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Abstract

Amongst the various classes of neutron stars, magnetars are the ones hosting the strongest magnetic
fields. The study of their emission in the X-ray band allows to achieve unprecedented knowledge of the
physical processes in the presence of ultra-strong magnetic fields. In particular, magnetar emission is
expected to be highly polarized. Thanks to the recently launched Imaging X-ray Polarimetry Explorer
(IXPE), polarimetric measurements in the X-ray band are finally possible, opening an entirely new win-
dow in the investigation of magnetar physics, as well as allowing an insight into QED effects in strong
magnetic fields such as vacuum birefringence.
The focus of this thesis is on the emission properties of neutron stars with a condensed surface. Magnetic
condensation is expected to set in for large enough fields (B > 1013 − 1014 G) and relatively low tem-
peratures (T < 1 keV), such as those found in magnetars. In this work we present a systematic analysis
of the radiation emitted from sources with a condensed surface, accounting for different geometries and
physical parameters.
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Chapter 1

Introduction

Neutron stars are the remnants of massive stars in the mass range 10 ≲ M/M⊙ ≲ 25 and they are
characterized by a mass of MNS ∼ 1–2M⊙ and a radius of RNS ∼ 10–13 km. They can be classified into
different categories, depending on their observed properties.
Magnetars are a peculiar class of young neutron stars, characterized by ultra-strong magnetic fields.
Such strong magnetic fields imply that the phenomenon of magnetic condensation could appear in these
sources. In fact, the electrons are confined in the transverse direction, so that the Coulomb forces that bind
them along the field direction are more effective, resulting in the atoms attaining a cylindrical structure.
The atoms consequently form molecular chains in the field direction through covalent bonding; these
then combine with one another and eventually constitute a three-dimensional condensate. This phase
transition depends on the cohesive properties of the matter: in the case in which the requirements are
met, which is expected for some sources, the gaseous atmosphere condensates and the star is said to be
"naked", affecting the spectral properties of the radiation emitted from it. The emission properties of the
condensed surface can be studied considering the two limiting cases of free ions, neglecting the Coulomb
interactions between them, and fixed ions, neglecting the ion motion. The real emission properties are
likely to lie between these two limits.

The presence of strong magnetic fields also implies that the thermal radiation from these sources is
expected to be polarized, due to the effects of the magnetic field on the properties of both the plasma
and the vacuum in which the photons propagate. Quantum electro-dynamics (QED) has an important
impact on the polarization of the sources, depending on the viewing geometry and the surface emission
mechanism.
One of the predictions of QED is vacuum birefringence. In the presence of strong magnetic fields, photons
are expected to be linearly polarized in two normal modes (extraordinary and ordinary, depending on
the orientation of the electric field vector with respect to the magnetic field at the emission point and
the propagation direction). However, the magnetic field is thought not to be uniform on the surface,
so that, even if the radiation is highly polarized at emission, the polarization degree is observed to be
much lower, since the polarization direction is generally different from point to point on the surface: the
observer then collects polarized photons from all possible directions, resulting in an overall depolarized
radiation. If the magnetic field is of the order of the quantum critical field, the QED effect of vacuum
birefringence becomes relevant and the vacuum behaves as a birefringent medium: as a consequence, the
direction of the polarization vector of the photons changes throughout the propagation and adapts to the
varying magnetic field direction, maintaining the polarization mode of emission. This process takes place
up to very large distances, i.e. the so-called adiabatic radius, from the star surface: at these distances,
the magnetic field likely becomes more uniform, so that the observed polarization degree can be sizeable.
The detection of polarization in the thermal emission from a source is then extremely valuable, since it can
provide the first ever experimental evidence of vacuum birefringence. At the same time, the polarization
observables can be compared with emission models and help in uncovering the physical conditions of
the star surface and atmosphere, as well as of the geometry of the source. Furthermore, polarization
measurements can provide an independent estimate of the magnetic field strength and topology. Neutron
stars, and particularly magnetars, are the most promising targets for these polarimetric studies, which
received new impulse from the launch of IXPE, the first mission devoted to the study of polarimetry in
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the X-ray range (2–8 keV).

The goal of this thesis is to offer a systematic analysis of the properties of radiation emitted from
highly-magnetized neutron stars endowed with a ultra-strong magnetic field, accounting for different
geometrical and physical parameters, in order to better understand the effects of magnetic condensation
and vacuum birefringence on the emission properties.

The thesis is organized as follows. Chapter 2 gives a general description of neutron stars and their
classification, focusing on the properties of magnetars. Chapter 3 describes the effects of a strong magnetic
field on the state of matter and on the interaction and propagation of radiation both in a plasma and
in vacuum. In particular, Section 3.1 analyzes more in detail the physics of magnetic condensation and
its effects on the emitted radiation, while Section 3.2 deals with the polarization of radiation and the
effects of QED. Chapter 4 describes the numerical tools used in this work to compute the spectral and
polarimetric properties of the emission from condensed surfaces in the presence of a strong magnetic field
(Section 4.1) and to perform the systematic study of the outgoing radiation from these sources (Section
4.2). Chapter 5 presents the main results. Chapter 6 offers a summary of the work and discusses future
perspectives.
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Chapter 2

Neutron stars

Neutron stars (NSs) are the extremely compact and dense remnants which form at the endpoint of
the evolution of massive stars with 10 ≲ M/M⊙ ≲ 25. They were theoretically conceived in the 1930s
by Baade and Zwicky [1]. Their mass is in the range ∼ 1–2M⊙, with Mmin ∼ 0.1M⊙ for the star to be
hydrostatically stable, and their radius is RNS ∼ 10–13 km. The values of M and R are derived from the
hydrostatic equilibrium equation for a given equation of state p(ρ, T ), where p, ρ and T are respectively
the pressure, the energy density and the temperature.

The pressure profile of neutron stars is given by the Tolman-Oppenheimer-Volkoff (TOV) equation:

dp(r)

dr
= −Gm(r)

c2r2

 
ρ+

p

c2

! 
1 +

4πr3p

c2m(r)

! 
1− 2G

c2
m(r)

r

!−1

, (2.1)

with G the gravitational constant, m(r) = 4π
R r

0
ρ(r′)r′2dr′ the rest mass and energy contained inside

the radius r, and c the speed of light. On the right-hand side, the term in front would give the classical
equation for hydrostatic equilibrium, the first two terms in parenthesis are the special relativistic correc-
tions, and the last term is the correction for general relativity (GR). The system of equations is closed
by considering the equation of state: it is then possible to build a model for the neutron star.

The observed emission of neutron stars can be explained by considering a rapid rotation (small period
P ) and a strong magnetic field (B). These quantities can be estimated by considering the conservation
of the angular momentum and of the flux, respectively. Considering the collapse from a massive star to
a neutron star, the momentum conservation is defined by:

I∗ω∗ = INSωNS , (2.2)

with I the moment of inertia and ω = 2π/P the angular velocity, from which we get the ratio of the
periods:

PNS

P∗
=

MNSR
2
NS

M∗R2
∗

∼ 10−6 ; (2.3)

considering P∗ ∼ 106 s and R∗ ∼ 106 km typical values for the neutron star progenitor, then PNS ∼ 10−3 s,
so the neutron star rotates very fast.
On the other hand, for the magnetic flux conservation:

B∗ ∆ΩR2
∗ ∼ BNS ∆ΩR2

NS ,

BNS

B∗
∼ R∗

RNS

2

∼ 1010 , (2.4)

where ∆Ω is the solid angle. Considering B∗ ∼ 102 G, then BNS ∼ 1012 G, which is indeed very strong.
Such strong magnetic fields induce an electromagnetic effect of slowing down the rotation of the neutron
star (Ṗ>0) through angular momentum losses.

The power emitted from rapidly rotating stars with strong magnetic fields is given by the magnetic
equivalent of the Larmor formula for accelerated particles:

P =
2|m̈|2

3c3
, (2.5)
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where m⃗ is the magnetic moment and | ¨⃗m| = ω2|m⃗| sinαB , with αB the angle between B and the rotation
axis. From this we find the luminosity:

L =
sin2 αB B2

0 ω
4R6

6c3
, (2.6)

with B0 = 2m/R3.
The rotational energy is given by:

Erot =
1

2
Iω2 ∼ 4π2

5

MR2

P 2
, (2.7)

assuming a homogeneous sphere, I = 2/5MR2. Then:

dErot

dt
= Iωω̇ =

8π2

5

MR2

P 3
Ṗ . (2.8)

Equating the expressions 2.6 and 2.8, we find a relation between the magnetic field strength and the
period and period derivative:

B0 =
3c3I

8π2R6

1/2

(PṖ )1/2 ≃ 3.2× 1019 (PṖ )1/2 G . (2.9)

The period evolution is in general described through the function P (t) = ct1/n−1, where n = ωω̈/ω̇2

is the braking index, equal to 3 for magneto-dipolar braking. From this expression we can evaluate the
period derivative:

Ṗ =
P

t(n− 1)
, (2.10)

from which we define the characteristic age:

τ =
1

n− 1

P

Ṗ
=

P

2Ṗ
, (2.11)

where the last equality holds for n = 3. This estimate of the age of neutron stars is only an approximation
and is usually a poor proxy of the star’s true age.
From Equations 2.9 and 2.11 one can see that P and Ṗ are important quantities in order to determine
the properties of neutron stars, such as age and magnetic field strength. For this reason, NSs are usually
classified as a function of their values of period and period derivative: Figure 2.1 shows a P -Ṗ diagram
for the different classes of neutron stars, which will be described below. The diagram also presents the
lines at which B and τ of Equations 2.9 and 2.11 are constant.

Observations of neutron stars, made predominantly in the radio wavelengths of the electromagnetic
spectrum, result in remarkably different properties. We can therefore speak of NS-zoo as the ensemble
of the various classes in which neutron stars have been divided into.

Radio pulsars (PSRs) are defined by regular pulses in the radio band and are the most populated
out of all the NS classes. These source are also known as rotation-powered pulsars (RPPs), given that
their power is a consequence of the loss of rotational energy. Concurrently, some PSRs have a pulsating
activity observable beyond the radio wavelength (mostly in the X-rays, like PSR J1420-6048, [3]): the
name rotation-powered therefore gives a more precise description of the class. The periods of the pulses
are in the range P ∼ 0.001–8 s, while the magnetic field strength is B ∼ 108–1013 G. Measurements of P
and Ṗ are obtained from the arrival time of the radio pulses. The X-ray emission is divided into thermal
and non-thermal contributions. The thermal emission, which is common to almost all NSs (except for
the very cool ones), is either due to the residual cooling after the NS-formation, or to surface reheating
caused by currents in the magnetosphere. On the other hand, non-thermal emission, usually described
with a power law, comes from the magnetosphere and is normally more highly-pulsed than in the thermal
case.
There also exists a sub-class of RPPs, the millisecond pulsars (MSPs), which have periods shorter
than ∼ 20 ms and B ≲ 1010 G, and are believed to be powered by accretion phenomena. These sources
have a different evolutionary history and are thought to be originated from recycling processes.
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Figure 2.1: P -Ṗ diagram for about 2300 neutron stars, from [2]. The superimposed dotted
lines show the loci of constant characteristic age τ and surface dipolar magnetic field B.

Rotating radio transients (RRATs), discovered relatively recently [4], are also rotationally-
powered, but do not have an observable periodic emission. They instead show unpredictable short radio
bursts: from their phase constancy it is possible to deduce an underlying periodicity, possibly making
these sources an extreme form of RPPs, although this conclusion is still highly uncertain due to contrast-
ing observations. There are roughly 70 RRATs known, whose periods and magnetic field strengths are
generally higher than average, with P ∼ 1–10 s and B ∼ 1012–1013 G.

Magnetars, young isolated NSs, are characterized by outbursts in X- and soft-γ rays. They are
powered by the decay of a very large magnetic field with strength B ∼ 1014–1015 G, derived from the long
periods (P ∼ 2–12 s) and large period derivatives (Ṗ ∼ 10−13–10−10 s s−1). Historically, magnetars were
divided into two groups, anomalous X-ray pulsars (AXPs) and soft-gamma repeaters (SGRs),
according to how they were first discovered. The luminosity of these sources, mostly in the X-rays (∼ 1–
100 keV), is usually larger than that of rotation-powered NSs of similar age, meaning that some heating
mechanism has to be present in magnetars, either in the core or in the crust. There are currently about
30 known objects in this class [5], some of which also show a counterpart in IR and/or optical, but there
could also be a large unseen population of quiescent magnetars, justified by the discovery of magnetars
with transient properties [6]. A more detailed description of magnetars is given below, in Section 2.1.

High-B rotation-powered pulsars have spin-down inferred magnetic field B > 4× 1013 G. Their
X-ray properties are similar to those of lower-B RPPs of the same age, but at the same time they could
be interpreted as those of quiescent magnetars: these sources could therefore constitute a link between
magnetars and RPPs.

There is a peculiar group of isolated neutron stars (INSs), called X-ray dim isolated neutron
stars (XDINSs) or magnificent seven, since only seven sources of this type have been observed up
to now, all in proximity of the Solar System (≲ 500 pc). Their spectra are purely thermal and no radio
counterpart has been observed. They are characterized by P ∼ 1–10 s and B ∼ 1012–1013 G, from which
a large characteristic age (Equation 2.11) is derived: this, alongside the fact that the spectra are thermal,
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may suggest that XDINSs are aged magnetars.
Central compact objects (CCOs), named after their location at the center of supernova remnants,

are quite young and have peculiar properties. The periods are short (P ∼ 0.1–0.4 s) and the magnetic
field strength can be as low as B ∼ 1010 G: for this reason, they were also known as anti-magnetars.
There are currently 8 known CCOs, with no observed counterpart beyond the X-rays. Like XDINSs, they
are radio-quiet and their emission is powered by the release of residual heat.

Figure 2.1 shows the position of the different classes of NSs in the P -Ṗ diagram, summarizing the
properties described above.
There seems to be a problem with the birth rates of neutron stars: those of RRATs and XDINSs, unless
they are overestimated, are thought to be even higher than that of PSRs, but the sum of the birth rates
of all the classes cannot exceed the core-collapse supernova rate in the Galaxy. This means that there
must be some evolutionary links between the different types of NSs, as mentioned above, unless there are
other channels for neutron star formation that we are not aware of. This issue has not been completely
understood, yet.

The internal structure of neutron stars comprises of:

• Core

– inner: the density is ρ ≳ 5.6 × 1014 g cm−3 and the composition is uncertain, with possibly
exotic particles being present;

– outer: the density is 1.4× 1014 g cm−3 ≲ ρ ≲ 5.6× 1014 g cm−3 and the extension is of several
kilometers, with most of the mass of the NS contained in it. The outer core is approximated
by models of matter made of neutrons, protons, electrons and muons (npeµ, [7]);

• Crust: divided into inner and outer, with a total thickness of ∼1 km and a crystalline lattice;

• Envelope: made of degenerate electrons and neutrons, with neutron-rich nuclei, i.e. the number of
neutrons exceeds that of protons, which are arranged in a crystalline lattice. The outer part of the
envelope is the gaseous atmosphere.

The magnetic field plays a relevant role in shaping the emission properties of neutron stars. As suggested
by [8], the magnetic field could either be already there at the birth of the NS (fossil field, inherited from
the progenitor and amplified during the collapse), or be generated by a convective dynamo in the first
∼ 10 s of the proto-neutron star’s life. The internal field configuration is believed to be produced by a
superposition of current systems in the core and in the crust, with different contributions for each class
of NSs. The field is then thought to experience a strong decay over time, after which the period freezes
at an asymptotic value, dependent on the initial B, the NS mass and the crust resistivity. This decay is
shown in Figure 2.2.
If there indeed exists an evolutionary link between the various classes of NSs, the evolution of B is
necessary to explain why the magnetic field strength decreases for younger sources. At the same time,
magnetar emission is powered by magnetic energy, so that a dissipation of the magnetic field is expected.
The evolution of the magnetic field occurs through a series of quasi-equilibrium states [10]:

∂B⃗

∂t
= −∇× c2

4πσ
∇× B⃗ +∇× − j⃗

nee
× B⃗ +∇× (v⃗a × B⃗) , (2.12)

with ne the electron number density and e the electron charge. The three terms on the right-hand side
are, respectively:

• Ohmic diffusion, with σ = j/E the electric conductivity and j⃗ the electric current density;

• Field advection with Hall drift: B is carried by the electron fluid, which drifts with respect to the
ions with velocity −j⃗/nee;

• Ambipolar diffusion: B and the electron-proton fluid drift with respect to neutrons with velocity
v⃗a, which is a dissipative process.
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Figure 2.2: Modified P -Ṗ from [9] containing the evolutionary tracks of neutron stars with
different initial magnetic fields, where the asterisks indicate the real ages of the sources: 103
yr, 104 yr, 105 yr, 5×105 yr.

Neutron stars are born hot, with temperature T ∼ 1011 K, but reach ∼ few×109 K shortly after. The
cooling that NSs experience is due to an initial phase of neutrino losses (with a rate proportional to the
ratio of total neutrino luminosity and heat capacity, [11]), lasting ∼ 105 years, followed by photon cooling
once the neutrino energy losses become smaller than the energy lost through electromagnetic radiation,
as an effect of the lower temperature.

An important progress in the study of neutron stars has been made by considering the magnetic
and the thermal evolutions as coupled [12]. Implementing the theory of NSs with magneto-thermal
evolutionary models might help in explaining the great diversity in the properties of the various classes:
macrophysical quantities such as initial B, mass and envelope composition (which is unknown) could play
a pivotal role in governing the evolution of neutron stars.

2.1 Magnetars
We now consider the class of magnetars a little more in detail. They are young neutron stars with
great variability, resulting in bursts of different duration and energy outputs, across the electromagnetic
spectrum: in particular, X- and soft-γ rays are the ranges in which they were first discovered in 1979.
Apart from the X-ray pulses, some magnetars are also observable in the optical and radio bands: the
radio activity might constitute a link between these sources and high-B radio pulsars, even though the
properties are quite different. Glitches are also quite frequent: they are sudden spin-ups, after which
the star can recover partially, fully or, in some cases, it can over-recover, producing an overall spin-down
effect. Anti-glitches have also been observed in some cases, but their origin remains debated.
Originally, the class of magnetars was divided into two groups of sources, as mentioned above. SGRs
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were initially linked to gamma-ray bursts (GRBs), but they have softer spectra and a repeated emission
which is not observed in GRBs. After the discovery of AXPs in the 1980s, it took many years for them
to be related to SGRs: it is now widely accepted that the two do not represent distinguished classes, but
rather one unique category, that is indeed that of magnetars. This was first postulated by [13].
The emission of magnetars is powered by the decay of a very large internal magnetic field, and not by
rotation as is the case of many other NS classes, hence the name. The external field of these sources can
be inferred from the spin-down, a consequence of magnetic dipole braking consisting in electromagnetic
losses due to a rotating dipole, through the formula defined in the previous section (Equation 2.9). It is
still unclear as to why B is so high.
The spin-down occurs on a timescale of roughly a few thousand of years, reinforcing the idea that these
objects are rather young: this is confirmed by their confinement in the galactic plane, as well as by their
association, in some cases, with supernova remnant shells. The spin-down luminosity Ė (Equation 2.8)
is usually lower than the quiescent X-ray luminosity, supporting the fact that the source of energy in
magnetars is not rotation. Other aspects in support of this are the already-mentioned large periods and
period derivatives; moreover, the evidence that magnetars are isolated NSs indicates that the energy is
not powered by accretion either.

Spectra

Magnetars can be divided into two categories, depending on their variability.
Transient magnetars, 11 known [9], are very faint when in quiescence. In many cases, the discovery of
the source follows a sudden increase of the flux, ∼ 10–1000 times over the quiescent level, a phenomenon
known as outburst, along with the emission of short bursts. The X-ray spectrum is thermal (a power-law
tail is observed in some sources), with the temperature being much higher with respect to the quiescent
phase: this is probably due to a heat deposition in a region of the surface, which then cools down and
shrinks with time. Some transient sources have been observed in radio: in this case, the flux decays much
in the same way as in the X-rays, but with a delayed onset. Contrarily to radio-silent magnetars, some
transient sources have LX<Ė.
Persistent magnetars, on the other hand, have a high X-ray luminosities, with LX ∼ 1031–1036 erg/s
in the energy range ∼ 0.2–10 keV. Their spectra can be modelled by different components: absorbed
blackbody (BB, kT ∼ 0.1–0.5 keV) plus power law (PL, Γ ∼ 2–4), two blackbodies or, much more rarely,
two power laws. The BB component (thermal), dominant at lower energies, is believed to originate from
the cooling surface of the star, while the non-thermal part (PL) is thought to be due to magnetospheric
effects of reprocessing of the thermal photons through resonant up-scattering, as will be discussed below.
For sources with a larger spin-down rate, or equivalently a stronger B, the photon index Γ that defines
the trend of the PL decreases. Also, some sources show different power laws in the soft- and in the
hard-X ray ranges. An example of spectral fit can be seen in Figure 2.3. All of the models cited above
are phenomenological and should not be considered as a measurements of the physical properties of the
star, but they indicate that the emission is not described by a simple planckian. The study of spectra can
help retrieving information on the surface magnetic field and on its evolution, as well as on the chemical
composition of the NS.

Burst activity

The bursting activity of magnetars, observed in hard-X and soft-γ rays, comprises of different types of
events.

Short bursts are the most common ones, lasting between few milliseconds and few seconds and reaching
peak luminosities of L ∼ 1036–1042 erg/s. Their light curves are generally single-peaked, with a slower
decay with respect to the rise, but their shape is variable. The spectra, for which many models have been
used, are harder than the persistent emission. Sources for which a statistical analysis of the bursting
activity has been made, i.e. which emitted a sufficient number of bursts, show a power-law distribution
of the burst fluences. Short bursts sometimes come in bunches, defining the so-called burst forests or
burst storms.

Giant flares are very rare (only 3 known cases up to now, [9]) and are extremely bright, reaching an
energy release of E ∼ 1047 erg. Their overall properties are similar: the initial hard peak of ∼ 0.1–1 s is
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Figure 2.3: Example of broadband phase-averaged X-ray spectrum of the magnetar 1E
2259+586, taken from [14]. The spectrum was obtained from combined observations with
Swift and NuSTAR. The figure shows a best-fit model consisting of an absorbed blackbody
plus two power-law components.

followed by an extended decaying tail of ∼hundreds of seconds and by an abrupt end.
The tails are characterized by quasi-periodic oscillations (QPOs), induced by seismic vibrations of the
star. These are composed of torsional shear oscillations of the crust and torsional Alfvén oscillations of
the liquid core: they are thought to be coupled, therefore we speak of global magneto-elastic oscillations.
The discovery of QPOs opened up the field of asteroseismology, the study of stellar interiors in neutron
stars: this can lead to constrain the interior magnetic field strength and geometry.

The trigger mechanism of bursts is still unclear. Few possibilities have been formulated, but it is still
uncertain whether they each apply to different types of bursts or if there is a common origin. The trigger
theories are:

• Internal instability and magnetic reconfigurations give a sudden ejection of magnetic energy from
the core to the magnetosphere;

• Gradual deformation of the magnetosphere which builds up free magnetic energy;

• Rapid plastic deformation of the crust as a consequence of the decay of the core field.

Magnetic field

The combination of magneto-hydrodynamics effects and neutrino cooling results in the presence of a
liquid core with a radius of roughly 10 km and a solid crust ∼ 1 km thick [14]. The interior of the
NS is an excellent conductor and the magnetic field is therefore frozen in the electron fluid, evolving
slowly. This evolution depends on density and temperature and it is described by Equation 2.12. As
a consequence, crustal stresses gradually accumulate, originating surface motions and eventually bursts.
The field is believed to reside in the crust, in the core or both.
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The internal field has to be strong enough to sustain the magnetar activity and its topology must
allow the magnetic energy to be released: an active magnetar thus needs to have both a toroidal and a
poloidal component in the magnetic field, which are thought to be approximately of the same order. The
crustal field decays substantially over ∼ 103–105 yr.
The external field of persistent magnetars is thought to be not a simple dipole. The magnetosphere is
expected to be locally twisted, even though global twists are usually considered for simplicity, caused
by magnetally-induced crustal displacements. Thus, the field is non-potential (∇ × B ̸= 0), requiring
supporting currents to flow along the closed field lines. The twist produces an external toroidal component
Bϕ. In order to have the potential drop needed to accelerate the charges for the conduction currents, the
twist decays, with a typical timescale of ∼1 yr. An axisymmetric globally-twisted dipole magnetic field,
in polar components, is given by:

B⃗ = (Br, Bθ, Bϕ) =
BP

2

r

RNS

−p−2
"
− f ′,

pf

sin θ
,

s
Cp

p+ 1

f1+ 1
p

sin θ

#
, (2.13)

with r the radial coordinate and θ the magnetic colatitude; the derivative ′ is made with respect to cos θ,
BP is the polar value of the magnetic field, RNS is the radius of the neutron star, C is a constant and
0 < p ≤ 1 is the radial index, which fixes the amount of shear of the field. Also, f = f(cos θ) satisfies the
Grad-Shafranov equation

(1− µ2)f ′′ + p(p+ 1)f + Cf1+2/p = 0 . (2.14)

Both f and the eigenvalue C are easily computed once p is fixed. Varying the radial index results in a
sequence of magnetostatic and globally-twisted dipole fields: p = 0 gives a split monopole; as p increases
the ratio of Bϕ with respect to the other components decreases; p = 1 corresponds to an untwisted dipole.
The twist angle, defining the amount of angular displacement of a field line from the northern to the
southern magnetic emispheres, is given by:

∆ϕ
N−S

= lim
θ→0

2

Z π/2

θ

Bϕ

Bθ

dθ

sin θ
=

"
C

p(1 + p)

#1/2
lim
θ→0

Z π/2

θ

f1/p

sin θ
dθ , (2.15)

As explained in [15], in [16] and in [17], the magnetospheric plasma is characterized by resonant Compton
scattering (RCS): a particle of charge Ze and mass m, with resonant frequency ωc = ZeB/mc (the so-
called cyclotron frequency), scatters a photon of frequency ω. In the specific case of magnetars, the density
of charged particles flowing along the closed lines of the external field is sufficient for them to scatter at
the resonance to higher energies, with this effect being more efficient as the twist angle increases. This
has an observable effect on the thermal spectra, in the appearance of a hard tail at high energies (PL
component).

Polarization

This topic will be discussed in more detail in Section 3.2. Due to a quantum electro-dynamics effect,
photons in a strongly magnetized environment are expected to be linearly polarized in two normal modes:
the ordinary (O), with the electric field parallel to the plane of photon propagation (k⃗) and B⃗, and the
extraordinary (X), with E⃗ perpendicular to the k-B plane.

The X-ray radiation from magnetars is expected to be polarized, because [9]:

• for the radiative processes, the cross sections involving X-polarized photons are suppressed with
respect to the ones for the O-mode photons, for ω < ωc, so thermal photons can have an intrinsic
polarization, depending on the emission model;

• the photons which propagate in a strongly magnetized vacuum maintain the same polarization
mode (adiabatic evolution) up to a distance greater than the radius at which scatterings occur
(∼ 10RNS), meaning that we can treat the effects of QED and RCS separately.

Polarization measurements can help in constraining the physical parameters of the magnetar magneto-
spheres, with the polarization observables (polarization degree ΠL and polarization angle χpol) being
strongly dependent also on the viewing geometry and on the magnetospheric twist angle.
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The study of magnetars is crucial for their relevance to many branches of astrophysics. Future missions
will allow a more detailed analysis of the emission of these sources, on a broader electromagnetic spectrum
range, thus granting a better understanding of their properties, as well as of many processes in the physics
of strong magnetic fields.
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Chapter 3

Physics in strong magnetic fields

The physics in strong magnetic fields is described in detail in [18] and [10]; a more recent review is the
one by [19].

A useful quantity when describing strong-field environments is the quantum critical field strength,

BQED = m2
ec

3/eℏ = 4.414× 1013 G , (3.1)

with me the mass of the electron and ℏ the reduced Planck constant. The critical field, that corresponds
to the magnetic field at which the electron cyclotron energy ℏωc = ℏeB/mec equals its rest mass mec

2.
We can define

β =
B

BQED
=

ℏωc

mec2
(3.2)

as a dimensionless magnetic field parameter. When β ≳ 1, such that the electron cyclotron energy exceeds
its rest mass, the field is called superstrong, profoundly affecting physical processes. Magnetars are the
only environment in which these effects can be measured and tested.
The presence of a strong magnetic field affects the radiative processes which occur around neutron stars;
besides, B has a robust effect on the thermal structure of NSs. In particular, the envelope experiences an
anisotropic heat transport, resulting in a non-uniform surface temperature distribution (Tpole ̸= Tequator).

There are physical limits to the value that the magnetic field strength can attain. One of them, as
described in [20], is due to the fact that the magnetic pressure in a NS has to be low enough not to blow
the star apart, so:

4πR3

3

B2

8π
<

GM2

R
, (3.3)

with the left-hand term being the magnetic energy and the right-hand term the gravitational binding
energy. From this one gets the condition B < 1018 G.

Charged particles

Considering a uniform magnetic field, the motion of a charged particle (mass mi and charge ei) in the
classical non-relativistic regime is a helical orbit of radius

r =
micv⊥
|ei|B

, (3.4)

where v⊥ is the particle velocity perpendicular to the direction of B, and frequency ωc. Moving to a
quantum mechanics description, the transverse motion of the particle is quantized in Landau levels, with
energy

E⊥ = nL +
1

2
ℏωc , (3.5)

with nL = 0, 1, 2, ... , while the longitudinal motion is continuous. The Landau level spacing is the
basic energy quantum, equal to the particle’s cyclotron energy. The total energy, considering also the
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contributions of spin and kinetic energy along the field direction z, is:

En = nL +
1

2
ℏωc +

1

2
σzℏωc +

p2z
2me

, (3.6)

with σz = ±1 representing the spin degeneracy and pz the momentum along z. For β ≳ 1, the transverse
motion is relativistic. However, the non-relativistic treatment still holds as long as the binding energy
(i.e. the energy required to remove a particle from a system of particles) is much lower than the rest
mass energy, Ebinding ≪ mec

2, for which the relativistic effects become a small correction. In this case,
the particle is in the Landau ground level and the energy is simply E ∼ mec

2+p2z/2me, with pz ≪ mec
2.

Also, the Landau wave function is the same for both the relativistic and the non-relativistic regimes.

Matter

When studying matter in the presence of a strong magnetic field, it is useful to introduce another quantity:

B0 =
m2

ee
3c

ℏ3
= α2BQED = 2.3505× 109 G , (3.7)

where α = 1/137 is the fine-structure constant. B0 is obtained by equating the cyclotron energy to the
Hartree unit of energy (mee

4/ℏ2, the electric potential energy of the hydrogen atom in its ground state).
We then define the dimensionless magnetic field strength:

b =
B

B0
= 425.44B12 , (3.8)

with B12 = B/1012 G. B is said to be strong when b ≫ 1; in this case the cyclotron energy is much bigger
than the Coulomb energy (i.e. the electric potential energy) and B changes the properties of matter. In
this conditions, the Coulomb forces are treated as a perturbation of the magnetic forces, and the electron
is in the ground Landau level. The electrons are extremely confined in the transverse direction, meaning
that the Coulomb forces are more effective in binding them along B. As a result, the atom gains a
cylindrical shape. This is crucial in the formation of condensates, as it will be discussed in Section 3.1.

In general, the energy spectrum is specified by the quantum numbers m, measuring the mean trans-
verse separation between the electron and the proton, and ν, which gives the number of nodes in the
wavefunction along the B-direction. Let us consider the constituents of matter more in detail:

• H atoms: the electron is in the ground Landau level (adiabatic approximation) and the Coulomb
potential is a perturbation;

• Hydrogenic atoms (one electron and nuclear charge Z): the adiabatic approximation is valid for
b ≫ Z2. The energy levels are:

Em ∼ −0.16AZ2
h
ln

1

Z2

b

2m+ 1

i2
, (3.9)

where with A the mass number, for b ≫ (2m+1)Z2. The overall energy of the atom is approximately
given by the sum of all the eigenvalues Em;

• Multi-e− atoms: these are the generalization of the hydrogenic atoms, with the electrons at the
lowest available energy levels;

• Molecules: they are different from the zero-field case, because the exclusion principle is not valid
when B is very large. The spins of the electrons are anti-parallel to B, meaning that to create a
H2 molecule one atom has to be excited to the m = 2 state through a small activation energy, with
a covalent bond between the two atoms. This is the tightly-bound state of the hydrogen molecule.
The weakly-bound state is given by both electrons in the m = 0 state, but one with ν = 0 and
the other with ν = 1: in this case, no activation energy is needed for the molecule to be formed.
Since the exclusion principle is not valid, HN molecules can be formed as well: as N increases, the
number of the occupied Landau orbitals is larger and the transverse size of the molecule is bigger.
The molecular excitation can be:
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– electronic, where the electrons occupy orbitals other than (m1,m2) = (0, 1);
– aligned vibrational;
– transverse rotational: this is the high-field analogy to the rotational excitation.

Another difference with respect to the zero-field case, for which ∆εel ≫ ℏωvib ≫ ℏωrot, respectively
the excitation energies in the electronic, vibrational and rotational cases, is that the excitations in
the presence of a strong B-field are all comparable.

Radiative processes

Radiative processes in neutron stars are extensively described in [20] and [10]. In the strong-field scenario
(β ≳ 1) a relativistic quantum description of the radiative processes is required, even for non-relativistic
particles. The radiative transitions dominate over the collisions, thus controlling the Landau state pop-
ulations.
What follows is a brief description of the radiative processes taking place in NSs with superstrong mag-
netic fields.

• Cyclotron absorption: a photon excites a particle to a higher Landau state. The required energy
to go from the ground state to the n-th state is:

En =
(1 + 2nβ sin2 θ)1/2 − 1

sin2 θ
, (3.10)

with θ the angle between the photon propagation and the field direction. As said above, the radiative
processes dominate over the collisional, so the result of this transition is a scattering (second-order)
rather than a true absorption (first-order);

• Cyclotron emission: this is the inverse process of the cyclotron absorption, a downward transition
between Landau levels. When the particle energy is relativistic, it is called synchrotron radiation:
in this case the emission is dominated by high harmonics. In the strong-B regime the energy is
often radiated in one large transition, rather than through small steps. The cyclotron decay rate is
high enough that nearly all the particles reside in the ground state;

• Compton scattering: when a photon is scattered by an electron, which then spontaneously decays.
This scattering is called resonant if the e− is excited to a higher Landau state. This process usually
dominates over the absorption, where the de-excitation of the electron is collisional. The cross
section of this process depends on the photon energy and on the angle of incidence;

• Pair production and annihilation: one-photon production (annihilations) is a first order transition,
in which energy and momentum cannot be both conserved: B can absorb (supply) the extra
momentum needed by a photon to create (be created by) an e−− e+ pair. This can take place only
in discrete Landau states kinematically allowed by the energy-momentum conservation equations:

ϵ = En + En′

ϵ cos θ = p+ q (3.11)

where p is the parallel momentum of the electron and q the one of the positron, En = (1+p2+2nβ)1/2

and En′ = (1 + p2 + 2n′β)1/2, with n and n′ denoting the Landau states. As the photon energy
increases and for larger transverse magnetic field strengths, the probability of the process increases.
For B ≳ 1012 G, the one-photon transition is dominant over the two-photon one;

• Bound pair creation: a photon adiabatically converts into positronium (a hydrogen-like atom com-
posed of an electron and a positron, stable to annihilation), after an evolution through mixed
photon-positronium states;

• Photon splitting: this is a third-order process where one photon converts into two or more photons
of lower energy and whose rate depends on the magnetic field strength. This transition can come
to dominate over the pair production.
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• Resonant Bremsstrahlung: this is a cooling process, in which an electron in the ground state is
collisionally excited and de-excited through spontaneous emission, producing a cyclotron photon.

Bound pair creation and photon splitting, as well as the one-photon production/annihilation, are processes
which do not conserve the energy-momentum in field-free space: the parallel momentum and the total
energy are strictly conserved only for strong fields.

Effects of the magnetic field

We define a magnetic temperature:

TB =
∆EB

kB
=

mec
2

kB

p
1 + 2nβ + 2β −

p
1 + 2nβ , (3.12)

where the energy difference ∆EB is between the Landau levels n and n + 1, and kB is the Boltzmann
constant. When the density reaches the critical magnetic density ρB = 7045A/ZB

3/2
12 g cm−3, then the

Fermi temperature is equal to the magnetic one, TF = TB . The Fermi temperature can be obtained from
the Fermi energy, EFermi = p2f/2me, dividing by the Boltzmann constant. The Fermi momentum pf can
be estimated from ne = 2pfeB/h2c.
Depending on the value of density and temperature, the Landau quantization has different effects on the
thermodynamic properties of the gas, both for electrons and for ions:

• ρ ≲ ρB and T ≲ TB : the electrons are mostly in the ground Landau state. B modifies essentially
all the properties of the gas and is called strongly quantizing. The quantization becomes important
when the cyclotron energy, so the level spacing, is bigger than both the Fermi energy and the
thermal energy (∼ kBT );

• ρ ≳ ρB and T ≲ TB : the electrons are degenerate and occupy many Landau levels, whose spacing is
greater than the thermal width. B is weakly quantizing and only slightly affects the bulk properties
of the gas;

• T ≳ TB or ρ ≫ ρB : many Landau levels are occupied, with the thermal width larger than their
spacing. In this case, the Landau level effects are smeared out: B does not affect the thermodynamic
properties and is called non-quantizing.

The different regimes just described can be visualized in the diagram of Figure 3.1.

3.1 Condensed surface

Physics of condensed matter

We have already mentioned how, in the case of a strong magnetic field strength, the electrons are extremely
confined in the direction transverse to B, making the Coulomb forces more effective in binding them along
the field direction. The atoms attain a cylindrical structure and form molecular chains along B, through
covalent bonding. These linear chains can then combine with one another through quadrupole-quadrupole
interaction, and parallel chains can eventually result in the formation of three-dimensional condensates.
The presence of a condensate on a neutron star strongly depends on the cohesive properties of the surface
matter, which is expected to be in a condensed state for heavy elements. A condensed surface is formed
when the temperature is low enough (this might happen only in certain regions on the surface, e.g. in the
case of equatorial belts, which are expected to be colder for a dipole magnetic field) and/or B is strong
enough.

In general, magnetized condensed matter (H, He) at zero pressure can be described by the uniform
electron gas model. The degenerate electrons are in the ground Landau level when EFermi < Ecyclotron.
The energy per cell is then defined as:

ES(ri) =
3π2Z3

8b2r6i
− 0.9Z2

ri
, (3.13)
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Figure 3.1: This diagram, taken from [10], illustrates the different temperature and density
regimes of the magnetic field effects on the thermodynamic properties of a free-electron gas.
Solid lines are for B = 1012 G, short-dashed lines for B = 1013 G and long-dashed lines for
B = 1014 G. The vertical lines are defined at ρ = ρB , defined in the text, and ρ = ρB1, below
which only the nL = 0, 1 levels are occupied. The Fermi temperature is outlined both below
ρB and for ρB < ρ < ρB1. The magnetic temperature TB , defined in Equation 3.12, is also
shown. The Fermi temperature at B=0 is represented by a dotted line.

with the first term being the kinetic energy and the second one the Coulomb part; ri = (3/4πni)
1/3 is

the Wigner-Seitz radius and ni = ρ/mi = ρ/AmP is the ion number density. From the condition of zero
pressure it follows:

dES

dri
= 0 , (3.14)

from which we get the expressions for radius and energy at zero pressure:

ri,0 ∼ 1.90Z1/5b−2/5

ES,0 ∼ −0.395Z9/5b2/5 . (3.15)

The cohesive energy QS , needed to pull an atom out of the bulk condensed matter at zero pres-
sure, is defined as the difference between the atomic ground-state energy and the energy per cell of the
condensed-matter ground state, QS = E1 −ES . Another possible definition is: QS = Q∞ +∆ES , where
Q∞ ∼ 0.76b0.37 − 0.16(ln b)2 is the cohesive energy for the linear chain, and ∆ES = |ES,0| − |E∞| is the
energy difference between the one-dimensional chain and the 3D condensed matter. This difference can
be estimated by calculating the quadrupole-quadrupole bond between the linear chains: the chain-chain
interaction, then, plays a crucial role in determining whether the condensed matter is bound (∆ES > 0)
or not.
For Z ≳ 6, the chains are unbound: in this case, the lattice structure and the cohesive properties are
different from the ones of H and He described above. For Z ≳ 10 the upper limit for the cohesive energy
is QS ≲ Z9/5B

2/5
12 eV, so it increases for larger values of B. In the case of iron (Z = 26), if B is suffi-

ciently large (b ≫ 2Z3) the chains are bound similarly to the case of H and He, through covalent bonding
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along the field direction, and there is a weak cohesion between chains, allowing a phase transition for low
enough temperatures.

From the thermodynamic point of view, magnetic condensation is a plasma phase transition due to
strong electrostatic attraction between the charged particles (ions and electrons) in the dense plasma.
The critical temperature Tcrit for this transition to happen increases for stronger magnetic field strengths,
so the condensation becomes more likely.
An important parameter in the description of a plasma is the Coulomb cooling parameter, i.e. the ratio
between the electrostatic and the thermal energies, which in the case of ions is:

Γ =
(Ze)2

rikBT
= 22.75

Z2

T6

ρ6
A

1/3

. (3.16)

When Γ ≪ 1 the plasma is a classical Boltzmann gas and is unaffected by B; instead, for Γ ≳ 1 it becomes
a strongly-coupled Coulomb liquid. The melting of the Coulomb crystal takes place at Γ = Γm ∼ 175:
when the electron gas is non-uniform, this value becomes dependent on both the density ρ and the nuclear
charge Z.

The condensed surface density at zero pressure is defined as:

ρs ∼ 561ηAZ−3/5B
6/5
12 g cm−3 , (3.17)

where η is an unknown quantity of order of unity which absorbs the theoretical uncertainties; in the case
of an ion sphere model η = 1.
The density associated to a gas made of free electrons, protons, bound atoms and molecules, is:

ρg ∼ 390A5/2T 5/2 exp − QS

T
g cm−3 . (3.18)

The critical temperature for the phase transition is found through the condition ρs = ρg, which for iron
gives the upper limit:

kBT
Fe
crit ≲ 0.1QS ∼ 27B

2/5
12 eV . (3.19)

As mentioned above, the phase separation is given by T < Tcrit: this limit is however quite uncertain
and the preferred condition is then T < Tcrit/2, for which ρg ≪ ρs, meaning that the phase transition is
unavoidable.
A list of values for Tcrit with the corresponding field strengths, in the case of Fe-composition, is presented
in [21]:

Tcrit ∼ 6× 105 K for B12 = 5
7× 105 K 10
2× 106 K 100
107 K 500
2× 107 K 1000 .

Figure 3.2 shows the conditions of B and T for the presence of condensation, comparing the cases of
hydrogen and iron.

Effects on the emission

In the presence of condensation, the thermal emission comes directly from the metallic surface, without
being reprocessed in the gaseous atmosphere: for T ≪ Tcrit, the atmosphere density and its optical depth
are negligible, and the neutron star is said to be naked or bare. The resulting spectrum is therefore
determined by the emission and reflection properties of the condensed surface. The local flux density is
given by the Planck function multiplied by the normalized emissivity. Generally speaking, the overall
emission from a condensed liquid surface is reduced from the blackbody one by less than a factor 2 [10].
The emission is even more BB-like for solid surfaces, which are rougher and with a reflectivity close to
zero, as is likely the case of Fe.
The spectra may also present mild absorption features, corresponding to the ion cyclotron frequency and
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Figure 3.2: This diagram, from [22], shows the critical temperature as a function of the mag-
netic field strength: condensation is possible in the hatched region for Fe and in the cross-
hatched one for H, according to the estimate made by [18]. Different chemical compositions
are also represented: He (dash-dotted red line), C (dashed blue) and Fe (solid green), accord-
ing to the calculations made by [23] and [21]. The spin-down dipolar field and the effective
temperature of different sources are also marked: magnetars (cyan filled circles), XDINSs (red
squares) and isolated pulsars (black diamonds). The thick vertical line in cyan corresponds to
B = 5× 1014 G.

the electron plasma frequency.
Figure 3.3 shows examples of spectra from a partially/fully ionized atmosphere and from a condensed
surface, both compared to the blackbody function.

The emission can be studied considering two limiting cases, described in [24], [19] and [22]: in the
free-ions limit the Coulomb interactions between ions are neglected, while in the fixed-ions one the ion
motion is frozen and there is no influence from the magnetic forces. The latter can be obtained by
setting the ion mass to infinity. The two regimes show different emission trends for energies below the
ion cyclotron energy, but are quite similar otherwise. The real emission properties are assumed to lie
between these two limits, although this problem has not been fully solved yet.
An example of emission in these limits is shown in Figure 3.4.

Magnetic condensation also affects the polarization of the emitted radiation: it can be seen in Figure
3.5 that the polarization degree is highly reduced in the case of emission from a condensed surface, both
in the case of free- and fixed-ions limits, with respect to the atmosphere model.

Presence of an atmospheric layer

The condensed surface of neutron stars is probably a Fe solid surface, where the iron is assumed to
be formed at the birth of the NS. There is the possibility of the presence of a H-atmosphere of finite
thickness above this solid surface, which would be almost transparent at high energies. Its origin could
be of different natures:

• accretion from the interstellar medium: this accretion is less effective for strong magnetic fields
and/or high spins;
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Figure 3.3: The spectral flux is shown as a function of the photon energy, from [10]. Left: the
cases of a partially ionized H-atmosphere and a fully ionized one compared to the blackbody
spectrum. Right: spectral flux of a condensed Fe surface in the free-ions limits (see the text),
with B = 1012 G and B = 1013 G, and a condensed H surface with B = 1014 G, compared
with the BB spectrum, all at T = 106 K.

• diffusive nuclear burning of a hydrogen layer soon after the formation of the neutron star;

• nuclear spallation in collisions with ultra-relativistic particles.

At the beginning, there might be a mixture of H and He, which would then be separated due to the
strong gravity at the NS surface, resulting in the so-called sandwich atmosphere.

Vacuum gap

The presence of a condensed surface is usually followed by the formation of a vacuum gap [21]: charged
particles flow from the polar cap region and travel beyond the light cylinder, after which they have to be
replenished to maintain the magnetosphere charge density. If Tsurface and QS are such that the particles
are tightly bound to the surface, which is commonly the case for high enough B or low enough T , then
this does not happen, leaving a gap. The particles can then be accelerated across the gap, affecting the
emission properties of the surface.
Figure 3.6 shows the values of T and B needed to form a vacuum gap.

3.2 Polarization
The emission from neutron stars with very strong magnetic fields is expected to be highly polarized.
The study of this polarization can give a new and unique insight on the physical conditions of the star
surface and magnetosphere, as well as on the geometry of the star, complementing the spectral and timing
measurements.

Polarization modes

As anticipated in Section 2.1, photons propagating in strong magnetic fields can be linearly polarized in
two normal modes: the ordinary (O) mode with the electric field vector parallel to the plane formed by
the photon propagation direction (k⃗) and the field direction, and the extraordinary (X) mode with the
electric field oscillating in the direction perpendicular to the k-B plane. When ω < ωc, with ω the photon
frequency and ωc the electron cyclotron frequency, the radiative processes taking place in strong magnetic
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Figure 3.4: From [24], same as Figure 3.3, but showing also the limit of fixed-ions, labelled as
’no ion’. The cases considered are the ones of condensed surfaces made of Fe at B = 1012–1013
G and H at B = 1014 G. The temperature is T = 106 K. As in Figure 3.3, the blackbody
spectrum is also shown for comparison.

fields have an opacity for the X-mode which is typically κX ∼ κO(ω/ωc)
2, where κO is the opacity of

photons in the O-mode: therefore, far from the cyclotron resonance, the opacity of extraordinary photons
is much smaller than the one of the ordinary ones, and the seed thermal radiation is likely to be mostly
polarized in the X-mode, when scattering processes are considered. Also, κX decreases for stronger
magnetic field strengths, while κO does not.

Many effects play a role in determining the final polarization state of the emitted radiation from
magnetars. One of these is RCS, described in Section 2.1: upon scattering, the photons initially in the
O-mode can turn into the X-mode, while the extraordinary photons are more likely to retain their original
polarization mode, with the scattering cross sections being [25]:

σO−O =
1

3
σO−X

σX−X = 3σX−O , (3.20)

where the first subscript index refers to the incident photon and the second index to the scattered one.

Vacuum polarization

A magnetized plasma around a neutron star is anisotropic and birefringent, influencing the polarization
state of radiation. Specifically, QED predicts the effect of vacuum polarization, which influences the pho-
ton propagation at high frequencies: the photon temporarily converts into virtual electron-positron pairs,
which are then "polarized" by the external magnetic field. As a consequence, the magnetized vacuum
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Figure 3.5: From [22], the linear polarization degree at the surface as a function of the photon
energy, in the case of an atmosphere (left panel), a condensed surface in the free-ions limit
(middle) and in the fixed-ions limit (right). The external magnetic field is a globally-twisted
dipole, with BP = 5× 1014 G and ∆ϕ

N−S
= 0.5 rad, aligned with the star’s rotation axis. The

star is seen at different inclinations χ, for which the polarization degrees are shown in different
colours. The dashed lines show the intrinsic polarization for BB and completely polarized seed
photons.

Figure 3.6: This diagram from [21] shows the condition for the formation of a vacuum gap
above a condensed NS surface made of He, C and Fe. The gap is formed for a certain surface
composition in the region above the corresponding line. In this case, Ω · BP < 0, with Ω the
rotation rate of the NS, and the magnetosphere is said to be positive over the poles.

is described by non-trivial dielectric and magnetic permeability tensors. If the vacuum polarization is
weak, i.e. B ≲ BQED, then its effect is linearly added to the plasma polarization.

Vacuum polarization effects dominate over plasma ones for densities below the vacuum resonance
density ρV , which is usually the case for magnetar magnetospheres. Away from the vacuum resonance,
the vacuum and the plasma act in linearizing the polarization: the vacuum tends to maintain the original
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state, while the effect of plasma is to change the polarization mode. As a consequence, at ρ ∼ ρV the
normal modes tend to have a circular polarization. When the photons traverse this resonance, they
undergo a mode conversion, as shown in Figure 3.7: the O modes become X modes and viceversa, and
there is a 90° rotation of the polarization ellipse. The mode conversion has an effect on the radiative
transfer, because of the different opacities associated with the polarization states as described above,
becoming therefore a signature of vacuum polarization.

Figure 3.7: This diagram, from [10], shows the ellipticity of the photon mode as a function of
the plasma density close to the vacuum resonance, for B = 1013 G forming an angle of 45°
with the photon propagation direction, Eph = 5 keV and A = Z. The ellipticity is given by
K = −iEx/Ey, with Ex and Ey the electric field components of the photon respectively along
and perpendicular to the k-B plane.The O-mode is characterized by |K| ≫ 1 and the X-mode
|K| ≪ 1. We can see that, away from the resonance, the modes are almost linearly polarized
and their polarization ellipses are orthogonal to each other; instead, at ρ = ρV both modes
become circularly polarized. At higher densities, the modes of the photons change and the
polarization ellipses are rotated by 90° with respect to the original ones.

As described in [26], the electric field associated to a photon with energy ℏω can be written as
E⃗ = A⃗(z) exp[i(k0z − ωt)], with k0 = ω/c. A⃗ is the complex amplitude of the electric field, i.e., in the
reference frame defined above,

A⃗ = (Ax, Ay) = (axe
−iφx , aye

−iφy ) . (3.21)

Substituting Equation 3.21 inside the wave equation we get differential equations for the amplitude, which
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describe the evolution of the polarization modes in the magnetized vacuum:

dAx

dz
=

ik0δ

2
(MAx + PAy)

dAy

dz
=

ik0δ

2
(PAx +NAy) , (3.22)

with δ ∼ 3× 10−10B2
11 and M , P and N coefficients which depend on the magnetic field (see Appendix

A of [17]).
An important effect of vacuum polarization is the continuous adaptation of the electric field direction

to the magnetic field one, in strong magnetic fields. From Equations 3.22 one derives that the scale-length
along which the electric field’s amplitude varies is:

lA ∼ 2

k0δ
∝ B−2 ; (3.23)

instead, the magnetic field varies along a distance:

lB ∼ B

|⃗k · ∇B|
, (3.24)

which has a slower growth with B with respect to lA. Near the surface of the star, where the magnetic
field is very strong, lA ≪ lB . This means that the direction along which the electric field oscillates adapts
instantaneously to the direction of the magnetic field, so the photons maintain their initial polarization
states. Because the adaptation of the electric field direction is practically instantaneous, the propagation
of the photons is said to be adiabatic. As B decreases and lA increases faster than lB , E⃗ follows the
direction of the magnetic field less and less instantaneously, until lA ∼ lB . This condition is met at the
so-called adiabatic radius, which for a dipolar field is given by:

rad ∼ 4.8
BP

1011 G

2/5 E

1 keV

1/5 RNS

10 km

1/5

RNS . (3.25)

Outside, where lA ≫ lB , the electric field freezes and the polarization modes start to deviate significantly
with respect to the original ones, as the magnetic field direction changes. Figure 3.8 shows how the
adiabatic radius changes as a function of the magnetic field and the photon energy.
Equations 3.22 should be integrated from the surface up to where the amplitude components Ax and Ay

are nearly constant, but a simplified approach, which allows to reduce the computational time, considers
a sharp edge between the adiabatic region and the external region: in this way, from a polarization point
of view, it is as if the photons were emitted at the adiabatic radius, so the topology of the magnetic field
that matters is the one at rad.

Polarization observables

The polarization observables are the polarization degree Πpol and the polarization angle χpol. In general,
they depend on the geometrical angles χ, between the photon propagation and the spin axis, and ξ,
between the spin axis and the magnetic field direction, as well as on the physical process which determines
the emission of photons at the surface. In the specific case of magnetars, with a twisted magnetosphere,
these observables can be also dependent on the twist angle, defined in Equation 2.15, and on the motion of
the charges in the magnetosphere. Up to now, the study of the X-ray radiation emitted from neutron stars
has been carried on through spectral analyses. However, these are often degenerate for what concerns the
emission mechanism, since, as discussed in Chapter 3.1, both the atmosphere and the condensed surface
produce BB-like spectral components. This degeneracy can be removed thanks to polarimetric studies.

The polarization observables are more conveniently expressed through the Stokes parameters [26],
which are additive. In the reference frame (x,y,z), defined above, they are defined as:

I = a2x + a2y

Q = a2x − a2y

U = 2axay cos(φx − φy)

V = 2axay sin(φx − φy) (3.26)
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Figure 3.8: This contour plot from [26] shows the dependence of rad on the polar magnetic
field strength and on the photon energy. The figure also shows the typical ranges of BP for
some classes of neutron stars: CCOs, PSRs, XDINSs and magnetars.

where I is the total intensity, Q and U define the linear polarization and V the circular one (V = 0 when
completely linearly polarized emission is considered, as is our case). The Stokes parameters satisfy the
condition I2 ≥ Q2+U2+V2, with the equal sign corresponding to 100% polarization or to monochromatic
radiation.
Normalizing to the total intensity, we can describe the photons polarized in the two modes through
specific Stokes vectors: Q̄

Ū
V̄


X

=

−1
0
0

 ,

Q̄
Ū
V̄


O

=

1
0
0

 . (3.27)

The definition of the Stokes parameters in 3.26 depends on the frame of reference (x,y,z), where the
direction of the x- and y-axis on the polarization plane depends on the direction of B at emission. The
photons that are gathered by the detector are each emitted from different parts of the surface: since the
magnetic field changes in general from point to point, the orientation of the axes also varies, resulting in
the Stokes parameters relative to the single photons being defined in different reference frames. In order
to sum the Stokes parameters associated with the single photons, they need to be defined in the same
reference frame: they are therefore rotated, considering a fixed frame of reference, which usually coincides
with the focal plane of the detector. This geometrical effect causes a depolarization and it is important
when the magnetic field is not uniform across the emission region. The angles of rotation of each frame
are αi with respect to the line of sight (LOS): they depend on the field geometry, on the adiabatic radius
and on the energy and position of the emitted photons [26].
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The rotation to be applied on the parameters results in:

Ii = Īi
Qi = Q̄i cos(2αi) + Ūi sin(2αi)

Ui = Ūi cos(2αi)− Q̄i sin(2αi) . (3.28)

The Stokes parameters of the radiation collected at infinity, considering that the emitted photons are
polarized either in the O- or in the X-mode, are therefore:

Q =

NXX
i=1

cos(2αi)−
NOX
j=1

cos(2αj)

U =

NOX
j=1

sin(2αj)−
NXX
i=1

sin(2αi) , (3.29)

with NX and NO the number of photons polarized in the X- or O-mode respectively.
We can now define the polarization observables. In the case of linear polarization:

ΠL =

p
Q2 + U2

I

χpol =
1

2
arctan

U

Q
. (3.30)

If the magnetic field is uniform, for example when the emitting region is very small, the angles of rotation
for the Stokes parameter frames are all equal to the same value α0. The polarization observables can
then be expressed as:

ΠL =
|NX −NO|

N
χpol = α0 . (3.31)

For what concerns the angle of polarization, we can see from Equation 3.31 that it is linked to the
distribution of the angles of rotation of the reference frames. Therefore, a measurement of the angle α0

can, in principle, be used to obtain information on the topology of the magnetic field.
Vacuum polarization is also important for aligning the polarization vectors of photons emitted from

different patches of the neutron star. In general, when considering an extended emitting region near the
surface, where the direction of the magnetic field changes from point to point, the angles αi are different
and the resulting polarization fraction is reduced with respect to the intrinsic one, i.e. (NX −NO)/N . In
the case of magnetars, when vacuum polarization is effective, the photons retain their initial polarization
state until a great distance from the surface of the star (see Figure 3.8): at the adiabatic radius, then, the
magnetic field is quite uniform, and the angles αi are similar to each other, with a much smaller reduction
factor with respect to Equation 3.31. This effect therefore grants an appreciable net polarization fraction
at the observer, if the radiation was polarized when emitted. Hence, if radiation comes reasonably from
a large area on the surface, the detection of a high degree of X-ray polarization can be symptomatic of a
large adiabatic radius, and can be interpreted as a indirect probe of the presence of a strong field. The
effect is dependent on the extent of the radiating region, so that the presence or absence of QED-related
properties can only be tested for emitting areas of significant extension.
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Chapter 4

Numerical tools

This chapter presents the numerical tools used to compute the emission properties of a condensed surface.
It is divided into two parts. The first deals with the computation of the emissivity of the naked surface,
following [27]. The second illustrates the ray-tracing technique which allows us to compute the observed
properties of the source. The latter is based on the calculations originally presented in [28] and then in
[26].

4.1 Spectral properties of condensed magnetized surfaces
Potekhin et al. [27] studied the emission from neutron stars with a condensed surface, in both the limiting
cases of free and fixed ions. The same study was first carried out by [29], [24] and [30]. [27] reprised the
numerical method of [24] and improved it.
The task of modelling and interpreting the spectra, complicated by the wide variety of theoretical possi-
bilities, was facilitated by using the approximate treatment introduced in 2010 by [31], where the local
spectra are fitted by simple analytic functions. This approach was also improved by [27], by using more
accurate fitting formulae and by considering the dependence of the reflectivity also on the magnetic field
and on the angle ϕ, i.e. the angle between the plane of incidence of radiation and the plane containing
the normal to the surface and the magnetic field lines.

The final method used by [27] considers a condensed Fe-surface, so Z = 26 and A = 56, with η = 1
(see Equation 3.17), which enter in the expression for the density:

ρ = 8.9× 103 η AZ−0.6 B1.2
13 g cm−3 . (4.1)

The temperature is T ∼ 106 K.
The surface element considered for the calculations is small, with the variation of the magnetic field
strength and of its inclination across the element being neglected. This element is treated as a plane,
with z perpendicular to it and the magnetic field lying on the x-z plane; the y-axis is then taken as
perpendicular with respect to x and z. The angle θB is between the field direction and the z-axis, while
θk is the angle between z and the direction of the reflected beam. The angle between the field direction
and the propagation direction is denoted as αi for the incident beam and αr for the reflected one, while
ϕ is the angle in the x-y plane made by the projection of the reflected wave vector. A scheme illustrating
the frame of reference (x,y,z) and the different angles is shown in Figure 4.1. The direction of B is shown,
as well as those of incidence (wave vector k⃗i) and of reflection (k⃗r).
The angles characterizing the direction of the photons are defined by:

cosαi,r = sin θB sin θk cosϕ∓ cos θB cos θk , (4.2)

with the minus and plus sign referring to the incident and reflected waves, respectively.
The monochromatic intensity of the emitted radiation is:

IE,j = Jj
BE

2
, (4.3)
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Figure 4.1: The frame of reference described in the text from [27]. The figure also shows
the polarization vectors, both for incidence, e(i)1,2, and reflection, e(r)1,2, perpendicular to the
respective wave vector (k⃗i and k⃗r). e(i,r)1 are parallel to the surface, while e(i,r)2 lie in the
perpendicular plane; the axes denoted as x′ and y′ lie in the plane made by e(r)1 and e(r)2 , with
x′ aligned to the plane B⃗ -⃗kr.

where the index j refers to a linear polarization parallel to the incident plane (j = 1) or perpendicular
to it (j = 2). The function BE is:

BE =
Bν

2πℏ
=

E3

4π3ℏ3c2(eE/kBT − 1)
, (4.4)

with Bν the Planck function. Jj is the dimensionless emissivity:

Jj = 1−Rj , (4.5)

with Rj the effective reflectivity, which depends on the chemical composition, the photon energy E, the
magnetic field strength, the angle θB and the direction of photon propagation. In the case of non-polarized
radiation, the reflectivity can be approximated by its mean value:

R =
R1 +R2

2
. (4.6)

Emissivity calculation

A numerical code was developed to reproduce the emissivity behaviour for a condensed surface in the
free- and fixed-ions limits, according to the fitting formulae by [27].
In the first part of the code, the emissivity is calculated for different photon energy ranges in the free-ions
limit: E < Eci, Eci ≲ E ≲ Ec and E > Ec, where:

Eci =
ℏZeB

Amuc
= 0.0635

Z

A
B13 keV

Epe = 0.0288

r
ρZ

A
keV

Ece = 115.77B13 keV

Ec = Eci +
E2

pe

Ece
. (4.7)
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Here Eci is the ion cyclotron energy, with mu the atomic mass unit, Epe is the electron plasma energy
and Ece the electron cyclotron energy.

Before the emissivities are calculated, we give some definitions. The angles αi,r are derived from
Equation 4.2 and α is defined as the minimum between these two values. Then, two effective energies
are introduced:

Ẽpe = Epe
p
3− 2 cos θk

Ẽc = Eci +
(Ẽpe)

2

Ece
. (4.8)

Different definitions are given for the emissivity J , depending on the energy range considered.
At low energies (E < Eci), the expression for the emissivity is:

JA = [1−A(E)]J0(E) , (4.9)

with:

A(E) =
1− cos θB

2
√
1 +B13

+

"
0.7− 0.45

J0(0)

#
(sin θk)

4(1− cosα)

J0(0) = 4
p
Ec/Eci + 1

−1
Eci/Ec + 1

−1

J0(E) = 1− 1

2
R

(0)
− +R

(0)
+

R
(0)
± =

n
(0)
± − 1

n
(0)
± + 1

2

n
(0)
± =

"
1±

E2
pe

Ece(E ± Eci)

#1/2
. (4.10)

At Eci ≲ E ≲ Ẽc, the emissivity is:

JB =

 
E

Ẽc

!p

J(Ẽc) , (4.11)

where:

p =
ln[J(Ẽc)/J(Eci)]

ln(Ẽc/Eci)
(4.12)

and

J(Ẽc) =
1

2
+

0.05

1 +B13
(1 + cos θB sin θK)− 0.15 (1− cos θB) sinα

J(Eci) =
2n0

(1 + n0)2

 
1 +

cos θB − cos θk
2 (1 +B13)

!

n0 =

 
1 +

E2
pe

2EceEci

!1/2

. (4.13)

Finally, for the higher energies (E > Ẽc):

JC =
4ñ

(1 + ñ)2
(4.14)

with

ñ2 = 1 +
Ẽ2

pe

Ece(E − Eci)
. (4.15)
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The emissivity experiences a suppression at E ∼ Epe, whose exact position, width, and depth depend on
the geometry of the problem. The consequence is the presence of a line, described by:

L =

"
0.17Epe/Ec

1 +X4
+ 0.21 e−(E/Epe)

2

#
(sin θk)

2 WL , (4.16)

with

X =
E − EL

2EpeWL
(1− cos θk)

−1

EL = Epe

h
1 + 1.2 (1− cos θk)

3/2
ih
1− 1

3
(sin θB)

2
i

WL = 0.8
Ẽc

Epe

0.2p
sin(α/2) 1 + (sin θB)

2 . (4.17)

When the radiation is parallel to the magnetic field, i.e. α ∼ 0, L goes to zero; however, a remnant of
the line is observed and it becomes appreciable as the field inclination becomes large, θB > π/4.
An approximation for the emissivities in each of the two polarization modes (j = 1 and j = 2, defined
above) is also given:

J1 =

(
JA1 for E < Eci and JA > JB

JB1(1− JC) + JC(RL) for E > Eci and JA < JB

J2 = 2 J − J1 , (4.18)

where
RL = (sin θB)

1/4
h
2− (sinα)4

i L

1 + L
(4.19)

describes the line alongside L. From the second of Equations 4.18 we find that the total emissivity J is
equal to the sum of the emissivities in the two polarization modes, divided by two.
The emissivities that appear in Equations 4.18 are defined by:

JA1 = (1−A1)JA

JB1 =

 
E

ẼC

!p1

J1(ẼC) , (4.20)

where

p1 =
ln J1(Ẽc)/J1(Eci)

ln(Ẽc/Eci)
(4.21)

and

A1 =
a1

1 + 0.6B13(cos θB)2

a1 = 1− (cos θB)
2 cos θk − (sin θB)

2 cosα

J(Ẽc) =
1

2
+

0.05

1 +B13
+

sin θB
4

J(Eci) = (1− a1)J(Eci) (4.22)

The central part of this code is dedicated to the actual computation of the emissivity for each of the
energy ranges defined above. In particular, we define the total emissivity and that of mode 1 as:

•

(
emiss = JA

emiss1 = JA1

for E < Eci, if JA > JB;
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•

(
emiss = JB

emiss1 = JB1

for Eci ≲ E ≲ Ẽc;

•

 emiss = JB(1− JC) +
JC

1 + L
emiss1 = JB1(1− JC) + JC(1−RL)

for E > Ẽc.

Then, the emissivity in the other polarization mode is simply emiss2 = 2 emiss−emiss1, from the second
of Equations 4.18.
The emissivities in the extraordinary and ordinary polarization modes can be defined by a rotation of
the emissivities in the polarization modes 1 and 2 around k⃗, through the expressions:

emisX = (x′
r · er

1)
2emiss2 + (x′

r · er
2)

2emiss1

emisO = (y′r · er
1)

2emiss2 + (y′r · er
2)

2emiss1 , (4.23)

where

x′
r · er

1 =
sin θB sinϕ

sinαr

x′
r · er

2 = cos θB sin θk − sin θB cos θk cosϕ

sinαr

y′r · er
1 = cos θB sin θk − sin θB cos θk cosϕ

sinαr

y′r · er
2 = − sin θB sinϕ

sinαr
. (4.24)

The total emissivity, as anticipated above, is then given by:

emisTOT =
emisX + emisO

2
. (4.25)

In the fixed-ions case, Eci is formally set to zero, so only two energy ranges are considered: E ≤ Ẽfx
c and

E > Ẽfx
c , where:

Ẽfx
c =

Ẽ2
pe

Ece
. (4.26)

At low energies, the behaviour of the emissivity in the fixed-ions limit is given by:

J fx
B =

J(Ẽc)

1− pfx + pfx(Ẽc/E)0.6
, (4.27)

where
pfx = 0.1

1 + sin θB
1 +B13

(4.28)

and by:

J fx
B1 =

J1(Ẽc)

0.1 + 0.9 (Ẽc/E)0.4
. (4.29)

At the higher energies, instead:

J fx
C =

4 ñfx

(1 + ñfx)2
, (4.30)

with

ñfx =

s
1 +

Ẽ2
pe

Ece E
. (4.31)

In this case:
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• E ≲ Ẽfx
c : the emissivities are given by:(

emissfx = J fx
B

emissfx
1 = J fx

B1
;

• E > Ẽfx
c : emissfx = J fx

B (1− J fx
C ) +

J fx
C

1 + Lfx

emissfx
1 = J fx

B1(1− J fx
C ) + J fx

C (1−Rfx
L )

.

Here:

Lfx =

"
0.17Epe/E

fx
c

1 +X fx4 + 0.21e−(E/Epe)
2

#
(sin θk)

2W fx
L

Rfx
L = (sin θB)

1/4
h
2− (sinα)4

i Lfx

1 + Lfx , (4.32)

with

X fx =
E − EL

2EpeW fx
L

(1− cos θk)
−1

W fx
L = 0.8

Ẽfx
c

Epe

0.2p
sin(α/2) 1 + (sin θB)

2 . (4.33)

The rest of the calculation of the emissivities is then the same of the case of free ions, with the fixed
quantities just defined in place the of the respective ones in the free-ions limit.

Luminosity

The main code is used for the calculation of the luminosity for a specified energy range and for a chosen
number of values of the energy and angles θk and ϕ. The values of θB and B are assigned and remain
fixed throughout the calculation. The emissivities are called from the previously-described part of the
code and are then integrated in energy and in the angle θk, together with the Planck function normalized
to σSBT

4, where σSB = 5.6704 × 10−5 erg s−1 cm−2 K−4 is the Stefan-Boltzmann constant. The code
returns the luminosity in the free- or fixed-ions limit normalized to the blackbody luminosity.

4.1.1 Plots
The emissivity of the sources was studied as a function of the energy and by considering different magnetic
field inclinations and photon propagation directions, in both the limits of free and fixed ions. The angle
θk was kept fixed at π/4. The energy range was chosen of E = 0.001–10 keV, with 104 values considered.

In the first case, the inclination of the magnetic field was fixed, with θB = π/4, and ϕ was varied.
Three values for this angle were considered, ϕ = 0.025, ϕ = π/4 and ϕ = π/2. This first value was chosen
instead of ϕ = 0, as in [27], because of a degeneracy of the extraordinary and ordinary components. This
is a consequence of the fact that the code used in this case calculated the total emissivity from those of
modes X and O, while [27] used the modes 1 and 2. The condition θB = θk then resulted in a degeneracy
for ϕ = 0: k⃗ coincides with B⃗, so that the plane k⃗-B⃗ does not exist and the X- and O-mode can not be
defined.
The resulting plot is shown in Figures 4.2 and 4.3, for B = 1013 G and B = 1014 G, respectively.
The plots clearly show three different behaviours of the emissivity in the free-ions case, corresponding
to the energy ranges defined above, as well as the line feature at high energies describing the emissivity
suppression introduced with Equation 4.16. The latter disappears when a stronger B is considered, in
agreement with Equations 4.16 and 4.17 describing the emissivity suppression, and with the definitions
of the energies in Equation 4.7. The initial trend of the emissivity is constant with energy, independent
of the value of the angle ϕ, followed by a quick decrease, which occurs at higher energies if the magnetic
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Figure 4.2: The emissivity versus the energy, with θk = π/4 and θB = π/4, B = 1013 G and
three different values of ϕ. The plot is shown for both the free-ions limit (thick lines) and
the fixed-ions limit (thin lines). Lines associated to the values of ϕ are depicted with different
colors: red for ϕ = 0.025, green for ϕ = π/4 and blue for ϕ = π/2.

Figure 4.3: Same as Figure 4.3, with B = 1014 G.
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field is stronger; in the middle energy range the emissivity seems to be, again, roughly constant; at high
energies, the emissivity quickly reaches unity independently of the value of B.
In the case of fixed ions, the behaviour of the emissivity at high energies is almost the same as in the
free-ions limit, while a substantial difference can be noticed at low energies, as was anticipated in Section
3.1: the emissivity has a smooth increase in the first and second energy ranges, without the sharp edge
at E ∼ Eci which is evident in the case of free ions.

A second set of parameters was examined, keeping θk and ϕ fixed at π/4 and changing the angle θB ,
with θB = 0, π/6, π/4 and π/3. As in the previous case, two values for the magnetic field were considered:
Figures 4.4 and 4.5 show the results for B = 1013 G and B = 1014 G, respectively. The emissivity shows
a similar trend as the one described above, but with the low-energy part being more dependent on the
change in the angle θB .

Figure 4.4: The emissivity against energy is shown with ϕ = π/4, θk = π/4 and B = 1013 G.
The four values of θB are associated with different colors: θB = 0 with red, π/6 with yellow,
π/4 with green and π/3 with blue. As in the previous example, both limits of free- and fixed-
ions are shown, with thick and thin lines, respectively.

The degree of linear polarization can also be analyzed, by considering [27]:

ΠL =
J1 − J2

2J
=

J1 − J2

J1 + J2
, (4.34)

where J1 and J2 are the emissivities called emiss1 and emiss2 above, respectively. The numerical results
are shown in the case of fixed θB in Figure 4.6, for both cases of free and fixed ions. The polarization
mode 1 is responsible for the trend at positive values of ΠL, while mode 2 for the negative part. In
the case of free-ions, the polarization degree is constant for energies below ∼ 0.3 keV and shows a slight
dependence on the angle ϕ. The fixed-ions limit is quite similar to the free-ions limit at higher energies,
as expected, both attaining a maximum of ΠL ∼ 0.45; at lower energies, instead, the polarization degree
in the fixed-ions case decreases with the energy and its seems to be less dependent on the value of the
angle ϕ.
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Figure 4.5: Same as Figure 4.4, with B = 1014 G.

(a) (b)

Figure 4.6: Polarization degree as a function of energy with θB = π/4, θk = π/4 and B = 1013

G. The same three values of ϕ of Figure 4.2 have been considered: ϕ = 0.025 (red), π/4 (green)
and π/2 (blue). Panel (a) shows the results in the free-ions limit, while panel (b) the ones in
the fixed-ions case.

Considering, instead, the emissivities in the O- and X-mode (emissO and emissX), the results are shown
in Figure 4.7, again for both the free- and fixed-ions limits and for three different values of the angle ϕ.
The behaviour at higher energies (E ≳ 1 keV) is quite similar to the previous case, with a slightly smaller
value of the maximum attained by the polarization degree; as above, the free- and fixed-ions limits show
a rather similar behaviour in the high-energy range. At lower energies, the polarization fraction in the
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(a) (b)

Figure 4.7: Same as Figure 4.6, but considering the emissivities of modes O and X instead of
1 and 2.

free-ions limit is constant, at ΠL ∼ −0.5, for all values of the angle ϕ; in the fixed-ions limit, instead,
there is a dependence of the polarization degree on ϕ, with the case of ϕ = 0.025 being quite similar to
the behaviour of the mode 2, while the other two being closer to zero.

4.1.2 Contour plots
The behaviour of the emissivity was also analyzed by means of contour plots, again considering different
sets of parameters.

At first, the emissivity was plotted considering the variation in energy and angle ϕ for B = 1013 G,
while keeping both θk and θB fixed at π/4. The energy range is the same as in the plots described above,
i.e. E = 0.001–10 keV, while ϕ is in the interval ϕ = [0.025, π/2]. Figures 4.8 and 4.9 show the results in
the free- and fixed-ions limits, respectively. The values of the emissivity in these contour plots can be
compared with the plot of Figure 4.2, where the angles ϕ = 0.025, ϕ = π/4 and ϕ = π/2 were considered,
resulting in an overall consistency of the trend as a function of both energy and ϕ.

In an analogous way, a contour plot of the emissivity was obtained as a function of the energy and
of the angle θB , as shown in Figures 4.10 and 4.11. As for the previous case, B = 1013 G, the energy is
in the range E = 0.001–10 keV and θk is kept constant at π/4; instead, ϕ = π/4 and θB is considered
in the interval θB = [0, π/2]. The comparison with the plot of Figure 4.4 results, also in this case, in
agreement: this can be noticed particularly in the stronger dependence shown at low energies on the
angle variation in the case of free ions, which is not present in Figure 4.8.

Finally, the emissivity was examined as a function of the angle θB and the magnetic field strength B,
while keeping θk = π/4, ϕ = π/4 and the energy fixed. Three different values of the energy were chosen,
E = 0.001 keV, E = 0.1 keV and E = 10 keV: the respective contour plots can be seen in Figures 4.12,
4.13 and 4.14, in both free- and fixed-ions limits. The values considered for the angle θB are in the range
θB = [0, π/2], while the magnetic field strength, in units of 1013 G, is in the range B13 = 0.1–51.1.
These plots can be compared with the ones of Figures 4.4 and 4.5. At low energies, the emissivity
increases for stronger B up to reach a value very close to 1 in the free-ions limit and about 0.45 in the
fixed-ions case. At E = 0.1 keV, the emissivity level increases consistently in the limit of free ions, while
it remains below ∼ 0.6 and more or less B-independent in the fixed-ions limit. Lastly, the emissivity at
high energies appears to be quite similar in the two limits. There is a tendency of the emissivity, common
to all energies, to decrease for higher values of θB , especially in the presence of smaller magnetic fields.
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Figure 4.8: The emissivity (free-ions limit) is shown as a function of energy and ϕ, with θk and
θB fixed at π/4 and B = 1013 G.

Figure 4.9: Same as Figure 4.8, in the fixed-ions limit.

4.2 Ray-tracer
The main goal of this thesis is a systematic study of the observed spectral and polarimetric properties
of highly magnetized neutron stars endowed with a condensed surface. To achieve this, a ray-tracer
code was employed: the original code, presented in [28], allows a systematic study of X-ray light curves
from cooling neutron stars, accounting for the propagation of the radiation field in a strongly magnetized
medium and incorporating the relevant radiative processes. It also allows to select the emission properties
(either a blackbody (BB), a bare surface or an atmosphere) and accounts for QED effects (the vacuum
birefringence) through the approximated approach illustrated in Section 3.2. In this work, the attention
was put on the emission from a condensed surface as compared with the BB emission, so the atmospheric
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Figure 4.10: This contour plot shows the emissivity as a function of the energy and of the angle
θB , with θk = π/4, ϕ = π/4 and B = 1013 G, in the case of free ions.

Figure 4.11: Same as Figure 4.10, in the fixed-ions limit.

part of the code was eventually ignored.

Source parameters

After assigning the radius and the mass, taken to be respectively M = 1.4M⊙ and RNS = 12 km, the
code computes the general relativity corrections. A compactness parameter is defined:

xg =
RSchw

R
, (4.35)
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(a)

(b)

Figure 4.12: The contour plots for the emissivity as a function of energy and magnetic field
strength. B is in units of 1013 G. Panel (a) shows the results for the free-ions limit, while panel
(b) those for the fixed-ions case.

where RSchw = 2GM/c2 ≈ 2.98M/M⊙ km is the Schwarzschild radius. Since xg ∼ 1/5–1/2 for neutron
stars, GR plays an important role, as discussed in [19]. Because of this, the quantities describing the
radiation emitted from these sources, such as energy, temperature and luminosity, are redshifted: they
appear to be smaller in the remote observer’s reference frame with respect to the local inertial frame.
The apparent radius, instead, increases: the effect of light bending results in more than half of the star’s
surface being visible at the same time, affecting the observed emission. The magnetic field is also affected
by GR corrections (see [32]). After introducing the redshift parameter g00 = 1 − xg = 1 − 2.98M/R,
and after selecting the value of the polar component of the magnetic field (BP) at the surface, the GR
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(a)

(b)

Figure 4.13: Same as Figure 4.12, but for E = 0.1 keV.

correction on the magnetic field can be approximated as:

BGR
P =

BP

−3x−3
g log g00 +

1

2
xg(xg + 2)

(4.36)

for r ≲ 5RNS.
The polarization of the radiation is not affected in a significant way by GR effects, because the scale-
length along which the polarization plane rotates due to GR effects is much bigger than the one associated
with vacuum birefringence, as described in Section 3.2.
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(a)

(b)

Figure 4.14: Same as Figure 4.12, but for E = 10 keV.

Emission model

The code gives the possibility to limit the region of emission from the surface, either by considering a
polar cap or an equatorial belt, specifying the semi-aperture angle. In the case of the equatorial belt,
which is the case considered in this study, a limit in the angle ϕ can be chosen as well, resulting in a
"broken" belt. When blackbody emission is assumed, the intrinsic polarization fraction is given in input.
In this case, it is kept at 100% polarization in the X-mode.
The considered temperature distribution on the surface is the one given by a magnetic dipole, with
T = TP (cos θB)

1/2 and the polar value TP specified in input. This profile gives T = 0 at the equator,
i.e. θB = 90°: for this reason, a truncation temperature is given, and the final temperature profile is T =
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max(T, Ttruncation). The rest of the surface is set at a much lower temperature, with Tlimit = 0.05
√
g00 keV

and Ttruncation bigger than this limit.
The working energy range is ∼ 0.5–8 keV, with 32 values. The angular grid on the surface is made of

100 × 100 points in co-latitude and azimuth, with respect to the frame of reference described in Figure
4.15. The phase is sampled in 10 bins. Next, the angles χ and ξ (see Figure 4.15) are given.

Figure 4.15: From [26]. The Z-axis coincides with the direction of the line of sight (LOS) l.
X, coincident with the projection of the rotation axis in the plane of the sky, lies in the plane
formed by l and Ω, the star’s spin axis, while Y is perpendicular to both X and Z. bdip is
the unit vector of the magnetic dipole axis, whose direction is fixed by the angles η and ζ,
calculated from the Z-axis and the X-axis, respectively. The angle χ is between the spin axis
and the LOS, while ξ between Ω and bdip.

Main

The main code is aimed to calculate the flux, the polarization degree and the polarization angle of the
emitted radiation as a function of the energy and of the phase, considering one of the emission models for
the condensed surface (blackbody, free-ions limit, fixed-ions limit). This is done in the frame of reference
of the LOS, described in Figure 4.15
The components of the unit vector bdip are computed at the beginning, in order to obtain the polar
and cartesian components of the magnetic field, both in the reference frame of bdip and of the LOS.
The adiabatic radius is then calculated as described in Equation 3.25 if the QED effects are taken into
consideration, or it is taken as rad = RNS if they are neglected. The magnetic field is then computed at
this radius, together with its components, and the GR corrections are applied to B(rad), if the condition
rad < 5R is satisfied.

At this point, the code gives the temperature distribution based on the emission geometry chosen at
the beginning, i.e. polar, equatorial or whole surface: in the first two cases, the temperature outside the
delimited area is fixed at T = Tlimit, defined above. The next step is the calculation of the intensity
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distribution in the case of a solid surface, which gives the three contributions for the BB emission and
the condensed surface in the free- and fixed-ions limit: in the latter case, the code calls the functions
described in Section 4.1, giving the total emissivity of the radiation in the two limits.
The calculation for the intensity distribution for the solid surface was implemented so that the radiation
coming from outside the emission region (the equatorial belt in this case) would be non-polarized black-
body emission: in order to do so, the polarization was fixed at 50 for both the X- and O-mode when the
condition T ≤ Tlimit was satisfied. For T > Tlimit, the emissivity was computed as before.

Lastly, the light curves of the emission (Stokes parameter I as a function of the rotational phase)
are computed and the Stokes parameters relative to the linear polarization (Q and U) are rotated and
integrated over the part in view of the surface through the expressions [26]:

FQ =

Z 2π

0

dΦS

Z 1

0

d(sin Θ̄))2(nX − nO) cos(2α)

FU =

Z 2π

0

dΦS

Z 1

0

d(sin Θ̄))2(nX − nO) sin(2α) , (4.37)

where FQ and FU are the "fluxes" of the Stokes parameters [33], and nX and nO are the photon intensity
in the extraordinary and ordinary modes, respectively: these generally depend on the photon energy E
and direction, and on the position on the star surface of the emission point. The angles ΦS and ΘS (to
which Θ̄ is related) fix the point on the surface from which the photons are emitted.
This allows to compute the polarization observables, through their definition in Equation 3.30. The code
returns in output the total flux, polarization degree and polarization angle as a function of energy and
phase, as well as the same quantities phase- and energy-integrated.

The original code was later adapted to obtain different results. The first modification allowed to
compute the phase average of the polarization degree and angle, at a fixed energy and for different
geometries, i.e. as a function of the angles χ and ξ, as is seen in figure 7 of [26].
Then, these observables were integrated also in energy.
Finally, the energy-phase quantities were computed for each pair of angles ξ and χ.
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Chapter 5

Results

This chapter illustrates the results of the runs of the ray-tracing code, described in the previous chapter,
obtained for different geometrical configurations of the emitting surface, for the two emission models:
blackbody radiation and emission from a condensed surface, both in the free-ions and in the fixed-ions
limit.

Plots

First of all, the flux, polarization degree and polarization angle obtained from the computation described
in Section 4.2 were plotted against energy or against the phase, depending on whether the phase-integrated
or the energy-integrated results were considered. Both these scenarios are contained in the same plotting
code, where the geometry of the emission region is selected, together with its semi-aperture angle. After-
wards, the temperature profile is given, with TP and Ttruncation, together with the intrinsic polarization
fraction of X-mode over O-mode photons for the blackbody case. A completely polarized blackbody
model has been used for its simplicity in the implementation and for the possibility of comparison with
respect to the more complicated, and physically more consistent, case of the condensed surface. Also, a
100% polarized BB can be considered as a simplified representation of the real scenarios such as magne-
tized atmospheres, these not being the focus of this work.
All the models have been obtained considering a purely dipolar external magnetic field. Finally, a specific
geometry is selected by specifying the angles χ and ξ. We obtain the behaviors of flux, polarization degree
and polarization angle for each emission model. Phase-integrated models are plotted in the 0.5–8.0 keV
band, while energy-integrated ones in the entire rotation cycle (i.e. γ ∈ [0, 2π]).

The first analysis was made for an equatorial belt, with an initial semi-aperture of 18° in magnetic
colatitude; the temperatures are chosen as TP = 0.45 keV and Ttruncation = 0.39 keV; the magnetic field
is B = 5 × 1014 G and the blackbody emission is considered to be completely polarized in the X-mode.
The geometrical configurations explored are: χ = 89°, with ξ = 0° and 30°, and χ = 0°, with ξ = 5° and
88°.
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(a) (b)

Figure 5.1: Energy-dependent (panel a) and phase-dependent (panel b) flux, polarization de-
gree and polarization angle for χ = 89° and ξ = 0°. The three emission models are compared:
blackbody 100% polarized (dotted blue line), condensed surface in the free-ions limit (dash-
dotted green line) and in the fixed-ions limit (dashed red line), in the energy-dependent and
phase-dependent cases, in panel (a) and (b), respectively.

The results for χ = 89° ξ = 0° are presented in Figure 5.1. The energy-dependent plots show that, while
the spectrum is rather similar in the three cases (apart for energies below ∼ 2 keV), the polarization
degree differs substantially: it is equal to 1 for the BB at all energies, and it reaches much lower values in
the case of the condensed surface (below 0.5 in the free-ions limit and below 0.15 in the fixed-ions case).
For what concerns the polarization angle, it is constant at 90° in the case of the BB, since it is 100%
polarized in the X-mode; in the case of free-ions, χpol is almost constant at 180° (O-mode), apart from
the lower energies; in the fixed-ions limit, instead, the initial oscillation is between 0° and 180° (O-mode
photons), with χpol = 90° at high energies (E ≳ 2 keV).
In the phase-dependent case, the flux is constant in all three cases, since the magnetic axis coincides with
the rotation axis and the magnetic (and rotational) equator of the star is always in view: since the belt
is considered to be continuous, the observed spectral properties are expected not to change as the star
rotates. For the same reason, the polarization observables are also phase-independent. The polarization
degree has very low values in the case of the condensed surface, with ΠL ∼ 0.1 and ΠL ∼ 0 in the free-
and fixed-ions limits, respectively. For what concerns the polarization angle, its behaviour shows that
photons are polarized in the O-mode in the case of free-ions and in the X-mode in the fixed-ions limit,
at all phases.
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(a) (b)

Figure 5.2: Same as Figure 5.1, but for χ = 89° and ξ = 30°.

In the case of χ = 89° and ξ = 30°, the plots for the energy-dependent and phase-dependent quantities
are shown in Figure 5.2.
In the energy-dependent plots, the polarization degree in the case of BB (ΠL ∼ 0.75) is always much
higher than for the free- and fixed-ions limits (ΠL < 0.2 for both). The polarization angle is still constant
at 90° (X-mode) for the blackbody emission, and for the fixed-ions limit at high energies, while it mainly
attains values between 180° and 0° (O-mode) for the free-ions limit.
The phase-dependent plots show a double-peaked flux in all three cases; the polarization degree is below
0.15 in both the limits of free- and fixed-ions; the polarization angle oscillates smoothly around 90° for
both the BB (the reason for which the phase-averaged polarization degree is not exactly 1) and the
fixed-ions limit, while it oscillates around 0° in the free-ions case.
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The second value of χ chosen was χ = 0°, the rotation axis aligned with the LOS, with ξ = 5° and
ξ = 88° the two different inclinations of the magnetic axis with respect to the spin axis. Like for the
previous case, we present the three different scenarios for the blackbody, the free-ions and the fixed-ions
limit, for both energy-dependent and phase-dependent results.

(a) (b)

Figure 5.3: Same as Figure 5.1, but for χ = 0° and ξ = 5°.

In the case of ξ = 5° (Figure 5.3), the energy-dependent polarization degree is close to zero for all
emission models, which can be understood from the geometry of the configuration: the star’s rotation
axis is aligned with the LOS, so it is observed from the rotation pole. Since the emission comes from an
equatorial belt, this explains why the phase-averaged polarization fraction is extremely low in all cases.
The polarization angle is of 90° for the BB and the free-ions case (except for lower values of the energy),
so the photons are in the X-mode, while it quickly reaches 180° (O-mode) in the fixed-ions limit.
The phase-dependent plots show a roughly constant flux for all three cases, again a consequence of the
considered geometry; the polarization fraction is close to 1 for the BB, and it is around 0.4 for both limits
of free- and fixed-ions. The polarization angle has a swing between 0° and 180° in all the three cases.
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(a) (b)

Figure 5.4: Same as Figure 5.1, but for χ = 0° and ξ = 88°.

Finally, the results in the case of χ = 0° and ξ = 88° (Figure 5.4) show energy-dependent polarization
degrees close to zero: as for the previous scenario, this can be understood when considering the geometry
of the configuration, with the rotation axis aligned with the LOS. The polarization angles reaches 90° for
the BB and the fixed-ions case (X-mode photons); the free-ions limit is described by a complicated trend
of χpol, as a consequence of the very low polarization degree.
In the case of the phase-dependent results: ΠL = 1 for the BB and ΠL < 0.1 for the free- and fixed-ions
limits; the polarization angle attains values between 0° and 180° in all cases.
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A useful comparison is the one between results obtained with QED effects accounted for and those
where they have been neglected. Considering the same aperture of 18° for the equatorial belt, and the
angles χ = 89° and ξ = 30°, we can compare the following plots (Figure 5.5), where QED effects are
ignored, to the ones of Figure 5.2.

(a) (b)

Figure 5.5: Same as Figure 5.1, but for QED effects not accounted for.

In the energy-dependent case, the most noticeable difference with respect to the plots of Figure 5.2 is
in the polarization degree, showing lower values with respect to the case in which QED effects have
been accounted for: in the case of the blackbody, in particular, the polarization fraction decreases from
ΠL ∼ 0.75 to ΠL ∼ 0.5.
In the same way, the phase-dependent polarization degree decreases in the absence of QED effects, going
from ΠL = 1 to ΠL ∼ 0.7 in the case of the BB.
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Another useful comparison can be made between different apertures of the emitting region. Consid-
ering a semi-aperture angle of 45° and the same angles χ = 89° and ξ = 30°, we can compare the plots in
Figure 5.6 to the ones of Figure 5.2.

(a) (b)

Figure 5.6: Same as Figure 5.1, but with a semi-aperture angle of 45° for the equatorial belt.

In both cases of energy-dependent and phase-dependent plots, the polarization degree of the blackbody
emission is not affected by the increase in the aperture of the equatorial belt; on the other hand, the
polarization fraction for the free- and fixed-ions limits decreases when the belt’s extension increases, with
ΠL < 0.05 in both cases. Instead, the polarization angle does not change its behaviour.
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Finally, another analysis can be made by considering a "broken" belt, with a limit of 30° in the
azimuth, with the same values of the angles χ = 89° and ξ = 30°.

(a) (b)

Figure 5.7: Same as Figure 5.1, but with a limit of 30° in azimuth for the equatorial belt.

Comparing the results of Figure 5.7 to the plots of Figure 5.2, the energy-dependent polarization degree
is shown to vary a little between the two configurations: it slightly decreases in the case of blackbody
emission, while it has a small increase for the free- and fixed-ions limits. The polarization angle has a
roughly similar trend for the BB and for the fixed-ions case; in the free-ions limit, instead, it is close to
90° at low energies, then it has a decreasing trend followed by a slight increase up to ∼ 50°.
In the phase-dependent case, the flux shows a decrease for certain values of the phase (γ ∼ 2.8–4.1 rad),
as a consequence of the presence of a "broken" belt: as the star rotates, the emission region may become
completely invisible to the observer. The polarization degree experiences a strong increase in the free-ions
limit (up to ΠL ∼ 0.5) and in the fixed-ions limit (ΠL reaches ∼ 0.7); the sudden minima are explained
by the behaviour of the flux as a function of phase. The polarization angle, on the other hand, has a
similar behaviour with respect to the case of the continuous belt.

Contour plots

A further analysis can be made by considering the contour plots of the polarization degree and the
polarization angle as functions of both energy and phase, in the same ranges as the ones used in the
plots described above. For example, the plots of Figures 5.8–5.10 show the results in the case of χ = 89°
and ξ = 30°, which are in agreement with the plots in Figure 5.2. As expected, the polarization fraction
for the blackbody emission is very close to 1; the one for the free-ions case shows higher values for low
energies (up to even ∼ 0.4 at energies below ∼ 1 keV) and two peaks in phase; in the same way, the
polarization degree in the fixed-ions case, with lower values with respect to the free-ions limit, is slightly
bigger at low energies and presents three peaks in phase.
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For what concerns the polarization angle, the blackbody emission shows an oscillation in phase around
90° for all energies. In the case of free-ions, the emission from the condensed surface has an oscillation
around 90° (X-mode photons) at low energies, while the angle oscillates around 0° or 180° (O-mode) at
energies roughly above 1 keV; the outcome is reversed in the fixed-ions limit.

(a) (b)

Figure 5.8: Contour plot of the polarization degree (panel a) and the polarization angle (panel
b) as a function of the energy and the phase, in the case of blackbody emission.

(a) (b)

Figure 5.9: Same as Figure 5.8, but for the condensed surface in the free-ions limit.
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(a) (b)

Figure 5.10: Same as Figure 5.8, but for the condensed surface in the fixed-ions limit.

5.1 Phase-averaged and energy-integrated results
In this section, the results for the phase-averaged calculations are presented, followed by the phase-
averaged and energy-integrated plots.
In the first case, the polarization degree and angle are averaged in phase and initially showed at a fixed
energy, as functions of the angles ξ and χ, both in the range 0°–90°. Figures 5.11–5.13 show the contour
plots of the polarization degree and of the polarization angle, in the case of blackbody, condensed surface
in the free-ions limit and in the fixed-ions case.
The polarization degree in the case of blackbody emission is close to 1 for higher values of χ, when
the rotation axis is misaligned from the line of sight, and for low and very high values of ξ, when the
magnetic axis direction is either very close to or very distant from the spin axis. On the other hand,
very low values of the polarization degree are encountered if the magnetic pole enters in view during the
star rotation, for all values of inclination of the magnetic field. For what concerns the case of free- and
fixed-ions, the polarization degree is generally quite low: it is below 0.4 in the free-ions limit and below
0.2 in the fixed-ions limit. The highest values occur when the magnetic axis is almost aligned to the
rotation axis, and the angle between the spin axis and the LOS is in the range χ ∼ 20°–30°. These results
are compatible with the plots described at the beginning of this chapter.
The polarization angle in the case of blackbody emission is close to 180° for lower values of χ with low
or high values of ξ, or for high values of both angles. In the case of low values of both angles, this is
due to the fact that the polarization degree is close to zero in this case. χpol is closer to 0° (O-mode
photons) for middle values of χ and ξ > 30°; for all other values of the angles, χpol = 90°, so the photons
are polarized in the X-mode. The polarization angle exhibits, in general, an almost reversed behaviour
in the two cases of free- and fixed-ions: in most configurations, when χpol = 90° (X-mode) in one limit,
it will reach either 0° or 180° (O-mode) in the other one; also, photons can be polarized in the O-mode
(χpol either 0° or 180°) in both cases. The only ranges of angles for which the photons are polarized in
the X-mode in both limits are χ ∼ 40°–50° and ξ ∼ 0°–20°, so when the magnetic field axis is almost
aligned with the rotation axis, which is in turn inclined roughly 45° from the LOS.
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(a) (b)

Figure 5.11: Contour plot of the phase-averaged polarization degree (panel a) and polarization
angle (panel b) for the blackbody emission, as a function of the angles ξ and χ, at the fixed
energy E = 4 keV.

(a) (b)

Figure 5.12: Same as Figure 5.11, but for the condensed surface in the free-ions limit.
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(a) (b)

Figure 5.13: Same as Figure 5.11, but for the condensed surface in the fixed-ions limit.

These results were also considered in an energy range of E = 2–8 keV, with the polarization degree and
angle being therefore both averaged in phase and integrated in energy. The following figures show the
analogous contour plots described above, after integration over the energy.

(a) (b)

Figure 5.14: Contour plot of the polarization degree and polarization angle, both averaged in
phase and integrated in energy, in the case of blackbody emission and as functions of the angles
χ and ξ.
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(a) (b)

Figure 5.15: Same as Figure 5.14, but for the condensed surface in the free-ions limit.

(a) (b)

Figure 5.16: Same as Figure 5.11, but for the condensed surface in the fixed-ions limit.
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Chapter 6

Discussion and conclusions

This work has been focused on the radiation emitted from neutron stars endowed with strong magnetic
fields, specifically magnetars. For low enough surface temperature and sufficiently high magnetic field,
two conditions easily met in magnetar sources, a phase transition sets in the surface layers, turning the
gaseous atmosphere into a condensate. Magnetic condensation changes the structure of matter, affecting
the spectral and polarization properties of the emitted radiation. These effects were studied by means of
some numerical tools, developed in previous works by several authors and slightly modified to perform
our systematic analysis. This produced the results shown and described in Section 5, which are now
going to be discussed.

The results refer to a star with M = 1.4M⊙ and RNS = 12 km, and with a dipole magnetic field at
the pole of strength BP = 5 × 1014 G. A dipole-induced temperature distribution was considered, with
TP = 0.45 keV and Ttruncation = 0.39 keV. General relativistic effects are accounted for.
Two emission models were considered: blackbody radiation and emission from a condensed surface, both
in the free-ions and the fixed-ions limit. The blackbody photons are assumed to be 100% polarized in
the extraordinary mode. A blackbody model was used to mimic the real scenarios of magnetized atmo-
spheres, for which a specific model was not considered, since it goes beyond the goals of this thesis.
The overall conclusion that can be drawn from the results shown in the previous chapter is that the
spectral properties are not very sensitive to the surface emission model that is considered: spectral mea-
surements alone are therefore not enough to draw firm conclusions on the physical mechanisms that
determine the emission from the surface. On the other hand, the polarization pattern has shown to be
strongly affected by the type of emission, since the polarization degree is much lower (ΠL ≲ 0.4 overall)
for a condensed surface compared with emission from a magnetized atmosphere (modelled in this work by
the 100% polarized blackbody model). Hence, performing polarimetric studies together with the spectral
ones can be of great value in better understanding the emission model of the observed sources.
This work was focused, in particular, on the effect of the changes of the geometrical configurations on the
polarization observables. The polarization degree decreases considerably in the case of a nearly-aligned
rotator (χ ∼ 0°) viewed along its rotation axis, when the quantities are energy-dependent, for all the
emission models: this is due to the fact that the different polarizations are averaged over the phases,
resulting in an overall low polarization of the observed radiation. The same configuration in the phase-
dependent case, in fact, does not show this decrease. Generally speaking, the phase-dependent analyses
can give more information on the intrinsic polarization of the emitted radiation.
On the other hand, the highest values of ΠL in the case of the condensed surface were obtained in the
case of the LOS aligned with the equator: since the radiation is emitted from an equatorial belt, and it
is always in view to the observer, this results is consistent.
Considering the polarization angle, its value reflects the mode of polarization of the photons: since the
code used here considered the X-axis of the reference frame at infinity to be coincident with the projec-
tion of the rotation axis in the plane of the sky, the polarization angle is χpol = 90° when the photons
are polarized in the X-mode, and 0° (or equivalently 180°) for the O-mode. Photons emitted from a con-
densed surface tend to be mostly polarized in one mode at low energies (E ≲ 1 keV), while the opposite
polarization mode dominates for higher values of the energy. The polarization angle only depends on the
geometry of the configuration and not on the polarization fraction: in fact, for a given pair of angles χ
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and ξ, the oscillation amplitude of the polarization angle swing as a function of the rotational phase is
the same regardless of the polarization degree behaviour or of the emission model.
This clear dependence of ΠL and χpol on the geometrical configuration makes the polarization observ-
ables, and therefore polarimetric studies, extremely useful in the understanding of the source geometry,
specifically the inclination of the LOS and of the magnetic axis with respect to the rotation one.
Some insight can also be obtained for the extension of the region of emission, as was shown by considering
different apertures of the equatorial belt in magnetic colatitude and in azimuth. Specifically, the case of
an equatorial belt of 45° of semi-aperture showed a decrease in the polarization degree (ΠL < 0.05) for
the condensed surface, with respect to the configuration where the same angles χ and ξ were considered
and the semi-aperture of the belt was of 18°.

A further analysis was done on the effect of QED on the properties of the emitted radiation, noticeable
in particular in the behaviour of the polarization degree. In all the cases considered for the emission model,
neglecting the effects of QED resulted in a lowering of ΠL, as explained in Section 3.2.

Possible future studies should address in more detail the effect of QED phenomena on the properties
of the polarization of emission. In particular, the geometrical depolarization becomes more relevant as the
extension of the emitting region increases, so that the effect of QED is stronger in keeping an appreciable
polarization fraction at the observer: it could then be of interest to study the relevance of the QED
effects as a function of the extension of the region. Additional studies, complemented with data taken
with X-ray polarimeters (e.g. IXPE), could therefore provide a test of QED predictions.
In this work, an equatorial belt was taken as the only emitting region from the source: other examples
could be investigated, considering polar caps or more complicated configurations. Also, the atmospheric
model has been neglected here for simplicity, but more extended analyses could take into account the
presence of both a condensed surface and an atmospheric layer, which is likely the case for many sources.
Finally, a purely dipolar magnetic field has been considered in this study: further works could include
the presence of more complicated magnetic field topologies.
In conclusion, IXPE has made it possible to study polarization between 2 and 8 keV, so future missions,
built with different technologies, could explore energy ranges for which no polarimetric measurements
have been performed yet, specifically below 2 keV: at these lower energies, the condensed surface is
characterized by interesting properties of the polarization observables, e.g. the mode switching, and
further studies in this energy range could shed more light on these behaviours.
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