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Introduction

The present thesis studies a family of associative C-algebras known as
symplectic reflection algebras. These algebras, which were introduced by
Etingof and Ginzburg [1], have a rich and varied theory which have applica-
tions in different mathematical contexts: they are encoded with a combina-
torics which shows similarities with the one which arises from the classifica-
tion of a family of irreducible representations of finite groups of Lie type [22],
they are involved with the problem of the existence of symplectic resolutions
for some symplectic quotient varieties [6], and they have many analogies with
the universal enveloping algebra U(g) of a semisimple Lie algebra g.
In Chapter 1 we introduce some preliminary notions on Hopf algebras, graded
and filtered algebras, symplectic C-vector spaces, classical deformation the-
ory and Poisson algebras.
In Chapter 2 we define the symplectic reflection algebras following [1] and we
highlight some of their properties. In order to give their definition, Etingof
and Ginzburg consider a larger class of algebras consisting of deformations of
the smash product algebra SV#Γ, where SV is the symmetric algebra of a
finite dimensional C-vector space V and Γ is a finite group of automorphisms
of V .
In analagoy with Lie Thoery, the symplectic reflection algebras are the ones
for which the PBW -Theorem holds (Theorem 2.1.2) and we denote them by
Ht,c, where t, c are parameters.
Now, we study the substructures of a given symplectic reflection algebra Ht,c,
in particular we focus on a subalgebra: the spherical subalgebra.
We describe the proof of [1, Theorem 1.6] in which the spherical subalgebra
is interpreted as a deformation of the Poisson algebra (SV )Γ and where it is
proved that for t = 0 it is commutative.
To conclude Chapter 2, we recall from [6] and [1] the results which allow us
to relate the centre of the spherical subalgebra to the one of the correspond-
ing symplectic reflection algebra and we restate the characterization of the
centre of Ht,c depending on the parameter t ∈ C that can be found in [6]:

• If t ̸= 0, Z(Ht,c) = C.
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• If t = 0, H0,c is a finite module over Z(H0,c).

In Chapters 3 we focus on a particular family of symplectic reflection alge-
bras: the rational Cherednik algebras. Being a particular family of the main
mathematical objects of this thesis, the results stated in the general case
still hold. However, unlike general symplectic reflection algebras, rational
Cherednik algebras are Z-graded algebras and they admit a triangular de-
composition as C-vector spaces which is analogous to the one of the universal
enveloping algebra U(g) of a semisimple Lie algebra g.
We move on setting the ground to study their representation theory. In
particular, we focus on rational Cherednik algebras at t = 0 and we recall
from [6] the definition of some quotients of algebras in the latter family: the
restricted rational Cherednik algebras. They inherit a triangular decomposi-
tion as C-vector spaces from the one of the corresponding rational Cherednik
algebras which will play an important role in their representation theory.
In Chapter 4, in the spirit of the representation theory of U(g), we report
some results on the representation theory of a restricted rational Cherednik
algebra from [14], obtained by exploiting its triangular decomposition. We
present the construction given in [6] of a family of finitely generated left
modules for this algebra called Baby Verma modules which are analogous to
the Verma modules for the universal enveloping algebra U(g) of a semisimple
Lie algebra g.
To conclude, we compute a concrete example for C2 and a cyclic group.
In particular, we give an explicit description of the objects involved in the
thesis: the associated rational Cherednik algebra and the restricted rational
Cherednik algebra. Moreover, we compute the Baby Verma modules, writing
the computations in full detail in the case of a cyclic group of order 2.
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Chapter 1

Preliminaries

1.1 Hopf Algebras

1.1.1 Algebras and Coalgebras

Throughout this section F is a field and tensor products are over F . As
in [3]:

Definition 1.1.1. A F -algebra (with unit) is a F -vector space A together
with two F -linear maps, multiplication m : A⊗ A −→ A and unit
u : F −→ A, such that the following diagrams are commutative:

a) associativity: b) unity:

A⊗ A⊗ A A⊗ A

A⊗ A A

m⊗id

id⊗m m

m

A⊗ A

F ⊗ A A⊗ F

A

m

u⊗id id⊗u

Moreover, the two lower maps in b) are given by scalar multiplication, and
the same diagram gives the usual identity element in A by setting 1A = u(1F ).

Definition 1.1.2. For any F -vector spaces V and W , the twist map
τ : V ⊗W −→ W ⊗ V is given by τ(v ⊗ w) = w ⊗ v.

Note that A is commutative if and only if m ◦ τ = m on A⊗ A.

Definition 1.1.3. A F -coalgebra (with counit) is a F -vector space C to-
gether with two F -linear maps, comultiplication ∆ : C −→ C ⊗ C and
counit ε : C −→ F such that the following diagrams are commutative:
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a) coassociativity: b) counity:

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆ ∆⊗id

id⊗∆

C

F ⊗ C C ⊗ F

C ⊗ C

∆

1⊗ ⊗1

ε⊗id id⊗ε

We say that C is cocommutative if and only if τ ◦∆ = ∆ on C.

Remark 1.1.1.1. Notice that given a F -algebra (B,mB, uB) then
(B ⊗ B, m̃B⊗B, ũB⊗B) with m̃B⊗B := (mB ⊗mB) ◦ (idB ⊗ τ ⊗ idB) and
ũB⊗B := uB ⊗ uB, is again a F -algebra and similarly given a F -coalgebra
(C,∆C , εC) then (C ⊗ C, ∆̃C⊗C , ε̃C⊗C), where
∆̃C⊗C := (idC⊗ τ ⊗ idC)◦ (∆C⊗∆C) and ε̃C⊗C := εC⊗εC, is a F -coalgebra.

Definition 1.1.4. Let C and D be coalgebras, with comutiplications ∆C

and ∆D, and counits εC and εD respectively.

a) A map f : C −→ D is a coalgebra morphism if ∆D ◦ f = (f ⊗ f)∆C and
if εC = εD ◦ f .

b) A subspace I ⊆ C is a coideal if ∆I ⊆ I ⊗ C + C ⊗ I and if ε(I) = 0.

1.1.2 Bialgebras, Convolution, Summation Notation

Now we combine the notions of algebra and coalgebra;

Definition 1.1.5. A F -space B with maps m, u, ∆, ε is a bialgebra if
(B,m, u) is an algebra, (B,∆, ε) is a coalgebra, and either of the following
(equivalent) conditions hold:

1) ∆ and ε are algebra morphisms

2) m and u are coalgebra morphisms.

Definition 1.1.6. Let B, B′ be bialgebras. A map f : B −→ B′ is a
bialgebra morphism if it is both an algebra and a coalgebra morphism.

Definition 1.1.7. Let (C,∆C , εC) be a coalgebra and (A,mA, uA) be an alge-
bra. Then HomF (C,A) becomes an algebra under the convolution product:
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(f ∗ g)(c) = mA ◦ (f ⊗ g)(∆C)

for all f ∈ HomF (C,A), c ∈ C. The unit element in HomF (C,A) is uAεC .

Notation 1.1.8. Let C be a coalgebra with comultiplication
∆ : C −→ C ⊗ C. The sigma notation for ∆ is given as follows: for any
c ∈ C, we write:

∆c = Σc(1) ⊗ c(2).

Remark 1.1.2.1. When ∆ must be applied more than once, using the coas-
sociativity property in 1.1.3 a) we get:
Σc(1) ⊗ c(2)(1) ⊗ c(2)(2) = Σc(1)(1) ⊗ c(1)(2) ⊗ c(2); this element is written as
Σc(1) ⊗ c(2) ⊗ c(3) = ∆2(c), where ∆2(c) is the element (necessarly unique)
obtained applying coassociativity two times. Iterating this procedure we write:

∆n−1(c) = Σc(1) ⊗ · · · ⊗ c(n),

where ∆n−1(c) is the element (necessarly unique) obtained applying coasso-
ciativity (n− 1)-times. Moreover it follows that for all c ∈ C,

c = Σε(c(1))c(2) = Σε(c(2))c(1)

and the convolution product is given by:

(f ∗ g)(c) = Σf(c(1))g(c(2)).

Now, we can give the definition of a Hopf algebra:

Definition 1.1.9. Let (H,m, u,∆, ϵ) be a bialgebra. Then H is a Hopf
algebra if there exists an element S ∈ HomF (H,H) which is an inverse of
idH under convolution ∗. The map S is called antipode for H.

Remark 1.1.2.2. Note that in Σ-notation S satisfies:

Σ(Sh1)h2 = ε(h)1H = Σh1(Sh2)

for all h ∈ H.

Definition 1.1.10. A map f : H −→ K is a Hopf algebra morphism if it
is a bialgebra morphism and if it holds:

f(SHh) = SK(f(h)), for any h ∈ H,

where SH and SK are the antipodes for H and K, respectively.
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Example 1.1.11. Let G be a finite group with unit e. The group algebra
H = FG is the space of all formal linear combinations Σg∈Gagg, ag ∈ F , with
the multiplication:

(Σg∈Ga
′
gg)(Σg∈Ga

′′
gg) = Σg∈GΣuv=ga

′
ua

′′
vg,

and with unit e.
Then H = FG becomes a Hopf algebra by defining ∆g = g ⊗ g, ε(g) = 1
and Sg = g−1, for any g ∈ G.

Example 1.1.12. Let g be a Lie algebra and let U(g) be its universal en-
veloping algebra. Then U(g) becomes a Hopf algebra by defining
∆x = x⊗ 1 + 1⊗ x, ε(x) = 0 and Sx = −x, for any x ∈ g.

1.1.3 Smash Product of Hopf Algebras

In this subsection let H be a F -Hopf algebra.

Definition 1.1.13. Let H be a Hopf algebra and V , W be left H-modules.
Then V ⊗W is again a left H-module via:

h · (v ⊗ w) = Σh1 · v ⊗ h2 · w

for all h ∈ H, v ∈ V and w ∈ W .
Rewriting the equality above in term of maps:

ΦV⊗W = (ΦV ⊗ ΦW ) ◦ (idH ⊗ τ ⊗ idW ) ◦ (∆⊗ idV ⊗ idW ),

where ΦV : H ⊗V −→ V and ΦW : H ⊗W −→ W are the two given module
actions, ΦV⊗W : H ⊗ (V ⊗W ) −→ V ⊗W is the module action on V ⊗W
and τ is the twist map: H ⊗ V −→ V ⊗H.

Definition 1.1.14. An algebra A is a (left) H-module algebra if
for all h ∈ H, a, b ∈ A:

1) A is a left H-module via h⊗ a 7−→ h · a.

2) h · (ab) = Σ(h1 · a)(h2 · b).

3) h · 1A = ε(h)1A.

Definition 1.1.15. Let A be a left H-module algebra. Then the smash
product algebra A#H is defined as follows:
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1) As F -vector spaces, A#H = A⊗H, and we write the element a#h = a⊗h,
for a ∈ A and h ∈ H.

2) Multiplication is given by:

(a#h)(b#k) = Σa(h1 · b)#h2k ,

for all a, b ∈ A, h, k ∈ H.

It follows from the definition that A ≃ A ⊗ 1 and H ≃ 1 ⊗ H, thus the
element a#h is frequently abbreviated by ah.

Example 1.1.16. Let H = FG and let A be an H-module algebra. Since
∆g = g ⊗ g for any g ∈ G, by Definition 1.2.2 2), we have that
g · (ab) = (g · a)(g · b) for all a, b ∈ A and thus g acts as an endomorphism
of A. Morevoer by Definition 1.2.2 1) g acts as an automorphism of A (since
gg−1 = 1). As a consequence there is a group homomorphismG −→ AutF (A)
and also the converse holds: any such a map makes A into a FG-module
algebra.
In this case A#FG = A ∗ G, the skew group ring, where multiplication is
just:

(ag)(bh) = a(g · b)gh, for all a, b ∈ A, h, k ∈ G.

Example 1.1.17. Let H and G be groups such that G acts on H by au-
tomorphisms. Then FH is a FG-module algebra and the smash product
FH#FG exists [7, Lemma 3.3.9]. Moreover by [7, Proposition 3.3.10], we
have the following isomorphism of algebras:

FH#FG ≃ F (H ⋊G).

1.2 Symplectic Vector Spaces

Throughout this section fix F = C.

1.2.1 Definitions and Basic Notions

Definition 1.2.1. Let V be a vector space over C, and let
ω : V × V −→ C be a bilinear form which satisfies the following properties
for any x, y ∈ V :

(i) ω(x, y) = −ω(y, x) (skew-symmetric);
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(ii) ω(x, x) = 0 (totally isotropic);

(iii) If ω(y, x) = 0 for all y ∈ V , then x = 0 (non-degenerate).

Then ω is a symplectic form on V and the pair (V, ω) is called symplectic
vector space.
A subspace W ⊂ V which satisfies ω(x, y) = 0 for all x, y ∈ W is said to be
isotropic.

From now on V is a finite dimensional vector space over C.

Corollary 1.2.2. [8, Corollary 1.3] Let (V, ω) be a symplectic vector space.
Then dimV is even.

Example 1.2.3. Let V = C2n. It is a symplectic vector space over C with
symplectic form ω : C2n × C2n −→ C such that its associated matrix with
respect to the canonical basis of C2n has the following form:

J =

[
0 In

−In 0

]
(1.1)

Notice that the matrix associated to ω is skew-symmetric and non-singular.

Remark 1.2.1.1. If (V, ω) is a symplectic vector space with dimV = 2n, then
by [8, Theorem 1.4] there exists a basis of V such that the matrix associated
to ω is as in Example 1.2.3.

Definition 1.2.4. Let (V, ω) be a symplectic vector space and let W ⊂ V .
W is said to be Lagrangian if it is a maximal isotropic subspace in V ,
that is:

(i) ω(x, y) = 0 for all x, y ∈ W (i.e. W is isotropic).

(ii) There is no U ⊂ V such that (i) holds for U and W ⊂ U .

Definition 1.2.5. Let (V, ω) be a symplectic vector space and let U ⊂ V be
a subspace of V. We set Uω = {v ∈ V | ω(v, w) = 0 for any w ∈ U}. Then
U ⊂ V is said to be symplectic if U ∩ Uω = {0}.
In particular it follows that:

dimUω = dimV − dimU. (1.2)

Thus, given a subspace U ⊂ V :
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• U is isotropic if and only if U ⊆ Uω. Then by (1.2): dimU ≤ 1
2
dimV .

• U is Lagrangian if and only if U ⊆ Uω and dimU = 1
2
dimV , [8, Defini-

tion 1.6].

Remark 1.2.1.2. In Example 1.2.3 we consider the subspaces Uj = Span{e1, . . . , ej}.
They are isotropic for any j ≤ n and Lagrangian if and only if j = n.

Definition 1.2.6. Let (V, ω) be a symplectic vector space. The symplectic
group Sp(V ) ≤ GL(V ) is the group of automorphisms of V which preserve
the symplectic form ω:

ω(g · v, g · u) = ω(v, u), for any g ∈ Sp(V ), and v, u ∈ V .

From now on through this section let (V, ω) be a symplectic vector space.

Definition 1.2.7. An element s ∈ Sp(V ) with |s| < ∞ is said to be a
symplectic reflection if:

dim{v ∈ V | s · v = v} = dimV − 2.

A group Γ ⊂ Sp(V ) which is generated by symplectic reflections is called a
symplectic reflection group.

Remark 1.2.1.3. Let (V, ω) be a symplectic vector space with dimV = 2n
and let {v1, · · · , v2n} be a basis of V such that the matrix associated to ω is
as in Example 1.2.3.
Then:

Sp(V ) = {X ∈ GL(2n,C) | tXJX = J},

where J is as in (1.1).
Note that Sp(V ) ⊆ SL(V ), where SL(V ) = {X ∈ GL(2n,C) | detX = 1}.
Indeed, for any X ∈ Sp(V ) taking the determinants on both sides of the
equation tXJX = J :

det(tXJX) = dettXdetJdetX = (detX)2detJ = detJ ,

we get detX = ±1.
Then, viewing ω as an element in Λ2V ∗ we have ω = v∗1∧v

∗
n+1+ · · ·+v∗n∧v

∗
2n,

where {v∗1, · · · , v
∗
2n} is the dual basis of the fixed basis in V .

Consider ω∧n := ω ∧ · · · ∧ ω︸ ︷︷ ︸
n-times

∈ Λ2nV ∗. By [18, Proposition 4.1] Λ2nV ∗ is

one-dimensional, then ω∧n = µ(v∗1 ∧ · · · ∧ v∗2n) for some µ ∈ C∗, where
v∗1 ∧ · · · ∧ v∗2n is the volume form in Λ2nV ∗. More precisely, by [20]:
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ω∧n(v1, vn+1, · · · , vn, v2n) = Σσ∈Sn+n
sgn(σ)ω(vσ(1), vσ(n+1)) · · ·ω(vσ(n), vσ(n+n)).

Notice that since ω = Σn
i=1v

∗
i ∧ v

∗
i+n, the summands in the above equation are

non zero if and only if σ(i + n) = σ(i) + n, for any i ∈ {1, · · · , n}. In par-
ticular by [21, 2.7], ω∧n(v1, vn+1, · · · , vn, v2n) = n!, i.e, 0 ̸= ω∧n ∈ Λ2nV ∗.
By [18, Definition 7.1], ω∧n(A) = µdet(A), for any A ∈ GL(2n,C).
Fix X ∈ Sp(V ). Then ω∧n(XA) = ω∧n(A), i.e, µdetXdetA = µdetA, with
µ ∈ C∗. Thus, detX = 1 and we conclude that Sp(V ) ⊆ SL(V ).

Lemma 1.2.8. Let (V, ω) be a symplectic vector space with dimV = 2n
and let Γ ⊂ Sp(V ). Let S be the set of symplectic reflections in Γ. For each
s ∈ S, the spaces Im(1 − s) and Ker(1 − s) are symplectic subspaces of V
such that V = Im(1− s)⊕Ker(1− s) and dimIm(1− s) = 2.

Proof. For any s ∈ S, with |s| = m < ∞, s is diagonalizable over C with
m-th roots of unity on the diagonal. Indeed C is an algebraically closed field
with char(C) = 0, thus it contains all the distinct roots (which are the m-th
roots of unity) of its minimal polynomial. Since |s| <∞, the Jordan blocks
relative to the eigenvalues of s must be of finite order and since char(C) = 0
they must be diagonal.
Moreover, for any s ∈ S, dimV1 = dimKer(1−s) = 2n−2, where V1 denotes
the eigenspace relative to the eigenvalue 1. By Remark 1.2.1.3 det(s) = 1,
then there are just two possibilities for the other eigenvalues λ1, λ2 ∈ C

(counted with multiplicity):
(i) λ1 = λ2 = −1;
(ii) λ1, λ2 = λ−1

1 , with λ1 ̸= ±1.
Denote by Vλ1 , Vλ2 the corresponding eigenspaces, then in (i) Vλ1 = Vλ2 = V−1

and dimV−1 = 2, while in (ii) Vλ1 ̸= Vλ2 and dimVλ1 = dimVλ2 = 1.
Thus:

Im(1− s) =

{
V−1, in (i)

Vλ1 ⊕ Vλ2 , in (ii).

Hence: Ker(1− s) ∩ Im(1− s) = {0} and V = Ker(1− s)⊕ Im(1− s).
Now, it remains to prove that Ker(1 − s)ω = Im(1 − s). Indeed, then we
get that Ker(1− s)∩Ker(1− s)ω = {0} and we can conclude by Definition
1.2.5 that Ker(1− s) and Im(1− s) are symplectic subspaces of V .
Notice that (1 − s)|Im(1−s) is an automorphism of Im(1 − s) and so any
v ∈ Im(1 − s) is of the form v = w − s · w, with w ∈ V . Moreover, for any
z ∈ Ker(1− s), we have that s · z = z and

ω(v, z) = ω(w − s · w, z) = ω(w, z)− ω(s · w, z) =
= ω(w, z)− ω(s · w, s · z) = 0,

i.e,

8



Im(1− s) ⊆ Ker(1− s)ω.

The other inclusion follows by an argument on the dimensions of the sub-
spaces of V we are considering.
Indeed, we know that dimKer(1− s)ω = 2 = dimIm(1− s), hence it follows
that

Im(1− s) = Ker(1− s)ω,

and we can conclude that Ker(1−s) and Im(1−s) are symplectic subspaces
of V .

From now on we denote by ωs the 2-form on V whose restriction to
Im(1− s) is ω and whose restriction to Ker(1− s) is zero.

Using the definition given in [1]:

Definition 1.2.9. The triple (V, ω,Γ), where Γ ⊂ Sp(V ), is said to be
indecomposable if there is no ω-orthogonal direct sum decomposition:
V = V1⊕V2, where V1 and V2 are Γ-stable proper symplectic vector subspaces
in V .

Definition 1.2.10. Let h be a finite dimensional vector space over C and let
W ⊂ GL(h) be a finite subgroup. A pseudo-reflection is an element g ∈ W
such that rk(1− g) = 1.
A finite subgroup W ⊂ GL(h) is called a complex reflection group if it is
generated by the pseudo-reflections that it contains.

Lemma 1.2.11. [6, Lemma 1.18] Let (V, ω,Γ) be an indecomposable triple.

1. Either V is a simple Γ-module or V = U ⊕ U∗ with U a simple Γ-module
and U,U∗ Lagrangian with respect to ω.

2. If V = U ⊕U∗, then any symplectic reflection in Γ acts on U as a pseudo-
reflection.

3. The space (Λ2V ∗)Γ is one-dimensional.

Proof. Let V = U1⊕· · ·⊕Uk be a decomposition of V into simple Γ-modules
and assume that V ̸= U1. We claim that U1 is an isotropic subspace of V .
First of all, the space U1 cannot be a symplectic subspace of V because of
the indecomposability of the triple.
Consequently the subspace U1 ∩ Uω

1 is a non-zero Γ-submodule of U1. This
implies that U1 = U1 ∩ Uω

1 , i.e, U1 ⊆ Uω
1 and the claim is proved.
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Let 0 ̸= u ∈ U1. Now, ω is non-degenerate, so it is possible to find some
j ̸= 1 and v ∈ Uj such that ω(u, v) ̸= 0. Hence U1 ⊕ Uj is not isotropic.
We prove that U1 ⊕ Uj is a symplectic subspace of V , i.e,
(U1 ⊕ Uj) ∩ (U1 ⊕ Uj)

ω = {0}.
Consider Uω

1 ∩ Uj = {w ∈ Uj | ω(w, u) = 0, for any u ∈ U1} ⊆ Uj, where Uj

is a simple Γ-module. Let w ∈ Uj ∩ Uω
1 and g ∈ Γ.

Then ω(g · w, u) = ω(w, g−1 · u) = 0 since U1 is Γ-stable. Hence, we showed
that Uω

1 ∩ Uj is a Γ-submodule of Uj. Since Uj is simple and there exists
v ∈ Uj such that ω(v, u) ̸= 0 by construction, it follows that Uω

1 ∩ Uj = {0}.
Now, let u1 + uj ∈ (U1 ⊕ Uj)

ω ∩ (U1 ⊕ Uj). By construction:
(i) ω(u1 + uj, u) = 0 for any u ∈ U1, and
(ii) ω(u1 + uj, w) = 0 for any w ∈ Uj.
By (i) we have that ω(uj, u) = 0 for any u ∈ U1 because U1 is isotropic.
Then, since Uω

1 ∩ Uj = {0}, it follows that uj = 0. Analogously, by (ii) it
follows that u1 = 0. Then we get: (U1⊕Uj)

ω∩(U1⊕Uj) = {0}. Hence U1⊕Uj

is a symplectic subspace. Therefore, by the indecomposability of the triple
we get that U1⊕Uj cannot be a proper subspace of V , V = U1⊕Uj. In this
case, the symplectic form induces a Γ-module isomorphism ω : Uj −→ U∗

1 ,
V = U1 ⊕ U∗

1 and this proves 1).
Now we want to prove that a symplectic reflection in Γ must act on U1 as a
pseudo-reflection, that is: for all g ∈ Γ ⊂ Sp(V ), g ̸= 1 such that
dim{v ∈ V | g · v = v} = dimV − 2, then: g|U1

: U1 −→ U1 is such that
dim{u ∈ U1 | g · u = u}= dimU1 − 1.
This is true because U1 ≃ U∗

1 . Moreover, dimU1 = dimU∗
1 = dimV

2
because

U1 ⊕ U∗
1 = V . It also holds: dimU g

1 = dim(U∗
1 )

g, for any g ∈ Γ. Indeed for
any u ∈ U1 such that g · u = u, we have that ϕ : U1 −→ U∗

1 , u 7−→ ω(u,−)
is such that: g · ϕ(u) = ϕ(g · u) = ω(g · u,−) = ω(u,−) = ϕ(u). Thus, any
symplectic reflection s ∈ Γ acts on U1 as a pseudo-reflection and 2) is proved.
Write from now on U1 = U . Now we will show that the space (Λ2V ∗)Γ is
one-dimensional. If V is a simple Γ-module there is nothing to prove since
ω ∈ (Λ2V ∗)Γ by hypothesis and by Schur′s Lemma the dimension of the
given space is at most equal to 1. If V = U ⊕U∗ we have that ω ∈ (Λ2V ∗)Γ,
hence the dimension of this space is at least 1.
So we have to prove that the dimension is exactly equal to 1 also in this case.
Assume that there exists 0 ̸= ν ∈ (Λ2V ∗)Γ, with ν ̸= λω, for some λ ∈ C.
Then Kerν is a Γ-module and we can decompose V = Kerν ⊕ V ′, where V ′

is some Γ-module. If V ′ is a proper submodule of V , then by 1)
V = U ⊕ U∗ and it must be V ′ ≃ U . However, (V ′, ν) is a symplectic vector
space, Γ ⊂ Sp(V ′) and this is a contradiction by 2). Indeed, any symplectic
reflection s ∈ Γ must act on V ′ ≃ U as a pseudo-reflection. Therefore ν must
be non-degenerate and V ′ = V .
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Take s ∈ Γ to be a symplectic reflection and consider H =< s >.
By Lemma 1.2.8, it is possible to decompose V = Im(1−s)⊕Ker(1−s) into
symplectic vector subspaces (with respect to both ω and ν since we proved
that they are both non degenerate and by assumption
ω, ν ∈ (Λ2V ∗)Γ).
Let V0 := Im(1−s). Then it is a two-dimensional symplectic vector subspace
of V and the restrictions ν0 and ω0 of ν and ω to V0 are non-zero elements in
the one-dimensional space Λ2V ∗

0 = (Λ2V ∗
0 )

H . Indeed, V0 being a symplectic
vector subspace of V is also a symplectic vector space in its own right, and
requiring ω0 and ν0 being non-zero elements in Λ2V ∗

0 = (Λ2V ∗
0 )

H is equivalent
to requiring ω0 and ν0 being nondegenerate in Λ2V ∗

0 = (Λ2V ∗
0 )

H .
After rescaling ν if necessary, we may assume ν0 = ω0. If ν ̸= ω, then ν − ω
is a non-zero but degenerate element in (Λ2V ∗)Γ, which is not possible since
we have shown that any 0 ̸= ν ∈ (Λ2V ∗)Γ with ν ̸= λω, λ ∈ C must be
non-degenerate. Hence ν = ω.

Example 1.2.12. Let V = U ⊕U∗ be a finite dimensional vector space over
C. The space U ⊕ U∗ has a natural pairing: (−,−) : U × U∗ −→ C, defined
by (x, y) := y(x), for any x ∈ U and y ∈ U∗.
Then we define the standard symplectic form on V as follows:

ω((x, ζ), (y, η)) := (η, x)− (ζ, y) = η(x)− ζ(y),

for any x, y ∈ U and ζ, η ∈ U∗.

Now choose a basis (e1, . . . , en) in U and let (f1, . . . , fn) be its dual basis
in U∗, defined by: fj(ei) = δij.
The basis (e1, . . . , en, f1, . . . , fn) of V satisfies:

ω(ej, ek) = ω(fj, fk) = 0, ω(fj, ek) = −ω(ej, fk) = δjk

and it is called a symplectic basis for V . Hence we have that (V, ω) is a
symplectic vector space, since it follows from the definition of ω that it is a
nondegenerate and skew-symmetric bilinear form of V .

If we write in coordinates with respect to the fixed basis we get:

ω((x, ζ), (y, η)) = Σ(ηjxj − ζjyj),

with x = Σxjej, y = Σyjej, ζ = Σζjfj and η = Σηjfj.

Thus, from the natural pairing U × U∗ −→ C it is possible to define a
symplectic form on V = U ⊕ U∗.

11



Moreover, if W is a complex reflection group acting on a finite dimensional
complex vector space U , then W acts diagonally on U ⊕ U∗. Explicitly, W
acts on U∗ by (w · x)(y) := x(w−1y) for any x ∈ U∗, y ∈ U and w ∈ W .
Then we have a W -action on U ⊕U∗: w · (x, y) = (w ·x, w · y). In particular,
since W is generated by pseudo-reflections, i.e, elements fixing hyperplanes
in the action on U , then the same elements become symplectic reflections in
the action on U ⊕ U∗.
Furthermore, it follows from the diagonal action that the natural pairing is
W -invariant. Hence, the symplectic form is also W -invariant and we can
conclude that W acts on V = U ⊕ U∗ as a symplectic reflection group.

1.3 Graded and Filtered Algebras

In this section we recall notions from [4]:

Definition 1.3.1. A N-graded associative algebra is an algebra A such that
A = ⊕n∈NAn as a vector space and AmAn ⊆ Am+n for all n, m ∈ N.

Remark 1.3.0.1. The tensor algebra TV is a N-graded associative
algebra: TV = ⊕i≥0T

iV , where T iV := V ⊗i. The multiplication is the tensor
product and the grading is the tensor degree: (TV )m := TmV .

Definition 1.3.2. An increasing filtration on a vector space V is a se-
quence of subspaces V≤m ⊆ V such that V≤m ⊆ V≤n for all m ≤ n and
∪mV≤m = V .

Definition 1.3.3. An increasing filtration on an associative algebra A is
an increasing filtration A≤m such that A≤mA≤n ⊆ A≤(m+n), for all m, n ∈ Z.
An algebra equipped with such a filtration is called filtered algebra.

Definition 1.3.4. For a filtered algebra A = ∪m≥0A≤m, the associated
graded algebra is grA := ⊕A≤m/A≤(m−1) where the product for any a ∈ A≤m

and b ∈ A≤n is defined as follows:

(a+ A≤m−1)(b+ A≤n−1) := ab+ A≤m+n−1,

and we set: grmA = (grA)m =A≤m/A≤(m−1).

Definition 1.3.5. A filtered deformation of a graded algebra B, is a fil-
tered algebra A such that grA ≃ B as graded algebras.

Example 1.3.6. Let g be a Lie algebra and let U(g) its universal enveloping
algebra. Then by the classical PBW theorem: U(g) is a filtered deformation
of Sym(g), that is: gr(U(g)) ≃ Sym(g).
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1.3.1 Homogeneous and Nonhomogeneous Quadratic

Algebras

Let V be a vector space over a field F and let TV be its tensor algebra
over F . We recall some notions from [2]:

Definition 1.3.7. Fix a subspace R ⊆ T 2V = V ⊗ V and consider the two-
sided ideal J(R) in TV generated by R. A homogenous quadratic algebra
is the quotient algebra TV/J(R), which is denoted by Q(V,R).

Now, we define their filtered analogous:

Definition 1.3.8. Let T≤i(V ) = {⊕T jV |j ≤ i} of TV . Fix a subspace
P ⊂ T≤2(V ) = k ⊕ V ⊕ (V ⊗ V ) and consider the two-sided ideal J(P ) in
TV generated by P . A nonhomogeneouos quadratic algebra is the quotient
TV/J(P ) and it is denoted by Q(V, P ).

Remark 1.3.1.1. Let U = Q(V, P ) be a nonhomogenous quadratic algebra.
It inherits a filtration U≤0 ⊂ U≤1 ⊂ ... ⊂ U≤n from TV with
U≤i = (T≤i(V ) + J(P ))/J(P ) for any i ∈ N.
Consider now the natural projection p : T≤2(V ) −→ V ⊗ V on the homoge-
nous component of degree 2, set R = p(P ) and consider the homogenous
quadratic algebra A = Q(V,R). Then there is a natural epimorphism (that
we denote again by p): p : A −→ grU .
Explicitly, given an element f ∈ TV denote by LH(f) its leading homoge-
neous component, and for any S ⊂ TV define LH(S) := {LH(f) | f ∈ S}.
Recall from [19, 4] that grU ≃ TV/J(LH(J(P ))) and observe that
J(R) = J(p(P )) = J(LH(P )).
Hence, there is a surjective map of graded algebras:

p : TV/J(R) ↠ TV/J(LH(J(P ))),

x 7−→ x+ J(LH(J(P ))),

where J(R) = J(LH(P )) is the two-sided ideal in TV generated by the pro-
jections of each element in P ⊂ T≤2(V ) into its component of degree 2 (which
coincides with LH(P )) and J(LH(J(P ))) is the two-sided ideal in TV gen-
erated by the highest homogeneous components of each element in J(P ).

Definition 1.3.9. A nonhomogenous quadratic algebra U = Q(V, P ) is of
PBW type if the natural projection p : A = Q(V,R) −→ grU is an isomor-
phism.
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Example 1.3.10. Let g be a Lie algebra over a field F . Consider its tensor
algebra T (g) and the two-sided ideal I ⊂ T≤2(g) = F ⊕g⊕(g⊗g) generated
by elements of the form: x⊗y−y⊗x−[x, y], for any x, y ∈ g, where the brack-
ets [−,−] is the Lie bracket on g. Notice that the universal enveloping algebra
of g, U(g) = T (g)/I, is a non-homogeneous quadratic algebra. Consider now
its symmetric algebra: Sym(g) = T (g)/ < x ⊗ y − y ⊗ x >x,y∈g. Then by
the classical PBW -theorem we have that the map p : Sym(g) −→ gr(U(g))
is an isomorphism, hence we can conclude that U(g) is of PBW -type.

1.4 Deformations and Associated Poisson Struc-

ture

1.4.1 Classical Deformation Theory

We recall some notions from [10]:

Definition 1.4.1. Let (A,mA, uA) be a commutative associative F -algebra
with unit e.
A homomorphism ε : A −→ F is an augmentation of A if εuA = idF .

The subspace Ā := kerε is called the augmentation ideal of A.

Example 1.4.2. Let F [[t]] be the unital ring of formal power series with
coefficients in the field F . Then, F [[t]] is augmented with augmentation
ε : F [[t]] −→ F given by: ε(Σi∈Z≥0ait

i) := a0.

Example 1.4.3. Let F [t] be the unital ring of polynomials with coefficients
in F . Then F [t] is augmented with augmentation ε : F [t] −→ F given by:
ε(f) := f(0), for any f ∈ F [t].

Example 1.4.4. Let G be a finite group with unit e and let F [G] be its
group algebra. Then, F [G] is augmented by ε : F [G] −→ F given by:

ε(Σg∈Gagg) := Σg∈Gag.

Example 1.4.5. An example of an associative and commutative F -algebra
that does not admit an augmentation is given by any proper extension F ⊃ F
of F .
Assume that an augmentation ε : F −→ F exists, then Kerε is an ideal in a
field, i.e, it is trivial. Hence, ε is injective and it implies that F = F , which
is a contradiction with the assumption F ̸= F .
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From now on in this subsection, (A,mA, uA) will be an associative, com-
mutative, augmented and unital F -algebra with augmentation ε : A −→ F
and by a module we will understand a left-module.

Definition 1.4.6. Let W be an A-module. The reduction of W is the
F -module W := F ⊗A W , with the F -action given by:

k′(k′′ ⊗A w) := k′k′′ ⊗A w, for any k′, k′′ ∈ F and any w ∈ W ,

and tensor structure given by:

k′ ⊗A aw = ε(a)k′ ⊗A w, for any a ∈ A, w ∈ W and k′ ∈ F .

Definition 1.4.7. Let now R be an associative F -algebra and A an aug-
mented unital F -algebra. An A-deformation of R is a an associative
A-algebra B together with a F -algebra isomorphism α : B −→ R.
In particular:

• If the A-module B is flat, i.e, if the functor B ⊗A − is left exact, then
the deformation is said to be flat.

• If A = F [[t]], i.e, the ring of formal power series, then the deformation
is said to be formal.

Example 1.4.8. Let A = F [t] with augmentation ε as in Example 1.4.3
and R = F [x]. Then the algebra B = F [t, x] is an A-deformation of R since
it is a F [t]-algebra and B = F ⊗F [t] F [t, x] ≃ F [x].

1.4.2 Poisson Algebras

Definition 1.4.9. A Poisson algebra is a F -vector space V together with
two operations: the multiplication: · : V ⊗V −→ V and the Poisson bracket:
{−,−} : V ⊗ V −→ V such that:

(i) (V, ·) is an associative algebra,

(ii) (V, {−,−}) is a Lie algebra, and

(iii) for any v ∈ V , the map v 7−→ {u, v} defines a derivation for any u ∈ V ,
i.e, {u, v · w} = {u, v} · w + v · {u, w}, for any w ∈ V .

Then, the triple (V, ·, {−,−}) is a Poisson algebra.
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Definition 1.4.10. Let (A, ·, {−,−}) be a Poisson algebra and assume that
A = ⊕i∈NAi is N-graded. The Poisson bracket is said to be graded if there
exists some l ∈ Z such that {−,−} : Ai × Aj −→ Ai+j+l, for all i, j ∈ N.
Then l is said to be the degree of the bracket.

Definition 1.4.11. Let (A, ·A, {−,−}A), (B, ·B, {−,−}B) be Poisson alge-
bras. A map f : A −→ B is a Poisson algebras morphism if it is an algebra
morphism such that:

f({a1, a2}A) = {f(a1), f(a2)}B,

for any a1, a2 ∈ A.

Example 1.4.12. Every Lie algebra g is a Poisson algebra with respect to
the null associative product: a · b = 0 and {−,−} given by the Lie bracket.
Every associative algebra A is a Poisson algebra with respect to the null
Poisson bracket: {a, b} = 0, for a, b ∈ A.
Such an algebra is called null Poisson algebra.

Example 1.4.13. An associative algebra (A, ·, uA) is a Poisson algebra if we
put {a, b} = a · b − b · a, for a, b ∈ A. Indeed, (A, {−,−}) is a Lie algebra
and (iii) of Definition 1.5.8 follows from:

{a, b · c} = a · (b · c)− (b · c) · a =
= (a · b) · c− b · (c · a)− (b · a) · c+ b · (a · c) =

= {a, b} · c+ b · {a, c}.

for any a, b, c ∈ A.

Example 1.4.14. [11, Example 2.5] Let g be a Lie algebra with Lie bracket
[−,−].
By the classical PBW -theorem we know that: gr(U(g)) ≃ Sym(g).
Hence, we can put on gr(U(g)) a Poisson structure as follows.
Recall that g injects into gr(U(g)) and that the latter algebra is filtered as:

U≤0 ⊂ U≤1 ⊂ · · · ⊂ U≤k ⊂ · · ·

where U≤0 = F and U≤k is generated by F and by elements of the form
x1 ⊗ · · · ⊗ xh, with h ≤ k and xi ∈ g.
Thus:

gr(U(g)) = ⊕k≥0U≤k+1/U≤k,
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and an element x of degree k is an equivalence class, [x], of tensor product
of at most k elements of g. Then we can define a skew-symmetric bilinear
map {−,−} : U≤k × U≤h −→ U≤(k+h−1) as:

{[x], [y]} := [xy − yx].

In this way, gr(U(g)) becomes a Poisson algebra with respect to the bracket
{−,−} defined above.
Notice that the Leibniz identity follows by a computation, while Jacobi iden-
tity follows from the usual one in the Lie algebra g by an induction on the
degree.
This algebra is called Lie-Poisson algebra over g.

1.4.3 The Associated Poisson Structure

There is a connection between deformations and Poisson structures. More
precisely, under the assumptions that we will state in this subsection, the
construction in [1, 15] yields a Poisson structure on a commutative and as-
sociative algebra.

Let A be a flat formal deformation of a commutative C-algebra A, i.e, let A
be a flat C[[t]]-algebra such that A = C⊗C[[t]] A = A/tA = A.
There is a canonical Poisson bracket on A defined as follows.
First, given ũ, ṽ ∈ A, since A is commutative we have: [ũ, ṽ] ∈ tA, where
[ũ, ṽ] := ũṽ − ṽũ.
Let m(ũ, ṽ) ≥ 1 be the greatest integer (possibly ∞) such that
[ũ, ṽ] ∈ tm(ũ,ṽ)A and let m ≥ 1 be the minimum of the integers m(ũ, ṽ) over
all pairs ũ, ṽ as above. Then:

(i) If m =∞, we set the Poisson bracket on A to be zero,

(ii) If m <∞, given u, v ∈ A, choose ũ, ṽ ∈ A so that:
u = ũ mod(tA) and v = ṽ mod(tA), and put {u, v} = (t−m[ũ, ṽ]) mod(tA).

The assignment: u, v 7−→ {u, v} gives rise to a well-defined Poisson
bracket on A, which does not depend on the choices involved [1, 15].

Notice that m = ∞ in the construction above implies that [ũ, ṽ] ∈ tlA,
for any ũ, ṽ ∈ A, and for any l ≥ 1.
Since ∩l≥1t

lA = 0, we see that the vanishing of the Poisson bracket on A
forces the whole deformation to be commutative ([1, Lemma 15.1]).
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Chapter 2

Symplectic reflection algebras

2.1 Definition

Throughout this chapter V is a finite dimensional C-vector space, TV is
its tensor algebra and Γ ⊂ GL(V ) is a finite group.
Recall from Example 1.1.11 that CΓ is a Hopf -algebra and notice that TV
is a (left) CΓ- module algebra.
Hence it is possible to define the smash product TV#Γ, as in Definition
1.1.15.

Following [1]:

Definition 2.1.1. Let TV#Γ be the smash product of the tensor algebra
TV with CΓ, the group algebra of Γ.
Given a skew-symmetric C-bilinear paring k : V × V −→ CΓ, put

Hk := (TV#Γ)/I < x⊗ y − y ⊗ x− k(x, y) >x,y∈V ,

where I < ., . > stands for the two-sided ideal in TV#Γ generated by the
indicated set. Thus Hk is an associative algebra.

Remark 2.1.0.1. Notice that for k ≡ 0 all the generators x ∈ V in Hk

commute with each other. Hence the resulting algebra is isomorphic to the
smash product algebra: H0 = SV#Γ.
Moreover it results that in this particular case the algebra has a natural grad-
ing obtained by placing CΓ in degree zero and V in degree 1.
However, when k ̸= 0 the resulting algebra Hk is no longer graded. Indeed the
relations in the two-sided ideal I are no longer homogenous. Nevertheless,
by assigning CΓ degree zero and V degree 1, Hk inherits an
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N-increasing filtration (Hk)≤• and we can consider its associated graded al-
gebra: gr(Hk) = ⊕(Hk)≤i/(Hk)≤(i−1).

Remark 2.1.0.2. From the definition of Hk it follows that in the associated
graded algebra gr(Hk):

x⊗ y − y ⊗ x = 0 for any x, y ∈ V ⊂ gr(Hk).

The reason is that x ⊗ y − y ⊗ x = k(x, y) ∈ CΓ which has degree zero and
the relation in gr(Hk) becomes: x⊗ y − y ⊗ x = 0.
As in [1], the natural embedding V →֒ gr(Hk) extends to a well-defined and
surjective graded algebra homomorphism Hk=0 = SV#Γ −→ gr(Hk).
We will say that the Poincaré-Birkhoff -Witt property (PBW for short)
holds for Hk if this homomorphism is also an isomorphism.

2.1.1 The PBW Theorem for Hk

Now we focus on one of the main results in [1], the so-called PBW
Theorem ([1, Theorem 1.3]).
Its proof is a generalization of a result in [2]. Using the notations in Defini-
tion 1.3.7 and Definition 1.3.8, Braveman and Gaitsgory found conditions on
the subspace P ⊆ T≤2(V ) under which a nonhomogenous quadratic algebra
U = Q(V, P ) is of PBW type ([2, Theorem 4.1]). More precisely, they re-
quired A = Q(V,R) to be a Koszul algebra and gave the following necessary
and sufficient criteria [2, Lemma 3.3] on the subspace P :

(i) Im(α⊗ id− id⊗ α) ⊂ R (defined on (R⊗ V ) ∩ (V ⊗R)); (2.1)

(ii) α ◦ (α⊗ id− id⊗ α) = −(β ⊗ id− id⊗ β); (2.2)

(iii) β ◦ (id⊗ α− α⊗ id) ≡ 0; (2.3)

where α : R −→ V and β : R −→ F are the two F -linear maps used in [2,
3.2] to give a description of P ⊆ T≤2(V ) in term of maps, i.e,
P = {x− α(x)− β(x) | x ∈ R}.

Remark 2.1.1.1. Note that in [2], Braveman and Gaitsgory only consider
algebras over a field, but as explained, e.g, in [13], everything works for
quadratic algebras over any ground ring R′, provided R′ is a finite dimensional
semisimple C-algebra. In our setting R′ = CΓ and the result in [2] can be
applied since CΓ is a finite dimensional C-algebra and it is semisimple by
Maschke’s Theorem.
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Remark 2.1.1.2. In order to apply Etingof and Ginzburg’s generalization
of [2, Theorem 4.1], we will work over CΓ rather than over a field F and
we will need SV#Γ to be a CΓ- Koszul algebra. This follows from the fact
that SV is Koszul over C and it may be proved using an analogous of the
following resolution computed in [5, Example 2.1]:

· · · −→ SV ⊗ Λ2V −→ SV ⊗ V −→ SV −→ F −→ 0,

where the differential is a map: SV ⊗ΛjV −→ SV ⊗Λj−1V , j ≥ 1 given by:

f(x1, ..., xn)vi1 ∧ ... ∧ vij 7−→Σk(−1)
1+kf(x1, ..., xn)xikvi1 ∧ ... ∧ v̂ik ∧ ... ∧ vij ,

where f(x1, · · · , xn) ∈ SV and vi1 ∧ ... ∧ vij ∈ ΛjV .

Theorem 2.1.2. [1, Theorem 1.3] Assume that (V, ω,Γ) is an indecompos-
able triple. Then, the PBW -property holds for Hk if and only if there exists
a constant t ∈ C, and an AdΓ-invariant function c : S −→ C, s 7−→ cs,
where S is the set of symplectic reflections in Γ; such that the pairing k has
the form:

k(x, y) = tω(x, y)1 + Σcsωs(x, y)s, for all x, y ∈ V .

Proof. The C-bilinear form k has necessarly to be Γ-invariant (where Γ acts
on itself by conjugation) otherwise the PBW fails already in degree two of
the filtration; hence from now on we assume k to be Γ-invariant.
Set K = CΓ, E = V ⊗C CΓ and write: v 7−→ vg for the action of Γ on V
by symplectomorphisms. The space E has a K-bimodule structure, with left
and right Γ-actions given by:

g : v ⊗ a 7−→ vg ⊗ ga
g : v ⊗ a 7−→ v ⊗ (ag)

for all v ∈ V , a ∈ CΓ and g ∈ Γ.
Consider the tensor algebra of the K-bimodule E, TKE = ⊕iT

i
KE. For any

i ≥ 0 there is a natural isomorphism: T i
KE ≃ (T i

C
V ) ⊗C CΓ. Thus there

is a N-graded algebra isomorphism: TKE ≃ (TV )#Γ. Hence we can write:
Hk = TKE/I < P >, where I < P > is the two-sided ideal in TKE generated
by the K-submodule P ⊂ K ⊕ (E ⊗ E).
Following the proof in [1], write E ∧ E for the K-submodule in
E ⊗K E = V ⊗C V ⊗C CΓ spanned by elements of the form:
x ⊗ y ⊗ g − y ⊗ x ⊗ g, for x, y ∈ V and g ∈ Γ, and let kK be the (unique)
K-bimodule map: E ⊗K E −→ K that extends k : V ⊗C V −→ K. Then we
have:

P = {−kK(p) + p ∈ K ⊕ (E ⊗K E) | p ∈ E ∧ E}.
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Using the notation introduced before, Hk is a nonhomogenous quadratic
K-algebra and analogouslyH0 = SV#Γ = TKE/I < E∧E > is a homogeneous
quadratic K-algebra. Hence to prove that Hk has the PBW property we
can use a K-version of the criteria in [2] (we must verify (2.1)− (2.2)− (2.3))
and the thesis follows. Since P ⊂ K ⊕ (E ⊗K E), then any element of P can
be written as the sum of a non-zero element in E ∧E ⊂ E ⊗K E = T 2

KE (of
degree two) and a term in K = T 0

KE. Indeed p ∈ E ∧ E and kK(p) ∈ K.
Hence, in this situation the two K-linear maps α : E ∧ E −→ E and
β : E ∧ E −→ CΓ turn out to be α ≡ 0 and β ≡ kK .
Let the tensor products be over K. In our setting (2.1) and (2.3) become
vacuous and following [1], condition (2.2) is equivalent to:

kK ⊗ idE − idE ⊗ kK vanishes on ((E ∧E)⊗K E)∩ (E ⊗K (E ∧E)) ⊂ T 3
KE.

It results that ((E ∧ E) ⊗K E) ∩ (E ⊗K (E ∧ E)) = Λ3V ⊗C CΓ, where
Λ3V ⊂ T 3V denotes the space of totally skew-symmetric tensors.
Let Alt : TV −→ TV be the antisymmetrization on the tensor algebra TV
defined as follows. Let T rV be the space of homogeneous tensors of degree
r, which is spanned by decomposable tensors: v1 ⊗ · · · ⊗ vr, vi ∈ V . Then
the antisymmetrization of a decomposable tensor is defined in the following
way:

Alt(v1 ⊗ · · · ⊗ vr) =
1
r!
Σσ∈Sr

(−1)sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(r),

and it can be extended by linearity and homogeneity on the tensor algebra
TV . Moreover Alt(TV ) ≃ ΛV , where ΛV is the exterior algebra of V .
Hence, since ((E∧E)⊗K E)∩ (E⊗K (E∧E)) = Λ3V ⊗CCΓ condition (ii) is
equivalent to k⊗ idV − idV ⊗k on Λ3V . Furthermore, since k : V ⊗V −→ K
in Hk is such that k(x, y) = x⊗ y− y⊗ x, by a direct computation it follows
that (ii) is equivalent also to the identity:
Alt([x, y]z − x[y, z]) = 0, where [x, y] := x⊗ y − y ⊗ x. Moreover, the latter
identity is precisely the standard Jacobi identity:

[z, [x, y]] = [[z, x], y] + [x, [z, y]]. (2.4)

Thus, we find that (2.4) is equivalent to:

[z, k(x, y)] = [k(z, x), y] + [x, k(z, y)] in Hk,

for all x,y,z ∈ V .
Now, write k(x, y) = Σg∈Γb(g, x, y)g, where b(g, x, y) ∈ C. We claim that
b(g, x, y) = 0 unless g = 1 or g ∈ S. This would imply the statement.
Using the following identity in E by omitting the tensor products:
[z, g] = zg − zgg = (z − zg)g, we obtain:
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[z, [x, y]] = Σg∈Γb(g, x, y)[z, g] = Σg∈Γb(g, x, y)(z − zg)g, and writing similar
expressions for the other terms: [[z, x], y] and [x, [z, y]], (2.4) becomes:

Σg∈Γb(g, x, y)(z − zg)g = Σg∈Γb(g, z, x)(y − yg)g + Σg∈Γb(g, z, y)(x− xg)g.

Hence for any g ∈ Γ we must have:

b(g, x, y)(z − zg) = b(g, z, x)(y − yg) + b(g, z, y)(x− xg), (2.5)

for all x,y,z ∈ V .
Fix now g ̸= 1 and assume b(g, x, y) is not identically zero. Then we choose
x and y such that b(g, x, y) ̸= 0 and from (2.5) we observe that (y − yg)
and (x − xg) span Im(1 − g) = {v ∈ V | ∃ w ∈ V ; w − wg = v}, so
dimIm(1− g) ≤ 2.
Moreover by Remark 1.2.1.3, detg = 1 for any g ∈ Γ, and if g ̸= 1 then
dimIm(1− g) ≥ 2 (since g ∈ Γ is diagonalizable over C and
dimKer(1−g) ≤ 2n−2, with dimV = 2n). Hence we get dimIm(1−g) = 2,
and by Definition 1.2.7 it holds that g ∈ S.
Fix s ∈ S. The assignment x, y 7−→ b(s, x, y) gives a skew-symmetric bilinear
form: V × V −→ C. Assuming this form is non zero, we find x, y ∈ V such
that b(s, x, y) ̸= 0. Thus, for g = s and z ∈ Ker(1− s), the above equation
yelds: b(s, x, z) = 0 = b(s, y, z), hence Ker(1− s) is contained in the radical
of the bilinear form: x, y 7−→ b(s, x, y) and it must also be proportional to
ωs, since any alternating 2-form must be proportional on the two-dimensional
vector space Im(1− s).
Thus Γ-equivariance of k implies the existence of an AdΓ-invariant function
c : S −→ C and an AdΓ-invariant skew-symmetric bilinear form
f : V × V −→ C such that:

k(x, y) = f(x, y)1 + Σs∈Scsωs(x, y)s, for any x, y ∈ V .

The form f belongs to (Λ2V ∗)Γ and by Lemma 1.2.11 it must be proportional
to ω, and we get the thesis.

Let C denote the space of AdΓ-invariant functions on S.

Remark 2.1.1.3. From now on we will always assume k to have the form
described in Theorem 2.1.2, for some t ∈ C and c ∈ C. The corresponding
algebra Ht,c := Hk will be referred to as symplectic reflection algebra. By
Theorem 2.1.2:

gr(Ht,c) ≃ SV#Γ and H0,0 = SV#Γ.

In this case, we will say that Ht,c is a PBW -deformation of SV#Γ.
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Remark 2.1.1.4. Notice that for any r ∈ C∗ there is an algebra isomorphism
between Ht,c and Hrt,rc induced by the map: TV#Γ −→ TV#Γ,
v 7−→ 1√

r
v, g 7−→ g. Assume k to be as in the statement of Theorem 2.1.2

and consider the following map:

F : TV#Γ ↠ Hrt,rc = TV#Γ/I < x⊗ y − y ⊗ x− rk(x, y) >x,y∈V ,

v 7−→ 1√
r
v, g 7−→ g.

Then, KerF = {Y ∈ TV#Γ | F (Y ) ∈ I < x⊗ y − y ⊗ x− rk(x, y) >x,y∈V }
and it is an ideal in TV#Γ.
Note that F (x ⊗ y − y ⊗ x − k(x, y)) = 1

r
(x ⊗ y − y ⊗ x − rk(x, y)) = 0 in

TV#Γ/I < x⊗ y − y ⊗ x− rk(x, y) >x,y∈V .
Then I < x ⊗ y − y ⊗ x − k(x, y) >x,y∈V⊆ KerF , and by the fundamental
homomorphism theorem:

TV#Γ/I < x⊗ y − y ⊗ x− k(x, y) >x,y∈V= Ht,c ↠ Hrt,rc

is again a surjective algebra morphism.
Recall from Remark 2.1.0.1 that Ht,c and Hrt,rc are N-filtered algebras, i.e,
∪l∈N(Ht,c)≤l = Ht,c as a C-vector space, (Ht,c)≤n(Ht,c)≤m ⊆ (Ht,c)n+m and
analogously for Hrt,rc.
Moreover, the algebra morphism F respects the N-filtrations, i.e, for any
l ∈ N its restriction to the l-filtered components (Ht,c)≤l and (Hrt,rc)≤l induces
a surjective C-linear map:

Fl : (Ht,c)≤l ↠ (Hrt,rc)≤l.

Notice that for any l ∈ N, (Ht,c)≤l and (Hrt,rc)≤ are finite dimensional
C-vector spaces such that dim((Ht,c)≤l) = dim((Hrt,rc)≤l).
Indeed, let {v1, · · · , vn} be a basis of V , by Theorem 2.1.2 it is possible to
find for both of them a basis made of ordered monomials in {vi}i, g of
degree ≤ l with {vi}i ∈ V and g ∈ Γ.
Since, Fl is a surjective map of finite dimensional C-vector spaces of the same
dimension, it is also injective. Then, Fl is a bijection for any l ∈ N.
Thus, F is an isomoprhism of algebras and Ht,c ≃ Hrt,rc, for any r ∈ C∗.
Hence, we can conclude that the family of algebras {Ht,c}(t,c)∈((C⊕C)∖(0,0)) is
parametrized by the projective space C := (C⊕ C)/C∗ of dimension dimC.

2.2 The Spherical Subalgebra

From now on we will always assume k to be as in the statement of The-
orem 2.1.2 and we will write Hk = Ht,c.
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Definition 2.2.1. Let e = 1
|Γ|Σg∈Γg denote the trivial idempotent in CΓ.

The subalgebra eHt,ce ⊂ Ht,c is called the spherical subalgebra of Ht,c.

Remark 2.2.0.1. It is shown in [1, 2.15] that there is a canonical algebra
isomorphism: AΓ −→ e(A#Γ)e, a 7−→ a · e = e · a, where A is an
associative algebra and the group Γ acts on A by algebra automorphisms.

Remark 2.2.0.2. The spherical subalgebra, being a subalgebra of Ht,c inher-
its a filtration from Ht,c.
In particular, let (Ht,c)≤• be the N-increasing filtration in Remark 2.1.0.1.
Then, (eHt,ce)≤• := (Ht,c)≤• ∩ eHt,ce is an N-increasing filtration of eHt,ce.
Moreover, by Remark 2.1.0.1 there holds dege = 0 since e ∈ CΓ.
Thus, (eHt,ce)≤• = e(Ht,c)≤•e.
Hence, combining Remark 2.1.1.3 and Remark 2.2.0.1: for t = 0 and c = 0
we have: e(H0,0)e = e(SV#Γ)e ≃ (SV )Γ, and:

gr(eHt,ce) ≃ SV Γ, for any (t, c) ∈ C⊕ C,

where SV Γ is precisely the centre of SV#Γ.
Moreover, it is shown in the proof of [1, Theorem 1.8] that for c = 0 and any
t ̸= 0 it holds: Ht,0 = At#Γ, where At = TV/I < x⊗y−y⊗x−tω(x, y) >x,y∈V
is the Weyl algebra of the symplectic vector space (V, tω).
Hence, by Remark 2.2.0.1 the spherical subalgebra eHt,0e is isomorphic to
AΓ

t .

Example 2.2.2. Let (C2, ω) be a symplectic vector space where ω is the
canonical symplectic form on C2 defined in Example 1.2.12 and let
G ≤ Sp(2,C) = SL(2,C) be the finite group generated by the symplectic
reflection s = −1 ∈ Sp(2,C), with s2 = 1, so ωs = ω.
Let {x, y} be a basis of C2 such that ωs(x, y) = ω(x, y) = 1.
Then, the group G ≃ C2 acts on C2 as follows: s · x = −x, s · y = −y, i.e,
sx = −xs and sy = −ys.
Thus, the symplectic reflection algebra associated with the triple (C2, ω,G)
is:

Ht,c = C < x, y > ⋊G/ < xy − yx− t− c(s)s >x,y∈V .

By Remark 2.1.1.3 we can find a basis of Ht,c as a C-vector space made of
ordered monomials in x, y, s, i.e, B = {xiyj, xiyjs | i, j ≥ 0}.
Furthermore, given two elements xiyj, xayb ∈ Ht,c we would be able to write
their product xiyjxayb with respect to the basis B. To this aim, notice that
the element yjxa can be rewritten using the relation xy − yx = t + c(s)s in
Ht,c. Indeed, by induction on the power of y, we get:
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ynx =

{
xyn − ntyn−1 − c(s)yn−1s, if n ̸= 2l, l ∈ N

xyn − ntyn−1, if n = 2l, l ∈ N,
(2.6)

Then, by induction on the power of x in (2.6) it is possible to find an expres-
sion for yjxa, with j, a ∈ N.
Let e = 1

2
(1 + s) be the trivial idempotent in CG and consider the spherical

subalgebra eHt,ce of Ht,c.
Since by Remark 2.2.0.2 gr(eHt,ce) ≃ egr(Ht,c)e ≃ e(SV#G)e ≃ (SV )G,
we can find a basis of the spherical subalgebra as a C-vector space made of
ordered monomials in x, y, s after multiplying them on both sides by e.
In particular, given the basis B of Ht,c, we can find a basis of eHt,ce as
follows.

Note that since se = e in CG, then exiyjse = exiyje, for any i, j ≥ 0.
Thus we consider only the elements of the form: exiyje.
Since sx = −xs and sy = −ys, it holds: sxiyj = (−1)i+jxiyjs, i.e, xiyj

commutes with s (and then with e) if and only if i+ j is even.
Explicity:

exiyje = 1
2
(xiyj + (−1)i+jxiyjs)e =

=
1

2
(xiyje+ (−1)i+jxiyje) =

{
0, if i+ j ̸= 2l, l ∈ N

xiyje, if i+ j = 2l, l ∈ N.

Observe that the commutation relation [x, y] = t + c(s)s in Ht,c becomes
xye − yxe = (t + c(s))e in eHt,ce. This, together with the ones obtained
from it by induction on the power of x, y, are the only relations among the
ordered monomials in eHt,ce. Hence, the desired basis as a C-vector space
of the spherical subalgebra is:

B′ = {xiyje | i, j ≥ 0, i+ j = 2l, l ∈ N}.

Note that computing the product of two non-zero elements exiyje, exaybe
of the spherical subalgebra eHt,ce is equivalent to computing the product of
two elements xiyj, xayb of the symplectic reflection algebra Ht,c. Indeed:

exiyjeexaybe = exiyjexaybe = exiyjxaybe.

By induction on the power of x in (2.6), we can compute the product above
with respect to the basis B′.
We choose as generators of eHt,ce as a C-algebra: xye, x2e and y2e.
Indeed any element can be obtained by adding and multilplying their linear
combinations.
Then, by induction on the power of x in (2.6), the relations among the chosen
generators are:
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[xye, x2e] = xyx2e− x2xye = x(x2y − 2tx)e− x3ye =
= x3ye− 2tx2e− x3ye = −2tx2e,

[xye, y2e] = xyy2e− y2xye = xy3e− y2xye = xy3e− (xy2 − 2ty)ye = 2ty2e,

[x2e, y2e] = x2y2e− y2x2e = x2y2e− (y2x)xe =
= x2y2e− (xy2 − 2ty)xe = x2y2e− x(xy2 − 2ty)e+ 2tyxe =

= 2txye+ 2tyxe = 2t(xy + yx)e = 4txye− 2t2e− 2tce.

2.2.1 The Spherical Subalgebra for t = 0

In this subsection we will state a result on the commutativity of the
spherical subalgebra [1, Theorem 1.6].
Its proof is based on the construction in [1, 15] and we can notice that Etingof
and Ginzburg used the geometric structure of the spherical subalgebra in
order to get informations on its centre.

Remark 2.2.1.1. Note that the choice of a basis {v1, · · · , vn} of V identifies
SV with C[V ], i.e, with the polynomial algebra C[v1, · · · , vn] and
(SV )Γ = C[V ]Γ. Then by [6, Lemma 1.17] it is possible to endow (SV )Γ

with a Poisson bracket {−,−}ω obtained by restricting the Poisson bracket
on C[V ] induced by the symplectic structure on V :

{f, g}ω := ω(f, g), for any f, g ∈ V ,

and by extending it as a derivation.
Moreover, from the standard grading in SV Γ = ⊕i≥0(S

iV )Γ, it follows:

{−,−}ω : (SiV )Γ × (SjV )Γ −→ (Si+j−2V )Γ.

Thus the Poisson bracket {−,−}ω on SV Γ is of degree −2.

Theorem 2.2.3. [1, Theorem 1.6] For any c ∈ C, the algebra eHt,ce is
commutative if and only if t = 0.

Proof. Consider the family of algebras {Hrt,rc}r∈C∖{0}.
By Remark 2.1.1.4, these algerbas are isomorphic to each other for any
r ∈ C∖ {0}. Then, we treat the family {Hrt,rc}r∈C∖{0} as a single algebra.
Explicity, consider ℏ as an auxiliary variable and let TV [ℏ] = TV ⊗ C[ℏ].
We regard TV [ℏ] as a graded algebra with degℏ = 2 and we assume that the
group Γ acts trivially on ℏ. Then:

H̃ := (TV [ℏ]#Γ)/I < x⊗ y − y ⊗ x− k(x, y)ℏ ∈ T 2V ⊕ CΓ[ℏ] >x,y∈V ,
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is a flat C[ℏ]-algebra.
Let A := eH̃e be its spherical subalgebra. It is a flat C[ℏ]-algebra and it
holds A = C ⊗C[ℏ] A = A/ℏA. Notice that A/ℏA ≃ gr(eHt,ce), since by
Remark 2.2.0.2 A/ℏA = eH0,0e ≃ gr(eHt,ce) for any (t, c) ∈ C⊕ C, i.e,
A is a flat C[ℏ]-deformation of gr(eHt,ce).
Then we can see any member of the family {eHrt,rce}r∈C∖{0} is the special-
ization at ℏ = r of the C[ℏ]-algebra A.
Since A/(ℏ− 1)A = eHt,ce, we can view the C-algebra eHt,ce as a flat
C[ℏ]-deformation of the commutative algebra gr(eHt,ce) ≃ (SV )Γ.
Thus, for any (t, c) ∈ C ⊕ C, by the general construction in [1, 15], this
deformation gives rise to a well-defined Poisson bracket Bt,c on (SV )Γ.
Let mt,c be the integer involved in the construction of the Poisson bracket.
Then:

(i) There are only two alternatives: either mt,c = 1, or mt,c = ∞. The
algebra eHt,ce is non-commutative if mt,c = 1 and commutative if mt,c =∞.
Indeed since A/ℏA = gr(eHt,ce), with degℏ = 2, the Poisson bracket Bt,c on
gr(eHt,ce) = (SV )Γ has degree (−2mt,c).
By [1, Lemma 2.23 (ii)], in order for Bt,c to be non-zero, we must have
mt,c = 1. However, by [1, Lemma 15.1], vanishing of Bt,c implies commuta-
tivity of the algebra A and (i) follows.

(ii) If mt,c = 1, then Bt,c = f(t, c){−,−}ω, where f : C ⊕ C −→ C is a
non-zero linear function.
Indeed we regard t, c as variables with degt = degc = 2, while we set
degℏ = 0. Thus, A becomes a C[C ⊕ C]-algebra, depending on the pa-
rameter ℏ.
Applying the Poisson bracket construction of [1, 15] we get, for
mt,c = m = 1 (since t, c now are variables and not parameters), a bracket B
on (SV )Γ ⊗ C[C⊕ C] of degree (−2).
By [1, Lemma 2.23 (i)], we have: B = f(t, c){−,−}ω, for some f(t, c) ∈ C.
Since the relations in Ht,c become homogeneous in our new grading, i.e,
degt = degc = 2 and degℏ = 0, it follows that {Hrt,rc}r∈C∗ and A are graded
algebras. Thus: (t, c) 7−→ f(t, c) is a linear function on C⊕ C.
Moreover, for any (t, c) ∈ C⊕C such that Bt,c ̸= 0, the Poisson bracket Bt,c is
clearly a specialization of B at the point (t, c), that is: Bt,c = f(t, c){−,−}ω
and (ii) is proved.

By (i), the algebra eHt,ce is commutative if and only if f(t, c) = 0.
Hence, the paramters (t, c) such that eHt,ce is commutative form an hyper-
plane in C⊕ C given by the equation f(t, c) = 0.
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In order to complete the proof it suffices to show that f(t, c) = λt for some
λ ∈ C∗, i.e, that the above hyperplane is the one given by the equation t = 0.
To prove this, assume that for some (t, c) there holds f(t, c) = 0, and hence
the algebra eHt,ce is commutative. In this case, choose a generic character
χ : eHt,ce −→ C, let Tχ = Ht,c ⊗eHt,ce χ be the induced Ht,c-module and
denote by ρ the corresponding structure morphism. By [1, Lemma 2.24], the
Ht,c-module Tχ is isomorphic, as a Γ-module, to the regular representation
of Γ.
We know that in the regular Γ-representation, for any g ∈ Γ such that g ̸= 1,
it holds tr(ρ(g)) = 0.
Now take the traces in Tχ on both sides of the relation: x⊗y−y⊗x = k(x, y),
for any x, y,∈ V . Then:

tr(ρ(x⊗ y − y ⊗ x)) = tr(tω(x, y)ρ(1Γ) + Σs∈Sc(s)ωs(x, y)ρ(s)).

Since tr(ρ(s)) = 0 for any s ∈ S, the equation above is equal to:

tr(ρ(x⊗ y))− tr(ρ(y ⊗ x)) = tr(tω(x, y)ρ(1Γ)).

Notice that tr(ρ(x ⊗ y)) = tr(ρ(y ⊗ x)) for any x, y ∈ V by a property of
the trace of two endomorphisms. Then, using the non-degeneracy of ω we
get: 0 = |Γ|t. Hence f(t, c) = λt, λ ∈ C∗, i.e, the hyperplanes t = 0 and
f(t, c) = 0 coincide and the statement is proved.

Remark 2.2.1.2. The family {eHt,ce}t∈C is a flat deformation of eH0,ce to
be interpreted as in the proof of Theorem 2.2.3. Hence, by the construction in
[1, 15], this deformation induces a Poisson bracket on eH0,ce to be denoted
{−,−}.

2.3 The Centre of the Symplectic Reflection

Algebra

In this section we will state some results which allow us to describe the
centre of the symplectic reflection algebra Ht,c.
In particular, in order to get our aim, the commutativity of the spherical
subalgebra will play an important role.

Theorem 2.2.3 together with [1, Theorem 1.5 (iv)], [1, Theorem 3.1] and a
result by Brown and Gordon in [9, 7.2], imply that the symplectic reflection
algebra is a finite module over its centre if and only if t = 0.

Now we state the so-called Satake isomorphism:
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Theorem 2.3.1. [1, Theorem 3.1] For any c ∈ C the map
Z(H0,c) −→ eH0,ce such that z 7−→ ze is a Poisson algebra isomorphism.

Remark 2.3.0.1. For any z ∈ Z(H0,c), eze ∈ Z(eH0,ce) = eH0,ce.
Moreover, z commutes with e ∈ CΓ and so eze = ze2 = ze ∈ eH0,ce.
Note that we stated Theorem 2.3.1 just for t = 0, but there is an algebra
isomorphism for all t ∈ C: Z(Ht,c)−̃→Z(eHt,ce), [6, Theorem 2.5].

Example 2.3.2. Let Ht,c be the symplectic reflection algebra in Example
2.2.2 and eHt,ce be its spherical subalgebra.
By Remark 2.1.1.3:

gr(Ht,c) ≃ C[x, y]⋉G = H0,0,

and by Remark 2.2.0.2:

gr(eHt,ce) ≃ C[x, y]G = eH0,0e.

Fix t = 0. By the defining relations of the spherical subalgebra in Exam-
ple 2.2.2 we get that Z(eH0,ce) = eH0,ce.
Choosing xye, x2e and y2e as generators of eH0,ce as a C-algebra, we get:
Z(eH0,ce) = C[x2e, y2e, xye].
Thus, by the Satake isomorphism we get: Z(H0,c) ≃ Z(eH0,ce) and then:
Z(H0,c) = C[x2, y2, xy].

Hence, the Satake isomoprhism allows us to relate the centre of the
symplectic reflection algebra to the spherical subalgebra. Then making use
also of [1, Theorem 1.5 (iv)] we can state the following characterization of
the centre of the symplectic reflection algebra:

Theorem 2.3.3. [6, Theorem 2.6] The centre of the symplectic reflection
algebra Ht,c is described as follows:

1. If t = 0 then the Satake isomorphism identifies Zc := Z(Ht,c)−̃→eH0,ce

and H0,c is a finite module over Zc.

2. If t ̸= 0 then Z(Ht,c) = C.

Proof. Statement 1. follows from [1, Theorem 3.1] and [1, Theorem 1.5 (iv)],
while it is possibile to find a proof of 2. in [9, Proposition 7.2].

30



Chapter 3

Rational Cherednik Algebras

3.1 A Particular Family of Symplectic Reflec-

tion Algebras

Let (V, ω) be a finite dimensional symplectic vector space over C,
let Γ ⊂ Sp(V ) be a finite group and let < S >⊂ Γ be the subgroup generated
by the set S of symplectic reflections in Γ.
Notice that it is a normal subgroup in Γ, indeed for any s ∈ S, rk(1− s) = 2
by Definition 1.2.6, and:

rk(1− gsg−1) = rk(g(1− s)g−1) = rk(1− s) = 2, for any g ∈ Γ.

Thus, gsg−1 ∈ S.
Moreover, as noted in [15, 4.2], the defining relations of the symplectic reflec-
tion algebra Ht,c(Γ) associated to the indecomposable triple (V, ω,Γ), show
that:

Ht,c(Γ) ≃ Ht,c(< S >)⋊ (Γ/ < S >).

Therefore, the symplectic reflection algebras associated to an indecoposable
triple (V, ω,Γ), where Γ is a symplectic reflection group are particularly im-
portant.
As we showed in Example 1.2.10, a standard way to construct symplectic
reflection groups is creating them out of complex reflection groups and we
will adopt this strategy in the sequel.

Remark 3.1.0.1. Let (V, ω,Γ) be an indecomposable triple. By Lemma 1.2.9
there are two cases:

• V is a simple Γ-module such that (Λ2V ∗)Γ is one-dimensional.
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• V = h ⊕ h∗ such that (Λ2V ∗)Γ is one-dimensional, h is an irreducible
Γ-module and it is a Lagrangian subspace.

In the latter case, any symplectic reflection g ∈ Γ acts on h as a pseudo-
reflection.
Thus, saying that Γ is generated by symplectic reflections amounts to saying
that Γ is a finite complex reflection group in a vector space h and that it acts
on V = h⊕ h∗ by induced symplectic automoprhisms.
Indeed any pseudo-reflection s ∈ Γ on h induces the corresponding symplectic
reflection of V = h⊕ h∗.

Thus, by Remark 3.1.0.1 we will be interested in studying the symplectic
reflection algebras associated to indecomposable triples of the form
(h⊕ h∗, ω,W ), where W is a complex reflection group acting diagonally on
V = h⊕ h∗ and ω is as in Example 1.2.12.

3.1.1 Root Systems and Weyl Groups

Before giving the definition of rational Cherednik algebras, we need some
further definitions:

Definition 3.1.1. Let E be a Euclidean vector space with a positive-definite
inner product (−,−). A reduced root system is a finite collection R of nonzero
vectors in E such that:
(i) R spans E as a vector space;

(ii) Rα ∩R = {α,−α}, for any α ∈ R;

(iii) β − 2(β,α)
(α,α)

α ∈ R, for any α, β ∈ R;

(iv) 2(β,α)
(α,α)

∈ Z, for any α, β ∈ R.

If we omit condition (ii) then R is said to be a root system.

Definition 3.1.2. Let R be a root system in a Euclidean vector space
(E, (−,−)). For any α ∈ R the coroot α∨ is defined as:

α∨ := 2 α
(α,α)

.

The set of coroots also forms a root system in E called the dual root system.

Definition 3.1.3. Let R be a root system in a Euclidean vector space
(E, (−,−)). The Weyl group corresponding to the root system R is the
subgroup W ⊆ GL(E) such that W :=< sα | α ∈ R > ⊆ GL(E), where sα
for any α ∈ R is given by:
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sα(v) = v − 2 (v,α)
(α,α)

α, for any v ∈ E.

Remark 3.1.1.1. Note that W ⊆ O(E). Indeed:

(sα(v), sα(w)) = (v − 2 (α,v)
(α,α)

α,w − 2 (α,w)
(α,α)

α) =

= (v, w)− 2 (α,w)
(α,α)

(v, α)− 2 (α,v)(α,w)
(α,α)

+ 4 (α,v)(α,w)
(α,α)

=

= (v, w)− 4 (α,w)(α,v)
(α,α)

+ 4 (α,v)(α,w)
(α,α)

= (v, w),

for any α ∈ R and v, w ∈ E.

Example 3.1.4. Let (E, (−,−)) be the Euclidean vector space
E = {(x1, · · · , xn) ∈ Rn | Σxi = 0}}, with the standard scalar product in Rn.
Let An-1 := {εi − εj | i ̸= j, i, j ∈ {1, · · · , n}}, where (εi)i∈{1,··· ,n} is the
canonical orthonormal basis of Rn.
Notice that An-1 is a finite reduced root system in (E, (−,−)).
Let W =< sεi−εj | i ̸= j, i, j ∈ {1, · · · , n} > be the Weyl group associated
to An-1. Any reflection sεi−εj ∈ W permutes the coordinates i and j of any
element (x1, · · · , xn) ∈ E.
Thus, the reflection sεi−εj corresponds to the transposition (i, j) ∈ Sn.
Since {(i, j)}i ̸=j,i,j∈{1,··· ,n} generate Sn, we get that W acts on E as the sym-
metric group Sn.

Remark 3.1.1.2. Let W be a complex reflection group acting on a finite
dimensional complex vector space h. We say that h is a representation of
real type if there exists a real vector subspace hre ⊂ h such that W acts on
hre as a real reflection group and h = hre ⊗ C.
Moreover, assume h to be a simple W -module. Then there exists a
unique (up to scalars) W -invariant inner product (−,−)re, i.e,
(wu,wv)re = (u, v)re for any w ∈ W and u, v ∈ hre. It can be extended by
linearity to a non degenerate, positive definite W -ivariant C-bilinear form
(−,−) on h.

Remark 3.1.1.3. Notice that if W is the Weyl group associated to a finite
reduced root system in E then h = E⊗R C is a representation of real type.

3.1.2 Different Defining Relations and Triangular De-

composition

As in [1, 4], we will focus on the special case of a symplectic reflection
algebra associated to an indecomposable triple (V, ω,W ), where V = h⊕h∗,
ω is as in Example 1.2.12 and W is the Weyl group associated to a reduced
root system R ⊂ h∗.
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By Remark 3.1.1.2 and Remark 3.1.1.3, h has a non degenerete W -invariant
inner product (−,−), and W is a finite group of orthogonal transformations
of h.
Let R be a finite reduced root system in h∗ and let S ′ be the set of reflections
in the associated Weyl group W .
For α ∈ R ⊂ h∗, we let sα denote the corresponding reflection in W , and
α∨ := 2 α

(α,α)
∈ h∗ the coroot corresponding to α ∈ R.

Notice that α∨ can be regarded as a C-linear function R −→ C, i.e,
α∨ = 2 (α,−)

(α,α)
∈ (h∗)∗ = h.

From now on we fix a W -invariant linear function c : R −→ C, α 7−→ cα and
t ∈ C.

Let now Ht,c be the symplectic reflection algebra associated to the inde-
composable triple of the form (h ⊕ h∗, ω,W ), a complex number t ∈ C and
a W -invariant function c : S ′ −→ C as above.
According to Definition 2.1.1 the algebra Ht,c is generated by h, h∗ and by
the group W , subject to the following defining relations:

wxw−1 = w · x, for any x ∈ h and any w ∈ W ,

wyw−1 = w · y, for any y ∈ h∗ and any w ∈ W ,

[x1, x2] = 0 in Ht,c, for any x1, x2 ∈ h,

(3.1)

[y1, y2] = 0 in Ht,c, for any y1, y2 ∈ h∗,

[x, y] = t(x, y)− 1
2
Σα∈Rcα(x, α)(α

∨, y)sα in Ht,c,

for any x ∈ h and y ∈ h∗.

Indeed by Theorem 2.1.2: k(x, y) = tω(x, y) + Σs∈Sc(s)ωs(x, y)s, for any
x, y ∈ V . Thus we can rewrite k in the following way:

k(x, y) = t(x, y)− 1
2
Σα∈Rcα(α

∨, y)(x, α)sα,

where (x, y) := y(x) for any x ∈ h, y ∈ h∗ and where ωα is written in
coordinates with respect to the basis {α, α∨} of the two-dimensional vector
space Im(1 − sα)|h⊕h∗ (as in Example 1.2.12). In particular α is a basis of
the one dimensional vector space Im(1− sα)|h∗ and α∨ is a basis of the one
dimensional vector space Im(1− sα)|h.
Moreover, since α and −α give rise to the same reflection, we put on the

34



right hand side −1
2
and the other defining relations follow from the definition

of the symplectic form on h⊕ h∗.
Indeed we have that [x1, x2] = 0 for any x1, x2 ∈ h since:
k(x1, x2) = ωs((x1, 0), (x2, 0))|Im(1−s)|h⊕h∗ = ω((x1, 0), (x2, 0)) = 0 (and simi-
larly it follows that [y1, y2] = 0, for any y1, y2 ∈ h∗).

Now, we can give the definition of a rational Cherednik algebra as in [1]:

Definition 3.1.5. A rational Cherednik algebra with parameters (t, c) is the
symplectic reflection algebra Ht,c corresponding to the W -diagonal action on
h⊕ h∗. Hence it is an associative C-algebra Ht,c generated by the spaces h,
h∗ and by the group W with defining relations (3.1).

Remark 3.1.2.1. Note that if the W -action is irreducible, the set S ′ of
reflections in W forms either one or two conjugacy classes depending on
whether all the roots have the same length or not [1].
Thus, giving a W -invariant function c : S ′ −→ R amounts to giving a map:

α 7−→ cα ∈ C,

where cα depends only on the length of α ∈ R.

Remark 3.1.2.2. Recall from Remark 2.1.1.4 that Ht,c ≃ Hrt,rc, for any
r ∈ C∖ {0}.
In the sequel we will focus in particular on the case t = 0, therefore we are
free to rescale c by r whenever it is convenient.
Moreover, unlike a general symplectic reflection algebra, one can see from
the relations above that setting deg(h∗) = −1, deg(h) = 1 and deg(W ) = 0,
makes the Rational Cherednik algebra Ht,c into a Z-graded algebra (as in [6]).

Example 3.1.6. [1, 4 Example ] Let h = Cn, R = An-1 and W = Sn as in
Example 3.1.4.
We write down the defining relations of the Rational Cherednik algebra as-
sociated with the indecomposable triple: (h ⊕ h∗, ω,W ), where ω is the
canonical symplectic form of h⊕ h∗ defined as in the Example 1.2.12.
We use the standard coordinates on Cn to write:

h = {(x1, · · · , xn) ∈ Cn | Σxi = 0} and

h∗ = {(y1, · · · , yn) ∈ (Cn)∗ | Σyi = 0}.

Moreover, since h →֒ Cn, then there is a surjective map F : C[Cn] ↠ C[h],
where C[x1, · · · , xn] ≃ C[Cn].
Note that KerF = (x1+ · · ·+xn), thus C[h] ≃ C[x1, · · · , xn]/(x1+ · · ·+xn),
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and analogously C[h∗] ≃ C[x∗
1, · · · , x

∗
n]/(x

∗
1 + · · ·+ x∗

n).
Recall that in the An-1 case all the roots are W -conjugate and so the linear
function c : R −→ C is a constant function and we choose c = 1. Then
we view the parameter k = (t, 1) as a point of P1. Thus the case c = 0
corresponds to the point k =∞.

Write now sij for the transposition: i ←→ j. The algebra Ht = Ht,1(Sn)
is generated by h, h∗ and by the group Sn, with the following defining rela-
tions (which are a specialization of the ones in (3.1)):

sijxi = xjsij, sijyi = yjsij, for any i, j ∈ {1, 2, · · · , n}, i ̸= j;

[yi, xj] = sij, [xi, xj] = 0 = [yi, yj], for any i, j ∈ {1, 2, · · · , n}, i ̸= j;

[yk, xk] = t− Σi ̸=ksik.

Let Ht,c be the rational Cherednik algebra associated to the triple
(h⊕ h∗, ω,W ). Then, as a consequence of Remark 2.1.1.3, we get:

Corollary 3.1.7. [1, Corollary 4.4] For any k ∈ C := (C ⊕ C)/C∗, multi-
plication in Hk induces a vector spaces isomoprhism:

C[h]⊗ C[h∗]⊗ CW −̃→Hk.

Remark 3.1.2.3. [12] Let g be a finite dimensional semi-simple Lie algebra
over C. Then:

g = n− ⊕ h⊕ n+,

where h is a Cartan subalgerba and n+ and n− are the spans of the positive
and negative root spaces in g.
Moreover, let U(g) be the universal enveloping algebra of the Lie algebra we
are considering. Then, by the classical PBW -theorem, we get the following
triangular decomposition:

U(g) = U(n−)⊗ U(h)⊗ U(n+).

Remark 3.1.2.4. Note that by Corollary 3.1.7 there exists a decomposition
of the rational Cherednik algebra Ht,c which is analogous to the one of a finite
dimensional semi-simple Lie algebra g, as in Remark 3.1.2.3.
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3.2 The Centre of the Rational Cherednik

Algebra for t = 0

In this section we we will describe the centre of the rational Cherednik
algebra Ht,c for t = 0.
Note that since it is a symplectic reflection algebra, we already have a de-
scription of its centre (Theorem 2.3.3) but we will state some more properties.

Example 3.2.1. Let Ht,c be the symplectic reflection algebra associated to
the triple (C2, ω,G) as in Example 2.2.2.
Choose a basis {x, y} of V = C2 such that: V = h ⊕ h∗ = Cx ⊕ Cy, where
h = Span{x} = Cx and h∗ = Span{y} = Cy and y(x) = 1.
Let ω be the canonical symplectic form on V as in Example 1.2.12 with
ω(x, y) = 1 and let W =< s′ >⊂ GL(h), with s′ = −1 ∈ C be the Weyl
group associated to h∗ acting diagonally on V .
Then Ht,c in Example 2.2.2 is precisely the rational Cherednik algebra asso-
ciated to the triple (Cx ⊕ Cy, ω,W ), a complex number t ∈ C, a constant
function c : h∗ −→ C, with defining relations (which are a specialization of
the ones in (3.1)):

s′x = −xs′, s′y = −ys′,

[x, y] = t+ cs′.

Fix t = 0. By Theorem 2.3.1, it holds: Z(H0,c) ≃ Z(eH0,ce) = eH0,ce and
by Corollary 3.1.7 and Remark 2.1.1.3 we get:

C[h⊕ h∗]W −̃→eH0,ce.

Then, Z(H0,c) ≃ eH0,ce ≃ C[h⊕ h∗]W .
Consider the following invariant subalgebras of Z(H0,c): C[h]

W = C[x2] and
C[h∗]W = C[y2].
Recall from Example 2.3.2 that Z(H0,c) = C[x2, y2, xy]. Then, notice that
the two invariant subalgebras above are both contained in the centre of Ht,c

and thus C[x2]⊗ C[y2] ⊂ Z(H0,c) = C[x2, y2, xy].
Furthermre, observe that Z(H0,c) = C[h⊕h∗]W is a free module over its sub-
algebra C[h]W ⊗C[h∗]W = C[x2]⊗C[y2] by Chevalley’s Theorem. Moreover
the rank of the free module Z(H0,c) over C[h]

W ⊗C[h∗]W is |W | = 2. Indeed
we can choose {1, xy} as a basis.

In the previous example we showed some properties of the centre of the
rational Cherednik algebra H0,c we were considering. However, it is not the
only situation in which they hold.
In general we have:
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Proposition 3.2.2. [6, Proposition 2.7] Let H0,c be the rational Cherednik
algebra associated to the complex reflection group W , then:

• The subalgebras C[h]W and C[h∗]W are contained in Z0,c := Z(H0,c).

• The algebra Z0,c is a free C[h]W ⊗ C[h∗]W -module of rank |W |.

3.2.1 Restricted Rational Cherednik Algebras

Recall from Proposition 3.2.2 that given a rational Cherednik algebra Ht,c

associated to an indecomposable triple (h ⊕ h∗, ω,W ), at parameter t = 0
there is an inclusion of algebras:

A := C[h]W ⊗ C[h∗]W →֒ Z(H0,c).

Thus, we are allowed to give the following definition:

Definition 3.2.3. [6] Let H0,c be a rational Cherednik algebra at parameter
t = 0. Then we define the restricted rational Cherednik algebra associated to
it as:

Hc = H0,c/A+H0,c,

where, A+ denotes the ideal in A of elements with zero constant term.

It is shown in [14] that Hc is a Z-graded algebra where deg(x) = 1,
deg(y) = −1 and deg(w) = 0, for any x ∈ h, y ∈ h∗ and w ∈ W .

Definition 3.2.4. Let h be a finite dimensional C-vector space and let W
be any finite group of GL(h). We denote by C[h]+ the ideal of all functions
with constant term equal to zero.
The ring of co-invariants forW is defined to be the finite dimensional quotient
algebra:

C[h]CoW := C[h]/ < C[h]W+ >.

In general the ring of coinvariants is not easy to describe.
However if W is a complex reflection group, Chevalley gave a description of
C[h]CoW as a W -module in [16]:

Proposition 3.2.5. [16] Let W be a complex reflection group. Then as
a W -module the ring of coinvariants C[h]CoW is isomoprhic to the regular
representation. In particular: dimC[h]CoW = |W |.
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Remark 3.2.1.1. By Corollary 3.1.7 and by Definitions 3.2.3 and 3.2.4 it
follows that Hc has the following triangular decomposition as a vector space:

Hc−̃→C[h]CoW ⊗ C[h∗]CoW ⊗ CW .

Moreover, by Proposition 3.2.5 we have:

dim(Hc) = |W |
3.

Example 3.2.6. Let Ht,c be the rational Cherednik algebra in Example
3.2.1. Fix t = 0 and consider the corresponding restricted rational Cherednik
algebra Hc.
By Remark 3.2.1.1 it follows that:

Hc−̃→C[h]CoW ⊗ C[h∗]CoW ⊗ CW ,

with

C[h]CoW = C[x]/ < C[x]W+ >= C[x]/(x2),

and

C[h∗]CoW = C[y]/ < C[y]W+ >= C[y]/(y2).

Then, by Definitions 3.1.5 and 3.2.3, the restricted rational Cherednik algebra
Hc is the C-algebra generated by h = Cx, h∗ = Cy, the Weyl group
W =< s′ >⊂ GL(C), with s′ = −1 ∈ C associated to h∗ and a constant
function c : h∗ −→ C, subject to the following defining relations:

s′x = −xs′, s′y = −ys′,

x2 = 0, y2 = 0,

[x, y] = cs′.

Moreover, by Example 2.2.2 a basis of Hc as a C-vector space is given by:

{1, x, y, xy, s′, xs′, ys′, xys′}.

Thus: dimHc = |W |
3 = 8.
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Chapter 4

On the representation theory of

the restricted rational

Cherednik algebras

Recall from Remark 3.1.2.4 that a rational Cherednik algebra at
t = 0 admits a triangular decomposition which is analogous to the one of the
universal enveloping algebra U(g) of a semisimple Lie algebra g.
Moreover, recall from Remark 3.2.1.1 that a restricted rational Cherednik
algebra inherits a triangular decomposition from the one of the corresponding
rational Cherednik algebra.
Throughout this chapter, in the spirit of the representation theory of U(g),
we state some results on the representation theory of a restricted rational
Cherednik algebra Hc by exploiting its triangular decomposition.

4.1 Baby Verma Modules

In this section we introduce baby Verma modules and we state the
Brauer-type reciprocity ([17]).

Let Hc be a restricted rational Cherednik algebra as in Definition 3.2.3.
Recall from Remark 3.2.1.1 that it admits the following triangular decompo-
sition as a C-vector space:

Hc−̃→C[h]CoW ⊗ C[h∗]CoW ⊗ CW ,

and consider the subalgebra C[h∗]CoW#CW of Hc.

Remark 4.1.0.1. The subalgebra C[h∗]CoW#CW should be seen as an ana-
logue of the subalgebra U(h⊕ n) of the universal enveloping algebra U(g) of
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a semisimple Lie algebra g.

The algebra map:

C[h∗]CoW#CW −→ CW , p#w 7−→ p(0)w,

for any p ∈ C[h∗]CoW and w ∈ W , makes any W -module into a
C[h∗]CoW#CW -module.
Moreover, Hc is a right C[h∗]CoW#CW -module since C[h∗]CoW#CW is a
subalgebra of Hc.
Let Irr(W ) denote a set of complete, non-isomorphic, simple W -modules.
Following [6]:

Definition 4.1.1. Let λ ∈ Irr(W ). The baby Verma module ofHc associated
to λ is:

∆(λ) := Hc ⊗C[h∗]CoW#CW λ,

where C[h∗]CoW
+ acts on λ as zero.

Moreover the Hc-action is given by:

h′ · (h⊗C[h∗]CoW#CW v) = (h′h⊗C[h∗]CoW#CW v),

for any h, h′ ∈ Hc and v ∈ λ.

Remark 4.1.0.2. Let A be a C-algebra and let M be a left A-module. Then
M∗ becomes a right A-module, where the action of A on M∗ is defined to be:

(f · a)(m) := f(a ·m), for any f ∈M∗, m ∈M and a ∈ A.

Analogously, let M be a right A-module. Then M∗ is a left A-module, where
the A-action on M∗ is defined to be:

(a · f)(m) := f(m · a), for any f ∈M∗, m ∈M and a ∈ A.

Now consider the subalgebra C[h]#CW of Hc. The algebra map:

C[h]CoW#CW −→ CW , q#w 7−→ q(0)w,

for any q ∈ C[h]CoW and w ∈ W , makes any W -module into a
C[h]CoW#CW -module. Moreover, by Remark 4.1.0.2 given a left W -module
(which is also a left C[h]CoW#CW -module), λ∗ is a right W -module (and a
right C[h]CoW#CW -module) with W -action given by:

(f · w)(v) := f(w · v),
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for any f ∈ λ∗, v ∈ λ and w ∈ W .
Furthermore, Hc is a left C[h]CoW#CW -module since C[h]CoW#CW is a
subalgebra of Hc.

Definition 4.1.2. Let λ ∈ Irr(W ). The dual baby Verma module of Hc

associated to λ is:

∇(λ) := (λ∗ ⊗C[h]CoW#CW Hc)
∗,

where C[h]CoW
+ acts on λ∗ as zero.

Moreover, the Hc-action is given by:

(h · ϕ)(f ⊗C[h]CoW#CW h′) := ϕ(f ⊗C[h]CoW#CW h′h),

for any ϕ ∈ ∇(λ), h, h′ ∈ Hc and f ∈ λ∗.

Remark 4.1.0.3. By Remark 3.2.1.1 it follows that as a C-vector space:

dim(∆(λ)) = dim(∇(λ)) = |W |dimλ, for any λ ∈ Irr(W ).

Remark 4.1.0.4. Recall from Chapter 3 that any restricted rational Cherendik
algebra Hc is a Z-graded algebra by assigning deg(x) = 1, deg(y) = −1 and
deg(w) = 0, for any x ∈ h, y ∈ h∗ and w ∈ W .
Indeed by Remark 3.1.1.2 the associated rational Cherendik algebra H0,c is a
Z-graded algebra. Moreover the ideal A+H0,c is a Z-graded ideal in H0,c, thus
Hc = H0,c/A+H0,c is a Z-graded algebra.

Following [6, Subsection 2.5], denote by Hc−modZ the category of finitely
generated, Z-graded (left) Hc-modules.
Given M ∈ Ob(Hc −modZ), it has a decomposition (as an abelian group)
M = ⊕n∈ZMn where each Mn is a (Hc)0-module and (Hc)mMn ⊆Mm+n, for
any m,n ∈ Z.
The morphisms in Hc −modZ are graded morphisms of degree zero, i.e, any
f ∈ HomHc−modZ

(M,N) is such that: f : M −→ N is a morphism of under-
lying modules that respects grading: f(Mn) ⊂ Nn, for any n ∈ Z.
By a submodule N of a module M ∈ Ob(Hc − modZ) we understand N ∈
Ob(Hc−modZ), i.e, N = ⊕n∈NNn, and for any n ∈ N there holds i(Nn) ⊂Mn

where i : N −→M is the set-theoretic inclusion, i.e, i ∈ HomHc−modZ
(N,M).

Moreover, if M ∈ Ob(Hc −modZ), then M [i] will denote the Z-graded
Hc-module with same underlying abelian group as M , same module struc-
ture, and with grading M [i]j = Mj−i, with i, j ∈ Z.
We denote by F the forgetful functor:

F : Hc −modZ −→ Hc-mod,
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where Hc−mod denotes the category of finitely generated (left) Hc-modules.

Remark 4.1.0.5 ([17]). Let A be a Z-graded C-algebra, let B be a
Z-graded subalgebra of A and let N be a Z-graded B-module.
Then A⊗BN ia a Z-graded A-module and for any i ∈ Z, its i-th homogeneous
component is defined as follows:

(A⊗B N)i = SpanC{a⊗B n | a ∈ Aj, n ∈ Ni−j}.

Remark 4.1.0.6. [17] Let A be a Z-graded C-algebra, let M be a (left)
Z-graded A-module and let M∗ = HomC(M,C).
Then M∗ is a (right) Z-graded A-module with grading:
(M∗)i := {f ∈M∗ | f(Mj) = 0 for any j ̸= −i}, for any i, j ∈ Z.

Remark 4.1.0.7. By Definitions 4.1.1, 4.1.2 and by Remarks 4.1.0.5, 4.1.0.6
it follows that for any λ ∈ Irr(W ) the Baby Verma module ∆(λ) and the dual
Baby Verma module ∇(λ) can be regarded also as finitely generated Z-graded
Hc-modules, i.e, as objects in Hc −modZ.
Indeed, by assigning degv = 0 for any v ∈ λ ∈ Irr(W ) and degf = 0 for any
f ∈ λ∗, we get: (∆(λ))i = SpanC{a ⊗C[h∗]CoW#CW v | a ∈ (Hc)i, v ∈ λ}, for

any i ∈ Z. Analogously also ∇(λ) inherits a Z-grading from Hc. Indeed:
(λ∗ ⊗C[h]CoW#CW Hc)i = SpanC{f ⊗C[h]CoW#CW h | f ∈ λ∗, h ∈ (Hc)i}. Then,

consider (∇(λ)) = (λ∗ ⊗C[h]CoW#CW Hc)
∗ = HomC(λ

∗ ⊗C[h]CoW#CW Hc,C),
by Remark 4.1.0.6 it holds:
(∇(λ))i = SpanC{f ∈ ∇(λ) | f((λ

∗ ⊗C[h]CoW#CW Hc)j) = 0 for any j ̸= −i}.

Before stating the main result of this section we need some further defi-
nitions. Let C be either Hc −mod or Hc −modZ.

Definition 4.1.3. Let M ∈ Ob(C) and let N be a submodule of M . Then
N is said to be a superfluous submodule of M if for any submodule P of M
such that P +N = M , then P = M .

Definition 4.1.4. Let M ∈ Ob(C). Then M is said to be projective in C if
for every epimorphism f ∈ HomC(M,N) and every morphism
g ∈ HomC(P,N), there exists a morphism h ∈ HomC(P,M) such that
f ◦ h = g.

Definition 4.1.5. Let M ∈ Ob(C). A projective cover of M is a pair (X, f)
where X ∈ Ob(C) is projective and f : X −→ M is a superfluous epimor-
phism in HomC(X,M), i.e, Kerf is a superfluous submodule of X.

Definition 4.1.6. LetM ∈ Ob(C). A submoduleN ofM is called maximal if
M/N is a simple module. The radical of M is the intersection of all maximal
submodules of M , i.e,
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Rad(M) = ∩N is a maximal submodule of MN .

Now, we summarize the results of [17] applied to this situation:

Proposition 4.1.7. [6, Proposition 2.11] Let λ, µ ∈ Irr(W ).

(i) The baby Verma module ∆(λ) has a simple head, i.e, L(λ) := ∆(λ)/Rad(∆(λ))
is a simple module in Hc −modZ and ∆(λ) is indecomposable.

(ii) ∆(λ) is isomorphic to ∆(µ)[i] if and only if λ ≃ µ and i = 0.

(iii) The set {L(λ)[i] | λ ∈ Irr(W ), i ∈ Z} is a complete set of pairwise
non-isomorphic, simple Z-graded Hc-modules.

(iv) F (L(λ)) is a simple Hc-module and {F (L(λ)) | λ ∈ Irr(W )} is a com-
plete set of pairwise non-isomorphic simple Hc-modules.

(v) If P (λ) is the projective cover of L(λ) in Hc − modZ, then F (P (λ))
is the projective cover of F (L(λ)) in Hc-mod.

Example 4.1.8. Let Hc be the restricted rational Cherednik algebra in Ex-
ample 3.2.6.
We compute the baby Verma modules of Hc for any λ ∈ Irr(W ), where
W =< s′ >⊂ GL(C), with s′ = −1 ∈ C.
We know that Irr(W ) = {C+,C−}, where C+ and C− denote the trivial and
the sign representation respectively.
Then:

∆(C±) = Hc ⊗C[y]/(y2)#CW C±.

By Remark 4.1.0.3 they are both two dimensional as C-vector spaces.
Indeed, {x ⊗C[y]/(y2)#CW 1, 1 ⊗C[y]/(y2)#CW 1} is a basis of both ∆(C+) and

∆(C−). The Hc-action is given by:

y · (1⊗C[y]/(y2)#CW 1) = (y ⊗C[y]/(y2)#CW 1) = (1⊗C[y]/(y2)#CW y · 1) = 0 and
y · (x⊗C[y]/(y2)#CW 1) = (xy − cs′ ⊗C[y]/(y2)#CW 1) =

= (xy ⊗C[y]/(y2)#CW 1)− (cs′ ⊗C[y]/(y2)#CW 1) =
= (x⊗C[y]/(y2)#CW y · 1)− (cs′ ⊗C[y]/(y2)#CW 1) =

= ∓c⊗C[h∗]CoW#CW 1,

for any y ∈ h∗, since s′ · 1 = ±1, while

x · (1⊗C[y]/(y2)#CW 1) = (x⊗C[y]/(y2)#CW 1) and
x · (x⊗C[y]/(y2)#CW 1) = (x2 ⊗C[y]/(y2)#CW 1) = 0,
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for any x ∈ h, since x2 = 0 ∈ Hc, and

s′ · (1⊗C[y]/(y2)#CW 1) = ±1⊗C[y]/(y2)#CW 1 and
s′ · (x⊗C[y]/(y2)#CW 1) = (−xs′ ⊗C[y]/(y2)#CW 1) = ∓x⊗C[h∗]CoW#CW 1,

for s′ ∈ W .
Note that ∆(C±) are cyclic Hc-modules. Indeed {1 ⊗C[y]/(y2)#CW 1} is a

generator for them as Hc-modules. Moreover, by the relation [x, y] = cs′, we
distinguish two cases depending on c ∈ C.

• If c ̸= 0, ∆(C±) are simple modules.

Indeed, let (a+ bx+gy+dxy+ lyx⊗C[y]/(y2)#CW 1) with a, b, g, d, l ∈ C,
be a non-zero element of ∆(C±). Note that:

(a+ bx+ gy + dxy + lyx⊗C[y]/(y2)#CW 1) =
= (a+ bx⊗C[y]/(y2)#CW 1) + (g ⊗C[y]/(y2)#CW y · 1)+
+(dx⊗C[y]/(y2)#CW y · 1) + (lyx⊗C[y]/(y2)#CW 1) =

= (a+ bx⊗C[y]/(y2)#CW 1) + (lxy − lcs′ ⊗C[y]/(y2)#CW 1) =
= (a+bx⊗C[y]/(y2)#CW 1)+(lx⊗C[y]/(y2)#CW y ·1)−(lcs′⊗C[y]/(y2)#CW 1) =

= (a+ bx⊗C[y]/(y2)#CW 1) + (∓lc⊗C[y]/(y2)#CW 1) =
= (a∓ lc+ bx⊗C[y]/(y2)#CW 1).

Then, without loss of generality let a+bx⊗C[h∗]CoW#CW 1 be a non-zero
element of ∆(C±), i.e, with a, b ∈ C such that (a, b) ̸= (0, 0). Note that
it must hold b ̸= 0. Otherwise, if b = 0, a⊗C[h∗]CoW#CW 1 is a generator
of ∆(C±) for any a ̸= 0, while if a = 0 it is the zero element in ∆(C±).
Moreover, by the Hc-action we get that a+ bx⊗C[y]/(y2)#CW 1 generates
∆(C±), for any a ∈ C, b ∈ C∗. Indeed:

y · (a+ bx⊗C[h∗]CoW#CW 1) =
= (ya⊗C[h∗]CoW#CW 1) + (byx⊗C[h∗]CoW#CW 1) =

= (a⊗C[h∗]CoW#CW y · 1)+ (∓bc⊗C[h∗]CoW#CW 1) = ∓bc⊗C[h∗]CoW#CW 1,

for any y ∈ h∗.
Since for any b ∈ C∗, ∓bc⊗C[h∗]CoW#CW 1 generates the cyclic

Hc-modules ∆(C±), we get that any non zero element of ∆(C±) is a
generator. Then, there are no proper submodules of ∆(C±), except for
the zero submodule.

• If c = 0, then C(x ⊗C[y]/(ym)#CW 1) is the only proper submodule of
∆(C±), so it is a maximal submodule.
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Indeed, let a+ bx⊗C[y]/(y2)#CW 1 be an element of ∆(C±), with a, b ∈ C

such that (a, b) ̸= (0, 0). Then, C(a + bx⊗C[y]/(y2)#CW 1) is not a sub-
module of ∆(C±) for any a ∈ C∗, b ∈ C. Indeed:

x · (a+ bx⊗C[h∗]CoW#CW 1) = (ax⊗C[h∗]CoW#CW 1),

for any x ∈ h, and (ax⊗C[h∗]CoW#CW 1) /∈ C(a+ bx⊗C[y]/(y2)#CW 1).
If we consider the submodule generated by: ax⊗C[h∗]CoW#CW 1,
a + bx ⊗C[h∗]CoW#CW 1, we get that it is not proper and it is precisely
∆(C±).
Fix a = 0 and consider C(bx⊗C[h∗]CoW#CW 1), for any b ∈ C∗.
Note that it is a proper submodule:

x · (bx⊗C[h∗]CoW#CW 1) = 0,

for any x ∈ h, since x2 = 0 ∈ Hc,

s′ · (bx⊗C[h∗]CoW#CW 1) = ∓bx⊗C[h∗]CoW#CW 1,

for any s′ ∈ W , and

y · (bx⊗C[h∗]CoW#CW 1) = (bxy⊗C[y]/(y2)#CW )− (bcs′ ⊗C[y]/(y2)#CW 1) =
= (bx⊗C[y]/(y2)#CW y · 1) + (∓bc⊗C[h∗]CoW#CW 1) =

= ∓bc⊗C[y]/(y2)#CW 1 = 0,

for any y ∈ h∗, since c = 0.
Hence, C(bx⊗C[h∗]CoW#CW 1) = C(x⊗C[h∗]CoW#CW 1) is the only proper
submodule of ∆(C±) for any b ̸= 0, so it is maximal and
Rad(∆(C±)) = C(x⊗C[h∗]CoW#CW 1).
Then: L(C+) = ∆(C+)/Rad(∆(C+)) and L(C−) = ∆(C−)/Rad(∆(C−))
are their simple heads. More precisely, as C-vector space L(C+) and
L(C−) are 1-dimensional and a basis for them is given by:
{1⊗C[h∗]CoW#CW 1}. As Hc-modules they are generated by the same

element and the Hc-action is as follows:

y · (1⊗C[h∗]CoW#CW 1) = (1⊗C[y]/(y2)#CW y · 1) = 0,

for any y ∈ h∗,

x · (1⊗C[h∗]CoW#CW 1) = x⊗C[h∗]CoW#CW 1 = 0,
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for any x ∈ h, since x⊗C[h∗]CoW#CW 1 ∈ Rad(∆(C±)) and

s′ · (1⊗C[h∗]CoW#CW 1) = ±1⊗C[h∗]CoW#CW 1,

with s′ ∈ W .

4.1.1 Brauer-Type Reciprocity

Before stating the Brauer-type reciprocity we recall some notions on mod-
ule theory:

Definition 4.1.9. Let R be a ring and let M be a R-module. A composition
series for M is a finite chain of submodules of M

{0} = J0 ⊂ · · · ⊂ Jn = M ,

where all inclusions are strict and Jk is a maximal submodule of Jk+1 for any
k.

Remark 4.1.1.1. An R-module M has a composition series if and only if it
is both Artinian and Noetherian.
In particular if R is Artinian and M is finitely generated over R, then by
Hopkins’ Theorem it admits a composition series.
If an R-module M has a composition series, then any finite strictly increasing
series of submodules of M may be refined to a composition series, and any
two composition series for M are equivalent.
In this case, the simple quotient modules Jk+1/Jk for each k, are known as
the composition factors of M .
By Jordan-Holder’s Theorem the number of occurrences of each isomorphism
type of simple R-module, i.e, |{i; Ji+1/Ji ≃ Jk+1/Jk}| for any fixed k, as a
composition factor does not depend on the choice of composition series.

Remark 4.1.1.2. By Remark 4.1.1.1, for any λ ∈ Irr(W ) ∆(λ)[i] and
∇(λ)[i] for i ∈ Z have composition series. Indeed they are finitely gener-
ated, Z-graded Hc-modules, Hc is a finitely generated C-algebra and C is
Artinian.

Definition 4.1.10 ([17]). Let M ∈ Ob(Hc−modZ). Then M is said to have
a ∆-filtration if it has a filtration:

0 = M0 ⊂M1 ⊂ · · · ⊂Mn−1 ⊂Mn = M
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by submodules such that for each 0 ≤ j ≤ n, Mj/Mj−1 ≃ ∆(λ)[i], for some
λ ∈ Irr(W ) and i ∈ Z.
Note that for a given ∆-filtration of M by [17, Corollary 4.3], for any i ∈ Z

the numbers:

[M : ∆(λ)[i]] = |{j |Mj/Mj−1 ≃ ∆(λ)[i]}|,

are independent of the filtration used.

As an application of [17, Theorem 4.5], we have the following Brauer-type
reciprocity result:

Theorem 4.1.11. [14, 4.6] Any projective object in Hc −modZ has a
∆-filtration. In particular for λ, µ ∈ Irr(W ) and i ∈ Z the projective cover
P (λ) of L(λ) has a ∆-filtration and

[P (λ) : ∆(µ)[i]] = (∇(µ)[i] : L(λ)),

where (∇(µ)[i] : L(λ)) denotes the multiplicity of L(λ) as a composition
factor of ∇(µ)[i].

4.2 Example: the Cyclic Group

4.2.1 The Symplectic Reflection Algebra and Its Cen-

tre at t = 0

Let (C2, ω) be a symplectic vector space where ω is the canonical sym-
plectic form as in Example 1.2.12. Let {x, y} be a basis of C2 such that
ω(x, y) = 1 and let G ⊆ Sp(2,C) = SL(2,C) be the finite group generated
by:

ε =

[
ξ 0
0 ξ−1

]
,

where ξ is a fixed primitive m-th root of unity.
Notice that it is a symplectic reflection. Indeed, ε ̸= 1 and by Remark 1.2.1.3
detε = 1, so it cannot have 1 as eigenvalue, i.e, dimKer(1 − ε) = 0. By
Definition 1.2.7 we conclude that ε is a symplectic reflection and analogously
εi is a symplectic reflection for any i ∈ {1, · · · ,m− 1}.
Observe that by choosing such a basis it holds:

ωε(x, y) = · · · = ωεm−1(x, y) = 1.

The group G ≃ Cm acts on C2 as follows:
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ε · x = ξx, ε · y = ξ−1y,

so in C < x, y > ⋉G we have the relations εx = ξxε and εy = ξ−1yε, and
the symplectic reflection algebra associated with the triple (C2, ω,G) is:

Ht,c = C < x, y > ⋉G/I < xy − yx− t− Σm−1
i=1 ciε

i >.

By Remark 2.1.1.3 we can find a basis of Ht,c as a C-vector space made of
ordered monomials in x, y, εl, for l ∈ {0, · · · ,m− 1}, i.e,

B = {xiyjεl | i, j ∈ N, l ∈ {0, · · · ,m− 1}}.

As in Example 2.2.2, given two elements xiyj, xayb in Ht,c we would be able
to write their product xiyjxayb with respect to the basis B. Notice that we
can rewrite the element yjxa by using the relation [x, y] = t + Σm−1

i=1 ciε
i in

Ht,c. Indeed by induction on the power of y, we get:

(4.1) ynx = xyn − ntyn−1 − Σm−1
i=1 ci(1 + ξ−i + · · ·+ ξ−(n−1)i)yn−1εi,

for any n ∈ N≥2.
Observe that if n ≡ m (mod m), then Σm−1

i=1 ci(1 + ξ−i + · · · + ξ−(n−1)i) = 0
since each summand is the sum of roots of unity and:

1 + ξ−i + · · ·+ ξ−i(n−1) = ξ−in−1
ξ−1−1

= 0,

for any i ∈ {1, · · · ,m− 1}.
Then by induction on the power of x in (4.1) it is possible to find an expression
for yjxa, j, a ∈ N.
Let e = 1

m
Σm−1

i=0 εi be the trivial idempotent in CG and consider the spherical
subalgebra eHt,ce of Ht,c.
As it is noticed in Example 2.2.2, it is possible to find a generating set of
eHt,ce made of ordered monomials in x, y, εl, with l ∈ {0, · · · ,m − 1} after
multypling them on both sides by e.
Note that εle = e, for any l ∈ {0, · · · ,m− 1}. Indeed:

εl 1
m
Σm−1

i=0 εi = 1
m
Σm−1

i=0 εi+l = e,

after rescaling the index i in the sum.
Then we only consider elements of the form: exiyje, for i, j ∈ N.
Since εx = ξxε and εy = ξ−1yε, it holds: εxiyj = ξiξ−jxiyjε, i.e, xiyj

commutes with ε if and only if i − j = mh with h ∈ N, i.e, if and only if
i ≡ j (mod m). Analogously, it follows that εlxiyj = (ξi)l(ξj)−lxiyjεl, i.e,
xiyj commutes with εl for any l ∈ {0, · · · ,m − 1} (and then with e) if and
only if il−jl = mh, with h ∈ N, i.e, if and only if il ≡ jl (mod m). Explicity:
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exaybe = 1
m
Σm−1

i=0 εixaybe = 1
m
Σm−1

i=0 ξiaξ−ibxaybe =

=
1

m
Σm−1

i=0 ξia−ibxaybe =

{
0, if a ̸≡ b (mod m)

xaybe, if a ≡ b (mod m).

Indeed, let a ̸≡ b (mod m). Then there are two cases:
(i) there exists d ∈ N such that a ≡ b (mod d) with d|m, i.e, a − b = dc1,
for some c1 ∈ N, and a ̸≡ b (mod r) with r = m

d
.

In this case, 1
m
Σm−1

i=0 ξia−ibxaybe = 0. Indeed,

Σm−1
i=0 ξi(a−b) = Σm−1

i=0 ξidc1 = Σr−1
i=0 ξ

idc1 + · · ·+ Σm−1
i=m−1−(r−1)ξ

idc1

︸ ︷︷ ︸
d-summands

= 0,

and each summand is the sum of r-th roots of unity which is equal to zero.
(ii) a ̸≡ b (mod d) for any d ∈ N such that d|m.
Then, 1

m
Σm−1

i=0 ξia−ibxaybe = 0 since Σm−1
i=0 ξia−ib is the sum of m-th roots of

unity and it is equal to zero.
Notice that the commutation relation [x, y] = t + Σm−1

i=1 ciε
i in eHt,ce gives:

xye− yxe = te+ Σm−1
i=1 cie. This, together with the ones obtained by induc-

tion on the power of x and y, are the non-zero relations among the ordered
monomials in eHt,ce. Then a basis made of ordered monomials in x, y, εl

with l ∈ {0, · · · ,m− 1} of eHt,ce as a C-vector space is:

B′ = {xiyje | i ≡ j (mod m), i, j ∈ N}.

Note that, as it is shown in Example 2.2.2, computing the product of two
non zero elements exiyje, exaybe in eHt,ce is equivalent to computing the
product of xiyj, xayb in Ht,c.
We choose as generators of eHt,ce as a C-algebra: xme, yme and xye.
Indeed, let xlm+ayl

′m+ae be a non-zero element of eHt,ce. We prove by in-
duction on the power of xye that:

(4.2) xayae = (xye)a + Σa−1
j=0p

(a)
j (xye)j, for some p

(a)
j ∈ C,

for any a ∈ N≥2.
Note that by (4.1):

(xye)2 = (xye)(xye) = xyxye = x2y2e− txye− Σm−1
i=1 ciξ

−ixye,

i.e, (4.2) holds for a = 2:

x2y2e = (xye)2 + t(xye) + Σm−1
i=1 ciξ

−ixye.

Assume that (4.2) holds for a− 1, with a ∈ N:
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(4.3) xa−1ya−1e = (xye)a−1 + Σa−2
j=1p

(a−1)
j (xye)j, for some p

(a−1)
j ∈ C

then we prove that (4.2) holds also for a ∈ N. Indeed, by (4.3):

(xa−1ya−1e)(xye) = (xye)a + Σa−2
j=1p

(a−1)
j (xye)j+1, for some p

(a−1)
j ∈ C,

and, by (4.1) there holds:

(xa−1ya−1e)(xye) = xa−1ya−1xye =
= xa−1(xya−1 − (a− 1)tya−2 − Σm−1

i=1 ci(1 + ξ−1 + · · ·+ ξ−i(a−2))ya−2εi)ye =
= xayae− (a− 1)txa−1ya−1e− Σm−1

i=1 ci(1 + ξ−1 + · · ·+ ξ−i(a−2))xa−1ya−1e.

Thus, by combining the last two equations we get:

xayae = (xye)a + Σa−1
j=1p

(a)
j (xye)j, for some p

(a)
j ∈ C,

with a ∈ N, i.e, (4.2) holds for any a ∈ N≥2.
Hence, we can rewrite xlm+ayl

′m+ae = (xm)lxaya(ym)l
′
e = (xme)l(xayae)(yme)l,

where xayae can be written with respect to the chosen generators. Thus,
any element can be obtained by adding and multypling linear combinations
of xme, yme and xye.
Moreover, by induction on the power of x in (4.1) we can compute [xme, yme],
[xme, xye] and [yme, xye].
Now let t = 0. By Theorem 2.3.3, Z(H0,c) ≃ Z(eH0,ce) and by Theorem
2.2.3, Z(eH0,ce) = eH0,ce.
Then the commutation relations [xme, yme], [xme, xye] and [yme, xye] are all
equal to zero for t = 0 and we get that eH0,ce = C[xme, yme, xye].
Hence, by the Satake isomorphism in Theorem 2.3.1 it holds
Z(H0,c) = C[xm, ym, xy].

4.2.2 The Restricted Rational Cherednik Algebra

Note that the symplectic reflection algebra Ht,c we are considering is a
rational Cherednik algebra by choosing a basis {x, y} such that
C2 = h⊕ h∗ = Cx⊕ Cy, where h = Span{x}, h∗ = Span{y} and y(x) = 1.
Let ω be as above, i.e, as in Example 1.2.12 and let W =< s′ >⊂ GL(C),
with s′ = ξ ∈ C such that ξm = 1, be the Weyl group associated to h∗

acting diagonally on Cx⊕ Cy. Then, Ht,c is the rational Cherednik algebra
associated with the triple (Cx⊕Cy, ω,W ), a complex number t and a function
c : S ′ −→ C as in Definition 3.1.5.
Thus we can rewrite the defining relation of Ht,c in the following way:

s′x = ξxs′, s′y = ξ−1ys′, [x, y] = t+ Σm−1
i=1 ciξ

i.
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From now on we fix t = 0. Let A = C[h]W ⊗ C[h∗]W = C[xm] ⊗ C[ym]
be a subalgebra of Z(H0,c) as in Subsection 3.2.1. By Proposition 3.2.2,
Z(H0,c) = C[xm, ym, xy] is a free module over A of rank |W | = m. Indeed, a
basis of Z(H0,c) as a module over C[xm]⊗ C[ym] is given by:

{1, xy, · · · , xm−1ym−1}.

Consider the ideal A+ in A of elements with zero constant term. The re-
stricted rational Cherednik algebra associated to H0,c is Hc = H0,c/A+H0,c,
and it is the C-algebra generated by h, h∗, W and a function c as above,
with defining relations:

s′x = ξxs′, s′y = ξ−1ys′, [x, y] = Σm−1
i=1 ciξ

i and

xm = 0, ym = 0.

Moreover, by Remark 3.2.1.1 it follows that as a C-vector space
dimHc = |W |

3 = m3.

4.2.3 On the Representation Theory: the Baby Verma

Modules

Let W =< ξ >⊂ GL(C) as above, then W ≃ Cm and |W | = m.
Let Irr(W ) be a complete set of non-isomorphic simple W -modules. Since
W is abelian, all its irreducible representations are one dimensional.
Moreover, any irreducible representation V of Cm is specified by the require-
ment that the fixed generator ξ of Cm must act on V through the multiplica-
tion by a m-th root of unity. Then Irr(W ) = {C1,Cξ, · · · ,Cξm−1}, where Cξi

is the 1-dimensional C-vector space on which ξ acts through multiplication
by ξi, for any i ∈ {0, · · · ,m− 1}.
Then, the baby Verma modules for Hc are as follows:

∆(Cξi) = (Hc ⊗C[y]/(ym)#CW Cξi),

for any i ∈ {0, · · · ,m− 1}.
Recall from Remark 4.1.0.3 that they are m-dimensional as C-vector spaces.
Indeed, for any i ∈ {0, · · · ,m− 1} a basis for ∆(Cξi) is given by:
{1⊗C[y]/(ym)#CW 1, x⊗C[y]/(ym)#CW 1, · · · , xm−1 ⊗C[y]/(ym)#CW 1}.
Then, as in Example 4.1.8, by the relation: [x, y] = Σm−1

i=1 ciξ
i and by induction

on the power of x and y, we can compute the action of Hc on the elements
of the basis.
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