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Chapter 1

Introduction

The problem of abstraction is fundamental in mathematics: whenever a
problem is to be solved, one must ask which is the correct level of generality
to work with. Riemannian manifolds are supposed to model space and
surfaces, quite concrete objects usually considered subject to intuition. And
yet Riemannian manifolds are very abstract in deőnition, to the point that on
őrst analysis it is not even clear if a Riemannian manifold can be isometrically
embedded in Euclidean space. It is clear that in order to understand how
to work with them, one needs to develop various tools. With this goal in
mind we can try to see how Riemannian Manifolds behave under regular
transformations, i.e. isometries. For example, if our model does not distinguish
between two completely different objects, we might reconsider our intuition
about these entities. Instances of regularity with respect to isometries are the
oldest historically: in 1827 Gauss proved the Theorema Egregium showing
the preservation of curvature in space under C2 isometries, and in 1929 Cohn-
Vossen proved that convex surfaces in R

3 are rigid under C2 isometries. It
was not until many years later that a surprising result about strong freedom
of C1 isometries was found: in 1954 Nash proved that any embedding that
shortens distances in codimension two can be approximated arbitrarily well
by C1 isometric embeddings, and a year later Kuiper improved the result to
codimension one, directly opposing previous results. From then on, different
contributions have been made, and now it is known that in R

3 C1 embeddings
whose derivatives are Hölder-continuous can or cannot approximate arbitrary
embeddings depending on the level of Hölder continuity.
The scope of this work is to prove some results concerning our discussion
above: őrst, we will show Nash’s Theorem on isometric embeddings, and then
we will use it to prove that any Riemannian manifold can be C1 isometrically
embedded in the Euclidean space.
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Chapter 2

Statement

This chapter will be an overview of the whole work. Here we state the results
we will cover along with other facts that make up the context our theorems
are inserted in. We begin with some deőnitions.

Deőnition 2.1 (Short Map). Consider a Riemannian manifold (Σ, g) and
let u : Σ −→ R

N be a C1 immersion. We say that u is short if the pullback
of the Euclidean metric e satisőes u#e ≤ g in the sense of quadratic forms,
that is u#eq(v) ≤ gq(v) for all q ∈ Σ, v ∈ TqΣ. We say that u is strictly
short if the above inequality holds strictly for all v ̸= 0 and for all q ∈ Σ.

The notion of short map is quite intuitive, for example if we take any curve
γ on Σ, then the length of γ in Σ is greater than the length of u ◦ γ in R

N .

Deőnition 2.2 (Limit set). Consider a smooth manifold Σ and u : Σ → R
N .

Consider an exhaustion by compact sets {Γk}k, that is a collection of compact
subsets Γk ⊂ Σ with Γk ⊂ Γk+1 such that

⋃

k Γk = Σ. The limit set of u is
the set of points that are the limit of a sequence of points (u(xn))n with
xn ∈ Σ \ Γn.

The next two theorems constitute the core of this work, and chapters 3 and
4 will be entirely dedicated to their proofs.

Theorem 2.3 (Nash). Let (Σ, g) be a smooth n-dimensional Riemannian
manifold and v : Σ −→ R

N a C∞ short immersion, with N ≥ n + 2, such
that the limit set of v does not intersect the image of v. Then for any ε > 0
there exists a C1 isometric immersion u : Σ −→ R

N such that ∥u−v∥C0 < ε.
If v is an embedding, u can be chosen to be an embedding. If v is strictly
short, we can also ask for u and v to have the same limit set.

Theorem 2.4. Let (Σ, g) be a Riemannian manifold of dimension n, Then
there exist a C1 isometric embedding u : Σ −→ R

2n+1.
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The question one might ask after seeing Theorem 2.3, is whether improvements
to this already somewhat unsettling result can be made. If one looks at
weakening the already very loose hypotheses, the following result shows up:

Theorem 2.5 (Kuiper). Let (Σ, g) be a smooth n-dimensional Riemannian
manifold and v : Σ −→ R

N be a C∞ short immersion, with N ≥ n+ 1, such
that the limit set of v does not intersect the image of v. Then for any ε > 0
there exists a C1 isometric immersion u : Σ −→ R

n such that ∥u− v∥C0 < ε.
If v is an embedding, u can be chosen to be an embedding.
If z is strictly short, we can also ask for u and v to have the same limit set.

See Kuiper’s original article 6 for a proof. In section 4 we will highlight
what parts of Nash’s argument can be modiőed to account for the lower
codimension.
In a much different way, one asks if the regularity of the isometric immersion
can go beyond C1. On this road one encounters an obstacle, that in a way
is an expression of the rigidity that one would expect from isometries. The
following is a classical result, see 1, 4:

Theorem 2.6. Let Σ ⊂ R
3 be a compact convex surface. If u : Σ −→ Γ ⊂ R

3

is a C2 isometric diffeomorphism, then Σ and Γ are congruent, that is there
exists an isometry A of R3 such that A(Σ) = Γ.

This theorem tells us that there is only one way of isometrically C2-embed
a manifold in R

3. Indeed if u, v are two such map, then u◦v−1 : v(Σ) −→ u(Σ)
is a C2 isometry, and therefore u(Σ) and v(Σ) differ by a rigidity.
Then, almost no (short) map can be approximated by C2 isometries. Suppose
one such u is given: as among all λ ∈ ]0, 1], at most one of the maps λu has
arbitrarily good C2 isometric approximations.
From this opposition the question of regularity becomes more precise. Consider
α ∈ (0, 1) and let C1,α be the space of differentiable maps with őrst derivatives
that are α-Hölder continuous: for what α, given any smooth short map
u : Σ → R

n+1, can we őnd arbitrarily good isometric C1,α approximations of
u?
There have been various results pushing in both directions: here we state
some, an extensive and detailed discussion also containing proofs can be
found in 2.
For α small, the properties of the Nash-Kuiper Theorem still hold, indeed
we have:

Theorem 2.7. Let (Σ, g) be a smooth, n-dimensional compact Riemannian
manifold. Suppose N ≥ n + 1 and α < (1 + n(n + 1)2)−1. Given any C1

short map u : Σ → R
N , for all ε > 0 there exists an isometric immersion
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v ∈ C1,α(Σ,RN) such that ∥u− v∥C0 < ε.
If u is an embedding, v can be chosen to be an embedding.

On the other side of the spectrum one őnds that for α too close to 1
rigidity is still too strong:

Theorem 2.8. Let (Σ, g) be a smooth, compact surface (2-dimensional manifold)
with positive Gaussian curvature, and let u, v ∈ C1,α(Σ,R3) be isometric
immersions with α > 2/3. Then u(Σ) and v(Σ) are congruent.

As noted before, this implies that almost no map can be approximated by
C1,α isometric embeddings. There also exist rigidity results for dimensions
higher than 2, we chose not to include them here. To this day the question
remains open.

At the end of the work, we will take a very speciőc surface, the Flat Torus,
and put forward some calculations that if completed might gain insight into
the possible regularity of isometric maps.
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Chapter 3

Preliminary work

Among the tools we need to prove Theorem 2.3, an efficient way of handling
sets of points on a manifold is important. The őrst reduction that we make
is based on the fact that any smooth manifold is triangulable, and therefore
we can work instead with simplicial complexes. These will serve as building
blocks and we will split and glue them together to őx a regular enough
geometric setting.

Deőnition 3.1 (Barycentric subdivision). We deőne the following operation
inductively on the dimension of a simplex. Consider an n dimensional simplex
∆, spanned by points p1, ..., pn+1:

1. If n = 0, the barycentric subdivision of ∆ is ∆ itself.

2. If n > 0, deőne b = (p1 + ... + pn+1)/(n + 1). ∆ has faces ∆i for i =
1, ..., n of dimension n−1. On each of the ∆i the barycentric subdivision
is deőned, in particular ∆i is covered by the n−1 dimensional simplices
∆i,1, ...,∆i,m. Deőne ∆′

i,k the convex hull of b∪∆i,k for i = 1, ..., n and
k = 1, ...,m. Finally, the barycentric subdivision of ∆ is the simplex
composed of the ∆′

i,k’s.

For a generic simplicial complex, the barycentric subdivision is the union of
the subdivisions of its components.

Proposition 3.2. Let Σ be an n-dimensional differentiable manifold and let
{Vλ}λ be an open cover. Then there exists a covering {Ul}l such that:

1. For each l there exists λ such that Ul ⊂ Vλ;

2. The closure of each Ul is diffeomorphic to an n-dimensional closed ball;

3. Each Ul intersects őnitely many Um’s;
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4. Each point p ∈ Σ has a neighbourhood intersecting at most n + 1
different Ul’s;

5. {Ul}l can be split into n + 1 classes Ci such that if Ul, Um ∈ Ci and
Ul ∩ Um ̸= ∅, then l = m.

Proof. Any differentiable manifold possesses a locally őnite triangulation, so
we can take one such triangulation and reőne it so that for each point p, all
the simplices touching p lie in the same Vλ

1. We call S this triangulation,
and enumerate as Sm

i its m dimensional components, for m = 0, ..., n. Let T
be the barycentric subdivision of S, and for each Sm

i deőne Um
i = int(

⋃ {∆ :
Sm
i ⊂ ∆ ∈ T}), where by int we mean the interior. That means we are

taking all simplices in T containing Sm
i and calling Um

i the interior of their
union. Notice that if i ̸= j then Um

i ∩ Um
j = ∅.

Deőne also Cm = {Um
i }i and C =

⋃

Cm. C is an open cover satisfying (1)
and (5). Any simplex in T intersects őnitely many elements Sm

i and thus
intersects őnitely many Um

i , and since each Ul is contained in a őnite union
of simplices this gives (3). The closure of any of the Um

i is homeomorphic
to a n-dimensional ball but with sharp edges, so by choosing an appropriate
smaller open set, we can ask it to be diffeomorphic to the n-dimensional
closed ball, hence satisfying (2), while (1), (3), (5) are still satisőed.

To obtain (4), we can shrink once more all the Ul such that the closures
of two elements in the same class Ci are disjoint, and this still satisőes all the
properties above. Fix p ∈ Σ: if p is in the closure of no element of Ci, then
there is a neighborhood of p not touching Ci, and if it is in the closure of an
element of Ci, there is a neighborhood of p not touching any other element
in Ci. The intersection of these neighborhoods satisőes (4).

This result is quite easy but very important as it condenses most of the
geometric regularity needed for our arguments, and we will use it on many
occasions. In particular, the properties of local őniteness and separation
make the treatments of limits and inőnite series trivial on a local level and
justify a great deal of decompositions that are to come. The condition on
the Ul to be diffeomorphic to unit balls has its realization in Proposition 3.4.

Remark 3.3. In the following proposition we will use some common machinery
that we recall here:

1Such reőnement exists, indeed őxed local coordinates there exist positive r and R such

that each point has a ball of radius r in some open set and each simplex has diameter at

most R, therefore through a őnite number of reőnements we can decrease R to be lower

that r and our requirement is satisőed.
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1. Gram-Schmidt algorithm. Suppose u, v ∈ R
d are two non-zero vectors.

Then u and w = v − u·v
∥u∥2

u are orthogonal, and if u, v were linearly
independent then w ̸= 0. More in general, if u, v : X −→ R

d are two
never vanishing functions, we can deőne w(x) = v(x) − u(x)·v(x)

∥u(x)∥2
u(x)

and we get u(x) ⊥ w(x) for all x ∈ X. Moreover, if u, v were always
independent, w will be never vanishing. Notice that if z is orthogonal
to u, v, it will be orthogonal also to w.

2. Smoothing by convolution. Let ϕ ∈ C∞
c (Rd) (the space of C∞ functions

with compact support), deőne ϕt(x) = t−dϕ(x/t). Then, for any f ∈
Cc(R

d) we have f ∗ϕ ∈ C∞ and f ∗ϕt(x) → f(x) for t→ 0 uniformly in
x. In particular after őxing ϕ and f we can choose t small so that ∥f ∗
ϕt − f∥∞ < ε for ε > 0 small as we want. If instead f = (f1, ..., fn) ∈
Cc(R

d,Rn), we can apply the above procedure to each of the fi and
choose t small enough to obtain an estimate on the whole function.

Proposition 3.4. Let B ⊂ R
n be diffeomorphic to the n-dimensional unit

ball, and w : B −→ R
N a smooth immersion with N ≥ n + 2. Then there

exist smooth α, β : B −→ R
N such that:

1. α(q)⊥β(q) for all q ∈ B

2. α(q), β(q) are orthogonal to TqB for all q ∈ B.

Proof. We can assume B = B(0, 1) ⊂ R
n. We őrst prove there exist two

such continuous α, β.
Consider the set R of positive radii ρ such that there are α, β on B(0, ρ)
satisfying our requirements. The set R is nonempty: indeed take α0, β0 ∈ R

N

orthogonal to Tw(0)w(B) and to each other, and deőne a(p) = α0, b(p) = β0
for all p in some neighbourhood of 0. Then, project a and b onto the normal
bundle of w(B), and if the neighborhood of 0 is small enough, the projected
vectors will be independent and nonvanishing. Now make them orthogonal
applying Gram-Schmidt, and őnally normalize them. Notice that Gram-
Schmidt keeps the vectors inside the normal bundle. The results are maps
deőned on some B(0, ρ) that are continuous and satisfy the thesis, so R ̸= ∅.
We now show that supR ∈ R. Let ρ ∈ R, with α, β deőned in B(0, ρ). For
δ > 0 deőne on B(0, ρ+ δ) the maps α′, β′ extending α, β by:

α′(x) = α(ρ
x

|x|) β′(x) = β(ρ
x

|x|) ∀x ∈ B(0, ρ+ δ) \B(0, ρ)

These satisfy (a). Notice that since w is smooth and the angle between α and
the tangent space depends only on α ·Diw, due to compactness of B there is



14 CHAPTER 3. PRELIMINARY WORK

some δ independent of ρ that keeps such angle greater than π/2−η for some η
small as we want. Then, by projecting onto the normal bundle, using Gram-
Schmidt and normalizing, if we have chosen η small enough, we produce two
maps ᾱ, β̄ on B(0, ρ + δ) satisfying the thesis. Then if ρ0 = supR, we have
ρ0 ≥ min{1, ρ+ δ} for all ρ ∈ R, hence ρ0 = 1 and we have found our global
maps.
Now we smooth our functions by convolution: őrst extend α, β to be continuous
with support on B(0, 2) (but without requirements of orthogonality outside of
B(0, 1)), then we take ϕ ∈ C∞

c (Rn) and choose t small so that the projections
of α∗ϕt, β ∗ϕt onto the normal bundle are independent (since the projections
of α and β are independent and B is compact, such a t exists). Now we use
Gram-Schmidt and normalize to get our required functions.

Remark 3.5. In the above proposition we do not actually need B ⊂ R
n.

Indeed if B is an open subset of some smooth manifold and Φ : B −→
B(0, 1) ⊂ R

n is a diffeomorphism and w : B −→ R
N is the smooth immersion,

we apply the proposition to w ◦ Φ−1 to get ᾱ, β̄, and α = ᾱ ◦ Φ, β = β̄ ◦ Φ
satisfy the thesis.

Notice how we used radial symmetry to progressively extend our function
from a single point to the whole set: this would not have been possible
if B was not diffeomorphic to the unit ball. Among all the preparatory
propositions this is the only one to relate the manifold Σ to the Euclidean
environment, and indeed we see a glimpse of the reason why we need codimen-
sion two: later on we will stretch our initial short map along these orthogonal
directions in order to properly őt the abstract metric of the manifold inside
of space.
The őnal element that we need to tackle the proof is some way to work with
said metrics. In particular, the most efficient way to get into it is through
decomposition into primitive metrics:

Deőnition 3.6 (Primitive metric). Let Σ be a smooth manifold. A primitive
metric h on Σ is a smooth 2-tensor that can be written as h(x) = a2(x)dψ(x)⊗
dψ(x) for some a, ψ ∈ C∞(Σ).

The fact that such controlled objects span the whole set of Riemannian
metrics is the object of the following proposition.

Proposition 3.7. Let Σ be an n-dimensional differentiable manifold, h a
Riemannian metric on Σ and {Ul}l an open cover. Then there exists a
countable family {hi}i of primitive metrics such that:

(a) h =
∑

i∈N hi;
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(b) Each hi is supported in some Ul;

(c) Each point is in the support of at most K(n) = n(n+1)2

2
different hi’s;

(d) The support of any hi intersects the support of at most őnitely many
hj’s.

Proof. We will őrst write h as a sum of primitive metrics in a neighbourhood
of p ∈ M and then reőne the family to őt the requirements. Fix a local
coordinate map φ : U → W ⊂ R

n around p.
Consider the space Symn of n × n symmetric matrices, which contains the
convex cone of positive semideőnite (p.s.d.) quadratic forms on Tφ(p)W ∼= R

n,
and let m = n(n+ 1)/2 = dimSymn.
Consider w1, ..., wm ∈ Tφ(p)W such that {wk ⊗ wk}k generates Symn, and
deőne M = w1 ⊗ w1 + ... + wm ⊗ wm ∈ Symn which is positive deőnite.
Recall that any p.s.d. matrix A can be written as A = LT

ALA for some
LA ∈ Mn×n, and if A is invertible so is LA. Then if φ∗(h(p)) = N , we have
L−T
N NL−1

N = I = L−T
M ML−1

M since both M and N are positive deőnite and
therefore invertible. Then N = (L−1

M LN)
TM(L−1

M LN) = LTML, and for each
term in the decomposition of M we have LT (wk ⊗wk)L = (Lwk)⊗ (Lwk) =
vk ⊗ vk, so φ∗(h(p)) = N = v1 ⊗ v1 + ... + vm ⊗ vm. The elements vi ⊗ vi
generate all of Symn, and the maps Ci : Symn −→ R (for i = 1, ...,m)
satisfying A =

∑

iCi(A)vi ⊗ vi are smooth.
Deőne the maps ψi : W → R as ψi(x) = vi · x, so that dψi(x) = vi.
Since for all x ∈ W the space TxW is canonically isomorphic to Tφ(p)W , the
elements dψk(x)⊗dψk(x) = vk⊗vk generate the space of positive semideőnite
bilinear forms on TxW . Therefore the maps αk(x) = Ck(φ∗h(x)) satisfy
φ∗h =

∑

k αkdψk ⊗ dψk on W , and since h is smooth, all the αk are smooth.
Since αk(φ(p)) = 1 for all k, we can choose a neighbourhood Vp ⊂ U so that
on φ(Vp) all the αk are positive, so αk(x) = a2k(x) for all x ∈ φ(Vp) and the
ak are all smooth. We can őnally deőne maps Ψk = ψk ◦ φ : Vp → R so that
h(q) =

∑

k a
2
k(φ(q))dΨk(q)⊗ dΨk(q) for all q ∈ Vp.

The above method produces a covering {Vp}p∈Σ where on each Vp a local
decomposition of primitive metrics is őxed. Reőne the covering {Vp}p to
{Wl}l as in Proposition 3.2, and take a partition of the unity {βl}l subordinated
to {Wl}. For each l, choose p such that Wl ⊂ Vp and assign to Wl the
primitive metrics hl1, ..., h

l
m deőned in Vp. Then if

ϕl =
βl

√

Σkβ2
k
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the family of primitive metrics {ϕ2
l h

l
i}l,i satisőes our conditions:

(a) and (b) are clear; since each point is in at most n + 1 different Wi’s,
each associated with m primitive metrics, the point is in at most (n+1)m =
n(n + 1)2/2 supports, so we have (c); in the same way, supp(hi) ⊂ Wl for
some l, and Wl intersects a őnite number of different Wm’s, each with őnitely
many metrics, so supp(hi) intersects őnitely many supports.

Notice how we can once more retain properties of local őniteness, without
which the problem of convergence of inőnite series would be a serious issue.



Chapter 4

Main proofs

Proposition 4.2 contains most of the real value of the proof. It is in particular
Lemma 4.6 that makes the conceptual leap: there we see how we can bend
the surface of Σ in order to precisely approximate the metric of Σ with the
Euclidean metric; in doing so, we crucially use Proposition 3.4.

Deőnition 4.1. On a Riemannian manifold (Σ, g), if h : Σ → Mn×n and
Ul ⊂ Σ open, by ∥h∥0,Ul

we mean the supremum of the Hilbert-Schmidt
norm of h over Ul, that is ∥h∥0,Ul

= supp∈Ul
∥h(p)∥. We also deőne ∥h∥0 =

supl ∥h∥0,Ul
.

Proposition 4.2. Let (Σ, g) be a smooth Riemannian manifold and {Ul}l
an open cover, and let w : Σ −→ R

N be a strictly short immersion with
N ≥ n+ 2. Then, for any choice of positive numbers ηl > 0 and any δ > 0,
there exists a smooth immersion z : Σ −→ R

N such that :

∥z − w∥0,Ul
< ηl (4.3)

∥g − z#e∥0 < δ

∥Dz −Dw∥0 < C
√

∥g − w#e∥0
for some dimensional constant C. Also, if w is injective, z can be chosen to
be injective.

Proof. We can assume {Ul}l to be as in Proposition 3.2, and we call I(l) =
{j|Uj ∩ Ul ̸= ∅} which is őnite. Establish a partition of the unity {φl}l
subordinated to {Ul}l. Since each Ul is precompact and I(l) őnite, one can
choose δl small enough so that (1− δl)g−w#e > 0 on Ul and ∥δlg∥0,Uj

< δ/2
for all j ∈ I(l).
We set φ =

∑

l δlφl which is well deőned and smooth since the sum is locally

17
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őnite. Call h = (1 − φ)g − w#e, so that g − (h + w#e) = φg > 0 and
∥g − (h+ w#e)∥0 < δ/2. Therefore, if we can őnd z : Σ −→ R

N such that

∥z#e− (h+ w#e)∥0 < δ/2 (4.4)

∥Dz −Dw∥20,Ul
< 2K(n)2∥g − w#e∥0,Ul

(4.5)

and (4.3) holds, the triangle inequality gives the thesis. Here K(n) = n(n+
1)2/2 is the maximum number of primitive metrics that don’t vanish on any
given point.
By Proposition 3.7, we can decompose h as a sum of primitive metrics: h =
Σhi. We notice that L(i) = {j|supp(hj) ∩ supp(hi)} is őnite.

Lemma 4.6. There exists a family of "perturbation" maps {wp
i }i∈N such that

supp(wp
i ) ⊂ supp(hi) and if we deőne wi = w+wp

1 + ...+wp
i = wi−1 +wp

i we
have, for i ≥ 1:

∥wp
i ∥0,Ul

<
ηl

K(n)
∀l ∈ L(i) (4.7)

∥Dwp
i ∥20,Ul

< 2∥h∥0,Ul
∀l ∈ L(i) (4.8)

∥w#
i e− (w#

i−1e+ hi)∥0,Ul
<

δl
2K(n)

∀l ∈ L(i) (4.9)

Also, if w is injective, all wi’s are injective.

Proof. We proceed inductively. Take w0 = w.
Choose Um ⊃ supp(hi) and apply Proposition 3.4 to Um with wi−1 in place of
w as the immersion, to get α, β orthogonal to each other and to the tangent
space of wi−1(Um).
If hi(x) = ai(x)

2dψi(x)⊗ dψi(x) we deőne

wp
i (x) = ai(x)

α(x)

λ
cosλψi(x) + ai(x)

β(x)

λ
sinλψi(x)

for some parameter λ that we will choose later to be large enough. Since
suppai ⊂ Um, wp

i can be deőned as 0 outside of Um. We now check the
required properties:
Since L(i) is őnite, if λ is large enough, (4.7) holds.
We compute

d(wp
i )h

dxk
(x) = −ai(x)αh(x) sinλψi(x)

dψi(x)

dxk
+ai(x)βh(x) cosλψi(x)

dψi(x)

dxk
+Ek(x)

Where Ek(x) is proportional to λ−1. Hence

Dwp
i (x) = −ai(x) sinλψi(x)α(x)⊗dψi(x)+ai(x) cosλψi(x)β(x)⊗dψi(x)+E(x)
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where |E(x)| ≲ λ−1, by which we mean that E(x) is smaller than λ−1 times
a constant dependent on the smooth functions α, β, ψi, ai but not on λ. We
also call A and B the őrst two terms in Dwp

i , respectively.
Then we can verify (4.8): if l ∈ L(i) and x ∈ Ul we have

|Dwp
i (x)|2 ≤ a2i (x)|dψi(x)|2 + Cλ−1 ≤ ∥hi∥20,Ul

+ Cλ−1 < 2∥h∥20,Ul

and therefore
∥Dwp

i ∥20,Ul
≤ 2∥h∥20,Ul

Again by őniteness of L(i), λ can be chosen large enough for the inequality
to hold for all l ∈ L(i).
We deőne wi = w + wp

1 + ... + wp
i = wi−1 + wp

i and call h̄ = w#
i e − w#

i−1e,
which in terms of matrices identiőes as

h̄ = DwT
i Dwi −DwT

i−1Dwi−1

Also Dwi = Dwi−1 + Dwp
i = Dwi−1 + A + B + E, and notice that, since

a, b ⊥ Twi−1(p)wi−1(Σ) for all p ∈ supphi, and a ⊥ b:

0 = ATB = BTA = ATDwi−1 = DwT
i−1A = BTDwi−1 = DwT

i−1B

In order to őnd (4.9), we have to relate hi to all these quantities:

ATA+BTB = a(x)2((sinλψi(x))
2 + (cosλψi(x))

2)dψi(x)⊗ dψi(x) =

= a(x)2dψi(x)⊗ dψi(x) = hi

Hence, őnally:

w#
i e−w#

i−1e−hi = DwT
i Dwi−DwT

i−1Dwi−1−ATA−BTB = F TE+ETF+ETE

where F = Dwi−1 + A + B does not depend on λ, so for λ large enough we
get (4.6):

∥w#
i e− (w#

i−1e+ hi)∥ ≲ λ−1 <
δl

2K(n)

We need to show that if w is injective, so is wi, for λ large enough. We
proceed by induction, as w0 = w is injective. need to show that wi is also
injective, Consider any p, q ∈ Σ, and let supp(hi) ⊂ Um. If p, q are both
outside of supp(hi), then wi(p) = wi−1(p) ̸= wi−1(q) = wi(q).
If p ∈ supp(hj), and q is not in Um: since supp(hi) is compact, there exists
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γ > 0 such that |wi−1(x) − wi−1(y)| > γ for all x ∈ supp(hj) and y /∈ Um.
Then, if we take λ large so that ∥wp

i ∥0,Ul
< γ/2, we have |wi(p) − wi(q)| >

|wi−1(p)− wi−1(q)| − |wp
i (p)| > γ − γ/2 > 0 so wi(p) ̸= wi(q).

The last case is p ∈ supp(hi) and q ∈ Ul. Since Ūl is compact and wi−1

is injective, it is an embedding on Ūl. Then, for a small enough η > 0,
there is a well deőned orthogonal projection π from tubular neighbourhood
T of wi−1(Ul) of thickness η to wi−1(Ul). For λ large enough wi(Ul) ⊂ T ,
so π(wi(p)) = wi−1(p) ̸= wi−1(q) = π(wi(q)), so wi(p) ̸= wi(q) and wi is
injective.

We can now őnish the proof of Proposition 4.2: call z = w+Σiw
p
i = limiwi,

which is well deőned since the sum is locally őnite, and we have:

∥z − w∥0,Ul
≤ Σi∥wp

i ∥0,Ul
< ηl

as at most K(n) of the wp
i are non-zero on Ul. Moreover

∥Dz −Dw∥0,Ul
≤ Σi∥Dwp

i ∥0,Ul
<

√
2K(n)∥h∥0,Ul

≤
√
2K(n)∥g − w#e∥0,Ul

where we used that g − (h+ w#e) > 0, and

∥z#e− (w#e+ h)∥0,Ul
= ∥Σi(w

#
i e− w#

i−1e)− Σihi∥0,Ul
=

= ∥Σi(w
#
i e− (w#

i−1e+ hi))∥0,Ul
< δl/2

The injectivity is easy: for any p, q ∈ Σ, there is some k ∈ N such that
z(p) = wk(p) and z(q) = wk(q) so z(p) = wk(p) ̸= wk(q) = z(q).

We are now ready to prove Nash’s theorem, which we state once more.

Theorem 2.3: Let (Σ, g) be a smooth n-dimensional Riemannian manifold
and v : Σ −→ R

N a C∞ short immersion, with N ≥ n + 2, such that the
limit set of v does not intersect the image of v. Then for any ε > 0 there
exists a C1 isometric immersion z : Σ −→ R

n such that ∥z − v∥C0 < ε.
If v is an embedding, z can be chosen to be an embedding. If v is strictly
short, we can also ask for the limit sets of z and v to be the same.

Proof. We can assume v to be strictly short.
If v is just short, consider Φ ∈ C∞(RN ,RN) deőned as

Φ(x) = x− ε
x

|x|e
(−1/|x|)

Notice that |∇Φ(x)| < 1 for all x ∈ R
N , so Φ ◦ v is C∞ and strictly short.
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Also, |x− Φ(x)| = εe−1/|x| < ε, so if we őnd z approximating Φ ◦ v as in the
thesis, we have ∥v − z∥C0 ≤ ∥v −Φ ◦ v∥C0 + ∥Φ ◦ v − z∥C0 < 2ε, which gives
us the theorem.

Consider a cover {Ul}l as in Proposition 3.2. Each Ul has positive distance
dl from the limit set. We now construct inductively a sequence of maps
that will give us our isometry. Start deőning z0 = v. For q ∈ N, set
ηql = 2−q−1 min{ε, dl, 2−l} and δq = 4−q, and őnd zq approximating zq−1

as in Proposition 4.2. We then have:

1. for m < n: ∥zm− zn∥0 ≤ ∥zm− zm+1∥0+ ...+ ∥zn−1− zn∥0 ≤ 2−m−2ε+
...+ 2−n−1ε < 2−mε

2. for m < n: ∥Dzm −Dzn∥0 ≤ C2−m + ...+ C2−n+1 < C2−m+1

Where C was the dimensional constant introduced in Proposition 4.2. Hence
zn is a Cauchy sequence in C1(Σ,RN) and converges to a map z. Since the
differentials converge, we have ∥g − z#e∥0 = limn ∥g − z#n e∥0 < limn 4

−n = 0
and so z is an isometry, in particular z has full rank and is therefore an
immersion.
Also, ∥v − z∥0,Ul

≤ 2−lΣq≥12
−q−1 = 2−l−1, so the limit set of z is the same

as that of v, and at the same time ∥v − z∥0,Ul
≤ βlΣq≥12

−q−1 = βl/2, so its
image does not intersect said limit set.

Since the limit set of z does not intersect its image and z is already an
immersion, it is an embedding if and only if it is injective. To prove that z
can be taken injective if v is, we need to slightly adjust our choice of the ηql
by taking them smaller, then we will repeat the argument above: everything
we already found will therefore still be valid. For all q ∈ N, consider
Vq =

⋃

l≤q Ul, and deőne 2γi = min{|vi(x)− vi(y)| : d(x, y) ≥ 2−i, x, y ∈ Vi},
where d is the geodesic distance induced by the Riemannian metric g.
We now redeőne η̄ql = min {ηql , 2−q−1γ1, 2

−q−1γ2, ..., 2
−q−1γq−1}. At each step,

Proposition 4.2 guarantees that zn is injective.
Choose any x, y ∈ Σ, and take q such that d(x, y) > 2−q and x, y ∈ Vq. Then
|z(x)− z(y)| ≥ |zq(x)− zq(y)| − Σk≥q∥zk+1 − zk∥0,Vq

≥ 2γq − Σk≥q2
−k−1γq >

γq > 0. Hence z(x) ̸= z(y), this is true for any x ̸= y and so z is injective.

After seeing the proof, we shortly try to convey the idea behind the
improvement in Theorem 2.5. Kuiper modiőed the argument so that Proposi-
tion 3.4 is no longer needed, and in particular the requirement of codimension
2 is loosened to codimension 1. Indeed, while Nash "pulls" the map along
two directions orthogonal to the manifold, it is possible to move one of such
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directions to be tangent to Σ, so that on one side one bends the map, on the
other side one "strains" the manifold like a rug, and the combined movement
manages as in Nash’s work to approximate the primitive metrics with the
Euclidean one, though requiring much more careful treatment and many
sub-steps.

We close this chapter with a direct application that we had anticipated.

Theorem 2.4: Let (Σ, g) be a Riemannian manifold of dimension n, Then
there exist a C1 isometric embedding u : Σ −→ R

2n+1.

Proof. Our strategy is to őrst construct a short embedding of Σ into R
N for

some large N , then we will show we can lower N up to N = 2n + 1 and
őnally use Theorem 2.3 to complete the proof. We consider separately the
cases of Σ compact and noncompact.

Assume Σ is compact. Consider an atlas {(Ui, ϕi)}i=1,...,m such that B(0, 2) ⊂
ϕi(Ui) ⊂ R

n for all i and the sets ϕ−1
i (B(0, 1)) cover Σ. Consider λ ∈ C∞

c (Rn)
such that λ = 1 on B(0, 1) and suppλ ⊂ B(0, 2). Now deőne the maps
λi ∈ C∞

c (M) as
λi(p) = λ ◦ ϕi(p) ∀p ∈ Ui

and ϕi(p) = 0 otherwise. Clearly ϕ−1
i (B(0, 1)) ⊂ λ−1

i (1) = Bi so the Bi cover
Σ. Then deőne maps fi : Σ → R

n as:

fi(p) = λi(p)ϕi(p) ∀p ∈ Ui

and fi(p) = 0 otherwise. Finally set

Fi = (fi, λi) : Σ → R
n+1

and
F = (Fi)i=1,...,m : Σ → R

m(n+1)

Since the sets Bi = λ−1
i (1) cover Σ, for each point we can őnd Uk ⊃ Bk ∋ p

so that fk|Bk
= ϕk|Bk

, therefore F has injective differential at p. Consider
x, y ∈ Σ and x ̸= y. Then either there exists k such that x, y ∈ Bk, so
that Fk(x) = (ϕk(x), 1) ̸= (ϕk(y), 1) = Fk(y), or there exists k such that
x ∈ Bk, y /∈ Bk, in which case (Fk(x))n+1 = 1 ̸= (Fk(y))n+1. Therefore, F is
injective. Since Σ is compact, that is enough to make F an embedding.
Since the metric g is positive deőnite and Σ is compact, there exists η > 0
such that u#e < ηg in the sense of quadratic forms. By deőning z = F/η :
Σ → R

m(n+1) we obtain our short embedding.
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Suppose now that Σ is not compact. We prove there exists a short embedding
z : Σ → R

N , for N = (n+ 1)(n+ 2), with limit set {0} /∈ z(Σ).
Consider an atlas {(Ul,Φl)}l such that {Ul}l is as in Proposition 3.2, in
particular there exist disjoint classes Ci such that

⋃

i Ci = {Ul}l. Multiplying
by constants, we can assume that |Φl(x)| ≤ 1 for all x ∈ Ul and for all l.
Consider also a collection of C∞ maps {ϕl}l with suppϕl ⊂ Ul and 0 ≤ ϕl ≤ 1,
and for each p ∈ Σ there exists l such that ϕl = 1 in a neighbourhood of
p. Let {εl}l be a strictly decreasing sequence of positive numbers, that we
will choose later. We now deőne the short immersion z by components as
follows: for i = 1, ..., n+ 1

z(i−1)(n+2)+j(p) =
∑

Ul∈Ci

εlϕl(p)(Φl(p))j j = 1, ..., n

z(i−1)(n+2)+n+1(p) =
∑

Ul∈Ci

εlϕl(p)

zi(n+2) =
∑

Ul∈Ci

ε2l ϕl(p)

All of the sums are locally őnite because supp(ϕl) ⊂ Ul, so z is well deőned.
To be more explicit, for i = 1, ..., n + 1: if p is in no element in Ci, then
z(i−1)(n+2)+j(p) = 0 for j = 1, ..., n+ 2; if there exists Ul ∈ Ci with p ∈ Ul, it
must be unique and:

z(i−1)(n+2)+j(p) = εlϕl(p)(Φl(p))j j = 1, ..., n

z(i−1)(n+2)+n+1(p) = εlϕl(p)

zi(n+2) = ε2l ϕl(p)

We will choose εl → 0, so 0 is the only element in the limit set. Since there
exists l such that ϕl(x) = 1 in a neighbourhood of p, and Ul ∈ Ci, then:

dz(i−1)(n+2)+h

dxk
(p) = εl

d(Φl)h
dxk

(p) h, k = 1, ..., n

And therefore DΦl(p) has full rank. Also, z(i−1)(n+2)+n+1(p) = 1 so 0 /∈ z(Σ).
Finally, we check that z is injective. Take any p, q ∈ Σ, and Ul ∈ Ci such
that ϕl = 1 in a neighbourhood of p. Suppose q ∈ Ul, if ϕl(q) ̸= 1 then
z(i−1)(n+2)+n+1(p) ̸= z(i−1)(n+2)+n+1(q), if ϕl(q) = 1 then Φl(p) ̸= Φl(q) and so
z(i−1)(n+2)+1(p) ̸= z(i−1)(n+2)+1(q). If q /∈ Ul, then either q is in no element in
Ci, in which case 0 = zi(n+2)(q) ̸= zi(n+2)(p), or q ∈ Um ∈ Ci, and we can
assume that m > l, and so zi(n+2)(q) = ε2mϕm(q) ≤ ε2m < ε2l = ε2l ϕl(p) =
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zi(n+2)(p).
Since the covering is locally őnite and the Ul are precompact, we can choose
at each step εl such that z is strictly short.

We now need the following Proposition to complete the argument:

Proposition 4.10. Suppose M ⊂ R
N is an n-dimensional submanifold. If

N > 2n+ 1, then M can be shortly embedded into R
N−1.

Proof. R
N−1 can be identiőed with any hyperplane v⊥ = {w ∈ R

N : v · w =
0}, therefore if we can őnd v ∈ S

N−1 such that the projection fv : RN →
v⊥ = R

N−1 restricted to M is an embedding the proof will be complete.
Since projections are open maps, we only need to check for injectivity of fv
and of Dfv on M .
The map fv is injective if and only if M has no secant line parallel to v, that
is:

v ̸= x− y

|x− y| ∀x, y ∈M x ̸= y (4.11)

And for Dfv to be injective, it must be that no tangent vector to M is parallel
to v, that is:

v ̸= w

|w| ∀w ∈ TM (4.12)

We will now deőne two maps σ and π that encode these requirements.
First consider ∆ = {(x, x) ∈ M2 : x ∈ M}: ∆ is closed in M × M and
therefore M2 =M ×M \∆ ̸= ∅ is a 2n-dimensional smooth submanifold.
Then we can deőne

σ :M2 → S
N−1

σ(x, y) =
x− y

|x− y|
A vector v ∈ S

N−1 satisőes (4.11) if v is not in the image of σ.
Deőne T1M = {(x, w) ∈ TM : |w| = 1}. The map

s : TM → R

(x, w) 7→ |w|2

has 1 as a regular value, so T1M = s−1(1) is a (2n−1)-dimensional submanifold
of TM . Deőne

π : T1M → S
N−1

(x, w) 7→ w

Again, a vector v ∈ S
N−1 satisőes (4.12) if v is not in the image of π.

We now use the following, see chapter 3 of 5 for a proof:
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Lemma 4.13. Let P,Q be two smooth manifolds, and let u : P → Q be a C1

map. If dim(P )<dim(Q), then the complement of the image of u is dense in
Q.

First consider P = M2, Q = S
N−1 and u = σ: since dim(M2) = 2n <

N − 1 =dim(SN−1) we get that σ(M2)
c is dense in S

N−1. In the same way,
since dim(T1M) = 2n − 1 < N − 1 =dim(SN−1), we have that π(T1M)c is
dense in S

N−1.
Consider now {Γ1

k}k an exhaustion by compact sets of M2. Since σ is
continuous G1

k = σ(Γ1
k) is closed in S

N−1 for all k, and since Gk ⊂ σ(M2),
(G1

k)
c is dense in S

N−1 for all k. Identically, consider {Γ2
k}k an exhaustion by

compact sets of T1M : then G2
k = π(Γ2

k) is closed and its complement is dense
in S

N−1 for all k. But then by Baire’s Category Theorem, since {Gi
k}i=1,2;k∈N

is a countable family of closed sets with dense complements, and since S
N−1

is a complete metric space, we have that
⋃

i,kG
i
k has dense complement in

S
N−1, and in particular SN−1\

⋃

i,kG
i
k is nonempty. But σ(M2) =

⋃

kG
1
k and

π(T1M) =
⋃

kG
2
k and therefore σ(M2)∪π(T1M) has non empty complement.

Then if we take any v ∈ S
N−1 \ σ(M2) ∪ π(T1M) our requirements are

satisőed.

We still need a modiőcation for our situation:

Corollary 4.14. Suppose M ⊂ BN(0, R) ⊂ R
N is an n-dimensional subma-

nifold such that the limit set of M is {a} ⊂ R
N \M . If N > 2n + 1, there

exists a short embedding u :M → BN−1(0, R) ⊂ R
N−1 with limit set a single

point u(a) /∈ u(M).

Proof. The have the same requirements as Proposition 4.10, we just added
another condition:

v ̸= x− a

|x− a| ∀x ∈M

indeed if yn = u(xn) is a sequence of points in u(M) converging to some point
in the limit set of u(M), then (xn)n ⊂ BN(0, R) is bounded and therefore
there exists a convergent subsequence xnk

→ b. But then b is in the limit set
of M , hence a = b and u(xn) → u(a) so the limit set of u(M) is just u(a),
and the only condition is, therefore, u(a) /∈ u(M).
We can deőne the map ρ :M → S

N−1 as

ρ(x) =
x− a

|x− a| ∀x ∈M.

Since the map ρ :M → S
N−1 is differentiable on M and dim(M) = n < N −

1 =dim(SN−1) we can apply Lemma 4.13 and see that ρ(M)c is dense in S
N−1.



26 CHAPTER 4. MAIN PROOFS

The argument then repeats as before: őxed exhaustions by compact sets of
M2, T1M,M their images are three countable collections of closed nowhere
dense subsets of SN−1 so by Baire’s Category theorem their union is nowhere
dense and thus there exists some v ∈ S

−1 satisfying all three conditions. Also,
since fv(BN(0, R)) = BN−1(0, R) we retain the boundedness of fv(M).

We go back to the Theorem 2.4: we have already built a short embedding
z of Σ in R

N for some large N . Notice that in the non-compact case, since all
the components of z are bounded by εl < 1, we have that z(Σ) ⊂ B(0, N).
In the compact case, as long as N > 2n+1, by Proposition 4.10 we can őnd
a short embedding f of z(Σ) onto R

N−1, so that f ◦ z : Σ → R
N−1 is a short

embedding. Iterating we őnally őnd a short embedding z̄ : Σ → R
2n+1. In the

non compact case, by Corollary 4.14 we can őnd a short embedding f pf z(Σ)
into R

N−1 such that the hypotheses for Corollary 4.14 are satisőed also for
f ◦ z(Σ), again by iteration we őnd again a short embedding z̄ : Σ → R

2n+1.
By Theorem 2.3, there exists a C1 isometric embedding u : Σ → R

2n+1, and
the proof is complete.



Chapter 5

The ŕat Torus

Consider the equivalence relation in R
2: x ∼ y if and only if x− y ∈ 2πZ2.

Deőnition 5.1. The Flat torus is the 2D-surface deőned as

T = R
2/ ∼

equipped with the induced metric from R
2.

Remark 5.2. The ŕat torus has Gaussian curvature 0 in any point. Indeed,
consider the submanifold Σ obtained by removing the boundary of [0, 2π]2 with
the induced metric. Then Σ = (−π, π)2 and it smoothly and isometrically
embeds in R

2. Clearly the curvature, in the T metric, of any point in T ∩ Σ
is the same as the curvature in the Σ metric, which is 0 due to the Theorema
Egregium. By continuity, the Gaussian curvature is 0 in all points of the ŕat
torus.

Lemma 5.3. Let Σ ⊂ R
3 be a 2-dimensional C2 compact submanifold. Then

Σ has a point with positive Gaussian curvature.

Proof. Since Σ is compact, there exists p ∈ Σ such that |p| = max q∈Σ|q|. By
rotating the coordinate axes, we can assume that p = −Me3, in particular
Σ ⊂ {q ∈ R

3 : |q| ≤ M} = B(0,M) and p is a contact point. Also,
TpΣ = {z = −M}, indeed the function ϕ(q) = −q · e3 has a maximum in p,
as |ϕ(q)| ≤ |q| ≤ |p| = ϕ(p)Thefore TpΣ ⊥ ∇ϕ(p) = −e3.
Since TpΣ ⊥ e3, we can őnd V ∋ p open in Σ small enough so that V is
the graph of a function of (x, y), that is: there exist U ⊂ R

2 open and
Φ : U −→ R such that q = (x, y, z) = (x, y,Φ(x, y)) for all q ∈ V . In
particular, close to p, we have

Φ(x, y) = Φ(0, 0)+⟨∇Φ(0, 0)|(x, y)⟩+1/2 ⟨HΦ(0, 0)(x, y)|(x, y)⟩+o(|(x, y)|2) =

27
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= −M + 1/2 ⟨HΦ(0, 0)(x, y)| , |(x, y)⟩+ o(|(x, y)|2)
But notice that since V ⊂ Σ ⊂ B(0,M), we have

Φ(x, y) > −
√

M2 − (x2 + y2) = −M
√

1− (x2 + y2)/M2 =

= −M + 1/M ⟨I(x, y)|(x, y)⟩+ o(|(x, y)|)2

. Therefore 1/2 ⟨HΦ(0, 0)(x, y)|(x, y)⟩ ≥ 1/M ⟨I(x, y)|(x, y)⟩ for all (x, y)
small and so in particular det(Φ(0, 0)) > 0. But apart from positive norma-
lization factors, det(HΦ(0, 0)) is the Gaussian curvature of Σ at p, which is
therefore positive.

This applies directly to our case:

Corollary 5.4. There can be no C2 isometric embedding of the Flat torus
into R

3.

Proof. Suppose there exists u : T −→ R
3 isometric embedding and u ∈ C2.

Then u(Σ) ⊂ R
3 is a 2-dimensional C2 submanifold, and therefore there

exists x = u(p) ∈ u(Σ) such that the gaussian curvature of u(Σ) at x is
positive. But since u is a C2 isometry, by the Theorema Egregium, the
Gaussian curvature of u(Σ) at x is the same as that of Σ at p, which is
therefore positive. But the ŕat torus has vanishing curvature in all of its
points, so this is impossible, and such u cannot exist.

Let’s try some formal computation:
Since T = R

2/ ∼, by using the induced coordinates, any map f ∈ C1(T,R3)
has a Fourier series expansion:

f(x, y) =
∑

m,n∈Z

am,ne
imxeiny

where an,m ∈ C
n are the Fourier coefficients of f .

At the same time, the directional derivatives satisfy Dxf,Dyf ∈ C0(Σ,R3) ⊂
(L2(T))3, they also have their Fourier series:

Dxf(x, y) =
∑

m,n∈Z

mam,ne
imxeiny

Dyf(x, y) =
∑

m,n∈Z

nam,ne
imxeiny

We now impose that f is an isometry.
Since f is real valued , we get that am,n = ā−m,−n.
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The őrst fundamental form of T is (
1 0
0 1

), so f is an isometry if and only

if:

|Dxf(x, y)| = |Dyf(x, y)| = 1 ⟨Dxf(x, y)|Dyf(x, y)⟩ = 0 ∀x, y ∈ T

We can expand each condition:

1 = ⟨Dxf(x, y)|Dxf(x, y)⟩

=

〈

∑

n,m∈Z

nan,me
inxeimy

∣

∣

∣

∣

∣

∑

µ,ν∈Z

µaµ,νe
iµxeiνy

〉

=
∑

m,n,µ,ν∈Z

mµam,n · āµ,νei(m−µ)xei(n−ν)y

=
∑

m,n,µ,ν∈Z

mµam,n · a−µ,−νe
i(m−µ)xei(n−ν)y

=
∑

m,n,M,N∈Z

m(m−M)am,n · aM−m,N−ne
iMxeiNy

and since this has to be identically true, we can decompose into the equations:
∑

m,n∈Z

am,n · a−m,−nm
2 = −1

∑

m,n∈Z

am,n · aM−m,N−nm(M −m) = 0 ∀(M,N) ∈ Z
2 \ {(0, 0)}.

Repeating identical computation with the other conditions yields:
∑

m,n∈Z

am,n · a−m,−nn
2 = −1

∑

m,n∈Z

am,n · aM−m,N−nn(N − n) = 0 ∀(M,N) ∈ Z
2 \ {(0, 0)}

∑

m,n∈Z

am,n · aM−m,N−nm(N − n) = 0 ∀(M,N) ∈ Z
2.

We possess some insight about the solutions of this set of equations: Theorem
2.5 guarantees that a solution exists, as one might start from the classical
Torus in R

3 and construct a C1 isometric embedding; at the same time
Corollary 5.4 shows that no C2 solutions exist. These translate into different
conditions for the decay of the coefficients (am,n)(m,n), but most importantly
we are interested in őnding a solution such that am,n decays as (|m| +
|n|)−(2+α+ε), for some α ∈ (0, 1) and ε > 0, as that would guarantee the
existence of a C1,α isometric embedding, putting a lower bound on rigidity
theorems in general.
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