
Università degli Studi di Padova

Department of Information Engineering

Master Degree in
Control System Engineering

Learning stack of tasks for robotic
mobile manipulation

Supervisor: Master Candidate:
Prof. Pietro Falco Alessandro Adami

2089579

Co-Supervisor:
Prof. Ruggero Carli

September 3, 2024

Abstract

The aim of this work is to make a robot capable to manage a redun-

dant solution, in order to minimize the cost function associated with

a set of tasks. The cost is defined by the user, depending on which

aspect is more relevant for the purposes of the final result (e.g. time

or precision). Trough reinforcement learning techniques, it will be ca-

pable to choose the best solution among the infinite possibilities given

by the redundancy of the manipulator. Then the robot will be able

to perform different tasks in a three dimensional environment subject

to dynamical changes, reacting to different and unpredictable inputs.

With the usage of behavior trees and genetic programming techniques,

the prioritization of a set of predefined tasks can be learned indepen-

dently combining them with convex weighted sum and defining the

relative parameters. During this learning phase several possible solu-

tions are exploited with operations like crossover and mutation, alter-

ing the architecture of the solution. Comparing the result of the cost

function, the best resulting algorithm will be chosen. In particular the

Baxter robot model was chosen for the problem resolution. The robot

is a bi-manual one, with 7 degrees of freedom for each arm, and then

a mobile base was integrated in order to let it freely move into the

environment. The solution of the tasks, like collision avoidance with

obstacles, are separately solved and then combined together with null

space projector. The simulations were made using RoboSuite simu-

lation framework and MuJoCo (Multi-Joint dynamics with Contact)

engine, through Python programming language.

ii

Contents

1 Introduction 1

1.1 Problem description . 1

1.1.1 Objectives . 2

1.2 Thesis structure . 3

1.3 State of the art . 4

1.3.1 Redundant robots . 4

1.3.2 Genetic programming . 5

1.4 MuJoCo . 7

1.5 RoboSuite . 8

1.6 The Baxter robot . 9

1.6.1 Baxter in RoboSuite . 10

1.6.2 Baxter arm workspace . 12

1.6.3 Baxter joints performances in RoboSuite 12

2 Literature review 19

2.1 Robotics . 19

2.1.1 Fundamentals of Robotics Kinematics 19

2.1.2 Inverse Kinematics . 24

2.1.3 Obstacle Avoidance . 27

2.1.4 Manipulability Ellipsoids and Measure 29

2.1.5 Distance from mechanical joint limits 30

2.1.6 Null Space Projection . 30

2.2 Reinforcement learning . 33

2.2.1 Policy . 33

2.2.2 Genetic Programming . 33

3 Simulation framework 37

3.1 Work environment . 37

iii

iv CONTENTS

3.1.1 Empty environment . 38

3.1.2 Static obstacles environment 38

3.1.3 Dynamic obstacles environment 39

3.1.4 Pick & place environment 40

3.2 Motion of the base . 41

3.3 Master and Slave arm . 44

3.4 Range-Finder Sensors . 45

3.4.1 Map of the sensors . 46

3.4.2 Position of the sensed obstacle pk 47

3.4.3 Self sensing for obstacle avoidance 48

3.5 Respect of the joint limits . 52

3.6 Chattering avoidance . 53

3.7 Stack of Tasks . 54

3.7.1 Tasks parameters . 55

3.7.2 Distracting useless task . 55

3.8 Cost function (fitness measure) 56

3.9 Genetic Programming Pipeline . 58

3.10 Graphical User Interface (G.U.I.) 61

4 Single task resolution and tasks combination: simulations and

results 65

4.1 Single task resolution . 65

4.1.1 Inverse Kinematic . 65

4.1.2 Obstacle Avoidance . 78

4.1.3 Maximization of the Manipulability Measure 100

4.1.4 Maximization of the Distance from Mechanical Joint Limits 104

4.1.5 Useless distracting task: turn head 109

4.2 Tasks combination . 109

4.2.1 Inverse Kinematic & Maximization of Manipulability . . . 110

4.2.2 Obstacle avoidance & Inverse Kinematic 112

4.2.3 Useless distracting task & Inverse Kinematic 116

4.2.4 All tasks . 118

4.2.5 Weighted/Non-weighted combination of the tasks with null

space projector . 121

5 Genetic programming: simulations and results 123

5.1 Initialization and Genetic Operations 123

CONTENTS v

5.2 Best Prioritized Order of the Stack of Tasks 127

5.2.1 Priority of Obstacle Avoidance 128

5.2.2 Priority of Inverse Kinematic 130

5.2.3 Priority of Maximization of Manipulability and distance

from M.J.L. 132

5.2.4 Best derived Prioritized Order of the Stack of Tasks . . . 132

5.3 Best Parameters for the Stack of Tasks 133

5.3.1 Right slave arm precision - Empty environment 134

5.3.2 Right Master arm precision - Empty environment with a wall137

5.3.3 Precision & Distances from Obstacles - Static Obstacles

Environment . 139

5.3.4 Precision & Manipulability - Empty Environment 140

5.3.5 Precision & distances fromMechanical Joint Limits - Empty

Environment . 144

5.4 Manipulability & distances from Mechanical Joint Limits - Empty

Environment . 146

5.4.1 Precision, Time, Distances from Obstacles, Manipulability

& Distances from M.J.L - Static Obstacles Environment . 147

5.4.2 Precision & Distances from Obstacles - Dynamic Obstacles

Environment . 149

5.5 Robustness of the algorithm to useless tasks 152

6 Test of the learned stack of tasks 155

6.1 Base Master . 155

6.2 Arm Master . 164

7 Conclusions 173

7.1 Conclusions . 173

7.2 Future developments . 173

Bibliography 175

vi CONTENTS

List of Figures

1.1 Examples of MuJoCo simulations. 7

1.2 Example of RoboSuite single arm pick and place task. 8

1.3 Frontal view of the Baxter robot with dimensions. 9

1.4 Top view of the Baxter robot with pedestal dimensions. 10

1.5 Baxter robot simulated into different Robosuite environments. . . 10

1.6 Baxter’s robot joints with frames. 11

1.7 Baxter arm work space: side-view. 12

1.8 Baxter arm work space: top-view. 13

1.9 qR1 joint performances. Position step response (left) and velocity

(right). 14

1.10 qR2 joint performances. Position step response (left) and velocity

(right). 14

1.11 qR3 joint performances. Position step response (left) and velocity

(right). 15

1.12 qR4 joint performances. Position step response (left) and velocity

(right). 15

1.13 qR5 joint performances. Position step response (left) and velocity

(right). 16

1.14 qR6 joint performances. Position step response (left) and velocity

(right). 16

1.15 qR7 joint performances. Position step response (left) and velocity

(right). 17

2.1 Baxter’s arm kinematic chain. 21

2.2 Mapping between configuration velocity space and Cartesian ve-

locity space. 31

2.3 Example of stack of tasks. 34

2.4 Example of crossover. 35

vii

viii LIST OF FIGURES

2.5 Example of mutation. 36

2.6 Example of reproduction. 36

3.1 Examples of empty arena (left) and empty arena with some walls

as obstacles (right). 38

3.2 Examples of an aerial view of the obstacles arena. 38

3.3 Aerial view of the dynamic obstacles arena. 39

3.4 Aerial view of the pick and place arena. 40

3.5 Mesh of the pot with two handles. 40

3.6 Pedestal of the robot with frame. 42

3.7 qb1 joint performances. Position step response (left) and velocity

(right). 43

3.8 qb2 joint performances. Position step response (left) and velocity

(right). 43

3.9 qb3 joint performances. Position step response (left) and velocity

(right). 44

3.10 RoboSuite rendering of the Baxter robot with range-finder sensor

ranges in yellow. 45

3.11 Sensors map of the mobile base. 46

3.12 Sensor sites of the left arm, with pedestal reference frame. 47

3.13 1st, 2nd and 3rd site map of the left arm. 48

3.14 Spherical geometries with center reference and radius. 49

3.15 Cylindrical geometries with references and parameters. 50

3.16 Stack of tasks. 54

3.17 Single task composition. 54

3.18 Start of the simulation. 61

3.19 1st learning parameters window. 61

3.20 2nd learning parameters window. 62

3.21 Test parameters window. 63

3.22 Pick & place parameters window. 64

4.1 Pose of the base. 66

4.2 Base linear velocities (left) and base angular velocity (right). . . . 67

4.3 Base position errors (left) and base orientation error (right). . . . 67

4.4 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 67

4.5 Pose of the base. 68

LIST OF FIGURES ix

4.6 Base linear velocities (left) and base angular velocity (right). . . . 68

4.7 Base position errors (left) and base orientation error (right). . . . 69

4.8 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 69

4.9 End-effector position (left) and orientation (right). 70

4.10 End-effector linear (left) and angular (right) velocities. 71

4.11 Position (left) and orientation (right) errors. 71

4.12 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 71

4.13 End-effector position (left) and orientation (right). 72

4.14 End-effector linear (left) and angular (right) velocities. 72

4.15 Position (left) and orientation (right) errors. 73

4.16 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 73

4.17 End-effector position (left) and orientation (right). 75

4.18 End-effector linear (left) and angular (right) velocities. 75

4.19 Position (left) and orientation (right) errors. 75

4.20 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 76

4.21 Baxter robot with right arm in the desired pose. The left one is

still in the initial configuration. 76

4.22 End-effector position (left) and orientation (right). 77

4.23 End-effector linear (left) and angular (right) velocities. 77

4.24 Position (left) and orientation (right) errors. 77

4.25 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 78

4.26 Distances of the base sensors. 79

4.27 Pose of the base. 79

4.28 Base linear velocities (left) and base angular velocity (right). . . . 79

4.29 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 80

4.30 Distances of the base sensors. 80

4.31 Pose of the base. 81

4.32 Base linear velocities (left) and base angular velocity (right). . . . 81

4.33 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 81

x LIST OF FIGURES

4.34 Distances of the base sensors. 82

4.35 Pose of the base. 82

4.36 Base linear velocities (left) and base angular velocity (right). . . . 83

4.37 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 83

4.38 Distances of the base sensors. 83

4.39 Pose of the base. 84

4.40 Base linear velocities (left) and base angular velocity (right). . . . 84

4.41 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 84

4.42 Base site distances. 85

4.43 Arm 1st site distances. 85

4.44 Arm 2nd site distances. 86

4.45 Arm 3rd site distances. 86

4.46 End-effector position (left) and orientation (right). 86

4.47 End-effector linear (left) and angular (right) velocities. 87

4.48 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 87

4.49 Baxter robot moving away from the wall obstacles. 87

4.50 Base site distances . 88

4.51 Arm 1st site distances. 89

4.52 Arm 2nd site distances. 89

4.53 Arm 3rd site distances. 89

4.54 End-effector position (left) and orientation (right). 90

4.55 End-effector linear (left) and angular (right) velocities. 90

4.56 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 90

4.57 Arm 1st site distances. 91

4.58 Arm 2nd site distances. 92

4.59 Arm 3rd site distances. 92

4.60 End-effector position (left) and orientation (right). 92

4.61 End-effector linear (left) and angular (right) velocities. 93

4.62 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 93

4.63 Arm 1st site distances. 94

4.64 Arm 2nd site distances. 94

LIST OF FIGURES xi

4.65 Arm 3rd site distances. 94

4.66 End-effector position (left) and orientation (right). 95

4.67 End-effector linear (left) and angular (right) velocities. 95

4.68 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 95

4.69 Distanced of the base sensors. 96

4.70 Pose of the base. 97

4.71 Base linear velocities (left) and base angular velocity (right). . . . 97

4.72 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 97

4.73 Distanced of the base sensors. 98

4.74 Pose of the base. 98

4.75 Base linear velocities (left) and base angular velocity (right). . . . 99

4.76 End-effector linear (left) and angular (right) velocities. 99

4.77 Example of the robot moving away from a dynamic obstacle. . . . 99

4.78 Manipulability measure of the right arm. 100

4.79 End-effector position (left) and orientation (right). 101

4.80 End-effector linear (left) and angular (right) velocities. 101

4.81 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 101

4.82 Manipulability measure of the right arm. 102

4.83 End-effector position (left) and orientation (right). 102

4.84 End-effector linear (left) and angular (right) velocities. 103

4.85 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 103

4.86 Maximization of the manipulability of the right arm. 104

4.87 Distance from mechanical joint limits measure of the right arm. . 105

4.88 End-effector position (left) and orientation (right). 105

4.89 End-effector linear (left) and angular (right) velocities. 106

4.90 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 106

4.91 Distance from mechanical joint limits measure of the right arm. . 107

4.92 End-effector position (left) and orientation (right). 107

4.93 End-effector linear (left) and angular (right) velocities. 107

4.94 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 108

xii LIST OF FIGURES

4.95 Maximization of the distances from mechanical joint limits with

the right arm. 108

4.96 Position (left) and velocity (right) of the head joints. 109

4.97 Baxter robot with straight head pan (left) and with rotating head

pan (right). 109

4.98 On the left the manipulability measure with the only Inverse Kine-

matic task, on the right the same measure with the combination

of the two tasks. 110

4.99 End-effector position (left) and orientation (right). 110

4.100Position (left) and orientation (right) errors. 111

4.101End-effector linear (left) and angular (right) velocities. 111

4.102Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 111

4.1033rd site sensor distances. 113

4.104Position (left) and orientation (right) errors. 113

4.105Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 113

4.1062nd site sensor distances. 115

4.1073rd site sensor distances. 115

4.108Position (left) and orientation (right) errors. 115

4.109Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 116

4.110Position (left) and orientation (right) errors. 117

4.111End-effector position (left) and orientation (right). 117

4.112Position (left) and orientation (right) errors. 117

4.113Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 118

4.114End-effector position (left) and orientation (right). 119

4.115End-effector linear (left) and angular (right) velocities. 119

4.1163rd site sensor distances. 119

4.117Position (left) and orientation (right) errors. 120

4.118Manipulability measure (left) and distance from mechanical joint

limits measure (right) . 120

4.119Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 120

LIST OF FIGURES xiii

4.120Example of position (left) and orientation (right) errors of a weighted

task. 122

5.1 Example of the cost evolution during the execution of a duty. On

the left the Obstacle avoidance task is not in first position, on the

right it is. The cost function is given by: cost = ||errorpose||2. . . . 129

5.2 Cost (left) and manipulability measure (right) evolution during the

simulation time. 131

5.3 Position (left) and orientation (right) errors. 131

5.4 Cost (left) and manipulability measure (right) evolution during the

simulation time. 131

5.5 Position (left) and orientation (right) errors. 132

5.6 Best stack of tasks. 133

5.7 Position (left) and orientation (right) errors. 134

5.8 Cost evolution during the simulation time. 135

5.9 Position (left) and orientation (right) errors. 136

5.10 Cost evolution during the simulation time. 136

5.11 Cost evolution during the simulation time. 137

5.12 Position (left) and orientation (right) errors. 138

5.13 Arm 2nd site distances. 138

5.14 Arm 3rd site distances. 138

5.15 Cost evolution during the simulation time. 139

5.16 Position (left) and orientation (right) errors. 140

5.17 Base and arm 1st sites distances. 140

5.18 Arm 2nd and 3rd sites distances. 140

5.19 Cost evolution during the simulation time. 141

5.20 Position (left) and orientation (right) errors. 142

5.21 Manipulability measure of the right arm. 142

5.22 Cost (left) and manipulability measure (right) evolution during the

simulation time. 143

5.23 Position (left) and orientation (right) errors. 143

5.24 Base and arm 3rd sites distances. 143

5.25 Cost evolution during the simulation time. 144

5.26 Position (left) and orientation (right) errors. 145

5.27 Distance from mechanical joint limits measure of the right arm. . 145

5.28 Cost evolution during the simulation time. 146

xiv LIST OF FIGURES

5.29 Manipulability and distance from mechanical joint limits measures

of the right arm. 147

5.30 Cost evolution during the simulation time. 148

5.31 Position (left) and orientation (right) errors. 148

5.32 Manipulability and distance from mechanical joint limits measures

of the right arm. 148

5.33 Base and arm 1st sites distances. 149

5.34 Arm 2nd and 3rd sites distances. 149

5.35 Cost evolution (left) during the simulation time and joint positions

q (right) in configuration space. 150

5.36 Position (left) and orientation (right) errors 151

5.37 Base site distances. 151

5.38 Arm 3rd site distances. 151

6.1 Pose of the base. 156

6.2 Base linear velocities (left) and base angular velocity (right). . . . 157

6.3 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 157

6.4 Distances of the base sensors. 157

6.5 End-effector position (left) and orientation (right). 158

6.6 Position (left) and orientation (right) errors. 158

6.7 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 159

6.8 Manipulability and distance from mechanical joint limits measures

of the right arm. 159

6.9 End-effector position (left) and orientation (right). 160

6.10 Position (left) and orientation (right) errors. 160

6.11 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 160

6.12 Manipulability and distance from mechanical joint limits measures

of the left arm. 161

6.13 Pose of the base. 161

6.14 Base linear velocities (left) and base angular velocity (right). . . . 162

6.15 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 162

6.16 Distances of the base sensors. 162

6.17 Robot moving toward the desired pick pose. 163

LIST OF FIGURES xv

6.18 Picking of the pot, once the robot is in position. 163

6.19 Once the grippers are closed, the robot moves toward the place pose.164

6.20 The robot moves between the obstacles and once the place pose is

reached the pot is left. 164

6.21 End-effector position (left) and orientation (right). 165

6.22 Position (left) and orientation (right) errors. 165

6.23 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 166

6.24 Base sensors site. 166

6.25 Manipulability and distance from mechanical joint limits measures

of the left arm. 166

6.26 End-effector position (left) and orientation (right). 167

6.27 Position (left) and orientation (right) errors. 167

6.28 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 167

6.29 End-effector position (left) and orientation (right). 168

6.30 Position (left) and orientation (right) errors. 168

6.31 Position of the joints q (left) and velocity of the joints q̇ (right) in

configuration space. 169

6.32 Base sensors site. 169

6.33 Manipulability and distance from mechanical joint limits measures

of the left arm. 169

6.34 Robot moving toward the desired pick pose. 170

6.35 Then, the robot approaches the object once it is close enough to it. 170

6.36 Once the gripper is closed, the robot moves toward the place pose. 170

6.37 The robot moves between the obstacles and once the place pose is

reached the object is left. 171

xvi

Chapter 1

Introduction

1.1 Problem description

In the context of robotic systems, those involving manipulators with multiple

degrees of freedom, managing redundancy (section 1.3.1) is a critical challenge.

Redundancy in a robotic manipulator happens when there are more degrees of

freedom than are strictly necessary to perform a given task. While this redun-

dancy offers the potential for greater flexibility and adaptability, it also introduces

complexity in decision-making. The robot must select from a possibly infinite set

of feasible configurations, each of which can achieve the task, but with varying

degrees of efficiency, precision, and other performance metrics. In dynamic and

unpredictable environments a robot’s ability to adapt its movements is crucial

to achieving optimal performance. However, without a robust method for se-

lecting the most appropriate configuration, the benefits of redundancy can be

easily lost, leading to sub-optimal outcomes or even failure in task execution.

This work focuses on developing a system that enables a robot to manage its

redundancy efficiently, minimizing a user-defined cost function associated with

a stack of tasks. The cost function is tailored by the user based on the specific

priorities of the application, such as minimizing time or maximizing precision.

By leveraging reinforcement learning techniques, the robot learns to navigate the

space of possible configurations and choose the one that best minimize the cost

function.

The challenge of managing goes further simply finding a solution, it involves

dynamically adapting to changes in the environment and prioritizing multiple

tasks. In this context, the use of genetic programming provides a framework

for the robot to learn task prioritization. Through operations like crossover and

1

2 Chapter 1. Introduction

mutation, the robot explores various potential solutions, continuously refining

its approach to achieve the optimal balance of task execution. In this study,

the Baxter robot model serves as the base for implementing and evaluating the

proposed methods. With its 7 degrees of freedom per arm and an additional

mobile base, Baxter represents a highly redundant system, in order to explore

redundancy management. By solving tasks, such as obstacle avoidance or inverse

kinematic, independently and then integrating these solutions using a null space

projector, this work aims to demonstrate the efficacy of the proposed approach

in a simulated 3D environment, using the RoboSuite (section 1.5) framework and

MuJoCo (section 1.4) engine.

1.1.1 Objectives

The main objective of this thesis is to advance the state of the art in genetic

programming by demonstrating how it is possible to derive an optimized and

prioritized order for a set of tasks in a redundant robotic system, guided by a

user-defined cost function that reflects the specific performance criteria relevant

to the task, such as minimizing execution time. To achieve this, the thesis em-

ploys an approach combining reinforcement learning with genetic programming

techniques. The reinforcement learning aspect of the work enables the robot to

iteratively adjust its parameters and task priorities in response to feedback from

the environment, aiming to minimize the cost function. This dynamic adaptation

is essential for the robot to effectively manage its redundancy and respond to the

complex and variable demands of its operating environment.

The genetic programming techniques, including operations like crossover and mu-

tation, are employed to generate new stacks of tasks. These techniques allow the

system to explore a wide variety of potential solutions, creating and evolving

population of stacks. By starting with an initial base population, the genetic

algorithm evolves this over successive generations, continually refining the task

sequences to produce offspring that are increasingly well-suited to the specified

cost function.

A critical aspect of this work is the evaluation of the developed task stacks in

a simulated environment. This evaluation phase is designed to test the robust-

ness and effectiveness of the solutions in a variety of scenarios, ensuring that

the learned task sequences are not only theoretically optimal but also practically

viable. By subjecting the robot to different environmental conditions and chal-

lenges, the thesis aims to validate the adaptability of the proposed approach.

1.2 Thesis structure 3

Beyond these immediate objectives, this research also seeks to contribute to the

broader field of robotics by providing insights into how redundancy can be ex-

ploited to improve robotic autonomy and efficiency. The methodologies developed

here have the potential to be applied across a range of domains, from industrial

automation to healthcare, where robots must perform complex tasks in dynami-

cally changing environments.

In summary, the objectives of this thesis are:

• Develop a method for prioritizing tasks in redundant robotic systems using

genetic programming.

• Optimize task execution through reinforcement learning, minimizing a user-

defined cost function.

• Generate and evolve new task sequences using genetic programming tech-

niques.

• Evaluate the effectiveness of the resulting task sequences in varied simulated

environments, even in unpredictable dynamically changing ones.

• Explore the broader implications of redundancy management in advancing

robotic autonomy and efficiency.

1.2 Thesis structure

This project is based on two different topics, robotics and learning, which united

together give life to the possibility of finding the best possible solution to solve a

given task. The two topics are treated in a separate way, in order to emphasize

the characteristic aspects of both.

The thesis is divided in the following chapters:

• Introduction (chapter 1): a brief introduction about the main topics of

the work, redundant robots and genetic programming, and of the used robot

and tools.

• Literature review (chapter 2): in this chapter the previous works related

to this one are introduced from a theoretical point of view.

• Simulation framework (chapter 3): an introduction about methodologies

adopted from a practical point of view to develop the used algorithm.

4 Chapter 1. Introduction

• Robotics (chapter 4): simulation and results of the robotics features present

in this work. The single tasks are showed alone and in combinations trough

null space projector.

• Genetic programming (chapter 5): all the simulations and the results

obtained about genetic programming are presented and showed in this chap-

ter.

• Test of the learned stack of tasks (chapter 6): finally, a stack of tasks

is tested in two different environments in order to show the goodness of this

work.

• Conclusions (chapter 7): finally, conclusions and future developments are

treated.

1.3 State of the art

In this section the state of the art of the two main topic of this work, namely

redundant robots and genetic programming, are reported.

1.3.1 Redundant robots

Redundant robots are characterized by an higher number of degrees of freedom

(DOF) with respect to the number which is required in order to solve a task.

So, thanks to the surplus of DOF they are allowed to find multiple solutions for

the same assignment, tolerating faults or uncertainties, and adapting to changing

environments. The additional DOF introduce challenges in control and opti-

mization, but also offer opportunities for improved performance and versatility.

Thanks to this characteristics, redundant robot have reached significant atten-

tions in robotics research and industry due to their improved flexibility, dexterity,

and robustness. Their control, involve the management of redundancy to opti-

mize performances metrics like manipulability or energy consumption. Progress

in sensing technologies, including 3D vision systems, tactile sensors and force or

torque sensors, allow redundant robots to sense and interact with the environment

more effectively. Learning-based techniques, like reinforcement learning and neu-

ral networks, helps adaptive control and trajectory optimization in complex and

dynamic environments. Hybrid control strategies combine analytical models with

machine learning algorithms to exploit the benefits of both approaches. Learning

1.3 State of the art 5

algorithms for interpreting sensor data enable autonomous decision making and

learning from experience, improving the adaptability and robustness of the robot.

Redundant robots find applications in various industries, including manufactur-

ing, healthcare and construction.

1.3.2 Genetic programming

Genetic Programming (GP) is a computational methodology inspired by natural

evolution. The aim, is to generate automatically computer programs in order to

solve a specific task. Unlike Genetic Algorithms, which evolve with a fixed length

strings, GP evolves with variable length programs. In recent years GP has seen

significant advancements, driven by improvements in computational power, inno-

vative algorithmic techniques, and the integration of complementary AI methods

such as reinforcement learning (RL).

One of the key aspects of GP, is the manipulation and the representation of pro-

grams. Traditionally GPs are represent programs as tree-based structures, due

to its alignment with the hierarchical nature of many programming languages.

However, there exist other representations like linear GP, in which programs are

sequences of instructions similar to machine code, and graph-based GP where pro-

grams are represented as directed acyclic graphs (DAGs). These representations

allow for more efficient execution and the modeling of more complex relationships

and program structures.

Fitness evaluation is a crucial component of GP and it has also seen improvements

in recent years. Efficient evaluation techniques, such as fitness prediction, sur-

rogate modeling, and fitness approximation help reduce the computational cost

associated with evaluating program fitness. Furthermore, multi-objective opti-

mization techniques enable the simultaneous optimization of multiple objectives,

such as program accuracy and complexity, leading to more balanced and effective

solutions. The search strategies employed in GP have become more sophisticated

as well. For example, co-evolution, which involves the simultaneous evolution of

multiple interacting populations, promotes diversity and robustness in solutions

through competition and cooperation.

Hybrid approaches have also emerged recently, combining GP with other AI tech-

niques to achieve improved results. One notable example is neuroevolution, which

integrates neural networks with GP to evolve both network architectures and

weights. This approach has proven particularly advantages for tasks such as im-

age recognition and signal processing. Moreover, the integration of GP with RL

6 Chapter 1. Introduction

techniques has opened new avenues for evolving adaptive policies and strategies

in dynamic environments.

The role of RL in this context, is to train agents to make sequences of decisions by

rewarding desirable behaviors. The integration of RL in GP has led to significant

advancements in the evolution of policies given by RL. GP can be used to evolve

policies directly, representing them as programs. Furthermore, GP can evolve

policies in an hierarchical way, where high-level strategies invoke lower-level sub-

routines, aligning well with the hierarchical nature of many tasks. The use of GP

to discover and evolve temporally extended actions enhances an agent’s ability

to learn long-term strategies.

In practical applications, GP has demonstrated its versatility and effectiveness

across various domains. For example in robotics, GP is used to evolve control pro-

grams that enable robots to exhibit adaptive and resilient behaviors in dynamic

environments. In healthcare, GP is employed to create personalized treatment

plans based on patient data, while in the field of gaming GP is used to evolve

game-playing agents capable of learning and adapting to different environments.

Despite these advancements obtained in GP, several challenges remain. Improv-

ing the scalability of GP to handle more complex tasks and larger datasets is an

ongoing area of research. Improve the interpretability of evolved programs, mak-

ing them transparent, is also crucial particularly in domains where understand-

ing the decision-making process is important. Additionally, developing methods

for transfer learning, where knowledge gained from one specific domain can be

applied to another similar but not exactly equal, can reduce the need for exten-

sive retraining. Lastly, creating interactive systems that facilitate collaboration

between humans and GP systems can leverage human intuition and machine

precision, leading to more effective problem-solving.

1.4 MuJoCo 7

1.4 MuJoCo

MuJoCo [2] (Multi-Joint dynamics with Contact) is a physics engine designed

for accurate and efficient simulation of rigid body dynamics with contacts. It is

widely used to simulate complex environments and physical interactions in fields

like robotics, machine learning or biomechanics. MuJoCo provides a simulation

of physical systems, modeling the dynamics of rigid and soft bodies and also fluid

interactions. The engine is noted in particular for its robust handling of contact

dynamics, including friction, which are essential for realistic interaction between

bodies. It has optimized performances, making it able of running simulations in

real-time or faster, which is crucial for applications in robotics and reinforcement

learning, in which the number of simulations is very high.

Users can define models of objects and environments using the XML-based Mu-

JoCo Model (MJCF) format or the URDF format, which is more commonly used

in robotics. The engine allows for customization and extension, so that the user

can build a simulation tailored on specif needs.

Figure 1.1: Examples of MuJoCo simulations.

MuJoCo provides APIs for several programming languages, including Python

which was used for this project, and includes powerful visualization tools to help

users debug and analyze their simulations.

It is used in robotics for simulating robotic systems, including manipulation and

motion tasks, helping in the development and testing of control algorithms, often

8 Chapter 1. Introduction

employed in training reinforcement learning agents due to its ability to simulate

complex environments and interactions.

1.5 RoboSuite

RoboSuite [1] is a comprehensive software framework designed for simulating

robotic manipulation tasks. It builds on the capabilities of MuJoCo (section

1.4), providing the user an environment for developing and testing robotic algo-

rithms. It offers a high-level API, that simplifies the process of setting up and

running simulations. The framework is designed with modularity, allowing users

to easily swap out components and customize their simulations.

RoboSuite includes a variety of pre-defined robotic manipulation tasks, such as

pick and place or open a door. These tasks serve as benchmarks for evaluating

robotic algorithms of learning. Users can create custom environments based on

their specific research or application needs, exploiting the flexibility of MuJoCo

for detailed and accurate simulations. RoboSuite supports the simulation of mul-

tiple robots, like Baxter robot, enabling research in collaborative robotics and

multi-agent systems. Including support for various sensors, such as cameras and

force sensors, it allows for the development of sensor-based control and learning

algorithms. Furthermore, RoboSuite provides visualization tools, enabling users

to visualize and interact with simulations in real-time. This is essential for de-

bugging and analyzing the behavior of robotic systems using a specific algorithm.

In summary, RoboSuite is a powerful tool for researchers and developers in the

field of robotics, offering a rich set of features and a flexible interface for simulat-

ing robotic manipulation tasks.

Figure 1.2: Example of RoboSuite single arm pick and place task.

1.6 The Baxter robot 9

1.6 The Baxter robot

Baxter, a robot developed by Rethink Robotics, is known for its redundancy

features, which ensure robustness and safety in various industrial settings. Baxter

owns dual-arm redundancy (7-DOF, given by 7 revolute joints), equipping it with

two identical arms capable of independently performing tasks. This redundancy

ensures continuous operation, as if one arm encounters an obstacle, the other can

continue performing its task, maximizing the robot productivity.

Figure 1.3: Frontal view of the Baxter robot with dimensions.

Overall, Baxter’s redundancy features make it a robust and reliable robot suitable

for a wide range of industrial applications.

It was built to work safely around humans without the need for safety cages. Its

joints and integrated sensors allow it to detect and respond to human presence,

making it ideal for collaborative tasks. Baxter has been influential in demon-

strating the potential of collaborative robots (cobots) in modern industry. Its

design philosophy and capabilities have set a precedent for subsequent develop-

ments in the field of robotics, emphasizing the importance of safety, ease of use,

and versatility.

10 Chapter 1. Introduction

Figure 1.4: Top view of the Baxter robot with pedestal dimensions.

1.6.1 Baxter in RoboSuite

In RoboSuite (section 1.5), Baxter provides a versatile platform for robotic ma-

nipulation research, enabling researchers to design, simulate, and evaluate a wide

range of robotic tasks and algorithms in a controlled and customizable environ-

ment. The model of Baxter in RoboSuite, mirrors the real physical character-

istics and capabilities of the real one. This is the only bi-manual robot present

by default into the simulation framework and, it serves as a test base to the de-

velopment of robotic algorithms. Essentially, in RoboSuite, the robot provides a

powerful and flexible platform for advancing robot learning research.

Figure 1.5: Baxter robot simulated into different Robosuite environments.

In general the pedestal does not allow movement, but in the specific case of this

work 3-DOF where added simulating a mobile base, bringing the total number

to 10-DOF for a kinematic chain, making it high redundant.

The robot is controlled in velocity, meaning that the desired velocity can be

applied to each joint as input and the motors are actuated with the proper torque

(section 1.6.3).

1.6 The Baxter robot 11

D-H table

The Denavit–Hartenberg parameters of the Baxter arm are reported in table 1.1:

Link θ d a α

1 q1 0.27035 0.069 −π
2

2 q2 +
π
2

0 0 π
2

3 q3 0.36442 0.069 −π
2

4 q4 0 0 π
2

5 q5 0.37429 0.01 −π
2

6 q6 0 0 π
2

7 q7 0.2295 0 −π
2

Table 1.1: Baxter’s arms DH table of parameters. All the joints are revolute, with qi variable.

For both arms, left and right, the parameters are the same from the mount of the

arm to the end-effector frames. In figure 1.6, all the joints (7 revolute joints) of

the two arms are reported with base frame (T0) and the hand frames at the end

of each arm. In frames in figure, the blue axis correspond to the axis z, the red

to x and the green to y. Note that all of them are right hand frames. All the

joints rotate around their z axis, accordingly to the right hand convention.

Figure 1.6: Baxter’s robot joints with frames.

12 Chapter 1. Introduction

1.6.2 Baxter arm workspace

Following, the Baxter workspace is reported with top and side view of it. All the

detailed documents about the robot and its workspace can be find in [7]. Note

that the reachable work-space is reported in figure 1.7 and 1.8, and that grippers

are not considered.

Figure 1.7: Baxter arm work space: side-view.

1.6.3 Baxter joints performances in RoboSuite

The Baxter joints are controlled in velocity, through a proportional control law

with the desired value provided by the policy and the current joint velocity of the

robot. This control law, parameterized by a proportional constant kp, generates

joint torques to be applied at each simulation step:

τ = kp(q̇d − q̇).

1.6 The Baxter robot 13

Figure 1.8: Baxter arm work space: top-view.

Each controller of the joints of the arm, has the following parameters in the

RoboSuite simulation framework:

Gain kp Input range Output range Ramp ratio

0.03 [-1, 1] rad/s [-0.5, 0.5] Nm 0.2 Nm
rad/s

Table 1.2: Joint controller parameters.

Following, the performances of unitary step response (in radians) in position are

reported for each joint. Since the two arms are identical, only performances

obtained with the right one are reported in a full dynamics environment.

14 Chapter 1. Introduction

qR
1 step performances

0 5 10 15 20
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

q 1
 [r

ad
]

q1 [rad]
reference [rad]

0 5 10 15 20
Time [s]

0.0

0.1

0.2

0.3

0.4

̇ q 1
 [r

ad
/s
]

̇q1 [rad/s]

Figure 1.9: qR1 joint performances. Position step response (left) and velocity (right).

Rise time [s] Settling time [s] Overshoot [rad] Steady state error [rad]

4.189 5.819 0 (0%) -8.575 e-4 (20s)

Table 1.3: qR1 joint performances at position step response.

qR
2 step performances

0 5 10 15 20
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

q 2
 [r

ad
]

q2 [rad]
reference [rad]

0 5 10 15 20
Time [s]

0.0

0.1

0.2

0.3

0.4

̇ q 2
 [r

ad
/s
]

̇q2 [rad/s]

Figure 1.10: qR2 joint performances. Position step response (left) and velocity (right).

Rise time [s] Settling time [s] Overshoot [rad] Steady state error [rad]

4.442 5.818 0 (1.1 e-2%) -5.166 e-4 (20s)

Table 1.4: qR2 joint performances at position step response.

1.6 The Baxter robot 15

qR
3 step performances

0 5 10 15 20
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

q 3
 [r

ad
]

q3 [rad]
reference [rad]

0 5 10 15 20
Time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

̇ q 3
 [r

ad
/s
]

̇q3 [rad/s]

Figure 1.11: qR3 joint performances. Position step response (left) and velocity (right).

Rise time [s] Settling time [s] Overshoot [rad] Steady state error [rad]

4.196 5.596 0.004 (4.0 e-1%) 3.665 e-3 (20s)

Table 1.5: qR3 joint performances at position step response.

qR
4 step performances

0 5 10 15 20
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

q 4
 [r

ad
]

q4 [rad]
reference [rad]

0 5 10 15 20
Time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

̇ q 4
 [r

ad
/s
]

̇q4 [rad/s]

Figure 1.12: qR4 joint performances. Position step response (left) and velocity (right).

Rise time [s] Settling time [s] Overshoot [rad] Steady state error [rad]

4.314 5.55 0.003 (2.8 e-1%) 7.873 e-4 (20s)

Table 1.6: qR4 joint performances at position step response.

16 Chapter 1. Introduction

qR
5 step performances

0 5 10 15 20
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

q 5
 [r

ad
]

q5 [rad]
reference [rad]

0 5 10 15 20
Time [s]

0.00

0.05

0.10

0.15

0.20

0.25

̇ q 5
 [r

̇d
/s
]

̇q5 [ṙd/s]

Figure 1.13: qR5 joint performances. Position step response (left) and velocity (right).

Rise time [s] Settling time [s] Overshoot [rad] Steady state error [rad]

3.912 4.39 0.0145 (1.45%) 1.427 e-2 (20s)

Table 1.7: qR5 joint performances at position step response.

qR
6 step performances

0 10 20 30 40
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

q 6
 [r

ad
]

q6 [rad]
reference [rad]

0 10 20 30 40
Time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

̇ q 6
 [r

ad
/s
]

̇q6 [rad/s]

Figure 1.14: qR6 joint performances. Position step response (left) and velocity (right).

Rise time [s] Settling time [s] Overshoot [rad] Steady state error [rad]

4.029 4.557 0.018 (1.8%) 8.111 e-4 (40s)

Table 1.8: qR6 joint performances at position step response.

1.6 The Baxter robot 17

qR
7 step performances

0 10 20 30 40
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

q 7
 [r

ad
]

q7 [rad]
reference [rad]

0 10 20 30 40
Time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

̇ q 7
 [r

ad
/s
]

̇q7 [rad/s]

Figure 1.15: qR7 joint performances. Position step response (left) and velocity (right).

Rise time [s] Settling time [s] Overshoot [rad] Steady state error [rad]

4.006 5.798 0.037 (3.7%) 1.108 e-4 (40s)

Table 1.9: qR7 joint performances at position step response.

As it is possible to observe from the performances, the joint response of the Baxter

robot in a RoboSuite simulation are not particularly high performing in terms of

speed. However, for the aim of this work (section 1.1.1) this does not entail any

consequences or complications. On the other hand, the joints are not affected by

significant overshoot. This this will help ensure accuracy in task execution.

18

Chapter 2

Literature review

2.1 Robotics

2.1.1 Fundamentals of Robotics Kinematics

For a detailed view of all the elements introduced in this section and not, refer

to Siciliano et. al in book [3].

Cartesian Space

Cartesian coordinates allow to specify the location and orientation of a point in

a 3-dimensional space. Position and orientation are both expressed as a triplet of

numbers, which express the distance from coordinate axis and orientation with

respect to them. The Cartesian coordinate system is based on three mutually

perpendicular and oriented coordinate axes: the x-axis, the y-axis, and the z-axis.

The intersection point of the three axes is called origin. This space is intuitive

for humans to understand and specify robot positions and movements in terms of

Cartesian coordinates, as they reflect how we perceive three-dimensional space.

The combination of position and orientation of a point is called pose, and it is

represented as:

p = [x, y, z, αx, αy, αz] ∈ R6. (2.1)

In this work, all the axes are always oriented following the right hand rule, the

same for the direction of rotations.

The pose of the end-effector is typically expressed in Cartesian coordinates and

it will be expressed in this work as:

p = [px, py, pz, θx, θy, θz] ∈ R6, (2.2)

19

20 Chapter 2. Literature review

while the end-effector velocities (linear and angular) will be represented as:

ṗ = [ṗx, ṗy, ṗz, θ̇x, θ̇y, θ̇z] ∈ R6. (2.3)

Joint Space

The coordinates of each link of a robot are represented in Joint Space coordinates

(or Configuration Space). The space is n-dimensional, where n is the number

of independent joints of a kinematic chain, which correspond to the number of

degrees of freedom (DOF) of the mechanical structure. Controlling the robot’s

movements in the joint space is often more direct and simplified, since it is possible

to act directly on the motors or actuators of each joint.

All the joint variables are represented with the letter q, so that the space is

represented with a vector:

q = [q1, ..., qn] ∈ Rn, (2.4)

while the space of joint velocities is represented as:

q̇ = [q̇1, ..., q̇n] ∈ Rn. (2.5)

The joints are numbered in ascending order from base to the end-effector.

Forward Kinematics

Forward Kinematics is the process that maps the position and the orientation

of the end-effector in Cartesian space, from the position of the joints into the

operational space:

f
(
[q1, q2, ..., qn]

)
= [px, py, pz, θx, θy, θz], (2.6)

where f is a map Rn −→ R6.

Considering a n-DOF manipulator, the direct kinematic can be expressed as

Te(q) =

[
Re(q) pe(q)

0T 1

]
, (2.7)

where q = [q1, q2, ..., qn] is the vector of joint variables, Re(q) the rotation matrix

associated to the end-effector and pe(q) its position. The pose of the end-effector

varies as q.

2.1 Robotics 21

Kinematic chain

A manipulator can be schematically represented from a mechanical viewpoint as a

kinematic chain of links connected by means of joints, revolute or prismatic. One

end of the chain is constrained to a base, while to the other end an end-effector

is mounted. The resulting motion of the structure is obtained by composition of

the elementary motions of each link with respect to the previous one.

end-effector

shoulder

x0

y0

z0

x1

y1

z1

x2

y2
z2

x3

y3

z3

x4

y4
z4

x5

y5

z5

x6

y6
z6

Figure 2.1: Baxter’s arm kinematic chain.

Jacobian Matrix

The Jacobian constitutes one of the most important tools for manipulator char-

acterization, to analyze and control robot’s movement. In the field of robotics,

the Jacobian matrix is used to relate the velocities of the robot’s joints to the

velocity of the end-effector.

Geometric Jacobian The Geometric Jacobian is s a matrix that represent the

relation between joints velocities in operational space and end-effector velocities

in Cartesian space, and depends on robot configuration.

Considering the direct kinematic equation (2.6) for a n-DOF manipulator, it is

desired to express the end-effector linear velocity ṗe and angular velocity ωe e as a

function of the joint velocities q̇. The relations are both linear in joint velocities:

ṗe = JP (q)q̇ (2.8)

ωe = JO(q)q̇. (2.9)

22 Chapter 2. Literature review

where JP and JO are both 3× n dimensional matrices. The first one relates the

joint velocities q to the end-effector linear velocities ṗe, while the second one is

related to end-effector angular velocities ωe. (2.8) and (2.9) can be rewritten in

a compact form as:

ve =

[
ṗe

ωe

]
=

[
JP (q)

JO(q)

]
q̇ = J(q)q̇, (2.10)

which represents the manipulator differential kinematics equation. The 6 × n

matrix J(q) is the geometric Jacobian matrix of the manipulator, in function of

the joint variables.

Analytical Jacobian The Analytical Jacobian, is the resulting matrix via dif-

ferentiation of the direct kinematics function with respect to the joint variables.

This is possible if the end-effector pose is expressed with reference to a minimal

representation in the operational space.

The linear velocity of the end-effector can be expressed as the derivative of the

position vector pe, representing the e-e frame with respect to the base frame, in

function of q:

ṗe =
∂pe

∂q
q̇ = JP (q)q̇. (2.11)

In the case of rotational velocity of the end-effector frame, the minimal repre-

sentation of orientation in terms of three variables ϕe(q) can be considered. Its

time derivative ϕ̇e, in general, differs from the angular velocity vector defined for

geometric Jacobian. Then, the obtained Jacobian is:

ϕ̇e =
∂ϕe

∂q
q̇ = Jϕ(q)q̇. (2.12)

Finally, the direct kinematic equation is:

ẋe =

[
ṗe

ϕ̇e

]
=

[
JP (q)

Jϕ(q)

]
q̇ = JA(q)q̇, (2.13)

where in general JA is different from the geometric Jacobian J .

Relation between Jacobians The two derived Jacobians are in general different,

since the angular velocity of the frames ωe is not given by ϕ̇e. It is possible to

find the relationship between angular velocity ωe e and rotational velocity ϕ̇e for

2.1 Robotics 23

a given set of orientation angles

ωe = T (ϕe)ϕ̇e, (2.14)

where, in the case of statics XY Z Euler angles

T =

1 0 −sin(ϕe2)

0 cos(ϕe1) cos(ϕe2)sin(ϕe1)

0 −sin(ϕe1) cos(ϕe2)cos(ϕe1)

 .

Once the relation between ωe and ϕ̇e is obtained, it is possible to relate the

analytical and geometrical Jacobians as:

J = TA(ϕ)JA, (2.15)

where

ve =

[
I 0

0 T (ϕe)

]
ẋe = TA(ϕ)ẋe (2.16)

Singularities

The Jacobian typically define a linear mapping between velocities in Cartesian

and configuration space

ve = J(q)q̇. (2.17)

Jacobian which, in general, is in function of the configuration q. Those configu-

rations in which J is rank-deficient, namely it is not full rank, are called singular-

ities. Singularities represent configurations at which mobility of the structure is

reduced, so it is not possible to impose an arbitrary motion to the end-effector. In

this point, infinite solutions to the inverse kinematics problem may exist and, in

the neighbourhood of this kind of configuration very small velocities in the oper-

ational space may cause large velocities in the joint space, since the determinant

of J is close to zero.

Redundant Manipulators

Redundant robots (section 1.3.1) have more degrees of freedom than what is

needed in order to complete a task and, the Jacobian matrix has more columns

than rows. So that, infinite solution to (2.17) exist. A typical solution in this

case is to formulate the problem as a constrained linear optimization problem.

24 Chapter 2. Literature review

The detailed computation derived by Siciliano et al. [3], can be found in section

3.5.1 of the cited book.

The final obtained result, for desired velocities in configuration space is

q̇ = J †ve + (In − J †J)q̇0, (2.18)

where J † represents the Moore–Penrose pseudo-inverse of the Jacobian matrix

and q̇0 a vector of arbitrary joint velocities. The matrix (In−J †J) is one of those

matrices, that allow the projection into the null space (section 2.1.6) of J the

vector q̇0. This means that in the case in which ve = 0, it is possible to generate

internal motions described by (In − J †J)q̇0, that reconfigure the manipulator

structure without changing the end-effector position and orientation.

Denavit–Hartenberg Convention

The Denavit-Hartenberg Convention, fixes a standard way to define the relative

position and orientation of two consecutive links. In general, frames can be

arbitrarily attached to links but, it is convenient to set some rules also for the

definition of the link frames. More details can be founded in section 2.8.3 of [3].

In this work, this convention was followed, assign frames with a right hand rule.

All the parameters used in order to pass from the base frame to the frame attached

to the end-effector, summarized into the DH-table, as did in table 1.1 for the

Baxter robot.

2.1.2 Inverse Kinematics

The inverse kinematic problem, consist in determining the joint variable values

corresponding to a given end-effector configuration in the Cartesian space in

position and orientation. This is essential in order to transform end-effector

motion specification into the corresponding joint space motion specification, to

execute the desired task. The solution is, in general, non linear and it is not always

possible to find a close form solution for the equation. Many solutions may exist,

potentially infinite, and in some cases might be no admissible solutions. The

existence of solutions is guaranteed only if the given end-effector position and

orientation belong to the manipulator dexterous workspace (section 2.10.1 [3]).

When, in most of the cases, the computation of a closed form solution is not

possible, it is the case to use numerical solution techniques. These have the

advantage of being applicable to any kinematic structure.

2.1 Robotics 25

Inverse Differential Kinematics

Differential kinematics equation represents a linear mapping between the joint

velocity space and the operational velocity space. This fact suggests the possibil-

ity to utilize the differential kinematics equation to tackle the inverse kinematics

problem. Supposing that a given trajectory is assigned at the end-effector (ve),

the scope is to find a feasible trajectory in terms of q(t) and q̇(t), respectively

joints position and velocity with respect to time.

Via simple inversion, it can be obtained

q̇ = J−1(q)ve. (2.19)

This technique is independent of the solvability of the kinematic structure. Nonethe-

less, it is necessary that the Jacobian be square and of full rank. In the case of

redundant robot and singularities, the solution is exploited in sections Redundant

Manipulators of section 2.1.1 and Singularities of section 2.1.1.

The task can be executed actuating the corresponding velocity in the configura-

tion space,

q̇ = J †(q)

(
ṗd + γ

(
pd − p(q)

))
, (2.20)

where p indicates the pose of the end-effector.

Inverse Kinematic trajectory

Instead of simply solving the problem (2.19) to reach the desired pose of the end-

effector, it i possible to assign a trajectory to it. All the details of the computation

can be find in section 4.1 of [3].

Given the initial position of the end-effector pi and the target position pf , it is

possible to define a trajectory in term of position and velocity

pd = pi + st

(
pf − pi

||pf − pi||

)
(2.21)

ṗd = (3a3t
2 + 2a2t)

(
pf − pi

||pf − pi||

)
(2.22)

where t is the actual time from the initial instant of time, st = a3t
3 + a2t

2,

a3 =
−2
3

a2
tf
, a2 =

3sf
t2f

where sf = ||pf −pi|| and tf is the desired time (in seconds)

in which the trajectory should be completed.

Similarly, it’s possible to derive a trajectory in Euler Angles representation of the

26 Chapter 2. Literature review

orientation of the end-effector. However, an Angle and Axis representation was

preferred. Given two coordinate frames in the Cartesian space with the same

origin and different orientation, it is always possible to determine a unit vector

so that the second frame can be obtained from the first frame by a rotation of a

proper angle about the axis of such unit vector. Being Ri and Rf the rotation

matrices of the initial and final configuration, the rotation matrix between the

two frames is described as

Ri
f = RT

i Rf =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 . (2.23)

If the matrix Ri(t) is defined to describe the transition from Ri to Rf , R
i(0) = I

and Ri(tf) = Ri
f . Hence, the matrix Ri

f can be expressed as the rotation matrix

about a fixed axis in space; the unit vector ri of the axis and the angle of rotation

θf can be computed by using

θf = cos−1

(
r11 + r22 + r33 − 1

2

)
(2.24)

r =
1

2sinθf

r32 − r23

r13 − r31

r21 − r12

 (2.25)

if sinθf ̸= 0. Ri(t) can also be expressed in function of θ(t), imposing a timing law

from θi to θf . Then, since ri is constant, the resulting velocity and acceleration

can be expressed as

ωi = θ̇ri (2.26)

ω̇i = θ̈ri. (2.27)

Finally in order to characterize the end-effector orientation trajectory with respect

to the base frame, the following transformations are needed

Re(t) = RiR
(t) (2.28)

ωe(t) = Riω
i(t) (2.29)

ω̇e(t) = Riω̇
i(t). (2.30)

2.1 Robotics 27

After that, he desired trajectory can be imposed trough Re(t) and ωe(t). In

particular Re(t) is transformed in the corresponding quaternion qe = {ηe, ϵe}
and the Rf quaternion qf = {ηf , ϵf}. The error can be derived as

eo = ηe(q)ϵf − ηfϵe(q)− S(ϵf)ϵe(q), (2.31)

where the skew-symmetric operator S(·) has been used. At this point the equation

2.20 can be computed.

Inverse kinematic error

The error in inverse kinematic at time t epose

(
q(t)

)
is represented as the difference

element by element between the desired pose pd and the actual one at time t

p
(
q(t)

)
:

epose

(
q(t)

)
= pd − p

(
q(t)

)
, (2.32)

and it describes how far is the robot from reaching the desire pose with the

end-effector. The error can also be divided in position and orientation error:

eposition

(
q(t)

)
=

pxd

pyd
pzd

−

px
(
q(t)

)
py
(
q(t)

)
pz
(
q(t)

)
 , (2.33)

eorientation

(
q(t)

)
=

θxd

θyd
θzd

−

θx
(
q(t)

)
θy
(
q(t)

)
θz
(
q(t)

)
 . (2.34)

2.1.3 Obstacle Avoidance

The robot is considered as protected by N fictitious springs, with rest length

rk. Each one is considered as attached to distance sensor. When an obstacle is

sensed and the distance is smaller than rk, the total elastic energy associated to

the springs increase, as if they are touched and compressed by the obstacle. The

objective of the robot, for this task, is to minimize the total energy, correcting

its configuration.

The total pseudo-energy of the kth spring is defined as:

ϵk(q) =

1
2
(dk − rk)

2, if dk ≤ rk

0, otherwise
(2.35)

28 Chapter 2. Literature review

where dk(q) = ||pok − psk(q)|| is the information provided by the kth distance

sensor. pok is the position vector of the obstacle point at minimum distance from

the kth sensor and psk(q) is the position vector of the kth sensor from the base

of the kinematic chain. Note that the value of the pseudo-energy depends on the

distance of the obstacle and the robot configuration.

The total energy of all the springs is given by

σ(q) =
N∑
k=1

ϵk(q), (2.36)

while, the velocity in the configuration space is given by

q̇o = J †
o (q)(σ̇d + γo(σd − σ(q))) (2.37)

where Jo(q) =
∂σ(q)
∂q

, γo is the gain which influence the close loop kinematics, σd

is the desired pseudo energy and σ̇d its derivative. The definition of energy in

(2.35) and (2.36) allows the computation of the gradient in closed for as:

Jo(q) =
N∑
k=1

∂ϵk(q)

∂q
(2.38)

where

∂ϵk(q)

∂q
=

−(dk − rk)v
T
dk

∂psk
(q)

∂q
, if dk ≤ rk

0, otherwise
(2.39)

and vdk(q) =
pok

−psk
(q)

||pok
−psk

(q)|| direction of the sensed obstacle.

In order to compute the matrix Jo(q) all the derivatives
∂psk

(q)

∂q
are analytically

computed.

Obstacle Avoidance trajectory

In order to obtain a trajectory for the robot, while avoiding an obstacle, σd(t,σi)

and σ̇o(t,σi) are dependent from time and initial pseudo-energy, for the function

(2.37). The initial pseudo-energy ϵik , is sampled at the first instant of time, in

which the kth sensor is activated by an obstacle. Then

σd = σi + st

(
σd0 − σi

||σd0 − σi||

)
(2.40)

2.1 Robotics 29

σ̇o = (3a3t
2 + 2a2t)

(
σd0 − σi

||σd0 − σi||

)
(2.41)

where t is the actual time of the simulation from the moment in which the sensor

is activated, st = a3t
3 + a2t

2, a3 = −2
3

a2
tf
, a2 =

3sf
t2f

where sf = ||σd0 − σi|| and
tf is the desired time (in seconds) in which the trajectory should end. σd0 is the

desired final pseudo-energy, which typically is equal to zero.

2.1.4 Manipulability Ellipsoids and Measure

Manipulability represents the attitude of a manipulator to arbitrarily change end-

effector position and orientation, and in particular it is describe by the velocity

manipulability ellipsoid. Considering the set of joint velocities of constant unit

norm q̇T q̇ = 1, this equation describes the points on a sphere surface in the joint

velocity space. Using equation 2.19 it is possible to obtain

vT
e

(
J †T (q)J †(q)

)
ve = vT

e

(
J(q)JT (q)

)
ve = 1, (2.42)

which is the equation of the points on the surface of an ellipsoid in the end-

effector velocity space. Along the direction of the major axis of the ellipsoid, the

end-effector can move at large velocity, while along the direction of the minor

axis small velocities are obtained for it. The principal axes of the ellipsoid is

determined by the eigenvectors ui for the matrix JJT , while the dimensions

of the axes are given by σi =
√
λiJJT . A global representative measure of

manipulation ability can be obtained by computing the volume of the ellipsoid

proportional to

w(q) =
√
det(J(q)JT (q)). (2.43)

Maximization of the manipulability measure

Defined as equation 2.43 the manipulability measure vanish in a singular config-

uration. So, maximizing this measure, means to move away from singularities. A

typical choice for the vector q̇0 in equation (2.18) is:

q̇ = k0

(
∂w(q)

∂q

)T

(2.44)

where k > 0. The solution moves along the direction of the gradient of the

objective function w(q).

30 Chapter 2. Literature review

Derivative

In order to maximize the measure, it is fundamental to obtain the derivative of

the measure w(q). The derivative can be find in analytically as

∂w(q)

∂q
= w · tr

(
(JJT)−1∂J

∂qi
JT

)
(2.45)

for each of the i joints. The gradient of the Jacobian, is founded analytically.

2.1.5 Distance from mechanical joint limits

The distance from mechanical joint limits is defined as

w(q) = − 1

2n

n∑
i=1

(
qi − q̄i

qimax − qimin

)2

(2.46)

where qimax and qimin
denotes the maximum and the minimum values that the ith

joint variable can assume, while q̄i is the mean value of the joint range. This helps

to keep as close as possible the to the center of each range the joint variables,

avoiding limits of the joints range and mechanical issues.

The maximization of the measure is made in the same way of (2.44).

Derivative

In order to maximize the measure, it is fundamental to obtain the derivative of

the measure w(q). The derivative can be find in analytically as

∂w(q)

∂q
= − 1

n

n∑
i=1

(
qi − q̄i

qimax − qimin

)
(2.47)

for each of the i joints.

2.1.6 Null Space Projection

The null space of a Jacobian matrix J is the subspace N(J) in Rn−r of joint

velocities, that do not produce any effect on the end-effector velocities. On the

contrary the range space R(J) in Rr, is the space of the end-effector velocities

generated by joint velocities. If the Jacobian is full rank:

dim
(
R(J)

)
= r dim

(
N(J)

)
= n− r ,

2.1 Robotics 31

holds

dim
(
R(J)

)
+ dim

(
N(J)

)
= n.

where q ∈ Rn.

Figure 2.2: Mapping between configuration velocity space and Cartesian velocity space.

Instead, if the robot is in a singular configuration, the dimension of the range

space decreases while the dimension of the null space increases.

For redundant robots, the subspace N(J) ̸= ∅, and then it is possible to manage

redundant DOFs. Being q̇a the solution of (2.17) and P an n × n matrix such

that

R(P) ≡ N(J)

the joint velocity vector q̇ = q̇a + P q̇b, with arbitrary q̇b, is still a solution of

(2.17). In fact

Jq̇ = J(q̇a + P q̇b) = Jq̇a + JP q̇b = Jq̇a = ve (2.48)

since JP q̇b = 0 for any q̇b. This result is fundamental, in order to exploit and take

advantage of the redundant DOFs of a manipulator, offering the opportunity of

choosing arbitrarily the vector q̇b of joint velocities. In fact, the effect of q̇b, does

not change the end-effector pose, but allow to change the robot configuration. A

good choice for P in redundant manipulators is, as did in equation 2.18,

R = In − J †J . (2.49)

32 Chapter 2. Literature review

Prioritized order by projecting task velocities through the null spaces of

higher-priority tasks

Through null space projector, it is possible to derive a prioritized order for the

tasks that have to be executed by a robot. The higher priority are tasks that

must be accomplished first and their execution must be guaranteed, while lower

priority are less critical and should be performed only if they do not interfere with

higher-priority tasks. Since with null space projection the first task is guaranteed

and the second one acts without changing the end-effector position, the higher

priority task come first into the null space projection. Then, following the priority

order the other tasks are recursively projected into the null space of higher priority

task with respect to them.

Then, multiple tasks can be arranged in priority. Consider, as an example, three

possible task that have to be executed with a priority order in an high redundant

system (n DOF). The velocities are denoted as q̇1, q̇2 and q̇3 and their Jacobians

as J1, J2 and J3. The corresponding null-space projector of the first task is

defined as

N1 = In − J †
1J1, (2.50)

while the null-space projector for tasks 1 and 2 is then defined as

NA
12 = In − JA†

12 J
A
12, (2.51)

where JA
12 is the augmented Jacobian of tasks 1 and 2 is given by stacking the

two independent task Jacobians:

JA
12 =

[
J1

J2

]
. (2.52)

Then, the desired velocity, of the prioritized order combination, can be found as

q̇ = q̇1 +N1q̇2 +N12q̇3. (2.53)

This rule can be recursively applied to general cases with an higher number of

tasks.

2.2 Reinforcement learning 33

2.2 Reinforcement learning

Reinforcement Learning (RL) is a branch of machine learning where agents learn

to make decisions by interacting with an environment to maximize cumulative

rewards.

2.2.1 Policy

A policy is a crucial concept in reinforcement learning, in order to describe the

behaviour of an agent. Denoted as π, it is a mapping from states of the environ-

ment to actions. In this work the policy is always deterministic once parameters

are defined, meaning that at a certain state corresponds a specific action,

a ∈ A = π(s ∈ S), (2.54)

where S is the set of all the states and A the set of all the possible actions.

The objective in reinforcement learning is often to find an optimal policy π∗ that

maximizes the expected cumulative reward, or minimizes costs.

2.2.2 Genetic Programming

The Genetic programming is a domain-independent method that breeds a pop-

ulation of computer programs to solve a problem. It is a systematic method for

getting computers to automatically solve a problem, starting from an high-level

of what needs to be done.

Genetic programming acts iteratively on the population, transforming this in a

new generation of programs. This happens applying operations similar to natural

genetic operations. The process can be repeated until a candidate solution for to

the problem is found.

Programs are in general expressed as threes and can have subroutines and, each

of them is a candidate solution to the problem. The human user typically specify

the set of terminals, the set of primitive functions, the fitness measure, the pa-

rameters to control the run and termination criterion.

Once the preparatory steps are concluded the first run is launched. Each run of

Genetic Programming can be seen as a competition for survival among different

programs. At the end of it, only a part of the population is allowed to survive,

basing on fitness function. Then new elements are introduced into the new popu-

lation with genetic operations analogs of naturally ones. Iteratively, a population

34 Chapter 2. Literature review

of computer programs is transformed into a new generation population. From the

last population, the solution of the problem can be selected, for example choosing

the program with the best fitness.

Stack of tasks structure

In genetic programming, the organization of tasks can be conceptualized as a

stack of tasks to represent how the process of solving a problem is structured and

executed, instead of sub-tree (which, however, remains the best representation

in order to understand the behaviours of genetic programming). This approach

leverages the concept of breaking down the main task into smaller, and manage-

able sub-tasks, each contributing to the overall solution. Each sub-task represents

a specific aspect of the problem that needs to be solved. This hierarchical orga-

nization allows for a modular approach to problem-solving.

Tasks are organized in a stack where the execution follows a last-in, first-out

order of priority and they are all executed together and combined through null

space projector in the case of this work (section 2.1.6). The fitness function is

evaluated basing on the result of all the combined tasks.

Each task in the stack, has its own parameters that can be changed through the

genetic process. Also the order of the priority can be changed through evolution.

1st task

2nd task

3rd task

4th task

Figure 2.3: Example of stack of tasks.

Fitness Function and Selection (Genetic Competition)

In genetic programming, the fitness function is a critical component that mea-

sures how well a given program or solution performs with respect to the problem

being solved. Essentially, it evaluates the quality of individual solutions within

the population. The goal of the GP algorithm is to evolve solutions with in-

creasingly better fitness values over successive generations. The final result of a

genetic programming algorithm will be heavily influenced by the fitness function

since, typically, the aim is to minimize or maximize this value.

Fitness function plays a crucial role in the selection of algorithms among the pop-

ulation, guiding the evolutionary process by evaluating and selecting individuals

2.2 Reinforcement learning 35

based on their performances. As an example, in this work, the fitness function

should be minimized as possible to increase the performances of what is required

by the user. After the running of a generation of algorithms, they are randomly

paired and only the one with the lowest fitness function survives and can generate

an offspring or being part of the new generation, being a candidate for the final

solution. The other one, with the highest value, will be lost forever.

Crossover

Crossover creates a new offspring program for the new population, by recombin-

ing randomly chosen parts from two select parent programs.

P1 P2

O

Figure 2.4: Example of crossover.

In figure 2.4, P1 and P2 represent the two parents. The elements of each are

represented with the same color. O represent a case of the offspring generated by

the two parents. The elements which compose O, preserve the same color of the

corresponding parent.

Mutation

Mutation creates one new offspring program for the new population by randomly

mutating a randomly chosen part of a parent program.

36 Chapter 2. Literature review

P1 O

Figure 2.5: Example of mutation.

In figure 2.6, P is the parent while O is the offspring generated through mutation.

The parts represented in black are the mutated parts.

Reproduction

With reproduction, the algorithms are simply copied into the new population.

In this way if it has good performances, it will be maintained also in the next

generation of algorithms.

P O

Figure 2.6: Example of reproduction.

Chapter 3

Simulation framework

3.1 Work environment

An environment is created using Robosuite’s functions at the beginning of each

simulation. This will initialize a MuJoCo environment selecting its name, load the

model of the robots and activate the selected options. Then the velocities needed

to solve tasks can be computed and an action, as vector of desired velocities for

the joints, can be submitted to the robot at each time step. Each time step of

the simulation lasts 0.002 s, as default option.

It is possible, for the training part in particular, to let the robot work using only

kinematics in the simulation, without useless dynamics. This will make learning

faster, reducing computational time. However, since MuJoCo libraries can not

be modified, this imply the deactivation of useful features too, like detection of

geometries collision. Since this, during the learning phase, it is possible to relay

only on sensors (section 3.4) for the collision detection. At the beginning of each

learning simulation, the position of the arm joints are set randomly in their range,

in order to derive a solution which is not configuration-dependent.

Different type of environment (called arena) where implemented, starting from

the creation of the .xml file of the arena tailored on the specific needs of each

situation. All the environments can be easily modified accessing the related files.

The default environments were not used, since they do not foresee the motion of

the robot with its base in the environment, but only for manipulation tasks.

RoboSuite uses a r − zxy Euler angle representation, where r indicates that

the frame is a rotating one. However, all the results reported in this thesis are

expressed in the order [θx, θy, θz] for a better readability.

37

38 Chapter 3. Simulation framework

3.1.1 Empty environment

This environment is made only by a floor on which the Baxter robot can move,

without predefined obstacles. In this environment it was possible to develop and

test the the algorithms of the individual tasks and their combination in absence

of obstacles. For the obstacle avoidance task, they can be added through the .xml

file of the arena.

Figure 3.1: Examples of empty arena (left) and empty arena with some walls as obstacles (right).

3.1.2 Static obstacles environment

This arena was implemented to train the robot in an environment full of obstacles.

Different type of geometries can be added as obstacles like spheres, cylinders or

boxes.

Figure 3.2: Examples of an aerial view of the obstacles arena.

3.1 Work environment 39

Figure 3.2 shows an aerial view of the obstacle arena. It is possible to note

different type of geometries as obstacles. The environment can also be modified

accessing the relative .xml file following the necessities of the user, adapting it to

different kind of situations.

3.1.3 Dynamic obstacles environment

This arena was implemented to train and test the robot with dynamics obstacles,

which change their position during simulation time.

Figure 3.3: Aerial view of the dynamic obstacles arena.

An example of the environment is reported in figure 3.3.

It is possible to see how the movement of the two dynamic obstacles was imple-

mented. They can freely move, changing position on the floor plane, thanks to

the presence of two prismatic joints. One allows movement along the x axis of

the world reference frame, the other one along the y axis. The possible directions

of movement are showed by the red rows.

Accessing the .xml and .py of the environment, it is possible to add more static

or dynamic obstacles, tailoring it on the specific needs of the user.

40 Chapter 3. Simulation framework

3.1.4 Pick & place environment

This environment was built in order to test a stack of tasks with a general duty.

In fact, the robot has to pick an object and place it in another position.

Pick

Place

Figure 3.4: Aerial view of the pick and place arena.

In figure 3.4 it is possible to observe an aerial view of the built arena. The

obstacles in green are all fixed and they are positioned in such a way the robot

can move between them without being stacked but, it is disturbed by them along

its path. The blue obstacle, instead, can be moved during the simulation thanks

to the presence of two prismatic joints which move along the x and y axes of the

reference frame of the room, as showed by red rows in to the picture.

Figure 3.5: Mesh of the pot with two handles.

3.2 Motion of the base 41

Then, depending on the specific situation, the obstacle can be moved to simulate,

for example, an operator present in the working area of the robot. In figure, also

the pick and the place location are shown. In particular, the robot has to pick

with two arms a pot with two handles, one for each arm, or a cylinder with one

arm. Also in this case, the environment can be modified accessing the .xml file

of it, in order to change obstacles, pick and place position or object.

3.2 Motion of the base

The Baxter robot is not equipped with a mobile base in the RoboSuite simulation

framework, but only with a static pedestal like all the other present robots.

In order to provide the robot the capability to move freely in the space, three

more joints are added at the base of the mount of the robot itself. Two prismatic

joints give to the robot the mobility on the floor along x and y coordinate axes. A

third revolute joint, provides the robot’s base with the possibility to rotate along

the z axis. So that, the robot’s base gains three additional degrees of freedom,

which allow the base to reach any pose in a 2-dimensional environment (i.e. the

floor plane). Additionally, thanks to the addition of more degrees of freedom, it

is possible to use an high redundant kinematic chain of 10 degrees of freedom.

The mount’s frame at instant of time zero, t = 0 s, will be the world frame for

the entire duration of the simulation. Namely all the positions and orientation of

a simulation are expressed with respect to this frame.

Since the motion of the base is not included in RoboSuite, it was necessary to

define the parameters in order to simulate the motion on a floor with friction and

real joints with damping in a full dynamics case. For the 3 additive joints, the

following parameters where added:

Joint Type Damping Friction loss Kp

q1b prismatic 0.7 0.9 0.2

q2b prismatic 0.7 0.9 0.2

q3b revolute 0.5 0 0.03

Table 3.1: Chosen parameters of the mobile base.

42 Chapter 3. Simulation framework

x

y

z

Figure 3.6: Pedestal of the robot with frame.

Note that the proportional gain Kp for the prismatic joints is almost 10 times

bigger with respect to the arm’s gain. This happens because the previous gain

was too low and the robot was poorly reactive. This will prevent oscillatory

behaviours of the base around the desired position with high overshoots and

without convergence. Following, the parameters of the actuators controller for

prismatic joints are reported in table 3.2.

Gain kp Input range Output range Ramp ratio

0.2 [-1, 1] m/s [-0.5, 0.5] N 0.2 N
m/s

Table 3.2: Prismatic joint controller parameters.

Base joints performances

In this subsection, the performances of the new implemented joints, that simulate

the movement of the base, are reported. This performances are not a character-

istic of the robot, but are the result of the parameters chosen and reported in

table 3.1 for the implementations of this 3 additive joints.

3.2 Motion of the base 43

0 5 10 15 20
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

q 1
b [

m
]

q1b [m]
reference [m]

0 5 10 15 20
Time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

̇ q 1
b [

m
/s
]

̇q1b [m/s]

Figure 3.7: qb1 joint performances. Position step response (left) and velocity (right).

Rise time [s] Settling time [s] Overshoot Steady state error

3.726 5.208 0.999 [m] (0%) 1.536 e-3 [m]

Table 3.3: qb1 joint performances at position step response.

0 5 10 15 20
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

q 2
b [

m
]

q2b [m]
reference [m]

0 5 10 15 20
Time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

̇ q 2
b [

m
/s
]

̇q2b [m/s]

Figure 3.8: qb2 joint performances. Position step response (left) and velocity (right).

Rise time [s] Settling time [s] Overshoot Steady state error

3.802 5.223 0.999 [m] (0%) 1.503 e-3 [m]

Table 3.4: qb2 joint performances at position step response.

44 Chapter 3. Simulation framework

0 5 10 15 20
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

q 3
b [

ra
d]

q3b [rad]
reference [rad]

0 5 10 15 20
Time [s]

0.0

0.1

0.2

0.3

0.4

̇
3b

6 [
ra
d/
s]

̇3b6 [rad/s]

Figure 3.9: qb3 joint performances. Position step response (left) and velocity (right).

Rise time [s] Settling time [s] Overshoot Steady state error

4.587 5.996 0.999 [m] (0%) 5.731 e-6 [m]

Table 3.5: qb3 joint performances at position step response.

3.3 Master and Slave arm

One arm at a time can take control of the robot’s mobile base (the Master arm),

increasing the number of degrees of freedom of the kinematic chain to 10, making

the master system high redundant. The pose of this arm is expressed with respect

to the world frame. The other arm (the Slave arm) can not control the base, and

its pose is expressed with respect to the base frame (T0), the same showed in

figure 1.6. In this way the base can move accordingly with one of the two arms

in order to solve a task, while the other arm moves with the base.

In addition, the base can move as master alone (3 DOF kinematic chain) and

both the arms are considered as slaves. However, the base alone can only satisfy

a pose in a 2-dimensional environment (3 DOF, namely a pose on a plane) without

redundancy for this particular case.

Singularities

It may happen that the robot, while solving a task, reaches a singular configura-

tion (section 2.1.1). This situation implies that the robot becomes uncontrollable,

loosing degrees of freedom. Furthermore, in a neighborhood of the singular con-

figuration, the velocities imposed to the robot are really high and they may cause

a collision, and then a failure.

3.4 Range-Finder Sensors 45

Such that, the rank of the Jacobian matrix of the current kinematic chain is

checked at each iteration. If, the matrix is not full rank, the simulation is stopped

and cost 1010 is assigned to the stack. This implies that during the genetic selec-

tion it is discarded if compared with a stack which did not produce a failure.

3.4 Range-Finder Sensors

In order to avoid obstacles (section 2.1.3), range finder sensors where attached

to the robot in different points.

Figure 3.10: RoboSuite rendering of the Baxter robot with range-finder sensor ranges in yellow.

These sensors are active when there is an obstacle in their range, along the given

direction. In that case the kth sensor returns the distance dk from them and the

sensed object, otherwise they return −1. However, only distances smaller or equal

to the desired range rk activate the obstacle avoidance task, and if the distance

is such that dk > rk it is set to -1 by the algorithm.

Since, during learning, in an only kinematic environment it is not possible to

detect collisions between geometries the collision checking must relies only on

range finder sensors. If a sensor reports a distance smaller than d = 0.01 m, the

simulation is stopped and, it is considered like a collision. Cost 1010 is assigned

at the stack implying that during the genetic selection it is discarded if compared

46 Chapter 3. Simulation framework

with a stack which did not produce a failure.

3.4.1 Map of the sensors

8 depth sensors were used to cover the motion of the base while 12 for each arm

were used, bringing the total to 32 sensors for the whole Baxter robot. Following,

a description of their position is reported.

Mobile base

x

y

0◦

45◦
90◦

135◦

180◦

225◦

270◦
315◦

O

Figure 3.11: Sensors map of the mobile base.

The mobile base of the robot is covered by 8 sensors, at the height of 0.924m from

the mobile base frame, on the top of the base itself. They are positioned with a

radius of 0.21 m from the center of the pedestal mesh, in order to avoid to sens

the mesh itself instead of an obstacle, and they point toward the environment

with direction perpendicular to the tangent of the pedestal mesh in that point.

The exact position and the direction of the sensor are computed at each 45°, as
showed in picture 3.11 where the axes are the same of the base frame.

Arm

The arms own 12 sensors each. This allows to define a map of sensors divided

in 3 possible sites. For each site, a different number of sensors is present. This

consents a better sensing of obstacles, avoiding useless sensors.

Following, the image 3.12 shows where the different sites are implemented on the

left arm, for the right it is the same. The first site is centered at 0.1 m from the

joint q3 along its z axis, the second is centered at 0.1 m from the joint q5 along

its z axis and the third site is centered at 0.0 m from the joint q7 along its z axis.

3.4 Range-Finder Sensors 47

x

z

site1site1site1site1site1site1site1site1site1site1site1site1site1site1site1site1site1

site2site2site2site2site2site2site2site2site2site2site2site2site2site2site2site2site2

site3site3site3site3site3site3site3site3site3site3site3site3site3site3site3site3site3

Figure 3.12: Sensor sites of the left arm, with pedestal reference frame.

Then, as did for the pedestal, each site can be think as a circumference of radius

0.075, 0.05 and 0.075 m respectively, which lies on a plane parallel to the one

generated by x and y axes of the cited joints, with z axis oriented in the same

way. The direction of the sensors are reported in figure 3.13, in which the sites

of left arm can be seen looking at the straight arm from the end-effector to the

arm mount. The maps of the right arm are mirrored with respect to the y axis.

3.4.2 Position of the sensed obstacle pk

The distance dk of the kth sensor is not the only information needed from sensors

to avoid obstacles, in spite of it is the only one given by the sensors. In order to

find the gradient of the pseudo-energy (2.39) and solve this task, also the vector

joining the origin of the sensor and the obstacle vdk is needed. This information

is not provided by the sensor, but it is derived from the geometry of the robot,

knowing the exact position of the sensors.

dkvok = vdk , (3.1)

where vok is the versor associated to the kth sensor frame with respect to the

robot’s base frame such that ||vok || = 1, from which follows that

pk = psK + dkvok = psK + vdk (3.2)

48 Chapter 3. Simulation framework

x

y

60◦

300◦

O
x

y

0◦
180◦

240◦ 300◦

O

x

y

0◦

60◦120◦

180◦

240◦ 300◦

O

Figure 3.13: 1st, 2nd and 3rd site map of the left arm.

where psK is the position of the sensor with respect to the base frame.

Furthermore, knowing the position of the contact is fundamental in order to

understand if the sensor was activated by an obstacle or by the robot itself,

allowing to differentiate the two cases (section 3.4.3).

3.4.3 Self sensing for obstacle avoidance

The robot works differently if a sensor sens an obstacle or a part of the robot

itself. In fact, if an obstacle is sensed, the robot avoid it if it is in the range of

the distance rk. But, if the sensor is activated by the robot, the range of action

is reduced at sk, with sk ≤ rk. In this way, the robot is allowed to differentiate

it’s action, avoiding itself only in the case in which a collision is imminent. If this

differentiation had not been implemented, the robot would have tried to escape

from itself if rk is big, preventing the achievement of positions close to the robot.

On the other hand if rk is small, the robot reacts to obstacles too late and a

collision has high probability to happens.

Since this solution is applied, it is needed to identify the nature of the activation

3.4 Range-Finder Sensors 49

of a sensor. So, to achieve this feature, the robot is completely mapped with

respect to world reference frame, with simple fictitious geometries, which cover

the entire structure. This is possible knowing the position of all the geometries

of the robot with respect to the world frame.

Then, it is checked if the point in which the obstacle is sensed psK (3.2) is included

in one of these geometries. If it is, the obstacle is considered as the robot itself

and sk is used to solve the task for that sensor in place of rk.

Spherical Geometry

Spherical Geometries are defined with a center Cs, attached to a geometry of the

robot, and a radius rs. Then, if

3∑
i=1

(psK i −Csi)
2 ≤ r2s (3.3)

it is considered as a self sensing.

rsCs

Figure 3.14: Spherical geometries with center reference and radius.

Cylindrical Geometry

Cylindrical Geometries are defined as a center Cc, attached to a geometry of the

robot, and half height hc

2
and a radius rc. The center is located in the middle of

the main axis of the cylinder. Then, given p1 = Cc − hc

2
vc and p2 = Cc +

hc

2
vc

as the centers of the base circumferences where vc is the unit vector describing

the orientation of the cylinder with respect to the of the base world frame, if

(psK i − p1) · (p2 − p1) ≥ 0 (3.4)

(psK i − p2) · (p2 − p1) ≤ 0 (3.5)

(psK i − p1) · (p2 − p1)

|p2 − p1|
≤ rc (3.6)

50 Chapter 3. Simulation framework

it is considered as a self sensing.

hc

p1

p2

rc

Cc

Figure 3.15: Cylindrical geometries with references and parameters.

Used geometries

Here, a list of the used fictitious geometries with parameters and the respective

geometry of the robot are reported with the center.

Geometry name parameters Robot geom. Center [x, y, z]

right mount low [0.08, 0.18] coll base [0.09 -0.26 0.211]

right s0 collision [0.08, 0.08] right upper shoulder [0, 0, 0.1361]

right s1 collision [0.11, 0.1] right lower shoulder [0, 0, 0]

right e0 collision [0.096, 0.17] right upper elbow [0, 0, 0.15]

right e1 collision [0.0695, 0.096] right lower elbow [0, 0, 0]

right w0 collision [0.07, 0.044] right upper forearm [0, 0, -0.044]

right upper forearm col [0.076, 0.12] right upper forearm [0, 0, 0.11]

right w1 collision [0.06, 0.083] right lower forearm [0, 0, 0]

right w2 collision [0.07, 0.0825] right wrist [0, 0, 0]

Table 3.6: Right arm geometries, in this case only cylindrical geometries were used.

The geometries attached to the left arm, are the same of the right one. So that,

for the arms only right geometries are reported.

3.4 Range-Finder Sensors 51

Geometry name Type Parameters Robot geom. Center [x, y, z]

ped col cylinder [0.4, 0.2] pedestal [0, 0, 0.1]

ped col 1 cylinder [0.17, 0.25] pedestal [0.33, 0.3, 0.11]

ped col 2 cylinder [0.17, 0.25] pedestal [0.33, -0.3, 0.11]

ped col 3 cylinder [0.17, 0.25] pedestal [-0.33, 0.3, 0.11]

ped col 4 cylinder [0.17, 0.25] pedestal [-0.33, -0.3, 0.11]

ped col 5 cylinder [0.25, 0.6] pedestal [0, 0, 0.25]

Table 3.7: Pedestal geometries.

Geometry name Parameters Robot geom. Center [x, y, z]

collision head link 1 col [0.22] collision head link 1 [-0.07, -0.04, 0]

collision head link 2 col [0.22] collision head link 2 [-0.07, 0.04, 0]

Table 3.8: Head geometries, in this case only cylindrical geometries were used.

Geometry name Type Parameters Robot geom. Center [x, y, z]

body low col sphere [0.2] coll base [0, 0, 0]

body mid col cylinder [0.22, 0.1365] coll base [0, 0, 0.273]

body high col sphere [0.19] coll base [0, 0, 0.443]

base high col cylinder [0.2, 0.1] coll base [0, 0, -0.1]

base mid col cylinder [0.11, 0.2] coll base [0, 0, -0.4]

left back sphere [0.13] coll base [-0.14, 0.12, 0.48]

right back sphere [0.13] coll base [-0.14, -0.12, 0.48]

right mount sphere [0.19] coll base [0.09, -0.26, 0.385]

left mount sphere [0.19] coll base [0.09, 0.26, 0.385]

Table 3.9: Body geometries.

Sensing in working area of the robot

The robot was made able to handle with objects considering, for example, the

table on which the object is placed in the same way as a wall in terms of collision

avoidance. In order to obtain a differentiation between objects, the working area

of the robot is subject to the same rules of collision that governs the self collision

avoidance, with a smaller radius sk ≤ rk.

The working area is considered to be a sphere of radius 0.4 m, positioned in

pT = [0.2, 0, 1.2] [m], with respect to the robot base frame.

52 Chapter 3. Simulation framework

So that the robot can work with objects in front of it in a finer way, without

reducing rk.

Base and Arm rk

Since the pedestal have base with dimensions reported in figure 1.4, a small

value of rk would not avoid collisions between this part of the robot and the

environment. On the other hand, a bigger rk would prevent the arms to work

close to some obstacles and reach the desired precision. So that, two different rk

were implemented, one for the base sensors and the other one for the arm sensors,

so that

sk ≤ rkarm ≤ rkbase . (3.7)

This helps the arms to reach higher precision close to obstacles (which are outside

the working area), and the base to prevent collisions during navigation.

3.5 Respect of the joint limits

Since, during train and validation of the robot, the dynamics are no longer present

in the simulation in order to save computational time, the joint position limits

could be overcome. So that, the velocity of each joint i is constrained to be

ε(qmini
− qi) ≤ q̇i ≤ ε(qmaxi

− qi) (3.8)

where ε is a positive damping parameter, qmini
is the minimum value that qi could

reach and qmaxi
is the maximum. This imply that if the joint is in the position

of maximum (minimum) the velocity can not be bigger (lower) than zero, and

then limits can not be overcome. Also, in a neighborhood of the limit, the joint

is slowed towards it.

qmax = [1.70168, 1.047, 3.05418, 2.618, 3.059, 2.094, 3.059] (3.9)

qmin = [−1.70168, −2.147, −3.05418, −0.05, −3.059, −1.57, −3.059] (3.10)

Moreover the velocity joint limits can be overcome and then, being q̇lim the ab-

solute value of that limit, the velocity is also constrained to be

−q̇lim ≤ q̇i ≤ q̇lim. (3.11)

3.6 Chattering avoidance 53

Since the limit of the velocity that the real controllers of the Baxter arm can

apply is [−1, 1] m/s (table 1.2), q̇lim was chosen to replicate this range.

3.6 Chattering avoidance

The presence of an obstacle along the Inverse Kinematic trajectory, or really close

to it, may cause chattering. This happens due to the fact that the Jacobian matrix

of the obstacle avoidance task (equation 2.38), loose rank when the obstacle is no

longer sensed, and then a secondary task in the null space projection is allowed

to have more freedom of movement. At this point, the secondary task may

bring back the arm to the previous position and the obstacle is sensed again,

augmenting again the rank of the Jacobian matrix of the obstacle avoidance task.

This process may continue changing the rank of Jo(q) at each time-step causing

chattering, whose result is instantaneous high velocities in the joint space and a

stall position. In order to avoid this type of occurrence, the combination of the

tasks is given (as did in [5] by P. Falco et al) by a convex combination of tasks:

q̇ = (1− λ(d))q̇g + λ(d)(q̇o + (I − J †
o (q)Jo(q))q̇g), (3.12)

where q̇o and Jo(q) are the velocity and the Jacobian given by the solution of

the obstacle avoidance task, and q̇g the velocity given by the combination of the

remaining tasks. d is the minimum distance sensed by the sensors and λ(d) is a

weighting function

λ(d) =

1 d ≤ f

0 d > f
(3.13)

where f is an activation threshold to be selected. To avoid undesired effect that

can generate vibrations of the mechanical structure of the robot, λ(d) can be

chosen as a smooth sigmoidal function:

λ(d) =
1

π
arctan(−K(d− f)) +

1

2
(3.14)

or a piece-wise linear function, i.e.

λ(d) =

1 if d ≤ f −∆/2

0 if d ≥ f +∆/2

1
2
− (d−f)

∆
otherwise

. (3.15)

54 Chapter 3. Simulation framework

In this way, it is defined a zone in which the priority is not define between the

two tasks, outside of it the priority is established. K > 0 and ∆ vary the slope of

the function and the width of the middle zone. This last option was the chosen

one for the implementation in this work.

The chattering, however, can not be completely avoided but only reduced in some

cases.

3.7 Stack of Tasks

The execution of the algorithm is governed by the structure given by a stack of

tasks (section 2.2.2), which contains the four different tasks with their parameters

and the cost associated to it. The order of the tasks defines the priority in the

combination via null space projection, namely the first task in the stack have

higher priority with respect to the second one and so on. In first place in the

stack the cost of the algorithm is reported.

cost na nb nc nd

Figure 3.16: Stack of tasks.

Then, each single task n# is made by:

n# active θ

Figure 3.17: Single task composition.

where n# is a label of the task that has to be executed, the boolean value active

indicates if the task is present or not in the computation of the final velocity and θ

is the vector of parameters of each task. If a task is not active, the computation of

the velocities and of the Jacobian will not be done for that specific task returning

q̇ = 0n and J = 0m×n. This will help in saving computational time, avoiding

useless computations.

In this work, the tasks are labeled as:

• n1: Obstacle Avoidance task 2.1.3

• n2: Inverse Kinematic task 2.1.2

• n3: Manipulability Measure Maximization task 2.1.4

3.7 Stack of Tasks 55

• n4: Distance from Mechanical Joint Limits task 2.1.5.

All the required parameters for each task are defined in 3.7.1.

With each stack, it is possible to run an algorithm and store the information

related to the cost function. Namely, a stack carries all the useful information in

order to run and evaluate it.

3.7.1 Tasks parameters

Tasks have different parameters and they can be select among a certain range of

values. This prevents issues due to instability, unfeasible combinations or useless

parameters.

Obstacle avoidance parameters:

• rest length of the base springs, rkbase ∈ [0.4m, 2m]

• rest length of the arm springs, rkarm ∈ [0.1m, rkbase]

• rest length of the working area springs, sk ∈ [0.1m, rkarm]

• function gain, γo ∈ [0, 2]

• trajectory time, to ∈ [0 s, 10 s]

Inverse kinematic parameters:

• function gain, γ ∈ [0, 2]

• trajectory time, tf ∈ [0 s, 10 s]

Maximization of the manipulability parameters:

• function gain, k0 ∈ [1, 100]

Maximization of the distance from mechanical joint limits parameters:

• function gain, k0 ∈ [1, 100]

3.7.2 Distracting useless task

An extra task can be implemented during the learning phase and it is indicated

as n5. The aim of this task is to divert the attention of the robot from the main

tasks required by the user. It simply rotates the head of the robot moving an

56 Chapter 3. Simulation framework

extra revolute joint attached to the pan of the head. This task can be inserted

in to the stack to prove that the algorithm deactivate tasks that are useless for

the minimization of the cost function. When it is active, this task returns zero

velocities for the useful joints of the robot and a random matrix, with the proper

dimensions, as Jacobian. In this way the direct effect of the tasks velocities is null,

but it prevents the null space projection from reaching the correct combination.

The only parameter is a gain, which defines the velocity of the turning head:

v = γ · 1 rad/s,

where γ ∈ [−1, 1].

3.8 Cost function (fitness measure)

In order to evaluate the performances of the stack of task with it’s parameters,

a global cost function J(θ) is introduced, where θ is the parameters vector of a

stack. The main focus of this work is to make the robot able to autonomously

minimize this fitness measure.

A cost function can be composed by multiple terms, which refers to different

parameters of the simulation:

J(θ) = α1c1 + α2c2 + ...+ αmcm, (3.16)

where c1, c2, ..., cm are the costs referred to the single parameter and α1, α2, ..., αm

the respective weights, such that
∑m

i=1 αi = 1.

The cost function is an user choice (in terms of weights and which terms include

in a simulation), and can be expressed in function of different parameters. This

function will be truly significant in defining the parameters through the learning

phase, and the result will heavily depend on it (chapter 5).

Precision

The precision cost can be expressed in three different types.

The first refers to the precision in terms of pose, and the error of the actual pose

is used:

J(θ) = ||errorpose||2. (3.17)

3.8 Cost function (fitness measure) 57

On the other hand, position and orientation can have different weight into the

desired task, so that they can be divided in two different costs, as:

J(θ) = ||errorposition||2 (3.18)

J(θ) = ||errororientation||2 (3.19)

respectively for position and orientation. A lower precision implies an higher

error, and then an higher cost. Clearly, precision is related to the inverse kine-

matic task (section 2.1.2) and, can be selected if the user wants to obtain an

higher precision.

Distances from objects

The cost with respect to distances can be expressed in terms of pseudo-energy

(2.35) for each active sensor (rk ≥ dk):

J(θ) =
1

2

N∑
k=1

(rk − dk)
2 (3.20)

where dk and rk are respectively the sensed distance and the rest length of the

spring for the kth sensor. The cost increases as the number of active sensors and

decreases as their distances from the obstacles are bigger. This cost is clearly

related to the Obstacle Avoidance task (section 2.1.3) and, if chosen by the user,

tends to augment the distance of the robot from obstacles and then safety.

Manipulability

The cost expressed with respect to the manipulability of an arm is given by:

J(θ) =
1

w
(3.21)

where w (2.43) is the manipulability measure of the considered arm. Note that

w is always positive. An higher manipulability implies a lower cost. This cost is

clearly related to the maximization of the manipulability measure task (section

2.1.4), since it tends to increase it.

58 Chapter 3. Simulation framework

Distance from Mechanical Joint Limits

The cost expressed with respect to the distance from mechanical joint limits of

an arm is given by:

J(θ) = w2. (3.22)

Since w ≤ 0 (2.46), a lower value of it implies an higher cost. This cost is clearly

related to the maximization of the Distances from Mechanical Joint Limits task

(section 2.1.5).

Time

The time cost is given as:

J(θ, t) = t2 (3.23)

where t is the actual time of simulation. Clearly, an higher time implies an higher

cost. If this is chosen by the user, the robot tends to perform its tasks faster.

3.9 Genetic Programming Pipeline

In this section, the pipeline adopted for the Genetic Programming process is

outlined, once the simulation settings are decided.

First of all, the original generation is initialized. This is made by a number of

elements npop, decided a priori by the user. The number of elements of each

generation will be the same of the first one. In the initialization, the stack can

be formed by a certain order of the four tasks, or it can be randomized for each

element. All the parameters are randomly initialized for each stack in the proper

ranges of values or can be fixed at a certain value.

After the initialization of a base population, all the iterations (nit, which is an

user choice) follow the same structure:

• All the stacks that have not an assigned a cost yet (namely the cost is still

-1) are runned in a selected environment and, the final cost is assigned to

each one. Then they are printed in ascending order of cost.

• The stack are randomly paired, the one of the two with the lowest cost is

copied in to the new generation (reproduction 2.2.2). The other one will be

permanently lost.

3.9 Genetic Programming Pipeline 59

• For each survivor, a random genetic operation is performed (crossover 2.2.2

or mutation 2.2.2), and the offspring is added in the new population. After

that the cycle restarts.

Initialization

At the beginning of each simulation, a random population is created selecting

the active tasks and the number of individuals. The priority order of tasks in

the stack can be changed randomly or, once the best order for the combination

is found, it can be decided a priori. The tasks order is represented as an array,

in which each element is a label which refers to a single task and, the priority

is decreasing from first element to the last one. In the beginning phase of the

research, some task may also not be included into the stack (which is different

from being deactivated, in this case it will never be never present) so the stack

can be shorter.

Each stack is represented as a list in the code and, the initialization follows the

steps:

• Access the tasks array and recognize the desired task to be solved, then for

each element in that array:

1. Create an empty list, and append the label of the task in first position

2. The activation of the task in the specific stack is decided randomly

with a certain probability. In this specific case the probability to be

active is p[active] = 0.8. Then, if the task is active in second place at

the list will be appended True, False instead.

3. Lastly, the list of the parameters is randomly created choosing random

elements in a pre-defined range 3.7.1. If parameters are fixed, the list

is created with the decided elements. Then this list will be appended

in third position.

• When all the task are added to the stack list, the cost −1 is inserted in first

place.

All the previous steps are repeated m times, where m is the number of stacks

in the first population. Once the initial population is created, all the stacks are

simulated with an user-defined cost function in a chosen environment.

60 Chapter 3. Simulation framework

Iteration

When all the new stacks have being computed, and the cost functions are ob-

tained, they are randomly paired each other and the one with lowest cost survives

and it is copied into the new population (reproduction). The other stack will

be lost forever. If the number of element in the population is odd, one element is

randomly selected and copied into the new population before the creation of the

pairs, letting an even number of stacks in the old population.

For each survived element, a genetic operation between crossover and muta-

tion is selected and applied in order to obtain a new offspring. In this way the

number of elements in the population is always the same at each generation.

Crossover

Starting from an element which survived at the genetic competition, a new off-

spring is generated selecting a second stack randomly between the other survivors.

The offspring stack inherit the parameters of each task from one parent which

is randomly selected between the two. A counter avoids the duplication of a

program which may happen if all the task acquire the parameters from the same

parent. The offspring can inherit a maximum of k−1 times from a parent, where

k is the number of tasks in each stack. In this work, the first parent have an

higher priority of being selected to give parameters to offspring. So a new list is

created and one by one the selected elements are appended in it.

In the first exploration cases, when the best priority order of the stacks is not

already defined, this can be inherit from a parent randomly selected or randomly

created from scratch.

The cost −1 is added in first position of the stack. After that, the new element

is introduced in the new population.

Mutation

Starting from an element which survived at the genetic competition, a new off-

spring is generated changing a parameter of a task which is randomly selected

with equal probabilities in the stack. The parameter can be both the presence

marker (True or False), or a parameter that control the execution of the task

with equal probability. All the other elements of the program are simply copied

from the parent. So a new list is created and one by one the selected elements

are appended in it. In the first exploration phase, while deriving the best order

3.10 Graphical User Interface (G.U.I.) 61

for the stack, a mutation can also change the priority order of the tasks.

The cost −1 is added in first position of the stack. After that, the new element

is introduced in the new population.

3.10 Graphical User Interface (G.U.I.)

A Graphical User Interface (G.U.I.), was introduced to let an user decide the

settings of a simulation and try the developed code. At the beginning the user

can chose from 4 different types of functionalities: learning the best stack of tasks

for a specific cost function, try a stack choosing an environment with dynamics

or with kinematics only or, lastly, completing a duty specifying the stack of tasks

in a full dynamics environment.

Figure 3.18: Start of the simulation.

Learning

In this phase it is possible for the user to train the robot in a specific environment

and with a specified cost function.

Figure 3.19: 1st learning parameters window.

First of all, the user can decide the cost function that has to be minimized. The

number of possible choices was reduced, taking into account:

62 Chapter 3. Simulation framework

• Accuracy: as did during the learning phase of this work this cost introduce

in the weighted combination the error of the pose of the kinematic chain

with respect to the desired objective (3.8).

• Safety: this is an equivalent of the previously defined distances from objects

(3.8), but in this case is defined as the safety that the user wants to have

while working with the robot.

• Manipulability: the same of the manipulability used in this work (3.8).

• Speed: meaning speed of execution, it represents the time cost (3.8).

Note that the user can select the weight of the specific cost item only once the

check button is selected. The weights are normalized before they are used in the

simulation, in order to maintain a convex combination of the chosen elements.

After that, the user can specify the number of stacks in the original population

(which will be the same for all the subsequent generations), the number of iter-

ations (namely, the number of generations) and the simulation time to complete

a duty. All this values are constrained to be positive and in the case the user

insert a float number only the integer part will be considered, except for the time.

Once the selection process is completed from the user, the initialization of the

simulation continues.

Figure 3.20: 2nd learning parameters window.

In this second window, the user can select the other learning parameters. First of

all, it is possible to chose the task that are present or not in the stack. If the check

button is active, they are present. Note that tasks can be present but deactivated,

if they are not present the stack will never include them for this simulation. Then,

the user can decide with buttons which arm, or eventually the base, solves that

3.10 Graphical User Interface (G.U.I.) 63

stack and if it is master or slave (section 3.3). Only one arm in one configuration

can be chosen for a simulation, so their activations are mutually exclusive. Then,

the desired pose can be chosen only if the inverse kinematic task is present in

the stack. If the base is selected, since the pose is expressed as p = [px, py, θz],

only this three parameters can be inserted by the user. The remaining entries

(namely [pz, θx, θy]) are blocked. It is possible to activate or deactivate rendering

with a button, however during learning phase the activation is not suggested due

to slower computational times. Then, the environment (section 3.1) and the type

of output can be decided. As output it is possible to simply obtain the results

of each run (cost function) of a stack, suggested during learning, or obtain all

the plots of the measures of interest. If the option with plots is selected, at the

end of each run the algorithm stops and wait for the user to close the plots after

the visualization. This prevent to execute the following run while plots are not

closed yet.

Test

As it is possible to see in figure 3.18, the user can test a stack in a full dynamics

environment, or in one with kinematics only. In both cases, the selection window

is the same, which is reported in figure 3.21.

Figure 3.21: Test parameters window.

As for the learning phase, the user can decide the environment, the simulation

time, the kinematic chain, the target pose and if the rendering is showed.

In this case, the stack is only one and it is inserted by the user. In fact, the aim

64 Chapter 3. Simulation framework

of this section of the simulation is to test a stack with different environment, dy-

namics and obtain plots of the performances since they are not typically obtained

during training. The stack can be manually inserted in two ways:

• 1st: selecting the parameters in the proper entries. If the check button of a

task is turned of, its parameters can not be modified.

• 2nd: directly inserting the task as a list in the proper entry. Since during

learning phase the stacks are printed in terminal as lists, this is useful in

order to copy and paste them to test the performances. If this option is

selected, parameters can not be modified as in the 1st case and vice versa.

Then, the stack can be tested with plots at the end of the run. In this case, the ini-

tial configuration of the robot can be modified accessing the .py files of the specific

environments. Otherwise, the robot will always start with qbase = [0, 0, 0] and de-

fault arms configuration qarm = [±0.403,−0.636,±0.114, 1.432,±0.735, 1.205,∓0.269]

for right and left arm.

Complete a Duty (pick&place)

Finally, it is possible to perform a pick and place task in a predefined environment

(section 3.1.4).

Figure 3.22: Pick & place parameters window.

As seen in section 3.10, it is possible to insert a stack of tasks. However in this

case all the tasks have to be included in the stack. Before starting, it is possible

to chose if one of the two arm is the master, or both slaves and the base moves

alone with its own target pose.

Chapter 4

Single task resolution and tasks

combination: simulations and

results

4.1 Single task resolution

In this section the results obtained in the solution of single tasks are reported

with plots. In this chapter, the parameters are selected in order to show the

performances of the robot and, they could not be the best possible parameters

for that task in a specific situation.

4.1.1 Inverse Kinematic

In this section the results obtained with the Inverse Kinematic (2.1.2) are showed

for the mobile base, for the master arm and for the slave arm. In all the cases

the result will be shown both with a full dynamics environment and in the case

in which only kinematic is present in the simulation. In the case of the arm,

the results reported are obtained with the right arm, left arm would have given

identical results.

All the poses refer to the pose of the end-effector attached at the end of the

kinematic chain and, no obstacles are present during this simulations.

Mobile Base

First, the result for the movement of the mobile base are reported with chosen

gain of γ = 1. Trajectories are not implemented for the base. So that, the

65

66 Chapter 4. Single task resolution and tasks combination: simulations and results

computation of the velocities is not affected by derivatives of the desired pose

but, only by the error of the pose epose, namely the difference between desired

pose and actual pose. In fact, in equation (2.20), ṗd = 0 and pd is not given by

a trajectory path but it is always fixed at the desired final pose.

The initial pose of the base. for this simulation, is

p = [px, py, θz] = [0, 0, 0]

which is given by the initial configuration of the robot’s joints

q = [q1b, q2b, q3b] = [0, 0, 0].

The target pose pd = [pxd
, pyd , θzd] is given by

pd = [1, −1,
π

2
].

Subsequently, the results with an only kinematics environment are reported for

a simulation of 20 s. The simulation is not stopped once the objective is reached

with a certain accuracy, or equivalently with a small error, to show the stationary

behaviour of the robot once the task is completed.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.0

−0.5

0.0

0.5

1.0

1.5

po
se

 o
f t
he

 b
as

e

px [m] py [m] θz [rad]

Figure 4.1: Pose of the base.

4.1 Single task resolution 67

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
ba

se
 p
os

iti
on

 v
el
oc

ity
 [m

/s
]

ṗx [m/s] ṗy [m/s]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ba
se

 o
rie

nt
at
io
n
ve

lo
cit

y
[ra

d/
s]

̇θz [rad/s]

Figure 4.2: Base linear velocities (left) and base angular velocity (right).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

po
sit

io
n
er
ro
r [

m
]

epx [m] epy [m]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
or
ie
nt
at
io
n
er
ro
r [

ra
d]

eθz [rad]

Figure 4.3: Base position errors (left) and base orientation error (right).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.0

−0.5

0.0

0.5

1.0

1.5

q
[ra

d]

q1b [m] q2b [m] q3b [rad]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

̇ q
[ra

d/
s]

q̇1b [m/s] q̇2b [m/s] q̇3b [rad/s]

Figure 4.4: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

The robot works as expected. It reaches the final desired pose with its configu-

ration. Note that the velocities go to zero as the error goes to zero. Since the

movement of the base is modelled by two prismatic joints and one revolute, the

values of the pose in Cartesian space are the same of the configuration in joint’s

68 Chapter 4. Single task resolution and tasks combination: simulations and results

space.

It is possible to notice also that, in this case, the convergence in position is faster

with respect to the convergence in orientation.

Subsequently, the results obtained for the mobile base in a full dynamics envi-

ronment are reported. It is emphasized that the results are dependent from the

choices reported in table 3.1, during the implementation of the mobile base.

0 5 10 15 20 25 30
Time [s]

−1.0

−0.5

0.0

0.5

1.0

1.5

po
se

 o
f t
he

 b
as

e

px [m] py [m] θz [rad]

Figure 4.5: Pose of the base.

0 5 10 15 20 25 30
Time [s]

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

ba
se

 p
os

iti
on

 v
el
oc

ity
 [m

/s
]

ṗx [m/s] ṗy [m/s]

0 5 10 15 20 25 30
Time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ba
se

 o
rie

nt
at
io
n
ve

lo
cit

y
[ra

d/
s]

̇θz [rad/s]

Figure 4.6: Base linear velocities (left) and base angular velocity (right).

4.1 Single task resolution 69

0 5 10 15 20 25 30
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
po

sit
io
n
er
ro
r [
m
]

epx [m] epy [m]

0 5 10 15 20 25 30
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

or
ie
nt
at
io
n
er
ro
r [

ra
d]

eθz [rad]

Figure 4.7: Base position errors (left) and base orientation error (right).

0 5 10 15 20 25 30
Time [s]

−1.0

−0.5

0.0

0.5

1.0

1.5

q
[ra

d]

q1b [m] q2b [m] q3b [rad]

0 5 10 15 20 25 30
Time [s]

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4
̇ q
[ra

d/
s]

q̇1b [m/s] q̇2b [m/s] q̇3b [rad/s]

Figure 4.8: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

It is possible to observe how the convergence in the full dynamic case is slower

than the case with kinematics only. Note also that in the second case velocities do

not grow instantaneously as in the first one, due to inertia and frictions. Anyhow,

the final pose is successfully reached by the robot base, also in the case of a fully

dynamics environment, accomplishing the task.

Master Arm (right)

In this section, the results obtained with the master arm case are reported. The

chosen arm (right) can control the movement of the base, obtaining an high

redundant kinematic chain with 10 degrees of freedom. The chosen gain is γ = 1

and the trajectory time is t = 5 s, meaning that after 5 seconds the robot should

already be in the desired pose and reach it following a desired path during this

time. Once this time is expired the trajectory is and, the arm simply points

toward the configuration which satisfy the inverse kinematic for the end-effector

70 Chapter 4. Single task resolution and tasks combination: simulations and results

pose with q̇ = 0.

The end-effector starts from the initial pose p = [px, py, pz, θx, θy, θz]:

p = [0.691, −0.784, 1.059, 0.707, −2.681, −0.630],

given by the initial robot’s joints configuration q = [q1b, q2b, q3b, q1, q2, q3, q4, q5, q6, q7]:

q = [0, 0, 0, 0.403, −0.636, 0.114, 1.432, 0.735, 1.205, −0.269].

Then, it has to reach the target pose:

pd = [1.7, −0.7, 1.3, 0,
2

3
π, 0].

Note that the pose of the end-effector of the master arm, is expressed with respect

to the pose of the mobile base at instant of time t = 0 s. The initial value of

the base joints are always zero, since the initial pose of the base is used to define

the center and the orientation of the reference system for the whole simulation

(section 3.1).

Following, the results obtained in an environment in which only kinematic is

taken into account, are reported to show the behaviour of the system made by

arm + mobile base.

0 2 4 6 8 10
Time [s]

−0.5

0.0

0.5

1.0

1.5

po
sit

io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

0 2 4 6 8 10
Time [s]

−3

−2

−1

0

1

2

3

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r
ad

]

θx [rad] θy [rad] θz [rad]

Figure 4.9: End-effector position (left) and orientation (right).

4.1 Single task resolution 71

0 2 4 6 8 10
Time [s]

−0.1

0.0

0.1

0.2

0.3
e-
e
po

sit
io
n
ve

lo
cit

y
[m

/s
]

ṗx [m/s] ṗy [m/s] ṗz [m/s]

0 2 4 6 8 10
Time [s]

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

e-
e
or

ie
nt

at
io
n

ve
lo
cit

y
[ra

d/
s]

̇θx [rad/s] ̇θy [rad/s] ̇θz [rad/s]

Figure 4.10: End-effector linear (left) and angular (right) velocities.

0 2 4 6 8 10
Time [s]

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

po
sit

io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

0 2 4 6 8 10
Time [s]

−1.5

−1.0

−0.5

0.0

0.5
or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 4.11: Position (left) and orientation (right) errors.

0 2 4 6 8 10
Time [s]

−0.5

0.0

0.5

1.0

1.5

q

q1b [m]
q2b [m]
q3b [rad]
q1 [rad]

q2 [rad]
q3 [rad]
q4 [rad]

q5 [rad]
q6 [rad]
q7 [rad]

0 2 4 6 8 10
Time [s]

−0.2

−0.1

0.0

0.1

0.2

̇ q

q̇1b [m/s]
q̇2b [m/s]
q̇3b [rad/s]
q̇1 [rad/s]

q̇2 [rad/s]
q̇3 [rad/s]
q̇4 [rad/s]

q̇5 [rad/s]
q̇6 [rad/s]
q̇7 [rad/s]

Figure 4.12: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

At the end the robot’s arm is in configuration:

q = [0.662, −0.259, 0.135, 0.391, −0.660, −0.005, 0.848, 0.598, 0.416, −0.687].

72 Chapter 4. Single task resolution and tasks combination: simulations and results

The final target is reached, as it is possible to see from the plots, in the desired

time. After that, the robot stays in the same position, maintaining the target

pose. Note how the introduction of a trajectory helps to avoid instantaneous

velocities q̇ in the beginning phase of the task, even if dynamics are not present

in the simulation.

Following, the results obtained in a full dynamics environment are reported.

0 10 20 30 40 50
Time [s]

−0.5

0.0

0.5

1.0

1.5

po
sit

io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

0 10 20 30 40 50
Time [s]

−3

−2

−1

0

1

2

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r
ad

]

θx [rad] θy [rad] θz [rad]

Figure 4.13: End-effector position (left) and orientation (right).

0 10 20 30 40 50
Time [s]

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

e-
e
po

sit
io
n
ve

lo
cit

y
[m

/s
]

ṗx [m/s] ṗy [m/s] ṗz [m/s]

0 10 20 30 40 50
Time [s]

−0.1

0.0

0.1

0.2

0.3

e-
e
or

ie
nt

at
io
n

ve
lo
cit

y
[ra

d/
s]

̇θx [rad/s] ̇θy [rad/s] ̇θz [rad/s]

Figure 4.14: End-effector linear (left) and angular (right) velocities.

4.1 Single task resolution 73

0 10 20 30 40 50
Time [s]

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
po

sit
io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

0 10 20 30 40 50
Time [s]

−3

−2

−1

0

1

2

3

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 4.15: Position (left) and orientation (right) errors.

0 10 20 30 40 50
Time [s]

−1

0

1

2

3

q

q1b [m]
q2b [m]
q3b [rad]
q1 [rad]

q2 [rad]
q3 [rad]
q4 [rad]

q5 [rad]
q6 [rad]
q7 [rad]

0 10 20 30 40 50
Time [s]

−0.1

0.0

0.1

0.2
̇ q

q̇1b [m/s]
q̇2b [m/s]
q̇3b [rad/s]
q̇1 [rad/s]

q̇2 [rad/s]
q̇3 [rad/s]
q̇4 [rad/s]

q̇5 [rad/s]
q̇6 [rad/s]
q̇7 [rad/s]

Figure 4.16: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

At the end the robot’s arm reaches the configuration.

q = [1.078, −0.611, 0.157, 0.335, 0.769, 2.232, 2.475, 3.059, 2.094, 0.711].

Note how, the final configuration is different from the one obtained with an only

kinematics environment, despite both accomplish the same task. This highlights

how the solution may also depend from the environment and the condition of the

robot.

As it is possible to see from plots, the convergence is slower in the environment

with dynamics. In particular for the orientation of the end-effector. Then, with

dynamics, the robot is not able to correctly follow the desired trajectory in the

given time. So that, after 5 seconds the inverse kinematic error is not close to

zero yet and the convergence is reached after the trajectory time is expired.

Increasing the trajectory time, the behaviour of the arm is simply delayed and,

it does not help the end-effector to reach the desired pose in the specified time.

74 Chapter 4. Single task resolution and tasks combination: simulations and results

Also an higher gain, however not bigger than 2, would not help in following the

trajectory in an environment with full dynamics. So, for the master arm, is

impossible to follow a desired trajectory depicted in the Cartesian space, with

it’s end-effector in an environment with full dynamics, if the trajectory is simply

given by the desired velocities in the configuration space for the inverse kinematic

problem.

Slave Arm (right)

In this section, the result for the slave arm are reported. So, in this case, the

kinematic chain is composed only by the joints of the arm, as for the original

robot. The system, with 7 degrees of freedom, is still redundant. The base is

fixed and can not move. The chosen gain is γ = 1 and the trajectory time is t = 5

s. The arm starts from the initial pose p = [px, py, pz, θx, θy, θz]:

p = [0.691, −0.284, 0.135, 0.707, −2.681, −0.630],

given by the initial robot configuration q = [q1, q2, q3, q4, q5, q6, q7]:

q = [0.403, −0.636, 0.114, 1.432, 0.735, 1.205, −0.269]

Then, it have to reach the target pose

pd = [0.7, −0.855, 0.4, 0,
2

3
π, 0].

Note that the pose of the end-effector is expressed with respect to the pose of the

base frame in position [0, 0, 0.924] m with respect to the mobile base frame, and

with the same orientation.

Following, the results obtained in an environment in which only kinematic is

taken into account are reported.

4.1 Single task resolution 75

0 2 4 6 8 10
Time [s]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
po

sit
io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

0 2 4 6 8 10
Time [s]

−3

−2

−1

0

1

2

3

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r
ad

]

θx [rad] θy [rad] θz [rad]

Figure 4.17: End-effector position (left) and orientation (right).

0 2 4 6 8 10
Time [s]

−0.15

−0.10

−0.05

0.00

0.05

e-
e
po

sit
io
n
ve

lo
cit

y
[m

/s
]

ṗx [m/s] ṗy [m/s] ṗz [m/s]

0 2 4 6 8 10
Time [s]

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

e-
e
or

ie
nt

at
io
n

ve
lo
cit

y
[ra

d/
s]

̇θx [rad/s] ̇θy [rad/s] ̇θz [rad/s]

Figure 4.18: End-effector linear (left) and angular (right) velocities.

0 2 4 6 8 10
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

po
sit

io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

0 2 4 6 8 10
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 4.19: Position (left) and orientation (right) errors.

76 Chapter 4. Single task resolution and tasks combination: simulations and results

0 2 4 6 8 10
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

q
[ra

d]

q1 [rad]
q2 [rad]
q3 [rad]

q4 [rad]
q5 [rad]

q6 [rad]
q7 [rad]

0 2 4 6 8 10
Time [s]

−0.4

−0.3

−0.2

−0.1

0.0

0.1

̇ q
[ra

d/
s]

q̇1 [rad/s]
q̇2 [rad/s]
q̇3 [rad/s]

q̇4 [rad/s]
q̇5 [rad/s]

q̇6 [rad/s]
q̇7 [rad/s]

Figure 4.20: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

The desired pose for the end-effector is reached with the following joints’ config-

uration in the Cartesian space:

q = [−0.258, −0.771, 0.182, 1.013, 0.944, 0.866, −1.427].

So that, the task is successfully completed.

Figure 4.21: Baxter robot with right arm in the desired pose. The left one is still in the initial
configuration.

Then, results for the case with full dynamics are reported.

4.1 Single task resolution 77

0 5 10 15 20 25 30
Time [s]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
po

sit
io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

0 5 10 15 20 25 30
Time [s]

−3

−2

−1

0

1

2

3

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r
ad

]

θx [rad] θy [rad] θz [rad]

Figure 4.22: End-effector position (left) and orientation (right).

0 5 10 15 20 25 30
Time [s]

−0.15

−0.10

−0.05

0.00

0.05

e-
e
po

sit
io
n
ve

lo
cit

y
[m

/s
]

ṗx [m/s] ṗy [m/s] ṗz [m/s]

0 5 10 15 20 25 30
Time [s]

−0.20

−0.15

−0.10

−0.05

0.00

e-
e
or

ie
nt

at
io
n

ve
lo
cit

y
[ra

d/
s]

̇θx [rad/s] ̇θy [rad/s] ̇θz [rad/s]

Figure 4.23: End-effector linear (left) and angular (right) velocities.

0 5 10 15 20 25 30
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

po
sit

io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

0 5 10 15 20 25 30
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
er
ro
r [

ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 4.24: Position (left) and orientation (right) errors.

78 Chapter 4. Single task resolution and tasks combination: simulations and results

0 5 10 15 20 25 30
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

q
[ra

d]

q1 [rad]
q2 [rad]
q3 [rad]

q4 [rad]
q5 [rad]

q6 [rad]
q7 [rad]

0 5 10 15 20 25 30
Time [s]

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

̇ q
[ra

d/
s]

q̇1 [rad/s]
q̇2 [rad/s]
q̇3 [rad/s]

q̇4 [rad/s]
q̇5 [rad/s]

q̇6 [rad/s]
q̇7 [rad/s]

Figure 4.25: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

The desired pose for the end-effector is reached with the following joints config-

uration in the Cartesian space:

q = [−0.284, −0.767, 0.233, 1.016, 0.920, 0.843, −1.432].

As in the master arm case, the robot is not able to reach the desired pose within

the trajectory time and, the configurations of the robot are not the same.

4.1.2 Obstacle Avoidance

In this section, the results obtained for the obstacle avoidance task are reported.

The case of the mobile base, master arm and slave arm (only right arm) where

taken into account with a full dynamic environment and in one with kinematics

only. In the last part, results with dynamics obstacles are reported.

Mobile base

As explained in section 3.4, the base owns 8 sensors placed at 45° of difference.
When an obstacle is sensed and the distance is smaller than the chosen value of

rkbase , the sensor is activated and the robot moves away from the obstacle and

the Jacobian matrix is Jo ̸= 06×n. The gain for that task is chosen as γo = 1, the

trajectory time as t = 5 s and the minimum distance of activation of the sensors

is rkbase = 1 m. For a first case, the environment is composed by an empty room,

where a wall is close to the robot back at 0.79 m from the sensor placed at 270°,
i.e. at 1 m from the pedestal reference frame center. The robot’s base starts in

pose

p = [px, py, θz] = [0, 0, 0] = q.

4.1 Single task resolution 79

First, the results obtained in the case with kinematics only are reported.

0 2 4 6 8 10
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

di
st
an

ce
s [

m
]

sens 0° [m]
sens 45° [m]

sens 90° [m]
sens 135° [m]

sens 180° [m]
sens 225° [m]

sens 270° [m] sens 315° [m]

Figure 4.26: Distances of the base sensors.

0 2 4 6 8 10
Time [s]

0.00

0.05

0.10

0.15

0.20

po
se

 o
f t
he

 b
as

e

px [m] py [m] θz [rad]

Figure 4.27: Pose of the base.

0 2 4 6 8 10
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

ba
se

 p
os

iti
on

 v
el
oc

ity
 [m

/s
]

ṗx [m/s] ṗy [m/s]

0 2 4 6 8 10
Time [s]

−1

0

1

2

3

4

5

ba
se

 o
rie

nt
at
io
n
ve

lo
cit

y
[ra

d/
s]

1e−9

̇θz [rad/s]

Figure 4.28: Base linear velocities (left) and base angular velocity (right).

80 Chapter 4. Single task resolution and tasks combination: simulations and results

0 2 4 6 8 10
Time [s]

0.00

0.05

0.10

0.15

0.20

q
[ra

d]

q1b [m] q2b [m] q3b [rad]

0 2 4 6 8 10
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

̇ q
[ra

d/
s]

q̇1b [m/s] q̇2b [m/s] q̇3b [rad/s]

Figure 4.29: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

As it is possible to observe from the plots, the final pose of the base coincides

with the final configuration in joints space, i.e.

p = [2.228 · 10−1, −2.454 · 10−9 ≃ 0, −6.979 · 10−9 ≃ 0] = q.

As it is possible to observe from plot in figure 4.26, the robot accomplish its

task moving away the base from the obstacle. Note that, since the obstacle is

positioned behind the robot, it moves forward to maintain a distance of rkbase = 1

m in the specified trajectory time with the activated sensor. Once the obstacle

is far enough, the robot stops.

After that, the same situation was tested with a full dynamics environment.

0 5 10 15 20 25 30
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

di
st
an

ce
s [

m
]

sens 0° [m]
sens 45° [m]

sens 90° [m]
sens 135° [m]

sens 180° [m]
sens 225° [m]

sens 270° [m] sens 315° [m]

Figure 4.30: Distances of the base sensors.

4.1 Single task resolution 81

0 5 10 15 20 25 30
Time [s]

0.00

0.05

0.10

0.15

0.20
po

se
 o
f t
he

 b
as

e

px [m] py [m] θz [rad]

Figure 4.31: Pose of the base.

0 5 10 15 20 25 30
Time [s]

0.00

0.01

0.02

0.03

0.04

ba
se

 p
os

iti
on

 v
el
oc

ity
 [m

/s
]

ṗx [m/s] ṗy [m/s]

0 5 10 15 20 25 30
Time [s]

−0.5

0.0

0.5

1.0

1.5

ba
se

 o
rie

nt
at
io
n
ve

lo
cit

y
[ra

d/
s]

1e−7

̇θz [rad/s]

Figure 4.32: Base linear velocities (left) and base angular velocity (right).

0 5 10 15 20 25 30
Time [s]

0.00

0.05

0.10

0.15

0.20

q
[ra

d]

q1b [m] q2b [m] q3b [rad]

0 5 10 15 20 25 30
Time [s]

0.00

0.01

0.02

0.03

0.04

̇ q
[ra

d/
s]

q̇1b [m/s] q̇2b [m/s] q̇3b [rad/s]

Figure 4.33: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

The robot moves away from the obstacle also in an environment with full dy-

namics. However, as in the inverse kinematic case, the trajectory can not be

completed within the specified time also in this last case. With the introduction

82 Chapter 4. Single task resolution and tasks combination: simulations and results

of dynamics it is possible to observe from plot in figure 4.30 how the distance

of the robot’s sensor from the obstacle remains close to 1. This happens due to

the fact that the force applied if dk ≃ rkbase is not enough to overcome frictions.

However, the robot can be considered far enough from the obstacle to avoid any

collision, then the task is completed with the same pose p, and then same con-

figuration q, of the only kinematic case.

After that, a second obstacle was placed in the room. A second wall, on the left of

the robot, is placed at the same distance of the first one from the sensor oriented

at 180°.

0 2 4 6 8 10
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

di
st
an

ce
s [

m
]

sens 0° [m]
sens 45° [m]

sens 90° [m]
sens 135° [m]

sens 180° [m]
sens 225° [m]

sens 270° [m] sens 315° [m]

Figure 4.34: Distances of the base sensors.

Note that since the two obstacles are at the same distance from the two sensors,

the plots of the distances (figure 4.38) are overlapped.

0 2 4 6 8 10
Time [s]

−0.2

−0.1

0.0

0.1

0.2

po
se

 o
f t
he

 b
as

e

px [m] py [m] θz [rad]

Figure 4.35: Pose of the base.

4.1 Single task resolution 83

0 2 4 6 8 10
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
ba

se
 p
os

iti
on

 v
el
oc

ity
 [m

/s
]

ṗx [m/s] ṗy [m/s]

0 2 4 6 8 10
Time [s]

−1

0

1

2

3

4

5

ba
se

 o
rie

nt
at
io
n
ve

lo
cit

y
[ra

d/
s]

1e−9

̇θz [rad/s]

Figure 4.36: Base linear velocities (left) and base angular velocity (right).

0 2 4 6 8 10
Time [s]

−0.2

−0.1

0.0

0.1

0.2

q
[ra

d]

q1b [m] q2b [m] q3b [rad]

0 2 4 6 8 10
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
̇ q
[ra

d/
s]

q̇1b [m/s] q̇2b [m/s] q̇3b [rad/s]

Figure 4.37: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

Note how the robot moves way from obstacles in the desired trajectory time.

After that, the performances in a full dynamics environment are reported.

0 5 10 15 20 25 30
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

di
st
an

ce
s [

m
]

sens 0° [m]
sens 45° [m]

sens 90° [m]
sens 135° [m]

sens 180° [m]
sens 225° [m]

sens 270° [m] sens 315° [m]

Figure 4.38: Distances of the base sensors.

84 Chapter 4. Single task resolution and tasks combination: simulations and results

0 5 10 15 20 25 30
Time [s]

−0.2

−0.1

0.0

0.1

0.2

po
se

 o
f t
he

 b
as

e

px [m] py [m] θz [rad]

Figure 4.39: Pose of the base.

0 5 10 15 20 25 30
Time [s]

−0.04

−0.02

0.00

0.02

0.04

ba
se

 p
os

iti
on

 v
el
oc

ity
 [m

/s
]

ṗx [m/s] ṗy [m/s]

0 5 10 15 20 25 30
Time [s]

−4

−3

−2

−1

0

1

2

3

ba
se

 o
rie

nt
at
io
n
ve

lo
cit

y
[ra

d/
s]

1e−5

̇θz [rad/s]

Figure 4.40: Base linear velocities (left) and base angular velocity (right).

0 5 10 15 20 25 30
Time [s]

−0.2

−0.1

0.0

0.1

0.2

q
[ra

d]

q1b [m] q2b [m] q3b [rad]

0 5 10 15 20 25 30
Time [s]

−0.04

−0.02

0.00

0.02

0.04

̇ q
[ra

d/
s]

q̇1b [m/s] q̇2b [m/s] q̇3b [rad/s]

Figure 4.41: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

Also in this case, the final configuration in the Cartesian space is the same as the

configuration in joint space:

p = [2.197 · 10−1, −2.198 · 10−1, 3.167 · 10−7 ≃ 0] = q.

4.1 Single task resolution 85

Also with a second obstacle, final pose p and final configuration q are the same

for both cases.

Master arm (right)

In this case, the master arm’s kinematic chain is considered as composed by 10

degrees of freedom, 3 from the base and 7 from the arm combined together. In

order to show a case of this high redundant system, two walls are placed close

to the robot. In particular, one is parallel to the x axis and is placed in position

[0, −1, 0] m, while the other one is parallel to the y axis and is placed in position

[−1, 0, 0] m. The trajectory time is t = 5 s, the gain γo = 1, the rest length of the

springs rkbase = 0.5 and rkarm = sk = 0.5 m. First, result for an only kinematic

environment are reported.

0 2 4 6 8 10
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

di
st
an

ce
s [

m
]

sens 0° [m]
sens 45° [m]

sens 90° [m]
sens 135° [m]

sens 180° [m]
sens 225° [m]

sens 270° [m] sens 315° [m]

Figure 4.42: Base site distances.

0 2 4 6 8 10
Time [s]

−1.04

−1.02

−1.00

−0.98

−0.96

di
st
an

ce
s [

m
]

sens 45° [m] sens 315° [m]

Figure 4.43: Arm 1st site distances.

86 Chapter 4. Single task resolution and tasks combination: simulations and results

0 2 4 6 8 10
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

di
st
an

ce
s [

m
]

sens 0° [m] sens 135° [m] sens 180° [m] sens 225° [m]

Figure 4.44: Arm 2nd site distances.

0 2 4 6 8 10
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

di
st
an

ce
s [

m
]

sens 0° [m]
sens 60° [m]

sens 120° [m] sens 180° [m] sens 240° [m] sens 300° [m]

Figure 4.45: Arm 3rd site distances.

0 2 4 6 8 10
Time [s]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

po
sit

io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

0 2 4 6 8 10
Time [s]

−3

−2

−1

0

1

2

3

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r
ad

]

θx [rad] θy [rad] θz [rad]

Figure 4.46: End-effector position (left) and orientation (right).

4.1 Single task resolution 87

0 2 4 6 8 10
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
e-
e
po

sit
io
n
ve

lo
cit

y
[m

/s
]

ṗx [m/s] ṗy [m/s] ṗz [m/s]

0 2 4 6 8 10
Time [s]

−2

−1

0

1

2

e-
e
or

ie
nt

at
io
n

ve
lo
cit

y
[ra

d/
s]

̇θx [rad/s] ̇θy [rad/s] ̇θz [rad/s]

Figure 4.47: End-effector linear (left) and angular (right) velocities.

0 2 4 6 8 10
Time [s]

−1.0

−0.5

0.0

0.5

1.0

1.5

q
[ra

d]

q1b [m]
q2b [m]
q3b [rad]
q1 [rad]

q2 [rad]
q3 [rad]
q4 [rad]

q5 [rad]
q6 [rad]
q7 [rad]

0 2 4 6 8 10
Time [s]

−1.0

−0.5

0.0

0.5

1.0
̇ q
[ra

d/
s]

q̇1b [mrad/s]
q̇2b [m/s]
q̇3b [rad/s]
q̇1 [rad/s]

q̇2 [rad/s]
q̇3 [rad/s]
q̇4 [rad/s]

q̇5 [rad/s]
q̇6 [rad/s]
q̇7 [rad/s]

Figure 4.48: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

Figure 4.49: Baxter robot moving away from the wall obstacles.

88 Chapter 4. Single task resolution and tasks combination: simulations and results

The initial robot configuration is:

q = [0, 0, 0, 0.403, −0.636, 0.114, 1.432, 0.735, 1.205, −0.269]

and, once the task is completed, the robot is in configuration

q = [0.006, 0.432, −0.082, 0.187, −0.867, −0.076, 1.210, 0.629, 1.160, −0.278]

with final end-effector pose:

p = [0.679, −0.231, 1.227, −0.649, 0.514, 2.969].

The arm moves away from obstacles, as expected. Observe that, in the case in

which a sensor pass from the active state to the not active state, an instantaneous

velocity peak follows.

Then, a simulation in the same conditions is conduced in a full dynamics envi-

ronment.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

di
st
an

ce
s [

m
]

sens 0° [m]
sens 45° [m]

sens 90° [m]
sens 135° [m]

sens 180° [m]
sens 225° [m]

sens 270° [m] sens 315° [m]

Figure 4.50: Base site distances

4.1 Single task resolution 89

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.04

−1.02

−1.00

−0.98

−0.96
di
st
an

ce
s [

m
]

sens 45° [m] sens 315° [m]

Figure 4.51: Arm 1st site distances.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

di
st
an

ce
s [

m
]

sens 0° [m] sens 135° [m] sens 180° [m] sens 225° [m]

Figure 4.52: Arm 2nd site distances.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.04

−1.02

−1.00

−0.98

−0.96

di
st
an

ce
s [

m
]

sens 0° [m]
sens 60° [m]

sens 120° [m] sens 180° [m] sens 240° [m] sens 300° [m]

Figure 4.53: Arm 3rd site distances.

90 Chapter 4. Single task resolution and tasks combination: simulations and results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

po
sit

io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−3

−2

−1

0

1

2

3

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r

ad
]

θx [rad] θy [rad] θz [rad]

Figure 4.54: End-effector position (left) and orientation (right).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.05

0.00

0.05

0.10

0.15

e-
e
po

sit
io
n
ve

lo
cit

y
[m

/s
]

ṗx [m/s] ṗy [m/s] ṗz [m/s]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.20

−0.15

−0.10

−0.05

0.00

0.05

e-
e
or

ie
nt

at
io
n

ve
lo
cit

y
[ra

d/
s]

̇θx [rad/s] ̇θy [rad/s] ̇θz [rad/s]

Figure 4.55: End-effector linear (left) and angular (right) velocities.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.0

−0.5

0.0

0.5

1.0

1.5

q
[ra

d]

q1b [m]
q2b [m]
q3b [rad]
q1 [rad]

q2 [rad]
q3 [rad]
q4 [rad]

q5 [rad]
q6 [rad]
q7 [rad]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.3

−0.2

−0.1

0.0

0.1

0.2

̇ q
[ra

d/
s]

q̇1b [mrad/s]
q̇2b [m/s]
q̇3b [rad/s]
q̇1 [rad/s]

q̇2 [rad/s]
q̇3 [rad/s]
q̇4 [rad/s]

q̇5 [rad/s]
q̇6 [rad/s]
q̇7 [rad/s]

Figure 4.56: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

In this case the final configuration reached by the robot is:

q = [−0.044, 0.406, 0.027, 0.359, −0.879, 0.056, 1.252, 0.6841.224, −0.267]

4.1 Single task resolution 91

which imply the final pose for the end-effector:

p = [0.744, 0.0349, 1.238, −0.310, 0.671, 3.062].

Slave arm (right)

In this case, the master arm is considered with it’s kinematic chain composed by

7 degrees of freedom given only by the arm, as for the original robot. In order

to show results for this case, a wall is placed close to the robot. In particular, it

parallel to the x axis and is placed in position [0, −0.65, 0] m with respect to the

robot base frame. The trajectory time is t = 5 s, the gain γo = 1, rkarm = 0.5 m.

The robot’s arm starts in pose p = [px, py, pz, θx, θy, θz]:

p = [0.691, −0.284, 0.13499078, 0.707, −2.681, −0.630]

with its end-effector, given by the joints configuration

q = [0.403, −0.636, 0.114, 1.432, 0.735, 1.205, −0.269]

First, the results obtained in an environment with only kinematics are reported

to show the behaviour of the robot.

0 2 4 6 8 10
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

di
st
an

ce
s [

m
]

sens 45° [m] sens 315° [m]

Figure 4.57: Arm 1st site distances.

92 Chapter 4. Single task resolution and tasks combination: simulations and results

0 2 4 6 8 10
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

di
st
an

ce
s [

m
]

sens 0° [m] sens 135° [m] sens 180° [m] sens 225° [m]

Figure 4.58: Arm 2nd site distances.

0 2 4 6 8 10
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

di
st
an

ce
s [

m
]

sens 0° [m]
sens 60° [m]

sens 120° [m] sens 180° [m] sens 240° [m] sens 300° [m]

Figure 4.59: Arm 3rd site distances.

0 2 4 6 8 10
Time [s]

−0.2

0.0

0.2

0.4

0.6

0.8

po
sit

io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

0 2 4 6 8 10
Time [s]

−3

−2

−1

0

1

2

3

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r
ad

]

θx [rad] θy [rad] θz [rad]

Figure 4.60: End-effector position (left) and orientation (right).

4.1 Single task resolution 93

0 2 4 6 8 10
Time [s]

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
e-
e
po

sit
io
n
ve

lo
cit

y
[m

/s
]

ṗx [m/s] ṗy [m/s] ṗz [m/s]

0 2 4 6 8 10
Time [s]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

e-
e
or

ie
nt

at
io
n

ve
lo
cit

y
[ra

d/
s]

̇θx [rad/s] ̇θy [rad/s] ̇θz [rad/s]

Figure 4.61: End-effector linear (left) and angular (right) velocities.

0 2 4 6 8 10
Time [s]

−0.5

0.0

0.5

1.0

1.5

q
[ra

d]

q1 [rad]
q2 [rad]
q3 [rad]

q4 [rad]
q5 [rad]

q6 [rad]
q7 [rad]

0 2 4 6 8 10
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

̇ q
[ra

d/
s]

q̇1 [rad/s]
q̇2 [rad/s]
q̇3 [rad/s]

q̇4 [rad/s]
q̇5 [rad/s]

q̇6 [rad/s]
q̇7 [rad/s]

Figure 4.62: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

The robot accomplish its task and moves away from obstacles. It reaches a final

pose

p = [0.584, −0.030, −0.226, 0.579, 0.192, −2.712]

with a joint configuration

q = [1.076, 0.257, 0.235, 0.515, −0.191, 1.274, −0.237].

It is possible to observe how a change o active sensors, namely a change of the

Jacobian matrix Jo, implies instantaneous velocities.

After that, the results obtained in a full dynamics environment are reported.

94 Chapter 4. Single task resolution and tasks combination: simulations and results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

di
st
an

ce
s [

m
]

sens 45° [m] sens 315° [m]

Figure 4.63: Arm 1st site distances.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

di
st
an

ce
s [

m
]

sens 0° [m] sens 135° [m] sens 180° [m] sens 225° [m]

Figure 4.64: Arm 2nd site distances.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

di
st
an

ce
s [

m
]

sens 0° [m]
sens 60° [m]

sens 120° [m] sens 180° [m] sens 240° [m] sens 300° [m]

Figure 4.65: Arm 3rd site distances.

4.1 Single task resolution 95

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.2

0.0

0.2

0.4

0.6

0.8
po

sit
io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r

ad
]

θx [rad] θy [rad] θz [rad]

Figure 4.66: End-effector position (left) and orientation (right).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

e-
e
po

sit
io
n
ve

lo
cit

y
[m

/s
]

ṗx [m/s] ṗy [m/s] ṗz [m/s]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.2

−0.1

0.0

0.1

0.2
e-

e
or

ie
nt

at
io
n

ve
lo
cit

y
[ra

d/
s]

̇θx [rad/s] ̇θy [rad/s] ̇θz [rad/s]

Figure 4.67: End-effector linear (left) and angular (right) velocities.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.5

0.0

0.5

1.0

1.5

q
[ra

d]

q1 [rad]
q2 [rad]
q3 [rad]

q4 [rad]
q5 [rad]

q6 [rad]
q7 [rad]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

̇ q
[ra

d/
s]

q̇1 [rad/s]
q̇2 [rad/s]
q̇3 [rad/s]

q̇4 [rad/s]
q̇5 [rad/s]

q̇6 [rad/s]
q̇7 [rad/s]

Figure 4.68: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

The robot reaches a final pose

p = [0.351, 0.329, 0.143, 0.443, 0.952, −2.554],

96 Chapter 4. Single task resolution and tasks combination: simulations and results

with joint configuration

p = [1.315, −0.432, 0.464, 1.251, 0.606, 1.266, −0.257].

As observed in previous cases, the task is solved in more time with respect to the

only kinematic environment, and one distance reaches rk to infinity.

Dynamic obstacles

It is possible to evaluate the performances of the obstacle avoidance task in the

case in which the obstacle moves during the simulation time and it is not fixed.

As an example, some cases with the mobile base are reported.

In the first one an object simply move towards the robot, moving along the y axis

with negative velocity v = −0.5 m/s for 4 s.

The initial pose of the base is

p = [0, 0, 0]

given by the configuration in joint space

q = [0, 0, 0].

First, the result for the case with kinematics only are reported.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

di
st
an

ce
s [

m
]

sens 0° [m]
sens 45° [m]

sens 90° [m]
sens 135° [m]

sens 180° [m]
sens 225° [m]

sens 270° [m] sens 315° [m]

Figure 4.69: Distanced of the base sensors.

4.1 Single task resolution 97

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00
po

se
 o
f t
he

 b
as

e

px [m] py [m] θz [rad]

Figure 4.70: Pose of the base.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

ba
se

 p
os

iti
on

 v
el
oc

ity
 [m

/s
]

ṗx [m/s] ṗy [m/s]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

0

1

2

3

4

5

6

ba
se

 o
rie

nt
at
io
n
ve

lo
cit

y
[ra

d/
s]

1e−9

̇θz [rad/s]

Figure 4.71: Base linear velocities (left) and base angular velocity (right).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

q
[ra

d]

q1b [m] q2b [m] q3b [rad]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

̇ q
[ra

d/
s]

q̇1b [m/s] q̇2b [m/s] q̇3b [rad/s]

Figure 4.72: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

From plot in figure 4.69 it is possible to note that at the beginning of the sim-

ulation no obstacles are sensed. Then, the dynamic obstacle is sensed by the

180° sensor and the robot starts to move. In the first phase the sensed distance

98 Chapter 4. Single task resolution and tasks combination: simulations and results

is still decreasing due to the fact that the obstacle is faster with respect to the

response imposed by the robot. When it is closer, the robot starts to move faster

to avoid collision and the slope of the distance measure is almost flat. Once the

the obstacle stops, it is possible to see how the robot moves away until the sensed

distance is almost equal to the rest length of the spring, namely dk ≃ rkbase . At

the end the robot reaches final configuration

q = [0, −1.761, 0].

After that, the full dynamic case is showed.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

di
st
an

ce
s [

m
]

sens 0° [m]
sens 45° [m]

sens 90° [m]
sens 135° [m]

sens 180° [m]
sens 225° [m]

sens 270° [m] sens 315° [m]

Figure 4.73: Distanced of the base sensors.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

po
se

 o
f t
he

 b
as

e

px [m] py [m] θz [rad]

Figure 4.74: Pose of the base.

4.1 Single task resolution 99

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.5

−0.4

−0.3

−0.2

−0.1

0.0
ba

se
 p
os

iti
on

 v
el
oc

ity
 [m

/s
]

ṗx [m/s] ṗy [m/s]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.03

−0.02

−0.01

0.00

0.01

0.02

ba
se

 o
rie

nt
at
io
n
ve

lo
cit

y
[ra

d/
s]

̇θz [rad/s]

Figure 4.75: Base linear velocities (left) and base angular velocity (right).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

q
[ra

d]

q1b [m] q2b [m] q3b [rad]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.5

−0.4

−0.3

−0.2

−0.1

0.0
̇ q
[ra

d/
s]

q̇1b [m/s] q̇2b [m/s] q̇3b [rad/s]

Figure 4.76: End-effector linear (left) and angular (right) velocities.

At the end, the robot reaches the final configuration:

q = [0, −1.746, 0].

It is possible to observe how, also in the full dynamic case, the robot is able to

escape from dynamic obstacles.

Figure 4.77: Example of the robot moving away from a dynamic obstacle.

100Chapter 4. Single task resolution and tasks combination: simulations and results

4.1.3 Maximization of the Manipulability Measure

In this section the maximization of the manipulability measure 2.1.4 will be ex-

ploited with simulations and results. Only the arms will be considered, since the

base is not involved in this task, and its inclusion will not provide benefit to the

final result. It is important to precise that the maximum is still a local one, which

is influenced by the initial configuration of the arm. It is impossible to define a

priory a global maximum (or the value of the local one) for this measure.

In this case, only the results for the slave arm are reported (only right since the

left is almost the same), since the base is not implied in the solution of this task

as previously said. The chosen gain for this demonstration is k0 = 100. The

initial robot configuration in joint space is

q = [0.403, −0.636, 0.114, 1.432, 0.735, 1.205, −0.269]

with initial pose of the end-effector

p = [0.691, −0.284, 0.135, 0.707, −2.680, −0.630].

The manipulability measure in the initial configuration is wmanip = 0.124. First,

the plots for the only kinematic case are reported.

0 2 4 6 8 10
Time [s]

0.124

0.126

0.128

0.130

0.132

0.134

0.136

0.138

0.140

m
an

ip
ul
ab

ilir
y
m
ea

su
re

manipulabiliry measure

Figure 4.78: Manipulability measure of the right arm.

4.1 Single task resolution 101

0 2 4 6 8 10

−0.2

0.0

0.2

0.4

0.6
po

sit
io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

0 2 4 6 8 10

−3

−2

−1

0

1

2

3

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r
ad

]

θx [rad] θy [rad] θz [rad]

Figure 4.79: End-effector position (left) and orientation (right).

0 2 4 6 8 10
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

e-
e
po

sit
io
n
ve

lo
cit

y
[m

/s
]

ṗx [m/s] ṗy [m/s] ṗz [m/s]

0 2 4 6 8 10
Time [s]

0.0

0.5

1.0

1.5

2.0
e-
e
or
ie
nt
at
io
n
ve

lo
cit

y
[ra

d/
s]

̇θx [rad/s] ̇θy [rad/s] ̇θz [rad/s]

Figure 4.80: End-effector linear (left) and angular (right) velocities.

0 2 4 6 8 10
Time [s]

−0.5

0.0

0.5

1.0

1.5

q
[ra

d]

q1 [rad]
q2 [rad]
q3 [rad]

q4 [rad]
q5 [rad]

q6 [rad]
q7 [rad]

0 2 4 6 8 10
Time [s]

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

̇ q
[ra

d/
s]

q̇1 [rad/s]
q̇2 [rad/s]
q̇3 [rad/s]

q̇4 [rad/s]
q̇5 [rad/s]

q̇6 [rad/s]
q̇7 [rad/s]

Figure 4.81: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

Then the robot ends the maximization process with configuration

q = [4.030 · 10−1, −2.948 · 10−7, 1.571, 1.403, 3.220 · 10−5, 1.285, −2.690 · 10−1],

102Chapter 4. Single task resolution and tasks combination: simulations and results

with end-effector pose

p = [0.525, 0.138, 0.399, 2.306, 1.301, 1.571]

and manipulability measure wmanip = 0.1402.

Then, the plots of the full dynamics case are reported.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

0.124

0.126

0.128

0.130

0.132

0.134

0.136

0.138

0.140

m
an

ip
ul
ab

ilir
y
m
ea

su
re

manipulabiliry measure

Figure 4.82: Manipulability measure of the right arm.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

−0.2

0.0

0.2

0.4

0.6

po
sit

io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

−3

−2

−1

0

1

2

3

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r

ad
]

θx [rad] θy [rad] θz [rad]

Figure 4.83: End-effector position (left) and orientation (right).

4.1 Single task resolution 103

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10
e-
e
po

sit
io
n
ve

lo
cit

y
[m

/s
]

ṗx [m/s] ṗy [m/s] ṗz [m/s]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.1

0.0

0.1

0.2

0.3

0.4

e-
e
or

ie
nt

at
io
n

ve
lo
cit

y
[ra

d/
s]

̇θx [rad/s] ̇θy [rad/s] ̇θz [rad/s]

Figure 4.84: End-effector linear (left) and angular (right) velocities.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.5

0.0

0.5

1.0

1.5

q
[ra

d]

q1 [rad]
q2 [rad]
q3 [rad]

q4 [rad]
q5 [rad]

q6 [rad]
q7 [rad]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

̇ q
[ra

d/
s]

q̇1 [rad/s]
q̇2 [rad/s]
q̇3 [rad/s]

q̇4 [rad/s]
q̇5 [rad/s]

q̇6 [rad/s]
q̇7 [rad/s]

Figure 4.85: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

Then the arm reaches the joints configuration

q = [3.940 · 10−1, 6.602 · 10−4, 1.572, 1.403, −9.711 · 10−3, 1.285, −2.532 · 10−1]

the end-effector pose

p = [0.529, 0.134, 0.398, 2.264, 1.314, 1.604].

and manipulability measure wmanip = 0.1402.

104Chapter 4. Single task resolution and tasks combination: simulations and results

Figure 4.86: Maximization of the manipulability of the right arm.

It is possible to note how the manipulability measure is the same at the end of

both simulations, with dynamics in environment and not. Once the arm reaches

the local maximum it stops and do not move in order to exploit the neighborhood

of the solution. However, the convergence to such configuration is slower in the

second case and velocities are less smooth. Finally note that the two different

configurations and poses reached are similar in the two different cases.

4.1.4 Maximization of the Distance from Mechanical Joint

Limits

In this section the maximization of the distance from mechanical joint limits 2.1.5

will be exploited with simulation results. Only the arms will be considered, since

the base is not involved in this procedure, and it’s inclusion will not provide

benefit to the final result. Unlike the previous maximization process, in this case

it is possible to derive a global maximum which is wm.j.l. = 0.

4.1 Single task resolution 105

0 2 4 6 8 10
Time [s]

−0.007

−0.006

−0.005

−0.004

−0.003

−0.002

−0.001

0.000

di
st
an

ce
 fr
om

 m
.j.
l

distance from m.j.l

Figure 4.87: Distance from mechanical joint limits measure of the right arm.

Independently from the original configuration of the arm, it will tend to nullify the

measure without local maximums, pointing toward the global one. The robot’s

arm starts in initial configuration

q = [0.403, −0.636, 0.114, 1.432, 0.735, 1.205, −0.269]

with initial pose of the end-effector

p = [0.691, −0.284, 0.135, 0.707, −2.680, −0.630].

First, the plots for the only kinematic case are reported.

0 2 4 6 8 10

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

po
sit

io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

0 2 4 6 8 10

−3

−2

−1

0

1

2

3

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r
ad

]

θx [rad] θy [rad] θz [rad]

Figure 4.88: End-effector position (left) and orientation (right).

106Chapter 4. Single task resolution and tasks combination: simulations and results

0 2 4 6 8 10
Time [s]

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

e-
e
po

sit
io
n
ve

lo
cit

y
[m

/s
]

ṗx [m/s] ṗy [m/s] ṗz [m/s]

0 2 4 6 8 10
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

e-
e
or

ie
nt

at
io
n

ve
lo
cit

y
[ra

d/
s]

̇θx [rad/s] ̇θy [rad/s] ̇θz [rad/s]

Figure 4.89: End-effector linear (left) and angular (right) velocities.

0 2 4 6 8 10
Time [s]

−0.5

0.0

0.5

1.0

1.5

q
[ra

d]

q1 [rad]
q2 [rad]
q3 [rad]

q4 [rad]
q5 [rad]

q6 [rad]
q7 [rad]

0 2 4 6 8 10
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

̇ q
[ra

d/
s]

q̇1 [rad/s]
q̇2 [rad/s]
q̇3 [rad/s]

q̇4 [rad/s]
q̇5 [rad/s]

q̇6 [rad/s]
q̇7 [rad/s]

Figure 4.90: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

The robot reaches the final arm configuration

q = [−3.392·10−7,−5.500·10−1, 2.511·10−3, 1.284, 1.627·10−2, 2.620·10−1,−5.985·10−3]

with final pose

p = [0.639, −0.831, 0.081, −0.789, 0.011, 2.567].

The initial value of the distance from mechanical joint limits was wm.j.l. = −0.0071,

at the end the value is wm.j.l. = −5.8630 · 10−7 ≃ 0.

After that, the performances in a full dynamics environment are reported.

4.1 Single task resolution 107

0 5 10 15 20 25 30
Time [s]

−0.007

−0.006

−0.005

−0.004

−0.003

−0.002

−0.001

0.000

di
st
an

ce
 fr
om

 m
.j.
l.

distance from m.j.l.

Figure 4.91: Distance from mechanical joint limits measure of the right arm.

0 5 10 15 20 25 30

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

po
sit

io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

0 5 10 15 20 25 30

−3

−2

−1

0

1

2

3

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r
ad

]

θx [rad] θy [rad] θz [rad]

Figure 4.92: End-effector position (left) and orientation (right).

0 5 10 15 20 25 30
Time [s]

−0.15

−0.10

−0.05

0.00

0.05

e-
e
po

sit
io
n
ve

lo
cit

y
[m

/s
]

ṗx [m/s] ṗy [m/s] ṗz [m/s]

0 5 10 15 20 25 30
Time [s]

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

e-
e
or

ie
nt

at
io
n

ve
lo
cit

y
[ra

d/
s]

̇θx [rad/s] ̇θy [rad/s] ̇θz [rad/s]

Figure 4.93: End-effector linear (left) and angular (right) velocities.

108Chapter 4. Single task resolution and tasks combination: simulations and results

0 5 10 15 20 25 30
Time [s]

−0.5

0.0

0.5

1.0

1.5

q
[ra

d]

q1 [rad]
q2 [rad]
q3 [rad]

q4 [rad]
q5 [rad]

q6 [rad]
q7 [rad]

0 5 10 15 20 25 30
Time [s]

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

̇ q
[ra

d/
s]

q̇1 [rad/s]
q̇2 [rad/s]
q̇3 [rad/s]

q̇4 [rad/s]
q̇5 [rad/s]

q̇6 [rad/s]
q̇7 [rad/s]

Figure 4.94: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

The robot reaches the final configuration for the arm

q = [6.608·10−4,−5.491·10−1,−1.852·10−3, 1.282−1.343·10−2, 2.687·10−1, 1.387·10−2]

and the pose

p = [0.636, −0.833, 0.079, −0.788, −0.004, 2.573]

The initial value of the distance from mechanical joint limits was wm.j.l. = −0.0071,

at the end the value is wm.j.l. = −9.864 · 10−7 ≃ 0.

Figure 4.95: Maximization of the distances from mechanical joint limits with the right arm.

4.2 Tasks combination 109

4.1.5 Useless distracting task: turn head

An extra and useless task was introduced to show robustness to useless tasks of

the algorithm. In this case, the robots head plate is simply allowed to rotate, with

the addition of a revolute joint. Here the performances of that task are reported,

imposing on the joint a velocity of 0.1 rad/s.

0 2 4 6 8 10
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

q h
ea
d [

ra
d]

qhead [rad]

0 2 4 6 8 10
Time [s]

0.00

0.02

0.04

0.06

0.08

0.10

̇ q h
ea
d [

ra
d/
s]

q̇head [rad/s]

Figure 4.96: Position (left) and velocity (right) of the head joints.

Figure 4.97: Baxter robot with straight head pan (left) and with rotating head pan (right).

4.2 Tasks combination

In this section, the combinations trough null space projector (section 2.1.6) of

different tasks are presented. Both the order of the combinations and the param-

eters are chosen to show the effect on the robot, for the learned stacks part refer

to the Genetic Programming chapter (chapter 5). The following results are all

obtained using the right arm of the robot.

110Chapter 4. Single task resolution and tasks combination: simulations and results

4.2.1 Inverse Kinematic & Maximization of Manipulability

The results are compared with Inverse Kinematic task alone and then with Maxi-

mization of Manipulability. The parameters are the same used in section 4.1 with

the same initial configuration and target pose for the right slave arm. No obsta-

cles are present in the simulation and the results are showed in an environment

with kinematic only.

0 2 4 6 8 10
Time [s]

0.085

0.090

0.095

0.100

0.105

0.110

0.115

0.120

0.125

m
an

ip
ul
ab

ilir
y
m
ea

su
re

manipulabiliry measure

0 2 4 6 8 10
Time [s]

0.1150

0.1175

0.1200

0.1225

0.1250

0.1275

0.1300

0.1325
m
an

ip
ul
ab

ilir
y
m
ea

su
re

manipulabiliry measure

Figure 4.98: On the left the manipulability measure with the only Inverse Kinematic task, on the
right the same measure with the combination of the two tasks.

0 2 4 6 8 10
Time [s]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

po
sit

io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

0 2 4 6 8 10
Time [s]

−3

−2

−1

0

1

2

3

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r
ad

]

θx [rad] θy [rad] θz [rad]

Figure 4.99: End-effector position (left) and orientation (right).

4.2 Tasks combination 111

0 2 4 6 8 10
Time [s]

−0.6

−0.4

−0.2

0.0

0.2
po

sit
io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

0 2 4 6 8 10
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 4.100: Position (left) and orientation (right) errors.

0 2 4 6 8 10
Time [s]

−0.15

−0.10

−0.05

0.00

0.05

e-
e
po

sit
io
n
ve

lo
cit

y
[m

/s
]

ṗx [m/s] ṗy [m/s] ṗz [m/s]

0 2 4 6 8 10
Time [s]

−0.3

−0.2

−0.1

0.0
e-

e
or

ie
nt

at
io
n

ve
lo
cit

y
[ra

d/
s]

̇θx [rad/s] ̇θy [rad/s] ̇θz [rad/s]

Figure 4.101: End-effector linear (left) and angular (right) velocities.

0 2 4 6 8 10
Time [s]

−2

−1

0

1

2

3

q
[ra

d]

q1 [rad]
q2 [rad]
q3 [rad]

q4 [rad]
q5 [rad]

q6 [rad]
q7 [rad]

0 2 4 6 8 10
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

̇ q
[ra

d/
s]

q̇1 [rad/s]
q̇2 [rad/s]
q̇3 [rad/s]

q̇4 [rad/s]
q̇5 [rad/s]

q̇6 [rad/s]
q̇7 [rad/s]

Figure 4.102: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

It is possible to observe from figure 4.98 that the manipulability measure is in-

creased solving the same inverse kinematic problem with the arm. Looking at

the plots in figure 4.100, it is possible to observe that the task primary task, the

inverse kinematic, can be solved respecting the trajectory time and nullifying the

112Chapter 4. Single task resolution and tasks combination: simulations and results

error of both position and orientation. Making a comparison with the plots in

section 4.1.1, it is possible to observe that the velocities in joint configuration are

different, with q̇3 and q̇5 which saturate for a period of time. Furthermore, null

space combination should not modify the position and orientation of the end-

effector of the main task. However it is possible to notice how the trajectory is

slightly different in the same period of the saturations. Without a constraint on

the maximum and minimum of velocities, the trajectory of the end-effector would

be the same. At the end the final Manipualbility Measure value is wmanip. = 0.114,

while without the prioritized combination and with Inverse Kinematic only is

wmanip. = 0.0836. The final end-effector pose is the same of section 4.1.1, wile the

final joint configuration is

q = [0.324, 0.092, −2.038, 1.001, 2.932, 1.581, −1.188],

which is different from the one obtained in section 4.1.1 for Inverse Kinematic

only. This happens because of the presence of a secondary task, that has an

impact on the joint velocities.

Note that the initial manipulability measure was wmanip. = 0.124, bigger than

the final one. In fact, the maximization of the measure has a secondary order of

priority with respect to the Inverse Kinematic task.

4.2.2 Obstacle avoidance & Inverse Kinematic

Obstacle along the path

In a fist case case an obstacle was added along the path of the right slave arm.

The objective of the robot is to reach the desired pose with its end-effector,

without colliding with the obstacle and maintaining the maximum distance from

it, namely rkarm . The parameters are the same used in section 4.1 for both the

tasks. Clearly in this case the obstacle avoidance has an higher priority with

respect to the inverse kinematic task and, the obstacles are placed is such a

way that the robot collide if the prioritized order is inverted or only the Inverse

Kinematic is executed.

4.2 Tasks combination 113

][H]

0 2 4 6 8 10
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

di
st
an

ce
s [

m
]

sens 0° [m]
sens 60° [m]

sens 120° [m] sens 180° [m] sens 240° [m] sens 300° [m]

Figure 4.103: 3rd site sensor distances.

0 2 4 6 8 10
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

po
sit

io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

0 2 4 6 8 10
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 4.104: Position (left) and orientation (right) errors.

0 2 4 6 8 10
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

q
[ra

d]

q1 [rad]
q2 [rad]
q3 [rad]

q4 [rad]
q5 [rad]

q6 [rad]
q7 [rad]

0 2 4 6 8 10
Time [s]

−0.4

−0.3

−0.2

−0.1

0.0

0.1

̇ q
[ra

d/
s]

q̇1 [rad/s]
q̇2 [rad/s]
q̇3 [rad/s]

q̇4 [rad/s]
q̇5 [rad/s]

q̇6 [rad/s]
q̇7 [rad/s]

Figure 4.105: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

As it is possible to observe from the plots, the arm can reach the desired pose

without colliding with the obstacles. However, the behaviour of the robot is

delayed due to the fact that it maximizes its distance from the obstacle to rk.

114Chapter 4. Single task resolution and tasks combination: simulations and results

From plot in figure 4.103, it is possible to see how the obstacle is sensed at almost

2 s from the beginning of the simulation. The robot starts to move away from it

and velocities change as it is possible to see from plot in figure 4.105. From this

last plot, it is also possible to see how the chattering acts, imposing instantaneous

velocities and not a smooth trajectory. The time in which this happens, coincides

with the time in which in plot in figure 4.103 the distance oscillates between being

sensed with distance rk and not being sensed, changing the matrix Jo at each

simulation step.

At the end of the process, the robot ends with configuration

q = [−0.267, −0.703, 0.210, 1.044, 0.872, 0.825, 1.392].

Obstacle in the Inverse Kinematic position

As second case, an obstacle (a sphere of radius r = 0.3 m) is placed in order to

include, in its volume, the Inverse Kinematic target. This will prevent the arm

to reach the desired pose but, on the other hand, it will show how the null space

projection affects the execution of a duty of the robot. In particular it will prove

the effectiveness of the obstacle avoidance task, also while the robot attempts

to reach an unfeasible pose. In this example, the chattering avoidance between

tasks is crucial to prevent high instantaneous velocities as possible. However, as

it is possible to see from plots, chattering can not be avoided at all.

The chosen parameters are γ = 1 and ttrajectory = 5 s for the inverse kinematic

task and γo = 1, ttrajectory = 0.5 s and rkarm = sk = 0.2 m for the obstacle

avoidance task. The target pose for the right end-effector is :

p = [0.7, −0.855, 0.4, 0,
2π

3
, 0].

4.2 Tasks combination 115

0 2 4 6 8 10 12 14
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2
di
st
an

ce
s [

m
]

sens 0° [m] sens 135° [m] sens 180° [m] sens 225° [m]

Figure 4.106: 2nd site sensor distances.

0 2 4 6 8 10 12 14
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

di
st
an

ce
s [

m
]

sens 0° [m]
sens 60° [m]

sens 120° [m] sens 180° [m] sens 240° [m] sens 300° [m]

Figure 4.107: 3rd site sensor distances.

0 2 4 6 8 10 12 14
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

po
sit

io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

0 2 4 6 8 10 12 14
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 4.108: Position (left) and orientation (right) errors.

116Chapter 4. Single task resolution and tasks combination: simulations and results

0 2 4 6 8 10 12 14
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

q
[ra

d]

q1 [rad]
q2 [rad]
q3 [rad]

q4 [rad]
q5 [rad]

q6 [rad]
q7 [rad]

0 2 4 6 8 10 12 14
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

̇ q
[ra

d/
s]

q̇1 [rad/s]
q̇2 [rad/s]
q̇3 [rad/s]

q̇4 [rad/s]
q̇5 [rad/s]

q̇6 [rad/s]
q̇7 [rad/s]

Figure 4.109: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

As it is possible to note, the end-effector can not reach the desired target pose,

due to the fact that the obstacle is in the target position. The robot reaches

a sort of equilibrium, maintaining the distance from the obstacle. However, as

it is possible to observe from plot in figure 4.107, the distance oscillate between

the value of sk and a value slightly bigger, creating chattering and instantaneous

velocities (figure 4.109).

The robot reaches the final configuration:

q = [0.071, −0.392, 0.484, 0.595, 0.995, 1.829, −1.209]

and the final pose

p = [0.787, −0.442, 0.409, 1.348, 0.530, 1.669],

which is not the desired one. Anyway, also if the pose is not the correct one, the

robot avoid the collision with the obstacle, maintaining the distance and, in the

defined priority order, this is the main objective.

4.2.3 Useless distracting task & Inverse Kinematic

In this section the objective is to prove that this task will prevent the robot to

reach its goal. The combination is given first by the priority order [n2, n5] and

then [n5, n2], where n2 indicates the inverse kinematic task, while n5 the useless

task. The right arm, as slave, has to accomplish the same task of section 4.1.1.

In the first case, while the priority order is [n2, n5], the result is the same of

section 4.1.1 and the arm complete the task. Only the errors of the pose are

reported to show the goodness of the combination.

4.2 Tasks combination 117

0 2 4 6 8 10
Time [s]

−0.6

−0.4

−0.2

0.0

0.2
po

sit
io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

0 2 4 6 8 10
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 4.110: Position (left) and orientation (right) errors.

On the other hand, if the priority order is given by [n5, n2], the robot can not

reach the target pose since it is ”distracted” from the useless task.

0 2 4 6 8 10
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

po
sit

io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

0 2 4 6 8 10
Time [s]

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r

ad
]

θx [rad] θy [rad] θz [rad]

Figure 4.111: End-effector position (left) and orientation (right).

0 2 4 6 8 10
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

po
sit

io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

0 2 4 6 8 10
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 4.112: Position (left) and orientation (right) errors.

118Chapter 4. Single task resolution and tasks combination: simulations and results

0 2 4 6 8 10
Time [s]

−0.5

0.0

0.5

1.0

1.5

q
[ra

d]

q1 [rad]
q2 [rad]
q3 [rad]

q4 [rad]
q5 [rad]

q6 [rad]
q7 [rad]

0 2 4 6 8 10
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

̇ q
[ra

d/
s]

q̇1 [rad/s]
q̇2 [rad/s]
q̇3 [rad/s]

q̇4 [rad/s]
q̇5 [rad/s]

q̇6 [rad/s]
q̇7 [rad/s]

Figure 4.113: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

As it is possible to observe from the plots, the errors of position and orientation

diverge and there are instantaneous velocities. This happens due to the choice

of the Jacobian of the useless task, which is a random matrix. In the null space

combination, the N matrix (equation 2.49) is affected by the randomness of

the Jacobian. This, allows the robot to obtain a certain amount of freedom of

movement at each iteration, which ca :

q̇ = 07 +Nq̇I.K..

If the Jacobian was chosen such that N = 0, then q̇ = 0 and the robot would be

motionless.

4.2.4 All tasks

In this section, all the tasks together are tried. The priority order of the combi-

nation is given by [n1, n2, n3, n4], where the labels correspond to the one reported

in section 3.7.

The parameters are selected as:

• γo = 1, to = 5 s, rkbase = rkarm = 0.5 m and sk = 0.2 m for the obstacle

avoidance task

• γ = 1 and t = 5 s for the inverse kinematic task

• k0 = 100 for the maximization of the manipulabilty task

• k0 = 100 for the maximization of distances from m.j.l. task.

4.2 Tasks combination 119

Then, the right arm in slave configuration have to reach the same target pose

starting from same condition of section 4.2.2 in an environment with kinematic

only.

0 5 10 15 20 25 30
Time [s]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

po
sit

io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

0 5 10 15 20 25 30
Time [s]

−3

−2

−1

0

1

2

3

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r
ad

]

θx [rad] θy [rad] θz [rad]

Figure 4.114: End-effector position (left) and orientation (right).

0 5 10 15 20 25 30
Time [s]

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

e-
e
po

sit
io
n
ve

lo
cit

y
[m

/s
]

ṗx [m/s] ṗy [m/s] ṗz [m/s]

0 5 10 15 20 25 30
Time [s]

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

e-
e
or

ie
nt

at
io
n

ve
lo
cit

y
[ra

d/
s]

̇θx [rad/s] ̇θy [rad/s] ̇θz [rad/s]

Figure 4.115: End-effector linear (left) and angular (right) velocities.

0 5 10 15 20 25 30
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

di
st
an

ce
s [

m
]

sens 0° [m]
sens 60° [m]

sens 120° [m] sens 180° [m] sens 240° [m] sens 300° [m]

Figure 4.116: 3rd site sensor distances.

120Chapter 4. Single task resolution and tasks combination: simulations and results

0 5 10 15 20 25 30
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

po
sit

io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

0 5 10 15 20 25 30
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
er
ro
r [

ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 4.117: Position (left) and orientation (right) errors.

0 5 10 15 20 25 30
Time [s]

0.09

0.10

0.11

0.12

m
an

ip
ul
ab

ilir
y
m
ea

su
re

manipulabiliry measure

0 5 10 15 20 25 30
Time [s]

−0.0095

−0.0090

−0.0085

−0.0080

−0.0075

−0.0070

−0.0065

di
st
an

ce
 fr
om

 m
.j.
l.

distance from m.j.l.

Figure 4.118: Manipulability measure (left) and distance from mechanical joint limits measure
(right)

0 5 10 15 20 25 30
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

q
[ra

d]

q1 [rad]
q2 [rad]
q3 [rad]

q4 [rad]
q5 [rad]

q6 [rad]
q7 [rad]

0 5 10 15 20 25 30
Time [s]

−0.4

−0.3

−0.2

−0.1

0.0

0.1

̇ q
[ra

d/
s]

q̇1 [rad/s]
q̇2 [rad/s]
q̇3 [rad/s]

q̇4 [rad/s]
q̇5 [rad/s]

q̇6 [rad/s]
q̇7 [rad/s]

Figure 4.119: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

In this case, that combines all the task in the same simulation, several things

can be observed. First of all, the robot can reach the final desired pose, without

colliding with the obstacle and keeping distances from it. The target pose, how-

ever, can not be reached in the specified trajectory time because of the object

4.2 Tasks combination 121

positioned along the path.

Once the robot is in the desired pose with its end-effector, the arm starts to move

in order to maximize the manipulability of the arm. In fact, the velocities q̇ are

not null, and from plots it is possible to observe the manipulability increasing

while distance from mechanical joint limits is decreasing, since it has a lower pri-

ority order. This means that in this case, there are not enough degrees of freedom

to solve all the task in the same simulation. Then looking at the plots which refer

to the end-effector, once it has reached the desired pose it stays fixed. Even if

the arm is moving, confirming that the null space projector would not modify the

end-effector velocities.

4.2.5 Weighted/Non-weighted combination of the tasks with

null space projector

One of the objective of this work, was to introduce a convex combination of

tasks via null space projection with prioritized order. So that, each task should

have a wight wi such that
∑n

i=1wi = 1, where n is the number of tasks in the

stack. These weights, would have been multiplied with the result of the null space

projection of the corresponding task like

q̇ = waq̇a +Nawbq̇b + wcNabq̇c + wdNabcq̇d. (4.1)

Unfortunately this solution turns out to be unfeasible. In fact, the scaling with

a weight of the velocities once they are already transformed in the joint space,

modify the structure of the solution preventing the robot to reach its goal. This

leads to a wrong solution of the task that can not be predicted in advance.

The choice, after the problem arises, was to simply take off weights. In fact the

null space projector already defines a priority order, and no weighting of the tasks

is needed.

So that, the final combination trough null space projection is simply given by

q̇ = q̇a +Naq̇b +Nabq̇c +Nabcq̇d. (4.2)

Despite the result achieved is not correct, it is interesting to observe the effect of

the addition of a weight in front of the velocities in joint space.

However, this holds for velocities obtained with equations 2.20 and 2.37 obtained

with a matrix multiplication with the Jacobian. Regarding velocities obtained

122Chapter 4. Single task resolution and tasks combination: simulations and results

with equation 2.44, the multiplication of a weight simply scale the gradient mak-

ing it lower. This leads to a delayed solution of the task but still correct. This

result hold also in the case in which the robot simply solves a single task without

the null space projector.

0 2 4 6 8 10
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

po
sit

io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

0 2 4 6 8 10
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 4.120: Example of position (left) and orientation (right) errors of a weighted task.

The case of the error pose reported in figure 4.120 is the same of section 4.1.1,

but the velocity is weighted by w = 0.1 like q̇ = 0.1 · q̇I.K. As it is possible to

observe from the plot, the arm do not converge toward the desired pose but, it

diverges. This prevents the robot to accomplish its task.

Chapter 5

Genetic programming: simulations

and results

In this chapter, the results obtained during the learning phase are presented. All

the simulations, in this chapter, are conducted in an environment without dy-

namics and with kinematics only. This will increase the efficiency of the learning

process, making the simulations lighter, without compromising the final result.

5.1 Initialization and Genetic Operations

First of all, some examples of the behaviour of the genetic programming algorithm

are showed, in order to print out its functioning. An initial population will be

created and, after that, the genetic operations will be conduced on the stacks.

In this case the stacks are not executed and their cost will always be -1. In cases

like that, in which two or more algorithms have the same cost during the genetic

selection phase, one is chosen randomly between the two with equal probability.

In this first phase the order of the stack is randomly selected.

This examples, will also provide a clearer overview of the representation of stacks

in this work (section 2.2.2). In fact, it is possible to observe how they are built as

lists in Python programming language. Then, each list, contains the cost in first

position and another list for each specific task, with all the information necessary

to carry it out the simulation.

Initialization

Following, an example of a new initialized population of 10 individuals is reported:

123

124 Chapter 5. Genetic programming: simulations and results

• 1st stack: [[-1, [’n2’, True, [0.4377713247475583, 6.521411444358634]], [’n4’,

True, [50.00909144224303]], [’n3’, False, [56.421085714393506]], [’n1’, True,

[0.25835470924121684, 0.24470071750461747, 0.19660605013514482,

1.2459840375539286, 0.8877340468345674]]]

• 2nd stack: [-1, [’n1’, True, [0.26403069227677545, 0.1908338455487012,

0.16420314839027117, 0.5917863860534613, 8.521208744722797]], [’n4’, True,

[78.52002002748539]], [’n3’, True, [8.597694924717548]], [’n2’, False

, [1.3619810520123647, 7.168015466457151]]]

• 3rd stack: [-1, [’n4’, True, [47.10999991854254]], [’n3’, True, [93.14232630274813]],

[’n2’, True, [0.3333698436407364, 2.867010799285742]], [’n1’, True

, [0.6537029304865376, 0.5455380810746031, 0.1793292369376181,

1.4802895349743042, 4.591419638659162]]]

• 4th stack: [-1, [’n2’, True, [1.2571116111531975, 4.693018504655625]], [’n4’,

True, [15.180605683240477]], [’n3’, True, [53.68055662600112]], [’n1’, True,

[0.47982203469839146, 0.430663748054481, 0.26316973328512744,

1.594759204620307, 1.4545608701340917]]]

• 5th stack: [-1, [’n3’, False, [43.20689379085039]], [’n1’, True, [0.5308147271544323,

0.23119341884484415, 0.14683128553032876, 0.05440570282885515,

5.53081815779331]], [’n2’, True, [1.411818903537741, 0.2680903097583587]],

[’n4’, True, [30.38956576585312]]]

• 6th stack: [-1, [’n2’, True, [0.7698344633722882, 5.317272612659643]], [’n4’,

True, [78.18596159177291]], [’n1’, True, [0.5832866180394054, 0.4804730748782273,

0.20407729261852686, 0.6185014908706934, 5.4982000531614545]], [’n3’, True,

[23.734895914374444]]]

• 7th stack: [-1, [’n2’, True, [1.4660259721220972, 6.0421345737932715]], [’n3’,

True, [91.21953645994083]], [’n4’, True, [64.40584293882264]], [’n1’, True,

[0.7698789180277057, 0.6693923027427455, 0.5512658023268667,

1.3693159425961379, 8.886790343317696]]]

• 8th stack: [-1, [’n2’, True, [0.4662287689639555, 8.481043602536278]], [’n3’,

True, [66.25061268553638]], [’n1’, False, [0.90794984265897, 0.35307503428243947,

0.2555955959937183, 0.019232730536018705, 5.624467556960831]], [’n4’, True,

[37.06160559816853]]]

5.1 Initialization and Genetic Operations 125

• 9th stack: [-1, [’n1’, True, [0.6012094714952207, 0.24535103413632867,

0.14525220096750563, 1.1604918455059652, 5.773392667136015]], [’n3’, True,

[46.473248533818676]], [’n2’, True, [1.8266519451799703, 0.5945901348604077]],

[’n4’, True, [54.65815744955243]]]

• 10th stack: [-1, [’n2’, True, [0.9147172126995893, 9.244523804605869]]

, [’n3’, True, [14.297853669217108]], [’n1’, True, [0.947887902163306,

0.9161438894951406, 0.6193458091093882, 1.9579185107021035,

9.277438338142053]], [’n4’, True, [47.737015624086176]]]]

Some examples of genetic operations are following reported. It is possible to

observe how, the stacks are all different each other, with different orders and

parameters.

Remember that, the genetic selection is made pairing the stacks and selecting

as survivor the one with the lowest cost in general, but since all the stacks have

cost = −1 one of the two is randomly selected. The other one will be lost forever.

Crossover

In this section some examples of crossover are reported.

From the two stacks:

[-1, [’n2’, True, [0.4377713247475583, 6.521411444358634]], [’n4’, True

, [50.00909144224303]], [’n3’, False, [56.421085714393506]], [’n1’, True

, [0.25835470924121684, 0.24470071750461747, 0.19660605013514482,

1.2459840375539286, 0.8877340468345674]]],

[-1, [’n2’, True, [1.4660259721220972, 6.0421345737932715]], [’n3’, True,

[91.21953645994083]], [’n4’, True, [64.40584293882264]], [’n1’, True

, [0.7698789180277057, 0.6693923027427455, 0.5512658023268667,

1.3693159425961379, 8.886790343317696]]],

it is possible to obtain the following offspring from their combination, using the

priority order of the first one, which is randomly selected among the two:

[-1, [’n2’, True, [0.4377713247475583, 6.521411444358634]], [’n4’, True,

[64.40584293882264]], [’n3’, False, [56.421085714393506]], [’n1’, True

, [0.7698789180277057, 0.6693923027427455, 0.5512658023268667,

1.3693159425961379, 8.886790343317696]]].

Instead, from the two parents stacks:

126 Chapter 5. Genetic programming: simulations and results

[-1, [’n4’, True, [47.10999991854254]], [’n3’, True, [93.14232630274813]],

[’n2’, True, [0.3333698436407364, 2.867010799285742]], [’n1’, True

, [0.6537029304865376, 0.5455380810746031, 0.1793292369376181,

1.4802895349743042, 4.591419638659162]]],

[-1, [’n1’, True, [0.6012094714952207, 0.24535103413632867, 0.14525220096750563,

1.1604918455059652, 5.773392667136015]], [’n3’, True, [46.473248533818676]],

[’n2’, True, [1.8266519451799703, 0.5945901348604077]], [’n4’, True

, [54.65815744955243]]],

it is possible to obtain the following offspring from the combination of the two,

using a new randomly selected priority order:

[-1, [’n2’, True, [1.8266519451799703, 0.5945901348604077]], [’n1’, True,

[0.6012094714952207, 0.24535103413632867, 0.14525220096750563,

1.1604918455059652, 5.773392667136015]], [’n4’, True, [47.10999991854254]]

,[’n3’, True, [46.473248533818676]]].

Clearly, if the priority order is already fixed, the crossover will combine different

stacks without the opportunity to randomly change the order of the offspring. In

this way, the priority order will always be the same.

Mutation

In this section some examples of mutation are reported.

From the parent stack:

[-1, [’n4’, True, [47.10999991854254]], [’n3’, True, [93.14232630274813]],

[’n2’, True, [0.3333698436407364, 2.867010799285742]], [’n1’, True

, [0.6537029304865376, 0.5455380810746031, 0.1793292369376181,

1.4802895349743042, 4.591419638659162]]],

it is possible to obtain trough mutation, activation/deactivation of a task, the

following offspring:

[-1, [’n4’, True, [47.10999991854254]], [’n3’, True, [93.14232630274813]],

[’n2’, True, [0.3333698436407364, 2.867010799285742]], [’n1’, False

, [0.6537029304865376, 0.5455380810746031, 0.1793292369376181,

1.4802895349743042, 4.591419638659162]]].

From the stack

5.2 Best Prioritized Order of the Stack of Tasks 127

[-1, [’n2’, True, [1.4660259721220972, 6.0421345737932715]], [’n3’, True,

[91.21953645994083]], [’n4’, True, [64.40584293882264]], [’n1’

, False, [0.7698789180277057, 0.6693923027427455, 0.5512658023268667,

1.3693159425961379, 8.886790343317696]]],

it is possible to obtain through the change of a parameter a new offspring stack:

[-1, [’n2’, True, [0.6537029304865376, 6.0421345737932715]], [’n3’, True,

[91.21953645994083]], [’n4’, True, [64.40584293882264]], [’n1’

, False, [0.7698789180277057, 0.6693923027427455, 0.5512658023268667,

1.3693159425961379, 8.886790343317696]]].

From the stack

[-1, [’n2’, True, [1.4660259721220972, 6.0421345737932715]], [’n3’, True,

[91.21953645994083]], [’n4’, True, [64.40584293882264]], [’n1’, True

, [0.7698789180277057, 0.6693923027427455, 0.5512658023268667,

1.3693159425961379, 8.886790343317696]]],

it is possible to obtain trough a swap of priority order

[-1, [’n2’, True, [1.4660259721220972, 6.0421345737932715]], [’n4’, True,

[64.40584293882264]],[’n3’, True, [91.21953645994083]], [’n1’, True

, [0.7698789180277057, 0.6693923027427455, 0.5512658023268667,

1.3693159425961379, 8.886790343317696]]].

Clearly, if the priority order is already fixed, the mutation can not change it.

5.2 Best Prioritized Order of the Stack of Tasks

In the first phase, it is important to derive the best possible priority order for the

stack of tasks trough experience, thanks to simulations. The order of the stack

can be randomly initialized in the first generation of stacks and the order of the

offspring can be changed as explained in section 3.9 and showed in section 5.1.

In order to achieve the best prioritized order, many simulations in different en-

vironments and cases were conduced. Furthermore, several cost functions were

considered.

However it is possible to notice that the Obstacle Avoidance task has a crucial

role also in the case in which the distances from obstacles are not considered in

the cost. On the other hand, in the case in which user wants to move the robot

128 Chapter 5. Genetic programming: simulations and results

towards a certain pose to perform a duty, the precision (and then the Inverse

Kinematic tasks) plays a crucial role in the prioritized order. Differently, the

remaining tasks are not crucial and may intervene in other ways in the same duty

depending on the specific cost function.

It is important to remember that the initial robot’s arms configuration is ran-

domly initialized at the beginning of each simulation during the learning phase.

Nevertheless, the plots reported are obtained testing the best algorithms starting

the robot with base configuration

qbase = [0, 0, 0]

and arms configuration

qarm = [±0.403, −0.636, ±0.114, 1.432, ±0.735, 1.205, ∓0.269]

for right and left arm in joint space.

In this first phase, while learning the best possible order for the stack, the pa-

rameters are fixed and the tasks are always active. Since this, during mutation

and crossover, only the order of the tasks can change. This helps in finding the

widest number of possible combinations. Following, the fixed parameters list for

each task is reported:

• Inverse Kinematic: [2, 5]

• Collision Avoidance: [1, 0.5, 0.1, 2, 0.1]

• Maximization of the Manipulability measure: [100]

• Maximization of distances from Mechanical Joint Limits: [100].

5.2.1 Priority of Obstacle Avoidance

First of all, the order of the Obstacle Avoidance task is fixed. In fact, if one or

more obstacles are present into the environment it is crucial to avoid them, expect

in particular lucky cases in which the robot avoids them thanks to a particular

combination of velocities. Clearly, if no obstacles are present in the environment

the priority position of this task is not irrelevant, since it is possible for the robot

to collide also with itself.

So that, at the end of the genetic process all the stacks have the task n1 in the first

position, independently from the designed cost function by the user. Otherwise,

5.2 Best Prioritized Order of the Stack of Tasks 129

the stacks will have a really high cost in most of the cases, which means that a

collision occurs.

As an example, the arm of the robot has to reach the target pose

pd = [0.1, −0.9, −0.1, 0, 4π
3
, 0] and an obstacle is placed close to the target

position. At the end of 10 generations, all the stacks have almost the same

configuration and the best result is:

[[0.13358175950958473, [’n1’, True, [1, 0.5, 0.1, 2, 0.1]], [’n2’, True, [2, 5]],

[’n3’, True, [100]], [’n4’, True, [100]]]

(in which the cost function is a weighted combination given by cost = ||errorpose||2).
On the other hand, from a mutation was obtained

[[1010, [’n2’, True, [2, 5]], [’n1’, True, [1, 0.5, 0.1, 2, 0.1]], [’n3’, True, [100]],

[’n4’, True, [100]]],

where the cost is too high since the arm collided with the obstacle. It is possible

to note from this example that, even if the distances which are related to the

obstacle avoidance task are not included in the cost function, it is crucial that

this task is in first priority position to prevent collisions.

0.0 0.5 1.0 1.5 2.0
Time [s]

3

4

5

6

7

8

co
st

cost

0 2 4 6 8 10 12 14
Time [s]

0

2

4

6

8

10

12

co
st

cost

Figure 5.1: Example of the cost evolution during the execution of a duty. On the left the Obstacle
avoidance task is not in first position, on the right it is. The cost function is given by:
cost = ||errorpose||2.

As it is possible to note from the plots in figure 5.1 the simulation is stopped

before the arm can reach the desired pose with its end-effector. This because the

arm collided with an obstacle and, since this, cost 1010 is assigned to the stack

once the simulation is stopped.

130 Chapter 5. Genetic programming: simulations and results

5.2.2 Priority of Inverse Kinematic

Once the first position in the priority order is assigned, it is possible to proceed

with the second one.

With the current tasks, it is mandatory to choose the Inverse Kinematic one.

Simulating for 10 generations, fixing n1 with higher priority the Inverse Kinematic

always has second priority position if the precision is included in the cost function.

Otherwise the robot is not able to reach the desired pose. Differently from the

Obstacle Avoidance task, if the measure of this task is not included in the cost,

there will be no consequences on the achievement of the final goal.

This result is given by the fact that, if one of the other two remaining tasks

come first than the Inverse Kinematic, the robot end-effector is prevented from

reaching the desired pose, since for all the three tasks the same Jacobian is used.

This result can be theoretically proved. Starting from the null space equations

2.49 and 2.19, it is possible to write

(
In − J †J

)
J †vIK = J † − J † = 0n. (5.1)

Since this, the effect of the task on the arm will be null, preventing the achieve-

ment of the tasks target. The same will not happen if maximization of the Ma-

nipulability or distance from Mechanical Joint Limits tasks have a lower priority

with respect to Inverse Kinematic since the velocities given by equations 2.43

and 2.46 are given by gradients and do not imply the usage of the pseudo-inverse

Jacobian.

This result is confirmed through the learning simulation of the robot, as said at

the beginning of the section, obtaining the same result without including this a

priori knowledge.

Following an example of this behaviour is reported in the empty environment,

with a simplified stack and cost = ||epose||.

Stack [-1, [’n2’, True, [1, 5]], [’n3’, True, [100]]]:

5.2 Best Prioritized Order of the Stack of Tasks 131

0 2 4 6 8 10
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
co

st

cost

0 2 4 6 8 10
Time [s]

0.1150

0.1175

0.1200

0.1225

0.1250

0.1275

0.1300

0.1325

m
an

ip
ul
ab

ilir
y
m
ea

su
re

manipulabiliry measure

Figure 5.2: Cost (left) and manipulability measure (right) evolution during the simulation time.

0 2 4 6 8 10
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

po
sit

io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

0 2 4 6 8 10
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 5.3: Position (left) and orientation (right) errors.

Stack [-1, [’n3’, True, [100]], [’n2’, True, [1, 5]]]:

0 2 4 6 8 10
Time [s]

4

5

6

7

8

co
st

cost

0 2 4 6 8 10
Time [s]

0.124

0.126

0.128

0.130

0.132

0.134

0.136

0.138

0.140

m
an

ip
ul
ab

ilir
y
m
ea

su
re

manipulabiliry measure

Figure 5.4: Cost (left) and manipulability measure (right) evolution during the simulation time.

132 Chapter 5. Genetic programming: simulations and results

0 2 4 6 8 10
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

po
sit

io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

0 2 4 6 8 10
Time [s]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 5.5: Position (left) and orientation (right) errors.

As it is possible to observe in this second case, the arm can not reach the desired

pose with that priority order.

5.2.3 Priority of Maximization of Manipulability and distance

from M.J.L.

The third and fourth priority position can change depending on the cost and on

the target pose. Several simulations were conduced and, it is possible to show

that if, proportionally, the importance of manipulability is higher the relate task

will be in third position. The same for maximization of distances from mechanical

joint limits. The target pose can heavily influence the position of the two tasks

too, since n3 tends to enclose the arm while n4 tends to extend it. In this way if the

arm, for example, needs to satisfy a configuration such that it is almost extended,

maximization of distances from mechanical joint limits task will be in third place.

So that, third and forth priority position can be swapped depending on the specific

situation. However, it can be noticed that in all the conduced simulations, the

number of failures (and then higher cost) of the robot due to singularities is

lower if n3 is in third position. This result can be theoretically confirmed since

maximize manipulability means escaping from singularities. So, since the order of

the stack, have to be fixed for the next phase, Maximization of the Manipulability

measure task is fixed in third priority position, while Maximization of distances

from Mechanical Joint Limits task is fixed in forth position.

5.2.4 Best derived Prioritized Order of the Stack of Tasks

In conclusion, the best possible order for the stack of tasks is the one derived

trough learning in figure 5.6, and it is valid for both slave and master arm and

5.3 Best Parameters for the Stack of Tasks 133

for the base.

Obstacle Avoidance

Inverse Kinematic

Maximization of

the Manipulability

Maximization of dis-

tance from M.J.L.

Figure 5.6: Best stack of tasks.

This order allows the robot to reach the desired end-effector pose without col-

liding with obstacles along its path. As previously derived in section 5.2.2, it is

important that the Maximization of the Manipulability and the Maximization of

distance from Mechanical Joint Limits have a lower priority with respect to the

Inverse Kinematic task, if the goal of the robot is to reach a desired pose. While

as derived in section 5.2.3 the order of the two remaining tasks may depends on

the specific case.

5.3 Best Parameters for the Stack of Tasks

In this section, once the best priority order is fixed and then, the best parameters

can be found through learning with genetic programming. It is possible to ran-

domly initialize the parameters of each task and then allowing them to change

during simulation. The selection of the parameters is highly influenced by the

cots function (for example if a task is considered through the cost function with

relative cost) and it is not possible to find a general solution that satisfies all of

them uniquely. So that, some example of learning of parameters are reported

with relative cost functions. During the learning processes, the initial robot con-

figuration of the the arms is randomly initialized at the beginning of each single

simulation. The base, on the other hand, always starts with pose q = [0, 0, 0].

Nevertheless, the plots reported are obtained testing the best algorithms starting

the robot with base configuration

qbase = [0, 0, 0]

and arms configuration

qarm = [±0.403, −0.636, ±0.114, 1.432, ±0.735, 1.205, ∓0.269].

134 Chapter 5. Genetic programming: simulations and results

5.3.1 Right slave arm precision - Empty environment

A first simulation is conduced in an environment with no obstacles in which, the

right slave arm has to reach, with its end-effector, the target pose:

pd = [0.7, −0.855, 0.4, 0,
2

3
π, 0].

The cost function is given by the precision only, namely cost = ||epose||2, the initial
population is made by 10 stacks and the algorithms stops after a maximum of 10

generations. Each single simulation lasts for 10 seconds.

At the end of the learning process the best algorithm in terms of cost is:

[7.805119815085215e-09, [’n1’, False, [0.6664701348988327,

0.11815516172949232, 1.5449203255977169, 0.6111134559947373]], [’n2’,

True, [1.2995040860177244, 3.894005338003036]], [’n3’,

False, [33.10591416613431]], [’n4’, True, [31.063502981128376]]].

As it is possible to observe, the cost based on precision error is really low (almost

zero), so that the reached precision is really high.

0 2 4 6 8 10
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

po
sit

io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

0 2 4 6 8 10
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 5.7: Position (left) and orientation (right) errors.

Obstacle avoidance and maximization of manipulability tasks are not active, since

they do not play a crucial role in this specific situation and environment. Note

that if there are no obstacles, Jo and q̇o are both null and then they do not act on

the joints of the robot and in the null space combination. On the other hand the

maximization of distances from mechanical joint limits is active even if it is not

crucial for the achievement of the final goal. But, its presence do not influence

the inverse kinematic task, allowing the robot to reach an high precision.

In the population of the 10th generation, several algorithms have the same struc-

5.3 Best Parameters for the Stack of Tasks 135

ture of the best one, with slightly different parameters and a bit higher cost (in

the same order, 10−9).

0 2 4 6 8 10
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

co
st

cost

Figure 5.8: Cost evolution during the simulation time.

As it is possible to observe from the plot in figure 5.8, the cost decreases accord-

ingly to the error decreasing.

Precision & time

A second sub-case was exploited about precision, with the introduction of time

in the cost function. So, now the cost is given by:

cost = 0.5 · ||epose||2 + 0.5 · t2,

where t is the time of the simulation. The set-up of the simulations is the same

of the previous case but, the single simulation of a stack stops earlier if all the

components of the pose error epose are such that ei < 10−3. Then, a simulation

is conduced and the final result is that the best algorithm is:

[37.49780059566292, [’n1’, False, [0.47769720002399096, 0.25710903191981793,

0.12315666941139539, 1.0300102508932005, 6.601423019085237]], [’n2’, True,

[1.498185820136733, 0.992253145308607]], [’n3’, True, [32.40971520489533]],

[’n4’, False, [98.51371815755876]]].

In this case, it is possible to observe how parameters change for the Inverse Kine-

matic task. In fact, the trajectory time is really small ttraj. = 0.992253145308607

s, because if the trajectory is completed in a small amount of time the cost is

clearly lower.

136 Chapter 5. Genetic programming: simulations and results

0 2 4 6 8
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

po
sit

io
n
er
ro
r [

m
]

epx [m] epy [m] epz [m]

0 2 4 6 8
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 5.9: Position (left) and orientation (right) errors.

This, because if the target is reached with the desired precision fast, the time

is smaller because the arm arrives earlier close to the desired pose. The desired

precision is reached in t = 8.67 s, as it is possible to observe in plot in figure 5.10.

Note also how, from plots in picture 5.9, the error for position goes to zero faster

with respect to the error for orientation.

0 2 4 6 8
Time [s]

0

5

10

15

20

25

30

35

co
st

cost

Figure 5.10: Cost evolution during the simulation time.

Looking at the cost, it is possible to observe how, in the beginning phase, it

decreases thanks to the higher precision reached. However, after that it starts

to grow with a exponential behavior given by the presence of the term t2 in the

cost function. Also in this case, the latest populations have stacks with similar

parameters.

5.3 Best Parameters for the Stack of Tasks 137

5.3.2 Right Master arm precision - Empty environment with

a wall

The task, cost function and the initial condition of the robot are the same of

section 5.3.1 but, in this case, a wall is placed between the robot and the goal

position and the arm is used in master configuration. Right slave arm has to

reach the target pose:

pd = [0.7, −1.7, 1.3, 0,
2

3
π, 0].

At the end of the learning process, the best stack is:

[1.41820747238802378, [’n1’, True, [0.5014486982670608, 0.1805397868749832,

0.16454565221094722, 1.1529072927840212, 8.599313395498248]], [’n2’, True,

[0.9456859434654472, 1.210091975875358]], [’n3’, True, [18.65010638992065]],

[’n4’, False, [11.818643817308317]]].

In this case, it is possible to note how the Obstacle Avoidance task is active,

since if it is not the robot will collide against the wall present in this simulation

environment. In the final population, several algorithms have parameters similar

to the best one. So, the robot achieve the minimum cost, maintaining an equilib-

rium between distance from the wall and precision. In fact it is possible to note

that the cost is substantially increased from the one derive in section 5.3.1, but

the robot do not collide, avoiding an even greater cost.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

1

2

3

4

5

co
st

cost

Figure 5.11: Cost evolution during the simulation time.

138 Chapter 5. Genetic programming: simulations and results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

po
sit

io
n
er
ro
r [

m
]

epx [m] epy [m] epz [m]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
er
ro
r [

ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 5.12: Position (left) and orientation (right) errors.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

di
st
an

ce
s [

m
]

sens 0° [m] sens 135° [m] sens 180° [m] sens 225° [m]

Figure 5.13: Arm 2nd site distances.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

di
st
an

ce
s [

m
]

sens 0° [m]
sens 60° [m]

sens 120° [m] sens 180° [m] sens 240° [m] sens 300° [m]

Figure 5.14: Arm 3rd site distances.

It is important to note that the parameters referring to distances in the obstacle

avoidance task are all close to the 10% of their potential range, meaning that the

5.3 Best Parameters for the Stack of Tasks 139

robot tries to activate this task mowing away from the wall as late as possible,

in order to reach an higher precision, and then, decrease the cost.

5.3.3 Precision & Distances from Obstacles - Static

Obstacles Environment

In this case obstacles were added in the simulation, using the Static Obstacle

Environment (section 3.1.2), creating a more complex setting for he simulation.

The cost function is given by

cost = 0.7 · ||epose||2 + 0.3 · 1
2

N∑
k=1

(rk − dk)
2,

and the right arm, as master, has to reach the target pose expressed in world

reference frame:

pd = [3.7, 1.7, , 1.3, 0,
2π

3
, 0].

So that, precision and distances from the obstacles have both weight in this

simulation. Each single simulation lasts 15 seconds.

Once the learning process is terminated after 10 generations, the best algorithm

among the last population of 10 elements is:

[4.1968870995830e-03, [’n1’, True, [0.59093102143878236,

0.20491971819803764 ,0.18371220272697103, 1.4735898852364415,

2.829156571031647]], [’n2’, True, [1.4880297288713509, 3.325501927194323]],

[’n3’, False, [77.00218578597881]], [’n4’, True, [63.36645340681146]]].

However, in the final population, several stacks have close performances and

similar parameters.

0 2 4 6 8 10 12 14
Time [s]

0

2

4

6

8

10

co
st

cost

Figure 5.15: Cost evolution during the simulation time.

140 Chapter 5. Genetic programming: simulations and results

As it is possible to observe from plot in figure 5.15, the cost decreases while

the robot is approaching the desired pose pd and moves away from obstacles.

Following, the metrics of interest are reported. It is possible to observe how the

descending behaviour of the cost changes when obstacles are sensed.

0 2 4 6 8 10 12 14
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

po
sit

io
n
er
ro
r [

m
]

epx [m] epy [m] epz [m]

0 2 4 6 8 10 12 14
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 5.16: Position (left) and orientation (right) errors.

0 2 4 6 8 10 12 14
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

di
st
an

ce
s [

m
]

sens 0° [m]
sens 45° [m]

sens 90° [m]
sens 135° [m]

sens 180° [m]
sens 225° [m]

sens 270° [m] sens 315° [m]

0 2 4 6 8 10 12 14
Time [s]

−1.04

−1.02

−1.00

−0.98

−0.96

di
st
an

ce
s [

m
]

sens 45° [m] sens 315° [m]

Figure 5.17: Base and arm 1st sites distances.

0 2 4 6 8 10 12 14
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

di
st
an

ce
s [

m
]

sens 0° [m] sens 135° [m] sens 180° [m] sens 225° [m]

0 2 4 6 8 10 12 14
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

di
st
an

ce
s [

m
]

sens 0° [m]
sens 60° [m]

sens 120° [m] sens 180° [m] sens 240° [m] sens 300° [m]

Figure 5.18: Arm 2nd and 3rd sites distances.

5.3.4 Precision & Manipulability - Empty Environment

In this case the cost is given by Precision and Manipulability, in an environment

free of obstacles:

cost = 0.7 · ||epose||2 + 0.3 · 1

w2
manip

.

5.3 Best Parameters for the Stack of Tasks 141

The slave right arm, has to reach the desired pose

pd = [0.7, −1.7, 1.3, 0,
2

3
π, 0],

the initial population is composed by 10 elements and the algorithm stops after

10 generations. Each simulation lasts 20 seconds.

At the end of the learning process, the best stack is given by:

[35.590931021438782, [’n1’, True, [0.65631806501372, 0.3115061982146442,

0.2825299823293798, 1.480115700087536, 1.8182167191099674]], [’n2’, True,

[1.578200817462834, 7.105678428115425]], [’n3’, True, [77.44459222135943]],

[’n4’, True, [61.15589266102345]]].

However, almost all the elements in the final population show a similar result and

similar parameters. Note that n1 is active, but since there are no obstacles in the

environment its contribution is null.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

22

24

26

28

30

32

34

36

co
st

cost

Figure 5.19: Cost evolution during the simulation time.

As it is possible to observe from the plot in figure 5.19 the cost is high, compared

with other simulations, since the manipulability is a low number (≃ 0.084) and

the cost is given by cost = 1
w2

manip
.

142 Chapter 5. Genetic programming: simulations and results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

po
sit

io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
er
ro
r [

ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 5.20: Position (left) and orientation (right) errors.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

0.095

0.100

0.105

0.110

0.115

0.120

0.125

m
an

ip
ul
ab

ilir
y
m
ea

su
re

manipulabiliry measure

Figure 5.21: Manipulability measure of the right arm.

Master Arm - Obstacles environment

Another simulation of the final stack was conduced with the master arm, adding

3 degrees of freedom to the kinematic chain with target pose:

pd = [3.7, 1.7, , 1.3, 0,
2π

3
, 0].

After 15 s the resulting cost is 15.936.

5.3 Best Parameters for the Stack of Tasks 143

0 2 4 6 8 10 12 14
Time [s]

16

18

20

22

24

26

28

30
co

st

cost

0 2 4 6 8 10 12 14
Time [s]

0.122

0.124

0.126

0.128

0.130

0.132

0.134

0.136

0.138

m
an

ip
ul
ab

ilir
y
m
ea

su
re

manipulabiliry measure

Figure 5.22: Cost (left) and manipulability measure (right) evolution during the simulation time.

As it is possible to observe, the cost is lower with respect to the case in which the

arm is used as slave. This happens because, having more degrees of freedom and

being the base mobile, the robot is able to reach a configuration which helps to

increase the manipulability of the arm, and then reducing the cost, maintaining

the precision.

0 2 4 6 8 10 12 14
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

po
sit

io
n
er
ro
r [

m
]

epx [m] epy [m] epz [m]

0 2 4 6 8 10 12 14
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 5.23: Position (left) and orientation (right) errors.

In this second case, the obstacle environment was used to test the effectiveness

of the stack in a more general environment, since also the Obstacle Avoidance

task is active. Observe that the desired pose is reached, despite the presence of

obstacles, avoiding collisions.

0 2 4 6 8 10 12 14
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

di
st
an

ce
s [

m
]

sens 0° [m]
sens 45° [m]

sens 90° [m]
sens 135° [m]

sens 180° [m]
sens 225° [m]

sens 270° [m] sens 315° [m]

0 2 4 6 8 10 12 14
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

di
st
an

ce
s [

m
]

sens 0° [m]
sens 60° [m]

sens 120° [m] sens 180° [m] sens 240° [m] sens 300° [m]

Figure 5.24: Base and arm 3rd sites distances.

144 Chapter 5. Genetic programming: simulations and results

5.3.5 Precision & distances from Mechanical Joint Limits -

Empty Environment

In this case, the cost function is given by a combination of precision and distances

from mechanical joint limits. The arm is used in slave configuration in the empty

environment. The right arm have to reach the target pose:

pd = [0.7, −1.7, 1.3, 0,
2

3
π, 0].

The initial population is made of 10 stacks and the algorithm stops after 10

iterations. Each simulation lasts 15 seconds. At the end, all the algorithms

present a similar behaviour and similar parameters.

cost = 0.7 · ||epose||2 + 0.3 · w2
m.j.l..

Once the learning process is terminated the best stack is:

[0.0006181198973304119, [’n1’, False, [0.9482469491528949,

0.3725980375994233, 0.1574773779409989, 1.8133214405465417,

4.426497816500577]], [’n2’, True, [0.5235502923757622, 0.9555034931366369]],

[’n3’, False, [61.51966907137499]], [’n4’, True, [82.17786511382929]]].

Note that, the task n3 is not active and it is crucial. If it was, the task n4

couldn’t have reached its target of maximizing the distance from mechanical joint

limits. n1 is not active, but the absence of obstacles would have made it a zero

contribution task.

0 2 4 6 8 10
Time [s]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

co
st

cost

Figure 5.25: Cost evolution during the simulation time.

5.3 Best Parameters for the Stack of Tasks 145

0 2 4 6 8 10 12 14
Time [s]

−0.6

−0.4

−0.2

0.0

0.2
po

sit
io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

0 2 4 6 8 10 12 14
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 5.26: Position (left) and orientation (right) errors.

0 2 4 6 8 10 12 14
Time [s]

−0.0080

−0.0075

−0.0070

−0.0065

−0.0060

−0.0055

−0.0050

di
st
an

ce
 fr
om

 m
.j.
l.

distance from m.j.l.

Figure 5.27: Distance from mechanical joint limits measure of the right arm.

Note that the cost is really close to zero, since the precision is really high and

the distance from mechanical joint limits is maximized as possible. However,

the values of the distance from mechanical joint limits are in the order of 10−3,

meaning that it’s impact on the cost function is not really effective, until the arm

is really close to the desired pose. In fact, comparing the cost in figure 5.25 with

the one in 5.8, it is possible to observe a significant change in the slope of the

function only once its value is close to zero.

146 Chapter 5. Genetic programming: simulations and results

5.4 Manipulability & distances from Mechanical

Joint Limits - Empty Environment

In this section the cost function is given by Manipulability and distances from

Mechanical Joint Limits only, precision is not considered.

cost = 0.5 · 1

w2
manip

+ 0.5 · w2
m.j.l.

As it is possible to observe from the cost function, for the robot is not important

to reach a certain pose. However, the target pose must be specified since the

Inverse Kinematic task is present in the stack. In this simulation the right arm

is used as slave, since the base is not implied in none of the two elements of the

cost function

At the end of the learning process, 10 generations, with a population made by 10

elements, the best stack is:

[25.591578229522549, [’n1’, True, [0.5039302484993167, 0.1574773779409989,

1.022431650776821, 2.193063242854384]], [’n2’, False, [1.7961991584672319,

7.81242649500164]], [’n3’, True, [94.73200248683295]], [’n4’,

True, [73.3497087362359]]]

Note that, n2 is not active. If it was, it would not have left enough freedom of

movement to the arm in order to fully accomplish the n3 and n4 tasks.

0 10 20 30 40 50
Time [s]

26

27

28

29

30

31

32

co
st

cost

Figure 5.28: Cost evolution during the simulation time.

5.4 Manipulability & distances from Mechanical Joint Limits - Empty Environment147

0 10 20 30 40 50
Time [s]

0.124

0.126

0.128

0.130

0.132

0.134

0.136

0.138

0.140
m
an

ip
ul
ab

ilir
y
m
ea

su
re

manipulabiliry measure

0 10 20 30 40 50
Time [s]

−0.030

−0.025

−0.020

−0.015

−0.010

di
st
an

ce
 fr
om

 m
.j.
l.

distance from m.j.l.

Figure 5.29: Manipulability and distance from mechanical joint limits measures of the right arm.

5.4.1 Precision, Time, Distances from Obstacles,

Manipulability & Distances from M.J.L - Static

Obstacles Environment

In this case, all the costs are present in the convex combination:

cost = 0.4 · ||epose||2 + 0.3 · 1
2

N∑
k=1

(rk − dk)
2 + 0.1 · 1

w2
manip

+ 0.1 · w2
m.j.l. + 0.1 · t2.

Each simulation lasts 20 seconds, each population is made of 10 individuals and

the algorithm stops after 20 iterations.

The arm, in master configuration, has to reach the final target pose

pd = [3.7, 1.7, , 1.3, 0,
2π

3
, 0],

avoid obstacles along the path and attempt to maximize manipulability and dis-

tance from mechanical joint limits.

At the end of the leaning process the best stack obtained in the learning process

is:

[0.000218241783179509, [’n1’, True, [0.84507865966939866,

0.12213883748029469, 0.10108390180166468, 0.902158147580735,

6.612233865163163]], [’n2’, True, [1.2785646893230078, 6.102977119861568]],

[’n3’, True, [78.41294350054314]], [’n4’, True, [35.863477385773024]]]

Note that all the tasks are active. Following all the metric of interest are reported.

148 Chapter 5. Genetic programming: simulations and results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

0

1

2

3

4

5

6

7

8

co
st

cost

Figure 5.30: Cost evolution during the simulation time.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

po
sit

io
n
er
ro
r [

m
]

epx [m] epy [m] epz [m]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
er
ro
r [

ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 5.31: Position (left) and orientation (right) errors.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

0.08

0.09

0.10

0.11

0.12

0.13

0.14

m
an

ip
ul
ab

ilir
y
m
ea

su
re

manipulabiliry measure

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.035

−0.030

−0.025

−0.020

−0.015

−0.010

−0.005

di
st
an

ce
 fr
om

 m
.j.
l.

distance from m.j.l.

Figure 5.32: Manipulability and distance from mechanical joint limits measures of the right arm.

5.4 Manipulability & distances from Mechanical Joint Limits - Empty Environment149

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75
di
st
an

ce
s [

m
]

sens 0° [m]
sens 45° [m]

sens 90° [m]
sens 135° [m]

sens 180° [m]
sens 225° [m]

sens 270° [m] sens 315° [m]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

di
st
an

ce
s [

m
]

sens 0° [m]
sens 60° [m]

sens 120° [m] sens 180° [m] sens 240° [m] sens 300° [m]

Figure 5.33: Base and arm 1st sites distances.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.04

−1.02

−1.00

−0.98

−0.96

di
st
an

ce
s [

m
]

sens 45° [m] sens 315° [m]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.04

−1.02

−1.00

−0.98

−0.96

di
st
an

ce
s [

m
]

sens 0° [m] sens 135° [m] sens 180° [m] sens 225° [m]

Figure 5.34: Arm 2nd and 3rd sites distances.

The robot accomplish its tasks moving away from obstacles, reaching the desired

pose and maximizing the manipulability measure. However, the distances from

mechanical joint limits can not be maximized, since there is not enough freedom

of movement to solve this task. Note that, the cost related to this last task is 0.1,

which is lower with respect precision and distances from obstacles, but it is the

same of the cost related to maximization of manipulability measure. But, in this

case, the cost of the two tasks have different weights in the fitness measure since,

in general, 1
w2

manip
≫ w2

m.j.l.. Considering what has just been said, the algorithm

acts as expected, without maximizing the last measure and giving priority to

other tasks.

5.4.2 Precision & Distances from Obstacles - Dynamic

Obstacles Environment

In this case, a dynamic obstacle environment is tested in order to prove that the

robot is able to learn how to escape from dynamic obstacles in the environment.

The cost is given by:

cost = 0.7 · ||epose||2 + 0.3 · 1
2

N∑
k=1

(rk − dk)
2.

The objective of this simulation, is to reach a desired pose with the end-effector

of the right master arm avoiding obstacles. After that, a dynamic obstacle comes

150 Chapter 5. Genetic programming: simulations and results

close to the robot simulating an human operator which interacts with the end-

effector. The target pose is given by

pd = [3, 1.7, 1.3, 0,
2π

3
, 0].

Once the pose is reached with all the error elements of epose with modulus lower

than 10−3, the dynamic obstacle moves toward the robot with velocity 0.5 m/s

along the y axis. Then, once the dynamic obstacle has covered 3 m, it inverts its

velocity moving away from the robot at −0.5 m/s.

Each simulation lasts 50 seconds, each population is made by 10 stacks and the

algorithm stops after 10 iterations.

At the end of the learning process, the best performing stack is:

[6.66477497111878e-05, [’n1’, True, [1.1172054449654453, 0.11857644031248402,

0.10164344404011497, 1.7260753881272786, 1.3855131187054726]], [’n2’, True,

[1.2551133685916285, 3.6090185464932354]], [’n3’, True, [35.30699434742218]],

[’n4’, False, [15.001361835437589]]]

0 10 20 30 40 50
Time [s]

0

2

4

6

8

co
st

cost

0 10 20 30 40 50
Time [s]

−1

0

1

2

3

q
[ra

d]

q1b [m]
q2b [m]
q3b [rad]
q1 [rad]

q2 [rad]
q3 [rad]
q4 [rad]

q5 [rad]
q6 [rad]
q7 [rad]

Figure 5.35: Cost evolution (left) during the simulation time and joint positions q (right) in con-
figuration space.

5.4 Manipulability & distances from Mechanical Joint Limits - Empty Environment151

0 10 20 30 40 50
Time [s]

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
po

sit
io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

0 10 20 30 40 50
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 5.36: Position (left) and orientation (right) errors

0 10 20 30 40 50
Time [s]

−1.0

−0.5

0.0

0.5

1.0

di
st
an

ce
s [

m
]

sens 0° [m]
sens 45° [m]

sens 90° [m]
sens 135° [m]

sens 180° [m]
sens 225° [m]

sens 270° [m] sens 315° [m]

Figure 5.37: Base site distances.

0 10 20 30 40 50
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

di
st
an

ce
s [

m
]

sens 0° [m]
sens 60° [m]

sens 120° [m] sens 180° [m] sens 240° [m] sens 300° [m]

Figure 5.38: Arm 3rd site distances.

Observe how it is possible to see from plots the behaviour of the robot in a

dynamic environment. First of all the robot reaches the desired pose dealing

152 Chapter 5. Genetic programming: simulations and results

with fixed obstacles along its path. Once the robot has reached the desired pose

with the specified accuracy, the dynamic obstacle starts to move towards the

robot. It is possible to see from plot in figure 5.37 that at almost 8 s, the base

sensor placed at 315° sens the obstacle coming. The the robot starts to move in

order to avoid it, misleading the target pose in order to avoid collisions. Then,

the obstacles moves away and the robot quickly return to its target pose. Later,

the dynamic obstacle returns in its original position and, after that, moves again

towards the robot. This time, the robot is in a different configuration when the

obstacle is sensed (see plot of positions in configuration space in figure 5.35) and,

the reaction is different since the base active different sensors. The base is moved

further away with respect to the first time and then also the return in the desire

position is slower. Finally the obstacle stays in its original position and the robot

is allowed to stay in its desired pose and reach an higher accuracy. Note, that

the trajectory time for the obstacle avoidance task is not high. This because, if it

had been high the robot would have not enough time to escape from the dynamic

obstacle before a collision.

So that, it is demonstrated through simulation, that the developed algorithm

makes the robot capable of reacting in dynamic changing environments, avoiding

collisions.

5.5 Robustness of the algorithm to useless tasks

In this section it is demonstrated that if a task is not useful, given a cost function

which must be minimized, it is still present in the stack at the end of the genetic

operations but, it is deactivated. For this purpose, a completely useless task is

used to prove this fact (section 3.7.2). The simulation starts with 10 elements in

the initial population, and ends after 10 generations of stacks. The goal of the

robot is to reach the target pose

[1.7, −0.7, 1.3, 0,
2π

3
, 0]

with the right arm considered as master arm. The cost function is given by a

weighted combination of all the costs that are related to the useful tasks, namely

distances from obstacles, precision, manipulability measure and distances from

mechanical joint limits. All this components are equally weighted with α = 0.25

each. The useless task, is the only element of the stack that is allowed to start in

a random position in the priority order, and that can change its priority during

5.5 Robustness of the algorithm to useless tasks 153

mutation or crossover process. This last feature is only present in this simulation

and helps to prove the robustness of the algorithm. Following, the best obtained

result is reported

[4.998323960911508, [’n1’, True, [0.34507865966939866, 0.10108390180166468,

0.902158147580735, 6.612233865163163]], [’n2’, True, [1.2785646893230078,

6.102977119861568]], [’n5’, False, [0.3497087362359]],[’n3’, True

, [78.41294350054314]], [’n4’, True, [35.863477385773024]]]

As it is possible to note, the task was deactivated, and then it does not give any

contribution to the final velocities imposed on the robot joints. All the others

tasks are active.

This result proves that the algorithm is robust to useless tasks for the given cost

function, deactivating them if not needed.

154

Chapter 6

Test of the learned stack of tasks

In this section the algorithms founded through learning in chapter 5 are tested,

executing a pick and place duty with the robot. The choices are two, as shown in

section 3.10, for the same operation. One of the arms can be considered as master,

or both can be considered as slave with the base moving in the environment as

master. In both cases the environment is the same showed in section 3.1.3. The

task is considered to be successfully computed if the object is placed on the

corresponding pedestal.

In both cases, the base of the robot starts in pose p = [0, , 0, 0] and the object is

placed in position xpick = [2, −3, 1] m. The place position is in the opposite side

of the room xplace = [−2, 3, 1] m. Since the stack in section 5.4.2 was the best

solution founded in a dynamic environment, it was used in both the cases due to

the presence of dynamic and not dynamic obstacles.

In these simulations only full dynamic environment is used, in order to show the

performances of the robot with the learned stack in a real situation.

6.1 Base Master

In this first simulation, the base can move as master reaching the pick-up point

for the object.

The initial pose of the base is p = [0, 0, 0] and the robot have to reach the pose,

defined in world frame,

pd = [−2, 2.3, −π

2
]

to be in the right position. However, the base is allowed to reach pd with a an

error of 5 cm in position and 0.1 rad in orientation, since the arms would be able

to pick up the object also with this slight imprecision.

155

156 Chapter 6. Test of the learned stack of tasks

After that, the base is stopped and the arms reach the handle of the pot. The

target poses, expressed with respect to the base frame, are

pleft = [0.7 + ex, 0.2 + ey, 0.25, −
π

2
, π + 0.01, 0 + ez]

and

pright = [0.7 + ex, −0.2 + ey, 0.25,
π

2
, π + 0.01, 0 + ez]

where epose = [ex, ey, eθz] is the error pose of the base. In this way the robot

reaches exactly the target pose in order to pick up the pot.

Once both the arms are in position, the grippers are closed and then the pot is

grabbed. This operation lasts for 1 s. After that, the arms move up of 0.05 m in

order to take away the pot from the pedestal.

While the grippers remain closed, the base moves and reaches the target pose,

defined in world frame,

pd = [−2, 2.3, −π].

In this point, the grippers open and the object is places on the pedestal.

Along its path, the robot avoids static and dynamic obstacles, as showed in figure

3.1.4. Following, the results obtained for each phase are reported.

Movement of the base to the pick position

First, the base moves in order to reach the target pose with the accepted precision.

From plots, it is possible to note that this operation takes about 11 s.

0 2 4 6 8 10
Time [s]

−2

−1

0

1

2

po
se
 o
f t
he

 b
as
e

px [m] py [m] θz [rad]

Figure 6.1: Pose of the base.

6.1 Base Master 157

0 2 4 6 8 10
Time [s]

−2

−1

0

1

2
po

sit
io
n
er
ro
r [
m
]

epx [m] epy [m]

0 2 4 6 8 10
Time [s]

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθz [rad]

Figure 6.2: Base linear velocities (left) and base angular velocity (right).

0 2 4 6 8 10
Time [s]

−2

−1

0

1

2

q
[ra

d]

q1b [m] q2b [m] q3b [rad]

0 2 4 6 8 10
Time [s]

−0.4

−0.2

0.0

0.2

0.4
̇ q
[ra

d/
s]

q̇1b [m/s] q̇2b [m/s] q̇3b [rad/s]

Figure 6.3: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

0 2 4 6 8 10
Time [s]

−1.0

−0.5

0.0

0.5

1.0

di
st
an

ce
s [

m
]

sens 0° [m]
sens 45° [m]

sens 90° [m]
sens 135° [m]

sens 180° [m]
sens 225° [m]

sens 270° [m] sens 315° [m]

Figure 6.4: Distances of the base sensors.

From plots in figure 6.2 and figure 6.3 it is possible to observe the reaction of the

robot to the presence of fixed obstacles along the path. While in figure 6.4 it is

possible to observe when and from which sensor the obstacles are detected. The

158 Chapter 6. Test of the learned stack of tasks

robot moves away quickly, since the trajectory time for the obstacle avoidance

task is ttraj ≃ 1.4 s.

Movement of the arms to pick the pot

Once the robot’s base is in position, the arms start to move toward the desired

pose, taking into account the inaccuracy of the base. First the result for the right

arm are reported.

10 12 14 16 18 20 22
Time [s]

−0.2

0.0

0.2

0.4

0.6

po
sit

io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

10 12 14 16 18 20 22
Time [s]

−3

−2

−1

0

1

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r
ad

]

θx [rad] θy [rad] θz [rad]

Figure 6.5: End-effector position (left) and orientation (right).

Note how the arm reaches the desired pose at almost 14 s from the beginning of

the simulation.

10 12 14 16 18 20 22
Time [s]

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

po
sit

io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

10 12 14 16 18 20 22
Time [s]

0.0

0.2

0.4

0.6

0.8

or
ie
nt
at
io
n
er
ro
r [

ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 6.6: Position (left) and orientation (right) errors.

6.1 Base Master 159

10 12 14 16 18 20 22
Time [s]

−1.0

−0.5

0.0

0.5

1.0

1.5
q
[ra

d]

q1 [rad]
q2 [rad]
q3 [rad]

q4 [rad]
q5 [rad]

q6 [rad]
q7 [rad]

10 12 14 16 18 20 22
Time [s]

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

̇ q
[ra

d/
s]

q̇1 [rad/s]
q̇2 [rad/s]
q̇3 [rad/s]

q̇4 [rad/s]
q̇5 [rad/s]

q̇6 [rad/s]
q̇7 [rad/s]

Figure 6.7: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

It is possible to see from plots in figures 6.7 and 6.8 that after the target pose is

reached, the arm keeps moving in order to increase manipulability, since the task

is active in the stack.

10 12 14 16 18 20 22
Time [s]

0.114

0.116

0.118

0.120

0.122

m
an

ip
ul
ab

ilir
y
m
ea

su
re

manipulabiliry measure

10 12 14 16 18 20 22
Time [s]

−0.0105

−0.0100

−0.0095

−0.0090

−0.0085

di
st
an

ce
 fr
om

 m
.j.
l.

distance from m.j.l.

Figure 6.8: Manipulability and distance from mechanical joint limits measures of the right arm.

Then, plots about left arm are reported. First of all it is possible to note that

the left arm requires more time to reach the target pose, reached at almost 23 s,

since the arm start farther with respect to the right arm from the relative targets.

160 Chapter 6. Test of the learned stack of tasks

10 12 14 16 18 20 22
Time [s]

0.2

0.3

0.4

0.5

0.6

0.7

po
sit

io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

10 12 14 16 18 20 22
Time [s]

−3

−2

−1

0

1

2

3

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r
ad

]

θx [rad] θy [rad] θz [rad]

Figure 6.9: End-effector position (left) and orientation (right).

10 12 14 16 18 20 22
Time [s]

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

po
sit

io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

10 12 14 16 18 20 22
Time [s]

−0.8

−0.6

−0.4

−0.2

0.0

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 6.10: Position (left) and orientation (right) errors.

10 12 14 16 18 20 22
Time [s]

−1.0

−0.5

0.0

0.5

1.0

1.5

q
[ra

d]

q1 [rad]
q2 [rad]
q3 [rad]

q4 [rad]
q5 [rad]

q6 [rad]
q7 [rad]

10 12 14 16 18 20 22
Time [s]

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

̇ q
[ra

d/
s]

q̇1 [rad/s]
q̇2 [rad/s]
q̇3 [rad/s]

q̇4 [rad/s]
q̇5 [rad/s]

q̇6 [rad/s]
q̇7 [rad/s]

Figure 6.11: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

6.1 Base Master 161

10 12 14 16 18 20 22
Time [s]

0.113

0.114

0.115

0.116

0.117

0.118

0.119
m
an

ip
ul
ab

ilir
y
m
ea

su
re

manipulabiliry measure

10 12 14 16 18 20 22
Time [s]

−0.0120

−0.0115

−0.0110

−0.0105

−0.0100

−0.0095

−0.0090

−0.0085

di
st
an

ce
 fr
om

 m
.j.
l.

distance from m.j.l.

Figure 6.12: Manipulability and distance from mechanical joint limits measures of the left arm.

Also in this case, once the arm is close to the target pose, it starts to augment

its manipulability.

Once both the arms are in position with the desired precision, the grippers are

closed and the arms get up of 0.05 m in order to raise the pot from the pedestal.

Those two phases are not reported with plots since they are not relevant. However

this phase takes approximately 7 seconds.

Movement of the base to the place position

Once the pot is lifted, the base starts to move toward the place pose.

30.0 32.5 35.0 37.5 40.0 42.5 45.0
Time [s]

−3

−2

−1

0

1

2

3

po
se

 o
f t
he

 b
as

e

px [m] py [m] θz [rad]

Figure 6.13: Pose of the base.

162 Chapter 6. Test of the learned stack of tasks

30.0 32.5 35.0 37.5 40.0 42.5 45.0
Time [s]

−2

0

2

4

po
sit

io
n
er
ro
r [
m
]

epx [m] epy [m]

30.0 32.5 35.0 37.5 40.0 42.5 45.0
Time [s]

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθz [rad]

Figure 6.14: Base linear velocities (left) and base angular velocity (right).

30.0 32.5 35.0 37.5 40.0 42.5 45.0
Time [s]

−3

−2

−1

0

1

2

3

q
[ra

d]

q1b [m] q2b [m] q3b [rad]

30.0 32.5 35.0 37.5 40.0 42.5 45.0
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

̇ q
[ra

d/
s]

q̇1b [m/s] q̇2b [m/s] q̇3b [rad/s]

Figure 6.15: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

30.0 32.5 35.0 37.5 40.0 42.5 45.0
Time [s]

−1.0

−0.5

0.0

0.5

1.0

di
st
an

ce
s [

m
]

sens 0° [m]
sens 45° [m]

sens 90° [m]
sens 135° [m]

sens 180° [m]
sens 225° [m]

sens 270° [m] sens 315° [m]

Figure 6.16: Distances of the base sensors.

With the pots in its hands, the robot reaches the desired place pose for the base

after 46 s from the beginning of the simulation. It is possible to observe how it

avoids the static obstacles in the first phase of the path, escaping in a short time.

6.1 Base Master 163

However, when it is close to the target pose, the dynamic obstacle arrives and

pushes the robot away from it. In fact, it is possible to note how the convergence

slope of the error in position changes, and slow down its behaviour, in figure 6.14

when the dynamic obstacle is sensed. This happens because the contribution of

the obstacle avoidance task is no longer null and, it uses degrees of freedom to

escape from the obstacle, removing them from the inverse kinematic task.

Once the pose is reached with the desired accuracy, the grippers open and the

object is on the place position and the simulation stops.

Pick & place images sequence

Figure 6.17: Robot moving toward the desired pick pose.

Figure 6.18: Picking of the pot, once the robot is in position.

164 Chapter 6. Test of the learned stack of tasks

Figure 6.19: Once the grippers are closed, the robot moves toward the place pose.

Figure 6.20: The robot moves between the obstacles and once the place pose is reached the pot is
left.

6.2 Arm Master

In this case one arm (left) moves as master trough the target pick pose where,

an object is placed. The pot used in the previous chapter was substituted with

a cylindrical can, so only one hand is required to pick up the object. The other

arm is not used. The environment is the same used with two slave arms (section

3.1.3).

The desired pose, expressed with respect to the world reference frame, is

pd = [2, −3, 1.15,
π

2
, 0, −π

2
].

However, in order to pick the object with a small velocity and higher precision,

the robot first reaches a pose close to the desired one, in particular pdfirst =

[2, −2.9, 1.15, π
2
, 0, −π

2
], and then it moves toward pd.

After that, the gripper is closed for 1 s and the object is slightly lifted in order to

not collide with the table. Then, once the object is picked and lifted, the master

6.2 Arm Master 165

arm moves toward the target place pose:

pd = [−2, 3, 1.15, 0, −π

2
+ 0.01, 0].

Once that this desired pose is reached, the gripper opens and the arm moves

away. Then, the task is successfully completed.

During the simulation time, the robot deals with dynamic and static obstacles as

showed in section 3.1.3. In this simulation, the robot is allowed to perform with

a precision of 0.02 m for positions and 0.1 rad for orientations.

Movement of the robot to pdfirst

0 5 10 15 20 25
Time [s]

−2

−1

0

1

2

po
sit

io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

0 5 10 15 20 25
Time [s]

−3

−2

−1

0

1

2

3
or
ie
nt
at
io
n
of
 th

e
ar
m
 [r
ad

]

θx [rad] θy [rad] θz [rad]

Figure 6.21: End-effector position (left) and orientation (right).

0 5 10 15 20 25
Time [s]

−3

−2

−1

0

1

po
sit

io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

0 5 10 15 20 25
Time [s]

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

or
ie
nt
at
io
n
er
ro
r [

ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 6.22: Position (left) and orientation (right) errors.

Looking at the plots it is possible to observe that the arm reaches the desired

pose really late, despite of the specified trajectory time. This happens not only

for the presence of dynamics but, in particular, for the presence of obstacles since

the robot spends time to escape from them.

166 Chapter 6. Test of the learned stack of tasks

0 5 10 15 20 25
Time [s]

−2

−1

0

1

2

q

q1b [m]
q2b [m]
q3b [rad]
q1 [rad]

q2 [rad]
q3 [rad]
q4 [rad]

q5 [rad]
q6 [rad]
q7 [rad]

0 5 10 15 20 25
Time [s]

−1.0

−0.5

0.0

0.5

1.0

̇ q

q̇1b [m/s]
q̇2b [m/s]
q̇3b [rad/s]
q̇1 [rad/s]

q̇2 [rad/s]
q̇3 [rad/s]
q̇4 [rad/s]

q̇5 [rad/s]
q̇6 [rad/s]
q̇7 [rad/s]

Figure 6.23: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

Observing the velocities of the joints (figure 6.23) and the manipulability plot

(figure 6.25) it is possible to observe how the robot attempts to maximize the

cited measure once the target is almost reached.

0 5 10 15 20 25
Time [s]

−1.0

−0.5

0.0

0.5

1.0

di
st
an

ce
s [

m
]

sens 0° [m]
sens 45° [m]

sens 90° [m]
sens 135° [m]

sens 180° [m]
sens 225° [m]

sens 270° [m] sens 315° [m]

Figure 6.24: Base sensors site.

0 5 10 15 20 25
Time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

m
an

ip
ul
ab

ilir
y
m
ea

su
re

manipulabiliry measure

0 5 10 15 20 25
Time [s]

−0.040

−0.035

−0.030

−0.025

−0.020

−0.015

−0.010

−0.005

di
st
an

ce
 fr
om

 m
.j.
l.

distance from m.j.l.

Figure 6.25: Manipulability and distance from mechanical joint limits measures of the left arm.

6.2 Arm Master 167

Movement of the robot to the pick pd

Once the robot is in pdfirst it reaches the desired final target pose pd in order to

pick the object. The distance to cover is not long, but this process requires 3.5

s, namely the time indicated ttraj for the inverse kinematic task.

26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5
Time [s]

−3

−2

−1

0

1

2

po
sit

io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r
ad

]
θx [rad] θy [rad] θz [rad]

Figure 6.26: End-effector position (left) and orientation (right).

26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5
Time [s]

−0.20

−0.15

−0.10

−0.05

0.00

0.05

po
sit

io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5
Time [s]

−0.06

−0.04

−0.02

0.00

0.02

0.04

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 6.27: Position (left) and orientation (right) errors.

26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5
Time [s]

−2

−1

0

1

2

q

q1b [m]
q2b [m]
q3b [rad]
q1 [rad]

q2 [rad]
q3 [rad]
q4 [rad]

q5 [rad]
q6 [rad]
q7 [rad]

26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5
Time [s]

−0.10

−0.05

0.00

0.05

̇ q

q̇1b [m/s]
q̇2b [m/s]
q̇3b [rad/s]
q̇1 [rad/s]

q̇2 [rad/s]
q̇3 [rad/s]
q̇4 [rad/s]

q̇5 [rad/s]
q̇6 [rad/s]
q̇7 [rad/s]

Figure 6.28: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

168 Chapter 6. Test of the learned stack of tasks

Movement of the robot to the pose pd

Once the object is picked and lifted, it is possible for the robot to reach the

desired target pose in order to place the object on the second table and, complete

its duty.

32 34 36 38 40 42
Time [s]

−3

−2

−1

0

1

2

po
sit

io
n
of
 th

e
ar
m
 [m

]

px [m] py [m] pz [m]

32 34 36 38 40 42
Time [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

or
ie
nt
at
io
n
of
 th

e
ar
m
 [r
ad

]

θx [rad] θy [rad] θz [rad]

Figure 6.29: End-effector position (left) and orientation (right).

32 34 36 38 40 42
Time [s]

−2

0

2

4

6

po
sit

io
n
er
ro
r [
m
]

epx [m] epy [m] epz [m]

32 34 36 38 40 42
Time [s]

−3

−2

−1

0

1

2

3

or
ie
nt
at
io
n
er
ro
r [
ra
d]

eθx [rad] eθy [rad] eθz [rad]

Figure 6.30: Position (left) and orientation (right) errors.

The final pose is reached with enough precision from the robot and then it stops.

It is possible to see how it is influenced by obstacles, including the dynamic one

which is present for a longer period of time as sensed obstacle in figure 6.32 due

to its movement.

6.2 Arm Master 169

Pick & place images sequence

32 34 36 38 40 42
Time [s]

−2

−1

0

1

2

q

q1b [m]
q2b [m]
q3b [rad]
q1 [rad]

q2 [rad]
q3 [rad]
q4 [rad]

q5 [rad]
q6 [rad]
q7 [rad]

32 34 36 38 40 42
Time [s]

−0.4

−0.2

0.0

0.2

0.4

0.6

̇ q

q̇1b [m/s]
q̇2b [m/s]
q̇3b [rad/s]
q̇1 [rad/s]

q̇2 [rad/s]
q̇3 [rad/s]
q̇4 [rad/s]

q̇5 [rad/s]
q̇6 [rad/s]
q̇7 [rad/s]

Figure 6.31: Position of the joints q (left) and velocity of the joints q̇ (right) in configuration space.

32 34 36 38 40 42
Time [s]

−1.0

−0.5

0.0

0.5

1.0

di
st
an

ce
s [

m
]

sens 0° [m]
sens 45° [m]

sens 90° [m]
sens 135° [m]

sens 180° [m]
sens 225° [m]

sens 270° [m] sens 315° [m]

Figure 6.32: Base sensors site.

32 34 36 38 40 42
Time [s]

0.118

0.119

0.120

0.121

0.122

0.123

0.124

0.125

m
an

ip
ul
ab

ilir
y
m
ea

su
re

manipulabiliry measure

32 34 36 38 40 42
Time [s]

−0.00750

−0.00725

−0.00700

−0.00675

−0.00650

−0.00625

−0.00600

−0.00575

di
st
an

ce
 fr
om

 m
.j.
l.

distance from m.j.l.

Figure 6.33: Manipulability and distance from mechanical joint limits measures of the left arm.

Once the pose is reached the end-effector opens up and the object is on the table.

The task is successfully completed in about 42 s.

170 Chapter 6. Test of the learned stack of tasks

Figure 6.34: Robot moving toward the desired pick pose.

Figure 6.35: Then, the robot approaches the object once it is close enough to it.

Figure 6.36: Once the gripper is closed, the robot moves toward the place pose.

6.2 Arm Master 171

Figure 6.37: The robot moves between the obstacles and once the place pose is reached the object
is left.

172

Chapter 7

Conclusions

7.1 Conclusions

In conclusion it is possible to see how the algorithm is able to find an optimal

solution for a specific task even in unpredictable dynamically changing environ-

ments, describing the wanted performances with a cost function which must be

minimized. So that, the initial objective is reached.

The order of the stack can be extended in all the cases once it is derived through

learning but, the parameters of the tasks are specific for a certain fitness measure.

This underlines how the result is heavily dependent on the cost function that can

be defined by the user, adapting the same algorithm to a different situation and

different requirements.

Despite the learning phase was handled in environments in which dynamics are

not present, in order to make the simulation lighter, the derived parameters, once

they are learned, work well also in the case of a full dynamics environment.

The used libraries, in Python programming language of RoboSuite and MuJoCo,

revealed themselves as powerful tools for the learning development trough simu-

lation, also with redundant robots.

7.2 Future developments

Building on the findings of this study, future research could explore a camera

system that may be implemented to work in place or in collaboration with the

range finder sensors for the obstacle recognition. This will allow a better un-

derstanding of distances or possible impacts with the trajectories of the robot,

allowing the creation of combined trajectory between the Inverse Kinematic and

173

174 Chapter 7. Conclusions

Obstacle Avoidance task. Also, other genetic programming techniques could be

implemented in the algorithm, like different genetic operations to generate an

offspring or variable length stacks.

To address the limitations identified in this research, subsequent studies should

focus on the possibility to learn and test stacks on a real robot in real environ-

ment. This would help to understand the behaviour of the algorithm in the real

world and its adaptability to true duties.

Furthermore, some aspects could be extended in order to obtain better perfor-

mances. For example, if a sensor on the arm sens an obstacle, the whole kine-

matic chain between the robot base and the sensor itself moves, changing the

end-effector orientation and position, while could be enough to slightly move the

base of the robot in a certain direction. Finally, a real-time plotting system could

be implemented in order to see data and performances while the simulation is

still running, without waiting until the end of the simulation.

References

[1] Yuke Zhu et al., Robosuite: A Modular Simulation Framework and Bench-

mark for Robot Learning, 2020 https://robosuite.ai/

[2] Todorov et al., MuJoCo: A physics engine for model-based control, 2012

IEEE/RSJ International Conference on Intelligent Robots and Systems

[3] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, Giuseppe Oriolo: Robotics

Modelling, Planning and Control, Springer-Verlag London Limited 2010.

[4] Signe Moe1, Gianluca Antonelli, Andrew R. Teel, Kristin Y. Pettersen, Jo-

hannes Schrimpf: Set-Based Tasks within the Singularity-Robust Multiple

Task-Priority Inverse Kinematics Framework: General Formulation, Stabil-

ity Analysis, and Experimental Results, Front. Robot. AI, 18 April 2016 Sec.

Robotic Control Systems Volume 3 - 2016

[5] Pietro Falco and Ciro Natale, Low-level flexible planning for mobile manip-

ulators: A distributed perception approach, 2014

[6] John R. Koza and Riccardo Poli, A Genetic Programming Tutorial, 2003

[7] Rethink Robotics. sdk-docs. GitHub. Accessed, 2024.

https://github.com/RethinkRobotics/sdk-docs/blob/master/README.md.

[8] S. Stavridis, P. Falco and Z. Doulgeri, Pick-and-place in dynamic environ-

ments with a mobile dual-arm robot equipped with distributed distance sen-

sors, 2020 IEEE-RAS 20th International Conference on Humanoid Robots

(Humanoids), Munich, Germany, 2021, pp. 76-82, doi: 10.1109

[9] Matteo Iovino, Jonathan Styrud, Pietro Falco, Christian Smith, Learning

behavior trees with genetic programming in unpredictable environments, 2021

IEEE International Conference on Robotics and Automation (ICRA)

175

176 REFERENCES

[10] Kévin Dufour, Wael Suleiman. On Maximizing Manipulability Index while

Solving a Kinematics Task, Journal of Intelligent and Robotic Systems, 2020

[11] T.L. Harman and Carol Fairchild, INTRODUCTION TO BAXTER, Up-

dated 2/08/2016

[12] Akshay Kumar, Ashwin Sahasrabudhe, Chaitanya Perugu, Sanjuksha Nir-

gude, Aakash Murugan, Kinematics & Dynamics Library for Baxter Arm

[13] R.L. Williams II, Baxter Humanoid Robot Kinemat-

ics, Internet Publication, https://www.ohio.edu/mechanical-

faculty/williams/html/pdf/BaxterKinematics.pdf, April 2017

[14] Mostafa BagheriMiroslav et al., Multivariable Extremum Seeking for Joint-

Space Trajectory Optimization of a High-Degrees-of-Freedom Robot

[15] Ròbert Krasnansky et al., Reference trajectory tracking for a multi-DOF

robot arm, Archives of Control Sciences Volume 25(LXI), 2015 No. 4, pages

513–527

[16] L. E. Kavraki, P. Svestka, J. . -C. Latombe and M. H. Overmars, Probabilis-

tic roadmaps for path planning in high-dimensional configuration spaces, in

IEEE Transactions on Robotics and Automation

[17] Steven M. Lavalle and James Kuffner, Rapidly-Exploring Random Trees:

Progress and Prospects, January 2000

[18] Sachin Chitta et al., Mobile Manipulation in Unstructured Environments,

June 2012 IEEE Robotics & Automation Magazine

[19] M. C. Sinclair and S. H. Shami, Evolving simple software agents: comparing

genetic algorithm and genetic programming performance, Second Interna-

tional Conference On Genetic Algorithms In Engineering Systems: Innova-

tions And Applications, Glasgow, UK, 1997

[20] Olivier Stasse, Adrien Escande, Nicolas Mansard, Sylvain Miossec, Paul

Evrard, et al.. Real-time (self)-collision avoidance task on a HRP-2 hu-

manoid robot, ICRA’2008

[21] Z. Ju, C. Yang and H. Ma, Kinematics modeling and experimental verifi-

cation of baxter robot, Proceedings of the 33rd Chinese Control Conference,

Nanjing, China, 2014

REFERENCES 177

[22] M. Bagheri, M. Krstić, Peiman Naseradinmousavi, Multivariable Extremum

Seeking for Joint-Space Trajectory Optimization of a High-Degrees-of-

Freedom Robot, Journal of Dynamic Systems Measurement, and Control

August 2018

[23] Jesse HavilandJesse HavilandPeter Ian CorkePeter Ian Corke, Maximising

Manipulability During Resolved-Rate Motion Control, February 2020

[24] P. Corke and J. Haviland, Not your grandmother’s toolbox – the Robotics

Toolbox reinvented for Python, 2021 IEEE International Conference on

Robotics and Automation (ICRA), Xi’an, China, 2021

[25] ”Robotics Knowledgebase”, Robotics Knowledgebase,

https://roboticsknowledgebase.com/

[26] M. Galrinho, C. R. Rojas and H. Hjalmarsson, Parametric Identification Us-

ing Weighted Null-Space Fitting, in IEEE Transactions on Automatic Con-

trol, vol. 64, no. 7, pp. 2798-2813, July 2019

[27] Nakamura Y, Hanafusa H, Yoshikawa T., Task-Priority Based Redundancy

Control of Robot Manipulators. The International Journal of Robotics Re-

search. 1987

	Introduction
	Problem description
	Objectives

	Thesis structure
	State of the art
	Redundant robots
	Genetic programming

	MuJoCo
	RoboSuite
	The Baxter robot
	Baxter in RoboSuite
	Baxter arm workspace
	Baxter joints performances in RoboSuite

	Literature review
	Robotics
	Fundamentals of Robotics Kinematics
	Inverse Kinematics
	Obstacle Avoidance
	Manipulability Ellipsoids and Measure
	Distance from mechanical joint limits
	Null Space Projection

	Reinforcement learning
	Policy
	Genetic Programming

	Simulation framework
	Work environment
	Empty environment
	Static obstacles environment
	Dynamic obstacles environment
	Pick & place environment

	Motion of the base
	Master and Slave arm
	Range-Finder Sensors
	Map of the sensors
	Position of the sensed obstacle pk
	Self sensing for obstacle avoidance

	Respect of the joint limits
	Chattering avoidance
	Stack of Tasks
	Tasks parameters
	Distracting useless task

	Cost function (fitness measure)
	Genetic Programming Pipeline
	Graphical User Interface (G.U.I.)

	Single task resolution and tasks combination: simulations and results
	Single task resolution
	Inverse Kinematic
	Obstacle Avoidance
	Maximization of the Manipulability Measure
	Maximization of the Distance from Mechanical Joint Limits
	Useless distracting task: turn head

	Tasks combination
	Inverse Kinematic & Maximization of Manipulability
	Obstacle avoidance & Inverse Kinematic
	Useless distracting task & Inverse Kinematic
	All tasks
	Weighted/Non-weighted combination of the tasks with null space projector

	Genetic programming: simulations and results
	Initialization and Genetic Operations
	Best Prioritized Order of the Stack of Tasks
	Priority of Obstacle Avoidance
	Priority of Inverse Kinematic
	Priority of Maximization of Manipulability and distance from M.J.L.
	Best derived Prioritized Order of the Stack of Tasks

	Best Parameters for the Stack of Tasks
	Right slave arm precision - Empty environment
	Right Master arm precision - Empty environment with a wall
	Precision & Distances from Obstacles - Static Obstacles Environment
	Precision & Manipulability - Empty Environment
	Precision & distances from Mechanical Joint Limits - Empty Environment

	Manipulability & distances from Mechanical Joint Limits - Empty Environment
	Precision, Time, Distances from Obstacles, Manipulability & Distances from M.J.L - Static Obstacles Environment
	Precision & Distances from Obstacles - Dynamic Obstacles Environment

	Robustness of the algorithm to useless tasks

	Test of the learned stack of tasks
	Base Master
	Arm Master

	Conclusions
	Conclusions
	Future developments

	Bibliography

