.

Figure 3.42: Magnitude of the kernels of the MUA linear model.

CHAPTER 3. METHODOLOGY AND RESULTS 60

LFP frequency bands

As for the testing, there is little difference between the results of this model, presented
in Figure 3.43, and the results of the linear model on LFP.

(a) max F1 crossvalidation. (b) AUC crossvalidation.

Figure 3.43: Performance of linear model on LFP frequency bands.

The model extracts most of the information from the higher frequency bands of
channel 1-5. There seems to be no correlation between theta and alpha activity and
evoked response.

Figure 3.44: Magnitude of the kernels of the LFP frequency bands linear model.

CWT

As for testing, the CWT model is the second worst in terms of performance. From
the results, shown in Figure 3.45, we can see that the model has worse AUC and F1
on the data from each rat.

CHAPTER 3. METHODOLOGY AND RESULTS 61

(a) max F1 crossvalidation. (b) AUC crossvalidation.

Figure 3.45: Performance of linear model on CWT.

From Figure 3.46 we can see a main group of channels and frequencies that is being
used. Channels 1-10, which should correspond to layers 6 and 5b, are the most used
by the models, with the frequency range 18-100Hz being the most important. There
is a strong peak around frequency 30Hz and channels 4-6, which can be read as high
beta activity on layer 5b.

Figure 3.46: Magnitude of the kernels of the CWT linear model.

CHAPTER 3. METHODOLOGY AND RESULTS 62

3.6.2 Deep Models
Temporal Convolutional Model

The performance of TCN is shown in Figure 3.47. The model can find most of the
evoked responses even in the worst recordings. On recordings with clear responses,
the model has results that are comparable to the baseline. The major improvement
comes when comparing the worst recordings. If we take rat of index 11-12-13, we have
an average maximum F1 of 0.4 in the best baseline while we have an average of 0.7
with this model.

(a) max F1 crossvalidation. (b) AUC crossvalidation.

Figure 3.47: TCN model performance.

Recurrent Model

Performance of the recurrent model is shown in Figure 3.48. For some of the rats, the
model was unable to find most of the responses. On the TCN, no recording has F1
lower than 0.5, in the recurrent case, we can find 4 that are below this value. In some
cases, such as for the rat with strongest response, this model performs worse than the
LFP linear model baseline.

(a) max F1 crossvalidation. (b) AUC crossvalidation.

Figure 3.48: Recurrent model performance.

CHAPTER 3. METHODOLOGY AND RESULTS 63

Mixed Model

Performances of the mixed model are shown in Figure 3.49. The mixed model per-
formed slightly better than the recurrent model. The model is still far worse than the
TCN, but has better capabilities compared to the recurrent and the baseline models.

(a) max F1 crossvalidation (b) AUC crossvalidation

Figure 3.49: Mixed model performance.

Ensemble Model

Performance of the ensemble model is shown in Figure 3.49. The ensemble model
returned results similar to those of the convolutional model. We can make the same
consideration as made in the test section that the recurrent and mixed model finds a
subset of the EPs found by the TCN.

(a) max F1 crossvalidation. (b) AUC crossvalidation.

Figure 3.50: Ensemble model performance.

CHAPTER 3. METHODOLOGY AND RESULTS 64

3.6.3 Comparison
A more complete comparison can now be done between all models. From Figure 3.51
we can see how the various models performed. As for the first comparison, the TCN
is the best model. TCN has the ability to find 78% of the total stimulation present in
the data set, with a precision of 0.8. Follow the ensemble model, the mixed model, and
the recurrent model. In this case, the efficacy of both recurrent and mixed models,
even if higher, is comparable to the linear model on LFP data.

(a) AUC. (b) maximum F1-Score.

Figure 3.51: Comparison of the performance of each model using cross-validaiton
.

The cross-validation confirms what we concluded in the previous comparison made
using only index 11 rat.
A more complete final comparison is given in Table 3.11.

Model AUC Max F1 Precision Recall
Linear on LFP 0.56±0.13 0.62±0.10 0.60±0.12 0.66±0.08
Linear on LFP Bands 0.51±0.12 0.57±0.14 0.60±0.12 0.57±0.15
Linear on MUA 0.23±0.17 0.29±0.20 0.32±0.18 0.35±0.22
Linear on CWT 0.24±0.15 0.35±0.15 0.30±0.16 0.50±0.15
TCN 0.78±0.08 0.77±0.05 0.77±0.05 0.78±0.06
GNU 0.64± 0.18 0.66±0.12 0.67±0.10 0.66±0.12
mixed 0.67±0.11 0.68±0.04 0.70±0.05 0.68±0.04
ensemble 0.78±0.09 0.77±0.05 0.78±0.06 0.75±0.06

Table 3.11: Complete comparison of the models.

Conclusion

The last chapter provides a brief account of the work that was performed with an
overview of the methods used and the results obtained, as well as their significance
for future researches.

Overall summary
Starting from multiple recordings extracted from the barrel cortex of several rats, I
was able to pre-process and filter the data to create a data set that can be used in a
supervised learning scenario. The data have first been filtered out of 18 bad recordings
from 11 different rats, those with weak evoked responses. From the remaining record-
ings, extracted from 30 experiments on 14 different rats, I proceeded with extracting
the LFP and MUA features. The average response of these two features was analyzed
to create labels to use as output for the models. A window of 40 ms post-stimulus
was labeled as the evoked response. Subsequently, the data was segmented into mul-
tiple windows centered around the stimulation. This is the final data set used in the
model selection and learning process. For the final evaluation, only complete uncut
recordings were taken into account to simulate real-time use.
An initial preliminary analysis was performed to design the model selection process.
In this analysis, various papers and similar projects were examined to define the set
of deep learning layers that could be used in the model. Therefore, I came to the
conclusion that LSTM, GRU, convolutional layers, and temporal convolutional layers,
used in different contexts and versions, are well suited to work on LFP data. Further-
more, I concluded that the normalization layer, gradient clipping, and dropout are
fundamental components needed for a model to work correctly in this context.
In addition, an output block was designed to be used on each model. This output uses
a single convolutional filter to shift the window of the evoked potential and overcome
the delay introduced by each model. The sigmoid activation was selected as the out-
put activation and the weighted binary cross-entropy was selected as the loss.
To virtually increase the size of the data set and prevent overfitting, a data augmen-
tation layer was designed, which virtually "shifts" the probe to simulate the offset
of different recordings. We cannot be sure that a channel touches the same layer of
the cortex in each recording. However, by using data augmentation, the problem is
overcome.
The selection of models was carried out using data from 13 rats as training and vali-
dation sets. Three models were selected: one that uses temporal convolutional layers,
one that uses GRU layers, and one that uses GRU and convolutional layers. The
mixed model used convolutional layers and not temporal convolutional layers for a
problem encountered in the implementation. This problem did not affect the efficacy

65

CONCLUSION 66

of the model, but only the efficiency. A final ensemble of the three models was added
for comparison.
A set of linear models was used as a baseline for analysis. These models use a linear
convolutional layer on various features of the input. The features that I selected for
this scope were the raw LFP, the MUA, the main frequency bands of the LFP, and
the continuous wavelet transform of the LFP.
The test set was used on all models and a comparison of efficacy and efficiency was
performed. Deep learning techniques outperformed the linear model baseline in the
evoked potential detection task. For this task, the best type of architecture was the
temporal convolutional network, followed in order by the ensemble, the mixed model,
and the GRU network; in terms of efficiency, the best was the GRU layer followed by
the mixed model, the TCN model and the ensemble.
Given the optimal efficacy of the temporal convolutional model, I decided to improve
the performance aspect with a pruning pipeline. For this step, I tested both weight
and gradient magnitude pruning. The gradient magnitude pruning on the filter of
the convolutional network improved the efficiency of the model by a factor of 10x, by
removing 92% of the weights with a small loss in efficacy. This final model is fast and
accurate and is well suited for a real time usage.
At last, a cross-validation analysis was performed on the full data set using the model
found by model selection. Cross-validation results are consistent with the results ob-
tained using the test set previously defined.
To summarize the results, we concluded that all deep learning models that were tested
are valid techniques to be used in real-time detection of the evoked potential. The
temporal convolutional model performed the best in both efficiency and efficacy. The
model is able to detect up to 80% of the evoked responses in the best cases with little
to no false positives, using less than 1000 parameters.

Future work
Although this thesis work demonstrates the efficacy of the deep learning models used,
possible improvements could be achieved by testing a wider range of models. Due to
time and computational constraints, only a small subset of possible models was selected
using a model selection process. Both deeper recurrent and deeper convolutional
networks would probably increase the efficacy even more. For what regards mixed
models, other alternatives could be tested, for instance, the use of convolutional layers
first, followed then by recurrent layers.
Further studies could focus on the use of more labels to detect other types of potentials,
such as the various forms of spontaneous activity, or to predict the intensity of the
stimulations. Having the ability to solve these types of tasks could be helpful in
analyzing various types of neural recordings.
In addition, the models created in this work could be helpful to detect the evoked
potential of recordings extracted from free-moving rats. In this case it would be hard
to detect when a whisker is spontaneously stimulated, however, with the ability of my
models to extract this information, more complex experiments could be performed.
This would be really useful for close-loop neural prostheses, since they could require
real-time detection of the brain response to an event.

Bibliography

[1] S K Saha and B Sikder. Basic neural units of the brain: Neurons, synapses and
action potential. Journal of Neurology & Neuroscience, 10, 2019.

[2] J M Kowalski and T Rabinowitz. Neuroanatomy, neuron action potential. Stat-
Pearls [Internet], 2022.

[3] B Hille. Ion channels of excitable membranes. Sinauer Associates Sunderland,
MA, 2001.

[4] Rachel Aronoff, Ferenc Matyas, Celine Mateo, Carine Ciron, Bernard Schneider,
and Carl C H Petersen. Long-range connectivity of mouse primary somatosensory
barrel cortex. European Journal of Neuroscience, 31(12):2221–2233, 2010.

[5] Laurens WJ Bosman, Arthur R Houweling, Cullen B Owens, Nouk Tanke,
Olesya T Shevchouk, Negah Rahmati, Wouter HT Teunissen, Chiheng Ju, Wei
Gong, Sebastiaan KE Koekkoek, et al. Anatomical pathways involved in gener-
ating and sensing rhythmic whisker movements. Frontiers in integrative neuro-
science, 5:53, 2011.

[6] Michael M Morgan, MacDonald J Christie, Thomas Steckler, Ben J Harrison,
Christos Pantelis, Christof Baltes, and Malcolm Lader. Multiunit activity. In
Encyclopedia of Psychopharmacology, pages 809–809. Springer, 2010.

[7] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning repre-
sentations by back-propagating errors. Nature, 323(6088):533–536, 1986.

[8] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017.

[9] Sebastian Ruder. An overview of gradient descent optimization algorithms, 2017.

[10] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Activation
functions in deep learning: A comprehensive survey and benchmark, 2022.

[11] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[12] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks, 2013.

[13] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

67

BIBLIOGRAPHY 68

[14] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization,
2016.

[15] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization:
The missing ingredient for fast stylization, 2017.

[16] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks,
2015.

[17] Yitian Chen, Yanfei Kang, Yixiong Chen, and Zizhuo Wang. Probabilistic fore-
casting with temporal convolutional neural network, 2020.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9:1735–80, 12 1997.

[19] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase represen-
tations using rnn encoder-decoder for statistical machine translation, 2014.

[20] Jesse M Lasky, Katherine R Kirby, and David N Koons. The area under the
precision-recall curve as a performance metric for rare binary events. Ecological
modelling, 222(13):2199–2207, 2011.

[21] Steven L Bressler and Mingzhou Ding. Event-related potentials. Wiley Encyclo-
pedia of Biomedical Engineering, 2006.

[22] Hafeez Ullah Amin, Wajid Mumtaz, Ahmad Rauf Subhani, Mohamad Naufal Mo-
hamad Saad, and Aamir Saeed Malik. Classification of eeg signals based on pat-
tern recognition approach. Frontiers in Computational Neuroscience, 11, 2017.

[23] Amjed S. Al-Fahoum, Ausilah A. Al-Fraihat, M. S. Oliveira, A. Grant, and J. A.
Hinojosa. Methods of eeg signal features extraction using linear analysis in fre-
quency and time-frequency domains. ISRN Neuroscience, 2014:730218, 2014.

[24] Hamid R. Mohseni, A. Maghsoudi, and Mohammad B. Shamsollahi. Seizure
detection in eeg signals: A comparison of different approaches. In 2006 Inter-
national Conference of the IEEE Engineering in Medicine and Biology Society,
volume Supplement, pages 6724–6727, 2006.

[25] Saurabh Kumar, Arindam Ghosh, Rajarshi Mondal, Soumya Sarkar, and Suman
Chakraborty. Wavelet decomposition of intracortically recorded signals for ex-
tracting stable neural features. Bioelectronic Medicine, 4(1):11, 2018.

[26] M. Kumar, S. Kumar, and S. Kumar. A review of intrusion detection system
based on machine learning techniques. In 2015 International Conference on Green
Computing and Internet of Things (ICGCIoT), pages 1145–1149, 2015.

[27] Jinwon An and Sungzoon Cho. Hand motion identification of grasp-and-lift task
from electroencephalography recordings using recurrent neural networks. In 2016
International Conference on Big Data and Smart Computing (BigComp), pages
427–429, 2016.

[28] Nur Ahmadi, Timothy G. Constandinou, and Christos-Savvas Bouganis. End-to-
end hand kinematic decoding from lfps using temporal convolutional network. In
2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), pages 1–4,
2019.

BIBLIOGRAPHY 69

[29] Xin Dong, Shangyu Chen, and Sinno Jialin Pan. Learning to prune deep neural
networks via layer-wise optimal brain surgeon, 2017.

[30] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights
and connections for efficient neural networks, 2015.

[31] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Im-
portance estimation for neural network pruning, 2019.

	Abstract
	Ringraziamenti
	Contents
	Introduction
	1 Theoretical background
	1.1 Neuron, barrel cortex and brain signals
	1.1.1 Neuron
	1.1.2 The rat barrel cortex
	1.1.3 Local field potential
	1.1.4 Multi unit activity

	1.2 Machine Learning and Deep Learning
	1.2.1 Supervised Learning
	1.2.2 Artificial Neuron, neural network and training process
	1.2.3 Convolutional Neural Network
	1.2.4 Recurrent Neural Networks

	1.3 Classification metrics

	2 Data acquisition, pre-processing and analysis
	2.1 Data acquisition
	2.2 Raw data structure
	2.2.1 Spectrum of the channels

	2.3 Analysis of neural signal features
	2.4 Features Extraction
	2.4.1 Extracting the LFP
	2.4.2 Extracting the MUA
	2.4.3 Extracting frequency features

	2.5 Analysis of the data
	2.5.1 Average evoked potential
	2.5.2 Spontaneous activity
	2.5.3 Removing bad recordings

	2.6 Extracting the Stimulus response window
	2.7 Partitioning the data for training

	3 Methodology and results
	3.1 Preliminary analysis of the models
	3.1.1 Baseline models
	3.1.2 Analysis of deep learning techniques used on LFP and EEG
	3.1.3 Output block
	3.1.4 Data augmentation layer
	3.1.5 Training, Validation and Test set
	3.1.6 Preliminary setup

	3.2 Model selection
	3.2.1 Selection process and results
	3.2.2 Possible improvements

	3.3 Selected models
	3.3.1 Baseline models
	3.3.2 Convolutional Model
	3.3.3 Recurrent Model
	3.3.4 Mixed Model
	3.3.5 Ensemble Model

	3.4 Testing the models
	3.4.1 Baseline models
	3.4.2 Deep models
	3.4.3 Comparison

	3.5 Optimization of the convolutional model
	3.5.1 Pruning pipeline
	3.5.2 Pruning results
	3.5.3 Possible improvements

	3.6 Analysis of the models with cross-validation
	3.6.1 Baseline models
	3.6.2 Deep Models
	3.6.3 Comparison

	Conclusion

