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Abstract

Detecting gravitational waves (GWs) propagating through cosmic structures can provide valu-
able information about the geometry and contents of our Universe, opening a completely new
window for observational astrophysics. In order to carry out astrophysical and cosmological
studies it is important to have a precise formalism for using GW observations. In this thesis we
will consider GWs traveling through a perturbed FRW background and work with the geometric
optics approximation. In particular, by observing the effect of cosmological perturbations on
the GW waveform associated with a merging binary system, we calculate the correction due
to the tensor contribution when estimating the luminosity distance anisotropies. Specifically,
we compute the signatures left on the GW signal by primordial GWs and analytically derive
their signature on the angular power spectrum associated with the relative correction to the
luminosity distance.
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Chapter 1

Introduction

On 14 September 2015 for the first time gravitational waves were detected by the two Advanced
LIGO detectors [1], a century after Albert Einstein predicted their existence. This first direct
observation, named GW150914, and the following made by the LIGO-VIRGO collaborations
opened a new chapter in astrophysics and cosmology.

Besides increasing our knowledge about the astrophysical sources which produced them and
in general opening a new window for observational astrophysics (see e.g. [2-8]), GWs can be
used to test cosmological models. For instance, on 17 August 2017, the joint observation of a
gravitational wave signal [9], known as GW170817, and electromagnetic waves from the same
astrophysical object, a binary neutron star merger, marked the beginning of a new era of multi-
messenger astronomy. A detection of this type can be used to constrain the ratio between the
GW velocity and the speed of light, providing a way to test general relativity. In the case of the
GW170817 event and the associated gamma ray burst GRB170817A, the GW speed was fixed
with high accuracy [10], [*$W=] < 10, translating in the exclusion of many modified gravity
theories. Other papers which show how to test general relativity and modified gravity theories
through gravitational waves are given for example by [11-18].

Multi-messenger observations as GW170817 can be used as “standard sirens” [19] to measure
the Hubble constant, which describes the expansion rate of the Universe. Standard sirens are
the gravitational wave analog to standard candles: GW sources from which we can obtain a
direct measurement of the luminosity distance. The GW170817 event provides an example of
bright siren [20], which is a GW source that produces a detectable electromagnetic counterpart
from which we can deduce the redshift. In the absence of an electromagnetic counterpart alter-
native methods can be employed in order to infer the source redshift, such as correlating galaxy
catalogues with the inferred position of the GW source (see for example [21]). In this case GW
sources are referred as dark sirens.

Besides GWs of astrophysical origin, gravitational waves produced in the early Universe are
of great importance for cosmology [22-26]. All inflationary models predict a background of grav-
itational waves due to quantum tensor fluctuations. As a consequence primordial gravitational
waves are considered a smoking-gun for inflation. Moreover, depending on the inflationary model
which we consider, the features of the signal change, making possible to distinguish among differ-
ent scenarios. There are models which, besides the quantum fluctuation of the gravitational field,
predict additional mechanisms of primordial GW production, resulting in specific signatures.

In addition to the stochastic gravitational wave background of cosmic origin, it must be taken
into account that the superposition of a large number of signals from unresolved astrophysical
sources, too far or too faint to be detected separately, produces a stochastic gravitational wave
background (ASGWB) [27-29]. From the detection of this background of astrophysical origin
we can gain further information about the properties of the compact objects which generated it.
Since the stochastic gravitational wave background is given by the combination of contributions
of cosmic and astrophysical origin, it becomes necessary to develop techniques to disentangle
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Chapter 1 CHAPTER 1. INTRODUCTION

these two contributions in order to extract precise information.

The number of gravitational wave detectors is increasing. Present detectors include the
current ground-based interferometers, such as aLIGO/VIRGO/KAGRA collaboration, and the
PTA collaboration (NANOGrav, EPTA/InPTA, PPTA, and CPTA), which recently detected
a low frequency stochastic gravitational wave background (SGWB) [30-33]. Future detectors
include both ground-based interferometers, such as Einstein Telescope (ET) [34-36] and Cosmic
Explorer [37,38], and space-based detectors such as Laser Interferometer Space Antenna (LISA)
[39], DECi-hertz Interferometer Gravitational Wave Observatory (DECIGO) [40] and Big Bang
Observer (BBO) [41]. With the upcoming detectors the precision of the measurements will
increase, opening an era of precise GW cosmology.

As a consequence it becomes necessary to develop precise formalisms in order to use GWs to
carry out detailed astrophysical and cosmological studies. Early studies which started consider-
ing the effects of cosmological perturbations on the propagation of gravitational waves are [42]
and [43], which analyzed the Integrated Sachs-Wolfe effect (ISW) respectively on the signal
coming from supermassive black hole binaries and in the study of the anisotropies of the grav-
itational wave background. The effect of lensing magnification was treated in [44], while [45]
considered the corrections on the GW signal due to environmental effects.

In this context, in this thesis we will drop the assumption of an unperturbed FRW universe
and include cosmological perturbations. Precisely, we will calculate the corrections to the esti-
mate of the luminosity distance of a merging binary system taking into consideration the effects
of these cosmological perturbations on the propagation of the gravitational wave signal produced
by the source. We will proceed as in [46]. With respect to it, in which the amplitude and the
phase are calculated in the Poisson gauge, we will work in a general gauge. Moreover we will
consider the perturbations at the observer. The original contribution of this thesis consists in
evaluating, in addition to the scalar and vector contributions, the corrections to the luminos-
ity distance due to tensor contributions. Actually the imprint left by the gravitational waves
represented by these tensor perturbations can in principle provide information about them and
therefore constitute a complementary probe of primordial gravitational waves. Thus we will
calculate the analytical expression for the tensor contribution to the angular power spectrum
associated with the correction to the luminosity distance and relate it to the primordial tensor
power spectrum.

The thesis is organized as follows.

In this introductory chapter we will give a brief overview on cosmology, focusing the attention
on the physical quantities and equations which will be used in the following chapters of the
thesis. Furthermore we will briefly summarize the types of GW signals, concentrating on the
GWs produced by a binary system made of two compact objects.

In Chapters |2 and [3| we will describe the Isaacson’s geometric optics approximation for grav-
itational waves and the Cosmic Rulers formalism, which are used to study the propagation of
gravitational waves over cosmological distances. By using the geometric optics approximation
we assume that the metric can be written as g, = QW + hy, where the small perturbation hy,
represents the gravitational waves, which are characterized by a short wavelength and propagate
over a curved background described by the metric g, which varies on larger scales. The back-
ground metric g, will be additionally split into the metric associated to a homogeneous and
isotropic universe and first order perturbations which describe the large-scale structure (LSS) of
the Universe. We will demonstrate that in the geometric optics limit gravitational waves travel
on null geodesics of the background g,,,. Consequently the Cosmic Rulers formalism, initially
introduced for the electromagnetic radiation, can be extended to gravitational waves. We will
describe the Redshift-GW frame (RGW), used as reference system, and the real frame. Then
we will see how to set a map between the two frames by decomposing each physical quantity
of the real frame into a zero order contribution, given by the solution in the RGW frame, and
a first order perturbation due to cosmic inhomogeneities. Chapter [2| will be devoted to the
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Chapter 1 1.1. SOURCES AND TYPES OF GW SIGNALS

geometric optics approximation, while in Chapter [3] the attention will be focused on the Cosmic
rulers formalism, in particular on the calculation of the wave-vector and geodesic perturbations
in terms of the metric perturbations.

The effects of the LSS on the GW phase and amplitude will be analyzed in Chapter [4]

In Chapter [f] we will analytically derive in terms of scalar, vector and tensor perturbations
the relative correction to the luminosity distance and calculate the angular power spectrum
associated with it.

1.1 Sources and types of GW signals

In this section we provide a brief description of the different types of GW signals. Known
GW sources span a frequency region of many orders of magnitude. As we can see in figure
different types of GW detectors are necessary to observe the entire GW spectrum: each
instrument is designed to detect a specific frequency range. For example space-based detectors

The Gravitational Wave Spectrum
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Figure 1.1: The GW spectrum and the associated sources and detectors. Figure credit: NASA Goddard
Space Flight Center https://science.gsfc.nasa.gov/663/research/

like LISA are aimed at detecting gravitational waves with frequencies between 0.1 Hz and 1 Hz
(the region highlighted in figure , quite lower in comparison with ground-based detectors.
Gravitational waves observed by LISA could come from extreme mass ratio inspirals (EMRI),
systems which consist of a stellar mass compact object orbiting around a massive black hole.
GW sources that could be observed by LISA include also binary black holes in the early inspiral
phase. Some of these events could become multi-band events if later detected by ground-based
interferometers. Given that pulsar timing arrays operate at frequencies of the order of 10~ Hz,
they are sensitive to different types of sources with respect to the other GW detectors. A possible
source of the low frequency stochastic gravitational wave background recently detected by the
PTA collaboration is a population of supermassive black hole binaries which form in galaxy
mergers and are distributed throughout the Universe. However there are alternative cosmological
interpretations of the origin of the signal (see e.g. [47-49] for possible interpretations, both
cosmological or astrophysical).
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Figure 1.2: Examples of signals which could be observed by LISA and other ground-based detectors. The
times indicate the time to merge. [50]

We proceed by classifying the different kinds of signals. The main distinction is between
astrophysical gravitational waves, which, as the name suggests, are produced by astrophysical
sources, and cosmological gravitational waves, whose sources are early Universe mechanisms.

1.1.1 Astrophysical sources

A classification of the astrophysical GW sources can be based on the type of signal they emit
(see e.g. [51]). We can distinguish three kinds of signals: transient, continuous and stochastic.

Transient signal

Transient signals last for a relatively small amount of time in the detector bandwidth. This means
that we are including both intrinsically short events and signals which can be observed only for
a limited amount of time by the detector, given that it is sensitive only to a specific frequency
range. As an example current ground-based interferometers cannot access the frequency region
below 10 Hz because of seismic and Newtonian noise. This implies that they can observe only
the final stages of binary inspirals.

Transient signals can be further divided in

e modelled signals, such as compact binaries close to coalescence; in this case we have a
detailed knowledge of the shape of the signal in terms of a limited number of source
parameters;

e GW bursts, which are not well modelled signals, such as supernova explosions; in this
case we have no precise description of the shape of the signal, we are only able to make
assumptions, imposing for instance constraints on the total duration of the signal, typically
less than a second, and on the frequency band where the power is concentrated.

Continuous signal

Continuous signals refer to long-lasting signals that are present for the entire available time
of observation, which can be of years. As the time of observation increases the signal-to-noise
ratio increases. These signals can be emitted for example by non-axisymmetric spinning neutron
stars, whose asymmetry could be due to imperfections in the spherical shape of the surface. This
type of periodic source emits a quasi-monochromatic signal: intrinsic variation of the frequency
of the source and modulation effects due to the motion of the Earth must be taken into account.



Chapter 1 1.2. UNPERTURBED FRW UNIVERSE

If we consider future space-based detectors another example of continuous GW signals can be
provided by the early stages of binary inspirals.

Astrophysical stochastic background

This stochastic background is due to the superposition of a large number of signals from unre-
solved astrophysical sources, too far or too faint to be detected separately.

1.1.2 Cosmological GW

As already explained in the introduction, in this case we area talking about the stochastic
gravitational wave background generated by processes active in the early Universe. Cosmological
gravitational waves are predicted by any model of inflation. Besides it there are additional
mechanisms which can produce gravitational waves in the early Universe, resulting in specific
features of the signal.

1.2 Unperturbed FRW Universe

This section, in which we give some basic definitions used in cosmology, is mostly based on [52].

The real physical Universe has structures: we observe galaxies, filaments and walls, cluster
and superclusters of galaxies, voids. These structures formed from initial small inhomogeneities
in the energy density set at end of inflation, a period of accelerated expansion during the early
universe. These initial perturbations grew by gravitational instability, leading to the large
scale structures we observe today. Only on very large scales, above 100 Mpc, the Universe can
be considered on average homogeneous and isotropic and therefore can be described by the
Friedman-Robertson-Walker (FRW) metric

dr?
1 — kr2

ds? = —dt® + a?(t) r(d6? + sin® 0d¢?) | , (1.1)

where t is the cosmic time, a(t) is the scale factor, r, § and ¢ are the comoving spherical
coordinates and k is the curvature parameter.
The evolution in time of the scale factor a(t) is obtained by the Einstein’s equations

1
R, — igWR = 81GT),, . (1.2)

If we consider a perfect fluid the stress-energy tensor T),, is given by
T,uzz = (/0 + p)u,uuu + P9uv (1'3)

where g,,, is the metric tensor, p the density, P the pressure and u, is the 4-velocity of the
fluid elements. Inserting (1.1) and (1.3) in the Einstein’s equations we obtain the Friedmann
equations:

8¢ k
HQZT/)—E, (14&)
a 4G

where the dot indicates the derivative with respect to the cosmic time ¢ and H = a/a is the
Hubble parameter.
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1.2.1 The Hubble parameter

If we assume a ACDM cosmology, the Hubble parameter is a function of the matter (p,,),
radiation (p,) and dark energy (pp) content of the Universe:

122(6) = 13 2,0(%2) "+ 0o (22)" + 00 (2)” 4 0] (1.5)

where perit0 = 3HZ /87G is the critical density today, Q.0 = pio/perito and Qpo = —k/(agHp)?
is the curvature density parameter. The last expression can be obtained from the first Friedmann

equation ([1.4al).

Taking into account that we can neglect radiation at present time we have

H(z) = Hoy/Qm(1 4 2)3 + Qp(1 + 22) + (1.6)

where z is the redshift and, as in literature, we dropped the lower index 0.

1.2.2 Redshift and comoving distance
The redshift of a luminous source is given by

L=
=

(1.7)

where A, is the wavelength of radiation at emission time t. and \g is the wavelength of the light
received at time tg. The difference between Ao and A. is due to the expansion of the Universe.
The relation between the redshift z and the scale factor a is given by

ag
1 = — 1.8
ta= (1.8)

where a = a(te) and ag = a(tp) = 1. The comoving distance from the light source to the observer

is therefore given by
o dt L' da Ze dz
= _— —_— = . 1.9
[ e, 16 9

1.2.3 Luminosity distance

The luminosity distance Dy, is defined by

L

F=—3-+ 1.10
47rD% ’ ( )

where F' is the observed flux (the power received per unit area by the observer) at to and L is
the luminosity of the source (the energy emitted per second).
In a FRW Universe, if the source is located at the comoving distance x, the flux is given by

2
F:‘%2<“>. (1.11)
dragx= \ ag

The last expression can be explained in the following way. The area of a sphere which at time g
is centred on the source and passes through the Earth is given by 477@%)(2. The photons which are
received are redshifted by a factor a/ag because of the expansion of the Universe. Moreover the
photons emitted in an interval §t arrive at the observer in an interval dtg = (ag/a)dt. Therefore,

comparing (1.11)) with (1.10) we obtain

Dy = y. (1.12)
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Consequently the luminosity distance in a FRW Universe is found to be

z dZ/
Dr=(1+z2 —_—, 1.13
where H is the Hubble parameter ([1.5]).
For z <« 1 the last expression reduces to the Hubble law

z~ HyDp, . (1.14)

The Hubble parameter today, Hy, is called the Hubble constant. From the measurements of
Hj at early and late cosmological times emerged two sets values. This discrepancy goes under
the name of the Hubble tension (see e.g. [53]). Using bright or dark sirens provides a third
independent way to measure the Hubble constant. From the first bright siren observed by the
LIGO-VIRGO collaboration, GW170817, it was inferred a value of 70:132 km s~ Mpc ™! [20], but
it was not precise enough given the larger error bars with respect to the other measurements.

If we consider higher redshifts, we can see from and that the luminosity distance
encodes information about cosmic expansion at early epochs.

1.3 Coalescing compact binaries as standard sirens

In this section we see how compact binaries can be considered as standard sirens: GW sources
from which we can obtain a direct measurement of the luminosity distance. We will calculate the
GW waveform of the signal emitted by these objects and see how it depends on the redshifted
chirp mass and the luminosity distance. This part is mostly based on [51].

1.3.1 Quadrupole radiation

We start by briefly summarizing the formulas necessary for describing the emission of gravita-
tional waves by a binary system made of two compact objects. If we consider the quadrupole
approximation, the expression for the emission of gravitational waves in the TT gauge is given
by

12G . r
TT
[hij (t,x)]quad = ;CTQZ‘J‘ (t - c) ) (1.15)
where
. I N

QU =17 = 20" Iy = / d3z p(t, x) (mzx] — 37«25”) (1.16)

is the reduced quadruple moment,
i1 3, 700 i, j
IV = - [ &>z T(t, x)z"2? (1.17)
c

is the second moment of the mass distribution, Iy is the trace of I;; and r is the distance from
the source.

In order to analyze the evolution of the system due to the emission of gravitational waves
we will need the total radiated power, which in the quadrupole approximation is given by

dEu
dt

G 1
:5?<Iij Iij_g(lkk)2>’ (1.18)

where (...) denotes an average over many periods of the GW and IU are evaluated at the
retarded time ¢t — r/c.
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1.3.2 Spiralling of a compact binary

We consider a binary system made of two compact objects. We use the Newtonian approximation
to describe its dynamics. The compact objects are treated as point-like and their masses are
denoted by m; and my. We assume they move on a circular Keplerian orbit. The orbital angular
velocity ws is given by Kepler’s law
GM
2

where R is the orbital separation and M = mj + mo the total mass.

Neglecting, for the moment, the back-reaction on the binary system due to the emission of
gravitational waves, we calculate h and hy. The second moment of the mass distribution for

the binary system taken into account is given by
L, = miadat + moadah (1.20)

Choosing a reference frame (x,y, z) so that the two particles are in the zy plane and inserting
their positions in (1.20]), we obtain

Iy = pR? sinz(wst) , Iy, = uR? cos? (wst) , Iy = Iyy = uR? cos(wst) sin(wst), (1.21)

where p = (mymg)/(m1 + my) is the reduced mass.
Given the generic direction of propagation

n = (sin @ sin ¢, sin O cos ¢, cos ) (1.22)
we obtain . ,
4 (GM\3 (Tfow )31+ cos?8
hy(t) = 7“( 2 ) < (f > 5 cos (27 fgwtret + 20), (1.23a)
4(GM.\}
hy(t) = - < 2 c) <7rf;gw> cos 0 sin(27 fywtrer + 2¢) , (1.23b)

where fg,, = 2ws/(2m), 7 is the distance from the source, t,¢; is the retarded time ¢t — r/c and

3
mims)s
M, = us M3 = (172)1 (1.24)
(my1 4+ mg)s
is the chirp mass, a key quantity to describe the evolution of the system, as we will see now.
The next step consists in considering the evolution of the binary system due to the emission
of gravitational waves. In order to find the radiated power we insert (1.21)) in (1.18]). We obtain

10
Tt (125
Given that for a circular keplerian orbit the energy is given by
mim
E=-G 21R 2 (1.26)
it can be easily seen that
dR  2R?* dE, _ (1.27)

at _Gm1m2 dt
We are considering the regime of quasi-circular motion. In other words we are working under
the assumption of a circular orbit with a slowly varying orbital radius. This approximation is
valid as long as ws; < w?. Because of the emission of gravitational waves the energy of the
system decreases, the orbital separation R decreases and, according to Kepler’s law, the orbital

8



Chapter 1 1.3. COALESCING COMPACT BINARIES AS STANDARD SIRENS

frequency increases. From ((1.25)) we deduce that the radiated power increases, accelerating the
process.
Combining (|1.25)) and -, using ) and wg, = 2w, we obtain the equation for the

frequency evolutlon
. 96 & (GM\3

fow = 57 < > fgw- (1.28)
Equation ([1.28)) shows that we can obtain the chirp mass measuring f gw 0 correspondence to
fow-

We are finally able to see how the back-reaction on the binary system due to the emission
of gravitational waves has an impact on the gravitational wave signal itself. We have

1 2
hy = hc%sg cos[® (trer)] (1.292)
hyx = hecosOsin|[®(tre)], (1.29b)
where .
B(t) = / A wy (1) (1.30)
to
and

(1.31)

-] et

Given that we are in the regime of quasi-circular motion, the time derivative of R(t) and w(t)
were neglected.
While the gravitational wave is described by a tensor h;;, the input of the detector is a scalar
quantity and is given by
h(t) = Fyhy(t) + Fxhy(t), (1.32)

where F; and Fx depend on the direction of propagation of the wave and on the geometry and
orientation of the detector.

1.3.3 Sources at cosmological distance

Up to now we neglected the fact that the Universe is expanding. However if we consider sources
at cosmological distances the expansion of the Universe has to be included. If we consider an
unperturbed FRW Universe, the gravitational wave amplitude after propagation from the source
to the observer is given by

he(t™¢h) = (1.33)

4 [GM3[mfo,(tre)]5
aoel ] )

The next step consists in expressing the amplitude in terms of the quantities measured by the
observer. Given that f;, = (1 + 2)fy s and using , - can be rewritten as

hc(tret)zzj@(l+z)[G?j} e +Z)C°bs(t£§§)]s
:D:L(z){(lﬂfmﬁ Obscuz;@r (1.34)
Srn obs retyq 2
_Dj(z) {G?ﬂ [ c(tObS)] :

9
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where

M, = (1+2)M, (1.35)

is the redshifted chirp mass. We see that we cannot obtain information about the redshift of
the GW source from the gravitational wave itself: GW observations are sensitive only to the
redshifted chirp mass.

1.4 Perturbed flat FRW Universe

Up to know we have considered a homogeneous and isotropic Universe. The next step consists in
accounting for cosmological perturbations. As a consequence in this section we show how to write
the perturbations of the FRW metric and the stress-energy tensor. This part is based on [54]
and [22]. Finally we will focus the attention on the evolution of the primordial perturbations
and the description of the primordial tensor power spectrum.

Perturbations of the metric tensor

The components of the perturbed spatially flat FRW metric are given by

—+o0
1
_ 42 — A
goo = —a’(n) |1+ 221 r!A , (1.36a)
+o0o 1
goi = goi = —a*(n) gBi(r) ; (1.36b)
r=1 "

+oo
1 T
ij :a2(,,7){ [1—QZHD(T 51]-1-2 'hgj }, (1.36¢)
r=1

where hg;) is traceless, 7 is the conformal time, which is related to the cosmic time by dn = dt/a,

and A", Bi(r), D), hl(-;) represent the rth-order perturbations of the metric. In this thesis we
will stop at linear order (r = 1) in the metric perturbations.

Perturbations of the stress-energy tensor
The stress-energy tensor for a fluid is given by
Ty = (p+ p)uuul/ +pguw + Wy s (1.37)

where p is the energy density, p is the pressure, II,, is the anisotropic stress-tensor and u* is
the 4-velocity. The energy density p and the 4-velocity u* of matter can be expanded as

p=po) + Z 5/) (1.38)
r= 1
and
1 "
- 1.
- <5 +Z > (1.39)
where y
1 )
B e 0
Uy = a50 = 5 (1.40)
~900

10



Chapter 1 1.4. PERTURBED FLAT FRW UNIVERSE

is the 4-velocity in a FRW Universe. Taking into account the normalization condition utu, = —1
the first order perturbation v?l) can be written in terms of the lapse function A(,). We find

vly = —Aq) - (1.41)

As concerns the pressure perturbation, using the equation of state, we have

0 0
5p:a—p 5p—|—£
o

. 95 08 = C?(SP + 0Pnon adiabatic ; (1‘42)

p

where S is the entropy and c¢; is the adiabatic speed of sound of the fluid.

1.4.1 Gauge problem for cosmological perturbations

In general relativity when we consider perturbations of fields we have to take into account
perturbations in the geometry itself. Since the comparison between two tensors has to be done
at the same point, when we consider a perturbation of a generic tensor field given by

AT =TT, (1.43)

where T" and T are the values in the physical perturbed and FRW background space-times, we
need a one-to-one map between the two varieties. The choice of such a map corresponds to a
gauge choice and a gauge transformation is a change of the map.
At linear order in the perturbations the expression for a generic tensor T after a gauge
transformation is given by
T=T- LTy, (1.44)

where L¢ is the Lie derivative along the vector field { and in order to define the gauge transfor-
mation we considered the passive coordinate transformation x* — x* + £* on the background
manifold (for the details see Appendix A of [54]).

The tensor perturbation AT is gauge dependent. The relation between the perturbations in
two different gauges is obtained as follows. The tensor perturbation is given by AT =T — Ty in
the first gauge and AT = T — Tj in the second one. Inserting them in we find

To+ AT =Ty + AT — LTy, (1.45)

which implies .
AT = AT — L¢To. (1.46)

1.4.2 Power spectrum

As regards the cosmological perturbations, a useful statistical tool is the power spectrum. In
order to define it we consider a generic random field g(x,t) and expand it in Fourier space:

3 .
o(x.1) = / (217:36““91((t>. (1.47)

The power spectrum P, (k) is defined by
(g1 giw) = (21)°8° (k — K') Py (k) (1.48)

where (...) denotes an ensemble average. From (|1.48) we can deduce that the power spectrum
is the Fourier transform of the two point correlation function:

3 .
€ = labxgx+1.0) = [ G5 (b), (1.49)

11
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As a consequence the variance is given by

3
7 =l 0F) = [ (o) = 51 [akir,m = [Eagw. s
where
]{?3
Aglk) = 55 Py(k) (1.51)

A quantity which is used to describe the shape of the power spectrum is the spectral index
ng(k), which is given by
dlnA,

k)—1= .
ng (k) dlnk

(1.52)

1.4.3 Perturbation evolution

In the final chapter of the thesis we will relate the angular power spectrum CZDL to the primordial
power spectra Py (k) and Pro(k).
As regards the power spectrum Pg(k), which is defined by

(U, () Wy (K)) = (2m)°5p (k — k') Py (k) (1.53)

we will use the relations in Fourier space between the linear perturbations ¥(a,k), ®(a,k),
v(a,k) and W,(k), which is the primordial value of the potential ¥ set during the inflation
epoch. As concerns this part we will follow Appendix B of [46] and Appendix E of [55]. General
relations which do not specify the DE model are given by

9 Gy(a, k)

W(a, 1) = 15 Tn(B) 72w () (1.54a)
D(a,k) = E)Tm(k)gq’(Z’ k) U, (k), (1.54b)
v(a,k) = —%Tmljk)gv(a, R, (k) . (1.54¢)

where T, (k) is the Eisenstein Hu transfer function [56] and in the G functions is encoded the
dark energy model.
If we consider ACDM and Dark Energy + Dark matter models the G functions become

D
Go = Gy = D<Z) Wi, 5 (1.55a)

2 kH D(n)
= 5= Qin ,
3 QmoH5 Din

Gy, =f (1.55b)

where D(n) is the growth mode and f = dln D/dIna is referred as the growth factor. Therefore
we have

¥(a, k) = B(a, k) = %Tm(k)%(ii) g, (k) (1.564)
v(a, k) = —%Tm(k:) f Q::Hg ll))(i?am‘lip(k) . (1.56D)

We proceed with the description of the power spectrum Ppg(k). The decomposition of the tensor
perturbations hg;T (which represent the primordial gravitational waves) is given by

3 “ ~
W ) = [ sy P e )+ 1 (e e (). (1.57)

12
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and the primordial tensor power spectrum Prg(k) is defined by

<h1))\7‘im(k) h;\;’im(k,)> = (2m)%0p(k — k')ﬁAépTo(k) ; (1.58)

where A = 4, X and h;/j\rim (k) are the primordial gravitational wave modes. The expression for

the primordial tensor power spectrum Prg(k) is given by

Pro(k) = 272k (:;)nTAT(ko) , (1.59)

where Ap (ko) is the amplitude at a given pivot scale kg, Pro(k) is related to Ap(k) by

272
Pro(k) = T3 Aro(k). (1.60)
and din A
AT
= — 1.61
"=k (1.61)

is the tensor spectral index. Standard single-field models of inflation predict a negative tensor
spectral index nr (red-tilted GW spectrum) which satisfy the consistency relation [57]

where 7 is the tensor-to-scalar ratio. Currently a tight bound on CMB scales is given by r < 0.032
[58]. As regards other models which predict a blue-tilted (n7 > 0) GW spectrum and/or the
violation of the consistency relation see for example [22].

As concerns the expression of the transfer function 77(k,n), which describes the sub-horizon
evolution of gravitational waves when they enter the horizon after the phase of accelerated
expansion and is defined by

WA, 1) = Ry (K) T (R, 1) (1.63)

the main reference is [59]. We denote by k., the wave-number of the modes which enter the
horizon at the epoch of matter-radiation equality and by 7., the conformal time corresponding
to the matter-radiation equality. For k > k., and 1 < 1., the transfer function is given by

Tr(k,n) = jo(kn) . (1.64)

As regards the spherical Bessel functions jy,(kn) see Appendix |Cl For k > k.q and n > 14 we
have

T (kyn) = %[A(k)ﬁ(kn) + B(k)yi(kn)], (1.65)

where A(k) and B(k) are obtained matching (1.64]) and (1.65) (and their first derivatives) at
matter-radiation equality [59]. Finally, for k < keq and n > 7, the transfer function is given by

_ 3j1(kn)

Tr(k,n) B

. (1.66)
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Chapter 2

Geometric optics approximation

In this chapter we analyze the geometric optics approximation for gravitational waves which
propagate through a curved space-time. This approach for the study of the propagation of
gravitational waves was devised and developed by Richard Isaacson in [60,61]. In addition to
these two papers this chapter is mostly based on [51] and [62]. We will begin from the description
of the geometric optics limit: gravitational waves, represented by the small perturbation A,
of the metric, vary on a length scale much smaller than the characteristic scale of variation of
the background g,,,. Then we will expand the Einstein’s equations in powers of i, estimating
the order of magnitude of each term. We will proceed by splitting the Einstein’s equations in a
low-frequency and high-frequency part. The second one will provide the propagation equation
for the perturbation h,,. The following step will consist in finding the explicit expression of the
propagation equation in terms of . In order to simplify it we will change variable, substituting
hy with 1_1“,, = hyy — %gwh, and we will use the specific gauge condition @Vﬁwj = 0. Finally we
will obtain the evolution equations for the amplitude and the phase of the gravitational wave.

2.1 Hypothesis of high frequency

We assume that the metric g, can be split into a slowly varying background g, and a small
amplitude perturbation h,, which is rapidly varying. Therefore we can write

gMV = g;u/ + huu bl (21)
where
guu = O(1> 9 h,uu < 17 (22&)
1 h A
v ~ 7 Py ~ < — << 1. 2.2b
apg;uz LB ’ ap o 2 LB < ( )

The perturbation varies on a scale A\ much smaller than the scale of variation Lp of the back-
ground. The small parameters h and A\/Lp are linked: their relative strength will be deduced
by looking at the Einstein equations.

The inverse metric to third order in h is given by

g = G — W+ hERP — WPPRORY + o(hP) | (2.3)

where the indices of hy, are raised with the background metric g"”.
The metric g, satisfies the Einstein field equations

8rG 1
Ruy = CT <T/Ll/ - 2g/>”1T> ; (24)
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Chapter 2 CHAPTER 2. GEOMETRIC OPTICS APPROXIMATION

where T}, is the stress energy tensor due to the presence of external matter, 7" is its trace and
R,,, is the Ricci tensor, whose expression is

Ry = Ry, = 03Ty, — 0,13, + T3, 10, =T, I% . (2.5)

The Christoffel symbols which appear in (2.5)) are given by

1
F;)j\,l/ = ig)\a <8ugal/ + aVg,u,a - acfQuV) . (26)

The next step consists in inserting the decomposition (2.1)) of the metric in the Einstein equations
3.

2.1.1 [Expansion in powers of h,,

Expansion of R,

We start with the expansion of the Ricci tensor to second order in the metric perturbation h,,:

Ry =R + R + RQ) + O(h?), (2.7)
where

J RES,) depends only on the background metric g,,,,
o RE}V) is linear in f,,,
e R} is quadratic in h

po 18 quadratic in hy,.

By looking at (2.2 we can see that the derivative 0h is much higher than 03, g and h. Each
partial derivative applied to the perturbation h,, corresponds to a factor 1/X. It follows that

the leading order terms of R( ) come from the terms T which contain the second derivative

0%h. A similar reasoning can be applied to R( ). In this case the leading order terms come from

0?h and (Oh)?. Therefore, taking into account that the inverse metric to second order in A is

g V=g ' —hg 2 + h?53, the estimation of the order of magnitude of each term Rl(ﬁ,) is the

following:
= 0()
o RW) ~§ '?h=0(L),
o RY) ~ g 20%h = 0(L3).
Expansion of T},,, — %g,wT

Since the stress-energy tensor 7),, in general depends on the metric g, = g, + hyy, the same
expansion to second order in the perturbation h,, is applied to the RHS of the Einstein’s

equations (2.4)):
1 0 1 1) 1 (2)
(191379 4 (5Lt (5 L)

. ,SB) is constructed only with g,,, and 7O = gp"Tp(g),

87TG

RO+RY+RE) = . (2.8)

where
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Chapter 2 2.1. HYPOTHESIS OF HIGH FREQUENCY

(1) @)
. (TW — % gWT> and <Tw/ — % gWT) are respectively linear and quadratic in A,

The explicit expression of the part of the stress-energy tensor linear in the perturbation hy, is
the following:

1 @ 1. /. 1 /. 1. .
(Tul/ - zg,uVT> = T/Eylj) - 59/11/ (gp Tp(;)) - Qh/vw <gp Tp(2)> + Eg/uz (h/) T/Sg)> (29)
1.

1 1.
=T = 33, T = ShTO + 35, (7 TD) | (2.10)
where T} is linear in h and T() = groT Y.
As regards the estimation of the order of magnitude of the terms of the last expression,
there are no derivatives of h,, in (1/2)h,, T and (1/2) Gy (hp"Tég)) Furthermore, in our
case the stress-energy tensor is given by a macroscopic distribution of matter, therefore also TL(L,l,)

(1)
and (1/2) ng(l) do not contain derivatives of h,, . It follows that <Tuv - %ng) does not
contain terms of order h/A? and h/\.

2.1.2 Split in high-frequency and low-frequency parts

Having expanded the Einstein’s equations in the small perturbation h,,,, the next step consists
in splitting them in a high-frequency part and a low-frequency part. In order to do that it must
be taken into account that:

. R,(g,) does not contain high frequency modes since it depends only on the background metric

gp,w

. RE}V) contributes only to the high frequency part of the Einstein’s equations since it is linear
in by,

. RE?,,) contains both high and low frequency modes; this statement can be understood by
thinking about the product h,,h,; of two metric perturbations where a high frequency
mode of h,,, characterized by a wave-vector kj, could combine with a high frequency
mode ko ~ —k; coming from h,,, giving rise to a low frequency mode [51].

A similar reasoning can be applied to the term 7, — (1/2) g, T. It is worth mentioning
that we consider a stress-energy tensor due to a macroscopic distribution of matter, which is
assumed to be smooth. It follows that the only high frequency components in 7}, come from
the fact that in general the stress-energy tensor depends on the metric g, and consequently on
the perturbation h,, [51]. The other high frequency components come from the fact that the
trace of the stress-energy tensor is constructed with g,,, and multiplied by it.

Therefore the high and low frequency parts of the Einstein’s equations are:

(1) (2] high 871G 1 W 8G 1 @] o
R;w == |:R,uy:| + CT <Tuu - 29;WT> + CT (Tuy - QQIWT> (2.11&)
low 871G 1 817G 1 (2) low
0) __ 2 0 ~ 0
RO = - [wa)} + = (m _ §gWT< )> + <TW - 2g,WT> (2.11b)

On the basis of equation (2.11b]) the relative strength of the small parameters h and A\/Lp can
be deduced. We can distinguish two following cases.
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low
e If there is no external matter 7, = 0 and RSJV) is determined by [R,(EV) } . It follows that

1 h? A
-~ — B~ 2.12
L3 2 Lgp (2.12)

e If the background curvature is determined by the stress-energy tensor T}, the contribution

low
given by [R,(E,,)} is negligible. Therefore

1 h? h? A
g ~ 2 + matter contribution > 2 — h < s (2.13)

Averaging procedure

The split in the high and low frequency parts can be accomplished by averaging over a length
scale [ which is larger than A and smaller compared to Lp:

A<« Lg. (2.14)

The averaging scheme is introduced by Isaacson in [61] under the the name of “Brill-Hartle
averaging”. Since the part which varies slowly remains constant on a length scale [, the averaging

procedure has no effect on it. For example <R,(f,),) >i = R,(f,),). On the other hand the part which

rapidly oscillates averages to zero. For instance <R,(},,) >7 =0.

l
Therefore by averaging equation (2.8)) the slowly varying part is extracted:

817G [ = 1. -
0) _ 2 ~
R;(w) == <R;(w) >Z + A (TW - 29WT> ) (2.15)

where (...); denotes an average over many wavelengths A\ and

_ 1. - 1
Ty — §9uuT = <Tuv - 29uvT>l (2.16)

This is the “coarse-grained” part of the Einstein’s equations. It shows a non-linear phenomenon:
how the gravitational waves affect the background curvature. Indeed equation (2.15) can be
rewritten as

REL(I)/) - §§MVR = T4 (T;,LV + tul/) ) (217)
where
o= (g Lo po (2.18)
122 87G v 97 ; .

is the effective stress-energy tensor associated to gravitational waves.
In order to find the fluctuating part we subtract from equation (2.8]) the averaged part (2.15)).

We obtain
high
high 837G 1 W 8@ 1 @
Ry = - [R2)"" + (1 - Jout) TR | (T jeuT) | 19

where [R,(EV)} ot _ R,(EV) - <R£2y) >7 .

Since, as will be explained later, we will consider only terms of order (\/Lg)~2 and (\/Lg)~!,
the terms that contain the stress-energy tensor, which are of order (\/Lg)?, are neglected. We
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proceed by selecting the part which is linear in the amplitude A. We obtain the equation for the
propagation of waves

1 —
RY(h)=0. (2.20)
(2)]high . . .
The term [RW} is responsible for non-linear correction j,, to h,:
. high
ROG) = - [R2m)] . (2.21)

These higher order corrections will not be investigated in this thesis.

2.1.3 Gauge transformations and invariance

Since it is useful to use a specific gauge in order to simplify the propagation equation (2.20)), in
this section we analyze how R,(}V) changes under a gauge transformation. We consider a gauge
transformation induced by a quadrivector & of the same order of the metric perturbation.

The metric changes in the following way:
G+l — By + g — V& = V&5 (2.22)

In order to continue to consider g, as the the background metric we demand that (hy ufv

l,fﬂ) < h, which implies Vufl, < h. Given that V“,{,, = 0u& — Wfp, the previous condltlon
corresponds to:
¢ < h, (2.23a)

¢<hLg. (2.23b)
(1)

As concerns Ry, , after a gauge transformation it becomes

RY — RY) - LeRY), (2.24)

uv

where the Lie derivative is given by

LRY) =7V RY) + ROV, + ROV, (2.25)
From
V.7 < h < hL d RO~ g%~ VoRY) ~ 85 !
1/6 ~ 1 gw B an v " ~ LT = otluy Guv ™~ LT
B B

follows ) e
O < - =2 (2.26)

L:RO) <
oS T T NI

Since Rf},,) ~ h/\2, ,
A
LeRY) S (LB) R}) < R(). (2.27)

Therefore in the high frequency limit \/Lp < 1 the perturbation RS,,) of the Ricci tensor is
approximately gauge invariant.

R,(}l,) contains terms of order h/A\?, h/\ and h, while EgR,&()V) is of order h/L%. Consequently
the leading and next-to-leading order terms of RE}V) don’t change under a gauge transformation.
Therefore the terms which arise from a gauge transformation can be dropped by neglecting
(A\/LpB)? contributions. Limiting to the leading and next-to-leading order in A\/Lp is exactly

what will be done in the geometric optics approximation.
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2.2 Propagation in a curved space-time

2.2.1 Calculation of RE})(h)

The aim of this section is to find the expression for RSV) (h), which is the part of the Ricci tensor
linear in the perturbation h,,,. We follow the procedure suggested in [62]. The quantities denoted

by a tilde are constructed with the background metric g,,, only. We will write RO, — Rﬁw and
Ry, — RJV in terms of the tensor S%, = I'Y, — fﬁa. Since in the calculations the expression for
Sf, is never specified, the obtained results will be independent of the order at which we stop
in the expansion in hy,. Only later the calculations will be restricted to the linear case by not
considering the terms quadratic in S0, and neglecting in the expression for S0, the quadratic

terms in hy, .

_ F i P
R,, — R, expressed in terms of S;w

We begin by calculating RS, — RC’;W. Defining
=P
Spl/a - Pled - Fua (228)
and given that
A A
Rl = 0,0, — 0,10, + T, —T0,I), (2.29)

and ) 3 . N N
R =010 — ayrfw +100,r, — rﬁArW ,

o u (2.30)

we can write
R, — R, = (005 —0.0%,) — (0,10, —d,I',)
+ (FZAF% - f,pmfia) — (M0, Ty — fllj)\fza) (2.31)
= 0.5y — 0y + (T2, — TiaT0y) — (T0\T0, — AT,
Since
ViuShe = 88ty + T S0e — TSt = ThaSh, (2.32)
the part which contains the partial derivatives of S{, can be rewritten as
0uSy = 0,5%, = (ViSe =TS0 + TS5, + ThsS,)
— (VoS =T, 8%, + 120,55, +T0.5%,) (2.33)
= VS = VS =0 S + 10,85, + TS5, —T0,95, -
Moreover, using ([2.28)), we find

~p =)
Fu)\rua = (FZA - SZA) (Fr//\a - SV}/O’) - FZ)\FIi\U - FZ)\S)I\/U - Fl)/\asp,u)\ + SZ)\S}I\/O’ . (2'34)

Finally, inserting (2.33) and (2.34) in (2.31), we obtain

RO, =R, =V, —V,S0, =T8S, +T0, 8%, +Th, 5%, —T0,59%,
+ (D035 + 10555, = 5" 35%0) — (T03Ss + TppSh ) — 50,50,)  (2.35)
= VS0, = VS0, =5 Sy + 5 -
o o uA= vo VAN po

As regards the Ricci tensor we find

5P
Roy — Ry = R, — R, = V,5,, = V,5, =9 S, + 5,5, (2.36)

v
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p .
S o expressed in terms of h,,

Now we calculate SP, at linear order in Py
We begin by expanding in h,, the Christoffel symbols. Given that

1
Fﬁa = igp)\ (avg)\a + aagz/)\ - a/\gua) (237)
and .
Lo = 53" (0vd + 029u0 — Orduo) (2.39)
we obtain

1
Iy = 5 (0 = 1) (0udr + Ohire + ol + Oshur — DrGuo — Orhuo)

1 1
— igpx (Ovdre + O0Fun — OrGyo) + igm (Ovhro + Oohur — Orhuo)

1 (2.39)
— §hp)\ (al,f})\g + 8U§U)\ - a)\gyU)

- 1 1
= Fﬁo + §§p>\ (auh)\a + aahy)\ - akhua) - §hp>\ (8V§)\o' + aagy)\ - a)xgua) ’

where for the inverse metric g"” we used expression ([2.3) neglecting terms quadratic in h,,.
Since at linear order

vuh)\a = ?uh)\a = 81/h)\o - szhpo - fggh)\pa (2'40)

the sum of the three partial derivatives of hy, in the right-hand side of equation (2.39) can be
rewritten as

8uh)\a + aahu)\ - 8)\hucr = (ﬁuh)\a + fl;j,\h;w + fﬁgh)\u) + (@ahu)\ + f‘gyhu)\ + f‘g)\huu)
— (Vahyo + Th huo + Dhohy) (2.41)
- @Vh)\a + @O'hl/)\ - @)\hucf + QfZUhAu .
As regards the last term in the right-hand side of equation ([2.39) we can write

1 5 5 5 1. 5 5 5 ~
§hp>\ (allg)\a + adgz/)\ - a/\gua) = §hﬁ g'U)\ (aug/\o + 8<7gz1/\ - a)\gya) = hﬁ Fl;a . (242)

Inserting (2.41) and (2.42)) in (2.39)), we find

- 1 - - - 1 - -
e =10 + ggﬂ*(v,,hm + Vohur — Vahuo) + EQPA(ZFZUh,\M) —h T,
L 1 , , . (2.43)
- Fz/o + 59 (vr/ Ao T va v T v)\ I/O’)
Therefore S at linear order in hy, is given by
1~ )\ [ ~ ~
S‘;,U = igp (V,,h)\g + Vohoy — V)\hl,g) . (2.44)
Rl(il’/) expressed in terms of h,,
As a consequence, given that we want to compute Rl(,%,), the terms S’;)\Si‘w and S’,’»\S}/‘w, which
are quadratic in hy,, can be neglected in (2.36]). Therefore we can write
1 - ~
Ri) = VS, — Vi, (2.45)
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where, since S%,, does not contain zero order terms, we substituted V, with V,,.

Finally, in order to find the expression of RE}V) in terms of h,,, we insert (2.44]) in (2.45). We
obtain

b e N
R} =V,84, — V.8,

1 /o = -
= 59 (V,,V,,hw + Y,V uho — vpvkhw) _

=5

<]z

"N ohou + VN uhiy = VN by = VN hyy = ViV b+ VNV Ry,

1/~p~ . ~ .
=2 5 (Vo + V"V by = V7Vl = VYR
(2.46)
2.2.2 Propagation equation
In this section the attention is focused on the propagation equation
R(}) =0. (2.47)
The expression R,(}V) in terms of h,, was found in the previous section:
Ry = (v”@,,h,w +V Vhvo = ViV uh =V Vol ) (2.48)
R’(LIV) in terms of i_z“,,
The next step consists in introducing the new variable
_ 1.
hyw = hyw — §guvh (2.49)

and rewriting RE}V) in terms of it. In order to do that h,, = FLW — %gwﬁ is inserted in (|2.48]).

We obtain

1eoe - 1. coe + coe = 1. cos -~ o = -
Rf}y):2[v Volue = 530V VoV Vilue = 58,0V Vuh + Vo V0
cow - 1 soe o
=V Vol + 58,5V Vah
eow - 1o = eoe = e e oo g 1 g
= 2|V Vohiio = 5ViNVoh 4+ V Vb = SVoV 4 VoV k= V Vol + 55,V Voh
l{ecos - o= T ~ 0= T 1. =0 T
ZQ[V Vol + V' Vo =V Vahy + 53,V vgh].

(2.50)

The last passage is due to the fact that —%@M@JL — %@V@,ﬁ + @VV,JL = 0, given that second
covariant derivatives commute on scalars.

Since 2[V,,, V,]A,, = RE\U)WA o — R((,S,WAA" we can write

V Voo = 37V Vol = VoV e + 577 (RS;)WMU - Rgogww) o)
= 0Vl + RO + 5 R R =V, ke — RO R+ RORN.
Applying the same reasoning to V° @ hy» we find
V Vb + YV Vihio = VN hyo + V.V hyg = R WY = RO B + RO b + R b,
= VoV i + ViV ho — 2RC) 1+ RO BN + ROB

(2.52)
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(0) (0) (0) 7oA
where we used R/\W#h = RUMVh = Rw)\yh
Inserting (2.52) in , wa becomes
1|~ ~o0- ~ - - ~o~ - 1 ~o~ =
1) _ o (0) 0)7 (0) ~
Rgg_i VoV i + ViV hyo = 2R\ B + RO B + RO A =V Vb, + 50 VVoh
(2.53)

We contract the propagation equation RE},,) = 0 with the background metric g"":

§" R = 2V"V ke — 2RI + BB + ROB — VVh + 2V V,h (250
0=2V "V hye +V'Vsh.
Therefore we obtain the following condition:
ViVeh ==2V'Vhy,. (2.55)

Inserting it back in R,(},, =0 we find

N

hyo+2R  pA

VOV ol 4G,V V hrg =V, V O = ROURN~RORA = 0. (2.56)
Lorenz gauge

This equation can be simplified if EW satisfies the following condition:

V' hu =0. (2.57)
In order to impose this condition a specific gauge must be chosen: £, has to be a solution of
V' hy — RO — V'V, €, = 0. (2.58)
The last equation was obtained by considering that under a gauge transformation
h o = EJ”"( po = Vpéo — %fp) =h-2V’¢, (2.59)
B = (b= Vb~ 908 — 58 (h - 29°6) = — (Vb + V06 - 3,978
(2.60)
Given that 2[V,, V, )¢, = R,

Vhw — Vhw =V Vil =V Vil + 3,V V&

V' hw + 2V, Ve = VVLE,
=Vl — R —V'V,¢,.

Propagation equation in Lorenz gauge

By inserting the Lorenz gauge condition (2.57)) in (2.56) the propagation equation becomes

V Vol + 2RV, 1 — ROR> — RORN = 0. (2.61)

The last two terms of equation (2.61) can be neglected. Indeed, in the vacuum case, as shown
n (2.12)), Rl(g,) ~ h?/)\2. Therefore Rg\(L)ITLV)‘ ~ h3/A? is of the same order of R,(Ey), which was
neglected in the analysis. If instead the background curvature is determined by 7T, ;S?,), we can
still neglect the terms which contain the Ricci tensor because, as previously explained, beﬂ) is
of order (A/Lg)°. Indeed, as previously mentioned, given that we want to neglect terms which
arise from a gauge transformation, we are not considering terms of order (A/Lg)°. Therefore at
leading and next-to-leading order in A/Lp the propagation equation becomes

V Vol + 2R 1 =0. (2.62)

Apov
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2.2.3 Geometric optics Ansatz

Since the geometry of a curved background is locally flat we can consider the flat space-time
solution Aw,eik/’xp as an approximate solution over scales of order Lp, which is the scale over
which the background metric varies. Therefore we are searching for a solution with a slowly
varying amplitude A, and a rapidly varying phase ¢(x). The scale of variation of the amplitude
Ay, and of the wave-vector K= —@ugo is Lp, while the scale of variation of the phase is .
Thus we are looking for a solution of this type:

By = A e/€ = e, Act¥/e (2.63)

1
where A = (AWA“”) 2 is the scalar amplitude, e, = A, /A is the polarization tensor and e is

a formal expansion parameter equal to unity used to keep in mind that a term multiplied by €”
is proportional to (A/Lp)™ [62].
By inserting (2.63) in the propagation equation (2.62) we find

V'V, [Am,e“"/e} =V’ [ei“"k@pAW + zew/gAW@pcp}

ip/e | TP 1, ~ 7~ ~
=’/ [VPVPAW + E(VPSO)(V/JAW) + E(VPAW)(V,O‘P)
1 ~p = i . (2.64)
_ G—QAMV(V @)(VPQO) + EAMVV Vpga}

1
€

. 1 e o - e .
— ¢ivle [_ﬁz(A#,,kpkp) + -2V, A + AWV k) + VIV, AL |

Since we consider only terms of order ()\/LB)_2~an~d (A/Lp)~!, we neglected the second term
of equation ([2.62)) and and we will not consider VPVPAW.
Equation for the wave-vector

At leading order we find that k" is a null vector:
Ank’k, =0 = FEk,=0. (2.65)

Moreover the curves z#(l) defined by
ot e (2.66)
dl ‘

are null geodesics. Indeed, by taking the covariant derivative of equation (2.65]) and considering
that covariant derivatives commute on the scalar ¢ we obtain

0= Vo (k’k,) = 2k, V k' = =2k, YV, V' = —2k,V"'V,0 = —2k,V'k, . (2.67)

Equations for the amplitude and the polarization tensor
Moving to the next-to-leading order we find
~pe .
0=2k"V,A,, +A,Vk,
= 2AE"V yeu + 20,k V A+ Ae,, V' k, (2.68)
= 2KV, A+ AV’ ke + 24KV pe,u, .

We can obtain two separate equations for the amplitude A and the polarization e, .
As regards the amplitude A, by contracting with e*”, we get

26"V, A+ AV k, =0, (2.69)
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where we used e, "’ =1 and 0 = @p(ew/e‘“’) = e’“’@pewj + ewﬁpe’“’ = ZeMV@peW.
Equation (2.69) can be rewritten as

K'V,InA = —-V’k,. (2.70)

Since l%p@p is applied to the scalar In.A, equation (2.70) can becomes

d

lep-
A=V, (2.71)

By inserting (2.70)) in (2.68) we find that the polarization tensor is parallel transported along
the null geodesic z#(1):

KV e = 0. (2.72)

Finally, inserting (2.63)) in the gauge condition ([2.57]) we obtain

0 = ¥ [A,e?l] = il é ANV o+ VALl . (2.73)

Given that @VAW is order (A\/Lp)", we can neglect it. Therefore the polarization tensor is
orthogonal to the rays:

K ew =0, (2.74)

Comoving metric

From now on using the comoving metric g, = g, /a? will prove to be convenient. A change of
metric of this kind is called conformal transformation. The details about conformal transforma-
tions are shown in Appendix [A] Below, we just summarize how to change the quantities after a
conformal transformation.

- N Guv
I — Gw = a—’é (2.75a)
= 1
pr — Fl,p — Cl’fp (2.75b)
~p dz* 1 .p 1 dx#
el —E = 2.75
a @ a? dy (2.75¢)

where the relation between [ and x is given by

a
— — 2.
O a (2.76)

and the expression for CY, is (A.6). In equations ([2.75¢) and (2.76)) the proportionality constant
C which appears in Appendix [A] is set equal to 1. The results obtained in this section do not

change if we keep a constant of proportionality C # 1.

Evolution equations after conformal transformation

As shown in appendix equations (2.65) and (2.67)) are still valid if we substitute K" with
(1/a2) k" and V, with V,. In other words null geodesics are left invariant under a conformal
transformation. Condition is imposed in order to have an affinely-parametrized geodesic
equation after the conformal transformation.

25



Chapter 2 CHAPTER 2. GEOMETRIC OPTICS APPROXIMATION

As regards equation (2.70)), in order to express it in terms of the comoving metric and the

affine parameter y, we proceed in the following way.

Using (2.76) and (2.75b)) we can write

dX d B 1 ~p ~p TA
Eah’lA— *i(apk +Fp>\]€ )
1 d 1 ~p  ap A p N Ll s 1,5
Eah’lA— —5(3,)/{: +Fp>\k _C,D)\k ) = —§Vpk + ECP)\I{; .

Inserting the expression ([A.6) for C%, calculated in Appendix |[A| we obtain

1 d
a? dy

1. - 1] = ~ -
= —§Vpkp ~3 [4V/\(lna) + Va(lna) — V)\(lna)} i

1. - S\~
= —5 Vb - 2V (Ina) .
By substituting & with (1/a2) k" we get

1 d 1o p lipe (1 d
InA = ——V, k" — k”vp<> —2—1Ina

a2 dy 2a? 2 a? di
1 4 1d/1 1 1da
S v "l s ca
2 2V 2dx<a2> a? ady

=——=V,k — —2——
2a? Vok' + a3 dy a3 dy
where we used (2.76) and d/dl = l;:)\@,\.
Therefore q . L d
Aa a
A= -V i =22
d nA 27 ady’
which is equivalent to
d 1o -p

2.3 Space around a GW source

L pa= Lo+ La [(WA(i) ragv,(h) - g”f’f;pNUG)] 2

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

In this section we give a brief description of the different regions in which the space around a

GW source can be divided.

e The source is characterized by a size L, which in the case of binary system corresponds to

the orbital radius.

e The near zone is the region characterized by r < A, where r is the comoving distance from

the source. In this region retardation effects are negligible.

e The wave zone (or far zone) is the region described by r > A. This is the region where

we will apply the geometric optics approximation.

In the case of systems which contains compact objects, which are strong-field sources, we

can further separate the near zone into two regions:

e the strong-field near zone is within a spherical region which has at the center the compact

object and a radius of order a few times the Schwarzschild radius of the source [51];
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e the weak-field near zone is the remaining part of the near zone.

We can call wave generation region the region which includes the source, the strong-field near
zone and the weak-field near zone (it corresponds to 7 < ry in Figure [2.1)).

Since we are interested in the propagation of the gravitational waves across cosmological
distances it is useful to split the wave zone into two parts.

e The local wave zone is characterized by a comoving distance from the source sufficiently
large so that the gravitational field displays the typical behaviour of waves and sufficiently
small so that the effects of the background curvature of the universe can be neglected [51].
The background space can be considered asymptotically flat. The local wave zone acts as a
matching region between the wave generation region and the wave propagation region [63].

e In the distant wave zone the propagation of the gravitational waves is perturbed by the
effects which are due to the background curvature of the universe.

7

/ N\
// /’/’.o \\\\ \\
l T e, |
\ \\ \ \%&Lﬂi)@ . // / I
\ N /
\ N /

\ “Ocar wave 20N //

\\ _ /
-~ ///
OIS TANT WayE ZONE

Figure 2.1: Regions in which the space around a GW source can be divided [63]. In this thesis the

attention is focused on the distant wave zone, given that it is the region where the effects of the background
curvature of the universe become important.
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Chapter 3

Cosmic rulers formalism

In order to study the propagation of gravitational waves in a perturbed FRW Universe and
the resulting effect on the GW waveforms, we follow the procedure used in [46]: we apply the
Cosmic Rulers formalism, which was introduced for electromagnetic radiation in [64] and [65],
to the gravitational radiation in the limit of geometric optics. This prescription provides a map
between the observer’s frame, also called Redshift-GW frame (RGW), which is considered as
reference system, and the real frame. The definition of the real and RGW frames is the following.

o Redshift-GW frame (RGW)
We assume we live in an unperturbed FRW Universe:

ds® = a®(n)[—dn? + 6;;dz'da7] . (3.1)

If the unit vector n is the observed direction of arrival of a gravitational wave and Z is
the observed redshift of the electromagnetic counterpart, the inferred comoving position
of the source at emission is

n=mno—X(%) (3.22)

% =x(3)i, (3.2b)

where Y (z) is the distance-redshift relation in an unperturbed Universe, 1 is the conformal
time at observation and x, = (0, 0,0) (the spatial origin corresponds to the location of the
observer).

This position corresponds to the unique starting point of the null geodesic which arrives
at the observer with direction n and is associated to a redshift Z [64]. Indeed, in the
absence of perturbations, null geodesics are straight lines in conformal coordinates. In
other words, null geodesics from the source to the observer, using the comoving distance
X as affine parameter, can be written as:

T+ = (7_775() = (770 - X:)_(n) . (33)

The quantities in this frame are denoted with a bar.
The direction of arrival of the GW can be written as

) T v
RS (3.4)
Indeed
7 k i ) k &_ ]
(fw MF W 2 0 w2+ 216,0%) = J=n. (3.5)
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In the RGW frame the wave-vector associated the null geodesic (3.3) is

o der

i (-1,n). (3.6)

Therefore the total derivative along the past GW-cone is

d . 8,0

(3.7)

e Real frame
This frame corresponds to a perturbed FRW Universe. The perturbed metric at linear
order in a general gauge is

ds® = a®(n)[—(1 + 24)dn? — 2B;dnda’ + (8,5 + hij)da’da’] (3.8)

with
hij = —2Ddi; + hii" (3.9)

where h;f';-T is transverse and traceless.

We denote by x* the actual comoving position of the source and by y the comoving distance
from the observer to the source. Given that the graviton path in a perturbed Universe is
not straight, the inferred source’s comoving position Z* found in the RGW frame does not
coincide with the true spacetime point of emission z* (see Fig .

Below the subscript “e” will be used to denote quantities evaluated at the location where the
gravitational waves are emitted, while “0” will stand for the position of the observer where the
gravitational waves are received.

3.1 Map between real and RGW frames

Now that we have defined the real and the RGW frames, we can set up a map to relate them.
Every quantity in the real frame will be decomposed into a zero order contribution, given by the
solution in the RGW frame, which is the reference frame, plus a perturbation due to the cosmic
inhomogeneities. Only first order perturbation will be considered.

We start from the comoving distance and define the first order perturbation

OX=X—X- (3.10)

Geodesic perturbation

As regards the graviton path, we want to define the map between x#(x), the actual comoving
position located at a comoving distance x from the observer, and the apparent position Z#(y),
which we infer by assuming a homogeneous and isotropic Universe. In other words we want to
find the expression for the perturbation Az*(x) = z#(x) — z*(x). We proceed in the following
way.

We start by introducing the perturbation of the null geodesic at fixed affine parameter:

' (x) = 2" (x) + 0z" (x) - (3.11)

We proceed by substituting x with ¥ + dx using (3.10)) and Taylor expanding at linear order z*
around ¥, while dz* is directly evaluated at Y given that it is already a perturbation and we are
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Chapter 3 3.1. MAP BETWEEN REAL AND RGW FRAMES

Figure 3.1: Comparison between the real frame and the Redshift-GW frame. The position of the GW
source in the real frame is indicated by a star. The gravitational wave arrives with direction n at the
observer located at the bottom, following the perturbed null geodesic represented by the solid line. The
dashed line indicates the null geodesic which the graviton would follow in an unperturbed FRW Universe
given the observed direction m. This straight path traces back to the inferred GW source position
indicated by the circle, which does not coincide with the real position. [64]

neglecting second order terms. Therefore we obtain

o (x) = 2" (X + 6x) + dx"(x + 0x)

d6X>dx“ . (3.12)

— 20 + s 1 sat(x)
dy ’

where in the last passage we neglected ddx/dy, given that it is multiplied by dy, which is already
a first order perturbation. Finally we can write

z'(x) = 7" (x) + Az (X)), (3.13)

where
Azt (x) = dz*(x) + K"ox . (3.14)

We can notice two contributions to the perturbation Az*(x): the first term comes from the
perturbation of the GW geodesic at fixed ¥, while the second one is proportional to the change
dx in the affine parameter.

Wave-vector perturbation

We can proceed with the perturbation of the wave-vector ' = dan /dx. From now on for
simplicity we will write k* instead of K (which is the notation used in the previous chapter).
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By using (3.14]) we get
d d
Hiy) — = ot il I
B0 = o500 = - [04(0) + Ac (V)]
dy d
_li[ (X) + 6z (%) + K" ox]
dxd (3.15)
_ M e :
(1 90Xy d0xh AR e dOX
dx dy — dx dx
- déy - dozt  dk" -, déy
M 1 pdox
=k dxk + e —I—d,dx—i-k R

The difference between ddx/dx and ddy/dy is second order. Indeed ddx/dx = (dx/dx)ddx/dx =
(1—déx/dy) déx/dx. Therefore at first order —&" ddy/ dX and k" déx/dx cancel out. Moreover
dk" /dx = 0 since k"' satisfies the null geodesic equation k” V,k" = 0. Thus

dor™ _
kh(x) = K + % Sy (3.16)

Therefore Ak*(x) = 0k*(X). In other words in this case there is no contribution proportional
to dx. This statement is valid only at first order.
Then we can define év and dn' so that

SEM(X) = (6v(X), on' (X)) - (3.17)

The next step consist in finding the expression for k() in terms of the metric perturbations.
Before proceeding it is useful to define the parallel and perpendicular projection operators to
the observed line-of-sight direction n.
3.1.1 Projection operators and directional derivatives
For any spatial vector B* and tensor A;; we have:
By =n'B;,
AH = nininj s (3.18)
B = B'—n'By = (6Y —n'n?)B; = PYB,

where - - o
PY =06V —n'n’ . (3.19)

As regards the perpendicular projection operator we calculate the following quantities:
and

77177] (07 —n i) (6 —ning) = (515J Sinn;— Fninj+nininin; = 6 —2n'n;+(n'n)(ninj) =2 .
(3.21)
The directional derivatives are defined in the following way:

e (3.22)

Using (3.4) and (3.19) we find

ond _ 9 (®\ _§ #ox 1 5 P OXY _
ozt 0zt \ X X x?or ¥ '
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Furthermore

. . 1/ A 1/ . o
on* =n’0jn' =n’ — <5§ — n’m) == (nz — nznjn3> =0 (3.24)
X X
and ,
- _ _ i 9
8J_m1 = 8m1 — nlaH = 8 Z = —. (3.25)
X X

In addition d/dy and &; do not commute. In order to demonstrate it we proceed in the
following way.

dg (2 i 92\(2 _, 09
v = \op T ez J\ozi T ot

00 DD 500 00
on 0zt 8 ozl oxJ ozi \'" oz
0

0 0 o 0 0 , 8 ond 0
o on " ot on ozi\" ozl ozt 0FJ

0 0 8n 0

_ J l j 1]
["Z”aa< al>+ BEY axl]

Given that n/d;n; = 0, as shown in (3.24)), the last term is null. Finally, using (3.23), we obtain

dg (0 _, i 0N(_0 ;0\ o o
dy T \az ozt )\ on ' oxi) 0z 0z

(3.26)

. (3.27)
5 d ﬁ 0 = d i@
S Ay xow o Ty x
Another useful relation is the following:
0B’ 3 . A i i
577 = (30 +0.15) (n'By + BY)
= ninﬁ”BH + njénBj_ + Buéljni + niéljB” + ngBj_ (3.28)
o _ P o
= nZnJ@”BH + nja“Bi_ + B\\;J + nZaJ_jB” + 8“»31 ,
where in the second and third line we used respectively (3.24) and (3.23)).
Moreover, using (3.23), (3.20) and (3.21), we find that
. o 0 .
VL:aliaL <87' n13|)<5j8]—n(9>
= 5151 (5 )8” —n'd; 8“ — n,ﬁ”@ + n;n 0H (3.29)
1
X
= =i 2 — —
=8;0' - 29 - aﬁ .
X

3.1.2 Differential equation for dk*

In order to find the expression for dk*(Y) in terms of the metric perturbations we need to
know the differential equation satisfied by the wave-vector perturbation and then integrate it.
Considering that k* = k" + §k* and given that the geodesic equations satisfied by k* and k"
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are known, we can proceed in the following way. We start from the geodesic equation satisfied
by E#(x):
dk*(x)

o I, (z7)K (k" (x) = 0, (3.30)

where f‘fjp are the Christoffel symbols constructed with the comoving metric g, = g,,,,/ a? and
9, 1s the metric associated to a perturbed FRW Universe.

Since k*(x) = k“( ) —|— SkH(x) and k"(Y) satisfies the geodesic equation dk*/dy = 0, the first
term of equation (3.30)) becomes, at linear order in the perturbations,

dk+ dy)\ /dk"  dokH déy\ dok*  dék+
(S (S S0 (X8 (3.31)
dx dx/ \ dx dx dx / dx dx

As concerns the second term of equation we keep only the zero order component of the
wave-vectors. This is due to the fact that the Christoffel symbols are already first order terms.
Indeed the comoving metric of an unperturbed Universe is nothing else than the Minkowski
metric and the associated Christoffel symbols are null. Finally, since

r o I o I Pyl 0 o e
I (27) = oI, (27) = oL, ,(z )+A1:’\@5F5p(m ), (3.32)
we obtain
dskH . o ip
(0 + 00, @E R () = 0, (3.33)

where the second order term A:c’\é)\éfﬁp(i“”) was neglected.
The p = 0 component gives

dov

ofamrmk R 4 20T KK + o0 R R
ds -
dX” A (1) (=1) + 28; A(—1)(n) + <8B + ;B + 1, )nw (3.34)

_dav

- 1. _
d)z + A — 2n'0; A + inznj (&BJ + 6jBZ' + h;;) ,

where ' = 0/07. ) )
Since using (3.24) we get n/d) B; = 9)(n’ B;), equation (3.34) becomes

dov - - 1
0= a + A — 28HA + 8HBH + §h1| . (3.35)
Considering that
d 0 i 0 0 =
& ——%+ o7 ——%+6||, (3.36)
we obtain
dé - _ 1
TXV +2(A'~8jA) — B| + 8B = A"~ B| - -}
d 1 (3.37)

dx
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As regards the u = i components we find

dén’

0= o KK + ST R R
dén’ - 1. . 1. 1 . .
= —B" +0"A)(-1)(=1) +2( —=0,B" + =0"'B; + =hY | (=1)(n/
o+ (B 0 A1) (1) +2( - 30,5+ 3By + 5 ) (D)
1— 4 1— 4 1_Z :
+ <28jhl + 581]1]- - 58 hﬂ)njnl
don’ i i ir Lo iaa b oiga s 1 g
= dX B'—l—@A—I—nJ@B —nJOB njhj'—i—innjajhl—l—injn@lhj—injnahﬂ
B 1
:d57_1 d +9'A- jaB —njhZ —}—n]@”hl—fn]nahl
dy dy
(3.38)
Given that, using (3.23), 3i(nij) = njg)iBj + Bjéinj = njg)iBj + B;jPY /x, we find
don® dB* ;i Ppii dni 1
= 'A—0"(n/Bj) + Bj T2 —ninld'h, :
0 & & +0 0" (n’ Bj) + Z +n dX 2nn8 jl (3.39)
Finally, since dn’//dy = 0 and 5ihH = 5i(njnlhﬂ) = njnlgihjl + hjléi(njnl), we obtain
dén®  dB' ;. d 1. 1.
= 'A—0'B — (' hE) + =98" (nInYhy; — =0'hy, . A
0 dx dx +0 0 I >_< d)_((n h]) + 28 (n n)hﬂ 28 hH (3.40)
Therefore, using again (3.23)), we get
doci pi i 24 A By Py 1o

The next step consists in integrating equations (3.37) and (3.41)). In order to do that we
need to know the boundary conditions for the wave-vector perturbations §k* at the observer’s
position x =0 .

3.1.3 Boundary conditions at the observer for jk*

In order to determine the values of dv and én’ at Y = 0 we have to consider the graviton
four-momentum measured by the observer. The observer’s measurements are described in terms
of the frame of reference built with an orthonormal tetrad Ag, which is defined through the
following relations:

FACND = P AGAB

aﬁ niiy gp,yv gijg = Ao ) ndBAg = Aav, (342)

where 7, B is the Minkowski metric, g, is the metric associated to a perturbed FRW universe,
& and B , which run from zero to three, are used as space-time indices of the tetrad Ay and
and v denote its coordinate indices (Ag)*. Latin indices @ = 1,2,3 and b = 1,2,3 will be used
as space indices of the tetrad.

As regards the comoving tetrad, we define it through

PUELE] =0, n,ELE]

Naptptv = = G » ngESé = B, U@BEE = Fav , (3.43)

where g, = guy/a EY =aAL and Es), = (1/a)As
In order find the expression at linear order for the tetrad Ag in terms of the metric compo-
nents g,,, = g, + 09, where g, is the metric of the background space-time, we consider the

decomposition
AL = AL+ 6AL (3.44)

35



Chapter 3 CHAPTER 3. COSMIC RULERS FORMALISM

and we set ]\g = 55/&. We proceed by using gWAgAg = Nsp O obtain a system of three
equations. For & = B =0 we find
~ v _ 120 2 10 i _ i j
-1 = gMVAgAO = (goo + 9900) (A() + 5/\8) + 26 go; (A() + 5A8)5A6 + (gij + (Sgij)CSAOéAé . (3.45)

Neglecting second order terms in the perturbations we get

- _ 1 1
—1 = (oo + 6900) (A)* + 2gOOA85Ag = —a*(1+ 24) = - 2a2a5A8 : (3.46)

Therefore 1
SAY = —aA. (3.47)

For & = a and B = b we find, at first order in the perturbations,
Oab = G NGAY = (@i + 09i5) (A + 9A,) (A7 + A7)
1. , 1 . .
= a2((5,-j + hij) <5Z + (51\2) <5g + (5Aé> (3.48)
a a
= Sab + hap + ada; 6] + adydA .

We obtain 1
AL = — — Rt 3.4
0 a 2 @ ( 9)

Finally, considering & = 0 and B = a, we have

0 = §,, ALAY = GooAGIAY + g0 AGA, + 35 0ALA]

7o
0 +a25ij5i5A3 (3.50)

a a

= —abA) — By + adia 0N .

)
a

1 1
= —a’=0A) — a*B;~
a a

In order to close the system we choose Ag to be orthogonal to the four-velocity u* of the
observer. Since at linear order the four-velocity of the observer is given by u* = (1/a)(1 — A, v?)
and u, = a(—1 — A,v; — B;), we find

0= Alu, = —(AD)a(l + A) + Asa(v; — B;) = —adA) + 5. (v; — By) . (3.51)

Therefore 1
SAY = —(vy — By). (3.52)
a

Thus equation (3.50|) becomes

~Va + Bq — By + adia6Af =0

—0iav" + adia0A = 0 (3.53)
1.
oG = gv’.
Summarizing:
1
Af],u - aEf),u =a(-1-Av - Bj) = uy, Aoy = aByy = al| —vg, 0ai + ihai )
3 . A , .
M= =g A=t A== (v B ).
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The components of the observed photon four-momentum p*Ag = p'0,, with respect to the
tetrad basis A4 are ) )
p® =27fo(1,—n%), (3.55)

where the minus sign is due to the fact that n? points towards the source (see fig [3.1). The
parametrization used for the four-momentum

L et dlde® dl 1 da”

o 7 P 3.56
=y Ty dl ~ dva? dy (3.56)
is given by
1 a?
= — = — d . .
A=~ dl = 5 d (3.57)

Indeed if we consider an unperturbed FRW Universe and use the affine parameter defined in
(3-57) the four-momentum is given by pt = —(27 f,/ a?)(—1,nt). If we take the projection of p*
on the tetrad basis Ag we obtain exactly the components (3.55)):

27 f,

Poo = (Ao D )’o (aE()#) <_ 72 ku) o = ay (EOHE#)IO = _27Tfo(_1)(_1) =—27f,
(3.58)
and o f
Pao = ([\&ui)u)‘o = - g O(Edu]%uﬂo = _27Tfo[(6ai)(ni)] = =27 fo Na, (3'59)

where we used ag = 1.
Now we are ready to calculate the boundary condition k5 = (dv,,dn’) in a perturbed FRW
Universe. As regards the perturbation dv, we obtain

727‘(‘]“0

pg)W - (Af),up/éW”O T, (B, k")o
27 fo i i
= - 1 _:i;ao [(—1 - A)(—l + 5V) + (UZ‘ — Bz)(n + on )] |0 (3.60)

= =27 fo(1 = dao)(1 — 0vo + A+ v, — Bjp)
= —27['fo(1 —d0a, — v, + A, + Vjo — B”o) ,

where we used

ao = a(n,) = a(n,) + da, = 1+ da, . (3.61)
As concerns the perturbation én’ we find
27 fo
paGoW = (Aappw)o = — P (Eapk")lo
2 1 A A
_ ) [(0a) (=1 4+ 60) + (8ui + has ) (0 + 60
1+ da, 2 0
L (3.62)
= —27fo(1 — da,) [va +ng + ong + iham’}
1 .
= -27f, [na —Ngdao + ONgo + Vgo + 2(hm-)onz] .
Therefore the initial conditions at the observer are:
0V, = —da, + Ay + V)jo — B”O (3.63a)
1 ,
Mao = Nadao — Vao — = (Nai)on’. (3.63b)

2
Now we have all the information necessary to integrate the differential equation satisfied by
the wave-vector perturbation 6k ().
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3.1.4 Integration of the differential equation for §k*

The integration of equation (3.37]) gives

/ded(au—2A+B):/Xd>~<<A’— 1 ’>
0 dx I 0 = 2"

X 1
ov —2A + B” = dv, — 24, + B”O + / dy <A/ — |/| — 5 i|> (3.64)
0
v —2A+ B = (=bao + Ao +v)jo — Bjo) — 24, + By, — 21
oV = —(5ao—AO—|—v”o+2A—B” — 21,

1= 1 >_<d~ A — B 1h/

is the Integrated Sachs-Wolfe contribution.
Finally we move to the integration of equation (3.41)):

where we used (3.63a)) and

X d.. . S X ~i " B! Ji 14
/d>~<~(5nl+Bl+n3h?):/ ay (~oa+ B - B - Tlun, 4 Lot (s.66)
o dx ! 0 X X 2

Using the left-hand side becomes
/OX dx (g((éni + B'+n/h}) = on' + B' +n/h}; — én}, — B, —n’hj,
=én' + B' + njhé- —n'Sa, + vl + %njhé-o ~ B! — njhzo (3.67)
=on' + B —I—njhé — n'da, + vl — %njhzo - B,
As regards the right-hand side we can proceed in the following way.
/0 “ax <—5iA+5iB” B P; nlhjz—l-;éih”) - /0 “ax [—éi <A—B|| —;h”> —;( (Bi+nlhﬂ7vﬁ>] .

X
(3.68)

Since q 5
5 =3 4nid =0 +n ( + ) (3.69)

we have

. 1 1 .
+nt <A — BH — 5]1” — Ao + B”o —+ 2h0> —2n*I.
(3.70)
Therefore the right-hand side of (3.66)) becomes

X =i i Bt pi 1= , 1 1
/ dX —0A+0 B” — NJ‘ — fnlhjl + -0 hH =n'|{—-A+ BH + *hH + AO — B”O — *h”O
0 X X 2 2 2

+2n'T + 287 |
(3.71)
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where _
i I RN P 1 1 i l i
is the perpendicular component of
) 1 [X i 1 1 . )
St = —2/0 dy |:al <A - BH — 2h> + §(B2 + nkhz)] . (3.73)
Inserting (3.67) and (3.71)) in (3.66|) we obtain
on' = —B' —nIhl +n's iy Lini 4Bt (— A4 B+ hy+ Ay— B, — 2k
n =-—-5"—n'h;+n ao—vo+§n joT Do+ n | —A+ H+§H+ 0~ Bllo = 5o
+2n'T 428
. o . 1 . . A A 1 )
= —B| —Pinlh — v, + §7>,gnﬂh§?0 + B, +n <5ao — v = A= Shy+ Ao + 21) 425,
(3.74)

where we used B' = B’ +n'B and njhg-—nih|| = 5,injh;?—ninknjh§? = (5,@—nink)njh§ = P,injh;?.
By defining

1
on| = 0dao —vjo+ Ao — A — 5l +2I (3.75a)
on'y = =Bl + Bl, — v, = Ppn’hj + P’ by, + 257, (3.75b)
we can rewrite (3.74)) as ' ' '
on' =n'ony + on’y . (3.76)

We are now ready to find the expression for the coordinate perturbations §2°(y) and dz‘(Y) by
integrating (3.64) and (3.76[). Before proceeding with the calculations we show how to derive the
analytical expression for the coordinate perturbations at the observer. The derivation is based
on [66] and [67].

3.1.5 Coordinate perturbations at the observer

The observer coordinates in the RGW frame and in the real frame do not coincide. This is due to
the fact that the physical coordinate time t, in an inhomogeneous universe does not correspond
to the proper time 7, of the observer.

Conformal coordinate lapse 5:133

Considering that dt = adn = adz, the physical coordinate time of the observer is calculated
by integrating au® along the path of the observer. Therefore, given that in a perturbed universe
the time component of the observer velocity is given by

o_de? _1-4
AT a

u (3.77)

we obtain

T gt To To
to — tim = / L ar = / al®dT = To — Tin — / Al (T))dT . (3.78)
T AT Tin Tin

Consequently in an unperturbed universe, since A = 0, the coordinate time of the observer
coincides with the proper time:
to — tin = 76 - 7;71 . (379)
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On the other hand in a perturbed universe in general A # 0. This implies that the coordinate
time of the observer is not synchronized with the proper time. Inserting (3.79)) in (3.78]) we find
the following expression for the coordinate lapse:
3 To
5to = to — to = — A[m“(T)]dT (380)
Ti

Considering that, working at linear order, we can approximate at zeroth order the observer path
x#(T) at which the perturbation A is evaluated, and using d7 = a(7)d7n, which comes from
(3.77]), to change variable, we obtain

Mo
ot, = —/ A(n,0)adn . (3.81)
ﬁin
At linear order the conformal coordinate lapse 60 is equal to the coordinate lapse 6t,. Indeed
5ty = a(no)on, = a(7,)0n, = 6ny = 622, (3.82)
where the second equality is due to the fact that dng is first order. Therefore
Mo
a =~ [ An.0)a(n)a. (385)
ﬁin
In other words the coordinate perturbation §z0 at the observer corresponds to the cumulative
time delay which is due to the metric perturbation A along the trajectory of the observer [66].
Spatial coordinate shift 5:{:2

A similar procedure is used to calculate the spatial coordinate shift 2. Since in a perturbed
universe the spatial component of the observer four-velocity is given by

dxt  v°

== — 3.84
ST T o (3.84)
we obtain
. . To gt To To 4t
Ty — Ty = deT = / w'dT = / —[z"(T)]dT . (3.85)
Ti Tin Tin @
In a homogeneous Universe the path of the observer is static:
T, =at . (3.86)
In a perturbed FRW universe the spatial coordinate shift at linear order is
) To 4t Mo gt Mo
ozl = / —dT = —adn = / v'(7,0)d7 . (3.87)
7~i a ﬁin a ﬁzn

Scale factor perturbation da,
We are now able to find the analytical expression for the perturbation of the scale factor at the
observer. Given that
_ o da
a(ny + ono) = a(ngy) + d—ﬁ|ﬁ06ng =1+ Hodn, =1+ da,, (3.88)
we obtain

Mo
da, = Hodn, = —Hg/ A(7,0)a(n)dn. (3.89)
F]in
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3.1.6 Coordinate perturbations

In order to find the coordinate perturbations dz* we integrate the wave-vector perturbation dk*:

X
ozt = ot +/ SkHdy . (3.90)
0
As regards 620 we proceed in the following way.
X
62° = o) +/ dy ov

0

X
= 51‘8 + / dy (—5&0 — Ao+ Vo + 2A — B” — 2[)
0

X X X 1
= 5$8 —5((5&0—}—140—7)”0) —|—/ dy (QA—B”) +/ dy / df(,(A,— |,| -3 h) ,
0 0 0
(3.91)
where equation (3.64]) has been used. As concerns the double integral, since the integrand is a
function of ¥/, it is convenient to change the order of the integrations. This implies a change of

the extremes of integration: at first we integrate in x ranging from ¥’ to ¥, then we integrate in
X' from 0 to ¥. We obtain

[ focfem-wr- [ [olo-si- 3o
:/jd;}’ [A’Bﬂ;hh](”) /;dx (3.92)
- [favs-vfa -5 - ] ).

Therefore the final expression for 6z° is

X 1
5x°:5x2—x(5ao+Ao—v”O)+/o dy [QA—B||+(X—5<)<A’— "‘—5 h)] (3.93)

As regards the spatial coordinate perturbations éx!, using the decomposition (3.76) we get

A ) X . ) X . )
dz' = ox}, +/ dx on' = ox} + / dy (n'on) +dén'))
0 0

. X . X 4
= 77,2(533”0 +n' / dy 571” + 2, + / dy on’, (3.94)
0 0
= niéas” + 0z,

where x| = dz), + foj< dx dn| and dal = dx'  + fg‘ dydn’ . Using (3.754) the expression for
the component parallel to the line of sight becomes

X
5$|| = 5.1:“0 —|—/ d)~< 571”
0
X 1
= (556“0 + / dy |:5CLO — U)o + A, — A— §h|| + 2[:| (3.95)
0
v X 1 Ny / ;1
= 0o + X (00 = vjo + Ao) = | dX A+ Sl + (X =X)(A = By —5hy ) |-
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Using (13.75b]) we obtain the following expression for the perpendicular component:
. . X .
dz' = ox' , + /0 dy on’,

. X 4 . . o 1 . . .
= oz + / dy [—Bi + B, — v, — Pl by + §7>,gnﬂh§o - 251]
0

1 X (3.96)
=0t x (Bl =+ 3P, ) [ aviBt + Rpn
0
‘- nle 1 L i 1 pji
o dx (x = %) |94 A_BII_§h|| +§ B +n'hyP )
Moreover, using (3.93)) and (3.95)), we obtain
62° + bz = bzp + bayo ~ T (3.97)
where i
X 1
= _/ dx <A - By - 2h||> (3.98)
0

is the Shapiro time delay.

3.1.7 Expressions for dx and the components of Ax

We conclude by finding the expression for dx in terms of the metric perturbations. We start
from the following expansion of the scale factor in the real frame:

= a[z"(x)] (1 + Amo(x)gf[io(x)o (3.99)

where H = @’ /a. Defining
gzl—i—Alna, (3.100)
a

we have, using equation (3.14)),
Alna=HAz" = H(—bx + 5330) . (3.101)

In order to compute explicitly Alna we consider the observed redshift, whose expression is
given by

~fe (uup)le a (Eg ke ap (Bo ke (BgkMle 1+ (By, k)W

B fo B (uupH)lo B a(Xe) (Eﬁukuﬂo a(Xe) Qo a(Xxe) a

1+ 2

i

(3.102)
0 .
where we used (E,k")|o = a, and (Eﬁukﬂ)(o) = Eéu)k:“(o) = (—1)(—1) = 1. Using (3.54) and
(3-:64) and given that 1 =1+ z we find

— (E- (1) — (D u0) (0) 1.u(1)
Alna = (Ey k)" = E()u EHE) 4 EO# EH
= (=A)(—1) + (vi — B)n' 4 (—1)(ov)
=A+ v — BH — dv (3.103)
:A-i—U” _BH +(5GO+AO—Q}”O—2A+B” +2])

:*AJrv”jL(SCLOJrAO*U”O%»QI.
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Therefore, using equations (3.101)), (3.103]) and (3.93)), we obtain

Alna
Sy =820 - ———~
X T 7 _
* 1
== i Ao+ [ [aa =+ -0 (o - - 5 )
1
—ﬁ(_A+UII+5ao+Ao_UHo+2—7) (3.104)
0 1 1
:6:1:0_ (X+H (5ao+Ao_'U||o)+ﬁ(A—’U”)

X - < / / L., 21
Finally we can write the components of Ax* in terms of the metric perturbations. As regards

p =0, using (3.103)), we have

Az’ = A;fa - %(—Aﬂn + 60 + Ao — vy + 21)
1 o (3.105)
:H|:(Ao—v||o)—A+U||+5ao_/0 dX(A It Y ||):|

As concerns the component parallel to the line of sight, using (3.14)), (3.97)) and (3.105)) we find

Az) = ndz' + nil_fi(Sx =0z + ox = oz + o2’ — Az = S0 + 5£U2 T Az

X 1
0 ~
= 0z + Oy + /0 dx <A - B - 2h||> (3.106)

1

X 1
~ / / /!
_|:(AO_UO)_A+U||+5CLO_/O dX (A — B —*2 >:| .

Eventually, as regards the component perpendicular to the line of sight, using (3.96)) we obtain
Az = Pj(6a’ + K ox) = 6a',

i | i i L i j X i i g
=o0x',+ X <BJ_0 —v),+ 2Pkn]h§o) - /0 dyx [B| + Pknjh;?] (3.107)

X [ 1 1/ .
_/0 X=X [3L<A—B —2h|> +>~<<BL+nlhm>J )] .
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Chapter 4

Gravitational waves in the observed
frame

In this chapter we calculate the effects of the large scale structure of the Universe on the
gravitational waveforms. In the previous chapters we found that under the geometric optics
approximation the GW waveform is given by

BW = ew,.Aei‘p/6 =euwh. (4.1)
and the evolution equations for the phase and amplitude are and ( -
'k, =0, (4.2a)
d 1o -p
—1 =—— 4.2
ax n(aA) 2Vpk , (4.2b)

where l%u = —@Mgp.

The phase ¢ of a gravitational wave which propagates through a perturbed Universe will
be described as the sum of a zero order contribution @, which corresponds to the solution in a
homogeneous and isotropic Universe, and a correction Ay due to the cosmic inhomogeneities.
The same procedure is applied to In.A. In order to find the explicit expressions for Aln.A
and Ay in terms of the metric perturbations we will insert their decompositions In. A + Aln A
and @ + Ay in the evolution equations and . Then, by subtracting the evolution
equations for the background components we will be able to find the differential equations for
the amplitude and phase perturbations.

Given that we will always work with the conformal metric, for simplicity from now on we
will write k# and V, instead of " and @u-

4.1 Phase

The evolution equation for the phase ¢ is given by (2.65). Indeed, given that k, = —V, ¢ and
d/dx = k*V,, we find

d dep
0 " Ve dxcp — dy 0 (4.3)
We proceed with the following decomposition of the phase ¢:
e[z ()] = elz"(x) + Az"(X)]
()] + A96”( )V [z (>’<)]

(4.4)
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where the zero order term @[z#(X)] is the phase in the RGW frame and
Ap(X) = delz* (X)) + Az (V) V,pla" (V)] = dela" ()] — Azt (X)ky (4.5)

is the total correction to the phase.

4.1.1 Evolution equation for d¢p
We proceed by inserting the phase decomposition (4.4) in the evolution equation (4.3)):

d dy d ._ _ - dox\ /de ddp d -
PPN ey _ A" Y o Agh S I AT I . Wt T M 4 Y —
(4.6)
Given that ~
99 59,5 = iR, = 0 (4.7)
and
4 A29,3) = L1028 + H0x) (—h)] = = (—Rb2t — Fuk0x) = — - (k60
dj( w dj( o dX o H dj( © (4 8)

_d _
= —hugda’ = k"

equation (4.6)) becomes
dox\ /dp dép d — déx\ [ddp -
— (1~ — (At =(1—-=— ) ==L — m . 4.
0 < ax ) <d>_< + & + d)‘g( x V“cp)> ( dy S k,ok (4.9)

Therefore we obtain the evolution equations for the perturbation dp(x) at fixed comoving dis-
tance:

dip

5 @)= ko 0kM(X) - (4.10)

The same differential equation can be obtained as follows.

Alternative method

We start by perturbing directly k* = —g""'V,¢:

k' = —(g" +6g" )V, (p+0p+AxPV ,p) = —g""'V .o — 69"V, p— gV, 60— "'V, (AzPV ,p) .

(4.11)
As concerns the first term on the right-hand side we get
_ _ _ ozP\ 0p  _,,0(xf — AzP) - _ -, 0AxP
_ghv — _ghv T g ko — gsPk — g k
9N =9 (836”)81‘” g A 7
- o(6zP + K°0x) - - — JoxP ~ . Ok’
— k,u _—pv k= k# — gk — g™k 5 (412)
g oz P T Fr gy — 9 e X v
- — ddxP
=k - "k,—
g P 8%” )
where in the last passage we used
_ Ok i Ppi
k,,gxu :nigzjzni;:O. (4.13)
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As regards the last term on the right-hand side of (4.11)) we obtain

LG (A, 3) = GV (R, + FOOxR,) = FN (527 ) = 5,607 + G 6ar
= g"k,V,0x" — g" 62"V, V pip = gk, V02" — " 62PV YV,
T T
(4.14)
As a consequence (4.11)) becomes
W= B = 7, 0 55 — ¢S + ¢V 00P + 620 R
) Pow T o g g (4.15)
=K' — 89"V, — g"'V,0p + 02PV k! .
Therefore
Sk (Y) = —g"" V., 0p(z") + 62PV k" + 59"k, . (4.16)
Starting from (4.16|) we obtain
d _ - _ broT
d—_&p(m“) = —k 0k (X) + 69" kuk,, . (4.17)
X
Indeed, multiplying (4.16)) by &, we get
ku 0k () = —k"V,8p(") + 02k, NV k" + 59" kK,
(4.18)

d Vo
= _&6@(1#) + 69” kuku s

where we used Euﬁpl}“ = 0, which can be proved in the following way:

Ry R = (R F) KTy = RV K = 0T p(Gnk) = RV (@G0 F) = K, V8
(4.19)
In order to show that (4.17)) is equivalent to (4.10)) we proceed in the following way. Perturbing

kF'ky = g,,k"k” = 0 we obtain

0= g, K"'E" + g, K"k + g, 6k" k" + 6g,u k" k"
= G k" 0K + §,,0k" k" + 69,09 k" ko (4.20)
= 2§MVIZ“6k” — (59“’]%12;0 ,

where we used k,k" = 0 and g" = g"” + dg" = g" — G" 5778 gpo-

Therefore
69" kpky = 2k, 6k . (4.21)
Inserting it in (4.17]) we find
d _ o _ _ _
&5@@“) = —k 0k (X) + 69" kuk, = =k 0k" (X) + 2k, 0k = k0K, (4.22)

which is exactly equation (4.10)).
It can be noted that, defining ¢(z#) = @(z#) + d0p(z#), from (4.7) and (4.10) we get
dp(2#) Ay £ 0.
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4.1.2 Total correction to the phase

In order to calculate d¢ in terms of the metric perturbations we integrate equation (4.10)).
Defining d¢, as the value of the perturbation d¢ at the position of the observer and using (3.97))
we obtain

X ds X
5<p=5%+/ dy f0=5s00+/ dx k0k"(X)
0 dx 0

X _d_, d
=0, + dy —dx° +n; dx—éx
0 dx 0 dx

= 0o + 02%(x ) + oz (X )—(5362—5:r||0

- 1
= 5(,00 +/ dX <A — B” — 2h||>
0

:5900_T

(4.23)

Given that we want to find the explicit expression for Ap = dp + A:nl‘vunp, which is the full
correction to the phase, we proceed by calculating Ax“Vugo Using ko = no,k” = +1 and (3.97 -
we obtain

Az"(%)0,2[T(X)] = —Axrk, = —Az® — Az'n; = —Az” — Az
—(K%6x + 62° + nik'6x + bay) = —(—0x + 62° + nin'Sx + b6z))

4.24
= —6z% — oz ( )
=T - (5.%8 — (5.%“0.
Therefore the full correction to the phase is
AG() = Bl (0] + A (QOVuPE (0] = o = T4 T = b 0wy

= (5 - 5$ (51‘”0.

4.2 Amplitude
Turning to the amplitude, we consider the following decomposition:

In A" (x)] = In A [2"(x) + Az"(X)]
=InA[z"(x)] + §In A [2"(X)] + Az"0,In A(z*) (4.26)
=In Alz"(¥)] + Aln A(X) .

We perturb the evolution equation (2.81)) up to linear order:

_doxy d 7 " g __1[027 0 p
(1 dx>dxl [A(x + Az )a(1+mna)} - [Waxg(k +0kP) + 0T RT|, (4.27)

where we used dy/dx = 1—ddx/dy = 1—ddx/dx. This is justified by the fact that the difference
between ddy/dy and ddx/dY is second order in the perturbations, as already explained for the
calculation of the wave-vector perturbation.

Left-hand side of the evolution equation

We proceed by inserting (4.26]) and (3.99) on the left-hand side of equation (4.27]). We start by
considering the term which contains the logarithm of the amplitude:

d d L
_ rH H _ _ _ M
i [A(x + Az )} — 1nA+d,51nA+dX [Ax aulnA}. (4.28)
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Considering (3.14)) the third term on the right-hand side can be rewritten as

© [A0r9,n 4] = (f; [(Fox + 02) 2,0 A]

dx
d d. - d o
= —|dx—1 — |0xz"9,1
R [5de nA] + & [53} oy n.A]
(L) o+ (Lwa) (Loy) + (Lo,ma)oet + (B, A)ok
—\dy? X dy dy X dy ¥ " '
(4.29)
Therefore (4.28) becomes
2
i_ln [.A(:E“ + Am“)} = i_ln.lt%— i_éln.A—l— dfln;l ox + i_ln;l i_(Sx
dx dx dx dx? dx dx (4.30)
P o .
+ (d)‘(a“ln A) oxt + (3uln¢4)5k“.
As regards the term which depends on the scale factor, inserting (3.99) we find
d d d
—In[a(l+Alna)] = —Ina+ —In (1 +HA2"
d)_(n[a( + Alna) d)‘(na—l—d)_(n( + HAz")
_lda d 0
ErrRET [%(—5X+ 5 )}
S A P N )] Cana A Y
a\ Jn oxJ on oxJ
1 (4.31)
4. 0
+ 'de( dx +6x")
_ Lo H'(=0x + 62°) + H—(—6x + 02°)
- aon X X
/ 0 déX 0
:—H—H( 5X+5$ )+H —a+5k
Right-hand side of the evolution equation
As concerns the first term on the right-hand side of equation (4.27) we have
0 0 -, on_ | 9 4 - o o e ODZT| oo o o
9P D (K" + 0kP) = [89&9 (27 — Az )] 577 (K" + 6kP) = |67 BIT, (0ck" + 0,0K") (4.32)

= D,k + 0,6k — (9,A27) (D, k).

Given that 80/20 = 0, the first term on the right-hand side becomes B,Jl%" = a-lz:i. Moreover, given

that égl_co = 0, we can set p =i in the last term. As regards épdkp we use (3.28]). Therefore we
obtain

0z7 0 - 5 0,7 5.0 i A 3 spi P s
%ﬁ(kl) + 5kp) =0;n' + 0gdk” +n mﬁ”&ku + m&”élﬂ + 5k||§ +n 8J_l5/€H (4‘33)
+ 810K — (0:A27)(9,K') .
Since ‘ ‘
nlandkﬂ_ = 5”(1%5]{31) = 0, (4.34)
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and don’ = 0, we find

0x° 0 - pi _ pi . _ o
T:;ﬁ(kp +0K) =+ Bo6k" + D)6k + |-+ 10K, — (i) (On) . (436)

Finally, using (3.25)), (3.14) and (3.21)), we obtain

027 0 —p o, 2 - . P .
=—(1 . . _ _JA. 7
OzP Oz (k + 0k ) X( +5kH) + 090k” + 8”(5]{” + 81_1(5]{1_ = 81(]{ dx + ox )

2 A 1.0 | 7 A i Pal: P if a5
= §(1+5ku)+805k +8||(5k|| + 010k — ; §(5X+TL 0;0x + 0;0x
—3(1+5k)+5 ok 4 (L 18y ok + Dok, — 25
- >—< H 0 d>—< 0 || Li €L )—(2 X

1- . 4
— §3lj(n]5x” + 5$ﬂ_)

2 _ d S 2 1.
= i(l + 5/€H) + 30(5k0 + 5[4:“) + &5/{:“ + 010k — ?5)( — iaLj(Sxi
1P
- f@ému
X X
2 A 0 d = i 2 1 A ]
= i(l + (5kH) + 0o(0k" + (5/€H) + ﬁék“ + 010k — ?(5)( + (5a:||) - ic’)ljéxl .
(4.37)
Background solution
To the lowest order equation (4.27) becomes
i_ln.;t—l— i_ln(_z = —é
dx dx X (4.38)
d - d | '
—In(aAd) = ——Iny.
ax n(aA) & ny
Therefore q o (1 )
- - +z
—In (aAyx) =0 %) = = 4.39
ax ™ (@A) = ATY=g@r= 1 (439

where O is constant along the null geodesic. The value of Q is determined by the solution in
the local wave zone. If we consider a gravitational wave produced by a compact binary inspiral,
neglecting the post newtonian terms and considering the regime of “quasi-circular” motion, we
have

Q = M.(mfuM.)5 (4.40)
where M, is the chirp mass and f. the frequency of the binary [68].

4.2.1 Evolution equation for d In.4

With the background solution (4.39)) equation (4.27)) can be simplified: we use (4.39)) to calculate
the derivatives dd—;ln.,zl and 9, In A which appear in ([4.30). Using (3.7) and (3.5) we obtain

d d d 50& § 8]5( N 1

—_— y —_ ——_—— a — — 2% —_ —— —_— _— ‘]7 = _—

d)_(ln.A d)_(lna d)_(lnx - = H—n ~ H 3 (4.41a)
d? . - 1
7d)7(2 InA= —HI + ? (4'41b)
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Chapter 4
and B ~
- Q — o du,a  0,x
OylnA=0,In (W) :—Oulna—ﬁulnxz—%—%, (4.42)
which correpsonds to
doln A= —-H, (4.43a)
dilnA=—"0 (4.43b)
X
Consequently
( 9 lnA> 5 4 (Bl A) okt = — T 5,0 <d_7fi>5xi — MO — D g
dx " dx dx x X (4.44)
=H'62" + _%595” — Mok — iék” :
X X
where we used
dn = N Pij ning - nin; x; n;
) — (— 19NV — Y "0y — — ot/
(dxx) (=00 +m0) % = — O =~y = (4.45)
Therefore (4.30) becomes
d 1 d 1 dé
Bl [A(:E“ n Am“)] —H——+-—6lnA+ <—’H’ n _2> Sx + <’H - > <X>
dx X dx X dx (4.46)
+H'62° + _%59;” — Mok — fak;” :
X X
Using (4.46) and (4.31) the left-hand side of equation (4.27) becomes
déx\ d u u B
(1 - dx)d;‘cln [.A(ac + Az*)a(l+ Alna) ] =
1 dd 1
=H-——— <X>< _) +5lnA+< Wt = >5X
X dx
< ) <d5X> FH6 + L by — MoK — Lok, (4.47)
X X
ddx
CH A HEX 9 (—ox 020+ H [ — X 1 kO
dy dy

1 d
:—*—f-f&hl/lﬂ- < >5X+5$||—5k‘”
dx x>

Inserting (4.47) and (4.37)) in equation (4.27)) we obtain

1 d 1 1 1 1d
——+ —d1 — o —(1 - = 0 - ——
X + X 0ln A+ <X >5X+ = 50T 5/€H 5(( +5/€||) 60(5k‘ +(5k||) 2d76k‘|
1~

S 2
(4. 48)
which is equivalent to
d 0 1 d ].A,D TO

o1

11 ~ 70
~01,0k" T (5X + oz + 7—3“5% Fggk :
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Since, using (3.27)), the third term of the right-hand side of equation (4.49) can be rewritten as

_ ) - d . d - : 1~ ;
01;0k", =0,;—0x", = —0,;0z" +—=901;0x" , 4.50
1i0k] dem dXLxJ_+XL$J_ (4.50)
and given that B ' - - ' B '
1Az = 01;(PYnjox + 0x')) = 002" , (4.51)
equation (4.49)) becomes
d 1[- 0 d d Ay
E(HHA = ) 0o (k™ + 5k||) + &(Sk” — 2&H + Fpak , (4.52)
where )
KR = —§5J_Z‘A$j_ (4.53)

is the weak lensing convergence term.
As concerns the first term of the right-hand side of equation (4.52), by using (3.64) and (3.75al)

we obtain

= = = 1 = 1 1
80(5k0+(5k||) == 80((51/—!—571”) =y <2A—B|—21—A—2h”+21> =y (A—B||—2h||> = A/_B|/|_§ 1| .

(4.54)
Moving to the last term of equation (4.52])

1/ _ _ 1 . - _ _
:fmfi@ﬁ%mehuf)+M@A+7ﬂ@@+amﬁiﬁw) (4.55)
1 ., = 1= d 1
Y k k _ k
Therefore, inserting (4.54]) and (4.55)) in (4.52]), we obtain

d 1 1 d d d 1
“SInA=—=|A' — B — W+ —bnj —2~—k+-— A+ =-hF)]|. 4.56
ax’ A 2[ 1M o dx’”dx( "2 ’“ﬂ (4.56)
4.2.2 Total correction to the amplitude

The integration of the last equation yields

[ [x . 1 1. 1,
SInA=6InA, — B [/0 dx <A'— "‘ - 2h1|> +on| —onjp — 26+ 2k, + A+ ihk_Ao— 2(hk)o] .
(4.57)

Setting k, = 0 (being an integrated effect) and using (3.65)) and (3.75a)), it becomes

1 1 1 1 1
0lnA=46InA, — 2|:—2]—A+Ao— §h|| + §h||0+21—2H+A+§h£—AO— 2(h]]§)0:|

1] 1 1 1, 1,,
== (511’1./40 - 5 I:—2h|| + §h||o - 2/43 + §hk - 2(hk>0:| .

(4.58)
Finally, given that hf = (5kjhjk = (5kj — nknj)hjk + nknjhjk = ijhjk + |, we obtain
1 L ki 1 kj
(4.59)

1 ..
=06lnA,+k— 17’” [hij — (Rij)o) -
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Given that, for (4.59) to be consistent, 6 In.A, = —iPij(hij)o, we have
1 .
0lnA=k— Z’P”hzj . (4.60)

Since the aim is to write the full correction to the amplitude in terms of the metric perturbations,
given that AlnA = dIn A+ Az#0,1In A and we have already calculated 0In A, the next step
consists in finding the expression for Az#9, In A. Using (4.43) and (4.24)) we obtain

Az“éu In A= Az9yIn <&Q)_<> + Az'0;1In (_Q_>

ax
= —HA2" — @A:pi
X
A 0 0 (4.61)
=—Alna— iEH —Afc +Ai/v
X X
Alnaf1— - +1(T606)
=—-Alhal|l—— —(T — oz, — ozy,) -
HX >—< o I
Consequently the full correction to the amplitude is given by
L 1 1 0
AIDA:I{—EP h”—Alna 1—7_[7)2 +§(T_6:L’O_5$HO) (462)
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Chapter 5

Correction to the luminosity distance

We start by calculating the analytical expression for the correction to the luminosity distance
due to the cosmological perturbations. We will see that ADy /Dy is related to Aln.A. After
finding the explicit expression of ADy, /Dy in terms of the metric perturbations we will calculate
the angular power spectrum, taking into account the scalar contribution due to the metric
perturbations ® and W, the vector contribution due to the velocity term v and the tensor

contributions hiTjT due to primordial gravitational waves.

5.1 Luminosity distance in terms of the metric perturbations

We start from the full description of the perturbed gravitational wave in the geometric optics
limit:
Q

(1+ Aln A)e'PHa%)
ax

Q(1_+ 2)?

L

h(Nes Xe) = A(1e, X0 ) eXe) = A (1 + Aln A)e!(PTA9) =

Q1+ 2)

= = (1+ Al A)e!PHA?) = (14 Aln A)e(PH29)
X

(5.1)
where Ap and Aln A are given by (4.25)) and (4.62)), the background amplitude is (4.39)), a(n.) =

1/(1+2) and Dy = (1 + 2)X.
Given that

Q(1+2)?

he = 7( D, ) e'?, (5.2)

the luminosity distance is given by
Dy, -
Dp=————=Dr(1-Al . 5.3

LT 15 AmA a nA) (53)

In other words the relative correction to the luminosity distance can be expressed in terms of
the full correction to the gravitational wave amplitude:

ADL B DL—Z_)L N Z_)L(l—AlnA—l)

— = — =—-Al . 5.4
Dy Dy Dy nA (54)
Therefore from (4.62)) we obtain
AD;, 1, 1) 1

The next step consists in writing (5.5)) in terms of the metric perturbations.
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5.1.1 Explicit expression of

We start by finding the explicit expression for the weak lensing convergence term. By inserting

(3.107) in (4.53)) we obtain

1

K= —iaj_iij_ =K1+ Ko + K3, (5.6)
where _
1~ X i 1
Rl = §8J_l . dX (X - X)@L A— B” - §h|| > (5.73)
1- X Y , o
Ko = 0 / dy X <B1 + Pind h;?) , (5.7b)
2 0 X
14 i 1o i i L i ik
R3 = —iaLiéwLo — iallx BJ_O — Vi, + ipkn‘]hjo . (57C)

In order to move the perpendicular derivative 0 1 j inside the integral we have to take into account
that y can be different from % (and consequently z¢ = yn' is different from ' = ¥n’). Hence
when the perpendicular derivative is moved inside the integral we obtain an extra factor y/x.
In order to prove it we proceed as in [69]. The perpendicular derivative can be written as

0z (%) 0

- 0
_ pk _ pk
0L =P gak =P~ gak o 58)
where 4
o _., . 0 . i OX on' 8)( Py
0 iy _ Tk 5.9
ok’ ) 81’an n ok + Xaxk’ " Bk X X (5:9)
which corresponds to
0 _; ; -
—Z'(X) = n'ng + P, = n'ng + 5, — n'ng = 0}, if x=x,
out 9 - (5.10)
@El(i) = ;Pi if x#Xx.
Consequently, for x # ¥, (5.8) becomes
. Xpi O _ Xpi O _ X3
01j=PioPi— =Pi—=20.;. 5.11
X *oz T x 7er  x (5.11)
Therefore, using ([5.11)) and given that
81,x =Plojx="Pln;=0, (5.12)
3 i k7 (i i kLo i 2n;
and
A i A i T a0 i ; 2
01V, = 01i(vy — n'njv)) = —vd1n' —vIn'd 1 in; = —v),— 5( UJPUn = —iv”(), (5.14)
we find B
/X _ _ _Xe2 1
K1 = 2/ dx (X—X)XVL<A—B” —h||> , (5.15a)
0 X 2
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1 [X [ ) - o oo . S
o= /U dx |01:BY + (0LiPi)n? hE + PL(0Lin )bk +7>,gnﬂ(aﬂh§)}
1 [X [ ) 2 . pi S e
_ 2/ dx |d.,B1 — %njhf +7>,g7;2h§ +7?}€n777£(‘31hﬂ
0 L
1x s i 2k PZQ k ipif pk (>450)
1 />_< _[= . 3h|| hi L~ k:|
= — dX auBz —f+%+n9731@¢h- s
2o LR % X R
1~ i 1o _ i i I
K3 = _58Li5$Lo - if)ux <BL0 — V], + 279kn]h§0>
1 Lovi a o kypi _ Yopi k(7 i
= i&m”o + (B”o — UHO) — thko(c‘hm )Pj — thkon (8J_i7)j)
1 1 . [Pk 1 ey
- =5 By — — k! [ )P~ Zyhd pk | - 5.15¢
X x||0+( llo UHO) 4X ka( X )PJ 4X ko't < X ) ( )
_ 15 + (By, — )—l(hi —h )+1h
X Lo llo = Yllo) = 4 (o llo) T 5 %o
= L5ty + (Blo — v10) — ~(hL, — 3hy)
X Lo llo = Yllo) = 4 Utio llo/ -

5.1.2 Explicit expression of AD;/Dy,

We proceed by finding the explicit expression of ADy /Dy, in terms of the metric perturbations.
We will consider the metric

ds? = a(n)*[—(1+2®)dn® + (1 — 20)8;;da’da’ + bl da'da’], (5.16)
which, compared to (3.8)), corresponds to the following choice:
A=d, B; =0, hij = —2W0;; + hi' (5.17)

where hg;T is traceless (hT7? = 0) and transverse (8ihiTjT = 0). We report here all the quantities
which contain the spatial part of the metric making explicit the components ¥ and hz;T. As
regards the projection operators applied to h;; we find

PYhij = (89 — n'n?)(=2W6;; + h}T) = =60 + 20 — n'n/ AT = —4W — [T (5.18)

and o
h” = —2\115ijn1n7 + th = -2V + hﬁT . (5'19)

The trace becomes ' B
hi = —2W8;;67 = 6 . (5.20)

As concerns the Shapiro time delay and the integrated Sachs-Wolfe contribution, using the
metric (5.16)) we obtain respectively

X 1
T = _/0 dy <<1> +0— QhTT> (5.21)
and _
Lo / R Y vl
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As a consequence the relative correction to the luminosity distance written in terms of the metric
perturbations becomes

ADy, 1 [x
— = —— v — q) \I}_f
D, 2/0 dx (x = x)< VJ_( + h” )

1 (X 6w 3hT 6w
—2/ dx [~—~” — 2= i 8\Il+nj73k6hTTk]
0 X X X

1

1 X
0
IR 1.,
X Jo X

Finally, since

1>—<~‘i~ 1 /X . 1 /X S
-3 /0 A/ PN =~ /0 dynd xhTTH = / dx (n? Oxh™§ = nPng0 k")

R d 9
—2/0 dx 9 hy —2/0 dX<dX a>h||

h h 41 Xd”hTT'
[ lo T35 o X

we obtain

AD 1 [x - 1 1 1 (X hi” ,
_ L__/ dx(x—x)xvi<¢)+qf— Shi ) h{T—hTOT—/ dy {—J'—hTT]
0 0

Dy 2 2
3 T
90 = 1o — hn

1 X J[p—
+(1- = —<I>+v||+5ao+(l>o—v||o—/ dy (@' + ' — ="
HX 0 2

1 /X 1
+/ d>~<<¢>+\p—h >+(5x2.
X Jo X

For the following calculations it is useful to separate the contributions from scalar, vector and
tensor perturbations. We denote them respectively by the indices (5), (V) and (T"). We have

(5.25)

ADL:|(S) 1/5< (X X X’VQ < 1 >|: /)_( X l /:|
. =~ [ AR -VAVI(@+T) - T+ (1—— ) |-®— [ dy(®'+T
= ; [ - vivie s T “ax@ - w)
+1/Xd~(<1>+111)+16:c0+<1—1>(¢> + da,)
XJo X Hy) T
(5.26)
AD,1V) 1 1
. —(1- 5.27
[DL} ( HX )UII+HX Vo (5:27)
and
AD, 1T 1 3 11 11N (X g
==k :hTT+/ dy = h” - /dxh” S /d;}h
Dy, 4 2 /o 2% 27y ) Jo
. (5.28)
+ = d5<(>‘<—x) VJL” h||o'
4 Jo
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5.2 Angular power spectrum

We proceed by calculating the angular power spectrum associated with ADy/Dy. In order to
define the angular power spectrum we start from the expansion of a scalar function A in terms
of the spherical harmonics Y}, (n):

+oo 1
AM) =" )" apnYim(n) (5.29)

=0 m=—1

where, using Y} to denote the complex conjugate of Yy,

A = /dQ Y, (n)A(n). (5.30)
The last expression can be easily proved by inserting in and using
[ A9V ) (1) = G (5.31)
Indeed we obtain

/dQ Y};kn(n) Z Qpm/ l’m’(n) = Z Qpm/ /dQ }/l*m(n))/l’m/(n) = Z QY O Opm? = Q-
U'm/ U'm/ U'm/
(5.32)

The angular power spectrum Cj is defined as follows:

1 +I
:§F?i§:<wﬁ”m% (5.33)

m=—

@

where (...) is an ensemble average.

Our aim is to calculate CIDL, which is the angular power spectrum associated with ADy,/Dy.
In the final part of the previous section we saw that there are scalar (S), vector (V) and tensor
(T) contributions to AD;,/Dy. In the end we will obtain an expression of this type:

cPr =5t o™, (5.34)

In order to calculate CZDL we need to find the explicit expression of

AD
aPr — /de;:n(n) = L (5.35)
L

We start by calculating the «y,,’s associated with the terms which contain the scalar pertur-
bations ¥ and ®.

5.2.1 Contributions from ® and ¥

The first term which we consider is [AD/Dy](51) = —W — [1 — 1/(HY)]®. We use the generic
term A to indicate —¥ or —[1 — 1/(Hx)]®. We proceed by inserting in (5.30) the Fourier
decomposition

Pk
A = XAk, 7). :
(x,m) / o) € (k,n) (5.36)
Using the plane wave expansion in spherical harmonics
X = dmy i (k) Vi, (k) Yim (%) (5-37)
Ilm
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we find

o%) :/dQY* (n)/ ¢k eik"znA(k n)

3 ~
- / dQ Y (n) / ((; k S Am > il Gy (k) Vi (K) Yo (m) A(K, 1) (5.38)

l/ /

3
=t [ 5 SO i)Y (R) A ) [ A2 1)V (),

l/ !

where j; are the spherical Bessel functions (see Appendix . Proceeding with the calculations,
using (5.31)), we obtain

d3k
QUm, —47T/( 2 )i (RX) Y (K) A(K, 7) Sy Gy

ll /

3 ~

—ar [ (‘;‘;)‘ i) Vi, (R) A (K, ) (5.39)
3

=i [ < ROV () Ta (), 1)

In the last step we wrote A(k,n) in terms of the primordial value ¥, (k) set during inflation:

A(k,n) = Ta(k,n)¥p(k), (5.40)
where T4(k,n) is the transfer function. In our case we have
9 g‘l/(aa k)
= —Tn(k)———, .
T = 7gTmk)=— (5.41a)
9 g@(aa k)
To = 10T m(k) PR (5.41Db)

For the details see the introductory chapter, section Therefore we obtain

3 a a,
ajn! ——47T/((217T1){3Y (k)i'ji(kx )190T (k) [g\p(ak:)_’_ (1 ’Hx> Q@(a k)]\pp(k). (5.42)

We proceed by considering the term

AD; (52) 1/>‘< 3
_ = - dx (& + V). 5.43
e -1 [aerw (5.43)
We find
Bk - 1 9 Go(a k) + Gu(a, k
ol =t [ S350 [ ax i) | O OO g .
As concerns the term (53) )
AD; 1 /X o
— =—(1—— dyx (&' + W 5.45
o (1= 50) [ axe@+w) (5.45)
we obtain
S 1 Bk o (X R
ol = —am(1= 51 ) [ Vi) [ AR T 1)+ T ) )
1 d*k 9
——tn(1- ) [ Vi [ %) T (Rana) (5.46)
Gol(a, k) + Gu(a, k)
X da{ - U, (k).
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Finally, as regards the term

AD,; 59 1/x U
=2 =2 dy(x—=N)AV (@ + D), 5.47
D, 2/, X (X X)X 1( ) (5.47)

we obtain
sy _ 1 [aqye Y
Nm = T dQ Y, (n) ; dX(X—X)ivﬂq"i“I’)

1 . X _XAq d*k Vst
=3 [ a0¥im) [T @02 Sar [ S 0V (Ve )

U'm/

- - 5.48
x [®(k,77) + W (k,7)] (548)
* X ~ (5( - 5() d3k J . ~ « ~
= —Ar / dQ Yy’ (n) /0 dy 3 / @)y > i (k)Y (K) A Yy (1)
U'm/
x [@(k,7) + ¥ (k, )]
In the last equations we used (3.29) and
052 ofe2 25 2 9  cost 1
= — — 29 — = 5.49
Ao =XV =X <V 5(8” 8”> % + sinf " sin20 ¢’ ( )
which is the angular part of the Laplacian. Given that
AQYim = —I(1 + 1)Yim (5.50)

we get

X (X=X 4’k : -
S . PN
ol = am [Tax X O S (k)Y (0 )+ W)
0 2xx J (@2m)° =~
X / AQU( +1)Y; (1) Yy (n) .
Using (5.31) and (5.41)), we obtain

a(S4) =11+ 1)47T/ dgikyﬁn(la /OX dx (X = X)iljl(kfé) ) T (k) [QCD(&’ k) —ggqj(d’ k)} ‘I’p(k) .

i (2m)3 2XX 10 552
Each contribution 0‘1(51” calculated up to now can be written as
r . d3k * /1 X ~ . ~ o~ — o~ 8 _ ~ ~
aly) = 4ml/ E Yim(k)/ dX i (kX)W (sr) [x, Xo 111 op(X — x)] Tisry (ko — X)Wp(k) .
0
(5.53)
For example, as concerns agff),
X —X
W(S4) = l(l + 1) K (5.54)
and
9 Go(a, k) + Gu(a, k
Tisay = 15 Tm () 2(@,k) . (@.k)] (5.55)
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Therefore, in order to find the contributions to CZDL from scalar perturbations we have to take
into account terms of this type:

)% r! d3k % X ~ . ~ ~ ~ *
(ol ol = {n? [ G5¥im®) [ ARAOW (s () Trs ko — 93060

d3k/ « 7/ X ~/ - - ~ B
></(27r)3 lm(k)/o dX/Jl(k/X/)W(Sr')(X/)ﬁsw)(ki',770—X’)\Ilp(k’)>

o [ Pk [ BK X X ooh e
= (4m) /(%)3/(%)3/0 dXJz(k’X)W(sr)ﬁsr)/O dX' J1(K' X)Wy Tisery
X Yim (k) Yy, (K) (¥} (k) W, (K))
(5.56)

Since

(U5 () W, (K)) = (2m)°5p (k — k') Py (k) (5.57)

we find

(Sr)x _(Sr') 2 d*k X g~ X ~1 iy~ NP
<alm alm >: (47‘() (271')3 o del(kX)W(Sr)’]er) o dX jl(kx )W(Sr/)/ﬁSr’)D/lm(k)‘ P\p(k)
) (5.58)
Given that, using (5.31]), the angular part of the integral, [ dQ |}, (k)|?, is equal to 1, we obtain

T)* r! 2 *° X ~ . - o
(o ooy = 7r/O dkksz(k)/O AX i (k%) Wisr) [x,x, 7,7,

X
X/O diljl(kX/)W(ST’) |:>_(55(/77_7777/7
2 [ r r!
_2 / dk k2 Py (k) FS7) () F5™) (k)
T Jo

(5.59)

where
,0p(X — 5()} Tisry(ksmo — X) - (5.60)

Observer terms

We proceed by considering the scalar contributions due the terms evaluated at the observer. We
start from [1 — 1/(Hx)]®,. We find that its contribution to aﬁi is given by

1Y . Pk oy _
04;1;;; = <1 — HX) lim 47r/ (zﬂ)gzljl(kx)Ylm(k)B(k,no - X)¥,(k). (5.61)

x—0

Since the only non-zero contribution comes from [ = 0 and given that

L jo(kX) =1, (5.62)

we obtain ™

1 .
o, *
e = 00 (1 - 7_@)477/ W%m(k)ﬁ(k,no)‘l’p(k) : (5.63)
Terefore in this case we have

1
FP (k) =60(1— = )Ta(k,n0). 5.64
#(0) = 00 (1= 71 ) To(km) (5.60)
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As regards the observer term (1/x)éx9 we proceed as follows. In section we found the

expression for the coordinate time lapse (3.83)), which is given by
0 Mo
52 = —/ B(n, 0)a(7)d.
ﬁin
Therefore

620 1 * o n a(n)dn
it == [aeviw [ e 0aman
n

in

_ ll de*( )/d?’k ik'Xn/noT(k _)\I/ (k)_(_)d_
= hm f 4t [ e || Tttt 00n

in

3

. K ;. ey [0 _ PN
——§47T>1<1£% a2y Ji(kX) Yo (k) L To(k,7)¥p(k)a(n)dn

1 Pk, ¢ o
i [ Ve 0w,00 [ Tak ma(na.

ﬁin

(5.65)

(5.66)

An analogous reasoning can be applied to the observer term [1 — 1/(HY)]da,. We report here

(3.89)), which is the explicit expression for da,. We have

Mo
dao = Hodne, = —7‘[0/ ®(n,0)a(n)dn .
MNin

Therefore we obtain

tee =t (1 51 ) [ 50y o, 00 [ Tatk macnay
X = 10710 Hy 4 (27[_)3 0m D . o\r,n)aln)dn.

in

5.2.2 Contribution from V)|

We proceed calculating the contribution to alerf due to the term

AD;, V) 1
= = 1-— —_— UH .

DL HX
Assuming an irrotational velocity field, which implies v;(k,n) = ikjv(k,n), we have

(V 1 * d3k 1k-x 1

O[lm) — <1 — 7—[X> /dQ lm(n)/ (27-()36 Xnn]’[}j(k,n)
1 . APk geen.
= <1 - ’H)‘() /dQ lm(n)/ (27T)36kx in’kjv(k,n),

where v(k,n) is the velocity potential. Given that

4,
dx

ik-xn _ in]kj 7

we find

(5.67)

(5.68)

(5.69)

(5.70)

(5.71)

(5.72)
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Inserting (5.37) we obtain
v 1 . d3k
Oél(m) — <1_7-[X) /dQYlm(n)/ (271') 471'22 jl/ kX l/ ’ )}/l’ ( )

) iy {

l/ /

—an(1-o1) | (‘jff)‘gm'{ d(jx)jl<kx>]n;<k>v<k7n>.

0| 09 [ 49055, )i )

(5.73)
We can substitute the derivative of the Bessel functions with
. ) l.
Opjl = —Jiy1 + el (5.74)
which is obtained from the identities
[+1
Ot = Ji-1 = ——Ji (5.75)
and 20 + 1
Ji—1 4 Jiy1 = Ji- (5.76)
Therefore (5.73)) becomes
3
(V) _ 4 1—1/dkklk— ) | Y (K)To (k1) 0, (k 5.77
ol =1 (1= 1) [ gt | ) = i (0| GO by ). (577
In this case the transfer function is given by
9 T (k)
To(a,k) = =355 Gola: k). (5.78)

As concerns the contributions (al(v) a%)> and <04§§1r) al%)> we obtain a result similar to (5.59)),

the only difference being the expression of Fl( )(k:), which is given by
Wy = | .
F(k) =k k_yz(kx) — Ji41(kX) | To(kym0 — X)) - (5.79)

Observer terms

In order to find the contribution from the observer term [1/(HX)]v|, we proceed in the following
way.

lm

Vo d3k l
=g i [ Sk L) 00|V O TR B0, 550
Given that the only non-zero contribution comes from [ = 1 and

alkx) 1

li - 5.81
xlg%) kx 3’ ( )
we obtain
) 11 Bk, e
oty = dugin e [ GV (T, (k) ). (5:52)

CZ(S—i—V)

We are now ready to calculate , which is the contribution to CZDL from scalar and vector

perturbations.
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5.2.3 Contribution to ClD L from scalar and vector perturbations

The scalar and vector contributions to C’lD L are given by

oY) = W/dka[ (SW)(k)rP@(k), (5.83)
where [l

- /OX d>~<jz<k5<>1(g““(d’ £) Tg‘l’(a”‘”)

X a
- /0’_‘ ax (k) (1 - Hﬂ_{)a%( >da(%(“ 0+ Gold “)

. Oxdijz(kﬁl(”;);;_)o(gm(a’k)}:g@(&’k))

+ b0 <1 — ;}_{) g‘b(ssk) — 80 [; + Ho <1 —~ ;}_{)] nn: Go(k,a)dn

(5.84)

5.2.4 Contributions from hﬁT

The final step consists in calculating the tensor contributions to the angular power spectrum
associated with the relative correction to the luminosity distance. We follow a procedure similar
to what has been done in [70] for the calculation of the effects of the stochastic GW background
on the large scale-structure observables.

We start from the decomposition of the tensor perturbation h;fg-T into plane waves of the two
polarization tensors. We have

TT dgk tkexp TT
hzg (Xa 77) = (27’(‘)3 € hzg (ka 77)

(5.85)

3, .
= [ g e G )+ 1 (e ()

A
ij
and normalized through ei)‘jeA W = 26", The solution h*(k,n) at a generic time 7 can be written

as

where the polarization tensors e: (k), which are denoted as A = +, X, are transverse and traceless

WA (k) = i (K) T (K1) (5.86)
where

. h;\mm( ) is the primordial gravitational wave mode which remains constant on super-

horizon scales;

e Tr(k,n) describes the sub-horizon evolution of the gravitational wave modes when they
enter the horizon after the phase of accelerated expansion (see section |1.4.3)).

IFor numerical estimations, which are not considered in this thesis, we should multiply the right-hand side of
(5-84) by x*W., where W, is the normalized object selection function, and integrate.
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The power spectra of the polarizations are given by

<h,\(k, n) h (K, 77,)> = (2m)*6p(k — k/)éM’iPT(h 1), (5.87)
where
PT(k777777/) = %(kvn)’TT(kanl)PTO(k) (588)

and Prg is the primordial tensor power spectrum (see section |1.4.3)).
We report here (5.28]), which contains all the tensor contributions to the relative correction
to the luminosity distance.

e A B Ly KAy B T [p—— dx h
[DL} g ) T - g ) o +< 2HX>/0 X

_ (5.89)
_|_1 Xd~(—_~)X@2hTT_§hTT
4 J, XTIV LA T g o
Each term in (5.89)) can be written in the generic form
_ X ~ . _ 0 _ ~ TT / ~ -
A, x) = [ dxWa|X; X, 77 Sp(X = X) | " (xm,m0 — X)
0 (5.90)

X ) Bk
_ dx v Sn(v — % tkeny, ¢ ]hTT k — ).
A XWA |:X7 X 677]7 D(X X):| / (271_)3 € nmn ij ( » 10 X)

We proceed considering the contribution of a plane wave tensor perturbation with the wave-

vector k oriented along the z-axis. We denote this contribution to A(n, ) as A(n,k, ). In this
case

ninjhz;T(k, n) = sin? @ [cos 2¢ h* (k, 1) + sin 2¢ h* (k,n)] = sin” 0 [e2Ph; + e 2%hy],  (5.91)

where
n = (sin 6 cos ¢, sin f sin ¢, cos ) (5.92)

and 1
hio = §(hJr Fih™). (5.93)

are the circular polarizations. Therefore
X . . .
A(n,k,x) = / AX Wa(X)e™¥ (1 = p?)[¢*?h1 (k1m0 — X) + ¢ Pha(k,mo = X)],  (5.94)
0

where = cosf is the cosine of the angle between between the direction of observation n and
the wave-vector k. Comparing it with the scalar case, we see that the main difference is given
by the factors e*#2%.

The multipole coefficients of A can be written as

3
o = [ 40 m)Am0) = [d0vi,m) [ (j;;,,A(n, k%)

Pk [X o A ,
= / (27‘(‘)3 /0 d>~< WA(S{) /dQ leq*n(ﬂa (b)elkXN(l - Mz) [622¢h1(k7 o — 5() + €_l2¢h2(k, o — )2)]

3
-/ ;;};samk) ,
(5.95)
where
oft (k) = /0 S WAR) / QY (1 6N (1 — 1) [2hy (k1o — 1) + e 2l mo — 1)
(5.96)
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Given that
. . |
/dQ Vi (1 — p2)et®eion — . Jin (2l + 1) E; i g;;i”lg)amﬁ, (5.97)
we obtain
2 +1(1+2) ,/5< _ _ - - Ji(kx
A l
k)= —/—— 4 k, 1m0 — X)0m k, 10 — X)0m— .
Oty (K) pr TR AX Wa(X) [h1(k, 0 — X)dma + ha(k, 10 — X)0m—2] Sk
(5.98)

The proof of (5.97)) is given in Appendix [C| Before proceeding we calculate the power spectra

of hi1 and hy. We find
(mic ) b (K m) ) = ([0 ko) + 0 (k)] [ (06 m) = i (K, )] )

1
4
— i<h+(k,n) h*(k’,n)> + i<hx(k,n) h* (K, n)>
1
8

(5.99)
= ~(2m)%0p(k — X)Pr(k),
where we used ([5.87). With an analogous reasoning we obtain
1
(B3(lem) ha(d ) ) = S (2m)6p (k= K) Pr(h). (5.100a)
(n30k,m) (&, m) ) = (Wi, ) (K, m) ) = 0. (5.100Db)

We are now ready to calculate the tensor contribution CI(T) to the angular power spectrum

CIDL. Each term of CZ(T) will be of this type:
1 (Tr)x _(Tr")
20+ 1 Zm (alm™aln”)-

Inserting (5.98) in it we obtain

sy S {afi el =

[+2 A3k . ]
= ( ) AT </ / dx W(Tr h (k7 o — )5m2 + h2(k7 o — X)(Sm72]

(-2

A3k’ [X . 5 j
X //0 AX' Wi (X)) [P1(K 10 — X)Oma + ha(K, 1o — X')0m—2]

(27)?

(5.101)

=2 [ Gy 5 [ [ W [ g W () )

[<h1(k7 no — X)h1

X [(27r)35D(k — k’)%(émg)Q + (2m)30p(k — k’)%(ém_g)Q ,
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( ,no—x'»( 2 + (50, 10 — ha(K om0 — ) (6m2)’]
[+ 2)! d3k d3K’ X kx k"

:Ezfzi!“;/ 2m)? (27f)3/0 W(T”(X)juiﬁz)/ WX Wiere (X )]<lk(:f>~<'>3

(5.102)
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where we used (5.99)) and ( m Proceeding with the calculations we find

1 (Tr)x (Tt l+2 / d3k Ji(kX) /X iy _nJi(kX)
20+ 1 %:<alm Yim > Z (TT)(X) (ki)Q 0 dX W(Tr’)(X) (kf(’)Q
P
x 5 [(6m2)® + (6m—2)%)]
(1+2)! /47rk:2 /X _ Ji(kX)
= 4 P _
(—2) T L dk8 ro(k) ; deTT)( )T (K, no )(ki)Q
X N
~! ~! _ Jl(kX)
(5.103)
Finally, defining
T DO A SR (k)
= x y Xy~ - ka - ~ ) 104
/0 dx W, [x X 57 dp(X x)]TT( o — X) )2 (5.104)
we obtain
1 (Tr)x (Tr')\ _ i(l+2)! 2 (Tr) (Tr")
20 + 1 Zm:<alm Y >— am—2)y ) P Pro(k)F, " (k) E " (K) - (5.105)

Observer term

We proceed by calculating the contribution due to the observer term —(5/4)h,. Considering
that the only non-zero term comes from [ = 2 and given that

jelkx) 1

li = — 1
550 (ky)2 15 (5.106)
we obtain
Ry, o .. _ Ji(kx
F1 (k) = 7 lim T (k0 — X)ﬂ(;;(z)
X (5.107)
=~ —Tr(k
12415TT( ,10) -
5.2.5 Contribution to CP* form tensor perturbations
The tensor contribution to CZDL is given by
) _ 1 (+2)! / 2q [1D ()]
= ey ak [17 ()] Pro(k) (5.108)
where
() 1 ji(kX) 1 /X - Ju(kX) -
LY(k)=- k,mo—X) — — d k,mo —
(k) 4(,”_()27}( ;10 — X) %) x(ki)QTT( ;10— X)
3 (% _alkx) 1 - 11 /5‘ - Jilkx) d -
= d —Tr(k,no — 1——— d —Tr(k,no —
+5 T XTT( ;70— X) + 2717 ) ), X df,TT( ;10— X)
WW+1) [* x—xakx) 12
- d k — —=Tr(k .
1 /O X >’<5< (k:x) 3 Tr(k,mo = X) = 15 Tr(k, mo)
(5.109)
It can be seen that the sum of the two terms which contain 1/Y, which is given by
3 Ui+1) - Ji(kx) 1 -
° d 5.110
[2 1 ]/O TR ~Tr(k,m0 — X) » (5.110)

is regular for [ > 3 and null for I = 2. Indeed limg_,o ji(kY)/(kX)? = 0 for [ > 3 and 3/2 — (I +
1)/4=0for [ =2.
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Conclusions

In this work we studied the propagation of gravitational waves through a perturbed FRW Uni-
verse in the limit of geometric optics and considered the luminosity distance inferred from the
GW waveform associated with a merging binary system. In particular we calculated the tensor
contribution to the correction to the estimate of the luminosity distance. Indeed the GW signal
coming from a merging binary system should be affected by the primordial GWs present in the
spacetime through which the signal propagates and therefore can encode informations about
them. Therefore we calculated the imprint of the tensor contribution on the angular power
spectrum CZDL associated with the relative correction to the luminosity distance ADy,/ Dr.

Chapter [2| was entirely focused on the description of the geometric optics approximation
[60,61], which consists in separating the background metric g, from the metric perturbation
h,, relying on their different scales of variation: the perturbation h,, varies on a length scale
A smaller than the scale of variation Lp of the background. The propagation equation for the
gravitational waves was obtained by subtracting from the Einstein’s equations the low frequency
part by means of an averaging procedure on an intermediated scale A < [ < Lp (section .
We took into account the leading and next-to-leading orders in A/Lp, neglecting terms of order
(A/Lg)°. In this way the propagation equation becomes gauge invariant and its expression can be
simplified choosing the Lorenz gauge . The final part of the chapter consisted in inserting
the ansazt in the propagation equation, thus obtaining the evolution equations for the
amplitude and the phase of the gravitational waves and finding that gravitational waves in the
limit of geometric optics propagate on null geodesics of the background. Finally the equations
were written in terms of the comoving metric g, = g,/ a?, which proves to be convenient in
the following chapters.

Since in the thesis we assumed a perturbed FRW Universe, the background metric g, =
9w /a? was additionally split in the metric 9, associated with a homogeneous and isotropic
FRW Universe and the perturbation dg,, due to cosmological perturbations. In Chapter |§| we
introduced the Cosmic Rulers formalism [64}65] and provided a map between the observer’s
frame, which is characterized by the assumption that we live in an unperturbed FRW Universe
described by the metric g,,,,, and the real frame, where we take into account the effects of the
cosmological perturbations and therefore we consider the perturbed metric g, + dgu,. From
the integration of the differential equation for the wave-vector perturbation dk* we obtained
the perturbations dx* at fixed comoving distance in terms of the metric perturbations. With
respect to [46] we took into account the perturbations of the observer’s coordinate (section
and worked in a general gauge. Finally, in section we calculated the total correction
Azt = dzt + k'6x finding the expressions for dy, AzY, Az and A:vﬁ_ in terms of the metric
perturbations.

Chapter [4] was entirely devoted to the calculation of the effects of the cosmological pertur-
bations on the GW waveform. We inserted @[z#(¥)] + Ap(X) and In A[Z#(Y)] + Aln A(Y) in
the evolution equations and for the phase and the amplitude calculated at the
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end of Chapter [2) thus obtaining the corrections Ap(x) and Aln A(y) in terms of the metric

perturbations (equations (4.25)) and (4.62)).

In Chapter [5 given that the total correction to the amplitude is related to the relative
correction to the luminosity distance by , we calculated the expression for ADy /Dy, which
is given by . The final step consisted in the calculation of the angular power spectrum
C’lD L associated with the relative correction to the luminosity distance. The final expression
CID L= Cl(erv) + CI(T) is given by two contributions. The first one is due to the scalar and
vector corrections which contain the metric perturbations ®, ¥ and the velocity term vy =n-v,
the second one to the tensor corrections coming from the primordial gravitational waves hiTjT. We
see from that CZ(T) encodes information about primordial gravitational waves through
the presence of the primordial tensor power spectrum Prg(k). Future work requires to include
a numerical evaluation of the tensor contributions to CIDL in order to estimate the impact of
these relativistic corrections.
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Appendix A

Conformal transformations

The following part is based on Appendix G of [71] and Appendix D of |72].
A metric g, arises from g,,, via a conformal transformation if

g,uu :wz(x)g,uzn (Al)

where w?(x) is a nonvanishing function.
It can be easily verified that the inverse conformal transformation is

"= (A.2)
Indeed ]
9050 = a8 @) = 7G5 = 0 (A-3)
In our case, since g, = %,
1
w=—. (A.4)

The covariant derivatives associated with g, and g, are denoted respectively as 6# and @u‘
The Christoffel symbols f‘l;p associated with g, can be written as f‘l,jp = f‘l;p + CY,, where Cl,
is a tensor, given that it is the difference of two connections. In order to find the expression of
Cl, in terms of a and G, We proceed in the following way:

N 1. ~ R ~
Flsz = §gua |:an;)0 + apgz/a - 8Ugl/p:|
1 . . . _
= ﬁgu |:al/(w2gp0') + aP(WQ-gVo) - 8U(w2gup):|
. 1 . - - - A5
= Fﬁp + ﬁg“"%) [gp(,&,w + G,,0,w — g,,p(%w] (A.5)
. 17 - . o
= Fl:p + » [%‘V,,w + 60V w — g’wgl,pvgw}
=T, +C,,
where
1 ~ ~ o~ =
cl, = » <55V,,w + 60V pw — g+ ngVUw> . (A.6)

In the following part we will demonstrate that conformal transformations leave null geodesics
invariant.
We begin by showing that null curves are left null under a conformal transformation. Indeed
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the tangent vector of a curve z#(l) which is null with respect to G, 1s also null with respect to
g/ﬂ/: B
dz# dx” g, dz# da”

I Al T e dl dl
The next step consists in showing that a null geodesic with respect to V, is also a null geodesic
with respect to V.
If 2P(1) is a geodesic with respect to V., and [ is an affine parameter, the geodesic equation takes
the form

=0. (A7)

'V, k" =0, (A.8)

where £k’ = %.
In order to see if k” satisfies the geodesic equation with respect to Ve, we analyze l%”@pié”. By

using (A.5) and (A.8) we obtain

~A
o
7P| coe 1 A~ 1 ~OT~ ©— 1 FA (Ag)
ak‘ |:6PV)\ <a) +5>\vp<a> g gp,\VT <a>:|]€

Va(Ina) — l;:al;:p@p(lna) + l;:pz:pg‘"@T(lna) .

Therefore in general a geodesic with respect to @p is not a geodesic with respect to v p- However,
if we consider the specific case of null geodesics (kpk:p = 0), the previous equation becomes

l%p@pfﬂa = —2I~cgl~€p@p(lna) , (A.10)

which is a non-affinely parametrized geodesic equation. Indeed, if z#(x) is a geodesic with
respect to V, and y is an affine parameter, the geodesic equation written in terms of a generic

parameter () becomes
I . 242" doP
di d /fdide® + F5 Al "de” do? -0
dy di \ dy di P\dy) Al di

5 9 (A.11)
A\t () e e
dy /) di? dy? di P\dy ) dI dl
2 v d72l
ot o dedar S dat
di? vPedlr dl (g)Z dl
dx
&2 (A.12)
TIPS TH dx® e
— k
P <d7l>2
dx
Comparing it to equation (A.9)) we get
d2
ax” dy d
=2-—~-—Ina. A.13
(& )2 Al dy (A.13)
dx
Thus the relation between the two parameters [ and x is given by
dl
— =Ca® A.14
o = e (A.14)
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where C is a constant of proportionality.

Therefore dt oy dat L1
=S _SXGT 2 g A15
dl dl dy Ca? ’ ( )

where k" = %.

Summarizing, if 2*(1) is a null geodesic with respect to V, and [ is an affine parameter, z*(y) =
z#[I(x)] is a null geodesic with respect to V, (and x is an affine parameter if dl o<~a2dx). In
other words, if the null vector k' satisfies kapk:a = 0 and dl « a?dy, ' o a2k" satisfies

PN =0,
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Connection coefficients in a general
gauge

The components of g, = a2§w/ and g" = (1/a?)§"" are given by

1 1

g 29 2 =00 ~00

Joo = a’gop = —a’*(1+24), e A

q p ~ 04 1 . 1 .

Joi = a*jo; = —a’B, " = ﬁgoz = _?B’, (B.1)
. ) D 1

Gij = a*gi; = a*(8ij + hij) , G = ;gzﬂ — _9(6] hid)

We calculate, at linear order in the metric perturbations, the Christoffel symbols fffp associated
to the comoving metric §,,, = §,,, + 09 = Ny + gy, where 1, is the Minkowski metric. Since

S A 1
Fﬁp = 6F5p = 5?“0(8/7591/0 + 8116.ng' - aa5gyp) ) (B.Q)

we find

~0 -0 1 1 1
Lo =0T = §§0”(805goa + 06900 — Dbg00) = 53" Aobg00 = —5%(=24)

2
— OpA.
0 -0 1 1
Lo =T, = 5900(@‘5900 + 000gic — 05090i) = 5900(31‘5900 + 006gi0 — G0 90:)
= azAv

0 SN L 0o
Iy =o'y = 59 (0j0gic + 0i0gjo — 050gi5) = 59 (0j6gi0 + 0i0gj0 — 000 gij)

1 1 1 1

= —5(—81'31' — 8¢Bj — 80hij) = 58]31 + §8IBJ + iaohij R

. i 1_;, L i (B.3)
Log =0l = 59 (00900 + 000gos — Osdgoo) = 55 (Godgoj + Godgoj — 06900)

1 , . . o

= S(—00B' — QB +2014) = B + 04,

.G . 1_. 1.,
Ly; =00y, = 59”(33'5900 + 000gjo — 050905) = §6zk(8j590k + 00091 — O goj)

1 i i oo Loooi 1 L,

= 5(—8]‘3 + aohj +0 Bj) = —iajB + 58 Bj + iaohj ,

A A 1. 1
[y =00, = 5910(3k59ja + 0j0gko — Os0gjk) = §5Zl(8k5gjl + 0091 — 0199;x)

1 i 1 i 1,

= §akhj + §8jhk — 58 hjk .
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For completeness we report the Christoffel symbols I, associated to the metric g uv- Given that

Vp
we already calculated I‘l,p, in order to find the explicit expression for Fffp we can use (A.5) and

, which we rewrite here:

=1 _cn

" Vo b= =10 o= (5”VVa AV g,/pvga) (B.4)

Therefore, neglecting second order terms in the metric perturbations, we obtain

TR S ~ (20800a — 3" Gondsa) = A + %(28()(1 — 5 G00000)
:aoA+@[2— (1—24)(1+24)] = A+ H,

I = ng’ + - (583'0 +0700a — 3% §o;050) = ;A + é(*@oogoﬁoa)
:aAJr@[ (1-2A)B;] = ;A —HB;,

[ A (503 a+ 80,0 — §°7G;:0,0) = T + 2(—@00%80@)

- 8 1 1
= ng + 7(1 — QA)((;Z']' + hij) = *8'3' + §8ZB] + iaohij + ’H((Sl] + hij — 2A5ij) ,

. . 1 —i0~
]._‘00 = FOO + - (5060(1 + (5080@ - g gooa (I) = _8()BZ + 0'A + E (_g Ogooa()(l)
=—0yB"+0'A+ 8—[ B'(1+24)] = —0yB' + 0'A — HB',

i o 1, o
Fz)j = Foj + g(é}@oa + 85050 — 3" §o;000) = ng + 5(5;-3()@ — 7"°50;000)

doa . 1 1. 1. .
7(5% — B'B)) = —30;B' + 50'B; + SO0} + M0},

=1 5i0ia + 8idia — GG 00a) = I L g0a)