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Abstract

To create a neural prosthesis, multiple studies on how the brain works are necessary.
Stefano Vassaneli’s NeuroChip Lab of the University of Padova studies how the brain
responds to sensory stimulation. The laboratory carried out multiple experiments
with stimulation of the whiskers of rats to study how evoked potential can be used
for neural prostheses. My thesis work focuses on the analysis, implementation and
comparison of various deep neural network techniques for the task of labeling brain
recordings to detect evoked potentials.

The analysis focused on three types of networks: temporal convolutional networks
(TCN), gated recurrent unit (GRU) networks, and a model that uses both techniques.
To create these models, the data set was first created from recordings of the barrel
cortex of rats. The input data are the local field potential (LFP) features while the
output data are the labels of which segments contain evoked responses. The data set
was enriched in the training phase by using a data augmentation layer.

I proceeded to perform a model selection process to extract the best hyperparameters
from the models. The selected models were then compared to each other, to a set of
baseline models, and to an ensemble technique. The temporal convolutional network
was selected as the best in terms of e [cady. This model was the worst in terms of
e [ciehcy, so a magnitude pruning process was performed to reduce the number of
parameters of the model. After pruning, the model is 10 times more e [cieht.

The test performed on full recordings of a test rat shows clear advantages in using
deep learning techniques. The final model Temporal Convolutional Network is capable
of identifying in real time up to 86% of the evoked responses, with high precision, low
energy consumption, and a delay of just 80 ms.
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Introduction

Prof. Stefano Vassanelli’'s ‘Neurochip Lab’ at the Department of Biomedical Sci-
ences (DBS) of the University Of Padova studies the various technologies and ap-
proaches required to build a functional neural prosthesis, a system capable of reading
and changing the behavior of a neural population through the use of electrical probes.
An electrical probe is a needle-shaped array of electrodes, which can be intrusively in-
troduced in the brain cortex to record the change in electrical potential. Central in the
building of such a system is the study of the various functions of the brain, such as the
response to a stimulation. All the analyses carried out by the Neurochip lab are done
on brain recordings extracted from the barrel cortex of multiple rats, i.e. the section
of the cortex that handles the inputs from the whiskers. Several studies conducted
in the laboratory focus on the potential evoked by the sensory stimulation of
the whiskers of rats. A potential evoked is a precise change in the electrical potential
of the cortex and is recorded in response to an event or stimulation. In Figure 1, a
general scheme of this recording process is illustrated.

Recording

e
A “
.
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Figure 1: Scheme of the data acquisition process. A stimulation is sent to the whisker and
neural signal and the response to the stimulation are recorded.

Two extracellular signals are used to analyze the response to whisker stimulation:

e The local field potential (LFP) is the change of potential recorded with the
use of the probes in the range 1-100Hz. The LFP contains information about
the synchronization of the activity of multiple neural population.

e The multi-unit activity (MUA) measures how many neurons touching the
probe are firing at a given instant. The MUA is extracted from the high 300-
6000Hz frequency range. It contains information about a single population of
neurons and the codification used by them to communicate.

Vi



INTRODUCTION vii

My work focuses on the detection of the patterns generated in response to the stimu-
lation through the use of deep learning techniques, used on the LFP signal. The task
of the program is to label the evoked potential in the recordings, as shown in Figure
2.

Recording

=

not E.P. E.P. not E.P.

Figure 2: Example of evoked potential labelling in EP (evoked potential) and not EP (not
evoked potential).

Deep learning is a branch of machine learning that focuses on the creation of deep
neural networks. A deep neural network is a multilayered model capable of learn-
ing from a data set how to extract complex features. The reason why deep learning
models generally perform better than shallow ones lies on the fact that each layer
of the model has the ability to recognize a complex sub-feature from the output of
the previous one. The model will learn the optimal pipeline of sub-feature extraction
needed for the final output feature. Within this framework, a supervised learning
approach was used, which requires the designer to specify the intended behavior that
must be learned. In this case, the behavior the model must learn is the detection of
the evoked response. Various deep learning models are currently being used to ana-
lyze brain signals, for example to predict emotions on electroencephalography data.
However, there are no studies on the use of deep learning models that are capable of
identifying the time window of the evoked potential in real time. To create a working
model, two dilerent analyses were performed. The first analysis, used as a baseline,
was performed using linear classifiers on three types of features: the LFP signal, the
time-frequency features extracted from the LFP, and the MUA signal.

The second analysis focused on the use of deep learning. The main types of tech-
niques used are models built on Gated Recurrent Unit, Temporal Convolutional
Block, and a mixture of the two.

I have performed all the analyses, pre-processing and designed the models using MAT-
LAB 2022b.

Problem statement and Aim of the thesis

The NeuroChip Lab provided a set of recordings of rats anesthetized with urethane.
A first problem arises when we want to create a data set that will be used in a machine
learning context. It is important that the labels assigned to the data correspond to
reality. If we label a time window as an "evoked response™ when there is none, the
model would learn the wrong behavior. In terms of functionality of the models other
types of problems occur. The provided recordings contain multiple evoked potential
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mixed with spontaneous activity of the brain. The main aim of the work is to develop a
system capable of correctly identifying the evoked potential. Spontaneous activities of
the brain are patterns of activity that occur in the absence of external stimuli. These
patterns can be really similar to those of an evoked potential. For this reason, a simple
system, such as the linear classi er, would struggle to discriminate between the two.
In addition, a further issue involves the e cient identi cation of the evoked potential

in real time. A system that requires a small amount of operation per second needs to
be developed to be used on a chip with a low energy and short delay requirement.

Signi cance of the Study

My work focuses on sensory stimuli on whiskers. However, a system with the ability
to detect evoked potential could have further uses in elds such as medicine, bio-
engineering and neuroscience. The model | have built could be yet slightly modi ed
to be used for detecting potential evoked by other events and stimulation, for example,
the detection of a visual or auditory stimuli, or the detection of events internal to the
brain. Currently, when conducting a study on evoked potentials, information about
each stimulation, such as instant, duration, or intensity, must be recorded; otherwise,
it would not be possible to nd the evoked potentials. With a model capable of
detecting evoked potentials without the need for stimuli information, new types of
experiments could be carried out.

Furthermore, this type of model can be used in real-time closed-loop systems to restore
or improve brain functionality. Close-loop is a term that describes all techniques where
the state of the brain is iteratively analyzed and changed in an autonomous system.
These systems are often used as an alternative or in support of drug treatment for
disorders such as Parkinson's disease or epilepsy.

Methodology

Regarding the methods employed to create the nal model, | followed four main steps:
the creation of the data set, the selection and creation of the models, the comparison
between the models, and the optimization of the best one. At rst, after de ning and
extracting the main features from the recordings, the best recordings were selected and
those where the evoked response is too weak or not present were removed. Currently,
this is done visually with a manual selection. This process was slightly improved by
analyzing and comparing the average response of each recording.

Furthermore, a set of linear models was selected. These models were used as baseline
to analyze the improvement gained by the use of deep learning techniques.

To design the structure of deep learning models, a brief analysis of how similar models
are built for similar issues was performed. The four deep neural network architectures
that were analyzed and implemented are: aGated Recurrent Unit network , a
Temporal Convolutional Network , a Recurrent-Convolutional mixed net-

work , which uses both GRU and convolutional layers, and arensemble of the three.
Taking this into consideration, a model selection phase was then performed, where
| de ned a set of possible networks, one for each architecture with the exception of
the ensemble. By means of the information extracted from a random search, the four
models were constructed. This search was carried out on data from all rats except
one, which was used to test and compare.

Furthermore, the best deep learning model was selected and then optimized with a
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magnitude pruning algorithm. Pruning is a process in which the least important parts
of a neural network are removed, leaving only the fundamental sections. The use of
pruning greatly reduced the amount of computation required by the nal network.

The work was concluded with a cross-validation of the models to give a better overview
on how they perform in recordings of di erent rats.

Structure of the thesis

Chapter 1, Theoretical background contains all the knowledge that | consider funda-
mental for a clear understanding of my work. Information about how neurons, barrel
cortex of the rat, local eld potential, and multi-unit activity is provided in the rst
section. The second section includes a brief explanation of the main concepts of deep
learning, such as neural networks, learning processes, convolutional networks, and re-
current networks. Finally, the de nitions of the metrics of comparison and evaluation
are given.

Chapter 2, Data acquisition, pre-processing and analysisfocuses on the data pro-
vided by the NeuroChip lab and the creation of the nal data set, which will then

be used for training. The process followed by the lab to record the data and their
content is briey described. The following sections are centered on the de nition
of the various features, such as LFP and MUA, and how they were extracted and
preprocessed. In addition, a brief analysis of the evoked response and the average
response to stimulation is given. This is followed by a brief explanation of how the
best recordings are extracted and how the data were labeled. Finally, a description
of how the data were formatted in order for them to be used by the models is provided.

Chapter 3, Methodology and results presents how the various models used for the
detection of evoked responses were created and compared. The rst section regards
the preliminary analysis required to build a functioning model. The second section
focuses on how model selection was performed, providing the results of the selection
process. In the third part, the various selected models are presented. In the fourth
section, the performance of the models on the test set are discussed and compared. In
the fth section, the optimization of the best-performing model is discussed. Finally,

a nal general comparison is made on all models with a cross-validation technique.

The Conclusion provides a brief summary of the completed work and the results
obtained. In addiction, further possible improvements of the work are mentioned, as
well as an account on the signi cance of the results for future researches in the eld
of neural prosthesis.



Chapter 1

Theoretical background

In this chapter, a brief introduction is presented to all the topics required to fully
comprehend the work. The various topics are organized in three sections. The rst
one will provide an explanation on the origin of the data, i.e. which cerebral process
generates the data used in this work and what is the information contained in it. In
the second section, an introduction will be given on the concept of machine learning
and deep learning, as well as an explanation of the main types of layer used in the
models. In the last section, the various metrics that were used for comparing the
performance of those models analyzed in this thesis are discussed.

1.1 Neuron, barrel cortex and brain signals

The data has been recorded from the extracellular space of the barrel cortex. To
understand what it contains we rst need to understand what is a neuron, what is
an action potential, how action potential propagate in the extracellular space, what is
the barrel cortex and what are the local eld potential and the multi unit activity.

1.1.1 Neuron

A neuron is a specialized cell that transmits electrical and chemical signals. It works
as the building block of the nervous system [1]. Its components, shown in Figure 1.1,
are the cell body, also calledsoma where the nucleus is found and where most logical
"decisions" are made; thedendrites, which are the inputs of the cell; the axon, which
functions as the output of the cell. The most important section of the axon is the
terminal, which connects the neuron to other dendrites, allowing it to send signals to
other neurons. A single neuron has little computational capabilities, but when located
in a more complex network, the neural population is able to solve more complex tasks.
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Figure 1.1: Scheme of the neuron and its main components.

To understand how the neuron is able to process information, we need to focus on
its membrane. The inside and outside of the cell membrane contain di erent concen-
trations of sodium ions, positively charged and mostly present outside, and potassium
ions, negatively charged and mostly present inside. Due to the di erent concentrations
in ions, when the neuron is at rest, we see a -70mv di erence of potential, or voltage,
between the extracellular and intracellular space. If ions could cross the membrane,
they would balance the voltage at 0. The membrane is full of gates, also called chan-
nels, with this exact function. These gates have the ability to allow potassium or
sodium ions to ow to the other side of the membrane. The voltage-gated channels
open when a voltage threshold is reached. An action potential (AP) is a chain re-
action that is generated by these gates when a threshold of -50 mv is exceeded. AP
propagates through the membrane in one direction, fromsomato axon and in some
cases todendrites. After the action potential, there is a rebound phase that reduces
the probability that another action potential occurs. [1][2][3]

In this thesis, | will also refer to the action potential as spike and to the event of an
action potential occurring as neuron ring . An action potential is shown in Figure
1.2.

Figure 1.2: Phases of an action potential.[2]

The synapseis the connection between an axon terminal and thedendrite or the
soma of the other cell. If the synapse is inhibitory, when the action potential reaches
the terminal, it sends a chemical signal to the other cell, which activates some gates
that lead to a negative change in potential. This negative change in potential reduces
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