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Introduction

System Identification concerns the estimation of dynamical systems models
through input and output measurements. In recent years, numerous papers
have been published in this subject and, recently, a new method based on
singular value decompositions (SVD) has emerged, the so-called subspace
methods. However, the latter does not allow to add regularization terms to
the problem or to extend it to the case in which part of the inputs or outputs
is missing, for example, due to the breakage of a sensor. For this reason, a
convex optimization formulation based on the nuclear norm penalty offers an
interesting alternative. It promotes a low rank optimum: in fact, the nuclear
norm of a matrix, by definition, is the sum of its singular values, therefore
we can interpret the nuclear norm as a sort of convex relaxation of the rank.
Then, we must solve the following convex optimization problem:

min
y

®
‖A(y)‖∗ + 1

2‖y − ymeas‖2

´
(1)

where ymeas are the measured outputs, A is a linear mapping and ‖·‖∗
indicates the nuclear norm. This optimization problem is used as a pre-
processing step: it computes a modified output sequence which is passed to
the standard subspace method. In this way, it regularizes the outputs or it
reconstructs the missing data.

As a result, the interest in convex optimization techniques has recently
increased [22] [24], including the proximal algorithms that we have studied in
this thesis. They are algorithms for solving a convex optimization problem
which uses a proximal operator of the objective terms: let f : Rn → R∪+∞
be a closed proper function, the proximal operator proxλf : Rn → Rn of f is
defined by

proxλf (v) = argmin
x

®
f(x) + 1

2λ‖x− v‖
2
2

´
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6 Introduction

In the course of this thesis, we will see 4 different proximal algorithms to
solve problems of the type min{f(x)+g(x)} where, usually, f is differentiable
and g is nonsmooth :

• Proximal Gradient Method: it combines a gradient type iterative method
with the proximal operator;

• Accelerated Proximal Gradient method: it is an accelerated version of
the PGM;

• Alternating Direction Method of Multipliers: this method calculates
the proximal operator separately on f and on g and then it combines
them into a dual variable;

• Proximal Newton Method : it combines the Newton method with the
proximal operator.

In some applications, it is advantageous to apply a proximal algorithm to
the dual problem, instead of the primal one. Given the problem minx∈Rn{f(x)+
g(Ax)}, with A : Rn → Rp×q a linear mapping, its dual formulation is

min
u∈Rp×q

{f ∗(−Aadju) + g∗(u)},

where with f ∗ we indicate the convex conjugate of the function f and Aadj :
Rp×q → Rn is the adjoint mapping of A.

The use of PGM, and of its accelerated version to solve a nuclear norm
optimization problem, had already been proposed in the article of Fazel,
Pong, Sun, Tseng [12], where, to derive the dual formulation of the problem,
the authors relied on the minimization/maximization of the Lagrangian. In-
stead, in this thesis, we derive the dual formulation directly from the use of
convex conjugates of the functions. Another difference with the article is that
we solve a more general nuclear norm problem: instead of considering the
Euclidean norm in the second part of (1), we study (y−ymeas)TE(y−ymeas),
with E a positive semidefinite matrix. However, although this result is inter-
esting from a theoretical point of view, it hasn’t shown better performances,
at this moment.

Indeed, as it will emerge from the experiments, we are not interested in
finding the minimum of the problem (1) in an accurate way, since if we find
a nuclear norm too small we risk to underestimate the order of the model;
on the other side, stopping at a high nuclear norm we risk to overestimate
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it. As a consequence, we will see how the results obtained through ADMM
and FPGM, and in some cases PGM, are slightly better than the other one,
since PNM goes quickly to a minimum.

Another contribution of this thesis is related in particular to model order
selection. In the literature of subspace methods, and consequently in that of
nuclear norm minimization, the authors use a threshold on singular values
of some block-Hankel matrices to determine the model order. Here we show
that this brings to choose larger models than necessary, with well known
disadvantages, e.g. over-fitting. Instead, here we propose to use the parsi-
mony principles, that in this thesis has been incorporated in the proximal
algorithms and tested experimentally. The results show that the modified
ADMM algorithm here proposed obtains a better fit with a lower order model
in a wide set of real data. The experiments with simulation data confirm this
behavior systematically. The results does not change when using different
proximal algorithms.

The thesis is organized in the following way: in Chapter 1 it is explained
in detail what a proximal operator is and what its properties are. In Chapter
2 the proximal algorithms are studied in detail. For each of them, we see
the convergence rate and their interpretation, since they can be interpreted
as generalizations of other known algorithms. In Chapter 3 the operation
of the subspace method and the formation of the nuclear norm optimization
problem is briefly resumed. Later, we see in detail how to apply the various
algorithms to the problem. In Chapter 4 the numerical experiments are
presented.





Chapter 1

Proximal operator

1.1 Definition
Let f : Rn → R ∪ {+∞} be a closed proper convex function, which means
that its epigraph is a nonempty closed convex set. We remember that the
epigraph of a function f is

epi(f) = {(x, t) ∈ Rn × R : f(x) ≤ t}
Instead, the effective domain of f is the set of points for which f takes

on finite values:

dom(f) = {x ∈ Rn : f(x) < +∞}
Assuming these hypotheses, we can define the proximal operator:

Definition 1. The proximal operator proxλf : Rn → Rn of f is defined by

proxλf (v) := argmin
x

¶
f(x) + 1

2λ‖x− v‖
2
2
©
,

where ‖·‖2 is the usual Euclidean norm and the parameter λ > 0.

We notice that the function minimized on the righthand size is closed
and strongly convex because it is a sum of the closed and strongly convex
function 1

2‖·− x‖
2
2 and the closed and convex function f ; so it has an unique

minimizer for every v ∈ Rn.
The mapping proxλf takes a point v ∈ Rn and moves it. The points in the

domain of the function stay in the domain and move towards the minimum of

9



10 Proximal operator

the function, while the points outside the domain move to the boundary and
towards the minimum of the function. The parameter λ controls the extent
to which the proximal operator maps points towards the minimum: with
larger values of λ associated with mapped points near the minimum, and
smaller values giving smaller movement towards the minimum. So proxλf (v)
is a point that compromises between minimizing f and being near to v.

Figure 1.1: Evaluating a proximal operator

In Figure 1.1 the thin black lines are the level curves of f , the thicker
black line indicates the boundary of the function and evaluating the proximal
operator at the blue points moves them to the corresponding red points.

Example 1. If f is the indicator function

IC(x) =
0, x ∈ C

+∞, x /∈ C

where C is a closed nonempty convex set, the proximal operator of f re-
duces to Euclidean projection onto C. So in this case, the proximal operator
can be interpreted as generalized projection.

1.2 Properties
Now we discuss the main properties of proximal operators, which are used,
for example, to establish convergence of a proximal algorithm or to derive a
method for evaluating the proximal operator.
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• separable sum: if f is separable across two variables, i.e. f(x, y) =
ϕ(x) + ψ(y), then

proxf (v, w) = (proxϕ(v), proxψ(w)).

So evaluating the proximal operator of a separable function reduces
to evaluating the proximal operators for each of the separable parts,
which can be done independently. In tis way if f is fully separable,
f(x) = ∑n

i=1 fi(xi), then (proxf (v))i = proxfi(vi)

• fixed points: the point x∗ minimizes f if and only if x∗ is a fixed point
of proxf .

Proof. Without loss of generality we can consider λ = 1, in fact x∗
minimizes f if and only if x∗ minimizes λf . If x∗ minimizes f , f(x) ≥
f(x∗) ∀x, then

f(x) + 1
2‖x− x

∗‖2 ≥ f(x∗) = f(x∗) + 1
2‖x

∗ − x∗‖2

So x∗ minimizes f(x) + 1
2‖x− x

∗‖2. It follows that x∗ = proxf (x∗).
We prove the converse, x̂ = proxf (v) if and only if 0 ∈ ∂f(x̂) + (x̂− v),
where ∂f(x) is the subdifferential of f at x, defined by

∂f(x) = {y : f(z) ≥ f(x) + yt(z − x),∀z ∈ dom(f)} (1.1)

When f is differentiable, we have that ∂f(x) = {∇f(x)}, ∀x.
Taking x̂ = v = x∗, we have that 0 ∈ ∂f(x∗) and so x∗ minimizes f .

Since minimizers of f are fixed points of proxf , we can minimize f by
finding a fixed point of its proximal operator.

• Moreau decomposition:
the following relation always holds:

v = proxf∗(v) + proxf (v)

where f ∗(y) = supx(ytx− f(x)) is the conjugate convex of f .
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Proof. let v ∈ Rn and denote u = proxf (v). Then

0 ∈ ∂f(u) + (u− v)⇒ v − u ∈ ∂f(u).

Using a property of the conjugate, that we will see later, we have that
u ∈ ∂f ∗(v − u).

Then

v − u = proxf∗(v) ⇒ v = u+ proxf∗(v) = proxf (v) + proxf∗(v)

The general Moreau decomposition is

v = proxλf∗(v) + λprox 1
λ
f (
v

λ
).

• relation with ∂f : the proximal operator proxλf and the subdifferen-
tial operator ∂f , defined in 1.1, are related as follows:

proxλf = (I + λ∂f)−1 (1.2)

Proof. z ∈ (I+λ∂f)−1(x) ⇐⇒ x ∈ (I+λ∂f)(z) ⇐⇒ x ∈ z+λ∂f(z)

⇐⇒ 0 ∈ ∂f(z) + 1
λ
(z − x) ⇐⇒ 0 ∈ ∂z

Ç
f(z) + 1

2λ‖z − x‖
2
å
.

Now the function f(z) + 1
2λ‖z − x‖

2 is strongly convex, so there is an
unique minimum. Then

z = argmin
u
{f(u) + 1

2λ‖u− x‖
2} ⇐⇒ z = proxλf (x).
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1.3 Proximal algorithms
A proximal algorithm is an algorithm for solving a convex optimization prob-
lem which uses the proximal operators of the objective terms. The properties
of proxf above suggest several potential perspectives on this algorithm, such
as a fixed point iteration or the possibility to pass to a dual problem.

There are many reasons to use the proximal algorithms : they work under
extremely general conditions, including cases where the functions are non-
smooth; they can be fast since there can be simple proximal operators for
functions that are otherwise challenging to handle in an optimization prob-
lem. Then they can be used to solve many problems and they are easy,
because they can be interpreted as generalizations of other algorithms.

We describe, briefly, some important proximal algorithms for solving con-
vex optimization problems:

• proximal minimization:

xk+1 := proxλf (xk)

where f : Rn → R ∪+∞ is a closed proper function, k is the iteration
counter and xk denotes the k-th iterate of the algorithm. In this way
if f has a minimum, xk converges to the set of minimizers of f . A
variation on the algorithm uses parameter values that change in each
iteration. However, this basic method has not found many applications.

• proximal gradient method: this method, and the other ones, will
be studied in detail in the next chapter, so here we present briefly the
algorithm. Consider the problem

minimize {f(x) + g(x)}

where f : Rn → R and g : Rn → R ∪ +{∞} are closed proper convex
functions, f is differentiable and g can be nonsmooth. The proximal
gradient method is

xk+1 := proxλg(xk − λ∇f(xk))
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• accelerated proximal gradient method: it is an accelerated ver-
sion of the proximal gradient algorithm. A version is

yk+1 := xk + tk(xk − xk−1)
xk+1 := proxλg(yk+1 − λ∇f(yk+1))

where tk ∈ [0, 1) is an extrapolation parameter and λ is the usual step
size. These parameters must be chosen in specific ways to achieve the
convergence acceleration.

• alternating direction method of multipliers: considered the prob-
lem

minimize {f(x) + g(x)}

where f, g : Rn → R ∪ +{∞} are closed proper convex functions and
both f and g can be nonsmooth. The method, also known as Douglas-
Rachford splitting, is

xk+1 := proxλf (zk − uk)
zk+1 := proxλg(xk+1 + uk)
uk+1 := uk + xk+1 − zk+1

The advantage of this method is that the objective terms are handled
separately, so it is useful when the proximal operators of f and g are
efficiently evaluated, but the proximal operator of f + g is not easy to
compute.

• proximal Newton method: considered the problem

minimize {f(x) + g(x)}

where f : Rn → R is a proper convex, continuosly differentiable func-
tion and its gradient is Lipshitz continuos; instead g : Rn → R is a
proper convex, but not necessarily differentiable function, whose prox-
imal mapping can be evaluated efficiently. We present a line search
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algorithm, where first we choose a descent direction ∆xk , then we find
a step size tk and, in the end, we update the iterate xk:

∆xk = proxHg (xk−1 −H−1∇f(xk−1))− xk−1

xk = xk−1 + tk∆xk

where H is the hessian of the function f or its approximation.





Chapter 2

Proximal algorithms

2.1 Proximal gradient method
In this section we describe a very popular algorithm to solve

minimize {ϕ(x) = f(x) + g(x)} (2.1)

The following assumptions are made throughout the section:

• f : Rn → R is a smooth closed proper convex function, differentiable
and with Lipschitz continuos gradient, i.e.

‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖ ∀x, y ∈ Rn

where Lf > 0;

• g : Rn → R is a continuous, closed proper convex function, it can be
nonsmooth and it has an efficient proximal mapping;

• the problem 2.1 is solvable, i.e. ∃x∗ = argminϕ(x) 6= ∅.

We split the objective into two terms, one of which is differentiable. This
splitting is not unique and different partitions lead to different implementa-
tions of the PGM ( proximal gradient method).

Example 2. The lasso problem is

minimize
1
2‖Ax− b‖

2
2 + γ‖x‖1

17



18 Proximal algorithms

where x ∈ Rn, A ∈ Rm×n and γ > 0. The problem can be interpreted as
finding a sparse solution to a least squares. So we can consider the splitting

f(x) = 1
2‖Ax− b‖

2
2 g(x) = γ‖x‖1

Despite its simplicity, problem2.1 encompasses a large variety of applica-
tions:

Example 3. The constrained optimization problem can be formulated as 2.1:
in fact, if we have the problem of minimizing f subject to the constraint x ∈ C,
with C a nonempty set, we set g the indicator function of C.

The presence of a nonsmooth function prevents from applying classical
optimization algorithms such as gradient descent. In fact, these methods
are based on derivatives and do not apply to the minimization of non-
differentiable functions. Consequently, one way to deal with this kind of
problems is through the PGM: it combines the gradient descent with the
proximal mapping.

xk+1 := proxλg(xk − λk∇f(xk))

where k is an iteration counter and x0 is an initial value in Rn. The
parameter λk > 0 is a step size. It can be fixed and we will prove that if
λ = λk ∈ (0, 1/Lf ] the method will converge. If Lf is not known, λk can be
found by a line search. An example of line search is the following:

given xk, λk−1, and parameter α ∈ (0, 1)
let λ = λk−1

repeat
1. let z = proxλg(xk − λ∇f(xk))
2. break if f(z) ≤ f̂λ(z, xk)
3. update λ = αλ

return λk = λ, xk+1 = z.

A typical value for the line search parameter α is 1/2. The function f̂λ is
easy to evaluate:

f̂λ(x, y) = f(y) + 〈x− y,∇f(y)〉+ 1
2λ‖x− y‖

2 (2.2)
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Lemma 1. let f : Rn → R be a continuosly differentiable function with
Lipschitz continuos gradient and Lipschitz constant Lf . Then for any L ≥ Lf

f(x) ≤ f(y) + 〈x− y,∇f(y)〉+ L

2 ‖x− y‖
2 ∀x, y ∈ Rn

Proof. We consider the function g(t) = f(y + t(x − y)), so g(1) = f(x),
g(0) = f(y), ∂g

∂t
= 〈x− y,∇f(y + t(x− y))〉:

f(x)− f(y) = g(1)− g(0) =
∫ 1

0

∂g

∂t
dt =

∫ 1

0
〈x− y,∇f(y + t(x− y))〉 dt

≤
∫ 1

0
〈x− y,∇f(y)〉 dt+ |

∫ 1

0
〈x− y, (∇f(y + t(x− y))−∇f(y))〉 dt |

≤ 〈x− y,∇f(y)〉+ ‖x− y‖
∫ 1

0
Lf t‖x− y‖ dt

= 〈x− y,∇f(y)〉+ Lf2 ‖x− y‖
2 ≤ 〈x− y,∇f(y)〉+ L

2 ‖x− y‖
2

Using Lemma 1 we have:

f(x)− f(y) ≤ 〈x− y,∇f(y)〉+ L

2 ‖x− y‖
2 ≤ 〈x− y,∇f(y)〉+ 1

2λ‖x− y‖
2

where the last inequality is true if λ ∈ (0, 1/Lf ]. So, it is a convex upper
bound of f and satisfies f̂λ(x, x) = f(x) when λ ∈ (0, 1/Lf ].

Now we see a geometric interpretation: the gradient step (forward) moves
the iterate xk towards the minimum of f , while the proximal step (backward)
makes progress towards the minimim of g. This alternation will ultimately
lead to the minimum of the sum of these two functions. We can see this in
Figure 2.1.

There are some special cases:

• g = IC ⇒ proxλg is projection onto C ⇒ PGM reduces to the projected
gradient method;

• f = 0 ⇒ PGM reduces to proximal minimization;

• g = 0 ⇒ PGM reduces to the standard gradient descent method.
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Figure 2.1: Path that the PGM creates to reach the optimal value

2.1.1 Convergence
When g ≡ 0, the PGM reduces to the gradient method and the sequence
of function values ϕ(xk) converges to ϕ(x∗) with a sublinear rate: ϕ(xk) −
ϕ(x∗) ∈ O(c/k), c > 0 constant and x∗ is the optimal value of problem 2.1.
We want to prove that PGM shares the same rate of convergence.

To reduce the notation, we define the PGM with PL(y) := prox 1
L
g(y −

1
L
∇f(y)), with L > 0.
Given ϕ(x) = f(x) + g(x), we consider the following quadratic approxi-

mation at a given point y :

QL(x, y) := f(y) + 〈x− y,∇f(y)〉+ L

2 ‖x− y‖
2 + g(x)

QL(x, y) is a convex function, so it admits a unique minimizer and PL(y) =
argminx{QL(x, y)}.

Lemma 2. ∀y ∈ Rn, one has z = PL(y) ⇐⇒ ∃γ(y) ∈ ∂g(z), the subdiffer-
ential of g (1.1), such that

∇f(y) + L(z − y) + γ(y) = 0

Lemma 3. Let y ∈ Rn, L > 0 be such that ϕ(PL(y)) ≤ QL(PL(y), y), then
∀x ∈ Rn

ϕ(x)− ϕ(PL(y)) ≥ L

2 ‖PL(y)− y‖2 + L〈y − x, PL(y)− y〉.

Proof. ϕ(PL(y)) ≤ QL(PL(y), y) ⇒ ϕ(x)− ϕ(PL(y)) ≥ ϕ(x)−QL(PL(y), y)︸ ︷︷ ︸
�
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Now f and g are convex for hypothesis, so:
f(x) ≥ f(y) + 〈x− y,∇f(y)〉
g(x) ≥ g(PL(y)) + 〈x− PL(y), γ(y)〉

f(x) + g(x) = ϕ(x) ≥ f(y) + 〈x− y,∇f(y)〉+ g(PL(y)) + 〈x− PL(y), γ(y)〉

By definition of PL(y):

QL(PL(y), y)) = f(y) + 〈PL(y)− y,∇f(y)〉+ L

2 ‖PL(y)− y‖2 + g(PL(y))

We replace in �:

ϕ(x)− ϕ(PL(y)) ≥ f(y) + 〈x− y,∇f(y)〉+ g(PL(y)) + 〈x− PL(y), γ(y)〉

− f(y)− 〈PL(y)− y,∇f(y)〉 − L

2 ‖PL(y)− y‖2 − g(PL(y))

= −L2 ‖PL(y)− y‖2 + 〈x− PL(y),∇f(y) + γ(y)〉

= we use lemma 2

= −L2 ‖PL(y)− y‖2 + 〈x− PL(y), L(y − PL(y))〉

= −L2 ‖PL(y)− y‖2 + L〈PL(y)− x+ y − y, PL(y)− y)〉

= −L2 ‖PL(y)− y‖2 + L‖PL(y)− y‖2 + L〈y − x, PL(y)− y)〉

= L

2 ‖PL(y)− y‖2 + L〈y − x, PL(y)− y)〉

We note that from Lemma 1 it follows that if L ≥ Lf , and so λ ∈
(0, 1/Lf ), the condition ϕ(PL(y)) ≤ Q(PL(y), y) is always satisfied for PL(y).

Moreover, it exists α and β such that βLf ≤ Lk := 1
λk
≤ αLf .

Theorem 2. Let {xk}k≥1 the sequence generated by PGM, then

ϕ(xk)− ϕ(x∗) ≤ αLf‖x0 − x∗‖2

2k , ∀k ≥ 1.
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Proof. We use Lemma 3 with x = x∗, y = xn, L = Ln+1:

2
Ln+1 (ϕ(x∗)− ϕ(xn+1)) ≥ ‖xn+1 − xn‖2 + 2〈xn − x∗, xn+1 − xn〉

= 〈xn+1 − xn, xn+1 − xn〉+ 2〈xn − x∗, xn+1 − xn〉
= 〈xn+1 + xn − 2x∗, xn+1 − xn〉
= ‖x∗ − xn+1‖2 − ‖x∗ − xn‖2

Using the fact that ϕ(x∗)− ϕ(xn+1 ≤ 0 and βLf ≤ Lk ≤ αLf :

2
αLf

(ϕ(x∗)− ϕ(xn+1)) ≥ ‖x∗ − xn+1‖2 − ‖x∗ − xn‖2

Summing this inequality over n = 0, ..., k − 1 gives:

2
αLf

(kϕ(x∗)−
k−1∑
n=0

ϕ(xn+1)) ≥ ‖x∗ − xk‖2 − ‖x∗ − x0‖2 (2.3)

Invoking Lemma 3 with x = y = xn, L = Ln+1:

2
Ln+1 (ϕ(xn)− ϕ(xn+1)) ≥ ‖xn+1 − xn‖2

Using the fact that ϕ(xn)− ϕ(xn+1) ≥ 0 and βLf ≤ Ln+1:

2
βLf

(ϕ(xn)− ϕ(xn+1)) ≥ ‖xn+1 − xn‖2

Multiplying by n and summing over n = 0, ..., k − 1 gives:

2
βLf

k−1∑
n=0

(nϕ(xn)− (n+ 1)ϕ(xn+1) + ϕ(xn+1)) ≥
k−1∑
n=0

n‖xn+1 − xn‖2

2
βLf

(−kϕ(xk) +
k−1∑
n=0

ϕ(xn+1)) ≥
k−1∑
n=0

n‖xn+1 − xn‖2 (2.4)

Summing 2.3 and 2.4 times β/α:

2k
αLf

(ϕ(x∗)− ϕ(xk)) ≥ ‖x∗ − xk‖2 + β

α

k−1∑
n=0

n‖xn+1 − xn‖2 − ‖x∗ − x0‖2

≥ −‖x∗ − x0‖2
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Then:

ϕ(x∗)− ϕ(xk) ≥ −αLf‖x
0 − x∗‖2

2k

ϕ(xk)− ϕ(x∗) ≤ αLf‖x0 − x∗‖2

2k

2.1.2 Interpretations
The proximal gradient method can be interpreted in many ways.

• majorization-minimization: a majorization-minimization algorithm
for minimizing a function ϕ : Rn → R consists of the iteration xk+1 =
argminx ϕ̂(x, xk), where ϕ̂(·, xk) is a convex upper bound of ϕ such that
ϕ̂(x, xk) ≥ ϕ(x) and ϕ̂(x, x) = ϕ(x) for all x. The reason for the name
is that the algorithm increases (upper bounding) the objective term
and then it minimizes the majorization.
At this point, for an upper bound of f , we consider the function f̂λ
described in 2.2. For fixed y the functiom is convex, f̂λ(x, x) = f(x)
and it is an upper bound on f when λ ∈ (0, 1/Lf ].
We define

qλ(x, y) := f̂λ(x, y) + g(x)

It is a surrogate for f + g when λ ∈ (0, 1/Lf ]. Then we can prove that

xk+1 = argmin
x

qλ(x, xk) ⇐⇒ xk+1 = proxλg(xk − λ∇f(xk))

In fact:

∇xqλ(x, xk) = ∇f(xk) + 1
λ

(x− xk) + ∂g(x) = 0 ⇐⇒

x+ λ∂g(x) = xk − λ∇f(xk) ⇐⇒ (I + λ∂g)(x) = xk − λ∇f(xk) ⇐⇒
x = (I + λ∂g)−1(xk − λ∇f(xk))

Using the property 1.2, we have (I+λ∂g)−1 = proxλg, so x = proxλg(xk−
λ∇f(xk)) =⇒ xk+1 = proxλg(xk − λ∇f(xk)).
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• fixed point iteration : the PGM can be interpreted also as a fixed
point iteration. A point x∗ is a solution of min{f(x) + g(x)} ⇐⇒
0 ∈ ∇f(x∗) + ∂g(x∗). Let λ > 0 :

0 ∈ λ∇f(x∗) + λ∂g(x∗) ⇐⇒ 0 ∈ λ∇f(x∗)− x∗ + x∗ + λ∂g(x∗)

x∗ − λ∇f(x∗) ∈ x∗ + ∂g(x∗) ⇐⇒ (I − λ∇f)(x∗) ∈ (I + λ∂g)(x∗)

x∗ = (I + λ∂g)−1(I − λ∇f)(x∗) ⇐⇒ x∗ = proxλg(x∗ − λ∇f(x∗))

The last two expressions hold with equality and not just containment
because the proximal operator is single-valued.
In this way x∗ minimizes f + g if and only if x∗ is a fixed point of the
forward-backward operator (I+λ∂g)−1(I−λ∇f). The PGM repeatedly
applies this operator to obtain a fixed point and, thus, a solution to
the original problem.
The condition λ ∈ (0, 1/Lf ] guarantees that the forward-backward op-
erator is averaged and thus the iteration converges to a fixed point,
when one exists.

• forward-backward integration of gradient flow: the PGM can be
interpreted using gradient flows, which take the form :

d

dt
x(t) = −∇f(x(t))−∇g(x(t)) (2.5)

assuming that also g is differentiable. To obtain a discretization, we
replace the derivate with

d

dt
x(t) ≈ xk+1 − xk

h

We replace also the value x(t) on the righthand side of 2.5with either xk
( giving the forward Euler discretization) or xk+1 (giving the backward
Euler discretization).Since the PGM is a forward-backward algorithm,
we use both xk and xk+1 on the righthand side.The result is:

xk+1 − xk

h
= −∇f(xk)−∇g(xk+1) =⇒ xk+1+h∇g(xk+1) = xk−h∇f(xk)
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=⇒ xk+1 = (I + h∇g)−1(I − h∇f)xk

It is the proximal gradient iteration when h = λ. So PGM can be
interpreted as a method for numerically integrating the gradient flow
differential equation that uses a forward Euler step for the differentiable
part f and a backward Euler step for the part g.

2.2 Fast proximal gradient method
It exists an accelerated version of PGM. In addition to the original iterate
xk, FPGM computes an extrapolated sequence yk. The basic version is:

y1 = x0 t1 = 1
for k ≥ 1 :

xk = proxλg(yk − λ∇f(yk))

tk+1 = 1 +
»

1 + 4tk2

2
yk+1 = xk + tk − 1

tk+1
(xk − xk−1)

Like PGM, λ ∈ (0, 1/Lf ), but if Lf is not know, the step size λk can be
found by a line search similar to the line search in PGM.

The main difference between PGM and FPGM is that the operator proxλg(·−
λ∇f(·)) is not employed to the previous point xk−1, but at the point yk, which
uses a linear combination of the previous two points xk−2 and xk−1.

We notice that wk := tk−1
tk+1
∈ [0, 1).

We remember that the extrapolation is the process of taking data val-
ues at points x1, ..., xn and approximating a value outside the range of the
given points. To do this, we need informations about the model (linear,
quadratic,...). So, in the case of FPGM, yk produce a "corrective" movement,
in fact with the PGM at the later steps the gradient becomes smaller and so
the progresses are slow. Instead, with the FPGM if the iterate is near the so-
lution, it is going to continue pushing in that direction and it improves when
the gradient is small. However with this approach, we are not sure that
ϕ(xk) ≤ ϕ(xk−1), in fact some oscillations can be formed, called Nesterov
ripples, but they are also necesssary to achieve a faster overall convergence.
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Figure 2.2: The behavior of {tk}k and {wk}k.

2.2.1 Convergence
In the convex case the iterates of FPGM satisfy ϕ(xk) − ϕ(x∗) ∈ O(1/k2),
where x∗ is the optimal value of the problem 2.1. To prove this, we introduce
some lemmas:

Lemma 4. the sequences {xk, yk}k≥1 generated via FPGM satisfy for every
k ≥ 0

2λktk2vk − 2λk+1tk+1
2vk+1 ≥ ‖uk+1‖2 − ‖uk‖2

where vk := ϕ(xk)− ϕ(x∗) and uk := tkx
k − (tk − 1)xk−1 − x∗

Proof.
We apply Lemma 3 at the points (x = xk, y = yk+1) and (x = x∗, y =

yk+1) with L = 1/λk+1 = Lk+1. We notice that PL(yk+1) = proxλg(yk+1 −
λ∇f(yk+1)) = xk+1. So we have:

i) 2
Lk+1 (ϕ(xk)− ϕ(xk+1)) ≥ ‖xk+1 − yk+1‖2 + 2〈yk+1 − xk, xk+1 − yk+1〉

2
Lk+1 (vk − vk+1) ≥ ‖xk+1 − yk+1‖2 + 2〈xk+1 − yk+1, yk+1 − xk〉

ii) 2
Lk+1 (−vk+1) ≥ ‖xk+1 − yk+1‖2 + 2〈xk+1 − yk+1, yk+1 − x∗〉

We multiply (i) by (tk+1 − 1) and add it to (ii):
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2
Lk+1 ((tk+1 − 1)vk − tk+1vk+1) ≥ (tk+1 − 1)‖xk+1 − yk+1‖2 + 2(tk+1 − 1)

· 〈xk+1 − yk+1, yk+1 − xk〉+ ‖xk+1 − yk+1‖22〈xk+1 − yk+1, yk+1 − x∗〉
= tk+1‖xk+1 − yk+1‖2 + 2〈xk+1 − yk+1, tk+1y

k+1 − (tk+1 − 1)xk − x∗〉
(2.6)

Now we notice that

t2k+1 − tk+1 =
Ç1 +

»
1 + 4tk2

2

å2

−1 +
»

1 + 4tk2

2

= 1
4(2 + 4t2k + 2

»
1 + 4t2k − 2− 2

»
1 + 4t2k) = t2k

So we have

t2k = t2k+1 − tk+1 (2.7)
Multiplying 2.6 by tk+1 and using 2.7 we obtain:

2
Lk+1 (t2kvk − t2k+1vk+1) ≥ ‖tk+1(xk+1 − yk+1)‖2+

+ 2tk+1〈xk+1 − yk+1, tk+1y
k+1 − (tk+1 − 1)xk − x∗〉

Using the usual Pythagoras relation :

‖b− a‖2 + 2〈b− a, a− c〉 = ‖b− c‖2 − ‖a− c‖2

with

a := tk+1y
k+1, b := tk+1x

k+1, c := (tk+1 − 1)xk + x∗

2
Lk+1 (t2kvk − t2k+1vk+1) ≥ ‖tk+1x

k+1 − (tk+1 − 1)xk − x∗)‖2

− ‖tk+1y
k+1 − (tk+1 − 1)xk − x∗‖2

Now tk+1y
k+1 = tk+1x

k + (tk − 1)(xk − xk+1) and we define uk := tkx
k −

(tk − 1)xk−1 − x∗
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Then

2
Lk+1 (t2kvk − t2k+1vk+1) ≥ ‖uk+1‖2 − ‖tk+1x

k + (tk − 1)(xk − xk−1)−

− (tk+1 − 1)xk − x∗‖
= ‖uk+1‖2 − ‖tkxk − tkxk−1 − xk + xk−1 + xk − x∗‖2

= ‖uk+1‖2 − ‖tkxk − (tk − 1)xk − x∗‖2

= ‖uk+1‖2 − ‖uk‖2

Now Lk+1 ≥ Lk, so

2
Lk
tk

2vk −
2

Lk+1 tk+1
2vk+1 ≥ ‖uk+1‖2 − ‖uk‖2

2λktk2vk − 2λk+1tk+1
2vk+1 ≥ ‖uk+1‖2 − ‖uk‖2

Lemma 5. let {ak, bk} be positive sequences of real numbers satisfying ak −
ak+1 ≥ bk+1 − bk ∀k ≥ 1, with a1 + b1 ≤ c, c > 0, then ak ≤ c ∀k ≥ 1.

Proof. We prove by induction

• a1 ≤ c− b1 ≤ c =⇒ a1 ≤ c;
a1 − a2 ≥ b2 − b1 =⇒ a1 + b1 − a2 ≥ b2 =⇒ c ≥ a2 + b2

• we suppose true for k − 1 : ak−1 + bk−1 ≤ c and ak−1 ≤ c

ak−1 − ak ≥ bk − bk−1 =⇒ ak−1 + bk−1 − ak ≥ bk ≥ 0
=⇒ ak ≤ ak−1 + bk−1 ≤ c =⇒ ak ≤ c.

Lemma 6. the positive sequence {tk}k≥1 generated by FPGM with t1 = 1
satisfies

tk ≥
k + 1

2 ∀k ≥ 1 (2.8)

Proof. We prove it by induction
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• t1 = 1 = 2
2 ;

• we suppose true for k: tk ≥ k+1
2 :

tk+1 =
1 +

»
1 + 4t2k
2 ≥

1 +
»

1 + (k + 1)2

2 = 1 +
√
k2 + 2k + 2

2 ≥ 1 + k + 1
2

= k + 2
2

Theorem 3. Let {xk}k≥1 and {yk}k≥1 be generated by FPGM. Then for any
k ≥ 1:

ϕ(xk)− ϕ(x∗) ≤ 2αLf‖x0 − x∗‖2

(k + 1)2 , ∀k ≥ 1.

Proof. Define

ak := 2λktk2vk, bk := ‖uk‖2, c := ‖y1 − x∗‖2 = ‖x0 − x∗‖2

Recall that vk = ϕ(xk)− ϕ(x∗) an using lemma 4 we have ∀k ≥ 1:

ak − ak+1 ≥ bk+1 − bk
We note that {ak, bk} are positive sequences of real and c > 0. Hence

assuming that a1 + b1 ≤ c. Invoking lemma 5 we have:

ak ≤ c =⇒ 2λktk2vk ≤ ‖x0 − x∗‖2.

Using lemma 6:

vk ≤
2‖x0 − x∗‖2

λk(k + 1)2

We remember that λk ∈ (0, 1/Lf ), so

ϕ(xk)− ϕ(x∗) ≤ 2αLf‖x0 − x∗‖2

(k + 1)2 , ∀k ≥ 1.

All that remains is to prove the validity of the relation a1 + b1 ≤ c. We
can prove this applying lemma 3 with x = x∗, y = y1 and L = 1/λ1.
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ϕ(x∗)− ϕ(x1) ≥ L1

2 ‖x
1 − y1‖2 + L〈y1 − x∗, x1 − y1〉

= L1

2 〈x
1 − y1, x1 − y1〉+ L〈y1 − x∗, x1 − y1〉

= L1

2 〈x
1 − x∗ + x∗ − y1, x1 − x∗ + x∗ − y1〉+

+ L〈y1 − x∗, x1 − x∗ + x∗ − y1〉

= L1

2 ‖x
1 − x∗‖2 − L1

2 ‖y
1 − x∗‖2

= L1

2
Ä
‖x1 − x∗‖2 − ‖y1 − x∗‖2ä

Now

a1 = 2
L1v1 = 2

L1 (ϕ(x1)− ϕ(x∗) ≤ ‖y1 − x∗‖2 − ‖x1 − x∗‖2 = c− b1

So a1 + b1 ≤ c.

2.3 Alternating direction method of multipli-
ers (ADMM)

We consider the problem

minimize {f(x) + g(x)}
where f, g : Rn → R∪+{∞} are closed proper convex functions and both f
and g can be nonsmooth. The method is

xk+1 := proxλf (zk − uk)
zk+1 := proxλg(xk+1 + uk)
uk+1 := uk + xk+1 − zk+1

We notice that xk ∈ domf and zk ∈ domg, so if g encodes constraints, the
iterates zk satisfy the constraints, while the iterates xk satisfy the constraints
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only in the limit: for example if g = ‖·‖1, then zk will be sparse, while xk
will only be close to zk, and so close to sparsity.

We observe that if f and g are the indicator functions of closed convex
sets C and D respectively, the problem of minimizing f + g is equivalent to
the problem of finding a point x ∈ C ∩ D. In fact, both proximal operators
are reduced to projections.

2.3.1 Interpretations
The ADMM can be interpreted in many ways:

• augmented Lagrangian: we write the problem of minimizing f(x) +
g(x) as

minimize f(x) + g(z)
s.t. x− z = 0

(2.9)

which is called consensus form, in fact the variable x has been split into
two variables x and z, and we have added the consensus constraint upon
which they must agree. The augmented Lagrangian associated with the
problem 2.9 is

Lρ(x, z, y) = f(x) + g(z) + yT (x− z) + ρ

2‖x− z‖
2
2 (2.10)

where ρ > 0 is a parameter and y ∈ Rn is a dual variable associated
with the consensus constraint. ADMM can then be expressed as

xk+1 := argmin
x

Lρ(x, zk, yk)

zk+1 := argmin
z

Lρ(xk+1, z, yk)

yk+1 := yk + ρ(xk+1 − zk+1).

In each of the x and z steps, Lρ is minimized over the variable, using the
most recent value of the other primal variable and the dual variable.
The dual variable is the scaled running sum of the consensus errors.
Now we prove that the augmented Lagrangian form of ADMM reduces
to the proximal version:
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xk+1 := argmin
x

(f(x) + g(zk) + yk
T (x− zk) + ρ

2‖x− z
k‖2

2))

zk+1 := argmin
z

(f(xk+1) + g(z) + yk
T (xk+1 − z) + ρ

2‖x
k+1 − z‖2

2))

yk+1 := yk + ρ(xk+1 − zk+1).

Then pull the linear terms into the quadratic ones and deleting the
constant terms, we get

xk+1 := argmin
x

(f(x) + ρ

2‖x− z
k + 1

ρ
yk‖2

2))

zk+1 := argmin
z

(g(z) + ρ

2‖x
k+1 − z − 1

ρ
yk‖2

2))

yk+1 := yk + ρ(xk+1 − zk+1).

With uk = 1
ρ
yk and λ = 1

ρ
, we obtain the proximal form of ADMM.

• flow interpretation: ADMM can also be interpreted as a method for
solving a particular system of ordinary differential equations. Assuming
for simplicity that f and g are both differentiable, we consider the
differential equation

d

dt

ñ
x(t)
z(t)

ô
=
ñ
−∇f(x(t))− ρu(t)− ρr(t)
−∇g(z(t)) + ρu(t) + ρr(t)

ô
,

d

dt
u(t) = ρr(t)

where r(t) = x(t)− z(t) is the primal residual and ρ > 0. With xk, zk
and uk denoting our approximations of x(t), z(t) and u(t) at t = kh,
where h > 0 is the step length, we use the discretization given by:

xk+1 − xk

h
= −∇f(xk+1)− ρ(xk − zk + uk)

zk+1 − zk

h
= −∇g(zk+1) + ρ(xk+1 − zk + uk)

uk+1 − uk

h
= ρ(xk+1 − zk+1)
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We make very specific choices on the righthand side as to whether each
time argument t is replaced with kh (forward) or (k + 1)h (backward)
values. Choosing h = λ and ρ = 1/λ, this discretization reduces di-
rectly to the proximal form of ADMM.

• fixed point iteration: ADMM can be viewed as a fixed point iteration
for finding a point x∗ satisfying the optimality condition

0 ∈ ∂f(x∗) + ∂g(x∗) (2.11)

Fixed points x, z, y of the ADMM iteration satisfy:

x = prozλf (z − u), z = proxλ,g(x+ u), u = u+ x− z
from the last equation, we conclude x = z, so

x = prozλf (x− u), x = proxλ,g(x+ u)

which can be written as

x = (I + λ∂f)−1(x− u), x = (I + λ∂g)−1(x+ u)

This is the same as

x− u ∈ x+ λ∂f(x), x+ u ∈ x+ λ∂g(x)

Adding these two equations we have:

0 ∈ λ∂f(x) + λ∂g(x)

so x satisfies the optimality condition 2.11. Thus any fixed point of the
ADMM iteration satisfies x = z with x optimal.

2.3.2 Linearized ADMM
A variation of ADMM can be useful for solving problems of the form

minimizef(x) + g(Ax)
where f : Rn → R∪{∞} and g : Rm → R∪{∞} are closed proper convex

and A ∈ Rm×n. This problem can be solved with the standard ADMM by
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defining g̃(x) := g(Ax) and minimizing f(x) + g̃(x). However, this approach
requires evaluation of the proximal operator of g̃ and it can be complicated
by the presence of A. The linearized ADMM algorithm solves the problem
above using only the proximal operator of f , g and the multiplication by A
and AT .

Linearized ADMM has the form:

xk+1 := proxµf

Ç
xk − µ

λ
AT (Axk − zk + uk)

å
zk+1 := proxλg(Axk+1 + uk)
uk+1 := uk + Axk+1 − zk+1

where the parameters λ and µ satisfy 0 < µ ≤ λ‖A‖2
2. This reduces to

standard ADMM when A = I and µ = λ.
The reason for the name is the following: consider the problem

minimize f(x) + g(z)
s.t. Ax− z = 0

with variables x and z. The augmented Lagrangian for this problem is

Lρ(x, z, y) = f(x) + g(z) + yT (Ax− z) + ρ

2‖Ax− z‖
2
2

where y ∈ Rm is the dual variable and ρ = 1/λ. In the linearized ADMM
we modify the x-update by replacing the term (ρ/2)‖Ax− zk‖2

2 with

ρ(ATAxk − AT zk)Tx+ µ

2‖x− x
k‖2

2

i.e. we linearize the quadatic term and add new quadratic regularization.
So, the augmented Lagrangian becomes

Lρ(x, z, y) = f(x) + g(z) + yT (Ax− z) + ρ(ATAxk − AT zk)Tx+ µ

2‖x− x
k‖2

2
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xk+1 = argmin
x

Lρ(x, zk, yk)

= argmin
x

f(x) + yk
T
Ax+ ρ(ATAxk − AT zk)Tx+ µ

2‖x− x
k‖2

2

= argmin
x

f(x) + 1
2µ‖x− x

k + ρµAT (Axk − zk + yk

ρ
)‖2

2

= proxµf

Ç
xk − µ

λ
AT (Axk − zk + uk)

å
with uk = (1/ρ)yk and λ = 1/ρ.

2.3.3 Convergence
There are many convergence results about the ADMM algorithm discussed
in the literature. We will make two assumptions:

• the functions f and g are closed, proper and convex;

• the Lagrangian L0 2.10 has a saddle point.

The first assumption implies that the subproblems arising in the x-update
and z-update are solvable, i.e. there exist x and z, not necessarily unique,
which minimize the augmented Lagrangian. From the second assmption we
have that there exists (x∗, z∗, y∗) saddle point, for which

L0(x∗, z∗, y) ≤ L0(x∗, z∗, y∗) ≤ L0(x, z, y∗), ∀x, z, y.

By assumption 1, it follows that L0(x∗, z∗, y∗) is finite for any saddle point,
and it implies that (x∗, z∗) is a solution to 2.9, so x∗ − z∗ = 0, f(x∗) < ∞
and g(z∗) <∞. From assumption 2 we have

max
y

L0(x∗, z∗, y) = min
x,z

L0(x, z, y∗) = L0(x∗, z∗, y∗)

so it implies that y∗ is dual optimal solution. For the strong duality theo-
rem we also have that the optimal values of the primal and dual problems are
equal. Under these assumptions, the ADMM iterates satisfy the following:

• residual convergence : rk = xk − zk → 0 as k → +∞;
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• objective convergence: let p∗ = min{f(x) + g(z) : x − z = 0}, then
f(xk) + g(zk) → p∗ as k → +∞, i.e. the objective function of the
iterates approaches the optimal value;

• dual variable: yk → y∗ as k → +∞, where y∗ is a dual optimal solution.

2.4 Proximal Newton method
In this section we consider a line search method to solve the problem

min{ϕ(x) = f(x) + g(x)},

where f : Rn → R is a proper convex, continuosly differentiable function and
its gradient is Lipshitz continuos; instead g : Rn → R is a proper convex, but
not necessarly differentiable function, whose proximal mapping can be eval-
uated efficiently. Here g is a penalty function. Asssuming that the optimal
value f ∗ is attained at some optimal solution x∗, not necessarly unique.

We remember that a line search algorithm follows a iterative pattern,
where in each iteration k:

• we choose a descent direction dk, where d is a descent direction for ϕ
in x if we find t̄ > 0 such that ϕ(x+ td) < ϕ(x) ∀t ∈ (0, t̄];

• we find a step length tk ;

• we update xk+1 = xk + tkdk.

Now we recall the motivation for the proximal gradient algorithm: we
iteratively minimize a quadratic expansion of f plus original g

xk+1 = argmin
z

¶
∇f(xk)T (z − xk) + 1

2λ‖z − x
k‖2 + g(xk)

©
= proxλg(xk − λ∇f(xk))

A fundamental difference between PGM and Newton’s method is that the
latter uses the local hessian of f , instead the PGM uses hessian equal to the
identity 1

λ
I. So what happens if we substitute 1

λ
I with∇2f?

This leads us to the proximal Newton method (PNM). Starting with x0,
we repeat for k ≥ 1:
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dk = argmin
d

¶
∇f(xk−1)Td+ 1

2d
THk−1d+ g(xk−1 + d)

©
xk = xk−1 + tkdk

Here Hk is ∇2f(xk) and we have the proximal Newton method, or it is an
approximation to ∇2f(xk) and we have the proximal quasi-Newton method.

An equivalent formulation is :

∆k = argmin
z

¶
∇f(xk−1)T (z − xk−1) + 1

2(z − xk−1)THk−1(z − xk−1) + g(z)
©
−xk−1

xk = xk−1 + tk∆k

Now we must define the scaled proximal mapping

proxHg (x) := argmin
z

¶
g(z) + 1

2‖x− z‖
2
H

©
where ‖x‖2

H = xTHx defines a norm given a matrix H � 0, i.e. H is a
positive definite matrix (all of the eigenvalues of H are positive).

We note that it exists an unique z ∈ dom(g) for all x ∈ dom(f), because
proximity function is strongly convex if H � 0.

If we denote proxHg (x) with z we have

0 ∈ ∂g(z)+H(z−x) ⇐⇒ H(x−z) ∈ ∂g(z) ⇐⇒ H(x−proxHg (x)) ∈ ∂(proxHg (x))
(2.12)

We note that:

proxHg (x−H−1∇f(x)) = argmin
y

¶
g(y) + 1

2‖y − x+H−1∇f(x)‖2
H

©
= argmin

y

¶
g(y) + 1

2(y − x+H−1∇f(x))TH(y − x+H−1∇f(x))
©

= argmin
y

¶
g(y) + 1

2(y − x)TH(y − x) + 1
2(y − x)THH−1∇f(x)

+ 1
2∇f(x)TH−TH(y − x) + 1

2∇f(x)TH−THH−1∇f(x)
©

= argmin
y
{∇f(x)T (y − x) + 1

2(y − x)TH(y − x) + g(y)}
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So we can rewrite:

∆xk = proxHg (xk−1 −H−1∇f(xk−1))− xk−1

xk = xk−1 + tk∆xk

We make an easy example: let f(x) = x4 + 3x3 and g(x) = |x|. Our
problem is min f(x) + g(x). We consider only the interval [2, 5], in this way
f is convex. The minimum is x = 2. We apply the algorithm starting with
x0 = 6 and we obtain x1 = 3.79, x2 = 2.33, x3 = 2.

Now ∆x = proxHg (x−H−1∇f(x))−x is the proximal Newton-type search
direction. Using property 2.12 we see that

H(x−H−1∇f(x)−∆x−x) ∈ ∂g(∆x+x) =⇒ H(−H−1∇f(x)−∆x) ∈ ∂g(∆x+x)

−∇f(x)−H∆x ∈ ∂g(∆x+ x) =⇒ H∆x ∈ −∇f(x)− ∂g(∆x+ x)

We notice that it combines an explicit gradient with an implicit subgra-
dient. In fact, using the scaled proximal mapping we can interpret the search
direction as the composition of Newton’s step with a proximal operator.

If g ≡ 0, we have H∆x ∈ −∇f(x) =⇒ ∆x ∈ −H−1∇f(x), so the PNM
is the classical Newton system.

Now we prove that ∆x is a descent direction:

Lemma 7. if H � 0, then

ϕ(x+ t∆x) ≤ ϕ(x) + t(∇f(x)T∆x+ g(x+ ∆x)− g(x)) +O(t2) (2.13)

∇f(x)T∆x+ g(x+ ∆x)− g(x) ≤ −∆xTH∆x (2.14)



2.4 Proximal Newton method 39

Proof. Assuming t ∈ (0, 1].
ϕ(x+ t∆x)− ϕ(x) = f(x+ t∆x)− f(x) + g(x+ t∆x)− g(x)

= f(x+ t∆x)− f(x) + g(x+ t∆x− tx+ tx)− g(x)
= f(x+ t∆x)− f(x) + g((1− t)x+ t(∆x+ x))− g(x)
≤ f(x+ t∆x)− f(x) + tg(∆x+ x)− tg(x)
= ∇f(x)T (t∆x) + tg(∆x+ x)− tg(x) +O(t2)
= t(∇f(x)T∆x+ g(x+ ∆x)− g(x)) +O(t2)

Since ∆x is minimum :

∇f(x)T∆x+ 1
2∆xTH∆x+ g(x+ ∆x)

≤ ∇f(x)T t∆x+ 1
2t

2∆xTH∆x+ g(x+ t∆x)

≤ t∇f(x)T∆x+ +1
2t

2∆xTH∆x+ tg(∆x+ x) + (1− t)g(x)

Then

(1− t)∇f(x)T∆x+ 1
2(1− t2)∆xTH∆x+ (1− t)(g(x+ ∆x)− g(x)) ≤ 0

∇f(x)T∆x+ 1
2(1 + t)∆xTH∆x+ g(x+ ∆x)− g(x) ≤ 0

∇f(x)T∆x+ g(x+ ∆x)− g(x) ≤ −1
2(1 + t)∆xTH∆x −−→

t→1
−∆xTH∆x

If we replace 2.14 in 2.13 we have ϕ(x+t∆x) ≤ ϕ(x)−t∆xTH∆x+O(t2) <
ϕ(x) because H is positive definite, so ∆xTH∆x ≥ 0. In this way, ∆x is a
descent direction.

Now we talk about the method to find the step length tk, we use a back-
tracking line search. It is an algorithm to determine the maximum amount
to move along a given search direction. It chooses the t such that

ϕ(x+ t∆x) ≤ ϕ(x) + αtλ, (2.15)

where λ = ∇f(x)T∆x + g(x + ∆x) − g(x) and α ∈ (0, 1/2) is a control
parameter. From a practical point of view we start wih t = 1 and if the
descent condition is not satisfied we halve the step.

We can prove a condition about the step length:
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Lemma 8. Suppose H � mI for some m > 0, ∇f Lipschitz with constant
L, then t ≤ min

¶
1, 2m

L
(1−α)

©
satisfies the sufficient descent condition 2.15.

Proof.

ϕ(x+ t∆x)− ϕ(x) = f(x+ t∆x)− f(x) + g(x+ t∆x)− g(x)

≤
∫ 1

0
∇f(x+ s(t∆x))T t∆xds+ tg(x+ ∆x) + (1− t)g(x)− g(x)

= ∇f(x)T (t∆x) + t[g(x+ ∆x)− g(x)] +
∫ 1

0
(∇f(x+ s(t∆x))−

∇f(x))T t∆xds

≤ t(∇f(x)T∆x+ g(x+ ∆x)− g(x) +
∫ 1

0
‖∇f(x+ s(t∆x))−

∇f(x)‖‖∆x‖ds)

≤ t(∇f(x)T∆x+ g(x+ ∆x)− g(x) + Lt

2 ‖∆x‖
2)

t(λ+ Lt

2 ‖∆x‖
2)

If we choose t ≤ 2m
L

(1− α)

Lt

2 ‖∆x‖
2 ≤ m(1− α)‖∆x‖2 ≤ (1− α)∆xTH∆x ≤ −(1− α)λ

So ϕ(x+ t∆x)− ϕ(x) ≤ t(λ− (1− α)λ) = tαλ.

Then, in conclusion, the algorithm of PNM is:

given x0 ∈ dom(ϕ)
repeat until stopping conditions are satisfied

1. let Hk approximation of hessian ∇2f(xk)
2. solve the subproblem dk = argmind∇f(xk)Td+ 1

2d
THkd+g(xk+d)

3. select tk with backtracking line search
4. update xk+1 = xk + tkdk

2.4.1 Proximal quasi-Newton method
The proximal quasi-Newton method is a quasi-Newton method where the
search direction is found using a proximal operator. They are algorithms
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where the Hessian matrix does not need to be computed, but it is updated
by analyzing successive gradient vectors instead.

Let Hk an approximation of the Hessian of f(xk), xk and xk+1 points at k
and k+1 -th iterates and hk, hk+1 the gradients at k and k+ -th iterates (hk =
∇f(xk)). Now, the quasi-Newton methods represent a generalization of the
secant method to find the root of the first derivative for multidimensional
problem, so the matrix Hk+1 must satisfy the condition

Hk+1(xk+1 − xk) = hk+1 − hk (2.16)

C. G. Broyden suggested to use, as update of the Hessian, the current
estimate of the matrix Hk and improving upon it by taking the solution to
the secant equation:

Hk+1 = Hk + (yk −Hksk)sTk
sTk sk

where

yk := hk+1 − hk = ∇f(xk+1)−∇f(xk), sk := xk+1 − xk

Now in the formula of the proximal Newton method, the matrices Hk

should be invertible. Hence we remember the Sherman- Morrison formula:

Lemma 9. For u, v ∈ Rn the matrix (I + uvT ) is invertible if and only if
1 + uTv 6= 0 and in that case

(I + uvT )−1 = I − 1
1 + uTv

uvT

If the matrix Hk is nonsingular, then for the previous lemma the matrix

Hk+1 = Hk

Ç
I + (Hk)−1(yk −Hksk)sTk

‖sk‖2
2

å
is non-singular if and only if

1+((Hk)−1(yk −Hksk))T sk
‖sk‖2

2
6= 0 =⇒ ‖sk‖2

2+((Hk)−1(yk−Hksk))T sk 6= 0

In which case, using the lemma, the inverse is
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(Hk+1)−1 =
ñ
I − ((Hk)−1(yk −Hksk))sTk
‖sk‖2

2 + ((Hk)−1(yk −Hksk))T sk

ô
(Hk)−1

We denote with Bk := (Hk)−1 and Bk+1 := (Hk+1)−1, then this can be
written in the form

Bk+1 = Bk + (sk −Bkyk)sTk
sTkB

kyk
Bk

Now if the matrix Bk is symmetric and definite positive we are not sure
that Bk+1 is symmetric or definite positive. We want these properties because
the matrices {Bk}k are the approximations of the inverse of the Hessian of a
convex function. To recover these properties we update the form

Bk+1 = Bk + αuuT + βvvT

Imposing the secant condition 2.16 on the inverse

Bk+1yk = sk =⇒ Bkyk + α(uTyk)u+ β(vTyk)v = sk

=⇒ α(uTyk)u+ β(vTyk)v = sk −Bkyk

This equation has not a unique solution. A choice can be u = sk and
v = BksK :

α(sTk yk)sk + β(ykBksK)BksK = sk −Bkyk

We obtain

α = 1
sTk y

k
β = − 1

(yk)TBkyk

Substituting in the updated formula, we obtain the Davidon-Fletcher-
Powell (DFP) formula:

Bk+1 = Bk + sks
T
k

sTk yk
− Bkyk(yk)TBk

(yk)TBkyk

This is only one of the possible choices: with other solutions we obtain
different formulas.
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Theorem 4. Given Bk symmetric and positive definite, then the DFP update
produces Bk+1 positive definite if and only if sTk yk > 0.

Another update which maintain symmetry and positive definitiveness is
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula. It was indepen-
dently discovered by the four authors. A way to introduce this formula is by
the concept of duality. We consider an update

Hk+1 = U(Hk, sk, y
k)

which satisfies Hk+1sk = yk 2.16. Then by exchanging Hk ⇔ Bk and
sk ⇔ yk we obtain the dual update for the inverse of the Hessian, i.e.

Bk+1 = U(Bk, yk, sk)

which satisfies Bk+1yk = sk. If we start from the DFP updated formula,
by duality we obtain the BFGS updated formula

Hk+1 = Hk + yk(yk)T
(yk)T sk −

Hksks
T
kH

k

sTkH
ksk

The BFGS formula written in this way is not useful in the case of large
problems. We need an equivalent formulation; this can be done using a gener-
alization of the Sherman-Morrison formula: (Sherman-Morrison-Woodbury)

Lemma 10.

(A+ UV T )−1 = A−1 − A−1UC−1V TA−1 where C = I + V TA−1U

with U = [u1, u2, ..., uk] and V = [v1, v2, ..., vk].

So, by using the Sherman-Morrison formula, the BFGS update becomes

Bk+1 =
Ç
I − sk(yk)T

sTk y
k

å
Bk

Ç
I − yksTk

sTk y
k

å
+sks

T
k

sTk y
k

Proof. Let U = [u1, u2] and V = [v1, v2] with

u1 = v1 = yk

(sTk yk)1/2 , u2 = −v2 = Hksk
(sTkHksk)1/2

We compute the matrix C of the Sherman-Morrison formula:
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• C11 = 1 + vT1 (Hk)−1u1 = 1 + (yk)TBkyk
sT
k
yk

= β

• C22 = 1 + vT2 (Hk)−1u2 = 0

• C12 = (sTk y
k)1/2

(sT
k
Hksk)1/2

• C21 = −C12 = −α

Then

C =
ñ
β α
−α 0

ô
, C−1 = 1

α2

ñ
0 −α
α β

ô
Let Ũ = BkU and Ṽ = BkV , using Sherman-Morris formula

Bk+1 = Bk −BkUC−1V TBk = Bk − ŨC−1Ṽ T

ŨC−1Ṽ T = 1
α2 [ũ1, ũ2]

ñ
0 −α
α β

ô ñ
ṽT1
ṽT2

ô
=

= 1
α

(Bku2v
T
1 B

k −Bku1v
T
2 B

k) + β

α
(Bku2v

T
2 B

k)

If we substitute the values of α, β, u1, u2, v1 and v2, we obtain

Bk+1 = Bk − BkyksTk + sk(yk)TBk

sTk y
k

+ sks
T
k

sTk y
k

Ç
1 + (yk)TBkyk

sTk y
k

å
or equivalently

Bk+1 =
Ç
I − sk(yk)T

sTk y
k

å
Bk

Ç
I − yksTk

sTk y
k

å
+sks

T
k

stky
k

Theorem 5. Given Bk symmetric and positive definite, then the BFGS up-
date produces Bk+1 positive definite id and only id sTk yk > 0.

We can describe both the update (DFP and BFGS) in an unique way:
let Bk+1

DFP the DFP update and Bk+1
BFGS the BFGS update, then the following

update
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Bk+1
θ = (1− θ)Bk+1

DFP + θBk+1
BFGS

maintains for any θ the symmetry and for any θ ∈ [0, 1] the positive
definitiveness. For the provious theorem, the update is positive definite for
any θ ∈ [0, 1] if and only if sTk yk > 0. Equivalently

Hk+1
θ = (1− θ)Hk+1

DFP + θHk+1
BFGS

Then, the proximal quasi-Newton algorithm is:

given x0 ∈ dom(ϕ)
repeat until stopping conditions are satisfied

1. let Hk computed using DFP or BFGS
2. solve the subproblem dk = argmind∇f(xk)Td+ 1

2d
THkd+g(xk+d)

3. select tk with backtracking line search
4. update xk+1 = xk + tkdk

2.4.2 Inexact proximal Newton method
In the algorithm in practice it is expensive to compute the solution accurately,
because we must solve the subproblem (2.) argminz

¶
∇f(xk−1)T (z− xk−1) +

1
2(z−xk−1)THk−1(z−xk−1)+g(z)

©
. In order to make this approach efficient in

practice, we perform this inner minimization inexactly. We talk about inexact
proximal Newton method. We can use, for example the PGM or the FPGM
to find this inexact descent direction. However, to compute an adequate
approximate solution we need some measure of closeness to optimality.

We recall that an iteration of PGM is

xk+1 = proxλkg(xk − λk∇f(xk))

An equivalent formulation is

xk+1 = xk − λkGλ,ϕ(xk)

Gλ,ϕ(xk) = 1
λk

(xk − proxλkg(xk − λk∇f(xk)))
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where Gϕ(xk) is a generalized gradient step, in fact Gϕ(x) = 0 if and only
if x minimizes ϕ, so ‖Gϕ(x)‖ = 0 generalizes the smooth first order measure
of optimality ‖∇ϕ(x)‖.

An early stopping condition for the subproblem is based on two ideas:

• the approximation of f must be accurate

• near a solution, the subproblem should be solved almost exactly

We thus require that the solution z̃k of the k-th subproblem satisfy

‖Gϕ̃k/M(z̃k)‖ ≤ ηk‖Gϕ/M(xk)‖ (2.17)

where ϕ̃k(x) = f(xk)+∇f(xk)T (x−xk)+ 1
2(x−xk)THk(x−xk)+g(x) =:

Fk(x) + g(x) is the approximation of ϕ, ηk is a forcing term and mI � Hk �
MI. We choose the forcing term based of the agreement between f and the
previsious quadratic approximation Fk−1. We set η1 := 0.5 and

ηk := min
¶m

2 ,
‖G ˜ϕk−1/M(xk)−Gϕ/M(xk)‖

‖Gϕ/M(xk−1)‖
©

This choice due to Eisenstat and Walker in "Choosing the forcing terms
in an exact Newton method ", yields desiderable convergence results and
performs admirably in practice.

However, depending on the method used to solve the subproblem, we
can not have a descent direction. For example, in the previous chapter we
said that the FPGM is not a descent algorithm, in fact some ripples can be
formed. To avoid this, we impose the additional condition that the quadratic
model is decreased, i.e., if z̃ is the solution of the subproblem we must have
that ϕk(z̃) ≤ ϕk(xk), in this way z̃ − xk is a descent direction.

With these conditions the inexact proximal Newton method is similar to a
trust-region algorithm, in fact at every iteration we search a direction which
is inside the region of the descent directions such that ‖Gϕ̃k(·)‖ ≤ ηk‖Gϕ(·)‖.
We can adjust the trust-region size using the forcing term, which is the ratio
between the reduction predicted from the model and the true reduction.

2.4.3 Convergence
We assume that the Hessian approximations are sufficiently positive definite,
i.e. Hk � mI k = 1, 2, ... for some m > 0; then from Lemma 8 there
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exists a step length that satisfies the decrease condition 2.15. Therefore,
x is a minimizer of f + g if and only if the search direction is zero, i.e.
0 = argmind∇f(x)Td+ 1

2d
THd+g(x+d). In this way the global convergence

of proximal Newton method results from the fact that the search direction is
a descent direction and if Hk are sufficiently positive definite then the step
lengths are bounded away from zero

Theorem 6. Suppose Hk � mI k = 1, 2, ... for some m > 0. Then the
sequence {xk} generated by a proximal Newton method converges to a mini-
mizer of ϕ = f + g.

Proof. The sequence {ϕ(xk)} is decreasing because ∆xk are descent direc-
tions and there exist step lengths satisfying descent condition 2.15:

ϕ(xk+1)− ϕ(xk) ≤ αtkλk ≤ 0

The sequence {ϕ(xk)} must converge to some limit because f is closed
and the optimal value is attained. Thus tkλk must go to zero. The step
lengths tk are bounded away from zero from Lemma 8, therefore λk must
decay to zero. Now

‖∆xk‖2 ≤ 1
m

∆xkTHk∆xk ≤ − 1
m
λk

thus ∆xk also converges to zero. Since the search direction is zero if and
only if x is an optimal solution, xk must converge to some optimal solution
x∗.

Now we talk about the convergence rate of the proximal Newton methods
when the subproblems are solved exactly. First, we state our assumptions
on the problem:

• f is twice-continuosly differentiable;

• f is strongly convex with constant m, i.e. f(y) ≥ f(x) + ∇f(x)T (y −
x) + m

2 ‖x− y‖
2 for any x, y;

• ∇f and ∇2f are Lipschitz continuous with constants L1 ans L2.
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Under the above assumptions we have that the proximal Newton method
converges quadratically to x∗, i.e.

‖xk+1 − x∗‖ ≤ L2

2m‖x
k − x∗‖2.

Instead there is a different local convergence for proximal quasi-Newton
method: under the same assumptions, if the sequence {Hk} satisfies the
Dennis-Moré criterion, namely

‖(Hk −∇2f(x∗))(xk+1 − xk)‖
‖xk+1 − xk‖

→ 0

and if mI � Hk � MI for some 0 < m ≤ M , then a proximal quasi-
Newton method converges superlinearly to x∗, i.e.

‖xk+1 − x∗‖ ≤ o(‖xk − x∗‖).

Otherwise the inexact proximal Newton method with unit step length
under the same assumptions and if the starting point x0 is close to x∗:

• if ηk is smaller than some η̄ < m
2 , it converges quadratically to x∗;

• if ηk decays to zero, it converges superlinearly to x∗.

2.4.4 Self-concordant functions
If proximal Newton method is applied for minimizing a sum of a quadratic
function and a convex function with an inexpensive proximal operator, we
can prove that the convergence is very fast. In fact we suppose that f is a
quadratic function, i.e. f(x) = 1

2x
TAx+ bTx+ c, where A is a n× n definite

positive real matrix, b ∈ Rn is a vector and c ∈ R. Let g a convex function,
it can be nonsmooth. We have

∇f(x) = Ax+ b ∇2f(x) = A

Since f is quadratic, if we apply an iteration of the standard Newton’s
method with g ≡ 0 we find the optimal value: given x0 a starting point

x1 = x0−(∇2f(x0))−1∇f(x0) = x0−A−1(Ax0+b)) = x0−x0−A−1b = −A−1b
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In the case g 6= 0, the descent direction of the proximal Newton method
becomes

∆x0 = prox∇
2f

g (x0 − (∇2f(x0))−1∇f(x0))− x0 = proxAg (−A−1b)− x0

Then
x1 = x0 + t0(proxAg (−A−1b)− x0)

The algorithm is very easy, if the proximl operator of g is easy to compute.
Therefore if we have a quadratic function the PNM converge rapidly.

We note that the algorithm is characterized by the fact that the hessian of
the function f is the same at each iterations, so we want to enlarge this
idea. By extension, if the hessian matrix does not change quickly, then PNM
converges fast. Thus, the algorithm performs "well" if small changes in x lead
to small changes in the second derivative. Change in second derivative can
be measured using the third derivative, so third derivative should be small
relative to the second derivative. The self-concordant function reflects this
requirement.

Definition 7. A function f : R→ R is self-concordant if

• f is convex and three times derivable

• |f ′′′(x)| ≤ 2f ′′(x)3/2 for all x ∈ dom(f).

The constant 2 in the definition can be replaced with another constant k,
we choose k = 2 because in this way the function f(x) = −log(x) for x > 0
is self-concordant without any scaling. We make same example:

• linear and quadratic function are self concordant, in fact f ′′′(x) = 0 for
all x;

• negative logarithm f(x) = −log(x), x > 0 is self-concordant:

f
′′(x) = 1

x2 , f
′′′(x) = − 2

x3 ,
|f ′′′(x)|
f ′′(x)3/2 = 2;

• exponential function ex is not self-concordant: f ′′(x) = f
′′′(x) = ex

|f ′′′(x)|
f ′′(x)3/2 = ex

e3x/2 = e−x/2 −−−−→
x→−∞

∞.
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Figure 2.3: Graph of −log(x) (left), ex (center) and a quadratic function
(right)

We now consider the n-dimensional case:

Definition 8. A function f : Rn → R is self-concordant if

• f is convex and three times differentiable

• g(t) = f(x + tv) is self-concordant for all x ∈ dom(f), for all v ∈ Rn

and t ∈ R, i.e. its restriction to any arbitrary line is self-concordant.

The second hypothesis is equivalent to

d

dt
∇2f(x+ tv)

∣∣∣
t=0
� 2‖v‖∇2f(x)∇

2f(x)

where A � B means B − A is positive semidefinite.
We list the properties of self-concordant functions:

• stability with respect to affine substitutions: if f(y) is self-concordant
then f(Ax+ b) is self-concordant;

• stability under summation: if f1 and f2 are self-concordant, then f =
f1 + f2 is self-concordant;

• stability under scaling with a positive factor of at least 1: if f is self-
concordant and a > 1, then af is also self-concordant;

• bounds on hessian: if x, y ∈ dom(f) and ‖y − x‖∇2f(x) ≤ 1,

(1− ‖y − x‖∇2f(x))
2∇2f(x) � ∇2f(y) � 1

(1− ‖y − x‖∇2f(x))2∇
2f(x)
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• bounds on gradient: if x, y ∈ dom(f) and ‖x− y‖∇2f(x) ≤ 1,

‖∇f(y)−∇f(x)−∇2f(x)(y− x)‖∇2f(x)−1 ≤
‖y − x‖2

∇2f(x)

1− ‖y − x‖∇2f(x)

• bounds on function value: if x, y ∈ dom(f) and ‖x− y‖∇2f(x) ≤ 1,

w(‖y − x‖∇2f(x)) ≤ f(y)− f(x)−∇f(x)T(y− x) ≤ w∗(‖y − x‖∇2f(x))
(2.18)

where w and w∗ denote the functions
w(u) = u− log(1 + u); w∗(u) = −u− log(1− u).

Figure 2.4 illustrates the inequality u2

2(1+u) ≤ w(u) ≤ u2

2 ≤ w∗(u)

Figure 2.4: The function w(u) = u− log(1+u) and w∗(u) = −u− log(1−u).

• Dikin ellipsoid theorem: the Dikin’s ellipsoid of f centered at x of the
radius r < 1 is

Wr(x) = {y : ‖x− y‖∇2f ≤ r}.
If f is self-concordant the upper bound in 2.18 implies that Wr(x) ∈
dom(f).

Self-concordant functions: proximal Newton method analysis

Now we want to analyze the problem

min{f(x) + g(x)} (2.19)
where f is a self-concordant function and g is a convex funtion with an

inexpensive proximal operator. We use the proximal inexact Newton method,
the analysis is similar to the previous one, with the main exceptions:



52 Proximal algorithms

• self-concordance replaces convexity and Lipschitz Hessian assumptions;

• the condition 2.17 is replaced by the following criterion: a step d̃ is
accepted as an approximation of d if there exists a residual r such that
r ∈ ∇f(x) +∇2f(x)d̃+ ∂g(x+ d̃), ‖r‖(∇2f(x))−1 ≤ (1− θ)‖d̃‖∇2f(x)

(2.20)
where θ ∈ (0, 1] is an algorithm parameter. With θ = 1 the condition
requires r = 0, therefore we use the exact proximal Newton step.

The next theorem shows the global convergence: if d̃ satisfies 2.20 for
some r and ‖d̃‖∇2f(x) is sufficiently small, then x is close to the optimal
solution x∗ of 2.19.
Theorem 9. Suppose x ∈ dom(f), x+ d̃ ∈ dom(g), d̃ and r satisfy 2.20 with
θ ∈ (0, 1]. If

‖d̃‖∇2f(x) ≤
1

2− θ
then the following properties hold:
1. f is bounded below and

inf
y
f(y) ≥ f(x+ d̃) + θ‖d̃‖2

∇2f(x)−w
∗(‖d̃‖∇2f(x))−w

∗((2− θ)‖d̃‖∇2f(x))

2. the sublevel set Sx = {y : f(y) ≤ f(x + d̃)} is bounded: Sx ⊆ {y :
‖y−x‖∇2f(x) ≤ ρ} where ρ is the positive root of the nonlinear equation

w(ρ)− ρ(2− θ)‖d̃‖∇2f(x) = max{0, w∗(‖d̃‖∇2f(x))− θ‖d̃‖
2
∇2f(x)}

if ‖d̃‖∇2f(x) > 0, and ρ = 0 if ‖d̃‖∇2f(x) = 0.

3. f has a unique minimizer x∗ and ‖x− x∗‖∇2f(x) ≤ ρ.
In the case of the local convergence the pararmeter 1 − θ plays a role

similar to the parameter ηk in the previous analysis: we suppose that the
hypothesis 2.20 is satisfied then

• the convergence is quadratic if θ = 1;

• the convergence is linear if θ constant and less than one;

• the convergence is superlinear if θ approaches one as the algorithm
converges.
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2.5 Duality
In some applications it is advantageous to apply a proximal algorithm to the
dual problem; in fact if we consider the optimization problem

min
x
{f(x) + g(Ax)} (2.21)

where f is a strongly convex function, g is a convex function and A is
a general linear mapping; there is not the hypothesis that the gradient of f
is Lipschitz, therefore we can not apply, for example, the proximal gradient
method. However if we consider the dual problem we have the desiderable
hypothesis. Firstly we give some definitions:

Definition 10. Let X a real topological vector space, X∗ its dual space and
let f : X → R ∪ {+∞} a function. The conjugate convex of f is

f ∗(s) = sup
x∈X
{〈x, s〉 − f(x)}

Lemma 11. We discuss some properties of the conjugate f ∗:

1. f ∗ is convex, even f is not

2. if f is closed and convex then f ∗∗ = f :

3. f ∗(s) = stx− f(x) ⇐⇒ s ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(s)

4. if f is closed and strongly convex with parameter µ, then f ∗ has a
Lipschitz continuos gradient with parameter 1/µ

Definition 11. f is strongly convex with parameter µ ⇐⇒ (sy −
sx)t(y − x) ≥ µ‖y − x‖2, ∀ x, y, sx ∈ ∂f(x), sy ∈ ∂f(y).

5. ∇f ∗(y) = argmaxx(ytx− f(x))

6. if f is a positively homogeneous function from X → R ∪ {+∞}, i.e.
f(λx) = |λ|f(x), then f ∗ is the indicator function of a closed convex
subset K of X∗.

Proof. 1. The function h(s) := 〈x, s〉 − f(x) is an affine map, so its epi-
graph is convex. Now f ∗ is the pointwise supremum of h and its epi-
graph is the intersection of the above affine epigraphs. Each epigraph
is convex, then the epigraph of f ∗ is convex =⇒ f ∗ is convex.
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2. Suppose f is differentiable, then the conjugate function can be obtain
as:

∇x(sTx− f(x)) = 0 ⇐⇒ s = ∇xf(x∗) ∃x∗

f is convex, so
f ∗(s) = ∇xf(x∗)Tx∗ − f(x∗)

f ∗∗(x) = sup
s

(xT s− f ∗(s)) = sup
x0

(xT∇f(x0)−∇f(x0)tx0 + f(x0)) =

= sup
x0

(f(x0) +∇f(x0)T (x− x0)) = f(x)

We used first order condition for a convex function : f(y) ≥ f(x) +
∇f(x)T (y − x), ∀x, y.

3. Firstly we prove the first if and only if:

s ∈ ∂f(x) ⇐⇒ sTx− f(x) ≥ sTy − f(y) ⇐⇒ sTx− f(x) ≥ f ∗(s)

Since f ∗(s) ≥ sTx− f(x) =⇒ f ∗(s) = sTx− f(x).
We prove, now, the second if and only if:

f ∗(z) = sup
x

(zTx− f(x)) ≥ zTx− f(x) = sTx− f(x) + xT (z − s)

= f ∗(s) + xT (z − s)

Then
f ∗(z)− xT z ≥ f ∗(s)− xT s =⇒ x ∈ ∂f ∗(s)

The other implication follows from f ∗∗ = f .

4. For the definition of strongly convex

(sy − sx)t(y − x) ≥ µ‖y − x‖2 =⇒ ‖sy − sx‖ ≥ µ‖y − x‖

Using the property 3 we have

‖sy−sx‖ ≥ µ‖∇f ∗(sy)−∇f ∗(sx)‖ =⇒ ‖∇f ∗(sy)−∇f ∗(sx)‖ ≤
1
µ
‖sy−sx‖

5. If x is max(yTx− f(x)) =⇒ y ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(y). In this way
argmax(yTx− f(x)) = ∇f ∗(y).



2.5 Duality 55

6. Given f , f ∗(s) = sup(〈x, s〉 − f(x)) and let u∗ ∈ X∗. Two cases occur:

• ∃x0 ∈ X such that 〈x0, u
∗〉− f(x0) > 0 =⇒ 〈λx0, u

∗〉− f(λx0) =
λ(〈x0, u

∗〉 − f(x0)) ≤ f ∗(u∗)
Passing to the limit λ→∞ f ∗(u∗)) = +∞.

• 〈x, u∗〉 − f(x) ≤ 0 ∀x ∈ X =⇒ f ∗(u∗) ≤ 0.
〈0, u∗〉 − f(0) ≤ f ∗(u∗)
f(0) = f(n · 0) = nf(0) ∀n ∈ N and f positevely . Now f(0) = 0
=⇒ f ∗(u∗) = 0.

Then we define K = {u∗ ∈ X∗ : f ∗(u∗) = 0} and f ∗ = IK .

We consider now the problem 2.21, we can express it in terms of convex
conjugate functions, associating a Langrange variable vector u to the set of
equality constraints in

min
x,z
{f(x) + g(z) : Ax = z}

So we can construct the Lagrangian of the problem:

max
u
{min
x,z
{f(x) + g(z) + 〈u,Ax− z〉}}

max
u
{min
x,z
{f(x) + 〈A∗u, x〉}+ min

z
{g(z)− 〈u, z〉}}

max
u
{−f ∗(−A∗u)− g∗(u)} =⇒ min

u
{f ∗(−A∗u) + g∗(u)}

Observation 1. the dual problem is useful because by Moreau decomposition
whenever the proximal mapping of g is efficiently computable so is that of g∗;

Observation 2. for hypothesis f is strongly convex with parameter µ, so f ∗
has a Lipschitz gradient ‖A‖

2

µ
: let F (u) := f ∗(−A∗u) then (to see Appendix

A for computations)

‖∇F (x)−∇F (y)‖ = ‖−A∇f ∗(−A∗x) + A∇f ∗(−A∗y)‖

≤ 1
µ
‖A‖‖A∗x− A∗y‖ ≤ 1

µ
‖A‖‖A∗‖‖x− y‖

= 1
µ
‖A‖2‖x− y‖
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So we can apply, for example, the proximal gradient method on the dual
problem. Let ũ the optimal solution. It can be converted back to the one of
the original problem through x̃ = ∇f ∗(−A∗ũ). In fact applying the PGM:

uk+1 = proxλg∗(uk + λA∇f ∗(−A∗uk))

It admits a more esplicit primal representation:

xk = ∇f ∗(−A∗uk)
uk+1 = proxλg∗(uk + λAxk)

If ũ is optimal solution of the dual and remembered the property 5, we
have that x = ∇f ∗(−A∗ũ) = argmin{f(y) + 〈A∗ũ, y〉} is optimal solution of
problem 2.21.

We consider now an example of this approch:

2.5.1 Denoising problem
Many image processing problem can be formulated as estimating the original
image x ∈ Rm×n from a corrupted observation b, where b = A(x) +w with A
a linear operator and w a noise vector. Usually A is ill-conditioned or even
singular. Thus image restoration is a classical inverse problem.

To solve the problem we need a regularization term in the objective func-
tion

min
x∈C
{ϕ(x) = 1

2‖A(x)− b‖2
F + λφ(x)},

where φ(x) is regularizer, λ is a parameter, C is the constraint on the
restored image x and ‖·‖F indicates the Frobenius norm.

In this example we consider total variation regularizer and the denoising
problem, so A is the operator identity. Our problem becomes:

min
x∈C
{‖x− b‖2

F + 2λTV (x)} (2.22)

The total variation penalizes large changes in neighboring pixel intensi-
ties, making it useful for removing noise. It is defined by

TV (x) =
m∑
i=1

n∑
j=1

(|xi+1,j − xi,j|+ |xi,j+1 − xi,j|)



2.5 Duality 57

with the conditions

xm+1,j = xm,j for j = 1, ..., n

xi,n+1 = xi,n for i = 1, ...,m

Now we want to write the dual problem of 2.22. We introduce the fol-
lowing notation:

• the linear operator L : R(m−1)×n × Rm×(n−1) → Rm×n is defined by

L(p, q)i,j = pi,j + qi,j − pi−1,j − qi,j−1, i = 1, ...,m, j = 1, ..., n

with the condition p0,j = pm,j = for j = 1, ..., n, qi,0 = qi,n = 0 for
i = 1, ...,m;

• the operator L∗ : Rm×n → R(m−1)×n × Rm×(n−1), which is the adjoint
of L, is defined by

L∗(x) = (p, q) with pi,j = xi,j − xi+1,j, qi,j = xi,j − xi,j+1

Now the total variation is a positively homogeneous function, then for the
property 6 of the conjugate function , its coniugate function is the indicator
function of a closed convex set K. Moreover TV ∗∗ = TV , so

TV (x) = sup
v∈K
〈x, v〉

We remember the definition of total variation for a function f in Ω ⊂ Rn,
belonging to L1:

TV (f) = sup
®∫

Ω
f(x)divφ(x) dx : φ ∈ C1

C(Ω), ‖φ‖L∞(Ω) ≤ 1
´

where C1
C(Ω) is the set of continuously differentiable functions of compact

support contained in Ω. Then we note the relation:

|x|+ |y| = max
p,q
{p|x|+ q|y| : |p| ≤ 1, |q| ≤ 1}
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Hence we can write

TV (x) = sup
p,q
〈x, (p, q)〉 = max

p,q

m∑
i=1

n∑
j=1

(pi,j|xi+1,j − xi,j|+ qi,j|xi,j+1 − xi,j|)

= max
p,q

Tr(L(p, q)tx))
(2.23)

where |pi,j| ≤ 1 for i = 1, ...,m− 1, j = 1, ..., n; |qi,j| ≤ 1 for i = 1, ...,m,
j = 1, ..., n− 1.
Theorem 12. Let (p̃, q̃) the optimal solution of the problem

min
p,q
{h(p, q) = −‖HC(b− λL(p, q))‖2

F + ‖b− λL(p, q)‖2
F}

where HC(x) = x − PC(x) and PC(x) is the projection on the set C. Then
the optimal solution of 2.22 is given by

x̃ = PC(b− λL(p̃, q̃)).
Proof. The problem 2.22, using 2.23, becomes

min
x∈C

max
p,q
{‖x− b‖2

F + 2λTr(L(p, q)tx))}

We exchange the order of the minimum and maximum and we get:

max
p,q

min
x∈C
{‖x− b‖2

F + 2λTr(L(p, q)tx))}

which can be rewritten as

max
p,q

min
x∈C
{‖x− (b− λL(p, q))‖2

F − ‖b− λL(p, q)‖2
F + ‖b‖2

F} (2.24)

So the optimal solution of the problem is

x̃ = PC(b− λL(p, q)).
Now we plug the expression for x in 2.24 and we obtain

max
p,q
{‖PC(b− λL(p, q))− (b− λL(p, q))‖2

F + ‖b− λL(p, q)‖2
F}
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To find (p̃, q̃), the optimal solution of the dual problem, we can use PGM,
infact h(p, q) is continuosly differentiable and has Lipschitz gradient. Firstly
we prove that

∇h(p, q) = −2λL∗PC(b− λL(p, q)).
To ease the notation we set s : Rm×n → R defined by s(x) = ‖HC(x)‖2

F .
So ∇s(x) = 2(x− PC(x)).

∇h(p, q) = λL∗∇s(b− λL(p, q))− 2λL∗(b− λL(p, q))
= 2λL∗(b− λL(p, q))− 2λL∗PC(b− λL(p, q))− 2λL∗(b− λL(p, q))
= −2λL∗PC(b− λL(p, q)).

Therefore we can prove thata ∇h is Lipschitz:

‖∇h(p1, q1)−∇h(p2, q2)‖ = 2λ‖L∗PC(b− λL(p1, q1))− L∗PC(b− λL(p2, q2))‖
≤ 2λ‖L∗‖‖PC(b− λL(p1, q1))− PC(b− λL(p2, q2))‖
≤ 2λ2‖L∗‖‖L(p1, q1)− L(p2, q2)‖
≤ 2λ2‖L∗‖‖L‖‖(p1, q1)− (p2, q2)‖
= 2λ2‖L∗‖2‖(p1, q1)− (p2, q2)‖

So using the notation of the previous section we have

• f(x) = ‖x− b‖2
F + IC ;

• g(x) = 2λTV (x);

• f ∗(−A∗(p, q)) = h(p, q):

• g∗(p, q) = indicator function of the set of (p, q).





Chapter 3

System identification

In this chapter we talk about a subspace method in system identification
based on nuclear norm approximation. The classical subspace algorithms rely
on singular value decompositions (SVD) and they are efficient methods for
making low-rank approximations of matrices constructed from the observed
inputs and outputs. However, in this way, the structure of the matrices is
lost and the estimate of the range of the extended observability matrix is not
always optimal. Moreover the presence of SVD makes it difficult to extend
the subspace methods to problems with missing input or output measurement
data, to incorporate prior knowledge (for example bounds on the outputs)
or to add regularitation terms on the model.

For these reasons minimizing the nuclear norm provides an alternative. In
this new method the nuclear norm approximation is used as a pre-processing
step, that computes a modified output sequence which is passed to the stan-
dard subspace system identification algorithms. We use the proximal algo-
rithm to solve nuclear norm optimization problems.

In the first part of this chapter we review the most common subspace
identification algorithm and, then, we formulate nuclear norm variants of
these methods.

3.1 Subspace system identification
A linear time-invariant system with discrete time (DLTI) is a operator T
which transforms a sequence with discrete time u(:), inputs, into a sequence
with discrete time y(:), called outputs: (the symbol ” : ” indicates that we

61



62 System identification

consider all the indices)

y(:) = T [u(:)]

It has the following properties:

• linearity: if y1(:) and y2(:) are the outputs of the inputs u1(:) and u2(:),
then

T [α1u1(:) + α2u2(:)] = α1T [u1(:)] + α2T [u2(:)] = α1y1(:) + α2y2(:)

• time-invariance, i.e. the operator is invariant to shifts along the time
axis: shifting the input sequence u(: −j) causes a corresponding shift
in the output sequence y(: −j).

To describe the internal dynamics of the system, we introduce a set of
internal variables, called state vector. In this way we have a state-space
representation.

Let x(t) ∈ Rn a vector as function of the time, u(t) ∈ Rnu the vector of
inputs and y(t) ∈ Rny the vector of outputs. Then, the state-space represen-
tation of a continuous DLTI system is the following:

ẋ(t) = Acx(t) +Bcu(t)
y(t) = Ccx(t) +Dcu(t)

where Ac, Bc, Cc and Dc are matrices. The number of components of the
state vector is called order of the model.

To work with the calculator, we write an equivalent discrete time system
through discretization:

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k)

where x(k) ∈ Rn, u(k) ∈ Rnu and y(k) ∈ Rny are, respectively, the state
vector, the vector of inputs and of outputs at the instant k.

The Markov coefficients Gk are defined by:

G0 = D, Gk = CAk−1B k = 1, 2, ...
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and they are the discrete time impulse response, i.e. they are the outputs
of the model if the i-th inputs are the discrete impulse

δ(k) =
1 if k = 0

0 otherwise
Then

h(i)(0) = D, h(i)(k) = CAk−1B k = 1, 2, ... (3.1)
Given a sequence of observed inputs u(k) and outputs y(k), our objective

is:

• to find the minimum model order;

• to estimate the system matrices (A,B,C,D).

Namely, we want to find the minimum realization.

Definition 13. (A,B,C,D) is a realization of the sequence {Gk}k if it is
worth the 3.1.

Definition 14. The realization (A,B,C,D) is minimum if model order is
minimum.

Theorem 15. A realization is minimum if and only if it is reachable and
observable.

Definition 16. Given a state-space system Σ = (A,B,C,D), a state x̄ is
reachable from the state 0 if there exists an input sequence ū(k), with finite
power, and an instant k̄ <∞ such that

x̄ = T (ū(k), 0, k̄)

where T (u, x0, k) is the trajectory defined by

T (u, x0, k) = Akx0 +
k−1∑
j=0

Ak−1−jBu(j) k ≥ 0.

Definition 17. Given a state-space system Σ = (A,B,C,D), two states
xI and xII are indistinguishable in the future in k steps if for every input
sequence u(i), i = 0, .., k− 1 the respective output sequence yI(k) and yII(k),
obtained by the initial states xI and xII , coincide in the first k steps.

A state x̄ is not observable if it is indistinguishable in the future from the
state zero.
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So, to find the minimum realization from a sequence of observed inputs
u(k) and outputs y(k), we use a subspace method. Briefly we review the
basic ideas of subspace identification method. We notice that

y(k + 1) = Cx(k + 1) +Du(k + 1)
= CAx(k) + CBu(k) +Du(k + 1)

With a recursive replacement we obtain


y(k)
...

y(k + r)

 =


C
...

CAr

x(k) +


D 0 . . . . . . 0
CB D 0 . . . 0
... . . .

CAr−1B . . . . . . CB D




u(k)
...

u(k + r)



If we indicate with Hi,j,k the j × k block Hankel matrix,

Hi,j,k =


h(i) h(i+ 1) h(i+ 2) . . . h(i+ k − 1)

h(i+ 1) h(i+ 2) h(i+ 3) . . . h(i+ k)
... ... ... . . . ...

h(i+ j − 1) h(i+ j) h(i+ j + 1) . . . h(i+ j + k − 2)


the starting point of subspace method is the matrix equation

Y0,r,N = OrX0,1,N + SrU0,r,N

The matrices Y0,r,N and U0,r,N are block Hankel matrices constructed from
the sequances y(k), u(k), for k = 0, ..., r + N − 2, the matrix X0,1,N has as
its columns the states x(k), k = 0, .., N − 1 and the matrices Or and Sr
contain all model parametres (A,B,C,D). The matrix Or is called extended
observability matrix and the matrix Sr contains the Markov coefficents:

Y0,r,N =


y(0) y(1) y(2) . . . y(N − 1)
y(1) y(2) y(3) . . . y(N)
... ... ... . . . ...

y(r − 1) y(r) y(r + 1) . . . y(N + r − 2)


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U0,r,N =


u(0) u(1) u(2) . . . u(N − 1)
u(1) u(2) u(3) . . . u(N)
... ... ... . . . ...

u(r − 1) u(r) u(r + 1) . . . u(N + r − 2)


X0,1,N =

î
x(0) x(1) x(2) . . . x(N − 1)

ó
Or =



C
CA
CA2

...
CAr−1

 Sr =



D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0

... . . .
CAr−2B CAr−3B . . . CB D


The susbspace method first estimates the range space of the extended

observability matrix Or and, then, determines a system realization from the
estimate of range(Or). Therefore, the method requires that r is taken greater
than n.

3.1.1 Extended observability matrix
In the simplest variant of the subspace methods, the matrix Y0,r,N is multi-
plied on the right with a projection matrix that projects on the nullspace of
U0,r,N . In this way the term SrU0,r,N disappears. This gives the equation

Y0,r,NΠ0,r,N = OrX0,1,NΠ0,r,N + SrU0,r,NΠ0,r,N

= OrX0,1,NΠ0,r,N

where Π0,r,N is the orthogonal projection matrix on the nullspace of U0,r,N .
Let’s see how it’s done Π0,r,N . Let A and B two matrices and we want to
project A orthogonally to the row space of B, indicated with A/B. So

A/B = CB with C = argmin
M
‖A−MB‖.

Now the projection is orthogonal, then A− A/B ⊥ row space of B:

(A− CB)BT = 0 =⇒ CBBT = ABT =⇒ C = ABT (BBT )−1
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Then:
A/B = AΠB, with ΠB = BT (BBT )−1B

Now A−A/B = A−AΠB = A(I −ΠB) = AΠ⊥B, so Π⊥B is the projection
to the orthogonal complement of B.

Hence, in our case, the orthogonal projection matrix on the nullspace of
U := U0,r,N is

Π0,r,N = Π⊥U = I − UT (UUT )−1U.

In fact UΠ⊥U = U(I − UT (UUT )−1U) = 0. We notice that the matrix
Π0,r,N depends only on the inputs; in this way the left side of the equation
depends on both the ouputs and the inputs. So, to estimate the rank and
the range of the extended observability matrix we can use the left side, in
fact from the observations we have both inputs and outputs.

Y0,r,NΠ0,r,N = OrX0,1,NΠ0,r,N (3.2)
However, the range of Y0,r,NΠ0,r,N does not necessarily converge to the

range of Or as N , the number of data, goes to infinity. This deficiency can
be resolved by the use of instrumental variables. We define an instrumental
variable matrix

Φ =
ñ
U−s,s,N
Y−s,s,N

ô
by combining Hankel matrices of past inputs and outputs. Multiplying

3.2 on the right with ΦT gives

Y0,r,NΠ0,r,NΦT = OrX0,1,NΠ0,r,NΦT

It can be shown that 1.

• limN→∞
1
N
X0,1,NΠ0,r,NΦT has full rank n;

• the range of Y0,r,NΠ0,r,NΦT gives a consistent estimate of range of Or.

From a practical point of view, for finiteN , a truncated SVD of Y0,r,NΠ0,r,NΦT

is used to estimate range(Or). In fact, firstly, we compute an LQ factoriza-
tion of the matrix of the stacked input abd output Hankel matrices:

1Further details: M.Varhaegen,V. Verdult, "Filtering and System Identification", Cam-
bridge University Press, New York, 2007.
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U0,r,N
Φ

Y0,r,N

 =

L11 0 0
L21 L22 0
L31 L32 L33


Q1
Q2
Q3


The matrices L11, L22 and L33 are triangular matrices of order rnu, s(nu+

ny) and rny, while the matrices Qi have column dimension N and satisfy the
orthogonal properties: QiQ

t
i = I and QiQ

T
j = 0 for i 6= j. Now

Π0,r,N = I − (L11Q1)T [L11Q1(L11Q1)T ]−1(L11Q1) = I −QT
1Q1

Then:

Y0,r,NΠ0,r,NΦT = (L31Q1 + L32Q2 + L33Q3)(I −QT
1Q1)(L21Q1 + L22Q2)T

= (L31Q1 + L32Q2 + L33Q3)QT
2L

T
22

= L32L
T
22

The accurancy of subspace method can be improved by multiplying the
matrix L32L

T
22 on both sides with nonsingular matrices before computing

SVD. So if

G = W1L32L
T
22W2 (3.3)

after truncating SVD

G =
î
P Pe

ó ñΣ 0
0 Σe

ô î
Q Qe

ó
,

by discarding the smallest singular value Σe, we obtain:

• n is the number of non-null singular values of Σ;

• range(Or) ≈ range(W−1
1 P ).

There are different choices of the weight matricesW1 andW2, for example:

• W1 = I, W2 = (ΦΠ0,r,NΦT )−1/2 ;

• W1 = (Y0,r,NΠ0,r,NY
T

0,r,N)−1/2, W2 = (ΦΦT )−1/2 .
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3.1.2 System realization

Once an estimate of range(Or) has been determined as described in the
previous section, we can calculate a system realization and an estimate of
the initial state.

We remember that the extended observability matrix is defined by

Or =



C
CA
CA2

...
CAr−1


So, let V ∈ Rrny×n be a matrix whose columns form a basis of our estimate

of range(Or). Partition V in r block rows V0, ..., Vr−1 of size ny × n:

V =



V0
V1
V2
...

Vr−1


Then one can take as estimates of C and A the matrices:

Ĉ = V0, Â = argmin
Â

r−1∑
i=1
‖Vi − Vi−1Â‖2

F

where ‖·‖F denotes the Frobenius norm. From Ĉ and Â, we estimate B,
D and x(0) solving a least-squares problem; remembering the equation

y(r) = CArx(0) +
r−1∑
i=0

CAr−1−iBu(i) +Du(r)

we have

(B̂, D̂, x̂0) = argmin
B̂,D̂,x̂0

N+r−2∑
k=0
‖ĈÂkx̂0 +

k−1∑
i=0

ĈÂk−1−iB̂u(i) + D̂u(k)− y(k)‖2
2
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3.2 Identification by nuclear norm optimiza-
tion

In this section, we discuss several variations of the subspace methods of
previous section based on the minimization of the nuclear norm. We focus
on applications to identification with missing data.

We look for modified outputs which are close to the measurement values
and such that at the optimum the matrix G(y) is low rank. The desired
result is that the matrix G(y) has a minimum rank because its rank is equal
to the order of the model and our objective is to find the minimum model
order.

The idea of replacing the rank of a matrix by its nuclear norm can be
justified as a convex relaxation (the nuclear norm is the largest convex lower
bound of rank(A) on the ball {A : ‖A‖2 = σ1(A) ≤ 1}. It is further moti-
vated by the empirical observation that the minimum nuclear norm solutions
often have low rank. 2 3.

Definition 18. Let A a matrix in Rm×n, the nuclear norm (or trace norm)
of A is defined as

‖A‖∗ = trace(
√
ATA) =

min{m,n}∑
i=1

σi(A)

where σi(A) denotes the singular value of matrix A.

We first consider an identification problem with complete data. Let
ymeas(k) and umeas(k) the measured data. The model outputs y(k) are com-
puted by solving a regularized nuclear norm problem

minimize‖G(y)‖∗ + λ
∑
k∈T
‖y(k)− ymeas(k)‖2

2 (3.4)

The optimization variable is the sequence y = (y(0), y(1), ..., y(N+r−2)).
We have that

2M. Fazel, H. Hindi, S. Boyd, "A rank minimization heuristic with application to min-
imum order system approximation", Proceedings og the American Control Conference,
2001, pp.4734-4739

3M. Fazel,"Matrix rank minimization with applications", Ph.D. thesis, Stanford Uni-
versity (2002)
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•
G(y) = W1Y0,r,NΠ0,r,NΦTW2

where we use the measured inputs and outputs to construct W1, W2,
Π0,r,N and Φ, and define Y0,r,N as the Hankel matrix constructed from
the model outputs y(k);

• λ is a positive weight;

• the second term in the objective function measures the deviation be-
tween the computed model outputs and the measurement data;

• the index set T = {0, 1, ..., N + r − 2}.

So, the problem 3.4 tries to find values of the outputs that are close to the
measurement values and make the matrix G(y) low-rank. We notice that we
do not guarantee that we minimize the rank of G(y). After having computed
y, we use the matrix G(y) as G in 3.3 to obtain an estimation of the range
of Or and, then, we proceed with a system realization as described in the
previous section.

Now, we can extend the formulation to problems with part of the mea-
sured outputs is missing. In this case, the aim of the nuclear norm min-
imization is to complete the output sequence. Compared to the preceded
formulation, we have the following differences:

• T is defined as the set of indices from which ymeas(k) is available;

• we exclude the outputs from the instrumental variable and use Φ =
U−s,s,N , instaed of Φ =

ñ
U−s,s,N
Y−s,s,N

ô
;

• there are also restrictions in the choices of the weight matrices; for ex-
ample we can not use the matrix W1 = (Y0,r,NΠ0,r,NY

T
0,r,N)−1/2 because

it requires complete outputs.

So our problem is

minimize ‖G(y)‖∗
s.t. y(k) = ymeas(k), k ∈ T
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which is equivalent to the problem

minimize‖G(y)‖∗ + λ
∑
k∈T
‖y(k)− ymeas(k)‖2

2

with variables y = (y(0), ..., y(N + r− 2)) to estimate corrected values of
the measured outputs and simultaneously estimate the missing outputs.

3.3 Solution of nuclear norm problem via prox-
imal algorithms

In this section we solve the nuclear norm optimization problem 3.4 using
the proximal algorithms of Chapter 2. We can express the problem in the
following general form, a generic nuclear norm optimization problem with a
quadratic regularization term:

minimize ‖A(x)‖∗ + 1
2(x− a)TE(x− a) (3.5)

The variables is a vector x ∈ Rn. The matrix A(x) ∈ Rp×q where
A : Rn → Rp×q is a linear mapping, a ∈ Rn is a vector and E is a posi-
tive semidefinite symmetric matrix. So in our case x is formed by stacking
columns of y one by one, a is formed by stacking columns of ymeas, E is the
identity matrix, we substitute 1/2 with λ and A(x) = G(y).

3.3.1 ADMM algorithm
To derive the ADMM iteration, we write 3.5 as

minimize ‖X‖∗ + 1
2(x− a)TE(x− a)

s.t. A(x) = X

and we use the interpretation of ADMM like augmented Lagrangian. The
augmented Lagrangain for this problem is

Lρ(x,X, Z) = ‖X‖∗+
1
2(x−a)TE(x−a)+Tr(ZT (A(x)−X))+ρ

2‖A(x)−X‖2
F
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where ρ is a positive penalty parameter, x ∈ Rn, X ∈ Rp×q and Z ∈ Rp×q.
We saw in Chapter 2 that each iteration consists of a minimization of Lρ over
x, a minimization over X and an update of the dual variable Z.

initialize x,X, Z, ρ For example, set x = 0, X = 0, Z = 0, ρ = 1
1. update x = argmin

x̂
Lρ(x̂, X, Z);

2. update X = argmin
X̂

Lρ(x, X̂, Z);

3. update Z = Z + ρ(A(x)−X);
repeat until stopping conditions are satisfied

Minimizer over X

The minimizer X in step 2. can be expressed as

X = argmin
X̂

Lρ(x, X̂, Z)

= argmin
X̂

®
‖X̂‖∗ + 1

2(x− a)TE(x− a) + Tr(ZT (A(x)− X̂)) + ρ

2‖A(x)− X̂‖2
F

´
= argmin

X̂

®
‖X̂‖∗ − Tr(Z

T X̂) + ρ

2‖A(x)− X̂‖2
F

´
= argmin

X̂

®
‖X̂‖∗ + ρ

2‖X̂ −A(x)− 1
ρ
Z‖2

F

´
= proxF‖·‖∗

ρ

Ç
A(x) + 1

ρ
Z

å
where proxF‖·‖∗

ρ

(·) is similar to the proximal operator of Chapter 1, with
the difference that the norm in the definition is not the Euclidean norm but
the Frobenius norm because there are matrices. Now, we will see how to
compute the proximal operator of a nuclear norm:

• we apply the SVD on A(x)+ 1
ρ
Z → UΣV T , whre Σ is a diagonal matrix

with in the diagonal the singular values of A(x) + 1
ρ
Z;

• we extract the vector of the singular values from Σ = diag(σi);
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• we compute the proximal operator of the extracted vector using ‖·‖1

σ̂i = prox ‖·‖1
ρ

(σi) = argmin
x
{‖x‖1 + ρ

2‖x− σi‖
2
2}

=


σi − 1

ρ
if σi ≥ 1

ρ

0 if −1
ρ
≤ σi ≤ 1

ρ

σi + 1
ρ

if σi ≤ −1
ρ

= max
®

0, σi −
1
ρ

´
where the last equality is true because the singular values are all non-
negative;

• we return to the proximal operator of the matrix norm

X = proxF‖·‖∗
ρ

Ç
A(x) + 1

ρ
Z

å
= Udiag(σ̂i)V T

=
min{p,q}∑

i

max
®

0, σi −
1
ρ

´
uiv

T
i

Minimizer over x

While minimizing Lρ with respect to X̂ admits an easy closed form solution,
minimizing Lρ with respect to x̂ does not usually have a simple closed form
solution due to the quadratic terms

The update in step 1 is:

x = argmin
x̂

Lρ(x̂, X, Z)

= argmin
x̂

®
‖X‖∗ + 1

2(x̂− a)TE(x̂− a) + Tr(ZT (A(x̂)−X)) + ρ

2‖A(x̂)−X‖2
F

´
= argmin

x̂

®1
2(x̂− a)TE(x̂− a) + Tr(ZTA(x̂)) + ρ

2‖A(x̂)−X‖2
F

´
= argmin

x̂

®1
2(x̂− a)TE(x̂− a) + ρ

2‖A(x̂)−X + 1
ρ
Z‖2

F

´
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One way to solve this is to compute the solution of a linear equation, in
fact setting the gradient of Lρ(x̂, X, Z) with respect to x̂ equal to zero gives
the equation:

E(x̂− a) + ρ

2

Ç
2AadjA(x̂)− 2AadjX + 2

ρ
AadjZ

å
= 0

E(x̂− a) + ρAadjA(x̂)− ρAadjX +AadjZ = 0
(E + ρM)x̂ = Aadj(ρX − Z) + Ea

where Aadjis the adjoint of the mapping A andM is the positive semidef-
inite matrix defined by the identity

Mz = Aadj(A(z)) ∀z

We exploit the Hankel structure in the subspace system identification
applications. The mapping A can be expressed as

A(x) = LH(x)R

where x = (h1, ..., hr+N−1) with hi ∈ Ru, and H(x) is a block Hankel matrix.

H(x) =


h1 h2 . . . hN
h2 h3 . . . hN+1
... ... . . . ...
hr hr+1 . . . hr+N−1


For example, the matrix G(y) in the nuclear norm identification problem

can be written in this form with

• L = W1;

• H(x) = Y0,r,N ;

• R = Π0,r,NΦTW2;

• x = (y(0), ..., y(r +N − 2)).

Now the adjoint of the mapping A is Aadj(Y ) = Hadj(LTY RT ). The adjoint
Hadj of the Hankel mapping H maps an ru × N matrix to a sequence of
r+N − 1 vectors of size u by summing the block entries in the matrix along
the anti-diagonals. So, for example, if X is an r×N block matrix with block
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xij ∈ Ru, then Hadj(X) = (y1, ..., yr+N−1) with yk = ∑
i+j=k+1 xij. For any

further detail, please read Appendix A.
An improvement in the algorithm is to avoid the inverse in x̂ = (E +

ρM)−1(Aadj(ρX−Z)+Ea) by introducing an additional proximal quadratic
term to augmented Lagrangian so it "cancels" out the term E + ρM . The
idea is similar to the linearized ADMM that we saw in Chapter 2. In this
approach, we update (we indicate with xk the k-th iteration):

xk+1 = argmin
x

®
Lρ(x,Xk, Zk) + ρ

2‖x− x
k‖2

Q

´
with

Q =
Ç
s+ 1

ρ

å
I −

Ç
AadjA+ 1

ρ
E

å
� 0, s = min{r,N}

We set δ :=
Ç
s+ 1

ρ

å
,

0 = Exk+1 − Ea+ ρAadjA(xk+1)− ρAadjXk +AadjZk + ρ[δ(xk+1 − xk)

−AadjA(xk+1 − xk)− 1
ρ
E(xk+1 − xk)]

0 = −Ea− ρAadjXk +AadjZk + ρδxk+1 − ρδxk + ρAadjA(xk) + ρxk

ρδxk+1 = Ea+ ρAadjXk −AadjZk + ρδxk − ρAadjA(xk)− Exk

xk+1 = xk + 1
ρδ

(Aadj(ρXk − Zk − ρA(xk)) + E(a− xk))

The main motivation for introducing the proximal terms is to weaken the
imposed convergence conditions rather than for the sake of cancellation. 4

Stopping criteria

The algorithm will terminate if ‖rp‖F ≤ εp and ‖rd‖2 ≤ εd, where

• rp = A(x)−X is the primal residual;
4For details to see: X. Zhang, M. Burger, and S. Osher, "A unified primal-dual algo-

rithm framework based on Bregman iteration", J. Sci. Comput., 46 (2011), pp. 20–46.
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• rd = ρAadj(Xprev −X) is the dual residual, where Xprev is the value of
X in the previous iteration; in fact the dual feasibility for the problem
is 0 ∈ E(x∗−a)+ρAadjZ∗ (where x∗ and Z∗ are the optimal solutions),
so if xk+1 minimizes Lρ(x,Xk, Zk) then

0 ∈ E(xk+1 − a) + ρAadjA(xk+1)− ρAadjXk +AadjZk

0 ∈ E(xk+1 − a) +Aadj(ρA(xk+1)− ρXk + Zk)
0 ∈ E(xk+1 − a) +Aadj(ρA(xk+1)− ρXk+1 + ρXk+1 − ρXk + Zk)
0 ∈ E(xk+1 − a) +Aadj(ρrk+1

p + ρ(Xk+1 −Xk) + Zk)
ρAadj(Xk −Xk+1) ∈ E(xk+1 − a) + ρAadjZk+1

• εp = √pqεabs + εrel max{‖A(x)‖F , ‖X‖F};

• εd =
√
nεabs + εrel‖Aadj(Z)‖2.

Typical values for the relative and absolute tolerances are εrel = 10−3 and
εabs = 10−6.

Instead of using a fixed penalty parameter ρ, one can vary ρ to improve
the speed of convergence. An example for a such scheme is to adapt ρ at the
end of each iteration, as follows:

ρ :=


τρ if ‖rp‖F > µ‖rd‖2
ρ
τ

if ‖rd‖2 > µ‖rp‖F
ρ otherwise

Typical values are µ = 10 and τ = 2.

3.3.2 Proximal gradient method
We would like to apply the PGM to the nuclear norm optimization, so we
check if the assumptions of Chapter 2 are satisfied:

• let f(x) := 1
2(x− a)TE(x− a). It is a strongly convex function if and

only if E is positive definite. However, in our numerical case E = I, so
it is positive definite. Therefore, f is strongly convex with parameter
λmin(E), the smallest eigenvalue. The function is also differentiable
and with Lipschitz continuous gradient, in fact
‖∇f(x)−∇f(y)‖ = ‖E(x− a)− E(y − a)‖ = ‖E(x− a− y + a)‖

= ‖E(x− y)‖ ≤ ‖E‖‖x− y‖
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Now E is positive definite , then ‖E‖ > 0.

• let g(x) := ‖A(x)‖∗, it is continuous and a proper convex function, in
fact

‖δA(x) + (1− δ)A(y)‖∗ ≤ δ‖A(x)‖∗ + (1− δ)‖A(y)‖∗

for all δ ∈ [0, 1], where we used the triangle inequality of norms.

If we apply directly the PGM, we find

xk+1 = argmin
x

®
‖A(x)‖∗ + 1

λ
‖x− xk + λE(xk − a)‖2

F

´
= proxFλ‖A(·)‖∗(x

k − λE(xk − a))

with λ > 0 a parameter. However, we are not able to compute proxF‖A(·)‖∗
(·).

An idea can be to write the dual problem and to apply the proximal gradient
method to this latter one.

At the end of Chapter 2 we saw that given the problem minx{f(x) +
g(Ax)}, its dual is minu{f ∗(−Aadju) + g∗(u)}, where f ∗ and g∗ indicated the
conjugate convex of f and g rispectively. Then we compute the conjugate
functions:

• f(x) = 1
2(x − a)TE(x − a) is a quadratic function with E a positive

semidefinite matrix. We remember that

f ∗(v) = sup
x
{vTx− f(x)}

f ∗(v) = sup
x
{vTx− 1

2(x− a)TE(x− a)}

v − E(x− a) = 0 =⇒ x = E−1v + a

f ∗(v) = 1
2v

TE−1v + vTa

So in our case:

f ∗(−Aadj(u)) = 1
2(Aadj(u))TE−1Aadj(u)− (Aadj(u))Ta

with u ∈ Rp×q and Aadj : Rp×q → Rn is the adjoint map of A.



78 System identification

• g(Ax) = ‖A(x)‖∗ and we want to compute g∗(u).

Lemma 12. The conjugate convex of a norm is the indicator of unit
ball for dual norm.

Proof. Let b(·) := ‖·‖ the generic norm. We recall that the dual
norm for a generic norm is ‖y‖D = sup‖x‖≤1 x

Ty. To evaluate b∗(y) =
supx(yTx− ‖x‖), we distinguish two cases:

– if ‖y‖D ≤ 1 =⇒ yTx ≤ ‖x‖ ∀x =⇒ equality holds if x = 0
=⇒ b∗(y) = 0;

– if ‖y‖D > 1 =⇒ ∃x with ‖x‖ ≤ 1 and xTy > 1 =⇒ b∗(y) ≥
yT (tx)− ‖tx‖ = t(yTx− ‖x‖) −−−→

t→∞
+∞

Then we have

b∗(y) =
0 if ‖y‖D ≤ 1

+∞ if ‖y‖D > 1

In our case the dual norm of the nuclear norm is the spectral norm,
which returns the largest singular value of the matrix. Therefore

g∗(u) =
0 if σmax(u) ≤ 1

+∞ if σmax(u) > 1

where σmax(u) is the largest singular value of u.

In this way the dual problem is

min
u
{f ∗(−Aadj(u)) + g∗(u)}

min
u∈Rp×q

®1
2(Aadj(u))TE−1Aadj(u)− (Aadj(u))Ta+ g∗(u)

´
(3.6)

To find the solution of 3.6, we use PGM. We saw in Chapter 1 (Example
1) that the proximal operator of an indicator function of a convex set B is
the projection onto B. So proxg∗ = ΠB, where B = {u : ‖u‖spectral ≤ 1}.
Hence we have:
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uk+1 = proxFλg∗(uk + λA∇f ∗(−Aadj(uk))
= proxFλg∗(uk − λA(E−1Aadj(uk)− a))
= ΠB(uk − λA(E−1Aadj(uk)− a))

where uk indicates the k-th iteration.
Now we will see how to compute the projections onto spectral norm:

• we apply the SVD on uk − λA(E−1Aadj(uk) − a) → UΣV T , whre Σ
is a diagonal matrix with in the diagonal the singular values of uk −
λA(E−1Aadj(uk)− a);

• we extract the vector of the singular values from Σ = diag(σi);

• we compute the projectorr of the extracted vector using ‖·‖∞

σ̂i = Π‖·‖∞≤1(σi) =


1 if σi ≥ 1
σ1 if −1 ≤ σi ≤ 1
−1 if σi ≤ −1

= min{1, σi}

where the last equality is true because the singular values are all non-
negative;

• we return to the proximal operator of the matrix norm

uk+1 = ΠB(uk − λA(E−1Aadj(uk)− a))
= Udiag(σ̂i)V T

=
min{p,q}∑

i

min{1, σi}uivTi

Therefore, the solution of the dual problem can be converted back to the
one of the original problem through

xk = ∇f ∗(−Aadjuk) = −E−1Aadj(uk) + a

Then the algorithm is
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initialize u0

for k = 0, 1, .. until stopping conditions are satisfied
update xk = −E−1Aadj(uk) + a;

uk+1 = ΠB(uk + λAxk) =
min{p,q}∑

i

min{1, σi}uivTi

Choice of the parameter λ

Following Chapter 2, if ∇f ∗ is Lipschitz with constant L then we can choose
a fixed step size λ ∈ (0, 1/L]. Now, as stated by Observation 2 if f is strongly
convex with parameter µ, f ∗ has a Lipschitz gradient ‖A‖

2

µ
, then we have

L = ‖A‖
2

µ
= σmax(A)2

λmin(E)

where σmax(A) is the largest singular value ofA. Therefore, we can choose
λ = λmin(E)

σmax(A)2 .
In an equivalent way, we can findd the parameter by a line search as we

saw in Paragraph 2.1.

Stopping criteria

The function f(x)+g(A(x)) is a convex function because it is the sum of two
convex functions (a quadratic function and a norm). Therefore, the minimum
is unique and if there exist two minimum x and y we have that x − y = 0.
So, it can be used as primal arrest criteria for our algorithm:

rp := xk−1 − xk

Then if ũ is optimal solution of the dual problem, we have that it is a
fixed point of the proximal gradient method, i.e.

ũ = ΠB(ũ+ λAx̃)

where x̃ is the optimal solution of the primal problem.
So, the algorithm stops if
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‖rp‖2 := ‖xk − xk−1‖2 ≤ εp

‖rd‖F := ‖uk − uk−1‖F ≤ εd

where εd and εp are tolerances. Typical values are 10−4.

3.3.3 Fast proximal gradient method
Now we apply the FPGM to our dual problem, so the algorithm becomes:

initialize u0 = z1, t1 = 1
for k = 0, 1, .. until stopping conditions are satisfied
update xk = ∇f ∗(−Aadjuk) = −E−1Aadj(uk) + a

uk+1 = ΠB(zk+1 − λA(E−1Aadj(zk+1)− a))

tk+2 = 1 +
»

1 + 4tk2

2
zk+2 = uk+1 + tk − 1

tk+1
(uk+1 − uk)

In the update of uk+1 we use the same strategy that we have seen in
the PGM, i.e. we compute a decomposition in singular values of the matrix
zk − λA(E−1Aadj(zk)− a).

We can use the same step size and the same stopping criterion of the
proximal gradient method.

Alternative choice for tk

If we analyze the proof of the theorem about the convergence of FPGM, we
notice that the result is correct if {tk}k is a sequence satisfying the following
properties for any k ≥ 0:

• tk ≥ k+1
2

• t2k ≥ t2k+1 − tk+1
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So every choice of tk which satisfy these properties is valid. For example,
Nesterov, in his work in which he presented this algorithm, proposed to use
tk = k+1

2 , but other values go well, for example tk = k+2
2 or tk+1 = 1+

√
1+4tk2

2 ,
like above.

3.3.4 Proximal Newton method
We consider the problem

min
x
{f(x) + g(x)}

where
• f(x) = 1

2(x−a)TE(x−a), is a proper convex, continuosly, differentiable
function and its gradient is Lipschitz continuos. Moreover

∇f(x) = E(x− a) ∇2f(x) = E.

• g(x) = ‖A(x)‖∗ is a proper convex but not differentiable function.
Following Chapter 2, we apply proximal Newton method: starting with

x0. For k = 1, 2, ... until stopping conditions are satisfied:

dk = argmin
z

¶
∇f(xk−1)T (z − xk−1) + 1

2(z − xk−1)THk−1(z − xk−1) + g(z)
©

xk = xk−1 + tk(dk − xk−1)

where Hk−1 is an approximationof the Hessian of f(xk−1). In our case the
Hessian is easy to compute: it is the matrix E. We saw that in an equivalent
formulation

dk = proxEg (xk−1 − E−1∇f(xk−1))
= proxEg (xk−1 − E−1E(xk−1 − a))
= proxEg (xk−1 − xk−1 + a)
= proxEg (a)

= argmin
z

®
g(z) + 1

2(z − a)TE(z − a)
´

= argmin
z
{g(z) + f(z)}
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We notice that we have the initial problem, therefore it is not useful to
apply the proximal Newton method to this type of problem. In the inner
subproblem, we obtain the initial problem because to compute the proximal
Newton method direction dk−xk−1, we minimize a quadratic approximation
in f using the hessian, plus original g. However, f is already a quadratic
function, so we meet again to minimize the original problem.

An idea can be written the dual problem and to apply the proximal
Newton method to this latter one, as in the PGM. In fact, given the problem

min{f(x) + g(Ax)}

where

• f(x) := 1
2(x− a)TE(x− a);

• g(Ax) := ‖A(x)‖∗,

the Lagrangian of the problem is

L(x, y, u) = f(x) + g(y) + 〈u,A(x)− y〉

Increasing and minimizing the Lagrangian, we find the dual problem:

min
u
{f ∗(−Aadj(u)) + g∗(u)}

min
u∈Rp×q

®1
2(Aadj(u))TE−1Aadj(u)− (Aadj(u))Ta+ g∗(u)

´
We remember that g∗ is the conjugate convex of g and in this case it is a

indicator function.
Now, if ũ is an optimal solution of the dual problem and x̃ is an optimal

solution of the primal problem, using the optimality conditions, we have

0 ∈ ∇f(x̃) +Aadj(ũ) = E(x̃− a) +Aadj(ũ)

So, if we solve the dual problem, any solution can be converted back to
the one of the original problem through

x̃ = −E−1Aadj(ũ) + a = ∇f ∗(−Aadj(ũ)).
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Then, to solve the dual problem we use the proximal quasi-Newton method,
because to compute the Hessian of f ∗(−Aadj(ũ)) is difficult. The algorithm
is :

given u0, ∇2f ∗(−Aadj(u0)) = H0, η0 = 0.5
repeat for k = 1, 2, ..., until stopping conditions are satisfied

1. update xk−1 = −E−1Aadj(uk−1) + a
2. solve dk = argmind∇f ∗(−Aadj(uk−1))Td+ 1

2d
THk−1d+g∗(uk−1+d)

3. using ηk−1 verify if the inexact solution of the subproblem is valid
4. select tk with backtracking line search
5. update uk = uk−1 + tkdk

6. update ηk
7. update Hk

Search direction

If we use the scaled proximal mapping, the search direction is

dk = proxH
k−1

g∗ (uk−1 − (Hk−1)−1∇f ∗(−Aadj(uk−1)))
When Hk−1 = I, this is a projection of uk−1 − ∇f ∗(−Aadj(uk−1)) onto

the set described by the indicator function g∗. However, in general, it is not
a projection, but it is more complicated. Then, to solve the subproblem we
use the equivalent definition:

dk = argmin
z∈Rp×q

®
(∇f ∗(−Aadj(uk−1)))T (z − uk−1) + 1

2(z − uk−1)THk−1(z − uk−1)

+ g∗(z)
´

= argmin
z∈Rp×q

®
(A(E−1Aadj(uk−1)− a)T (z − uk−1) + 1

2(z − uk−1)THk−1(z − uk−1)

+ g∗(z)
´

In practice, it is expensive to solve this subproblem accurately, so we
perform this inner minimization inexactly, i.e. we use an inexact proximal
Newton method. We compute the solution using the FPGM. Let
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• h(z) := (A(E−1Aadj(uk−1)−a)T (z−uk−1)+ 1
2(z−uk−1)THk−1(z−uk−1),

it is a quadratic function and it is strongly convex if and only if Hk−1

is positive definite. However, Hk−1 is the approximation of the Hessian
of a convex function, so it is constructed positive definite. Then, h is
differentiable and its gradient is Lipschitz continuos. In fact

∇h(z) = (A(E−1Aadj(uk−1)− a) +Hk−1(z − uk−1)

‖∇h(z1)−∇h(z2)‖ = ‖Hk−1(z1 − z2)‖ ≤ ‖Hk−1‖‖z1 − z2‖

‖Hk−1‖ > 0 because the matrix is positive definite.

• s(z) = g∗(z) =
0 if σmax(z) ≤ 1

+∞ if σmax(z) > 1
. The indicator function is con-

vex and it has an efficient proximal mapping.

Therefore, we have to solve the following problem:

argmin
z
{h(z) + s(z)}

We can use the FPGM to find the search direction:
given b1 = z0, c1 = 1
for i = 1, 2, ...
zi = proxλs(bi − λ∇h(bi))

= ΠB(bi − λA(E−1Aadj(uk−1)− a)− λHk−1(bi − uk−1))

= ∑min{p,q}
j=1 min{1, σj}ujvTj

ci+1 = 1+
√

1+4c2
i

2

bi+1 = zi + c1−1
ci+1

(zi − zi−1)

where σj are the singular values of the matrix bi − λA(E−1Aadj(uk−1)−
a)− λHk−1(bi − uk−1) = Udiag(σj)V T .

Now a matrix zi is accepted as an approximate proximal Newton step if
it satisfies the following properties, as we explained in Paragraph 2.4.2:
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• let

ϕk−1(z) := f ∗(−Aadj(uk−1)) + (∇f ∗(−Aadj(uk−1)))T (z − uk−1)+

+ 1
2(z − uk−1)THk−1(z − uk−1) + g∗(z)

= f ∗(−Aadj(uk−1)) + h(z) + s(z)

then
ϕk−1(zi) ≤ ϕk−1(uk−1)

• ‖Gϕk−1(zi)‖ ≤ ηk−1‖Gϕ(xk−1)‖

where

– ϕ(z) = f ∗(−Aadj(z)) + g∗(z);

– Gϕ(zi) = zi − proxg∗(zi − λ∇f ∗(−Aadj(zi)))
= zi − ΠB(zi − λA(E−1Aadj(zi)− a))
= zi −∑i min{1, σi}uivTi

where σi are the singular values of the matrix zi−λA(E−1Aadj(zi)−
a) = Udiag(σi)V T ;

– Gϕk−1(zi) = zi − proxg∗(zi − λ∇f ∗(−Aadj(uk−1)) − λHk−1(zi −
uk−1))

= zi−ΠB(zi−λA(E−1Aadj(uk−1)−a)−λHk−1(zi−uk−1))
= zi −∑i min{1, σi}uivTi

where σi are the singular values of the matrix zi−λA(E−1Aadj(uk−1)−
a)− 1

2H
k−1(zi − uk−1) = Udiag(σi)V T ;

So, if we suppose that the algorithm terminates at the p-th iteration, the
search direction is

dk = zp =⇒ ∆k := dk − uk−1is the search direction
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Selection of tk

We select tk with backtracking line search.Let tk = t = 1,

ϕ(uk−1 + t∆k)− ϕ(uk−1) = f ∗(−Aadj(uk−1 + t∆k))− f ∗(−Aadj(uk−1))+
+ g∗(uk−1 + t∆k)− g∗(uk−1)
= f ∗(−Aadj(uk−1 + t∆k))− f ∗(−Aadj(uk−1)) + g∗(uk−1 + t∆k − tuk−1 + tuk−1)− g∗(uk−1)
= f ∗(−Aadj(uk−1 + t∆k))− f ∗(−Aadj(uk−1)) + g∗((1− t)uk−1 + t(∆k + uk−1))− g∗(uk−1)
≤ f ∗(−Aadj(uk−1 + t∆k))− f ∗(−Aadj(uk−1)) + tg∗(∆k + uk−1)− tg∗(uk−1)
≈ (∇f ∗(−Aadj(uk−1))TAadj(−t∆k) + tg∗(∆k + uk−1)− tg∗(uk−1)
= t[(∇f ∗(−Aadj(uk−1))TAadj(−∆k) + g∗(uk−1 + ∆k)− g∗(uk−1)]

where we used the fact that g∗ is a convex function. So while

ϕ(uk−1+t∆k)−ϕ(uk−1)−t[(−E−1Aadj(uk−1)+a)TAadj(−∆k)+g∗(uk−1+∆k)−g∗(uk−1)] > 0

then

t = t

2

Updating of uk

We update the dual solution:

uk = uk−1 + tk∆k

Updating of ηk

We update the forcing term

ηk = min
®
m

2 ,
‖G ˜ϕk−1/M(uk)−Gϕ/M(uk)‖

‖Gϕ/M(uk−1)‖

´
where mI � Hk �MI.
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Updating of Hk

To update the approximation of the Hessian we do not use the BFGS formula,
but its dual version, i.e. the DFP formula because we are computing the
approximation of the Hessian of the dual of f . In the Paragraph 2.4.1 we
saw that the DFP formula is

Bk = Bk−1 + sk−1s
T
k−1

sTk−1yk−1
− Bk−1yk−1(yk−1)TBk−1

(yk−1)TBk−1yk−1

where

• Bk is the approximation of the inverse of the Hessian,

• sk−1 := uk − uk−1,

• yk−1 := ∇f ∗(−Aadj(uk))−∇f ∗(−Aadj(uk−1))

= A(E−1Aadj(uk)− a)−A(E−1Aadj(uk−1)− a)

= A(E−1Aadj(uk)− a+ E−1Aadj(uk−1) + a)

= A(E−1Aadj(uk − uk−1))

To achieve the approximation of the Hessian we apply the Sherman-
Morrison-Woodbury formula (to see Appendix A for details):

Hk =
Ç
I −

yk−1sTk−1
(yk−1)T sk−1

å
Hk−1

Ç
I − sk−1(yk−1)T

(yk−1)T sk−1

å
+y

k−1(yk−1)T
(yk−1)T sk−1

We verify that (yk−1)T sk−1 is a scalar, infactHk,Hk−1, yk−1sTk−1, sk−1(yk−1)T ,
yk−1(yk−1)T are all matrices pq × pq

(yk−1)T sk−1 = 〈sk−1, y
k−1〉 = 〈uk − uk−1,A(E−1Aadj(uk − uk−1))〉

= 〈Aadj(uk − uk−1), E−1Aadj(uk − uk−1)〉
= (E−1Aadj(uk − uk−1))T︸ ︷︷ ︸

1×n

Aadj(uk − uk−1)︸ ︷︷ ︸
n×1

= scalar
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Stopping criteria

If x̃ and ũ are the optimal solutions of the primal and dual problem respec-
tively, we have:

• minimum of the primal problem is unique because the function is con-
vex,

• gradient of ϕ at point ũ is zero

However, we are not able to compute the gradient of ϕ because the func-
tion g∗ is non-smooth. Therefore, we use the definition of generalized gradient
previous presented. In fact

Gϕ(u) = u− proxg∗(u− λ∇f ∗(Aadj(u)))
We have

Gϕ(ũ) = 0 ⇐⇒ ũ = proxg∗(ũ− λ∇f ∗(Aadj(ũ)))
Remembering the interpretation of the proximal gradient method as fixed

point iteration, we have that ũ is a fixed point of the algorithm ⇐⇒ ũ is a
minimizes of ϕ.

Then, we can use them as stopping criterion, i.e. the algorithm stops if

‖rp‖2 := ‖xk − xk−1‖2 ≤ εp

‖rd‖F := ‖Gϕ(uk)‖F ≤ εd

where εd and εp are tolerances.





Chapter 4

Numerical experiments

In this section, we report results on numerical experiments in Python 3. We
consider two cases: in the first one, the measured inputs and outputs are
complete. In the second case, instead, a percentage of outputs is removed.

Once the optimized output is calculated through a proximal algorithm
method, we reconstruct the system matrices using a subspace method. We do
not use instrumental variables and, given n the estimated order, to estimate
the observability matrix On we compute the singular value decomposition of
G = Yo,n,NΠ0,n,N = OnX0,1,NΠ0,r,N .

G =
î
Pn Pe

ó ñΣn 0
0 Σe

ô î
Qn Qe

ó
,

where with Pn we indicate the first n columns of the matrix P . In this
way, we have that On ≈ PnΣn.

We can consider two ways to estimate the order of the model:

• to use a threshold on the singular values, i.e. we count the number of
singular values which are greater or equal than 10−3 multiplied by the
maximum singular value. We set a maximum model order equal to 10;

• to use the parsimony criterion AIC (Akaike’s Information Criterion)

log
Ç
V ·
Ç

1 + n · 2
N

åå
≈ log(V ) + n · 2

N
(4.1)

i.e. we search an order n such that the function 4.1 is minimum, where

91
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– V is the loss function, V = 1
N

∑N
k=1(y(k)− ymeas(k))2;

– ymeas(k) is the measured output;
– n is the model order
– N is the number of observations used to estimate the optimized

output

To compare the quality of different models and algorithms, we use the
validation fit measure. It is defined in percentage as

fit = 100
Ç

1− ‖y − yest‖
‖y −mean(y)‖

å
for a single output sequence, where y is the validation data output and yest

is the estimated output from the model. For system with multiple outputs,
we report the average of the fit. Another criterion that we use is the relative
error:

error = ‖y − yest‖
‖y‖

The nuclear norm optimization problems are solved using the previous
proximal algorithms: ADMM, PGM, FPGM and PNM. The maximum num-
ber of iterations is set to 200.

4.1 Complete inputs and outputs
In this first set of experiments we solve the nuclear norm optimization prob-
lem 3.4, i.e. we computed a modified output sequence. In all the experiments
the parameter r (the number of rows of the Hankel matrices) is equal to 15.

4.1.1 Examples from the DaISy collection
In this section, we consider four examples from the DaISy collection [11].
Since there is only one input/output sequence for each dataset, we break up
the data sequence in two sections: the first NI data points are used for the
identification, the next NV for validation.

The four datasets are:
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• 96-006, hair dryer. It describes a dryer and there are one input and
one output. The input is the voltage over the heating device, while the
output is the air temperature which is measured by a thermocouple.
We choose NI = 300 and NV = 700.

• 96-007, CD player arm. It is data from the mechanical construction of a
CD player arm. The inputs are the forces of the mechanical actuators,
while the outputs are related to the tracking accuracy of the arm. The
data is measured in a closed loop, and then through a two-step pro-
cedure converted to open loop equivalent data, so there are two input
and two outputs. We choose NI = 100 and NV = 400.

• 96-009, robot arm. Data come from a flexible robot arm. The arm is
installed on an electrical motor. The authors have modeled the transfer
function from the measured reaction torque of the structure on the
ground to the acceleration of the flexible arm. The applied input is
a periodic sine sweep. Then, the input is the reaction torque of the
structure and the output the acceleration of the flexible arm. We choose
NI = 300 and NV = 700.

• 96-011, thermic res wall. There are two inputs and one output and
it describes the heat flow density through a two-layer wall (brick and
insulation layer). The inputs are the internal and external temperature
of the wall, while the output is the heat flow density through the wall.
We choose NI = 400 and NV = 1000.

In the first experiment, we consider the hair dryer with NI = 300 and
NV = 700. Firstly we study only the ADMM. The figure 4.1 shows the
singular values of matrix YΠ constructed from the optimized outputs and
the matrix YmeasΠ constructed from the measured outputs. Since we want
the new outputs to have a minimum nuclear norm, but still close to the
measured outputs, it is right that the singular values obtained are below
those obtained from the original matrix.

We now study the behavior of the fit as the number of iterations increases.
If we set a maximum number of iterations equal to 1000, it seems that the
fit reaches a maximum and then stabilizes. However, if we go to zoom we
see oscillations and, from the iteration 500 onwards, there is a slow decrease
in the fit, figure 4.2.
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Figure 4.1: singular values from original and optimized outputs

Figure 4.2: Behavior of the fit

We have this behavior because the problem that ADMM is going to solve
minimizes, on the one hand, the nuclear norm of YΠ and on the other, it
tries to have a minimum distance from the measured outputs. These two
values influence the estimation of the observability matrix and the order of
the model. In fact, a small nuclear norm corresponds to an estimated low
order of the model, so there is the risk of underestimating. On the other
hand, stopping at high nuclear norm can overestimate the model. Conse-
quently, it is necessary to look for a number of iterations for which the fit (
or equivalently the relative error) is maximum (minimum).

Figure 4.3: Behavior of the relative error
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So, in the case of the ADMM we have the best fit at iteration 23. We
have fit 90.08 and estimated order 5. If instead, we use the original outputs,
we have fit 87.21 and estimated order 10.

In figure 4.4, we can compare the original outputs with the outputs of
the identified model. In the figure on the left, to estimate the state-space
matrix we used the optimized ouputs from ADMM, instead in the figure on
the right we used the measured outputs.

Figure 4.4

Now, we compare the four proximal algorithms. We consider both the
cases to estimate the model order. So with fit1 we indicate the fit obtained
from the estimation of the order from a threshold on the singular values, with
fit2 the fit obtained with the use of the parsimony criterion AIC.

Dataset fit1 estimated order fit2 estimated order with AIC
96− 006 87.21 10 88.39 6
96− 007 57.14 10 56.26 1
96− 009 96.44 7 96.69 5
96− 011 85.42 10 86.76 9

Table 4.1: Fit and estimated order from the original measured outputs

From Tables 4.1, 4.2, 4.3, 4.4 and 4.5 we note that with PGM, in the case
of CD player arm, we get lower fit values than FPGM, in fact from the theory
we know that the convergence speed of the latter is equal to 1/k2, where k
is the number of iterations, while the convergence of PGM has speed 1/k.
Consequently, if we bring the maximum number of iterations to 735, we see
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fit1 order iter. fit2 order iter.
ADMM 75.82 5 98 79.14 5 13
PGM 61.28 10 3 60.85 5 58
FPGM 76.23 5 129 78.32 5 18
PNM 58.23 10 20 77.92 7 11

Table 4.2: Fit and estimated order of the CD player arm (96-007)

fit1 order iter. fit2 order iter.
ADMM 90.09 6 12 89.90 6 7
PGM 90.10 5 55 90.14 7 3
FPGM 89.46 6 9 90.01 5 90
PNM 88.55 10 2 89.85 4 1

Table 4.3: Fit and estimated order of the hair dryer (96-006)

fit1 order iter. fit2 order iter.
ADMM 83.21 10 27 81.35 8 17
PGM 66.12 10 18 82.04 5 58
FPGM 82.79 10 112 82.21 9 122
PNM 79.31 10 2 96.69 5 1

Table 4.4: Fit and estimated order of the robot arm (96-009)

fit1 order iter. fit2 order iter.
ADMM 86.85 6 19 86.85 7 9
PGM 86.86 10 8 86.85 6 26
FPGM 86.84 10 5 86.84 7 9
PNM 86.80 10 8 86.80 6 13

Table 4.5: Fit and estimated order of the thermic res wall (96-011)

that PGM reaches a fit of 75.04 and estimated order 7. In the figure 4.5 we
can see the trend of the residue ‖xk+1 − xk‖, where xk is the solution to the
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primal problem, and in the case of FPGM we can see the Nesterov waves.

Figure 4.5: (Left) ‖xk+1 − xk‖ of PGM and FPGM, (right) ‖xk+1 − xk‖ of
ADMM and FPGM

In all cases, FPGM and ADMM obtain similar results, although the num-
ber of iterations that FPGM must do is sometimes higher due to the forma-
tion of Nesterov waves.

Now we do not want to find the minimum of the problem, as we risk
having an excessively small nuclear norm and, therefore, underestimating
the order.

As for PNM, since the function is quadratic, in a single iteration we
could reach the minimum. It was preferred, then, to use quasi-PNM to
have more possibilities of combinations of nuclear norm/distance from the
measured output. However the latter method reaches the minimum more
quickly, consequently, there are fewer combinations of nuclear norm/distance
and, therefore, there is the risk of not reaching an optimal fit. In figure 4.6,
we can see the decrease of values of the dual problem.

Figure 4.6: Values of dual problem for the hair dryer

In the PNM at each iteration we have to calculate a direction of descent,
to do this we solve inexactly the minimum problem using ADMM, PGM or
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FPGM. Due to the Nesterov waves, with the last method we must also verify
that the direction found is actually a downward direction. In the tables below
we can see the results:

fit order iter.
FPGM 58.23 10 20
ADMM 51.99 10 13
PGM 60.38 10 15

fit order iter.
FPGM 88.55 10 2
ADMM 88.71 10 2
PGM 88.52 10 2

Table 4.6: (Left) methods used to find search direction for CD player arm,
(right) methods used to find search direction for hair dryer

A negative aspect of the PNM is its high computational burden. In fact,
at each iteration it is required to find a direction of descent solving a minimum
problem, finding a suitable step along it and estimating the Hessian matrix.
As a result, calculation times are longer.

If we consider the two methods to estimate the order of the model, we see
a clear reduction of the estimated order in the case of the method based on the
parsimony principle AIC. In fact, this second method tends to underestimate
the order, rather than overestimate it, but this is better because we avoid
problems e.g. the over-fitting. We notice, also, a greater fit.

4.1.2 Example from generated data
In this section, we try to understand why the method for estimating the order
based on the AIC parsimony principle works better than the one based on a
threshold on singular values.

We consider the following state-space model of order nx = 7 e with the
system matrices:

A = T



0.9 0 . . . 0
0 0.8 0 . . . 0
0 0 0.4 0 . . . 0
0 0 0 0.3 0 0 0
0 . . . 0 0.2 0 0
0 . . . 0 0.1 0
0 . . . 0 0.001


T

with T deriving from the QR factorization of a random matrix,
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B =



1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


C =



0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


x0 =

î
0 0 0 0 0 0 0

ó
We choose the vector u in a deterministic way and add a pseudo-random

sequence through the command randn, in order to generate an input which
excites all the dynamics of the system. We consider NI = 100 and NV = 400.

In the first experiment, we consider 20 pairs of inputs/outputs and sup-
pose that they are measured without noise. To solve the problem we apply
the ADMM algorithm and compare the two methods to estimate the order
of the model.

Figure 4.7: Fit and estimated order for 20 pairs of input/output measured
without noise

In figure 4.7, we can see that the method which uses a threshold on
singular values gives an estimated order 4, while the method which uses the
AIC principle returns 5. In both cases, we have a very high fit in all the
examples.

Now, let’s add noise to the measured data. We note that with the "AIC"
method we obtain a greater fit, furthermore, we have an estimated order
fixed at 4, while with the "threshold" method the order is always 10, figures
4.8.
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Figure 4.8: Fit and estimated order for 20 pairs of input/output measured
with noise

We consider the matrices of the state-space system estimated by the first
pair of inputs/outputs, take the remaining inputs, pass them through the
estimated system and check if the fit remains stable. From the figure 4.9, we
see that in the "AIC" case the fit is more stable than the other one.

Figure 4.9: Stability of the fit

This happens because the singular values are very sensitive to the added
noise, so the "AIC" method behaves better than the method that uses the
threshold on singular values. This, then, also explains the behavior of the
two methods in the case of DaISy databases, in fact the data are measured
with noise, so it makes sense to get better results with "AIC".

4.2 Missing outputs
In this set of experiments, we evaluate the nuclear norm approach for the
problem with missing outputs. We consider the data from the DaISy database
but remove a percentage of randomly chosen outputs from the identification
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sequence. In this case with the nuclear norm optimization problem, we re-
construct the missing outputs. We also compare the results obtained by the
proximal algorithms with another method: first reconstructing the output by
linear interpolation and then using it to estimate the matrices of the system.

From the following tables, it can be seen that both in the case of the
CD player arm and of the thermic res wall the nuclear norm optimization
approach works well with a high percentage of missing data. An exception
is given by the example of the hair dryer, in which already with a 10% of
missing data the fit is low. With 20% of missing data, negative fit values
are recorded. However, if we draw the graph of the estimated outputs by
the matrices of the system, with the output sequence of the validation, we
see that the estimated outputs have a trend similar to true outputs, but
translated along the y-axis, figure 4.10.

Figure 4.10: Estimated outputs for hair dryer with 30% of missing outputs.

This derives from the fact that the nuclear norm problem requires that
the estimated outputs are close to the measured outputs. Now, in this case,
the measured outputs have the 70% of the values comprised between 4 and
6 and the remainder equal to 0. Consequently, when the proximal algorithm
reconstructs the outputs it takes into account the presence of such 0, therefore
even if he finds the trend, the optimized outputs are translated and closer to
the x-axis.
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10% fit order
interpol. 24.94 10
ADMM 33.43 10
PGM 25.54 10
FPGM 26.54 10
PNM 25.65 10

Table 4.7: Missing outputs for hair dryer. The order is estimated with a
threshold on singular values.

10% fit order
interpol. 32.65 8
ADMM 34.70 3
PGM 12.24 7
FPGM 12.24 7
PNM 16.07 4

Table 4.8: Missing outputs for hair dryer. The order is estimated with the
AIC principle.
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10% fit order
interpol. 15.14 10
ADMM 71.58 6
PGM 70.83 10
FPGM 72.65 10
PNM 70.66 10

20%
interpol. 24.36 10
ADMM 69.86 10
PGM 65.65 10
FPGM 68.54 10
PNM 64.76 10

30%
interpol. −381 10
ADMM 69.75 8
PGM 65.78 10
FPGM 66.33 10
PNM 67.10 10

50%
interpol. −58 10
ADMM 56.85 10
PGM 48.53 10
FPGM 58.09 10
PNM 53.31 10

fit order
75.20 10
78.88 5
75.69 10
75.70 10
77.49 10

65.51 10
67.09 3
63.62 10
65.37 10
66.22 10

45.90 10
47.96 4
46.09 10
46.21 10
47.01 10

22.71 10
33.66 10
23.41 10
23.50 10
28.94 10

fit order
88.17 10
75.29 10
69.47 10
71.28 8
82.72 10

70.01 10
69.62 10
68.68 10
68.68 10
70.61 10

66.63 10
62.76 10
63.30 10
63.66 10
69.77 10

27.69 10
19.81 10
18.12 10
39.03 10
50.92 10

Table 4.9: Missing outputs for CD player arm (left), thermic res wall (middle)
and robot arm (right). The order is estimated with a threshold on singular
values.
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10% fit order
interpol. 56.44 1
ADMM 70.68 6
PGM 69.54 10
FPGM 69.45 7
PNM 74.42 8

20%
interpol. 51.73 1
ADMM 68.60 1
PGM 66.04 1
FPGM 68.54 2
PNM 68.35 1

30%
interpol. 23.43 1
ADMM 69.31 2
PGM 67.79 8
FPGM 68.38 1
PNM 67.93 1

50%
interpol. 32.07 1
ADMM 40.23 5
PGM 39.05 2
FPGM 37.85 3
PNM 33.13 1

fit order
69.43 9
77.79 6
72.55 2
70.77 8
77.15 4

57.07 9
63.71 7
62.29 2
62.31 5
63.01 1

47.09 9
52.12 2
50.41 3
49.97 5
51.91 1

35.11 3
46.53 8
34.58 4
34.59 4
34.50 1

fit order
83.88 8
79.00 9
67.83 8
67.83 8
79.56 7

74.82 6
70.29 4
71.36 10
71.36 10
70.58 8

65.35 9
70.78 7
69.81 10
70.09 10
68.80 3

38.84 10
36.91 9
33.06 3
33.11 3
30.25 8

Table 4.10: Missing outputs for CD player arm (left), thermic res wall (mid-
dle) and robot arm (right). The order is estimated with the AIC principle.
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(a) ADMM (b) FPGM

(c) PGM (d) PNM

(e) interpolation

Figure 4.11: Estimated outputs for CD player arm with 10% missing outputs.
We notice that there are two outputs.





Appendix A

Computations

A.1 Gradient of f ∗(−Aadju)
Let F (u) := f ∗(−Aadju) where f ∗ is the convex conjugate of a generic func-
tion f and Aadj is the adjoint of the mapping A. We want to prove that

∇F (u) = −A∇f ∗(−Aadju)
We use the definition of convex conjugate:

F (y) = f ∗(−Aadjy) = sup
x
{〈−Aadjy, x〉 − f(x)} = sup

x
{〈−y,Ax〉 − f(x)}

= − inf
x
{〈y,Ax〉+ f(x)}

We remember the definition of subdifferential of F :

v ∈ ∂F (y) ⇐⇒ F (z) ≤ F (y) + 〈v, z − y〉 ∀z
Now

F (z) = − inf
x
{〈z,Ax〉+ f(x)} = − inf

x
{f(x) + 〈y,Ax〉+ 〈z − y,Ax〉}

We have

argmin{〈Ax, y〉+ f(x)} = argmax{−〈Ax, y〉 − f(x)}
argmax{〈x,−Aadjy〉 − f(x)} = ∇f ∗(−Aadjy)

107
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where the last equality is true for the properties of convex conjugate
functions. Let x+ = argmin{〈Ax, y〉+ f(x)}.

− inf
x
{f(x) + 〈y,Ax〉+ 〈z − y,Ax〉}︸ ︷︷ ︸

=F (z)

≤ −(f(x+) + 〈y,Ax+〉+ 〈z − y,Ax+〉)︸ ︷︷ ︸
=F (y)−〈z−y,Ax+〉

Then

F (z) ≤ F (y)− 〈z − y,Ax+〉 = F (y) + 〈−Ax+, z − y〉

Therefore,

−Ax+ ∈ ∂F (y) If F is differentiable −A∇f ∗(−Aadju) = ∇F (y).

A.2 Adjoint of the mapping A
Let x = (h0, h1, ..., hr+N−2) and without loss of generality, we can suppose
that hi ∈ R ∀i = 1, ..., r +N − 2.

Let A : Rr+N−2 → Rp×q the linear mapping in the nuclear norm opti-
mization problem. It can be expressed as

A(x) = LH(x)R

where L ∈ Rp×(N−1), R ∈ R(r−1)×q and H(x) ∈ R(r−1)×(N−1) is a block
Hankel matrix

H(x) =


h0 h1 . . . hN−1
h1 h2 . . . hN
... ... . . . ...

hr−1 hr . . . hr+N−2


Then, the adjoint of the mapping A is Aadj : Rp×q → Rr+N−2. For

definition

〈A(x), y〉 = 〈x,Aadj(y)〉 =⇒ 〈LH(x)R, y〉 = 〈x,Hadj(LTyRT )〉
∀x ∈ Rr+N−2, y ∈ Rp×q
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Now the adjoint Hadj of the Hankel mapping H, maps an (r−1)×(N−1)
matrix to a vector with r + N − 2 components, by summing the entries in
the matrix along the anti-diagonals. Hence we prove that

〈HadjH(x), x〉 = 〈H(x),H(x)〉 ∀x ∈ Rr+N−2

Here space is equipped with the trace inner product 〈X, Y 〉 = Tr(XTY ).
Without loss of generality we can suppose r < N . Therefore, from the
definition:

HadjH(x) = (h0, 2h1, ..., rhr−1, (r − 1)hr, ..., hN+r−2)

〈HadjH(x), x〉 = Tr(HadjH(x)Tx)

=


h2

0 h0h1 . . . h0hN+r−2
2h0h1 2h2

1 . . . 2h1hN+r−2
... ... . . . ...

h0hN+r−2 h1hN+r−2 . . . h2
r+N−2


= h2

0 + 2h2
1 + ...+ rh2

r−1 + ...+ h2
N+r−2

〈H(x),H(x)〉 = Tr(H(x)TH(x))

= Tr


h0 h1 . . . hr−1
h1 h2 . . . hr
... ... . . . ...

hN−1 hN . . . hr+N−2



h0 h1 . . . hN−1
h1 h2 . . . hN
... ... . . . ...

hr−1 hr . . . hr+N−2



= Tr


h2

0 + h2
1 + ...+ h2

r−1
h2

1 + h2
2 + ...+ h2

r ∗
∗ . . .

h2
N−1 + h2

N + ...+ h2
r+N−2


= h2

0 + 2h2
1 + ...+ rh2

r−1 + ...+ h2
N+r−2

In this way, we have proved that 〈HadjH(x), x〉 = 〈H(x),H(x)〉 ∀x ∈
Rr+N−2. Therefore, the adjoint of mapping A is

Aadj(y) = Hadj(LTyRT ) ∀y ∈ Rp×q
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A.3 DFP formula for updating Hk

The Davidon-Fletcher-Powell (DFP) formula is

Bk+1 = Bk + sks
T
k

sTk yk
− Bkyk(yk)TBk

(yk)TBkyk

where

• Bk is the approximation of the inverse of the Hessian,

• sk := xk+1 − xk,

• yk := ∇f(xk+1)−∇f(xk)

Let U = [u1, u2] and V = [v1, v2] with

u1 = v1 = sk
((yk)T sk)1/2 , u2 = −v2 = Bkyk

((yk)TBkyk)1/2

We compute the matrix C of the Sherman-Morrison-Woodbury formula:

• C11 = 1 + vT1 (Bk)−1u1 = 1 + sTkH
ksk

(yk)T sk
= β

• C22 = 1 + vT2 (Bk)−1u2 = 1− (yk)TBk(Bk)−1Bkyk

(yk)TBkyk = 1− 1 = 0

• C12 = 0 + vT1 (Bk)−1u2 = sTk
((yk)T sk)1/2H

k Bkyk

((yk)TBkyk)1/2 = ((yk)T sk)1/2

((yk)TBkyk)1/2 = α

• C21 = 0− vT2 (Bk)−1u1 = −C12 = −α

Then

C =
ñ
β α
−α 0

ô
, C−1 = 1

α2

ñ
0 −α
α β

ô
Let Ũ = HkU and Ṽ = HkV , using Sherman-Morris-Woodbury formula

Hk+1 = Hk −HkUC−1V THk = Hk − ŨC−1Ṽ T

ŨC−1Ṽ T = 1
α2 [ũ1, ũ2]

ñ
0 −α
α β

ô ñ
ṽT1
ṽT2

ô
=

= 1
α

(Hku2v
T
1 H

k −Hku1v
T
2 H

k) + β

α
(Hku2v

T
2 H

k)
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If we substitute the values of α, β, u1, u2, v1 and v2, we obtain

Hk+1 = Hk − yksTkH
k +Hksk(yk)T
(yk)T sk

+ yk(yk)T
(yk)T sk

Ç
1 + sTkH

ksk
(yk)T sk

å
or equivalently

Hk+1 =
Ç
I − yksTk

(yk)T sk

å
Hk

Ç
I − sk(yk)T

(yk)T sk

å
+y

k(yk)T
(yk)T sk
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