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Abstract

Detecting gravitational waves (GWs) propagating through cosmic structures can provide valu-
able information about the geometry and contents of our Universe, opening a completely new
window for observational astrophysics. In order to carry out astrophysical and cosmological
studies it is important to have a precise formalism for using GW observations. In this thesis we
will consider GWs traveling through a perturbed FRW background and work with the geometric
optics approximation. In particular, by observing the effect of cosmological perturbations on
the GW waveform associated with a merging binary system, we calculate the correction due
to the tensor contribution when estimating the luminosity distance anisotropies. Specifically,
we compute the signatures left on the GW signal by primordial GWs and analytically derive
their signature on the angular power spectrum associated with the relative correction to the
luminosity distance.
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Chapter 1

Introduction

On 14 September 2015 for the first time gravitational waves were detected by the two Advanced
LIGO detectors [1], a century after Albert Einstein predicted their existence. This first direct
observation, named GW150914, and the following made by the LIGO-VIRGO collaborations
opened a new chapter in astrophysics and cosmology.

Besides increasing our knowledge about the astrophysical sources which produced them and
in general opening a new window for observational astrophysics (see e.g. [2–8]), GWs can be
used to test cosmological models. For instance, on 17 August 2017, the joint observation of a
gravitational wave signal [9], known as GW170817, and electromagnetic waves from the same
astrophysical object, a binary neutron star merger, marked the beginning of a new era of multi-
messenger astronomy. A detection of this type can be used to constrain the ratio between the
GW velocity and the speed of light, providing a way to test general relativity. In the case of the
GW170817 event and the associated gamma ray burst GRB170817A, the GW speed was fixed
with high accuracy [10], |vGW−c

c | < 10−15, translating in the exclusion of many modified gravity
theories. Other papers which show how to test general relativity and modified gravity theories
through gravitational waves are given for example by [11–18].

Multi-messenger observations as GW170817 can be used as “standard sirens” [19] to measure
the Hubble constant, which describes the expansion rate of the Universe. Standard sirens are
the gravitational wave analog to standard candles: GW sources from which we can obtain a
direct measurement of the luminosity distance. The GW170817 event provides an example of
bright siren [20], which is a GW source that produces a detectable electromagnetic counterpart
from which we can deduce the redshift. In the absence of an electromagnetic counterpart alter-
native methods can be employed in order to infer the source redshift, such as correlating galaxy
catalogues with the inferred position of the GW source (see for example [21]). In this case GW
sources are referred as dark sirens.

Besides GWs of astrophysical origin, gravitational waves produced in the early Universe are
of great importance for cosmology [22–26]. All inflationary models predict a background of grav-
itational waves due to quantum tensor fluctuations. As a consequence primordial gravitational
waves are considered a smoking-gun for inflation. Moreover, depending on the inflationary model
which we consider, the features of the signal change, making possible to distinguish among differ-
ent scenarios. There are models which, besides the quantum fluctuation of the gravitational field,
predict additional mechanisms of primordial GW production, resulting in specific signatures.

In addition to the stochastic gravitational wave background of cosmic origin, it must be taken
into account that the superposition of a large number of signals from unresolved astrophysical
sources, too far or too faint to be detected separately, produces a stochastic gravitational wave
background (ASGWB) [27–29]. From the detection of this background of astrophysical origin
we can gain further information about the properties of the compact objects which generated it.
Since the stochastic gravitational wave background is given by the combination of contributions
of cosmic and astrophysical origin, it becomes necessary to develop techniques to disentangle
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Chapter 1 CHAPTER 1. INTRODUCTION

these two contributions in order to extract precise information.

The number of gravitational wave detectors is increasing. Present detectors include the
current ground-based interferometers, such as aLIGO/VIRGO/KAGRA collaboration, and the
PTA collaboration (NANOGrav, EPTA/InPTA, PPTA, and CPTA), which recently detected
a low frequency stochastic gravitational wave background (SGWB) [30–33]. Future detectors
include both ground-based interferometers, such as Einstein Telescope (ET) [34–36] and Cosmic
Explorer [37,38], and space-based detectors such as Laser Interferometer Space Antenna (LISA)
[39], DECi-hertz Interferometer Gravitational Wave Observatory (DECIGO) [40] and Big Bang
Observer (BBO) [41]. With the upcoming detectors the precision of the measurements will
increase, opening an era of precise GW cosmology.

As a consequence it becomes necessary to develop precise formalisms in order to use GWs to
carry out detailed astrophysical and cosmological studies. Early studies which started consider-
ing the effects of cosmological perturbations on the propagation of gravitational waves are [42]
and [43], which analyzed the Integrated Sachs-Wolfe effect (ISW) respectively on the signal
coming from supermassive black hole binaries and in the study of the anisotropies of the grav-
itational wave background. The effect of lensing magnification was treated in [44], while [45]
considered the corrections on the GW signal due to environmental effects.

In this context, in this thesis we will drop the assumption of an unperturbed FRW universe
and include cosmological perturbations. Precisely, we will calculate the corrections to the esti-
mate of the luminosity distance of a merging binary system taking into consideration the effects
of these cosmological perturbations on the propagation of the gravitational wave signal produced
by the source. We will proceed as in [46]. With respect to it, in which the amplitude and the
phase are calculated in the Poisson gauge, we will work in a general gauge. Moreover we will
consider the perturbations at the observer. The original contribution of this thesis consists in
evaluating, in addition to the scalar and vector contributions, the corrections to the luminos-
ity distance due to tensor contributions. Actually the imprint left by the gravitational waves
represented by these tensor perturbations can in principle provide information about them and
therefore constitute a complementary probe of primordial gravitational waves. Thus we will
calculate the analytical expression for the tensor contribution to the angular power spectrum
associated with the correction to the luminosity distance and relate it to the primordial tensor
power spectrum.

The thesis is organized as follows.

In this introductory chapter we will give a brief overview on cosmology, focusing the attention
on the physical quantities and equations which will be used in the following chapters of the
thesis. Furthermore we will briefly summarize the types of GW signals, concentrating on the
GWs produced by a binary system made of two compact objects.

In Chapters 2 and 3 we will describe the Isaacson’s geometric optics approximation for grav-
itational waves and the Cosmic Rulers formalism, which are used to study the propagation of
gravitational waves over cosmological distances. By using the geometric optics approximation
we assume that the metric can be written as gµν = g̃µν +hµν , where the small perturbation hµν
represents the gravitational waves, which are characterized by a short wavelength and propagate
over a curved background described by the metric g̃µν which varies on larger scales. The back-
ground metric g̃µν will be additionally split into the metric associated to a homogeneous and
isotropic universe and first order perturbations which describe the large-scale structure (LSS) of
the Universe. We will demonstrate that in the geometric optics limit gravitational waves travel
on null geodesics of the background g̃µν . Consequently the Cosmic Rulers formalism, initially
introduced for the electromagnetic radiation, can be extended to gravitational waves. We will
describe the Redshift-GW frame (RGW), used as reference system, and the realframe. Then
we will see how to set a map between the two frames by decomposing each physical quantity
of the real frame into a zero order contribution, given by the solution in the RGW frame, and
a first order perturbation due to cosmic inhomogeneities. Chapter 2 will be devoted to the
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Chapter 1 1.1. SOURCES AND TYPES OF GW SIGNALS

geometric optics approximation, while in Chapter 3 the attention will be focused on the Cosmic
rulers formalism, in particular on the calculation of the wave-vector and geodesic perturbations
in terms of the metric perturbations.

The effects of the LSS on the GW phase and amplitude will be analyzed in Chapter 4.

In Chapter 5 we will analytically derive in terms of scalar, vector and tensor perturbations
the relative correction to the luminosity distance and calculate the angular power spectrum
associated with it.

1.1 Sources and types of GW signals

In this section we provide a brief description of the different types of GW signals. Known
GW sources span a frequency region of many orders of magnitude. As we can see in figure
1.1 different types of GW detectors are necessary to observe the entire GW spectrum: each
instrument is designed to detect a specific frequency range. For example space-based detectors

Figure 1.1: The GW spectrum and the associated sources and detectors. Figure credit: NASA Goddard
Space Flight Center https://science.gsfc.nasa.gov/663/research/

like LISA are aimed at detecting gravitational waves with frequencies between 0.1 Hz and 1 Hz
(the region highlighted in figure 1.1), quite lower in comparison with ground-based detectors.
Gravitational waves observed by LISA could come from extreme mass ratio inspirals (EMRI),
systems which consist of a stellar mass compact object orbiting around a massive black hole.
GW sources that could be observed by LISA include also binary black holes in the early inspiral
phase. Some of these events could become multi-band events if later detected by ground-based
interferometers. Given that pulsar timing arrays operate at frequencies of the order of 10−9Hz,
they are sensitive to different types of sources with respect to the other GW detectors. A possible
source of the low frequency stochastic gravitational wave background recently detected by the
PTA collaboration is a population of supermassive black hole binaries which form in galaxy
mergers and are distributed throughout the Universe. However there are alternative cosmological
interpretations of the origin of the signal (see e.g. [47–49] for possible interpretations, both
cosmological or astrophysical).

3



Chapter 1 CHAPTER 1. INTRODUCTION

Figure 1.2: Examples of signals which could be observed by LISA and other ground-based detectors. The
times indicate the time to merge. [50]

We proceed by classifying the different kinds of signals. The main distinction is between
astrophysical gravitational waves, which, as the name suggests, are produced by astrophysical
sources, and cosmological gravitational waves, whose sources are early Universe mechanisms.

1.1.1 Astrophysical sources

A classification of the astrophysical GW sources can be based on the type of signal they emit
(see e.g. [51]). We can distinguish three kinds of signals: transient, continuous and stochastic.

Transient signal

Transient signals last for a relatively small amount of time in the detector bandwidth. This means
that we are including both intrinsically short events and signals which can be observed only for
a limited amount of time by the detector, given that it is sensitive only to a specific frequency
range. As an example current ground-based interferometers cannot access the frequency region
below 10 Hz because of seismic and Newtonian noise. This implies that they can observe only
the final stages of binary inspirals.

Transient signals can be further divided in

� modelled signals, such as compact binaries close to coalescence; in this case we have a
detailed knowledge of the shape of the signal in terms of a limited number of source
parameters;

� GW bursts, which are not well modelled signals, such as supernova explosions; in this
case we have no precise description of the shape of the signal, we are only able to make
assumptions, imposing for instance constraints on the total duration of the signal, typically
less than a second, and on the frequency band where the power is concentrated.

Continuous signal

Continuous signals refer to long-lasting signals that are present for the entire available time
of observation, which can be of years. As the time of observation increases the signal-to-noise
ratio increases. These signals can be emitted for example by non-axisymmetric spinning neutron
stars, whose asymmetry could be due to imperfections in the spherical shape of the surface. This
type of periodic source emits a quasi-monochromatic signal: intrinsic variation of the frequency
of the source and modulation effects due to the motion of the Earth must be taken into account.
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Chapter 1 1.2. UNPERTURBED FRW UNIVERSE

If we consider future space-based detectors another example of continuous GW signals can be
provided by the early stages of binary inspirals.

Astrophysical stochastic background

This stochastic background is due to the superposition of a large number of signals from unre-
solved astrophysical sources, too far or too faint to be detected separately.

1.1.2 Cosmological GW

As already explained in the introduction, in this case we area talking about the stochastic
gravitational wave background generated by processes active in the early Universe. Cosmological
gravitational waves are predicted by any model of inflation. Besides it there are additional
mechanisms which can produce gravitational waves in the early Universe, resulting in specific
features of the signal.

1.2 Unperturbed FRW Universe

This section, in which we give some basic definitions used in cosmology, is mostly based on [52].

The real physical Universe has structures: we observe galaxies, filaments and walls, cluster
and superclusters of galaxies, voids. These structures formed from initial small inhomogeneities
in the energy density set at end of inflation, a period of accelerated expansion during the early
universe. These initial perturbations grew by gravitational instability, leading to the large
scale structures we observe today. Only on very large scales, above 100Mpc, the Universe can
be considered on average homogeneous and isotropic and therefore can be described by the
Friedman-Robertson-Walker (FRW) metric

ds2 = −dt2 + a2(t)

[︃
dr2

1− kr2
r2(dθ2 + sin2 θdϕ2)

]︃
, (1.1)

where t is the cosmic time, a(t) is the scale factor, r, θ and ϕ are the comoving spherical
coordinates and k is the curvature parameter.

The evolution in time of the scale factor a(t) is obtained by the Einstein’s equations

Rµν −
1

2
gµνR = 8πGTµν . (1.2)

If we consider a perfect fluid the stress-energy tensor Tµν is given by

Tµν = (ρ+ p)uµuν + pgµν , (1.3)

where gµν is the metric tensor, ρ the density, P the pressure and uµ is the 4-velocity of the
fluid elements. Inserting (1.1) and (1.3) in the Einstein’s equations we obtain the Friedmann
equations:

H2 =
8πG

3
ρ− k

a2
, (1.4a)

ä

a
= −4πG

3
(ρ+ 3P ) , (1.4b)

where the dot indicates the derivative with respect to the cosmic time t and H = ȧ/a is the
Hubble parameter.
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Chapter 1 CHAPTER 1. INTRODUCTION

1.2.1 The Hubble parameter

If we assume a ΛCDM cosmology, the Hubble parameter is a function of the matter (ρm),
radiation (ρr) and dark energy (ρΛ) content of the Universe:

H2(a) = H2
0

[︃
Ωr,0

(︂a0
a

)︂4
+Ωm,0

(︂a0
a

)︂3
+Ωk,0

(︂a0
a

)︂2
+ΩΛ,0

]︃
, (1.5)

where ρcrit,0 = 3H2
0/8πG is the critical density today, Ωi,0 = ρi,0/ρcrit,0 and Ωk,0 = −k/(a0H0)

2

is the curvature density parameter. The last expression can be obtained from the first Friedmann
equation (1.4a).

Taking into account that we can neglect radiation at present time we have

H(z) = H0

√︁
Ωm(1 + z)3 +Ωk(1 + z2) + Ωλ , (1.6)

where z is the redshift and, as in literature, we dropped the lower index 0.

1.2.2 Redshift and comoving distance

The redshift of a luminous source is given by

z =
λ0 − λe

λe
, (1.7)

where λe is the wavelength of radiation at emission time te and λ0 is the wavelength of the light
received at time t0. The difference between λ0 and λe is due to the expansion of the Universe.

The relation between the redshift z and the scale factor a is given by

1 + z =
a0
a

, (1.8)

where a = a(te) and a0 = a(t0) = 1. The comoving distance from the light source to the observer
is therefore given by

χ =

∫︂ t0

te

dt

a(t)
=

∫︂ 1

ae

da

a2H(a)
=

∫︂ ze

0

dz

H(z)
. (1.9)

1.2.3 Luminosity distance

The luminosity distance DL is defined by

F =
L

4πD2
L

, (1.10)

where F is the observed flux (the power received per unit area by the observer) at t0 and L is
the luminosity of the source (the energy emitted per second).

In a FRW Universe, if the source is located at the comoving distance χ, the flux is given by

F =
L

4πa20χ
2

(︃
a

a0

)︃2

. (1.11)

The last expression can be explained in the following way. The area of a sphere which at time t0
is centred on the source and passes through the Earth is given by 4πa20χ

2. The photons which are
received are redshifted by a factor a/a0 because of the expansion of the Universe. Moreover the
photons emitted in an interval δt arrive at the observer in an interval δt0 = (a0/a)δt. Therefore,
comparing (1.11) with (1.10) we obtain

DL =
a20
a
χ . (1.12)

6



Chapter 1 1.3. COALESCING COMPACT BINARIES AS STANDARD SIRENS

Consequently the luminosity distance in a FRW Universe is found to be

DL = (1 + z)

∫︂ z

0

dz′

H(z′)
, (1.13)

where H is the Hubble parameter (1.5).
For z ≪ 1 the last expression reduces to the Hubble law

z ≃ H0DL . (1.14)

The Hubble parameter today, H0, is called the Hubble constant. From the measurements of
H0 at early and late cosmological times emerged two sets values. This discrepancy goes under
the name of the Hubble tension (see e.g. [53]). Using bright or dark sirens provides a third
independent way to measure the Hubble constant. From the first bright siren observed by the
LIGO-VIRGO collaboration, GW170817, it was inferred a value of 70+12

−8 km s−1Mpc−1 [20], but
it was not precise enough given the larger error bars with respect to the other measurements.

If we consider higher redshifts, we can see from (1.13) and (1.5) that the luminosity distance
encodes information about cosmic expansion at early epochs.

1.3 Coalescing compact binaries as standard sirens

In this section we see how compact binaries can be considered as standard sirens: GW sources
from which we can obtain a direct measurement of the luminosity distance. We will calculate the
GW waveform of the signal emitted by these objects and see how it depends on the redshifted
chirp mass and the luminosity distance. This part is mostly based on [51].

1.3.1 Quadrupole radiation

We start by briefly summarizing the formulas necessary for describing the emission of gravita-
tional waves by a binary system made of two compact objects. If we consider the quadrupole
approximation, the expression for the emission of gravitational waves in the TT gauge is given
by [︁

hTT
ij (t,x)

]︁
quad

=
1

r

2G

c4
Q̈ij

(︃
t− r

c

)︃
, (1.15)

where

Qij = Iij − 1

3
δijIkk =

∫︂
d3x ρ(t,x)

(︃
xixj − 1

3
r2δij

)︃
(1.16)

is the reduced quadruple moment,

Iij =
1

c2

∫︂
d3xT 00(t,x)xixj , (1.17)

is the second moment of the mass distribution, Ikk is the trace of Iij and r is the distance from
the source.

In order to analyze the evolution of the system due to the emission of gravitational waves
we will need the total radiated power, which in the quadrupole approximation is given by

dEgw

dt
=

G

5c2
⟨︁ ...
I ij

...
I ij −

1

3
(
...
I kk)

2
⟩︁
, (1.18)

where ⟨...⟩ denotes an average over many periods of the GW and
...
I ij are evaluated at the

retarded time t− r/c.
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1.3.2 Spiralling of a compact binary

We consider a binary system made of two compact objects. We use the Newtonian approximation
to describe its dynamics. The compact objects are treated as point-like and their masses are
denoted by m1 and m2. We assume they move on a circular Keplerian orbit. The orbital angular
velocity ωs is given by Kepler’s law

ω2
s =

GM

R3
, (1.19)

where R is the orbital separation and M = m1 +m2 the total mass.
Neglecting, for the moment, the back-reaction on the binary system due to the emission of

gravitational waves, we calculate h+ and h×. The second moment of the mass distribution for
the binary system taken into account is given by

Ijk = m1x
j
1x

k
1 +m2x

j
2x

k
2 . (1.20)

Choosing a reference frame (x, y, z) so that the two particles are in the xy plane and inserting
their positions in (1.20), we obtain

Ixx = µR2 sin2(ωst) , Iyy = µR2 cos2(ωst) , Ixy = Iyx = µR2 cos(ωst) sin(ωst) , (1.21)

where µ = (m1m2)/(m1 +m2) is the reduced mass.
Given the generic direction of propagation

n̂ = (sin θ sinϕ, sin θ cosϕ, cos θ) (1.22)

we obtain

h+(t) =
4

r

(︃
GMc

c2

)︃ 5
3
(︃
πfgw
c

)︃ 2
3 1 + cos2 θ

2
cos(2πfgwtret + 2ϕ) , (1.23a)

h×(t) =
4

r

(︃
GMc

c2

)︃ 5
3
(︃
πfgw
c

)︃ 2
3

cos θ sin(2πfgwtret + 2ϕ) , (1.23b)

where fgw = 2ωs/(2π), r is the distance from the source, tret is the retarded time t− r/c and

Mc = µ
3
5M

2
5 =

(m1m2)
3
5

(m1 +m2)
1
5

(1.24)

is the chirp mass, a key quantity to describe the evolution of the system, as we will see now.
The next step consists in considering the evolution of the binary system due to the emission

of gravitational waves. In order to find the radiated power we insert (1.21) in (1.18). We obtain

dEgw

dt
=

32

5

c5

G

(︃
GMc ωgw

2c3

)︃ 10
3

. (1.25)

Given that for a circular keplerian orbit the energy is given by

E = −G
m1m2

2R
, (1.26)

it can be easily seen that
dR

dt
= − 2R2

Gm1m2

dEgw

dt
. (1.27)

We are considering the regime of quasi-circular motion. In other words we are working under
the assumption of a circular orbit with a slowly varying orbital radius. This approximation is
valid as long as ω̇s ≪ ω2

s . Because of the emission of gravitational waves the energy of the
system decreases, the orbital separation R decreases and, according to Kepler’s law, the orbital

8



Chapter 1 1.3. COALESCING COMPACT BINARIES AS STANDARD SIRENS

frequency increases. From (1.25) we deduce that the radiated power increases, accelerating the
process.

Combining (1.25) and (1.27), using (1.19) and ωgw = 2ωs we obtain the equation for the
frequency evolution:

ḟgw =
96

5
π

8
3

(︃
GMc

c3

)︃ 5
3

f
11
3

gw . (1.28)

Equation (1.28) shows that we can obtain the chirp mass measuring ḟgw in correspondence to
fgw.

We are finally able to see how the back-reaction on the binary system due to the emission
of gravitational waves has an impact on the gravitational wave signal itself. We have

h+ = hc
1 + cos2 θ

2
cos[Φ(tret)] , (1.29a)

h× = hc cos θ sin[Φ(tret)] , (1.29b)

where

Φ(t) =

∫︂ t

t0

dt′ ωgw(t
′) (1.30)

and

hc =
4

r

[︃
GMc

c2

]︃ 5
3
[︃
πfgw(tret)

c

]︃ 2
3

. (1.31)

Given that we are in the regime of quasi-circular motion, the time derivative of R(t) and ω(t)
were neglected.

While the gravitational wave is described by a tensor hij , the input of the detector is a scalar
quantity and is given by

h(t) = F+h+(t) + F×h×(t) , (1.32)

where F+ and F× depend on the direction of propagation of the wave and on the geometry and
orientation of the detector.

1.3.3 Sources at cosmological distance

Up to now we neglected the fact that the Universe is expanding. However if we consider sources
at cosmological distances the expansion of the Universe has to be included. If we consider an
unperturbed FRW Universe, the gravitational wave amplitude after propagation from the source
to the observer is given by

hc(t
ret) =

4

a(t0)χ

[︃
GMc

c2

]︃ 5
3
[︃
πfs

gw(t
ret
s )

c

]︃ 2
3

(1.33)

The next step consists in expressing the amplitude in terms of the quantities measured by the
observer. Given that f s

gw = (1 + z)fobs
gw and using (1.12), (1.33) can be rewritten as

hc(t
ret) =

4

DL(z)
(1 + z)

[︃
GMc

c2

]︃ 5
3
[︃
π(1 + z)fobs

gw (tretobs)

c

]︃ 2
3

=
4

DL(z)

[︃
(1 + z)GMc

c2

]︃ 5
3
[︃
πfobs

gw (tretobs)

c

]︃ 2
3

=
4

DL(z)

[︃
GMr

c2

]︃ 5
3
[︃
πfobs

gw (tretobs)

c

]︃ 2
3

,

(1.34)

9
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where

Mr = (1 + z)Mc (1.35)

is the redshifted chirp mass. We see that we cannot obtain information about the redshift of
the GW source from the gravitational wave itself: GW observations are sensitive only to the
redshifted chirp mass.

1.4 Perturbed flat FRW Universe

Up to know we have considered a homogeneous and isotropic Universe. The next step consists in
accounting for cosmological perturbations. As a consequence in this section we show how to write
the perturbations of the FRW metric and the stress-energy tensor. This part is based on [54]
and [22]. Finally we will focus the attention on the evolution of the primordial perturbations
and the description of the primordial tensor power spectrum.

Perturbations of the metric tensor

The components of the perturbed spatially flat FRW metric are given by

g00 = −a2(η)

[︄
1 + 2

+∞∑︂
r=1

1

r!
A(r)

]︄
, (1.36a)

g0i = g0i = −a2(η)
+∞∑︂
r=1

1

r!
B

(r)
i , (1.36b)

gij = a2(η)

{︄[︄
1− 2

+∞∑︂
r=1

1

r!
D(r)

]︄
δij +

+∞∑︂
r=1

1

r!
h
(r)
ij

}︄
, (1.36c)

where h
(r)
ij is traceless, η is the conformal time, which is related to the cosmic time by dη = dt/a,

and A(r), B
(r)
i , D(r), h

(r)
ij represent the rth-order perturbations of the metric. In this thesis we

will stop at linear order (r = 1) in the metric perturbations.

Perturbations of the stress-energy tensor

The stress-energy tensor for a fluid is given by

Tµν = (ρ+ p)uµuν + pgµν +Πµν , (1.37)

where ρ is the energy density, p is the pressure, Πµν is the anisotropic stress-tensor and uµ is
the 4-velocity. The energy density ρ and the 4-velocity uµ of matter can be expanded as

ρ = ρ(0) +
+∞∑︂
r=1

1

r!
δρ(r) (1.38)

and

uµ =
1

a

(︄
δµ0 +

+∞∑︂
r=1

1

r!
vµ(r)

)︄
, (1.39)

where

uµ(0) =
1

a
δµ0 =

δµ0√︂
−g

(0)
00

(1.40)
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Chapter 1 1.4. PERTURBED FLAT FRW UNIVERSE

is the 4-velocity in a FRW Universe. Taking into account the normalization condition uµuµ = −1
the first order perturbation v0(1) can be written in terms of the lapse function A(r). We find

v0(1) = −A(1) . (1.41)

As concerns the pressure perturbation, using the equation of state, we have

δp =
∂p

∂ρ

⃓⃓⃓⃓
S

δρ+
∂p

∂S

⃓⃓⃓⃓
ρ

δS = c2sδρ+ δpnon adiabatic , (1.42)

where S is the entropy and cs is the adiabatic speed of sound of the fluid.

1.4.1 Gauge problem for cosmological perturbations

In general relativity when we consider perturbations of fields we have to take into account
perturbations in the geometry itself. Since the comparison between two tensors has to be done
at the same point, when we consider a perturbation of a generic tensor field given by

∆T = T − T0 , (1.43)

where T and T0 are the values in the physical perturbed and FRW background space-times, we
need a one-to-one map between the two varieties. The choice of such a map corresponds to a
gauge choice and a gauge transformation is a change of the map.

At linear order in the perturbations the expression for a generic tensor T after a gauge
transformation is given by

T̃ = T − LξT0 , (1.44)

where Lξ is the Lie derivative along the vector field ξ and in order to define the gauge transfor-
mation we considered the passive coordinate transformation xµ → xµ + ξµ on the background
manifold (for the details see Appendix A of [54]).

The tensor perturbation ∆T is gauge dependent. The relation between the perturbations in
two different gauges is obtained as follows. The tensor perturbation is given by ∆T = T −T0 in
the first gauge and ∆T̃ = T̃ − T0 in the second one. Inserting them in (1.44) we find

T0 +∆T̃ = T0 +∆T − LξT0 , (1.45)

which implies
∆T̃ = ∆T − LξT0. (1.46)

1.4.2 Power spectrum

As regards the cosmological perturbations, a useful statistical tool is the power spectrum. In
order to define it we consider a generic random field g(x, t) and expand it in Fourier space:

g(x, t) =

∫︂
d3k

(2π)3
eik·xgk(t) . (1.47)

The power spectrum Pg(k) is defined by

⟨gk, g∗k′⟩ = (2π)3δ3(k− k′)Pg(k) , (1.48)

where ⟨...⟩ denotes an ensemble average. From (1.48) we can deduce that the power spectrum
is the Fourier transform of the two point correlation function:

ξ(r) = ⟨g(x, t)g(x+ r, t)⟩ =
∫︂

d3k

(2π)3
eik·rPg(k) , (1.49)

11
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As a consequence the variance is given by

σ2 = ⟨[g(x, t)]2⟩ =
∫︂

d3k

(2π)3
Pg(k) =

1

2π2

∫︂
dk k2Pg(k) =

∫︂
dk

k
∆g(k) . (1.50)

where

∆g(k) =
k3

2π2
Pg(k) . (1.51)

A quantity which is used to describe the shape of the power spectrum is the spectral index
ng(k), which is given by

ng(k)− 1 ≡ d ln∆g

d ln k
. (1.52)

1.4.3 Perturbation evolution

In the final chapter of the thesis we will relate the angular power spectrum CDL
l to the primordial

power spectra PΨ(k) and PT0(k).
As regards the power spectrum PΨ(k), which is defined by

⟨Ψ∗
p(k)Ψp(k

′)⟩ = (2π)3δ3D(k− k′)PΨ(k) , (1.53)

we will use the relations in Fourier space between the linear perturbations Ψ(a,k), Φ(a,k),
v(a,k) and Ψp(k), which is the primordial value of the potential Ψ set during the inflation
epoch. As concerns this part we will follow Appendix B of [46] and Appendix E of [55]. General
relations which do not specify the DE model are given by

Ψ(a,k) =
9

10
Tm(k)

GΨ(a, k)

a
Ψp(k) , (1.54a)

Φ(a,k) =
9

10
Tm(k)

GΦ(a, k)

a
Ψp(k) , (1.54b)

v(a,k) = − 9

10

Tm(k)

k
Gv(a, k)Ψp(k) , (1.54c)

where Tm(k) is the Eisenstein Hu transfer function [56] and in the G functions is encoded the
dark energy model.

If we consider ΛCDM and Dark Energy + Dark matter models the G functions become

GΦ = GΨ =
D(η)

Din
ain , (1.55a)

Gv = f
2

3

kH
Ωm0H2

0

D(η)

Din
ain , (1.55b)

where D(η) is the growth mode and f = d lnD/d ln a is referred as the growth factor. Therefore
we have

Ψ(a,k) = Φ(a,k) =
9

10
Tm(k)

D(a)

Din

ain
a

Ψp(k) , (1.56a)

v(a,k) = −3

5
Tm(k)f

H
Ωm0H2

0

D(η)

Din
ainΨp(k) . (1.56b)

We proceed with the description of the power spectrum PT0(k). The decomposition of the tensor
perturbations hTT

ij (which represent the primordial gravitational waves) is given by

hTT
ij (x, η) =

∫︂
d3k

(2π)3
eik·x[h+(k, η)e+ij(k̂) + h×(k, η)e×ij(k̂)] , (1.57)

12
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and the primordial tensor power spectrum PT0(k) is defined by⟨︂
hλprim(k)hλ

′
prim(k′)

⟩︂
= (2π)3δD(k− k′)δλλ′

1

4
PT0(k) , (1.58)

where λ = +,× and hλprim(k) are the primordial gravitational wave modes. The expression for
the primordial tensor power spectrum PT0(k) is given by

PT0(k) = 2π2k−3

(︃
k

k0

)︃nT

∆T (k0) , (1.59)

where ∆T (k0) is the amplitude at a given pivot scale k0, PT0(k) is related to ∆T (k) by

PT0(k) =
2π2

k3
∆T0(k) . (1.60)

and

nT ≡ d ln∆T0

d ln k
(1.61)

is the tensor spectral index. Standard single-field models of inflation predict a negative tensor
spectral index nT (red-tilted GW spectrum) which satisfy the consistency relation [57]

r = −8nT , (1.62)

where r is the tensor-to-scalar ratio. Currently a tight bound on CMB scales is given by r < 0.032
[58]. As regards other models which predict a blue-tilted (nT > 0) GW spectrum and/or the
violation of the consistency relation see for example [22].

As concerns the expression of the transfer function TT (k, η), which describes the sub-horizon
evolution of gravitational waves when they enter the horizon after the phase of accelerated
expansion and is defined by

hλ(k, η) ≡ hλprim(k)TT (k, η) , (1.63)

the main reference is [59]. We denote by keq the wave-number of the modes which enter the
horizon at the epoch of matter-radiation equality and by ηeq the conformal time corresponding
to the matter-radiation equality. For k > keq and η < ηeq the transfer function is given by

TT (k, η) = j0(kη) . (1.64)

As regards the spherical Bessel functions jn(kη) see Appendix C. For k > keq and η > ηeq we
have

TT (k, η) =
ηeq
η

[A(k)j1(kη) +B(k)y1(kη)] , (1.65)

where A(k) and B(k) are obtained matching (1.64) and (1.65) (and their first derivatives) at
matter-radiation equality [59]. Finally, for k < keq and η > ηeq the transfer function is given by

TT (k, η) =
3j1(kη)

kη
. (1.66)
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Chapter 2

Geometric optics approximation

In this chapter we analyze the geometric optics approximation for gravitational waves which
propagate through a curved space-time. This approach for the study of the propagation of
gravitational waves was devised and developed by Richard Isaacson in [60, 61]. In addition to
these two papers this chapter is mostly based on [51] and [62]. We will begin from the description
of the geometric optics limit: gravitational waves, represented by the small perturbation hµν
of the metric, vary on a length scale much smaller than the characteristic scale of variation of
the background g̃µν . Then we will expand the Einstein’s equations in powers of hµν , estimating
the order of magnitude of each term. We will proceed by splitting the Einstein’s equations in a
low-frequency and high-frequency part. The second one will provide the propagation equation
for the perturbation hµν . The following step will consist in finding the explicit expression of the
propagation equation in terms of hµν . In order to simplify it we will change variable, substituting
hµν with h̄µν = hµν − 1

2 g̃µνh, and we will use the specific gauge condition ∇̃ν
h̄µν = 0. Finally we

will obtain the evolution equations for the amplitude and the phase of the gravitational wave.

2.1 Hypothesis of high frequency

We assume that the metric gµν can be split into a slowly varying background g̃µν and a small
amplitude perturbation hµν which is rapidly varying. Therefore we can write

gµν = g̃µν + hµν , (2.1)

where

g̃µν = O(1) , hµν ≪ 1 , (2.2a)

∂ρg̃µν ∼ 1

LB
, ∂ρhµν ∼ h

λ
,

λ

LB
≪ 1 . (2.2b)

The perturbation varies on a scale λ much smaller than the scale of variation LB of the back-
ground. The small parameters h and λ/LB are linked: their relative strength will be deduced
by looking at the Einstein equations.
The inverse metric to third order in h is given by

gµν = g̃µν − hµν + hµρh
ρν − hµρhσρh

ν
σ + o(h3) , (2.3)

where the indices of hµν are raised with the background metric g̃µν .

The metric gµν satisfies the Einstein field equations

Rµν =
8πG

c4

(︃
Tµν −

1

2
gµνT

)︃
, (2.4)
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where Tµν is the stress energy tensor due to the presence of external matter, T is its trace and
Rµν is the Ricci tensor, whose expression is

Rµν = Rλ
µλν = ∂λΓ

λ
µν − ∂νΓ

λ
λµ + Γλ

λρΓ
ρ
µν − Γλ

νρΓ
ρ
λµ . (2.5)

The Christoffel symbols which appear in (2.5) are given by

Γλ
µν =

1

2
gλσ
(︃
∂µgσν + ∂νgµσ − ∂σgµν

)︃
. (2.6)

The next step consists in inserting the decomposition (2.1) of the metric in the Einstein equations
(2.4).

2.1.1 Expansion in powers of hµν

Expansion of Rµν

We start with the expansion of the Ricci tensor to second order in the metric perturbation hµν :

Rµν = R(0)
µν +R(1)

µν +R(2)
µν +O(h3) , (2.7)

where

� R
(0)
µν depends only on the background metric g̃µν ,

� R
(1)
µν is linear in hµν ,

� R
(2)
µν is quadratic in hµν .

By looking at (2.2) we can see that the derivative ∂h is much higher than ∂g̃, g̃ and h. Each
partial derivative applied to the perturbation hµν corresponds to a factor 1/λ. It follows that

the leading order terms of R
(1)
µν come from the terms ∂Γ which contain the second derivative

∂2h. A similar reasoning can be applied to R
(2)
µν . In this case the leading order terms come from

∂2h and (∂h)2. Therefore, taking into account that the inverse metric to second order in h is

g−1 = g̃−1 − hg̃−2 + h2g̃−3, the estimation of the order of magnitude of each term R
(n)
µν is the

following:

� R
(0)
µν = O

(︁
1
L2
B

)︁
,

� R
(1)
µν ∼ g̃−1∂2h = O

(︁
h
λ2

)︁
,

� R
(2)
µν ∼ hg̃−2∂2h = O

(︁
h2

λ2

)︁
.

Expansion of Tµν − 1
2
gµνT

Since the stress-energy tensor Tµν in general depends on the metric gµν = g̃µν + hµν , the same
expansion to second order in the perturbation hµν is applied to the RHS of the Einstein’s
equations (2.4):

R(0)
µν +R(1)

µν +R(2)
µν =

8πG

c2

[︄(︃
T (0)
µν − 1

2
g̃µνT

(0)

)︃
+

(︃
Tµν−

1

2
gµνT

)︃(1)

+

(︃
Tµν−

1

2
gµνT

)︃(2)
]︄
, (2.8)

where

� T
(0)
µν is constructed only with g̃µν and T (0) = g̃ρσT

(0)
ρσ ,
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Chapter 2 2.1. HYPOTHESIS OF HIGH FREQUENCY

�

(︃
Tµν − 1

2gµνT

)︃(1)

and

(︃
Tµν − 1

2gµνT

)︃(2)

are respectively linear and quadratic in hµν .

The explicit expression of the part of the stress-energy tensor linear in the perturbation hµν is
the following:(︃

Tµν −
1

2
gµνT

)︃(1)

= T (1)
µν − 1

2
g̃µν

(︂
g̃ρσT (1)

ρσ

)︂
− 1

2
hµν

(︂
g̃ρσT (0)

ρσ

)︂
+

1

2
g̃µν

(︂
hρσT (0)

ρσ

)︂
(2.9)

= T (1)
µν − 1

2
g̃µνT

(1) − 1

2
hµνT

(0) +
1

2
g̃µν

(︂
hρσT (0)

ρσ

)︂
, (2.10)

where T
(1)
µν is linear in h and T (1) = g̃ρσT

(1)
ρσ .

As regards the estimation of the order of magnitude of the terms of the last expression,

there are no derivatives of hµν in (1/2)hµνT
(0) and (1/2) g̃µν

(︂
hρσT

(0)
ρσ

)︂
. Furthermore, in our

case the stress-energy tensor is given by a macroscopic distribution of matter, therefore also T
(1)
µν

and (1/2) g̃µνT
(1) do not contain derivatives of hµν . It follows that

(︃
Tµν − 1

2gµνT

)︃(1)

does not

contain terms of order h/λ2 and h/λ.

2.1.2 Split in high-frequency and low-frequency parts

Having expanded the Einstein’s equations in the small perturbation hµν , the next step consists
in splitting them in a high-frequency part and a low-frequency part. In order to do that it must
be taken into account that:

� R
(0)
µν does not contain high frequency modes since it depends only on the background metric

g̃µν ,

� R
(1)
µν contributes only to the high frequency part of the Einstein’s equations since it is linear

in hµν ,

� R
(2)
µν contains both high and low frequency modes; this statement can be understood by

thinking about the product hµνhρσ of two metric perturbations where a high frequency
mode of hµν , characterized by a wave-vector k1, could combine with a high frequency
mode k2 ≃ −k1 coming from hρσ, giving rise to a low frequency mode [51].

A similar reasoning can be applied to the term Tµν − (1/2) gµνT . It is worth mentioning
that we consider a stress-energy tensor due to a macroscopic distribution of matter, which is
assumed to be smooth. It follows that the only high frequency components in Tµν come from
the fact that in general the stress-energy tensor depends on the metric gµν and consequently on
the perturbation hµν [51]. The other high frequency components come from the fact that the
trace of the stress-energy tensor is constructed with gµν and multiplied by it.

Therefore the high and low frequency parts of the Einstein’s equations are:

R(1)
µν = −

[︂
R(2)

µν

]︂high
+

8πG

c4

(︃
Tµν −

1

2
gµνT

)︃(1)

+
8πG

c4

[︄(︃
Tµν −

1

2
gµνT

)︃(2)
]︄high

(2.11a)

R(0)
µν = −

[︂
R(2)

µν

]︂low
+

8πG

c4

(︃
T (0)
µν − 1

2
g̃µνT

(0)

)︃
+

8πG

c4

[︄(︃
Tµν −

1

2
gµνT

)︃(2)
]︄low

. (2.11b)

On the basis of equation (2.11b) the relative strength of the small parameters h and λ/LB can
be deduced. We can distinguish two following cases.

17



Chapter 2 CHAPTER 2. GEOMETRIC OPTICS APPROXIMATION

� If there is no external matter Tµν = 0 and R
(0)
µν is determined by

[︂
R

(2)
µν

]︂low
. It follows that

1

L2
B

∼ h2

λ2
=⇒ h ∼ λ

LB
. (2.12)

� If the background curvature is determined by the stress-energy tensor Tµν the contribution

given by
[︂
R

(2)
µν

]︂low
is negligible. Therefore

1

L2
B

∼ h2

λ2
+matter contribution ≫ h2

λ2
=⇒ h ≪ λ

LB
. (2.13)

Averaging procedure

The split in the high and low frequency parts can be accomplished by averaging over a length
scale l̄ which is larger than λ and smaller compared to LB:

λ ≪ l̄ ≪ LB . (2.14)

The averaging scheme is introduced by Isaacson in [61] under the the name of “Brill-Hartle
averaging”. Since the part which varies slowly remains constant on a length scale l̄, the averaging

procedure has no effect on it. For example
⟨︂
R

(0)
µν

⟩︂
l̄
= R

(0)
µν . On the other hand the part which

rapidly oscillates averages to zero. For instance
⟨︂
R

(1)
µν

⟩︂
l̄
= 0.

Therefore by averaging equation (2.8) the slowly varying part is extracted:

R(0)
µν = −

⟨︂
R(2)

µν

⟩︂
l̄
+

8πG

c4

(︃
T̄µν −

1

2
g̃µν T̄

)︃
, (2.15)

where ⟨...⟩l̄ denotes an average over many wavelengths λ and

T̄µν −
1

2
g̃µν T̄ =

⟨︃
Tµν −

1

2
gµνT

⟩︃
l̄

(2.16)

This is the “coarse-grained” part of the Einstein’s equations. It shows a non-linear phenomenon:
how the gravitational waves affect the background curvature. Indeed equation (2.15) can be
rewritten as

R(0)
µν − 1

2
g̃µνR̄ =

8πG

c4
(︁
T̄µν + tµν

)︁
, (2.17)

where

tµν = − c4

8πG

⟨︃
R(2)

µν − 1

2
g̃µνR

(2)

⟩︃
l̄

(2.18)

is the effective stress-energy tensor associated to gravitational waves.

In order to find the fluctuating part we subtract from equation (2.8) the averaged part (2.15).
We obtain

R(1)
µν = −

[︂
R(2)

µν

]︂high
+

8πG

c4

(︃
Tµν −

1

2
gµνT

)︃(1)

+
8πG

c4

[︄(︃
Tµν −

1

2
gµνT

)︃(2)
]︄high

, (2.19)

where
[︂
R

(2)
µν

]︂high
= R

(2)
µν −

⟨︂
R

(2)
µν

⟩︂
l̄
.

Since, as will be explained later, we will consider only terms of order (λ/LB)
−2 and (λ/LB)

−1,
the terms that contain the stress-energy tensor, which are of order (λ/LB)

0, are neglected. We
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proceed by selecting the part which is linear in the amplitude h. We obtain the equation for the
propagation of waves

R(1)
µν (h) = 0 . (2.20)

The term
[︂
R

(2)
µν

]︂high
is responsible for non-linear correction jµν to hµν :

R(1)
µν (j) = −

[︂
R(2)

µν (h)
]︂high

. (2.21)

These higher order corrections will not be investigated in this thesis.

2.1.3 Gauge transformations and invariance

Since it is useful to use a specific gauge in order to simplify the propagation equation (2.20), in

this section we analyze how R
(1)
µν changes under a gauge transformation. We consider a gauge

transformation induced by a quadrivector ξµ of the same order of the metric perturbation.
The metric changes in the following way:

g̃µν + hµν −→ g̃µν + hµν − ∇̃µξν − ∇̃νξµ . (2.22)

In order to continue to consider g̃µν as the the background metric we demand that (hµν−∇̃µξν−
∇̃νξµ) ≲ h, which implies ∇̃µξν ≲ h. Given that ∇̃µξν = ∂µξν − Γ̃

ρ
µνξρ, the previous condition

corresponds to:
∂ξ ≲ h , (2.23a)

ξ ≲ hLB . (2.23b)

As concerns R
(1)
µν , after a gauge transformation it becomes

R(1)
µν −→ R(1)

µν − LξR
(0)
µν , (2.24)

where the Lie derivative is given by

LξR
(0)
µν = ξσ∇̃σR

(0)
µν +R(0)

µσ ∇̃νξ
σ +R(0)

σν ∇̃µξ
σ . (2.25)

From

∇̃νξ
σ ≲ h , ξ ≲ hLB and R(0)

µν ∼ ∂2g̃ ∼ 1

L2
B

⇒ ∇̃σR
(0)
µν ∼ ∂3g̃µν ∼ 1

L3
B

follows

LξR
(0)
µν ≲

h

L2
B

=
h

λ2

λ2

L2
B

. (2.26)

Since R
(1)
µν ∼ h/λ2,

LξR
(0)
µν ≲

(︃
λ

LB

)︃2

R(1)
µν ≪ R(1)

µν . (2.27)

Therefore in the high frequency limit λ/LB ≪ 1 the perturbation R
(1)
µν of the Ricci tensor is

approximately gauge invariant.

R
(1)
µν contains terms of order h/λ2, h/λ and h, while LξR

(0)
µν is of order h/L2

B. Consequently

the leading and next-to-leading order terms of R
(1)
µν don’t change under a gauge transformation.

Therefore the terms which arise from a gauge transformation can be dropped by neglecting
(λ/LB)

0 contributions. Limiting to the leading and next-to-leading order in λ/LB is exactly
what will be done in the geometric optics approximation.
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2.2 Propagation in a curved space-time

2.2.1 Calculation of R(1)
µν (h)

The aim of this section is to find the expression for R
(1)
µν (h), which is the part of the Ricci tensor

linear in the perturbation hµν . We follow the procedure suggested in [62]. The quantities denoted
by a tilde are constructed with the background metric g̃µν only. We will write Rρ

σµν − R̃
ρ
σµν and

Rσν − R̃σν in terms of the tensor Sρ
νσ = Γρ

νσ − Γ̃
ρ
νσ. Since in the calculations the expression for

Sρ
νσ is never specified, the obtained results will be independent of the order at which we stop

in the expansion in hµν . Only later the calculations will be restricted to the linear case by not
considering the terms quadratic in Sρ

νσ and neglecting in the expression for Sρ
νσ the quadratic

terms in hµν .

Rµν − R̃µν expressed in terms of Sρ
µν

We begin by calculating Rρ
σµν − R̃

ρ
σµν . Defining

Sρ
νσ = Γρ

νσ − Γ̃
ρ
νσ (2.28)

and given that
Rρ

σµν = ∂µΓ
ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ (2.29)

and
R̃

ρ
σµν = ∂µΓ̃

ρ
νσ − ∂νΓ̃

ρ
µσ + Γ̃

ρ
µλΓ̃

λ
νσ − Γ̃

ρ
νλΓ̃

λ
µσ , (2.30)

we can write

Rρ
σµν − R̃

ρ
σµν =

(︁
∂µΓ

ρ
νσ − ∂µΓ̃

ρ
νσ

)︁
−
(︁
∂νΓ

ρ
µσ − ∂νΓ̃

ρ
µσ

)︁
+
(︁
Γρ
µλΓ

λ
νσ − Γ̃

ρ
µλΓ̃

λ
νσ

)︁
−
(︁
Γρ
νλΓ

λ
µσ − Γ̃

ρ
νλΓ̃

λ
µσ

)︁
= ∂µS

ρ
νσ − ∂νS

ρ
µσ +

(︁
Γρ
µλΓ

λ
νσ − Γ̃

ρ
µλΓ̃

λ
νσ

)︁
−
(︁
Γρ
νλΓ

λ
µσ − Γ̃

ρ
νλΓ̃

λ
µσ

)︁
.

(2.31)

Since
∇µS

ρ
νσ = ∂µS

ρ
νσ + Γρ

µλS
λ
νσ − Γλ

µνS
ρ
λσ − Γλ

µσS
ρ
λν (2.32)

the part which contains the partial derivatives of Sρ
νσ can be rewritten as

∂µS
ρ
νσ − ∂νS

ρ
µσ =

(︁
∇µS

ρ
νσ − Γρ

µλS
λ
νσ + Γλ

µνS
ρ
λσ + Γλ

µσS
ρ
λν

)︁
−
(︁
∇νS

ρ
µσ − Γρ

νλS
λ
µσ + Γλ

νµS
ρ
λσ + Γλ

νσS
ρ
λµ

)︁
= ∇µS

ρ
νσ −∇νS

ρ
µσ − Γρ

µλS
λ
νσ + Γρ

νλS
λ
µσ + Γλ

µσS
ρ
λν − Γλ

νσS
ρ
λµ .

(2.33)

Moreover, using (2.28), we find

Γ̃
ρ
µλΓ̃

λ
νσ =

(︁
Γρ
µλ − Sρ

µλ

)︁(︁
Γλ
νσ − Sλ

νσ

)︁
= Γρ

µλΓ
λ
νσ − Γρ

µλS
λ
νσ − Γλ

νσS
ρ
µλ + Sρ

µλS
λ
νσ . (2.34)

Finally, inserting (2.33) and (2.34) in (2.31), we obtain

Rρ
σµν − R̃

ρ
σµν = ∇µS

ρ
νσ −∇νS

ρ
µσ − Γρ

µλS
λ
νσ + Γρ

νλS
λ
µσ + Γλ

µσS
ρ
λν − Γλ

νσS
ρ
λµ

+
(︁
Γρ
µλS

λ
νσ + Γλ

νσS
ρ
µλ − Sρ

µλS
λ
νσ

)︁
−
(︁
Γρ
νλS

λ
µσ + Γλ

µσS
ρ
νλ − Sρ

νλS
λ
µσ

)︁
= ∇µS

ρ
νσ −∇νS

ρ
µσ − Sρ

µλS
λ
νσ + Sρ

νλS
λ
µσ .

(2.35)

As regards the Ricci tensor we find

Rσν − R̃σν = Rρ
σρν − R̃

ρ
σρν = ∇ρS

ρ
νσ −∇νS

ρ
ρσ − Sρ

ρλS
λ
νσ + Sρ

νλS
λ
ρσ . (2.36)
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Sρ
µν expressed in terms of hµν

Now we calculate Sρ
νσ at linear order in hµν .

We begin by expanding in hµν the Christoffel symbols. Given that

Γρ
νσ =

1

2
gρλ
(︁
∂νgλσ + ∂σgνλ − ∂λgνσ

)︁
(2.37)

and

Γ̃
ρ
νσ =

1

2
g̃ρλ
(︁
∂ν g̃λσ + ∂σ g̃νλ − ∂λg̃νσ

)︁
(2.38)

we obtain

Γρ
νσ =

1

2

(︁
g̃ρλ − hρλ

)︁(︁
∂ν g̃λσ + ∂νhλσ + ∂σ g̃νλ + ∂σhνλ − ∂λg̃νσ − ∂λhνσ

)︁
=

1

2
g̃ρλ
(︁
∂ν g̃λσ + ∂σ g̃νλ − ∂λg̃νσ

)︁
+

1

2
g̃ρλ
(︁
∂νhλσ + ∂σhνλ − ∂λhνσ

)︁
− 1

2
hρλ
(︁
∂ν g̃λσ + ∂σ g̃νλ − ∂λg̃νσ

)︁
= Γ̃

ρ
νσ +

1

2
g̃ρλ
(︁
∂νhλσ + ∂σhνλ − ∂λhνσ

)︁
− 1

2
hρλ
(︁
∂ν g̃λσ + ∂σ g̃νλ − ∂λg̃νσ

)︁
,

(2.39)

where for the inverse metric gµν we used expression (2.3) neglecting terms quadratic in hµν .
Since at linear order

∇νhλσ = ∇̃νhλσ = ∂νhλσ − Γ̃
ρ
νλhρσ − Γ̃

ρ
νσhλρ , (2.40)

the sum of the three partial derivatives of hµν in the right-hand side of equation (2.39) can be
rewritten as

∂νhλσ + ∂σhνλ − ∂λhνσ = (∇̃νhλσ + Γ̃
µ
νλhµσ + Γ̃

µ
νσhλµ) + (∇̃σhνλ + Γ̃

µ
σνhµλ + Γ̃

µ
σλhνµ)

− (∇̃λhνσ + Γ̃
µ
λνhµσ + Γ̃

µ
λσhµν)

= ∇̃νhλσ + ∇̃σhνλ − ∇̃λhνσ + 2Γ̃
µ
νσhλµ .

(2.41)

As regards the last term in the right-hand side of equation (2.39) we can write

1

2
hρλ
(︁
∂ν g̃λσ + ∂σ g̃νλ − ∂λg̃νσ

)︁
=

1

2
hρµ g̃

µλ
(︁
∂ν g̃λσ + ∂σ g̃νλ − ∂λg̃νσ

)︁
= hρµ Γ̃

µ
νσ . (2.42)

Inserting (2.41) and (2.42) in (2.39), we find

Γρ
νσ = Γ̃

ρ
νσ +

1

2
g̃ρλ(∇̃νhλσ + ∇̃σhνλ − ∇̃λhνσ) +

1

2
g̃ρλ(2Γ̃

µ
νσhλµ)− hρµ Γ̃

µ
νσ

= Γ̃
ρ
νσ +

1

2
g̃ρλ(∇νhλσ +∇σhνλ −∇λhνσ) .

(2.43)

Therefore Sρ
νσ at linear order in hµν is given by

Sρ
νσ =

1

2
g̃ρλ
(︁
∇̃νhλσ + ∇̃σhνλ − ∇̃λhνσ

)︁
. (2.44)

R(1)
µν expressed in terms of hµν

As a consequence, given that we want to compute R
(1)
νσ , the terms Sρ

ρλS
λ
νσ and Sρ

νλS
λ
ρσ, which

are quadratic in hµν , can be neglected in (2.36). Therefore we can write

R(1)
µν = ∇̃ρS

ρ
νµ − ∇̃νS

ρ
ρµ , (2.45)
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where, since Sρ
νµ does not contain zero order terms, we substituted ∇ρ with ∇̃ρ.

Finally, in order to find the expression of R
(1)
µν in terms of hµν , we insert (2.44) in (2.45). We

obtain

R(1)
µν = ∇̃ρS

ρ
νµ − ∇̃νS

ρ
ρµ

=
1

2
g̃ρλ
(︂
∇̃ρ∇̃νhλµ + ∇̃ρ∇̃µhνλ − ∇̃ρ∇̃λhνµ

)︂
− 1

2
g̃ρλ
(︂
∇̃ν∇̃ρhλµ + ∇̃ν∇̃µhρλ − ∇̃ν∇̃λhρµ

)︂
=

1

2

(︂
∇̃ρ∇̃νhρµ + ∇̃ρ∇̃µhνρ − ∇̃ρ∇̃ρhνµ − ∇̃ν∇̃

ρ
hρµ − ∇̃ν∇̃µh+ ∇̃ν∇̃

ρ
hρµ

)︂
=

1

2

(︂
∇̃ρ∇̃νhρµ + ∇̃ρ∇̃µhρν − ∇̃ρ∇̃ρhνµ − ∇̃ν∇̃µh

)︂
.

(2.46)

2.2.2 Propagation equation

In this section the attention is focused on the propagation equation

R(1)
µν = 0 . (2.47)

The expression R
(1)
µν in terms of hµν was found in the previous section:

R(1)
µν =

1

2

(︂
∇̃σ∇̃νhµσ + ∇̃σ∇̃µhνσ − ∇̃ν∇̃µh− ∇̃σ∇̃σhµν

)︂
. (2.48)

R(1)
µν in terms of h̄µν

The next step consists in introducing the new variable

h̄µν ≡ hµν −
1

2
g̃µνh (2.49)

and rewriting R
(1)
µν in terms of it. In order to do that hµν = h̄µν − 1

2 g̃µν h̄ is inserted in (2.48).
We obtain

R(1)
µν =

1

2

[︃
∇̃σ∇̃ν h̄µσ − 1

2
g̃µσ∇̃

σ∇̃ν h̄+ ∇̃σ∇̃µh̄νσ − 1

2
g̃νσ∇̃

σ∇̃µh̄+ ∇̃ν∇̃µh̄

− ∇̃σ∇̃σh̄µν +
1

2
g̃µν∇̃

σ∇̃σh̄

]︃
=

1

2

[︃
∇̃σ∇̃ν h̄µσ − 1

2
∇̃µ∇̃ν h̄+ ∇̃σ∇̃µh̄νσ − 1

2
∇̃ν∇̃µh̄+ ∇̃ν∇̃µh̄− ∇̃σ∇̃σh̄µν +

1

2
g̃µν∇̃

σ∇̃σh̄

]︃
=

1

2

[︃
∇̃σ∇̃ν h̄µσ + ∇̃σ∇̃µh̄νσ − ∇̃σ∇̃σh̄µν +

1

2
g̃µν∇̃

σ∇̃σh̄

]︃
.

(2.50)

The last passage is due to the fact that −1
2∇̃µ∇̃ν h̄− 1

2∇̃ν∇̃µh̄+ ∇̃ν∇̃µh̄ = 0, given that second
covariant derivatives commute on scalars.

Since 2[∇̃µ, ∇̃ν ]Aλρ = R
(0)
λσµνA

σ
ρ −R

(0)
σρµνAλ

σ we can write

∇̃σ∇̃ν h̄µσ = g̃στ ∇̃τ ∇̃ν h̄µσ = ∇̃ν∇̃
σ
h̄µσ + g̃στ

(︂
R

(0)
µλτν h̄

λ
σ −R

(0)
λστν h̄µ

λ
)︂

= ∇̃ν∇̃
σ
h̄µσ +R

(0)
µλσν h̄

λσ
+ g̃στR

(0)
σλτν h̄µ

λ = ∇̃ν∇̃
σ
h̄µσ −R

(0)
λµσν h̄

λσ
+R

(0)
λν h̄µ

λ .
(2.51)

Applying the same reasoning to ∇̃σ∇̃µh̄νσ we find

∇̃σ∇̃ν h̄µσ + ∇̃σ∇̃µh̄νσ = ∇̃ν∇̃
σ
h̄µσ + ∇̃µ∇̃

σ
h̄νσ −R

(0)
λµσν h̄

λσ −R
(0)
λνσµh̄

λσ
+R

(0)
λν h̄µ

λ +R
(0)
λµ h̄ν

λ

= ∇̃ν∇̃
σ
h̄µσ + ∇̃µ∇̃

σ
h̄νσ − 2R

(0)
λµσν h̄

λσ
+R

(0)
λν h̄µ

λ +R
(0)
λµ h̄ν

λ ,

(2.52)
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where we used R
(0)
λνσµh̄

λσ
= R

(0)
σµλν h̄

λσ
= R

(0)
σµλν h̄

σλ
.

Inserting (2.52) in (2.50), R
(1)
µν becomes

R(1)
µν =

1

2

[︃
∇̃ν∇̃

σ
h̄µσ + ∇̃µ∇̃

σ
h̄νσ − 2R

(0)
λµσν h̄

λσ
+R

(0)
λν h̄µ

λ+R
(0)
λµ h̄ν

λ−∇̃σ∇̃σh̄µν +
1

2
g̃µν∇̃

σ∇̃σh̄

]︃
.

(2.53)

We contract the propagation equation R
(1)
µν = 0 with the background metric g̃µν :

g̃µνR(1)
µν = 2∇̃ν∇̃σ

h̄νσ − 2R
(0)
λσ h̄

λσ
+R

(0)
λν h̄

νλ
+R

(0)
λµ h̄

µλ − ∇̃σ∇̃σh̄+ 2∇̃σ∇̃σh̄

0 = 2∇̃ν∇̃σ
h̄νσ + ∇̃σ∇̃σh̄ .

(2.54)

Therefore we obtain the following condition:

∇̃σ∇̃σh̄ = −2∇̃ν∇̃σ
h̄νσ . (2.55)

Inserting it back in R
(1)
µν = 0 we find

∇̃σ∇̃σh̄µν+ g̃µν∇̃
λ∇̃σ

h̄λσ−∇̃ν∇̃
σ
h̄µσ−∇̃µ∇̃

σ
h̄νσ+2R

(0)
λµσν h̄

λσ−R
(0)
λν h̄µ

λ−R
(0)
λµ h̄ν

λ = 0 . (2.56)

Lorenz gauge

This equation can be simplified if h̄µν satisfies the following condition:

∇̃ν
h̄µν = 0 . (2.57)

In order to impose this condition a specific gauge must be chosen: ξµ has to be a solution of

∇̃ν
h̄µν −R(0)

µσ ξ
σ − ∇̃ν∇̃νξµ = 0 . (2.58)

The last equation was obtained by considering that under a gauge transformation

h → g̃ρσ
(︂
hρσ − ∇̃ρξσ − ∇̃σξρ

)︂
= h− 2∇̃σ

ξσ (2.59)

h̄µν →
(︂
hµν − ∇̃µξν − ∇̃νξµ

)︂
− 1

2
g̃µν

(︂
h− 2∇̃σ

ξσ

)︂
= h̄µν −

(︂
∇̃µξν + ∇̃νξµ − g̃µν∇̃

σ
ξσ

)︂
.

(2.60)

Given that 2[∇̃µ, ∇̃ν ]ξρ = R
(0)
ρσµνξσ,

∇̃ν
h̄µν → ∇̃ν

h̄µν − ∇̃ν∇̃µξν − ∇̃ν∇̃νξµ + g̃µν∇̃
ν∇̃σ

ξσ = ∇̃ν
h̄µν + 2[∇̃µ, ∇̃

ν
]ξν − ∇̃ν∇̃νξµ

= ∇̃ν
h̄µν −R(0)

µσ ξ
σ − ∇̃ν∇̃νξµ .

Propagation equation in Lorenz gauge

By inserting the Lorenz gauge condition (2.57) in (2.56) the propagation equation becomes

∇̃σ∇̃σh̄µν + 2R
(0)
λµσν h̄

λσ −R
(0)
λν h̄µ

λ −R
(0)
λµ h̄ν

λ = 0 . (2.61)

The last two terms of equation (2.61) can be neglected. Indeed, in the vacuum case, as shown

in (2.12), R
(0)
µν ∼ h2/λ2. Therefore R

(0)
λµ h̄ν

λ ∼ h3/λ2 is of the same order of R
(3)
µν , which was

neglected in the analysis. If instead the background curvature is determined by T
(0)
µν , we can

still neglect the terms which contain the Ricci tensor because, as previously explained, T
(0)
µν is

of order (λ/LB)
0. Indeed, as previously mentioned, given that we want to neglect terms which

arise from a gauge transformation, we are not considering terms of order (λ/LB)
0. Therefore at

leading and next-to-leading order in λ/LB the propagation equation becomes

∇̃σ∇̃σh̄µν + 2R
(0)
λµσν h̄

λσ
= 0 . (2.62)
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2.2.3 Geometric optics Ansatz

Since the geometry of a curved background is locally flat we can consider the flat space-time
solution Aµνe

ikρxρ
as an approximate solution over scales of order LB, which is the scale over

which the background metric varies. Therefore we are searching for a solution with a slowly
varying amplitude Aµν and a rapidly varying phase φ(x). The scale of variation of the amplitude

Aµν and of the wave-vector k̃
µ ≡ −∇̃µφ is LB, while the scale of variation of the phase is λ.

Thus we are looking for a solution of this type:

h̄µν = Aµνe
iφ/ϵ = eµνAeiφ/ϵ , (2.63)

where A ≡
(︁
AµνA

µν
)︁ 1

2 is the scalar amplitude, eµν = Aµν/A is the polarization tensor and ϵ is
a formal expansion parameter equal to unity used to keep in mind that a term multiplied by ϵn

is proportional to (λ/LB)
n [62].

By inserting (2.63) in the propagation equation (2.62) we find

∇̃ρ∇̃ρ

[︂
Aµνe

iφ/ϵ
]︂
= ∇̃ρ

[︃
eiφ/ϵ∇̃ρAµν +

i

ϵ
eiφ/ϵAµν∇̃ρφ

]︃
= eiφ/ϵ

[︃
∇̃ρ∇̃ρAµν +

i

ϵ
(∇̃ρ

φ)(∇̃ρAµν) +
i

ϵ
(∇̃ρ

Aµν)(∇̃ρφ)

− 1

ϵ2
Aµν(∇̃

ρ
φ)(∇̃ρφ) +

i

ϵ
Aµν∇̃

ρ∇̃ρφ

]︃
= eiφ/ϵ

[︃
− 1

ϵ2
(Aµν k̃

ρ
k̃ρ) +

i

ϵ
(2k̃

ρ∇̃ρAµν +Aµν∇̃
ρ
k̃ρ) + ∇̃ρ∇̃ρAµν

]︃
.

(2.64)

Since we consider only terms of order (λ/LB)
−2 and (λ/LB)

−1, we neglected the second term
of equation (2.62) and and we will not consider ∇̃ρ∇̃ρAµν .

Equation for the wave-vector

At leading order we find that k̃
µ
is a null vector:

Aµν k̃
ρ
k̃ρ = 0 ⇒ k̃

ρ
k̃ρ = 0 . (2.65)

Moreover the curves xµ(l) defined by
dxµ

dl
= k̃

µ
(2.66)

are null geodesics. Indeed, by taking the covariant derivative of equation (2.65) and considering
that covariant derivatives commute on the scalar φ we obtain

0 = ∇̃σ(k̃
ρ
k̃ρ) = 2k̃ρ∇̃σk̃

ρ
= −2k̃ρ∇̃σ∇̃

ρ
φ = −2k̃ρ∇̃

ρ∇̃σφ = −2k̃ρ∇̃
ρ
k̃σ . (2.67)

Equations for the amplitude and the polarization tensor

Moving to the next-to-leading order we find

0 = 2k̃
ρ∇̃ρAµν +Aµν∇̃

ρ
k̃ρ

= 2Ak̃
ρ∇̃ρeµν + 2eµν k̃

ρ∇̃ρA+Aeµν∇̃
ρ
k̃ρ

= (2k̃
ρ∇̃ρA+A∇̃ρ

k̃ρ)eµν + 2Ak̃
ρ∇̃ρeµν .

(2.68)

We can obtain two separate equations for the amplitude A and the polarization eµν .
As regards the amplitude A, by contracting with eµν , we get

2k̃
ρ∇̃ρA+A∇̃ρ

k̃ρ = 0 , (2.69)
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where we used eµνe
µν = 1 and 0 = ∇̃ρ(eµνe

µν) = eµν∇̃ρeµν + eµν∇̃ρe
µν = 2eµν∇̃ρeµν .

Equation (2.69) can be rewritten as

k̃
ρ∇̃ρlnA = −1

2
∇̃ρ

k̃ρ . (2.70)

Since k̃
ρ∇̃ρ is applied to the scalar lnA, equation (2.70) can becomes

d

dl
lnA = −1

2
∇̃ρ

k̃ρ . (2.71)

By inserting (2.70) in (2.68) we find that the polarization tensor is parallel transported along
the null geodesic xµ(l):

k̃
ρ∇̃ρeµν = 0 . (2.72)

Finally, inserting (2.63) in the gauge condition (2.57) we obtain

0 = ∇̃ν
[Aµνe

iφ/ϵ] = eiφ/ϵ
[︃
i

ϵ
Aµν∇̃

ν
φ+ ∇̃ν

Aµν

]︃
. (2.73)

Given that ∇̃ν
Aµν is order (λ/LB)

0, we can neglect it. Therefore the polarization tensor is
orthogonal to the rays:

k̃
ν
eµν = 0 . (2.74)

Comoving metric

From now on using the comoving metric ĝµν = g̃µν/a
2 will prove to be convenient. A change of

metric of this kind is called conformal transformation. The details about conformal transforma-
tions are shown in Appendix A. Below, we just summarize how to change the quantities after a
conformal transformation.

g̃µν → ĝµν =
g̃µν
a2

(2.75a)

Γ̃
µ
νρ → Γ̂

µ
νρ − Cµ

νρ (2.75b)

k̃
µ
=

dxµ

dl
→ 1

a2
k̂
µ
=

1

a2
dxµ

dχ
(2.75c)

where the relation between l and χ is given by

dl

dχ
= a2 (2.76)

and the expression for Cµ
νρ is (A.6). In equations (2.75c) and (2.76) the proportionality constant

C which appears in Appendix A is set equal to 1. The results obtained in this section do not
change if we keep a constant of proportionality C ̸= 1.

Evolution equations after conformal transformation

As shown in appendix A, equations (2.65) and (2.67) are still valid if we substitute k̃
µ
with

(1/a2) k̂
µ
and ∇̃σ with ∇̂σ. In other words null geodesics are left invariant under a conformal

transformation. Condition (2.76) is imposed in order to have an affinely-parametrized geodesic
equation after the conformal transformation.
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As regards equation (2.70), in order to express it in terms of the comoving metric and the
affine parameter χ, we proceed in the following way.
Using (2.76) and (2.75b) we can write

dχ

dl

d

dχ
lnA = −1

2

(︂
∂ρk̃

ρ
+ Γ̃

ρ
ρλk̃

λ
)︂

1

a2
d

dχ
lnA = −1

2

(︂
∂ρk̃

ρ
+ Γ̂

ρ
ρλk̃

λ − Cρ
ρλk̃

λ
)︂
= −1

2
∇̂ρk̃

ρ
+

1

2
Cρ
ρλk̃

λ
.

(2.77)

Inserting the expression (A.6) for Cµ
νρ calculated in Appendix A we obtain

1

a2
d

dχ
lnA = −1

2
∇̂ρk̃

ρ
+

1

2
a

[︃
δρρ∇̃λ

(︂1
a

)︂
+ δρλ∇̃ρ

(︂1
a

)︂
− g̃ρσ g̃ρλ∇̃σ

(︂1
a

)︂]︃
k̃
λ

= −1

2
∇̂ρk̃

ρ − 1

2

[︃
4∇̃λ(lna) + ∇̃λ(lna)− ∇̃λ(lna)

]︃
k̃
λ

= −1

2
∇̂ρk̃

ρ − 2k̃
λ∇̃λ(lna) .

(2.78)

By substituting k̃
µ
with (1/a2) k̂

µ
we get

1

a2
d

dχ
lnA = − 1

2a2
∇̂ρk̂

ρ − 1

2
k̂
ρ∇̂ρ

(︃
1

a2

)︃
− 2

d

dl
lna

= − 1

2a2
∇̂ρk̂

ρ − 1

2

d

dχ

(︃
1

a2

)︃
− 2

1

a2
1

a

da

dχ

= − 1

2a2
∇̂ρk̂

ρ
+

1

a3
da

dχ
− 2

1

a3
da

dχ
,

(2.79)

where we used (2.76) and d/dl = k̃
λ∇̃λ.

Therefore
d

dχ
lnA = −1

2
∇̂ρk̂

ρ − 1

a

da

dχ
, (2.80)

which is equivalent to
d

dχ
ln
(︁
aA
)︁
= −1

2
∇̂ρk̂

ρ
. (2.81)

2.3 Space around a GW source

In this section we give a brief description of the different regions in which the space around a
GW source can be divided.

� The source is characterized by a size L, which in the case of binary system corresponds to
the orbital radius.

� The near zone is the region characterized by r ≪ λ, where r is the comoving distance from
the source. In this region retardation effects are negligible.

� The wave zone (or far zone) is the region described by r ≫ λ. This is the region where
we will apply the geometric optics approximation.

In the case of systems which contains compact objects, which are strong-field sources, we
can further separate the near zone into two regions:

� the strong-field near zone is within a spherical region which has at the center the compact
object and a radius of order a few times the Schwarzschild radius of the source [51];
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� the weak-field near zone is the remaining part of the near zone.

We can call wave generation region the region which includes the source, the strong-field near
zone and the weak-field near zone (it corresponds to r ≲ rI in Figure 2.1).

Since we are interested in the propagation of the gravitational waves across cosmological
distances it is useful to split the wave zone into two parts.

� The local wave zone is characterized by a comoving distance from the source sufficiently
large so that the gravitational field displays the typical behaviour of waves and sufficiently
small so that the effects of the background curvature of the universe can be neglected [51].
The background space can be considered asymptotically flat. The local wave zone acts as a
matching region between the wave generation region and the wave propagation region [63].

� In the distant wave zone the propagation of the gravitational waves is perturbed by the
effects which are due to the background curvature of the universe.

Figure 2.1: Regions in which the space around a GW source can be divided [63]. In this thesis the
attention is focused on the distant wave zone, given that it is the region where the effects of the background
curvature of the universe become important.
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Chapter 3

Cosmic rulers formalism

In order to study the propagation of gravitational waves in a perturbed FRW Universe and
the resulting effect on the GW waveforms, we follow the procedure used in [46]: we apply the
Cosmic Rulers formalism, which was introduced for electromagnetic radiation in [64] and [65],
to the gravitational radiation in the limit of geometric optics. This prescription provides a map
between the observer’s frame, also called Redshift-GW frame (RGW), which is considered as
reference system, and the real frame. The definition of the real and RGW frames is the following.

� Redshift-GW frame (RGW)
We assume we live in an unperturbed FRW Universe:

ds2 = a2(η)[−dη2 + δijdx
idxj ] . (3.1)

If the unit vector ñ is the observed direction of arrival of a gravitational wave and z̃ is
the observed redshift of the electromagnetic counterpart, the inferred comoving position
of the source at emission is

η̄ = η0 − χ̄(z̃) (3.2a)

x̄ = χ̄(z̃) ñ , (3.2b)

where χ̄(z) is the distance-redshift relation in an unperturbed Universe, η0 is the conformal
time at observation and x̄o = (0, 0, 0) (the spatial origin corresponds to the location of the
observer).
This position corresponds to the unique starting point of the null geodesic which arrives
at the observer with direction ñ and is associated to a redshift z̃ [64]. Indeed, in the
absence of perturbations, null geodesics are straight lines in conformal coordinates. In
other words, null geodesics from the source to the observer, using the comoving distance
χ̄ as affine parameter, can be written as:

x̄µ = (η̄, x̄) = (η0 − χ̄, χ̄n) . (3.3)

The quantities in this frame are denoted with a bar.
The direction of arrival of the GW can be written as

ni =
x̄i

χ̄
= δij

∂χ̄

∂x̄j
. (3.4)

Indeed

∂χ̄

∂x̄j
=

∂

∂x̄j

√︁
x̄ix̄i =

∂

∂x̄j

√︁
x̄iδikx̄k =

1

2χ̄
(δijδikx̄

k + x̄iδikδ
k
j ) =

x̄j
χ̄

= nj . (3.5)
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In the RGW frame the wave-vector associated the null geodesic (3.3) is

k̄
µ
=

dx̄µ

dχ̄
= (−1,ni) . (3.6)

Therefore the total derivative along the past GW-cone is

d

dχ̄
= k̄

µ
∂µ = − ∂

∂η̄
+ ni ∂

∂x̄i
. (3.7)

� Real frame
This frame corresponds to a perturbed FRW Universe. The perturbed metric at linear
order in a general gauge is

ds2 = a2(η)[−(1 + 2A)dη2 − 2Bidηdx
i + (δij + hij)dx

idxj ] , (3.8)

with

hij = −2Dδij + hTT
ij , (3.9)

where hTT
ij is transverse and traceless.

We denote by xµ the actual comoving position of the source and by χ the comoving distance
from the observer to the source. Given that the graviton path in a perturbed Universe is
not straight, the inferred source’s comoving position x̄µ found in the RGW frame does not
coincide with the true spacetime point of emission xµ (see Fig 3.1).

Below the subscript “e” will be used to denote quantities evaluated at the location where the
gravitational waves are emitted, while “o” will stand for the position of the observer where the
gravitational waves are received.

3.1 Map between real and RGW frames

Now that we have defined the real and the RGW frames, we can set up a map to relate them.
Every quantity in the real frame will be decomposed into a zero order contribution, given by the
solution in the RGW frame, which is the reference frame, plus a perturbation due to the cosmic
inhomogeneities. Only first order perturbation will be considered.
We start from the comoving distance and define the first order perturbation

δχ = χ− χ̄ . (3.10)

Geodesic perturbation

As regards the graviton path, we want to define the map between xµ(χ), the actual comoving
position located at a comoving distance χ from the observer, and the apparent position x̄µ(χ̄),
which we infer by assuming a homogeneous and isotropic Universe. In other words we want to
find the expression for the perturbation ∆xµ(χ̄) = xµ(χ)− x̄µ(χ̄). We proceed in the following
way.
We start by introducing the perturbation of the null geodesic at fixed affine parameter:

xµ(χ) = x̄µ(χ) + δxµ(χ) . (3.11)

We proceed by substituting χ with χ̄+ δχ using (3.10) and Taylor expanding at linear order x̄µ

around χ̄, while δxµ is directly evaluated at χ̄ given that it is already a perturbation and we are

30



Chapter 3 3.1. MAP BETWEEN REAL AND RGW FRAMES

Figure 3.1: Comparison between the real frame and the Redshift-GW frame. The position of the GW
source in the real frame is indicated by a star. The gravitational wave arrives with direction ñ at the
observer located at the bottom, following the perturbed null geodesic represented by the solid line. The
dashed line indicates the null geodesic which the graviton would follow in an unperturbed FRW Universe
given the observed direction ñ. This straight path traces back to the inferred GW source position
indicated by the circle, which does not coincide with the real position. [64]

neglecting second order terms. Therefore we obtain

xµ(χ) = x̄µ(χ̄+ δχ) + δxµ(χ̄+ δχ)

= x̄µ(χ̄) +
dχ̄

dχ

dx̄µ

dχ̄
δχ+ δxµ(χ̄)

= x̄µ(χ̄) +

(︃
1− dδχ

dχ

)︃
dx̄µ

dχ̄
δχ+ δxµ(χ̄)

= x̄µ(χ̄) +
dx̄µ

dχ̄
δχ+ δxµ(χ̄) ,

(3.12)

where in the last passage we neglected dδχ/dχ, given that it is multiplied by δχ, which is already
a first order perturbation. Finally we can write

xµ(χ) = x̄µ(χ̄) + ∆xµ(χ̄) , (3.13)

where

∆xµ(χ̄) = δxµ(χ̄) + k̄
µ
δχ . (3.14)

We can notice two contributions to the perturbation ∆xµ(χ̄): the first term comes from the
perturbation of the GW geodesic at fixed χ̄, while the second one is proportional to the change
δχ in the affine parameter.

Wave-vector perturbation

We can proceed with the perturbation of the wave-vector k̂
µ

= dxµ/dχ. From now on for
simplicity we will write kµ instead of k̂

µ
(which is the notation used in the previous chapter).
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By using (3.14) we get

kµ(χ) =
d

dχ
xµ(χ) =

d

dχ

[︁
x̄µ(χ̄) + ∆xµ(χ̄)

]︁
=

dχ̄

dχ

d

dχ̄

[︁
x̄µ(χ̄) + δxµ(χ̄) + k̄

µ
δχ
]︁

=

(︃
1− dδχ

dχ

)︃(︃
k̄
µ
+

dδxµ

dχ̄
+

dk̄
µ

dχ̄
δχ+ k̄

µdδχ

dχ̄

)︃
= k̄

µ − dδχ

dχ
k̄
µ
+

dδxµ

dχ̄
+

dk̄
µ

dχ̄
δχ+ k̄

µdδχ

dχ̄

(3.15)

The difference between dδχ/dχ̄ and dδχ/dχ is second order. Indeed dδχ/dχ = (dχ̄/dχ) dδχ/dχ̄ =
(1−dδχ/dχ) dδχ/dχ̄. Therefore at first order −k̄

µ
dδχ/dχ and k̄

µ
dδχ/dχ̄ cancel out. Moreover

dk̄
µ
/dχ̄ = 0 since k̄

µ
satisfies the null geodesic equation k̄

σ∇̂σk̄
µ
= 0. Thus

kµ(χ) = k̄
µ
+

dδxµ

dχ̄
= k̄

µ
+ δkµ . (3.16)

Therefore ∆kµ(χ̄) = δkµ(χ̄). In other words in this case there is no contribution proportional
to δχ. This statement is valid only at first order.
Then we can define δν and δni so that

δkµ(χ̄) = (δν(χ̄), δni(χ̄)) . (3.17)

The next step consist in finding the expression for δkµ(χ̄) in terms of the metric perturbations.
Before proceeding it is useful to define the parallel and perpendicular projection operators to
the observed line-of-sight direction n.

3.1.1 Projection operators and directional derivatives

For any spatial vector Bi and tensor Aij we have:

B∥ = niBi ,

A∥ = ninjAij ,

Bi
⊥ = Bi − niB∥ =

(︁
δij − ninj

)︁
Bj = P ijBj ,

(3.18)

where
P ij = δij − ninj . (3.19)

As regards the perpendicular projection operator we calculate the following quantities:

P i
i = (δii − nini) = 3− 1 = 2 (3.20)

and

P i
jP

j
i = (δij−ninj)(δ

j
i −njni) = δijδ

j
i −δijn

jni−δjin
inj+ninjn

jni = δii−2nini+(nini)(n
jnj) = 2 .

(3.21)
The directional derivatives are defined in the following way:

∂̄∥ = ni ∂

∂x̄i
,

∂̄⊥i = Pj
i ∂̄j =

(︁
δji − njni

)︁
∂̄j = ∂̄i − ni∂̄∥ .

(3.22)

Using (3.4) and (3.19) we find

∂nj

∂x̄i
=

∂

∂x̄i

(︃
x̄j

χ̄

)︃
=

δji
χ̄

− x̄j

χ̄2

∂χ̄

∂x̄i
=

1

χ̄

(︃
δji −

x̄j

χ̄

∂χ̄

∂x̄i

)︃
=

1

χ̄

(︃
δji − njni

)︃
=

1

χ̄
Pj
i . (3.23)
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Furthermore

∂̄∥n
i = nj ∂̄jn

i = nj 1

χ̄

(︃
δij − ninj

)︃
=

1

χ̄

(︃
ni − ninjn

j

)︃
= 0 (3.24)

and

∂̄⊥in
i = ∂̄in

i − ni∂̄∥n
i = ∂̄in

i =
P i
i

χ̄
=

2

χ̄
. (3.25)

In addition d/dχ̄ and ∂̄⊥i do not commute. In order to demonstrate it we proceed in the
following way.

d

dχ̄
∂̄⊥i =

(︃
− ∂

∂η̄
+ nj ∂

∂x̄j

)︃(︃
∂

∂x̄i
− nin

l ∂

∂x̄l

)︃
= − ∂

∂η̄

∂

∂x̄i
+ nin

l ∂

∂η̄

∂

∂x̄l
+ nj ∂

∂x̄j
∂

∂x̄i
− nj ∂

∂x̄j

(︃
nin

l ∂

∂x̄l

)︃
= − ∂

∂x̄i
∂

∂η̄
+ nin

l ∂

∂x̄l
∂

∂η̄
+

[︃
∂

∂x̄i

(︃
nj ∂

∂x̄j

)︃
− ∂nj

∂x̄i
∂

∂x̄j

]︃
−
[︃
nin

j ∂

∂x̄j

(︃
nl ∂

∂x̄l

)︃
+ nj ∂ni

∂x̄j
nl ∂

∂x̄l

]︃
.

(3.26)

Given that nj ∂̄jni = 0, as shown in (3.24), the last term is null. Finally, using (3.23), we obtain

d

dχ̄
∂̄⊥i =

(︃
∂

∂x̄i
− nin

l ∂

∂x̄l

)︃(︃
− ∂

∂η̄
+ nj ∂

∂x̄j

)︃
− ∂nj

∂x̄i
∂

∂x̄j

= ∂̄⊥i
d

dχ̄
−

Pj
i

χ̄

∂

∂x̄j
= ∂̄⊥i

d

dχ̄
− 1

χ̄
∂̄⊥i .

(3.27)

Another useful relation is the following:

∂Bi

∂x̄j
=
(︁
nj ∂̄∥ + ∂̄⊥j

)︁(︁
niB∥ +Bi

⊥
)︁

= ninj ∂̄∥B∥ + nj ∂̄∥B
i
⊥ +B∥∂̄⊥jn

i + ni∂̄⊥jB∥ + ∂̄⊥jB
i
⊥

= ninj ∂̄∥B∥ + nj ∂̄∥B
i
⊥ +B∥

P i
j

χ̄
+ ni∂̄⊥jB∥ + ∂̄⊥jB

i
⊥ ,

(3.28)

where in the second and third line we used respectively (3.24) and (3.23).
Moreover, using (3.23), (3.20) and (3.21), we find that

∇̄2
⊥ = ∂̄⊥i∂̄

i
⊥ =

(︃
∂

∂x̄i
− ni∂̄∥

)︃(︃
δij

∂

∂x̄j
− ni∂̄∥

)︃
= ∂̄i∂̄

i − ∂̄i(n
i∂̄∥)− ni∂̄∥∂̄

i
+ ni∂̄∥(n

i∂̄∥)

= ∂̄i∂̄
i − (∂̄in

i)∂̄∥ − ni∂̄i∂̄∥ − ni∂̄∥∂̄
i
+ nin

i∂̄
2
∥

= ∂̄i∂̄
i − 1

χ̄
P i
i ∂̄∥ − ∂̄

2
∥ − ∂̄∥(ni∂̄

i
) + ∂̄

2
∥

= ∂̄i∂̄
i − 2

χ̄
∂̄∥ − ∂̄

2
∥ .

(3.29)

3.1.2 Differential equation for δkµ

In order to find the expression for δkµ(χ̄) in terms of the metric perturbations we need to
know the differential equation satisfied by the wave-vector perturbation and then integrate it.
Considering that kµ = k̄

µ
+ δkµ and given that the geodesic equations satisfied by kµ and k̄

µ
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are known, we can proceed in the following way. We start from the geodesic equation satisfied
by kµ(χ):

dkµ(χ)

dχ
+ Γ̂

µ
νρ(x

σ)kν(χ)kρ(χ) = 0 , (3.30)

where Γ̂
µ
νρ are the Christoffel symbols constructed with the comoving metric ĝµν = g̃µν/a

2 and
g̃µν is the metric associated to a perturbed FRW Universe.
Since kµ(χ) = k̄

µ
(χ̄) + δkµ(χ̄) and k̄

µ
(χ̄) satisfies the geodesic equation dkµ/dχ̄ = 0, the first

term of equation (3.30) becomes, at linear order in the perturbations,

dkµ

dχ
=

(︃
dχ̄

dχ

)︃(︃
dk̄

µ

dχ̄
+

dδkµ

dχ̄

)︃
=

(︃
1− dδχ

dχ

)︃
dδkµ

dχ̄
=

dδkµ

dχ̄
. (3.31)

As concerns the second term of equation (3.30) we keep only the zero order component of the
wave-vectors. This is due to the fact that the Christoffel symbols are already first order terms.
Indeed the comoving metric of an unperturbed Universe is nothing else than the Minkowski
metric and the associated Christoffel symbols are null. Finally, since

Γ̂
µ
νρ(x

σ) = δΓ̂
µ
νρ(x

σ) = δΓ̂
µ
νρ(x̄

σ) + ∆xλ
∂

∂x̄λ
δΓ̂

µ
νρ(x̄

σ) , (3.32)

we obtain

dδkµ

dχ̄
(χ̄) + δΓ̂

µ
νρ(x̄

σ)k̄
ν
(χ̄)k̄

ρ
(χ̄) = 0 , (3.33)

where the second order term ∆xλ∂̄λδΓ̂
µ
νρ(x̄

σ) was neglected.
The µ = 0 component gives

0 =
dδν

dχ̄
+ δΓ̂

0
00k̄

0
k̄
0
+ 2δΓ̂

0
0ik̄

0
k̄
i
+ δΓ̂

0
ij k̄

i
k̄
j

=
dδν

dχ̄
+A′(−1)(−1) + 2∂̄iA(−1)(ni) +

1

2

(︂
∂̄iBj + ∂̄jBi + h′ij

)︂
ninj

=
dδν

dχ̄
+A′ − 2ni∂̄iA+

1

2
ninj

(︂
∂̄iBj + ∂̄jBi + h′ij

)︂
,

(3.34)

where ′ ≡ ∂/∂η̄.
Since using (3.24) we get nj ∂̄∥Bj = ∂̄∥(n

jBj), equation (3.34) becomes

0 =
dδν

dχ̄
+A′ − 2∂̄∥A+ ∂̄∥B∥ +

1

2
h′∥ . (3.35)

Considering that

d

dχ̄
= − ∂

∂η̄
+ ni ∂

∂x̄i
= − ∂

∂η̄
+ ∂̄∥ , (3.36)

we obtain

dδν

dχ̄
+ 2
(︁
A′ − ∂̄∥A

)︁
−B′

∥ + ∂̄∥B∥ = A′ −B′
∥ −

1

2
h′∥

d

dχ̄

(︁
δν − 2A+B∥

)︁
= A′ −B′

∥ −
1

2
h′∥ .

(3.37)
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As regards the µ = i components we find

0 =
dδni

dχ̄
+ δΓ̂

i
00k̄

0
k̄
0
+ 2δΓ̂

i
0j k̄

0
k̄
j
+ δΓ̂

i
jlk̄

j
k̄
l

=
dδni

dχ̄
+ (−Bi′ + ∂̄

i
A)(−1)(−1) + 2

(︃
−1

2
∂̄jB

i +
1

2
∂̄
i
Bj +

1

2
hij

′
)︃
(−1)(nj)

+

(︃
1

2
∂̄jh

i
l +

1

2
∂̄lh

i
j −

1

2
∂̄
i
hjl

)︃
njnl

=
dδni

dχ̄
−Bi′ + ∂̄

i
A+ nj ∂̄jB

i − nj ∂̄
i
Bj − njhij

′ +
1

2
nlnj ∂̄jh

i
l +

1

2
njnl∂̄lh

i
j −

1

2
njnl∂̄

i
hjl

=
dδni

dχ̄
+

dBi

dχ̄
+ ∂̄

i
A− nj ∂̄

i
Bj − njhij

′ + nj∂∥h
i
j −

1

2
njnl∂̄

i
hjl .

(3.38)

Given that, using (3.23), ∂̄
i
(njBj) = nj ∂̄

i
Bj +Bj ∂̄

i
nj = nj ∂̄

i
Bj +BjP ij/χ̄, we find

0 =
dδni

dχ̄
+

dBi

dχ̄
+ ∂̄

i
A− ∂̄

i
(njBj) +Bj

P ij

χ̄
+ nj

dhij
dχ̄

− 1

2
njnl∂̄

i
hjl (3.39)

Finally, since dnj/dχ̄ = 0 and ∂̄
i
h∥ = ∂̄

i
(njnlhjl) = njnl∂̄

i
hjl + hjl∂̄

i
(njnl), we obtain

0 =
dδni

dχ̄
+

dBi

dχ̄
+ ∂̄

i
A− ∂̄

i
B∥ +

Bi
⊥
χ̄

+
d

dχ̄
(njhij) +

1

2
∂̄
i(︁
njnl

)︁
hjl −

1

2
∂̄
i
h∥ . (3.40)

Therefore, using again (3.23), we get

d

dχ̄

(︁
δni +Bi + njhij

)︁
= −∂̄

i
A+ ∂̄

i
B∥ −

Bi
⊥
χ̄

− Pji

χ̄
nlhjl +

1

2
∂̄
i
h∥ . (3.41)

The next step consists in integrating equations (3.37) and (3.41). In order to do that we
need to know the boundary conditions for the wave-vector perturbations δkµ at the observer’s
position χ̄ = 0 .

3.1.3 Boundary conditions at the observer for δkµ

In order to determine the values of δν and δni at χ̄ = 0 we have to consider the graviton
four-momentum measured by the observer. The observer’s measurements are described in terms
of the frame of reference built with an orthonormal tetrad Λµ

α̂, which is defined through the
following relations:

g̃µνΛα̂
µΛ

β̂
ν = ηα̂β̂ , ηα̂β̂Λ

α̂
µΛ

β̂
ν = g̃µν , g̃µνΛα̂

ν = Λα̂µ , ηα̂β̂Λ
β̂
ν = Λα̂ν , (3.42)

where ηα̂β̂ is the Minkowski metric, g̃µν is the metric associated to a perturbed FRW universe,

α̂ and β̂, which run from zero to three, are used as space-time indices of the tetrad Λα̂ and µ
and ν denote its coordinate indices (Λα̂)

µ. Latin indices â = 1, 2, 3 and b̂ = 1, 2, 3 will be used
as space indices of the tetrad.

As regards the comoving tetrad, we define it through

ĝµνEα̂
µE

β̂
ν = ηα̂β̂ , ηα̂β̂E

α̂
µE

β̂
ν = ĝµν , ĝµνEα̂

ν = Eα̂µ , ηα̂β̂E
β̂
ν = Eα̂ν , (3.43)

where ĝµν = g̃µν/a
2, Eµ

α̂ = aΛµ
α̂ and Eα̂µ = (1/a)Λα̂µ.

In order find the expression at linear order for the tetrad Λµ
α̂ in terms of the metric compo-

nents g̃µν = ḡµν + δgµν , where ḡµν is the metric of the background space-time, we consider the
decomposition

Λµ
α̂ = Λ̄

µ
α̂ + δΛµ

α̂ , (3.44)
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and we set Λ̄
µ
α̂ = δµα̂/a. We proceed by using g̃µνΛ

µ
α̂Λ

ν
β̂

= ηα̂β̂ to obtain a system of three

equations. For α̂ = β̂ = 0̂ we find

−1 = g̃µνΛ
µ

0̂
Λν
0̂
= (ḡ00 + δg00)

(︁
Λ̄
0
0̂ + δΛ0

0̂

)︁2
+ 2δg0i

(︁
Λ̄
0
0̂ + δΛ0

0̂

)︁
δΛi

0̂
+ (ḡij + δgij)δΛ

i
0̂
δΛj

0̂
. (3.45)

Neglecting second order terms in the perturbations we get

−1 = (ḡ00 + δg00)
(︁
Λ̄
0
0̂

)︁2
+ 2ḡ00Λ̄

0
0̂δΛ

0
0̂
= −a2(1 + 2A)

1

a2
− 2a2

1

a
δΛ0

0̂
. (3.46)

Therefore

δΛ0
0̂
= −1

a
A . (3.47)

For α̂ = â and β̂ = b̂ we find, at first order in the perturbations,

δab = g̃µνΛ
µ
âΛ

ν
b̂
= (ḡij + δgij)

(︁
Λ̄
i
â + δΛi

â

)︁(︁
Λ̄
j

b̂
+ δΛj

b̂

)︁
= a2(δij + hij)

(︃
1

a
δia + δΛi

â

)︃(︃
1

a
δjb + δΛj

b̂

)︃
= δab + hab + aδajδΛ

j

b̂
+ aδibδΛ

i
â .

(3.48)

We obtain

δΛi
â = − 1

2a
hia . (3.49)

Finally, considering α̂ = 0̂ and β̂ = â, we have

0 = g̃µνΛ
µ

0̂
Λν
â = ḡ00Λ̄

0
0̂δΛ

0
â + δg0iΛ̄

0
0̂Λ̄

i
â + ḡijδΛ

i
0̂
Λ̄
j
â

= −a2
1

a
δΛ0

â − a2Bi
1

a

δia
a

+ a2δij
δja
a
δΛi

0̂

= −aδΛ0
â −Ba + aδiaδΛ

i
0̂
.

(3.50)

In order to close the system we choose Λµ
â to be orthogonal to the four-velocity uµ of the

observer. Since at linear order the four-velocity of the observer is given by uµ = (1/a)(1−A, vi)
and uµ = a(−1−A, vi −Bi), we find

0 = Λµ
âuµ = −(Λ0

â)a(1 +A) + Λi
âa(vi −Bi) = −aδΛ0

â + δia(vi −Bi) . (3.51)

Therefore

δΛ0
â =

1

a
(va −Ba). (3.52)

Thus equation (3.50) becomes

−va +Ba −Ba + aδiaδΛ
i
0̂
= 0

−δiav
i + aδiaδΛ

i
0̂
= 0

δΛi
0̂
=

1

a
vi .

(3.53)

Summarizing:

Λ0̂µ = aE0̂µ = a(−1−A, vi −Bi) = uµ , Λâµ = aEâµ = a

(︃
−va, δai +

1

2
hai

)︃
,

Λµ

0̂
=

Eµ

0̂

a
=

1

a
(1−A, vi) = uµ , Λµ

â =
Eµ

â

a
=

1

a

(︃
va −Ba, δ

i
a −

1

2
hia

)︃
.

(3.54)
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The components of the observed photon four-momentum pα̂Λα̂ = pµ∂µ with respect to the
tetrad basis Λα̂ are

pα̂ = 2πfo(1,−nâ) , (3.55)

where the minus sign is due to the fact that nâ points towards the source (see fig 3.1). The
parametrization used for the four-momentum

pµ =
dxµ

dλ
=

dl

dλ

dxµ

dl
=

dl

dλ

1

a2
dxµ

dχ
(3.56)

is given by

dλ = − 1

2πfo
dl = − a2

2πfo
dχ . (3.57)

Indeed if we consider an unperturbed FRW Universe and use the affine parameter defined in
(3.57) the four-momentum is given by p̄µ = −(2πfo/a

2)(−1, ni). If we take the projection of p̄µ

on the tetrad basis Λ̄α̂ we obtain exactly the components (3.55):

p0̂o = (Λ̄0̂µp̄
µ)|o = (aĒ0̂µ)

(︃
−2πfo

ā2
k̄
µ
)︃⃓⃓⃓

o
= −2πfo

āo
(Ē0̂µk̄

µ
)|o = −2πfo(−1)(−1) = −2πfo

(3.58)
and

pâo = (Λ̄âµp̄
µ)|o = −2πfo

āo
(Ēâµk̄

µ
)|o = −2πfo[(δai)(n

i)] = −2πfo na , (3.59)

where we used ā0 = 1.
Now we are ready to calculate the boundary condition δkµo = (δνo, δn

i
o) in a perturbed FRW

Universe. As regards the perturbation δνo we obtain

pGW
0̂o

= (Λ0̂µp
µ
GW )|o = −2πfo

ao
(E0̂µk

µ)|o

= − 2πfo
1 + δao

[︁
(−1−A)(−1 + δν) + (vi −Bi)(n

i + δni)
]︁⃓⃓

o

= −2πfo(1− δao)(1− δνo +A+ v∥o −B∥o)

= −2πfo(1− δao − δνo +Ao + v∥o −B∥o) ,

(3.60)

where we used
ao = a(ηo) = ā(η̄o) + δao = 1 + δao . (3.61)

As concerns the perturbation δni we find

pGW
âo = (Λâµp

µ
GW )|o = −2πfo

ao
(Eâµk

µ)|o

= − 2πfo
1 + δao

[︂
(−va)(−1 + δν) +

(︂
δai +

1

2
hai

)︂
(ni + δni)

]︂⃓⃓⃓
o

= −2πfo(1− δao)
[︂
va + na + δna +

1

2
hain

i
]︂⃓⃓⃓

o

= −2πfo

[︃
na − naδao + δnao + vao +

1

2
(hai)on

i

]︃
.

(3.62)

Therefore the initial conditions at the observer are:

δνo = −δao +Ao + v∥o −B∥o (3.63a)

δnao = naδao − vao −
1

2
(hai)on

i. (3.63b)

Now we have all the information necessary to integrate the differential equation satisfied by
the wave-vector perturbation δkµ(χ̄).
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3.1.4 Integration of the differential equation for δkµ

The integration of equation (3.37) gives∫︂ χ̄

0
dχ̃

d

dχ̃

(︁
δν − 2A+B∥

)︁
=

∫︂ χ̄

0
dχ̃

(︃
A′ −B′

∥ −
1

2
h′∥

)︃
δν − 2A+B∥ = δνo − 2Ao +B∥o +

∫︂ χ̄

0
dχ̃

(︃
A′ −B′

∥ −
1

2
h′∥

)︃
δν − 2A+B∥ = (−δao +Ao + v∥o −B∥o)− 2Ao +B∥o − 2I

δν = −δao −Ao + v∥o + 2A−B∥ − 2I ,

(3.64)

where we used (3.63a) and

I ≡ −1

2

∫︂ χ̄

0
dχ̃

(︃
A′ −B′

∥ −
1

2
h′∥

)︃
(3.65)

is the Integrated Sachs-Wolfe contribution.
Finally we move to the integration of equation (3.41):∫︂ χ̄

0
dχ̃

d

dχ̃

(︁
δni +Bi + njhij

)︁
=

∫︂ χ̄

0
dχ̃

(︃
−∂̃

i
A+ ∂̃

i
B∥ −

Bi
⊥
χ̃

− Pji

χ̃
nlhjl +

1

2
∂̃
i
h∥

)︃
. (3.66)

Using (3.63b) the left-hand side becomes∫︂ χ̄

0
dχ̃

d

dχ̃

(︁
δni +Bi + njhij

)︁
= δni +Bi + njhij − δni

o −Bi
o − njhij o

= δni +Bi + njhij − niδao + vio +
1

2
njhij o −Bi

o − njhij o

= δni +Bi + njhij − niδao + vio −
1

2
njhij o −Bi

o .

(3.67)

As regards the right-hand side we can proceed in the following way.∫︂ χ̄

0
dχ̃

(︃
−∂̃

i
A+∂̃

i
B∥−

Bi
⊥
χ̃

−Pji

χ̃
nlhjl+

1

2
∂̃
i
h∥

)︃
=

∫︂ χ̄

0
dχ̃

[︃
−∂̃

i
(︃
A−B∥−

1

2
h∥

)︃
− 1

χ̃

(︃
Bi

⊥+nlhjlPji

)︃]︃
.

(3.68)
Since

∂̄
i
= ∂̄

i
⊥ + ni∂̄∥ = ∂̄

i
⊥ + ni

(︃
d

dχ̄
+

∂

∂η̄

)︃
(3.69)

we have∫︂ χ̄

0
dχ̃ ∂̃

i
(︃
A−B∥ −

1

2
h∥

)︃
=

∫︂ χ̄

0
dχ̃ ∂̃

i
⊥

(︃
A−B∥ −

1

2
h∥

)︃
+ ni

∫︂ χ̄

0
dχ̃

d

dχ̃

(︃
A−B∥ −

1

2
h∥

)︃
+ ni

∫︂ χ̄

0
dχ̃

(︃
A′ −B′

∥ −
1

2
h′∥

)︃
=

∫︂ χ̄

0
dχ̃ ∂̃

i
⊥

(︃
A−B∥ −

1

2
h∥

)︃
+ ni

(︃
A−B∥ −

1

2
h∥ −Ao +B∥o +

1

2
h∥o

)︃
− 2niI .

(3.70)

Therefore the right-hand side of (3.66) becomes∫︂ χ̄

0
dχ̃

(︃
−∂̃

i
A+ ∂̃

i
B∥ −

Bi
⊥
χ̃

− Pji

χ̃
nlhjl +

1

2
∂̃
i
h∥

)︃
= ni

(︃
−A+B∥ +

1

2
h∥ +Ao −B∥o −

1

2
h∥o

)︃
+ 2niI + 2Si

⊥ ,

(3.71)
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where

Si
⊥ = −1

2

∫︂ χ̄

0
dχ̃

[︃
∂̃
i
⊥

(︃
A−B∥ −

1

2
h∥

)︃
+

1

χ̃

(︃
Bi

⊥ + nlhjlPji

)︃]︃
(3.72)

is the perpendicular component of

Si = −1

2

∫︂ χ̄

0
dχ̃

[︃
∂̃
i
(︃
A−B∥ −

1

2
h∥

)︃
+

1

χ̃
(Bi + nkhik)

]︃
. (3.73)

Inserting (3.67) and (3.71) in (3.66) we obtain

δni = −Bi − njhij + niδao − vio +
1

2
njhij o +Bi

o + ni

(︃
−A+B∥ +

1

2
h∥ +Ao −B∥o −

1

2
h∥o

)︃
+ 2niI + 2Si

⊥

= −Bi
⊥ − P i

kn
jhkj − vi⊥o +

1

2
P i
kn

jhkj o +Bi
⊥o + ni

(︃
δao − v∥o −A− 1

2
h∥ +Ao + 2I

)︃
+ 2Si

⊥ ,

(3.74)

where we usedBi = Bi
⊥+niB∥ and njhij−nih∥ = δikn

jhkj−ninkn
jhkj = (δik−nink)n

jhkj = P i
kn

jhkj .
By defining

δn∥ = δao − v∥o +Ao −A− 1

2
h∥ + 2I (3.75a)

δni
⊥ = −Bi

⊥ +Bi
⊥o − vi⊥o − P i

kn
jhkj +

1

2
P i
kn

jhkj o + 2Si
⊥ , (3.75b)

we can rewrite (3.74) as
δni = niδn∥ + δni

⊥ . (3.76)

We are now ready to find the expression for the coordinate perturbations δx0(χ̄) and δxi(χ̄) by
integrating (3.64) and (3.76). Before proceeding with the calculations we show how to derive the
analytical expression for the coordinate perturbations at the observer. The derivation is based
on [66] and [67].

3.1.5 Coordinate perturbations at the observer

The observer coordinates in the RGW frame and in the real frame do not coincide. This is due to
the fact that the physical coordinate time to in an inhomogeneous universe does not correspond
to the proper time To of the observer.

Conformal coordinate lapse δx0
o

Considering that dt = adη = a dx0, the physical coordinate time of the observer is calculated
by integrating au0 along the path of the observer. Therefore, given that in a perturbed universe
the time component of the observer velocity is given by

u0 =
dx0

dT
=

1−A

a
, (3.77)

we obtain

t0 − tin =

∫︂ T0

Tin

dt

dT
dT =

∫︂ T0

Tin
au0dT = T0 − Tin −

∫︂ T0

Tin
A[xµ(T )]dT . (3.78)

Consequently in an unperturbed universe, since A = 0, the coordinate time of the observer
coincides with the proper time:

t̄0 − tin = T0 − Tin . (3.79)
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On the other hand in a perturbed universe in general A ̸= 0. This implies that the coordinate
time of the observer is not synchronized with the proper time. Inserting (3.79) in (3.78) we find
the following expression for the coordinate lapse:

δto = t0 − t̄0 = −
∫︂ T0

Tin
A[xµ(T )]dT . (3.80)

Considering that, working at linear order, we can approximate at zeroth order the observer path
xµ(T ) at which the perturbation A is evaluated, and using dT = ā(η̄)dη̄, which comes from
(3.77), to change variable, we obtain

δto = −
∫︂ η̄0

η̄in

A(η̄,0)ādη̄ . (3.81)

At linear order the conformal coordinate lapse δx0o is equal to the coordinate lapse δto. Indeed

δto = a(η0)δηo = ā(η̄o)δηo = δηo = δx0o , (3.82)

where the second equality is due to the fact that δη0 is first order. Therefore

δx0o = −
∫︂ η̄0

η̄in

A(η̄,0)ā(η̄)dη̄ . (3.83)

In other words the coordinate perturbation δx0o at the observer corresponds to the cumulative
time delay which is due to the metric perturbation A along the trajectory of the observer [66].

Spatial coordinate shift δxi
o

A similar procedure is used to calculate the spatial coordinate shift δxio. Since in a perturbed
universe the spatial component of the observer four-velocity is given by

ui =
dxi

dT
=

vi

a
, (3.84)

we obtain

xi0 − xiin =

∫︂ T0

Tin

dxi

dT
dT =

∫︂ T0

Tin
uidT =

∫︂ T0

Tin

vi

a
[xµ(T )]dT . (3.85)

In a homogeneous Universe the path of the observer is static:

x̄i0 = xiin . (3.86)

In a perturbed FRW universe the spatial coordinate shift at linear order is

δxio =

∫︂ T0

Tin

vi

a
dT =

∫︂ η̄0

η̄in

vi

ā
ādη̄ =

∫︂ η̄0

η̄in

vi(η̄,0)dη̄ . (3.87)

Scale factor perturbation δao

We are now able to find the analytical expression for the perturbation of the scale factor at the
observer. Given that

a(η̄0 + δηo) = ā(η̄0) +
dā

dη̄

⃓⃓
η̄0
δηo = 1 +H0δηo = 1 + δao , (3.88)

we obtain

δao = H0δηo = −H0

∫︂ η̄0

η̄in

A(η̄,0)ā(η̄)dη̄ . (3.89)
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3.1.6 Coordinate perturbations

In order to find the coordinate perturbations δxµ we integrate the wave-vector perturbation δkµ:

δxµ = δxµo +

∫︂ χ̄

0
δkµdχ̄ . (3.90)

As regards δx0 we proceed in the following way.

δx0 = δx0o +

∫︂ χ̄

0
dχ̃ δν

= δx0o +

∫︂ χ̄

0
dχ̃
(︁
−δao −Ao + v∥o + 2A−B∥ − 2I

)︁
= δx0o − χ̄ (δao +Ao − v∥o) +

∫︂ χ̄

0
dχ̃
(︁
2A−B∥

)︁
+

∫︂ χ̄

0
dχ̃

∫︂ χ̃

0
dχ̃′
(︃
A′ −B′

∥ −
1

2
h′∥

)︃
,

(3.91)

where equation (3.64) has been used. As concerns the double integral, since the integrand is a
function of χ̃′, it is convenient to change the order of the integrations. This implies a change of
the extremes of integration: at first we integrate in χ̃ ranging from χ̃′ to χ̄, then we integrate in
χ̃′ from 0 to χ̄. We obtain∫︂ χ̄

0
dχ̃

∫︂ χ̃

0
dχ̃′
[︃
A′ −B′

∥ −
1

2
h′∥

]︃(︁
χ̃′)︁ = ∫︂ χ̄

0
dχ̃′

∫︂ χ̄

χ̃′
dχ̃

[︃
A′ −B′

∥ −
1

2
h′∥

]︃(︁
χ̃′)︁

=

∫︂ χ̄

0
dχ̃′

[︃
A′ −B′

∥ −
1

2
h′∥

]︃(︁
χ̃′)︁ ∫︂ χ̄

χ̃′
dχ̃

=

∫︂ χ̄

0
dχ̃′ (χ̄− χ̃′)

[︃
A′ −B′

∥ −
1

2
h′∥

]︃(︁
χ̃′)︁ .

(3.92)

Therefore the final expression for δx0 is

δx0 = δx0o − χ̄ (δao +Ao − v∥o) +

∫︂ χ̄

0
dχ̃

[︃
2A−B∥ + (χ̄− χ̃)

(︃
A′ −B′

∥ −
1

2
h′∥

)︃]︃
. (3.93)

As regards the spatial coordinate perturbations δxi, using the decomposition (3.76) we get

δxi = δxio +

∫︂ χ̄

0
dχ̃ δni = δxio +

∫︂ χ̄

0
dχ̃ (niδn∥ + δni

⊥)

= niδx∥o + ni

∫︂ χ̄

0
dχ̃ δn∥ + δxi⊥o +

∫︂ χ̄

0
dχ̃ δni

⊥

= niδx∥ + δxi⊥ ,

(3.94)

where δx∥ = δx∥o +
∫︁ χ̄
0 dχ̃ δn∥ and δxi⊥ = δxi⊥o +

∫︁ χ̄
0 dχ̃ δni

⊥. Using (3.75a) the expression for
the component parallel to the line of sight becomes

δx∥ = δx∥o +

∫︂ χ̄

0
dχ̃ δn∥

= δx∥o +

∫︂ χ̄

0
dχ̃

[︃
δao − v∥o +Ao −A− 1

2
h∥ + 2I

]︃
= δx∥o + χ̄ (δao − v∥o +Ao)−

∫︂ χ̄

0
dχ̃

[︃
A+

1

2
h∥ + (χ̄− χ̃)

(︃
A′ −B′

∥ −
1

2
h′∥

)︃]︃
.

(3.95)
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Using (3.75b) we obtain the following expression for the perpendicular component:

δxi⊥ = δxi⊥o +

∫︂ χ̄

0
dχ̃ δni

⊥

= δxi⊥o +

∫︂ χ̄

0
dχ̃

[︃
−Bi

⊥ +Bi
⊥o − vi⊥o − P i

kn
jhkj +

1

2
P i
kn

jhkj o + 2Si
⊥

]︃
= δxi⊥o + χ̄

(︃
Bi

⊥o − vi⊥o +
1

2
P i
kn

jhkj o

)︃
−
∫︂ χ̄

0
dχ̃ [Bi

⊥ + P i
kn

jhkj ]

−
∫︂ χ̄

0
dχ̃ (χ̄− χ̃)

[︃
∂̃
i
⊥

(︃
A−B∥ −

1

2
h∥

)︃
+

1

χ̃

(︃
Bi

⊥ + nlhjlPji

)︃]︃
.

(3.96)

Moreover, using (3.93) and (3.95), we obtain

δx0 + δx∥ = δx0o + δx∥o − T , (3.97)

where

T = −
∫︂ χ̄

0
dχ̃

(︃
A−B∥ −

1

2
h∥

)︃
(3.98)

is the Shapiro time delay.

3.1.7 Expressions for δχ and the components of ∆x

We conclude by finding the expression for δχ in terms of the metric perturbations. We start
from the following expansion of the scale factor in the real frame:

a[xµ(χ)] = a[x̄0(χ̄) + ∆x0(χ̄)]

= ā[x̄0(χ̄)] + ∆x0(χ̄)∂̄0ā[x̄
0(χ̄)]

= ā[x̄0(χ̄)]

(︃
1 + ∆x0(χ̄)

∂̄0ā

ā
[x̄0(χ̄)]

)︃
= ā[x̄0(χ̄)]

(︂
1 +H[x̄0(χ̄)]∆x0(χ̄)

)︂
,

(3.99)

where H = ā′/ā. Defining
a

ā
= 1 +∆ ln a , (3.100)

we have, using equation (3.14),

∆ ln a = H∆x0 = H
(︁
−δχ+ δx0

)︁
. (3.101)

In order to compute explicitly ∆ ln a we consider the observed redshift, whose expression is
given by

1 + z =
fe
fo

=
(uµp

µ)|e
(uµpµ)|o

=
ao

a(χe)

(E0̂µk
µ)|e

(E0̂µk
µ)|o

=
ao

a(χe)

(E0̂µk
µ)|e

ao
=

(E0̂µk
µ)|e

a(χe)
=

1 + (E0̂µk
µ)(1)

a
,

(3.102)

where we used (E0̂µk
µ)|o = ao and (E0̂µk

µ)(0) = E
(0)

0̂µ
kµ(0) = (−1)(−1) = 1. Using (3.54) and

(3.64) and given that 1
ā = 1 + z we find

∆ ln a = (E0̂µk
µ)(1) = E

(1)

0̂µ
kµ(0) + E

(0)

0̂µ
kµ(1)

= (−A)(−1) + (vi −Bi)n
i + (−1)(δν)

= A+ v∥ −B∥ − δν

= A+ v∥ −B∥ + (δao +Ao − v∥o − 2A+B∥ + 2I)

= −A+ v∥ + δao +Ao − v∥o + 2I .

(3.103)
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Therefore, using equations (3.101), (3.103) and (3.93), we obtain

δχ = δx0 − ∆ ln a

H

= δx0o − χ̄ (δao +Ao − v∥o) +

∫︂ χ̄

0
dχ̃

[︃
2A−B∥ + (χ̄− χ̃)

(︃
A′ −B′

∥ −
1

2
h′∥

)︃]︃
− 1

H
(−A+ v∥ + δao +Ao − v∥o + 2I)

= δx0o −
(︃
χ̄+

1

H

)︃
(δao +Ao − v∥o) +

1

H
(A− v∥)

+

∫︂ χ̄

0
dχ̃

[︃
2A−B∥ + (χ̄− χ̃)

(︃
A′ −B′

∥ −
1

2
h′∥

)︃]︃
− 2I

H
.

(3.104)

Finally we can write the components of ∆xµ in terms of the metric perturbations. As regards
µ = 0, using (3.103), we have

∆x0 =
∆ ln a

H
=

1

H
(−A+ v∥ + δao +Ao − v∥o + 2I)

=
1

H

[︃
(Ao − v∥o)−A+ v∥ + δao −

∫︂ χ̄

0
dχ̃
(︂
A′ −B′

∥ −
1

2
h′∥

)︂]︃
.

(3.105)

As concerns the component parallel to the line of sight, using (3.14), (3.97) and (3.105) we find

∆x∥ = niδx
i + nik̄

i
δχ = δx∥ + δχ = δx∥ + δx0 −∆x0 = δx∥o + δx0o − T −∆x0

= δx∥o + δx0o +

∫︂ χ̄

0
dχ̃

(︃
A−B∥ −

1

2
h∥

)︃
− 1

H

[︃
(Ao − v∥o)−A+ v∥ + δao −

∫︂ χ̄

0
dχ̃
(︂
A′ −B′

∥ −
1

2
h′∥

)︂]︃
.

(3.106)

Eventually, as regards the component perpendicular to the line of sight, using (3.96) we obtain

∆xi⊥ = P i
j(δx

j + k̄
j
δχ) = δxi⊥

= δxi⊥o + χ̄

(︃
Bi

⊥o − vi⊥o +
1

2
P i
kn

jhkj o

)︃
−
∫︂ χ̄

0
dχ̃ [Bi

⊥ + P i
kn

jhkj ]

−
∫︂ χ̄

0
dχ̃ (χ̄− χ̃)

[︃
∂̃
i
⊥

(︃
A−B∥ −

1

2
h∥

)︃
+

1

χ̃

(︃
Bi

⊥ + nlhjlPji

)︃]︃
.

(3.107)
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Chapter 4

Gravitational waves in the observed
frame

In this chapter we calculate the effects of the large scale structure of the Universe on the
gravitational waveforms. In the previous chapters we found that under the geometric optics
approximation the GW waveform is given by

h̄µν = eµνAeiφ/ϵ = eµνh . (4.1)

and the evolution equations for the phase and amplitude are (2.65) and (2.81):

k̂
µ
k̂µ = 0 , (4.2a)

d

dχ
ln
(︁
aA
)︁
= −1

2
∇̂ρk̂

ρ
, (4.2b)

where k̂µ = −∇̂µφ.
The phase φ of a gravitational wave which propagates through a perturbed Universe will

be described as the sum of a zero order contribution φ̄, which corresponds to the solution in a
homogeneous and isotropic Universe, and a correction ∆φ due to the cosmic inhomogeneities.
The same procedure is applied to lnA. In order to find the explicit expressions for ∆ lnA
and ∆φ in terms of the metric perturbations we will insert their decompositions ln Ā +∆ lnA
and φ̄ + ∆φ in the evolution equations (2.65) and (2.81). Then, by subtracting the evolution
equations for the background components we will be able to find the differential equations for
the amplitude and phase perturbations.

Given that we will always work with the conformal metric, for simplicity from now on we
will write kµ and ∇µ instead of k̂

µ
and ∇̂µ.

4.1 Phase

The evolution equation for the phase φ is given by (2.65). Indeed, given that kµ = −∇µφ and
d/dχ = kµ∇µ, we find

0 = kµkµ = −kµ∇µφ = − d

dχ
φ =⇒ dφ

dχ
= 0 . (4.3)

We proceed with the following decomposition of the phase φ:

φ[xµ(χ)] = φ[x̄µ(χ̄) + ∆xµ(χ̄)]

= φ[x̄µ(χ̄)] + ∆xµ(χ̄)∇̄µφ̄[x̄
µ(χ̄)]

= φ̄[x̄µ(χ̄)] + δφ[x̄µ(χ̄)] + ∆xµ(χ̄)∇̄µφ̄[x̄
µ(χ̄)]

= φ̄[x̄µ(χ̄)] + ∆φ(χ̄) ,

(4.4)
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where the zero order term φ̄[x̄µ(χ̄)] is the phase in the RGW frame and

∆φ(χ̄) = δφ[x̄µ(χ̄)] + ∆xµ(χ̄)∇̄µφ̄[x̄
µ(χ̄)] = δφ[x̄µ(χ̄)]−∆xµ(χ̄)k̄µ (4.5)

is the total correction to the phase.

4.1.1 Evolution equation for δφ

We proceed by inserting the phase decomposition (4.4) in the evolution equation (4.3):

d

dχ
φ[xµ(χ)] =

dχ̄

dχ

d

dχ̄
[φ̄+ δφ(x̄µ) + ∆xµ∇̄µφ̄] =

(︃
1− dδχ

dχ̄

)︃(︃
dφ̄

dχ̄
+

dδφ

dχ̄
+

d

dχ̄
(∆xµ∇̄µφ̄)

)︃
= 0 ,

(4.6)

Given that
dφ̄

dχ̄
= k̄

µ∇̄µφ̄ = −k̄
µ
k̄µ = 0 (4.7)

and

d

dχ̄
(∆xµ∇̄µφ̄) =

d

dχ̄
[(δxµ + k̄

µ
δχ)(−k̄µ)] =

d

dχ̄
(−k̄µδx

µ − k̄µk̄
µ
δχ) = − d

dχ̄
(k̄µδx

µ)

= −k̄µ
d

dχ̄
δxµ = −k̄µδk

µ ,

(4.8)

equation (4.6) becomes

0 =

(︃
1− dδχ

dχ̄

)︃(︃
dφ̄

dχ̄
+

dδφ

dχ̄
+

d

dχ̄
(∆xµ∇̄µφ̄)

)︃
=

(︃
1− dδχ

dχ

)︃(︃
dδφ

dχ̄
− k̄µδk

µ

)︃
. (4.9)

Therefore we obtain the evolution equations for the perturbation δφ(χ̄) at fixed comoving dis-
tance:

dδφ

dχ̄
(x̄µ) = k̄µδk

µ(χ̄) . (4.10)

The same differential equation can be obtained as follows.

Alternative method

We start by perturbing directly kµ = −ĝµν∇νφ:

kµ = −(ḡµν+δgµν)∇ν(φ̄+δφ+∆xρ∇̄ρφ̄) = −ḡµν∇µφ̄−δgµν∇̄νφ̄−ḡµν∇̄νδφ−ḡµν∇̄ν(∆xρ∇̄ρφ̄) .
(4.11)

As concerns the first term on the right-hand side we get

−ḡµν∇µφ̄ = −ḡµν
(︃
∂x̄ρ

∂xν

)︃
∂φ̄

∂x̄ρ
= ḡµν

∂(xρ −∆xρ)

∂xν
k̄ρ = ḡµνδρν k̄ρ − ḡµν

∂∆xρ

∂x̄ν
k̄ρ

= k̄
µ − ḡµν

∂(δxρ + k̄
ρ
δχ)

∂x̄ν
k̄ρ = k̄

µ − ḡµν k̄ρ
∂δxρ

∂x̄ν
− ḡµν k̄ρδχ

∂k̄
ρ

∂x̄ν

= k̄
µ − ḡµν k̄ρ

∂δxρ

∂x̄ν
,

(4.12)

where in the last passage we used

k̄ρ
∂k̄

ρ

∂x̄ν
= ni

∂ni

∂x̄ν
= ni

P i
j

χ̄
= 0 . (4.13)
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As regards the last term on the right-hand side of (4.11) we obtain

−ḡµν∇̄ν(∆xρ∇̄ρφ̄) = ḡµν∇̄ν(δx
ρk̄ρ + k̄

ρ
δχk̄ρ) = ḡµν∇̄ν(δx

ρk̄ρ) = ḡµν k̄ρ∇̄νδx
ρ + ḡµνδxρ∇̄ν k̄ρ

= ḡµν k̄ρ∇̄νδx
ρ − ḡµνδxρ∇̄ν∇̄ρφ̄ = ḡµν k̄ρ∇̄νδx

ρ − ḡµνδxρ∇̄ρ∇̄νφ̄

= ḡµν k̄ρ∇̄νδx
ρ + δxρ∇̄ρk̄

µ
.

(4.14)

As a consequence (4.11) becomes

kµ = k̄
µ − ḡµν k̄ρ

∂δxρ

∂x̄ν
− δgµν∇̄νφ̄− ḡµν∇̄νδφ+ ḡµν k̄ρ∇̄νδx

ρ + δxρ∇̄ρk̄
µ

= k̄
µ − δgµν∇̄νφ̄− ḡµν∇̄νδφ+ δxρ∇̄ρk̄

µ
.

(4.15)

Therefore

δkµ(χ̄) = −ḡµν∇̄νδφ(x̄
µ) + δxρ∇̄ρk̄

µ
+ δgµν k̄ν . (4.16)

Starting from (4.16) we obtain

d

dχ̄
δφ(x̄µ) = −k̄µδk

µ(χ̄) + δgµν k̄ν k̄µ . (4.17)

Indeed, multiplying (4.16) by k̄µ we get

k̄µδk
µ(χ̄) = −k̄

ν∇̄νδφ(x̄
µ) + δxρk̄µ∇̄ρk̄

µ
+ δgµν k̄ν k̄µ

= − d

dχ̄
δφ(x̄µ) + δgµν k̄ν k̄µ ,

(4.18)

where we used k̄µ∇̄ρk̄
µ
= 0, which can be proved in the following way:

k̄µ∇̄ρk̄
µ
= ∇̄ρ(k̄µk̄

µ
)−k̄

µ∇̄ρk̄µ = −k̄
µ∇̄ρk̄µ = −ḡµν k̄ν∇̄ρ(ḡµλk̄

λ
) = −k̄ν∇̄ρ(ḡ

µν ḡµλk̄
λ
) = −k̄ν∇̄ρk̄

ν
.

(4.19)
In order to show that (4.17) is equivalent to (4.10) we proceed in the following way. Perturbing
kµkµ = ĝµνk

µkν = 0 we obtain

0 = ḡµν k̄
µ
k̄
ν
+ ḡµν k̄

µ
δkν + ḡµνδk

µk̄
ν
+ δgµν k̄

µ
k̄
ν

= ḡµν k̄
µ
δkν + ḡνµδk

µk̄
ν
+ δgµν ḡ

µρk̄ρḡ
νσk̄σ

= 2ḡµν k̄
µ
δkν − δgρσk̄ρk̄σ ,

(4.20)

where we used k̄µk̄
µ
= 0 and ĝµν = ḡµν + δgµν = ḡµν − ḡµρḡνσδgρσ.

Therefore

δgρσk̄ρk̄σ = 2k̄νδk
ν . (4.21)

Inserting it in (4.17) we find

d

dχ̄
δφ(x̄µ) = −k̄µδk

µ(χ̄) + δgµν k̄ν k̄µ = −k̄µδk
µ(χ̄) + 2k̄νδk

ν = k̄µδk
µ , (4.22)

which is exactly equation (4.10).

It can be noted that, defining φ(x̄µ) = φ̄(x̄µ) + δφ(x̄µ), from (4.7) and (4.10) we get
dφ(x̄µ)/dχ̄ ̸= 0.
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4.1.2 Total correction to the phase

In order to calculate δφ in terms of the metric perturbations we integrate equation (4.10).
Defining δφo as the value of the perturbation δφ at the position of the observer and using (3.97)
we obtain

δφ = δφo +

∫︂ χ̄

0
dχ̃

dδφ

dχ̃
= δφo +

∫︂ χ̄

0
dχ̃ k̄µδk

µ(χ̃)

= δφo +

∫︂ χ̄

0
dχ̃

d

dχ̄
δx0 + ni

∫︂ χ̄

0
dχ̃

d

dχ̄
δxi

= δφo + δx0(χ̄) + δx∥(χ̄)− δx0o − δx∥o

= δφo +

∫︂ χ̄

0
dχ̃

(︃
A−B∥ −

1

2
h∥

)︃
= δφo − T .

(4.23)

Given that we want to find the explicit expression for ∆φ = δφ + ∆xµ∇̄µφ̄, which is the full
correction to the phase, we proceed by calculating ∆xµ∇̄µφ̄. Using k̄0 = η0ν k̄

ν
= +1 and (3.97)

we obtain

∆xµ(χ̄)∂̄µφ̄[x̄(χ̄)] = −∆xµk̄µ = −∆x0 −∆xini = −∆x0 −∆x∥

= −(k̄
0
δχ+ δx0 + nik̄

i
δχ+ δx∥) = −(−δχ+ δx0 + nin

iδχ+ δx∥)

= −δx0 − δx∥

= T − δx0o − δx∥o .

(4.24)

Therefore the full correction to the phase is

∆φ(χ̄) = δφ[x̄µ(χ̄)] + ∆xµ(χ̄)∇̄µφ̄[x̄
µ(χ̄)] = δφo − T + T − δx0o − δx∥o

= δφo − δx0o − δx∥o .
(4.25)

4.2 Amplitude

Turning to the amplitude, we consider the following decomposition:

lnA [xµ(χ)] = lnA [x̄µ(χ̄) + ∆xµ(χ̄)]

= ln Ā [x̄µ(χ̄)] + δ lnA [x̄µ(χ̄)] + ∆xµ∂̄µln Ā(x̄µ)

= ln Ā[x̄µ(χ̄)] + ∆ lnA(χ̄) .

(4.26)

We perturb the evolution equation (2.81) up to linear order:(︃
1− dδχ

dχ̄

)︃
d

dχ̄
ln
[︂
A(x̄µ +∆xµ) ā(1 + ∆ ln a)

]︂
= −1

2

[︃
∂x̄σ

∂xρ
∂

∂x̄σ
(k̄

ρ
+ δkρ) + δΓ̂

ρ
ρσk̄

σ
]︃
, (4.27)

where we used dχ̄/dχ = 1−dδχ/dχ = 1−dδχ/dχ̄. This is justified by the fact that the difference
between dδχ/dχ and dδχ/dχ̄ is second order in the perturbations, as already explained for the
calculation of the wave-vector perturbation.

Left-hand side of the evolution equation

We proceed by inserting (4.26) and (3.99) on the left-hand side of equation (4.27). We start by
considering the term which contains the logarithm of the amplitude:

d

dχ̄
ln
[︂
A(x̄µ +∆xµ)

]︂
=

d

dχ̄
ln Ā+

d

dχ̄
δ lnA+

d

dχ̄

[︂
∆xµ∂̄µln Ā

]︂
. (4.28)
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Considering (3.14) the third term on the right-hand side can be rewritten as

d

dχ̄

[︂
∆xµ∂̄µln Ā

]︂
=

d

dχ̄

[︂(︁
k̄
µ
δχ+ δxµ

)︁
∂̄µln Ā

]︂
=

d

dχ̄

[︃
δχ

d

dχ̄
ln Ā

]︃
+

d

dχ̄

[︃
δxµ∂̄µln Ā

]︃
=

(︃
d2

dχ̄2
ln Ā

)︃
δχ+

(︃
d

dχ̄
ln Ā

)︃(︃
d

dχ̄
δχ

)︃
+

(︃
d

dχ̄
∂̄µln Ā

)︃
δxµ +

(︁
∂̄µln Ā

)︁
δkµ .

(4.29)

Therefore (4.28) becomes

d

dχ̄
ln
[︂
A(x̄µ +∆xµ)

]︂
=

d

dχ̄
ln Ā+

d

dχ̄
δ lnA+

(︃
d2

dχ̄2
ln Ā

)︃
δχ+

(︃
d

dχ̄
ln Ā

)︃(︃
d

dχ̄
δχ

)︃
+

(︃
d

dχ̄
∂̄µln Ā

)︃
δxµ +

(︁
∂̄µln Ā

)︁
δkµ .

(4.30)

As regards the term which depends on the scale factor, inserting (3.99) we find

d

dχ̄
ln
[︁
ā(1 + ∆ ln a)

]︁
=

d

dχ̄
ln ā+

d

dχ̄
ln (1 +H∆x0)

=
1

ā

dā

dχ̄
+

d

dχ̄

[︂
H(−δχ+ δx0)

]︂
=

1

ā

(︃
− ∂

∂η̄
+ nj ∂

∂x̄j

)︃
ā+ (−δχ+ δx0)

(︃
− ∂

∂η̄
+ nj ∂

∂x̄j

)︃
H

+H d

dχ̄
(−δχ+ δx0)

= −1

ā

∂ā

∂η̄
−H′(−δχ+ δx0) +H d

dχ̄
(−δχ+ δx0)

= −H−H′(−δχ+ δx0) +H
(︃
−dδχ

dχ̄
+ δk0

)︃
.

(4.31)

Right-hand side of the evolution equation

As concerns the first term on the right-hand side of equation (4.27) we have

∂x̄σ

∂xρ
∂

∂x̄σ
(k̄

ρ
+ δkρ) =

[︃
∂

∂xρ
(xσ −∆xσ)

]︃
∂

∂x̄σ
(k̄

ρ
+ δkρ) =

[︃
δσρ − ∂∆xσ

∂x̄ρ

]︃
(∂̄σk̄

ρ
+ ∂̄σδk

ρ)

= ∂̄ρk̄
ρ
+ ∂̄ρδk

ρ − (∂̄ρ∆xσ)(∂̄σk̄
ρ
) .

(4.32)

Given that ∂̄0k̄
0
= 0, the first term on the right-hand side becomes ∂̄ρk̄

ρ
= ∂̄ik̄

i
. Moreover, given

that ∂̄σk̄
0
= 0, we can set ρ = i in the last term. As regards ∂̄ρδk

ρ we use (3.28). Therefore we
obtain

∂x̄σ

∂xρ
∂

∂x̄σ
(k̄

ρ
+ δkρ) = ∂̄in

i + ∂̄0δk
0 + nini∂̄∥δk∥ + ni∂̄∥δk

i
⊥ + δk∥

P i
i

χ̄
+ ni∂̄⊥iδk∥

+ ∂̄⊥iδk
i
⊥ − (∂̄i∆xσ)(∂̄σk̄

i
) .

(4.33)

Since
ni∂̄∥δk

i
⊥ = ∂̄∥(niδk

i
⊥) = 0 , (4.34)

ni∂̄⊥iδk∥ = (ni∂̄i − nini∂̄∥)δk∥ = (∂̄∥ − ∂̄∥)δk∥ = 0 (4.35)
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and ∂̄0n
i = 0, we find

∂x̄σ

∂xρ
∂

∂x̄σ
(k̄

ρ
+ δkρ) =

P i
i

χ̄
+ ∂̄0δk

0 + ∂̄∥δk∥ + δk∥
P i
i

χ̄
+ ∂̄⊥iδk

i
⊥ − (∂̄i∆xj)(∂̄jn

i) . (4.36)

Finally, using (3.25), (3.14) and (3.21), we obtain

∂x̄σ

∂xρ
∂

∂x̄σ
(k̄

ρ
+ δkρ) =

2

χ̄
(1 + δk∥) + ∂̄0δk

0 + ∂̄∥δk∥ + ∂̄⊥iδk
i
⊥ −

P i
j

χ̄
∂̄i(k̄

j
δχ+ δxj)

=
2

χ̄
(1 + δk∥) + ∂̄0δk

0 + ∂̄∥δk∥ + ∂̄⊥iδk
i
⊥ −

P i
j

χ̄

(︃
Pj
i

χ̄
δχ+ nj ∂̄iδχ+ ∂̄iδx

j

)︃
=

2

χ̄
(1 + δk∥) + ∂̄0δk

0 +

(︃
d

dχ̄
+ ∂̄0

)︃
δk∥ + ∂̄⊥iδk

i
⊥ − 2

χ̄2
δχ

− 1

χ̄
∂̄⊥j(n

jδx∥ + δxj⊥)

=
2

χ̄
(1 + δk∥) + ∂̄0(δk

0 + δk∥) +
d

dχ̄
δk∥ + ∂̄⊥iδk

i
⊥ − 2

χ̄2
δχ− 1

χ̄
∂̄⊥jδx

j
⊥

− 1

χ̄

P i
i

χ̄
δx∥

=
2

χ̄
(1 + δk∥) + ∂̄0(δk

0 + δk∥) +
d

dχ̄
δk∥ + ∂̄⊥iδk

i
⊥ − 2

χ̄2
(δχ+ δx∥)−

1

χ̄
∂̄⊥jδx

j
⊥ .

(4.37)

Background solution

To the lowest order equation (4.27) becomes

d

dχ̄
ln Ā+

d

dχ̄
ln ā = − 1

χ̄

d

dχ̄
ln (āĀ) = − d

dχ̄
ln χ̄ .

(4.38)

Therefore
d

dχ̄
ln
(︁
āĀχ̄

)︁
= 0 =⇒ Ā(x̄0, χ̄) =

Q
ā(x̄0)χ̄

=
Q(1 + z)

χ̄
, (4.39)

where Q is constant along the null geodesic. The value of Q is determined by the solution in
the local wave zone. If we consider a gravitational wave produced by a compact binary inspiral,
neglecting the post newtonian terms and considering the regime of “quasi-circular” motion, we
have

Q = Me(πfeMe)
2
3 , (4.40)

where Me is the chirp mass and fe the frequency of the binary [68].

4.2.1 Evolution equation for δ lnA

With the background solution (4.39) equation (4.27) can be simplified: we use (4.39) to calculate

the derivatives d2

dχ̄2 ln Ā and ∂̄µ ln Ā which appear in (4.30). Using (3.7) and (3.5) we obtain

d

dχ̄
ln Ā = − d

dχ̄
ln ā− d

dχ̄
ln χ̄ =

∂̄0ā

ā
− nj ∂̄jχ̄

χ̄
= H− nj nj

χ̄
= H− 1

χ̄
, (4.41a)

d2

dχ̄2
ln Ā = −H′ +

1

χ̄2
(4.41b)
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and

∂̄µ ln Ā = ∂̄µ ln

(︃
Q

ā(x̄0)χ̄

)︃
= −∂̄µ ln ā− ∂̄µ ln χ̄ = − ∂̄µā

ā
− ∂̄µχ̄

χ̄
, (4.42)

which correpsonds to

∂̄0 ln Ā = −H , (4.43a)

∂̄i ln Ā = −ni

χ̄
. (4.43b)

Consequently(︃
d

dχ̄
∂̄µln Ā

)︃
δxµ +

(︁
∂̄µln Ā

)︁
δkµ = −dH

dχ̄
δx0 −

(︃
d

dχ̄

ni

χ̄

)︃
δxi −Hδk0 − ni

χ̄
δki

= H′δx0 +
1

χ̄2
δx∥ −Hδk0 − 1

χ̄
δk∥ ,

(4.44)

where we used(︂ d

dχ̄

ni

χ̄

)︂
= (−∂̄0 + nj ∂̄j)

ni

χ̄
= njPij

χ̄2
− njni

χ̄2
∂̄jχ̄ = −njni

χ̄2

x̄j
χ̄

= − ni

χ̄2
. (4.45)

Therefore (4.30) becomes

d

dχ̄
ln
[︂
A(x̄µ +∆xµ)

]︂
= H− 1

χ̄
+

d

dχ̄
δ lnA+

(︃
−H′ +

1

χ̄2

)︃
δχ+

(︃
H− 1

χ̄

)︃(︃
dδχ

dχ̄

)︃
+H′δx0 +

1

χ̄2
δx∥ −Hδk0 − 1

χ̄
δk∥ .

(4.46)

Using (4.46) and (4.31) the left-hand side of equation (4.27) becomes(︃
1− dδχ

dχ̄

)︃
d

dχ̄
ln
[︂
A(x̄µ +∆xµ) ā(1 + ∆ ln a)

]︂
=

= H− 1

χ̄
−
(︃
dδχ

dχ̄

)︃(︃
H− 1

χ̄

)︃
+

d

dχ̄
δ lnA+

(︃
−H′ +

1

χ̄2

)︃
δχ

+

(︃
H− 1

χ̄

)︃(︃
dδχ

dχ̄

)︃
+H′δx0 +

1

χ̄2
δx∥ −Hδk0 − 1

χ̄
δk∥

−H+Hdδχ̄

dχ̄
−H′(−δχ+ δx0) +H

(︃
−dδχ

dχ̄
+ δk0

)︃
= − 1

χ̄
+

d

dχ̄
δ lnA+

(︃
1

χ̄2

)︃
δχ+

1

χ̄2
δx∥ −

1

χ̄
δk∥ .

(4.47)

Inserting (4.47) and (4.37) in equation (4.27) we obtain

− 1

χ̄
+

d

dχ̄
δ lnA+

(︃
1

χ̄2

)︃
δχ+

1

χ̄2
δx∥ −

1

χ̄
δk∥ = − 1

χ̄
(1 + δk∥)−

1

2
∂̄0(δk

0 + δk∥)−
1

2

d

dχ̄
δk∥

− 1

2
∂̄⊥iδk

i
⊥ +

1

χ̄2
(δχ+ δx∥) +

1

2

1

χ̄
∂̄⊥jδx

j
⊥ − 1

2
Γ̂
ρ
ρσk̄

σ
,

(4.48)

which is equivalent to

d

dχ̄
δ lnA = −1

2
∂̄0(δk

0 + δk∥)−
1

2

d

dχ̄
δk∥ −

1

2
∂̄⊥iδk

i
⊥ +

1

2

1

χ̄
∂̄⊥jδx

j
⊥ − 1

2
Γ̂
ρ
ρσk̄

σ
. (4.49)
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Since, using (3.27), the third term of the right-hand side of equation (4.49) can be rewritten as

∂̄⊥iδk
i
⊥ = ∂̄⊥i

d

dχ̄
δxi⊥ =

d

dχ̄
∂̄⊥iδx

i
⊥ +

1

χ̄
∂̄⊥iδx

i
⊥ , (4.50)

and given that
∂̄⊥i∆xi⊥ = ∂̄⊥i(P ijnjδχ+ δxi⊥) = ∂̄⊥iδx

i
⊥ , (4.51)

equation (4.49) becomes

d

dχ̄
δ lnA = −1

2

[︃
∂̄0(δk

0 + δk∥) +
d

dχ̄
δk∥ − 2

d

dχ̄
κ+ Γ̂

ρ
ρσk̄

σ
]︃
, (4.52)

where

κ = −1

2
∂̄⊥i∆xi⊥ (4.53)

is the weak lensing convergence term.
As concerns the first term of the right-hand side of equation (4.52), by using (3.64) and (3.75a)
we obtain

∂̄0(δk
0+δk∥) = ∂̄0(δν+δn∥) = ∂̄0

(︃
2A−B∥−2I−A−1

2
h∥+2I

)︃
= ∂̄0

(︃
A−B∥−

1

2
h∥

)︃
= A′−B′

∥−
1

2
h′∥ .

(4.54)
Moving to the last term of equation (4.52)

δΓ̂
ρ
ρσk̄

σ
= δΓ̂

ρ
ρ0(−1) + δΓ̂

ρ
ρin

i = −δΓ̂
0
00 − δΓ̂

k
k0 + δΓ̂

0
0in

i + δΓ̂
k
kin

i

= −A′ − 1

2

(︂
∂̄
k
Bk − ∂̄kB

k + hkk
′)︂

+ ni∂̄iA+
1

2
ni(∂̄ih

k
k + ∂̄kh

k
i − ∂̄

k
hki)

= −A′ − 1

2
hkk

′
+ ∂̄∥A+

1

2
∂̄∥h

k
k =

d

dχ̄

(︃
A+

1

2
hkk

)︃
.

(4.55)

Therefore, inserting (4.54) and (4.55) in (4.52), we obtain

d

dχ̄
δ lnA = −1

2

[︃
A′ −B′

∥ −
1

2
h′∥ +

d

dχ̄
δn∥ − 2

d

dχ̄
κ+

d

dχ̄

(︃
A+

1

2
hkk

)︃]︃
. (4.56)

4.2.2 Total correction to the amplitude

The integration of the last equation yields

δ lnA = δ lnAo−
1

2

[︃∫︂ χ̄

0
dχ̃

(︃
A′−B′

∥−
1

2
h′∥

)︃
+ δn∥− δn∥o−2κ+2κo+A+

1

2
hkk−Ao−

1

2
(hkk)o

]︃
.

(4.57)
Setting κo = 0 (being an integrated effect) and using (3.65) and (3.75a), it becomes

δ lnA = δ lnAo −
1

2

[︃
−2I −A+Ao −

1

2
h∥ +

1

2
h∥o + 2I − 2κ+A+

1

2
hkk −Ao −

1

2
(hkk)o

]︃
= δ lnAo −

1

2

[︃
−1

2
h∥ +

1

2
h∥o − 2κ+

1

2
hkk −

1

2
(hkk)o

]︃
.

(4.58)

Finally, given that hkk = δkjhjk = (δkj − nknj)hjk + nknjhjk = Pkjhjk + h∥, we obtain

δ lnA = δ lnAo −
1

2

[︃
−2κ+

1

2
Pkjhjk −

1

2
Pkj(hjk)o

]︃
= δ lnAo + κ− 1

4
P ij [hij − (hij)o] .

(4.59)
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Given that, for (4.59) to be consistent, δ lnAo = −1
4P

ij(hij)o , we have

δ lnA = κ− 1

4
P ijhij . (4.60)

Since the aim is to write the full correction to the amplitude in terms of the metric perturbations,
given that ∆ lnA = δ lnA + ∆xµ∂̄µ ln Ā and we have already calculated δ lnA, the next step
consists in finding the expression for ∆xµ∂̄µ ln Ā. Using (4.43) and (4.24) we obtain

∆xµ∂̄µ ln Ā = ∆x0∂̄0 ln

(︃
Q
āχ̄

)︃
+∆xi∂̄i ln

(︃
Q
āχ̄

)︃
= −H∆x0 − ni

χ̄
∆xi

= −∆ ln a−
∆x∥

χ̄
− ∆x0

χ̄
+

∆x0

χ̄

= −∆ ln a

(︃
1− 1

Hχ̄

)︃
+

1

χ̄
(T − δx0o − δx∥o) .

(4.61)

Consequently the full correction to the amplitude is given by

∆ lnA = κ− 1

4
P ijhij −∆ ln a

(︃
1− 1

Hχ̄

)︃
+

1

χ̄
(T − δx0o − δx∥o) . (4.62)
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Chapter 5

Correction to the luminosity distance

We start by calculating the analytical expression for the correction to the luminosity distance
due to the cosmological perturbations. We will see that ∆DL/D̄L is related to ∆ lnA. After
finding the explicit expression of ∆DL/D̄L in terms of the metric perturbations we will calculate
the angular power spectrum, taking into account the scalar contribution due to the metric
perturbations Φ and Ψ, the vector contribution due to the velocity term v∥ and the tensor

contributions hTT
ij due to primordial gravitational waves.

5.1 Luminosity distance in terms of the metric perturbations

We start from the full description of the perturbed gravitational wave in the geometric optics
limit:

h(ηe,xe) = A(ηe,xe)e
iφ(ηe,xe) = Ā (1 + ∆ lnA)ei(φ̄+∆φ) =

Q
āχ̄

(1 + ∆ lnA)ei(φ̄+∆φ)

=
Q(1 + z)

χ̄
(1 + ∆ lnA)ei(φ̄+∆φ) =

Q(1 + z)2

D̄L
(1 + ∆ lnA)ei(φ̄+∆φ) ,

(5.1)

where ∆φ and ∆ lnA are given by (4.25) and (4.62), the background amplitude is (4.39), ā(ηe) =
1/(1 + z) and D̄L = (1 + z)χ̄.
Given that

he =
Q(1 + z)2

DL
eiφ , (5.2)

the luminosity distance is given by

DL =
D̄L

1 + ∆ lnA
= D̄L(1−∆ lnA) . (5.3)

In other words the relative correction to the luminosity distance can be expressed in terms of
the full correction to the gravitational wave amplitude:

∆DL

D̄L
=

DL − D̄L

D̄L
=

D̄L(1−∆ lnA− 1)

D̄L
= −∆ lnA . (5.4)

Therefore from (4.62) we obtain

∆DL

D̄L
= −κ+

1

4
P ijhij +∆ ln a

(︃
1− 1

Hχ̄

)︃
− 1

χ̄
(T − δx0o − δx∥o) . (5.5)

The next step consists in writing (5.5) in terms of the metric perturbations.
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5.1.1 Explicit expression of κ

We start by finding the explicit expression for the weak lensing convergence term. By inserting
(3.107) in (4.53) we obtain

κ = −1

2
∂⊥i∆xi⊥ = κ1 + κ2 + κ3 , (5.6)

where

κ1 =
1

2
∂̄⊥i

∫︂ χ̄

0
dχ̃ (χ̄− χ̃)∂̃

i
⊥

(︃
A−B∥ −

1

2
h∥

)︃
, (5.7a)

κ2 =
1

2
∂̄⊥i

∫︂ χ̄

0
dχ̃

χ̄

χ̃

(︃
Bi

⊥ + P i
kn

jhkj

)︃
, (5.7b)

κ3 = −1

2
∂̄⊥iδx

i
⊥o −

1

2
∂̄⊥iχ̄

(︃
Bi

⊥o − vi⊥o +
1

2
P i
kn

jhkj o

)︃
. (5.7c)

In order to move the perpendicular derivative ∂̄⊥j inside the integral we have to take into account
that χ̄ can be different from χ̃ (and consequently x̄i = χ̄ni is different from x̃i = χ̃ni). Hence
when the perpendicular derivative is moved inside the integral we obtain an extra factor χ̃/χ̄.
In order to prove it we proceed as in [69]. The perpendicular derivative can be written as

∂̄⊥j = Pk
j

∂

∂x̄k
= Pk

j

∂x̃i(χ̃)

∂x̄k
∂

∂x̃i
, (5.8)

where
∂

∂x̄k
x̃i(χ̃) =

∂

∂x̄k
χ̃ni = ni ∂χ̃

∂x̄k
+ χ̃

∂ni

∂x̄k
= ni ∂χ̃

∂x̄k
+ χ̃

P i
k

χ̄
, (5.9)

which corresponds to

∂

∂x̄k
x̃i(χ̃) = nink + P i

k = nink + δik − nink = δik if χ̃ = χ̄ ,

∂

∂x̄k
x̄i(χ̃) =

χ̃

χ̄
P i
k if χ̃ ̸= χ̄ .

(5.10)

Consequently, for χ̃ ̸= χ̄, (5.8) becomes

∂̄⊥j = Pk
j

χ̃

χ̄
P i
k

∂

∂x̃i
=

χ̃

χ̄
P i
j

∂

∂x̃i
=

χ̃

χ̄
∂̃⊥j . (5.11)

Therefore, using (5.11) and given that

∂̄⊥i
χ̄ = Pj

i ∂̄jχ̄ = Pj
i nj = 0 , (5.12)

∂̃⊥iP i
j = Pk

i ∂̃k(δ
i
j − ninj) = −Pk

i

1

χ̃
(P i

knj + niPjk) = −2nj

χ̃
(5.13)

and

∂̄⊥iv
i
⊥o = ∂̄⊥i(v

i
o − ninjv

j
o) = −v∥o∂̄⊥in

i − vjon
i∂̄⊥inj = −v∥o

P i
i

χ̄
− vjoPijn

i = − 2

χ̄
v∥o , (5.14)

we find

κ1 =
1

2

∫︂ χ̄

0
dχ̃ (χ̄− χ̃)

χ̃

χ̄
∇̃2

⊥

(︃
A−B∥ −

1

2
h∥

)︃
, (5.15a)
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κ2 =
1

2

∫︂ χ̄

0
dχ̃

[︃
∂̃⊥iB

i
⊥ + (∂̃⊥iP i

k)n
jhkj + P i

k(∂̃⊥in
j)hkj + P i

kn
j(∂̃⊥ih

k
j )

]︃
=

1

2

∫︂ χ̄

0
dχ̃

[︃
∂̃⊥iB

i
⊥ − 2nk

χ̃
njhkj + P i

k

Pj
i

χ̃
hkj + P i

kn
jP l

i ∂̃lh
k
j

]︃
=

1

2

∫︂ χ̄

0
dχ̃

[︃
∂̃⊥iB

i
⊥ −

2h∥

χ̃
+

Pj
k

χ̃
hkj + njP i

k∂̃ih
k
j

]︃
=

1

2

∫︂ χ̄

0
dχ̃

[︃
∂̃⊥iB

i
⊥ −

3h∥

χ̃
+

hii
χ̃

+ njP i
k∂̃ih

k
j

]︃
,

(5.15b)

κ3 = −1

2
∂̄⊥iδx

i
⊥o −

1

2
∂̄⊥iχ̄

(︃
Bi

⊥o − vi⊥o +
1

2
P i
kn

jhkj o

)︃
=

1

χ̄
δx∥o + (B∥o − v∥o)−

1

4
χ̄hjk o(∂̄⊥in

k)P i
j −

1

4
χ̄hjk on

k(∂̄⊥iP i
j)

=
1

χ̄
δx∥o + (B∥o − v∥o)−

1

4
χ̄hjk o

(︃
Pk
i

χ̄

)︃
P i
j −

1

4
χ̄hjk on

k

(︃
−2nj

χ̄

)︃
=

1

χ̄
δx∥o + (B∥o − v∥o)−

1

4
(hii o − h∥o) +

1

2
h∥o

=
1

χ̄
δx∥o + (B∥o − v∥o)−

1

4
(hii o − 3h∥o) .

(5.15c)

5.1.2 Explicit expression of ∆Dl/D̄L

We proceed by finding the explicit expression of ∆DL/D̄L in terms of the metric perturbations.
We will consider the metric

ds2 = a(η)2[−(1 + 2Φ)dη2 + (1− 2Ψ)δijdx
idxj + hTT

ij dxidxj ] , (5.16)

which, compared to (3.8), corresponds to the following choice:

A = Φ , Bi = 0 , hij = −2Ψδij + hTT
ij , (5.17)

where hTT
ij is traceless (hTTi

i = 0) and transverse (∂ihTT
ij = 0). We report here all the quantities

which contain the spatial part of the metric making explicit the components Ψ and hTT
ij . As

regards the projection operators applied to hij we find

P ijhij = (δij − ninj)(−2Ψδij + hTT
ij ) = −6Ψ + 2Ψ− ninjhTT

ij = −4Ψ− hTT
∥ (5.18)

and
h∥ = −2Ψδijn

inj + hTT
∥ = −2Ψ + hTT

∥ . (5.19)

The trace becomes
hii = −2Ψδijδ

ij = −6Ψ . (5.20)

As concerns the Shapiro time delay and the integrated Sachs-Wolfe contribution, using the
metric (5.16) we obtain respectively

T = −
∫︂ χ̄

0
dχ̃

(︃
Φ+Ψ− 1

2
hTT
∥

)︃
(5.21)

and

I = −1

2

∫︂ χ̄

0
dχ̃

(︃
Φ′ +Ψ′ − 1

2
hTT ′

∥

)︃
. (5.22)
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As a consequence the relative correction to the luminosity distance written in terms of the metric
perturbations becomes

∆DL

D̄L
= −1

2

∫︂ χ̄

0
dχ̃ (χ̄− χ̃)

χ̃

χ̄
∇̃2

⊥

(︃
Φ+Ψ− 1

2
hTT
∥

)︃
− 1

2

∫︂ χ̄

0
dχ̃

[︃
6Ψ

χ̃
−

3hTT
∥

χ̃
− 6Ψ

χ̃
− 2njP i

j ∂̃iΨ+ njP i
k∂̃ih

TTk
j

]︃
− 1

χ̄
δx∥o + v∥o +

1

4
(−6Ψo + 6Ψo − 3hTT

∥o )−Ψ− 1

4
hTT
∥

+

(︃
1− 1

Hχ̄

)︃[︃
−Φ+ v∥ + δao +Φo − v∥o −

∫︂ χ̄

0
dχ̃

(︃
Φ′ +Ψ′ − 1

2
hTT ′

∥

)︃]︃
+

1

χ̄

∫︂ χ̄

0
dχ̃

(︃
Φ+Ψ− 1

2
hTT
∥

)︃
+

1

χ̄
(δx0o + δx∥o) .

(5.23)

Finally, since

−1

2

∫︂ χ̄

0
dχ̃ njP i

k∂̃ih
TTk

j = −1

2

∫︂ χ̄

0
dχ̃ nj ∂̃⊥kh

TTk
j = −1

2

∫︂ χ̄

0
dχ̃ (nj ∂̃kh

TTk
j − njnk∂̃∥h

TTk
j )

=
1

2

∫︂ χ̄

0
dχ̃ ∂̃∥h

TT
∥ =

1

2

∫︂ χ̄

0
dχ̃

(︃
d

dχ̃
+

∂

∂η̃

)︃
hTT
∥

=
1

2
hTT
∥ − 1

2
hTT
∥o +

1

2

∫︂ χ̄

0
dχ̃ hTT ′

∥ ,

(5.24)

we obtain

∆DL

D̄L
= −1

2

∫︂ χ̄

0
dχ̃ (χ̄− χ̃)

χ̃

χ̄
∇̃2

⊥

(︃
Φ+Ψ− 1

2
hTT
∥

)︃
+

1

2
hTT
∥ − 1

2
hTT
∥o − 1

2

∫︂ χ̄

0
dχ̃

[︃
−
3hTT

∥

χ̃
− hTT ′

∥

]︃
+ v∥o −

3

4
hTT
∥o −Ψ− 1

4
hTT
∥

+

(︃
1− 1

Hχ̄

)︃[︃
−Φ+ v∥ + δao +Φo − v∥o −

∫︂ χ̄

0
dχ̃

(︃
Φ′ +Ψ′ − 1

2
hTT ′

∥

)︃]︃
+

1

χ̄

∫︂ χ̄

0
dχ̃

(︃
Φ+Ψ− 1

2
hTT
∥

)︃
+

1

χ̄
δx0o .

(5.25)

For the following calculations it is useful to separate the contributions from scalar, vector and
tensor perturbations. We denote them respectively by the indices (S), (V ) and (T ). We have[︃

∆DL

D̄L

]︃(S)
= −1

2

∫︂ χ̄

0
dχ̃ (χ̄− χ̃)

χ̃

χ̄
∇̃2

⊥(Φ + Ψ)−Ψ+

(︃
1− 1

Hχ̄

)︃[︃
−Φ−

∫︂ χ̄

0
dχ̃ (Φ′ +Ψ′)

]︃
+

1

χ̄

∫︂ χ̄

0
dχ̃ (Φ + Ψ) +

1

χ̄
δx0o +

(︃
1− 1

Hχ̄

)︃
(Φo + δao) ,

(5.26)[︃
∆DL

D̄L

]︃(V )

=

(︃
1− 1

Hχ̄

)︃
v∥ +

1

Hχ̄
v∥o (5.27)

and[︃
∆DL

D̄L

]︃(T )

=
1

4
hTT
∥ +

3

2

∫︂ χ̄

0
dχ̃

1

χ̃
hTT
∥ − 1

2

1

χ̄

∫︂ χ̄

0
dχ̃ hTT

∥ +

(︃
1− 1

2

1

Hχ̄

)︃∫︂ χ̄

0
dχ̃ hTT ′

∥

+
1

4

∫︂ χ̄

0
dχ̃(χ̄− χ̃)

χ̃

χ̄
∇̃2

⊥h
TT
∥ − 5

4
hTT
∥o .

(5.28)
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5.2 Angular power spectrum

We proceed by calculating the angular power spectrum associated with ∆DL/D̄L. In order to
define the angular power spectrum we start from the expansion of a scalar function A in terms
of the spherical harmonics Ylm(n):

A(n) =
+∞∑︂
l=0

l∑︂
m=−l

αlmYlm(n) (5.29)

where, using Y ∗
lm to denote the complex conjugate of Ylm,

αlm =

∫︂
dΩY ∗

lm(n)A(n) . (5.30)

The last expression can be easily proved by inserting (5.29) in (5.30) and using∫︂
dΩY ∗

lm(n)Yl′m′(n) = δll′δmm′ . (5.31)

Indeed we obtain∫︂
dΩY ∗

lm(n)
∑︂
l′m′

αl′m′Yl′m′(n) =
∑︂
l′m′

αl′m′

∫︂
dΩY ∗

lm(n)Yl′m′(n) =
∑︂
l′m′

αl′m′δll′δmm′ = αlm .

(5.32)
The angular power spectrum Cl is defined as follows:

Cl =
1

2l + 1

+l∑︂
m=−l

⟨α∗
lmαlm⟩ , (5.33)

where ⟨...⟩ is an ensemble average.
Our aim is to calculate C DL

l , which is the angular power spectrum associated with ∆DL/D̄L.
In the final part of the previous section we saw that there are scalar (S), vector (V) and tensor
(T) contributions to ∆DL/D̄L. In the end we will obtain an expression of this type:

C DL
l = C

(S+V )
l + C

(T )
l . (5.34)

In order to calculate C DL
l we need to find the explicit expression of

αDL
lm =

∫︂
dΩY ∗

lm(n)
∆DL

D̄L
. (5.35)

We start by calculating the αlm’s associated with the terms which contain the scalar pertur-
bations Ψ and Φ.

5.2.1 Contributions from Φ and Ψ

The first term which we consider is [∆DL/D̄L]
(S1) = −Ψ − [1 − 1/(Hχ̄)]Φ. We use the generic

term A to indicate −Ψ or −[1 − 1/(Hχ̄)]Φ. We proceed by inserting in (5.30) the Fourier
decomposition

A(x, η) =

∫︂
d3k

(2π)3
eik·xA(k, η) . (5.36)

Using the plane wave expansion in spherical harmonics

eik·x = 4π
∑︂
lm

iljl(kx)Y
∗
lm(k̂)Ylm(x̂) , (5.37)
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we find

αlm =

∫︂
dΩY ∗

lm(n)

∫︂
d3k

(2π)3
eik·χ̄nA(k, η)

=

∫︂
dΩY ∗

lm(n)

∫︂
d3k

(2π)3
4π
∑︂
l′m′

il
′
jl′(kχ̄)Y

∗
l′m′(k̂)Yl′m′(n)A(k, η)

= 4π

∫︂
d3k

(2π)3

∑︂
l′m′

il
′
jl′(kχ̄)Y

∗
l′m′(k̂)A(k, η)

∫︂
dΩY ∗

lm(n)Yl′m′(n) ,

(5.38)

where jl are the spherical Bessel functions (see Appendix C). Proceeding with the calculations,
using (5.31), we obtain

αlm = 4π

∫︂
d3k

(2π)3

∑︂
l′m′

il
′
jl′(kχ̄)Y

∗
l′m′(k̂)A(k, η)δll′δmm′

= 4π

∫︂
d3k

(2π)3
iljl(kχ̄)Y

∗
lm(k̂)A(k, η)

= 4π

∫︂
d3k

(2π)3
iljl(kχ̄)Y

∗
lm(k̂)TA(k, η)Ψp(k) .

(5.39)

In the last step we wrote A(k, η) in terms of the primordial value Ψp(k) set during inflation:

A(k, η) = TA(k, η)Ψp(k) , (5.40)

where TA(k, η) is the transfer function. In our case we have

TΨ =
9

10
Tm(k)

GΨ(a, k)

a
, (5.41a)

TΦ =
9

10
Tm(k)

GΦ(a, k)

a
. (5.41b)

For the details see the introductory chapter, section 1.4.3. Therefore we obtain

α
(S1)
lm = −4π

∫︂
d3k

(2π)3
Y ∗
lm(k̂)iljl(kχ̄)

9

10
Tm(k)

[︃
GΨ(ā, k)

ā
+

(︃
1− 1

Hχ̄

)︃
GΦ(ā, k)

ā

]︃
Ψp(k) . (5.42)

We proceed by considering the term

∆DL

D̄L

(S2)

=
1

χ̄

∫︂ χ̄

0
dχ̃ (Φ + Ψ) . (5.43)

We find

α
(S2)
lm = 4π

∫︂
d3k

(2π)3
Y ∗
lm(k̂)

∫︂ χ̄

0
dχ̃

1

χ̄
iljl(kχ̃)

9

10
Tm(k)

[︃
GΦ(ã, k) + GΨ(ã, k)

ã

]︃
Ψp(k) . (5.44)

As concerns the term
∆DL

DL̄

(S3)

= −
(︃
1− 1

Hχ̄

)︃∫︂ χ̄

0
dχ̃ (Φ′ +Ψ′) (5.45)

we obtain

α
(S3)
lm = −4π

(︃
1− 1

Hχ̄

)︃∫︂
d3k

(2π)3
Y ∗
lm(k̂)

∫︂ χ̄

0
dχ̃ iljl(kχ̃)[T ′

Φ(k, η̃) + T ′
Ψ(k, η̃)]Ψp(k)

= −4π

(︃
1− 1

Hχ̄

)︃∫︂
d3k

(2π)3
Y ∗
lm(k̂)

∫︂ χ̄

0
dχ̃ iljl(kχ̃)

9

10
Tm(k)ãH(ã)

× d

dã

[︃
GΦ(ã, k) + GΨ(ã, k)

ã

]︃
Ψp(k) .

(5.46)
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Finally, as regards the term

∆Dl

D̄l

(S4)

= −1

2

∫︂ χ̄

0
dχ̃ (χ̄− χ̃)

χ̃

χ̄
∇̃2

⊥(Φ + Ψ) , (5.47)

we obtain

α
(S4)
lm = −1

2

∫︂
dΩY ∗

lm(n)

∫︂ χ̄

0
dχ̃ (χ̄− χ̃)

χ̃

χ̄
∇̃2

⊥(Φ + Ψ)

= −1

2

∫︂
dΩY ∗

lm(n)

∫︂ χ̄

0
dχ̃ (χ̄− χ̃)

χ̃

χ̄

∆Ω

χ̃2 4π

∫︂
d3k

(2π)3

∑︂
l′m′

il
′
jl′(kχ̃)Y

∗
l′m′(k̂)Yl′m′(n)

× [Φ(k, η̃) + Ψ(k, η̃)]

= −4π

∫︂
dΩY ∗

lm(n)

∫︂ χ̄

0
dχ̃

(χ̄− χ̃)

2χ̄χ̃

∫︂
d3k

(2π)3

∑︂
l′m′

il
′
jl′(kχ̃)Y

∗
l′m′(k̂)∆ΩYl′m′(n)

× [Φ(k, η̃) + Ψ(k, η̃)] .

(5.48)

In the last equations we used (3.29) and

∆Ω ≡ χ̃2∇̃2
⊥ = χ̃2

(︃
∇̃2 − 2

χ̃
∂̃∥ − ∂̃

2
∥

)︃
= ∂2

θ +
cos θ

sin θ
∂θ +

1

sin2 θ
∂2
ϕ , (5.49)

which is the angular part of the Laplacian. Given that

∆ΩYlm = −l(l + 1)Ylm (5.50)

we get

α
(S4)
lm = 4π

∫︂ χ̄

0
dχ̃

(χ̄− χ̃)

2χ̄χ̃

∫︂
d3k

(2π)3

∑︂
l′m′

il
′
jl′(kχ̃)Y

∗
l′m′(k̂)[Φ(k, η) + Ψ(k, η)]

×
∫︂

dΩ l′(l′ + 1)Y ∗
lm(n)Yl′m′(n) .

(5.51)

Using (5.31) and (5.41), we obtain

α
(S4)
lm = l(l + 1)4π

∫︂
d3k

(2π)3
Y ∗
lm(k̂)

∫︂ χ̄

0
dχ̃

(χ̄− χ̃)

2χ̄χ̃
iljl(kχ̃)

9

10
Tm(k)

[︃
GΦ(ã, k) + GΨ(ã, k)

ã

]︃
Ψp(k) .

(5.52)

Each contribution α
(Sr)
ml calculated up to now can be written as

α
(Sr)
ml = 4πil

∫︂
d3k

(2π)3
Y ∗
lm(k̂)

∫︂ χ̄

0
dχ̃ jl(kχ̃)W(Sr)

[︃
χ̄, χ̃, η̄, η̃,

∂

∂η̃
, δD(χ̄− χ̃)

]︃
T(Sr)(k, η0 − χ̃)Ψp(k) .

(5.53)

For example, as concerns α
(S4)
ml ,

W(S4) = l(l + 1)
χ̄− χ̃

2χ̄χ̃
(5.54)

and

T(S4) =
9

10
Tm(k)

[︃
GΦ(ã, k) + GΨ(ã, k)

ã

]︃
. (5.55)
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Therefore, in order to find the contributions to CDL
l from scalar perturbations we have to take

into account terms of this type:

⟨︁
α
(Sr)∗
lm α

(Sr′)
lm

⟩︁
=

⟨︃
(4π)2

∫︂
d3k

(2π)3
Ylm(k̂)

∫︂ χ̄

0
dχ̃ jl(kχ̃)W(Sr)(χ̃)T(Sr)(k, η0 − χ̃)Ψ∗

p(k)

×
∫︂

d3k′

(2π)3
Y ∗
lm(k̂

′
)

∫︂ χ̄

0
dχ̃′ jl(k

′χ̃′)W(Sr′)(χ̃
′)T(Sr′)(k′, η0 − χ̃′)Ψp(k

′)

⟩︃
= (4π)2

∫︂
d3k

(2π)3

∫︂
d3k′

(2π)3

∫︂ χ̄

0
dχ̃ jl(kχ̃)W(Sr)T(Sr)

∫︂ χ̄

0
dχ̃′ jl(k

′χ̃′)W(Sr′)T(Sr′)

× Ylm(k)Y ∗
lm(k′)⟨Ψ∗

p(k)Ψp(k
′)⟩

(5.56)

Since
⟨Ψ∗

p(k)Ψp(k
′)⟩ = (2π)3δ3D(k− k′)PΨ(k) (5.57)

we find⟨︁
α
(Sr)∗
lm α

(Sr′)
lm

⟩︁
= (4π)2

∫︂
d3k

(2π)3

∫︂ χ̄

0
dχ̃ jl(kχ̃)W(Sr)T(Sr)

∫︂ χ̄

0
dχ̃′ jl(kχ̃

′)W(Sr′)T(Sr′)|Ylm(k̂)|2PΨ(k)

(5.58)
Given that, using (5.31), the angular part of the integral,

∫︁
dΩ |Ylm(k̂)|2, is equal to 1, we obtain

⟨︁
α
(Sr)∗
lm α

(Sr′)
lm

⟩︁
=

2

π

∫︂ ∞

0
dk k2PΨ(k)

∫︂ χ̄

0
dχ̃ jl(kχ̃)W(Sr)

[︃
χ̄, χ̃, η̄, η̃,

∂

∂η̃
, δD(χ̄− χ̃)

]︃
T(Sr)(k, η0 − χ̃)

×
∫︂ χ̄

0
dχ̃′ jl(kχ̃

′)W(Sr′)

[︃
χ̄, χ̃′, η̄, η̃′,

∂

∂η̃′
, δD(χ̄− χ̃′)

]︃
T(Sr′)(k, η0 − χ̃′)

=
2

π

∫︂ ∞

0
dk k2PΨ(k)F

(Sr)
l (k)F

(Sr′)
l (k) ,

(5.59)

where

F
(Sr)
l (k) ≡

∫︂ χ̄

0
dχ̃ jl(kχ̃)W(Sr)

[︃
χ̄, χ̃, η̄, η̃,

∂

∂η̃
, δD(χ̄− χ̃)

]︃
T(Sr)(k, η0 − χ̃) . (5.60)

Observer terms

We proceed by considering the scalar contributions due the terms evaluated at the observer. We
start from [1− 1/(Hχ̄)]Φo. We find that its contribution to αDl

lm is given by

αΦo
lm =

(︃
1− 1

Hχ̄

)︃
lim
χ̄→0

4π

∫︂
d3k

(2π)3
iljl(kχ̄)Y

∗
lm(k̂)TΦ(k, η0 − χ̄)Ψp(k) . (5.61)

Since the only non-zero contribution comes from l = 0 and given that

lim
χ̄→0

j0(kχ̄) = 1 , (5.62)

we obtain

αΦo
lm = δl0

(︃
1− 1

Hχ̄

)︃
4π

∫︂
d3k

(2π)3
Y ∗
0m(k̂)TΦ(k, η0)Ψp(k) . (5.63)

Terefore in this case we have

FΦo
l (k) ≡ δl0

(︃
1− 1

Hχ̄

)︃
TΦ(k, η0) . (5.64)
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As regards the observer term (1/χ̄)δx0o we proceed as follows. In section 3.1.5 we found the
expression for the coordinate time lapse (3.83), which is given by

δx0o = −
∫︂ η̄0

η̄in

Φ(η̄,0)ā(η̄)dη̄ . (5.65)

Therefore

α
δx0

o
lm = − 1

χ̄

∫︂
dΩY ∗

lm(n)

∫︂ η̄0

η̄in

Φ(η̄,0)ā(η̄)dη̄

= − 1

χ̄
lim
χ̄→0

∫︂
dΩY ∗

lm(n)

∫︂
d3k

(2π)3
eik·χ̄n

∫︂ η̄0

η̄in

TΦ(k, η̄)Ψp(k)ā(η̄)dη̄

= − 1

χ̄
4π lim

χ̄→0

∫︂
d3k

(2π)3
iljl(kχ̄)Y

∗
lm(k̂)

∫︂ η̄0

η̄in

TΦ(k, η̄)Ψp(k)ā(η̄)dη̄

= −δl0
1

χ̄
4π

∫︂
d3k

(2π)3
Y ∗
0m(k̂)Ψp(k)

∫︂ η̄0

η̄in

TΦ(k, η̄)ā(η̄)dη̄ .

(5.66)

An analogous reasoning can be applied to the observer term [1 − 1/(Hχ̄)]δao. We report here
(3.89), which is the explicit expression for δao. We have

δao = H0δηo = −H0

∫︂ η̄0

η̄in

Φ(η̄,0)ā(η̄)dη̄ . (5.67)

Therefore we obtain

αδao
lm = −δl0H0

(︃
1− 1

Hχ̄

)︃
4π

∫︂
d3k

(2π)3
Y ∗
0m(k̂)Ψp(k)

∫︂ η̄0

η̄in

TΦ(k, η̄)ā(η̄)dη̄ . (5.68)

5.2.2 Contribution from v∥

We proceed calculating the contribution to αDL
lm due to the term

∆DL

D̄L

(V )

=

(︃
1− 1

Hχ̄

)︃
v∥ . (5.69)

Assuming an irrotational velocity field, which implies vj(k, η) = ikjv(k, η), we have

α
(V )
lm =

(︃
1− 1

Hχ̄

)︃∫︂
dΩY ∗

lm(n)

∫︂
d3k

(2π)3
eik·χ̄nnjvj(k, η)

=

(︃
1− 1

Hχ̄

)︃∫︂
dΩY ∗

lm(n)

∫︂
d3k

(2π)3
eik·χ̄ninjkjv(k, η) ,

(5.70)

where v(k, η) is the velocity potential. Given that

d

dχ̄
eik·χ̄n = injkj , (5.71)

we find

α
(V )
lm =

(︃
1− 1

Hχ̄

)︃∫︂
dΩY ∗

lm(n)

∫︂
d3k

(2π)3

[︃
d

dχ̄
eik·χ̄n

]︃
v(k, η) . (5.72)
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Inserting (5.37) we obtain

α
(V )
lm =

(︃
1− 1

Hχ̄

)︃∫︂
dΩY ∗

lm(n)

∫︂
d3k

(2π)3
v(k, η)

d

dχ̄
4π
∑︂
l′m′

il
′
jl′(kχ̄)Y

∗
l′m′(k̂)Yl′m′(n̂)

=

(︃
1− 1

Hχ̄

)︃∫︂
d3k

(2π)3
v(k, η)4πk

∑︂
l′m′

il
′
[︃

d

d(kχ̄)
jl′(kχ̄)

]︃
Y ∗
l′m′(k̂)

∫︂
dΩY ∗

lm(n)Yl′m′(n̂)

= 4π

(︃
1− 1

Hχ̄

)︃∫︂
d3k

(2π)3
kil
[︃

d

d(kχ̄)
jl(kχ̄)

]︃
Y ∗
lm(k̂)v(k, η) .

(5.73)

We can substitute the derivative of the Bessel functions with

∂xjl = −jl+1 +
l

x
jl (5.74)

which is obtained from the identities

∂xjl = jl−1 −
l + 1

x
jl (5.75)

and

jl−1 + jl+1 =
2l + 1

x
jl . (5.76)

Therefore (5.73) becomes

α
(V )
lm = 4π

(︃
1− 1

Hχ̄

)︃∫︂
d3k

(2π)3
kil
[︃

l

kχ̄
jl(kχ̄)− jl+1(kχ̄)

]︃
Y ∗
lm(k̂)Tv(k, η)Ψp(k) . (5.77)

In this case the transfer function is given by

Tv(a, k) = − 9

10

Tm(k)

k
Gv(a, k) . (5.78)

As concerns the contributions ⟨α(V )∗
lm α

(V )
lm ⟩ and ⟨α(Sr)∗

lm α
(V )
lm ⟩ we obtain a result similar to (5.59),

the only difference being the expression of F
(V )
l (k), which is given by

F
(V )
l (k) ≡ k

[︃
l

kχ̄
jl(kχ̄)− jl+1(kχ̄)

]︃
Tv(k, η0 − χ̄) . (5.79)

Observer terms

In order to find the contribution from the observer term [1/(Hχ̄)]v∥o we proceed in the following
way.

α
v∥o
lm = 4π

1

Hχ̄
lim
χ̄→0

∫︂
d3k

(2π)3
kil
[︃

l

kχ̄
jl(kχ̄)− jl+1(kχ̄)

]︃
Y ∗
lm(k̂)Tv(k, η)Ψp(k) . (5.80)

Given that the only non-zero contribution comes from l = 1 and

lim
χ̄→0

j1(kχ̄)

kχ̄
=

1

3
, (5.81)

we obtain

α
v∥o
lm = δl1

1

3
4π

1

Hχ̄

∫︂
d3k

(2π)3
kY ∗

1m(k̂)Tv(k, η)Ψp(k) . (5.82)

We are now ready to calculate C
(S+V )
l , which is the contribution to CDL

l from scalar and vector
perturbations.
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5.2.3 Contribution to CDL
l from scalar and vector perturbations

The scalar and vector contributions to CDL
l are given by

C
(S+V )
l =

2

π

∫︂
dk k2

[︂
I
(S+V )
l (k)

]︂2
PΨ(k) , (5.83)

where 1

I
(S+V )
l =

9

10
Tm(k)

{︃
−jl(kχ̄)

[︃
GΨ(ā, k)

ā
+

(︃
1− 1

Hχ̄

)︃
GΦ(ā, k)

ā

]︃
−
(︃
1− 1

Hχ̄

)︃[︃
l

kχ̄
jl(kχ̄)− jl+1(kχ̄)

]︃
Gv(ā, k)

+

∫︂ χ̄

0
dχ̃ jl(kχ̃)

1

χ̄

(︃
GΨ(ã, k) + GΦ(ã, k)

ã

)︃
−
∫︂ χ̄

0
dχ̃ jl(kχ̃)

(︃
1− 1

Hχ̄

)︃
ãH(ã)

d

dã

(︃
GΨ(ã, k) + GΦ(ã, k)

ã

)︃
+

∫︂ χ̄

0
dχ̃ jl(kχ̃)

l(l + 1)(χ̄− χ̃)

2χ̄χ̃

(︃
GΨ(ã, k) + GΦ(ã, k)

ã

)︃
+ δl0

(︃
1− 1

Hχ̄

)︃
GΦ(a0, k)

a0
− δl0

[︃
1

χ̄
+H0

(︃
1− 1

Hχ̄

)︃]︃∫︂ η̄0

η̄in

GΦ(k, ā)dη̄

− δl1
1

3

1

Hχ̄
Gv(a0, k)

}︃
.

(5.84)

5.2.4 Contributions from hTT
∥

The final step consists in calculating the tensor contributions to the angular power spectrum
associated with the relative correction to the luminosity distance. We follow a procedure similar
to what has been done in [70] for the calculation of the effects of the stochastic GW background
on the large scale-structure observables.

We start from the decomposition of the tensor perturbation hTT
ij into plane waves of the two

polarization tensors. We have

hTT
ij (x, η) =

∫︂
d3k

(2π)3
eik·xhTT

ij (k, η)

=

∫︂
d3k

(2π)3
eik·x[h+(k, η)e+ij(k̂) + h×(k, η)e×ij(k̂)] ,

(5.85)

where the polarization tensors eλij(k̂), which are denoted as λ = +,×, are transverse and traceless

and normalized through eλije
λ′ij = 2δλλ

′
. The solution hλ(k, η) at a generic time η can be written

as
hλ(k, η) ≡ hλprim(k)TT (k, η) , (5.86)

where

� hλprim(k) is the primordial gravitational wave mode which remains constant on super-
horizon scales;

� TT (k, η) describes the sub-horizon evolution of the gravitational wave modes when they
enter the horizon after the phase of accelerated expansion (see section 1.4.3).

1For numerical estimations, which are not considered in this thesis, we should multiply the right-hand side of
(5.84) by χ̄2Wx, where Wx is the normalized object selection function, and integrate.
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The power spectra of the polarizations are given by⟨︂
hλ(k, η)hλ′(k′, η′)

⟩︂
= (2π)3δD(k− k′)δλλ′

1

4
PT (k, η, η

′) , (5.87)

where
PT (k, η, η

′) = TT (k, η)TT (k, η′)PT0(k) (5.88)

and PT0 is the primordial tensor power spectrum (see section 1.4.3).
We report here (5.28), which contains all the tensor contributions to the relative correction

to the luminosity distance.[︃
∆DL

D̄L

]︃(T )

=
1

4
hTT
∥ +

3

2

∫︂ χ̄

0
dχ̃

1

χ̃
hTT
∥ − 1

2

1

χ̄

∫︂ χ̄

0
dχ̃ hTT

∥ +

(︃
1− 1

2

1

Hχ̄

)︃∫︂ χ̄

0
dχ̃ hTT ′

∥

+
1

4

∫︂ χ̄

0
dχ̃(χ̄− χ̃)

χ̃

χ̄
∇̃2

⊥h
TT
∥ − 5

4
hTT
∥o .

(5.89)

Each term in (5.89) can be written in the generic form

A(n, χ̄) =

∫︂ χ̄

0
dχ̃WA

[︃
χ̃, χ̄,

∂

∂η̃
, δD(χ̄− χ̃)

]︃
hTT
∥ (χ̃n, η0 − χ̃)

=

∫︂ χ̄

0
dχ̃WA

[︃
χ̃, χ̄,

∂

∂η̃
, δD(χ̄− χ̃)

]︃ ∫︂
d3k

(2π)3
eik·nχ̃ninjhTT

ij (k, η0 − χ̃) .

(5.90)

We proceed considering the contribution of a plane wave tensor perturbation with the wave-
vector k oriented along the z-axis. We denote this contribution to A(n, χ̄) as A(n,k, χ̄). In this
case

ninjhTT
ij (k, η) = sin2 θ [cos 2ϕh+(k, η) + sin 2ϕh×(k, η)] = sin2 θ [ei2ϕh1 + e−i2ϕh2] , (5.91)

where
n = (sin θ cosϕ, sin θ sinϕ, cos θ) (5.92)

and

h1,2 ≡
1

2
(h+ ∓ ih×) . (5.93)

are the circular polarizations. Therefore

A(n,k, χ̄) =

∫︂ χ̄

0
dχ̃WA(χ̃)e

ikχ̃µ(1− µ2)
[︁
ei2ϕh1(k, η0 − χ̃) + e−i2ϕh2(k, η0 − χ̃)

]︁
, (5.94)

where µ = cos θ is the cosine of the angle between between the direction of observation n and
the wave-vector k. Comparing it with the scalar case, we see that the main difference is given
by the factors e±i2ϕ.

The multipole coefficients of A can be written as

αA
lm =

∫︂
dΩY ∗

lm(n)A(n, χ̄) =

∫︂
dΩY ∗

lm(n)

∫︂
d3k

(2π)3
A(n,k, χ̄)

=

∫︂
d3k

(2π)3

∫︂ χ̄

0
dχ̃WA(χ̃)

∫︂
dΩY ∗

lm(µ, ϕ)eikχ̃µ(1− µ2)
[︁
ei2ϕh1(k, η0 − χ̃) + e−i2ϕh2(k, η0 − χ̃)

]︁
=

∫︂
d3k

(2π)3
αA
lm(k) ,

(5.95)

where

αA
lm(k) =

∫︂ χ̄

0
dχ̃WA(χ̃)

∫︂
dΩY ∗

lm(µ, ϕ)eikχ̃µ(1− µ2)
[︁
ei2ϕh1(k, η0 − χ̃) + e−i2ϕh2(k, η0 − χ̃)

]︁
.

(5.96)
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Given that ∫︂
dΩY ∗

lm(1− µ2)e±i2ϕeixµ = −
√︁

4π(2l + 1)

√︄
(l + 2)!

(l − 2)!
il
jl(x)

x2
δm±2 , (5.97)

we obtain

αA
lm(k) = −

√︄
2l + 1

4π

(l + 2)!

(l − 2)!
4πil

∫︂ χ̄

0
dχ̃WA(χ̃)

[︁
h1(k, η0 − χ̃)δm2 + h2(k, η0 − χ̃)δm−2

]︁jl(kχ̃)
(kχ̃)2

(5.98)
The proof of (5.97) is given in Appendix C. Before proceeding we calculate the power spectra
of h1 and h2. We find⟨︂

h∗1(k, η)h1(k
′, η)

⟩︂
=

1

4

⟨︂[︁
h+(k, η) + ih×(k, η)

]︁[︁
h+(k′, η)− ih×(k′, η)

]︁⟩︂
=

1

4

⟨︂
h+(k, η)h+(k′, η)

⟩︂
+

1

4

⟨︂
h×(k, η)h×(k′, η)

⟩︂
=

1

8
(2π)3δD(k− k′)PT (k) ,

(5.99)

where we used (5.87). With an analogous reasoning we obtain⟨︂
h∗2(k, η)h2(k

′, η)
⟩︂
=

1

8
(2π)3δD(k− k′)PT (k) , (5.100a)

⟨︂
h∗2(k, η)h1(k

′, η)
⟩︂
=
⟨︂
h∗1(k, η)h2(k

′, η)
⟩︂
= 0 . (5.100b)

We are now ready to calculate the tensor contribution C
(T )
l to the angular power spectrum

CDL
l . Each term of C

(T )
l will be of this type:

1

2l + 1

∑︂
m

⟨︂
α
(Tr)∗
lm α

(Tr′)
lm

⟩︂
. (5.101)

Inserting (5.98) in it we obtain

1

2l + 1

∑︂
m

⟨︂
α
(Tr)∗
lm α

(Tr′)
lm

⟩︂
=

=
(l + 2)!

(l − 2)!
4π
∑︂
m

⟨︃∫︂
d3k

(2π)3

∫︂ χ̄

0
dχ̃W(Tr)(χ̃)

[︁
h∗1(k, η0 − χ̃)δm2 + h∗2(k, η0 − χ̃)δm−2

]︁jl(kχ̃)
(kχ̃)2

×
∫︂

d3k′

(2π)3

∫︂ χ̄

0
dχ̃′W(Tr′)(χ̃

′)
[︁
h1(k

′, η0 − χ̃′)δm2 + h2(k,
′ η0 − χ̃′)δm−2

]︁jl(k′χ̃′)

(k′χ̃′)2

⟩︃
=

(l + 2)!

(l − 2)!
4π
∑︂
m

∫︂
d3k

(2π)3

∫︂
d3k′

(2π)3

∫︂ χ̄

0
dχ̃W(Tr)(χ̃)

jl(kχ̃)

(kχ̃)2

∫︂ χ̄

0
dχ̃′W(Tr′)(χ̃

′)
jl(k

′χ̃′)

(k′χ̃′)2

×
[︁
⟨h∗1(k, η0 − χ̃)h1(k

′, η0 − χ̃′)⟩(δm2)
2 + ⟨h∗2(k, η0 − χ̃)h2(k

′, η0 − χ̃′)⟩(δm−2)
2
]︁

=
(l + 2)!

(l − 2)!
4π
∑︂
m

∫︂
d3k

(2π)3

∫︂
d3k′

(2π)3

∫︂ χ̄

0
dχ̃W(Tr)(χ̃)

jl(kχ̃)

(kχ̃)2

∫︂ χ̄

0
dχ̃′W(Tr′)(χ̃

′)
jl(k

′χ̃′)

(k′χ̃′)2

×
[︃
(2π)3δD(k− k′)

PT

8
(δm2)

2 + (2π)3δD(k− k′)
PT

8
(δm−2)

2

]︃
,

(5.102)
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where we used (5.99) and (5.100). Proceeding with the calculations we find

1

2l + 1

∑︂
m

⟨︂
α
(Tr)∗
lm α

(Tr′)
lm

⟩︂
=

(l + 2)!

(l − 2)!
4π
∑︂
m

∫︂
d3k

(2π)3

∫︂ χ̄

0
dχ̃W(Tr)(χ̃)

jl(kχ̃)

(kχ̃)2

∫︂ χ̄

0
dχ̃′W(Tr′)(χ̃

′)
jl(kχ̃

′)

(kχ̃′)2

× PT

8

[︁
(δm2)

2 + (δm−2)
2)
]︁

=
(l + 2)!

(l − 2)!
4π

∫︂
4πk2

(2π)3
dk

2

8
PT0(k)

∫︂ χ̄

0
dχ̃W(Tr)(χ̃)TT (k, η0 − χ̃)

jl(kχ̃)

(kχ̃)2

×
∫︂ χ̄

0
dχ̃′W(Tr′)(χ̃

′)TT (k, η0 − χ̃′)
jl(kχ̃

′)

(kχ̃′)2
.

(5.103)

Finally, defining

FX
l (k) ≡

∫︂ χ̄

0
dχ̃Wx

[︃
χ̃, χ̄,

∂

∂η̃
, δD(χ̄− χ̃)

]︃
TT (k, η0 − χ̃)

jl(kχ̃)

(kχ̃)2
, (5.104)

we obtain

1

2l + 1

∑︂
m

⟨︂
α
(Tr)∗
lm α

(Tr′)
lm

⟩︂
=

1

2π

(l + 2)!

(l − 2)!

∫︂
k2dk PT0(k)F

(Tr)
l (k)F

(Tr′)
l (k) . (5.105)

Observer term

We proceed by calculating the contribution due to the observer term −(5/4)h∥o. Considering
that the only non-zero term comes from l = 2 and given that

lim
χ̄→0

j2(kχ̄)

(kχ̄)2
=

1

15
, (5.106)

we obtain

F
h∥o
l (k) = −5

4
lim
χ̄→0

TT (k, η0 − χ̄)
jl(kχ̄)

(kχ̄)2

= −δl2
5

4

1

15
TT (k, η0) .

(5.107)

5.2.5 Contribution to CDL
l form tensor perturbations

The tensor contribution to CDL
l is given by

C
(T )
l =

1

2π

(l + 2)!

(l − 2)!

∫︂
k2dk

[︂
I
(T )
l (k)

]︂2
PT0(k) , (5.108)

where

I
(T )
l (k) =

1

4

jl(kχ̄)

(kχ̄)2
TT (k, η0 − χ̄)− 1

2χ̄

∫︂ χ̄

0
dχ̃

jl(kχ̃)

(kχ̃)2
TT (k, η0 − χ̃)

+
3

2

∫︂ χ̄

0
dχ̃

jl(kχ̃)

(kχ̃)2
1

χ̃
TT (k, η0 − χ̃) +

(︃
1− 1

2

1

Hχ̄

)︃∫︂ χ̄

0
dχ̃

jl(kχ̃)

(kχ̃)2
d

dη̃
TT (k, η0 − χ̃)

− l(l + 1)

4

∫︂ χ̄

0
dχ̃

χ̄− χ̃

χ̄χ̃

jl(kχ̃)

(kχ̃)2
TT (k, η0 − χ̃)− δl2

12
TT (k, η0) .

(5.109)

It can be seen that the sum of the two terms which contain 1/χ̃, which is given by[︃
3

2
− l(l + 1)

4

]︃ ∫︂ χ̄

0
dχ̃

jl(kχ̃)

(kχ̃)2
1

χ̃
TT (k, η0 − χ̃) , (5.110)

is regular for l ≥ 3 and null for l = 2. Indeed limχ̃→0 jl(kχ̃)/(kχ̃)
2 = 0 for l ≥ 3 and 3/2− l(l +

1)/4 = 0 for l = 2.
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Conclusions

In this work we studied the propagation of gravitational waves through a perturbed FRW Uni-
verse in the limit of geometric optics and considered the luminosity distance inferred from the
GW waveform associated with a merging binary system. In particular we calculated the tensor
contribution to the correction to the estimate of the luminosity distance. Indeed the GW signal
coming from a merging binary system should be affected by the primordial GWs present in the
spacetime through which the signal propagates and therefore can encode informations about
them. Therefore we calculated the imprint of the tensor contribution on the angular power
spectrum CDL

l associated with the relative correction to the luminosity distance ∆DL/D̄L.

Chapter 2 was entirely focused on the description of the geometric optics approximation
[60, 61], which consists in separating the background metric g̃µν from the metric perturbation
hµν relying on their different scales of variation: the perturbation hµν varies on a length scale
λ smaller than the scale of variation LB of the background. The propagation equation for the
gravitational waves was obtained by subtracting from the Einstein’s equations the low frequency
part by means of an averaging procedure on an intermediated scale λ ≪ l̄ ≪ LB (section 2.1.2).
We took into account the leading and next-to-leading orders in λ/LB, neglecting terms of order
(λ/LB)

0. In this way the propagation equation becomes gauge invariant and its expression can be
simplified choosing the Lorenz gauge (2.57). The final part of the chapter consisted in inserting
the ansazt (2.63) in the propagation equation, thus obtaining the evolution equations for the
amplitude and the phase of the gravitational waves and finding that gravitational waves in the
limit of geometric optics propagate on null geodesics of the background. Finally the equations
were written in terms of the comoving metric ĝµν = g̃µν/a

2, which proves to be convenient in
the following chapters.

Since in the thesis we assumed a perturbed FRW Universe, the background metric ĝµν =
g̃µν/a

2 was additionally split in the metric ḡµν associated with a homogeneous and isotropic
FRW Universe and the perturbation δgµν due to cosmological perturbations. In Chapter 3 we
introduced the Cosmic Rulers formalism [64, 65] and provided a map between the observer’s
frame, which is characterized by the assumption that we live in an unperturbed FRW Universe
described by the metric ḡµν , and the real frame, where we take into account the effects of the
cosmological perturbations and therefore we consider the perturbed metric ḡµν + δgµν . From
the integration of the differential equation for the wave-vector perturbation δkµ we obtained
the perturbations δxµ at fixed comoving distance in terms of the metric perturbations. With
respect to [46] we took into account the perturbations of the observer’s coordinate (section
3.1.5) and worked in a general gauge. Finally, in section 3.1.7 we calculated the total correction
∆xµ = δxµ + k̄

µ
δχ finding the expressions for δχ, ∆x0, ∆x∥ and ∆xi⊥ in terms of the metric

perturbations.

Chapter 4 was entirely devoted to the calculation of the effects of the cosmological pertur-
bations on the GW waveform. We inserted φ̄[x̄µ(χ̄)] + ∆φ(χ̄) and ln Ā[x̄µ(χ̄)] + ∆ lnA(χ̄) in
the evolution equations (2.65) and (2.81) for the phase and the amplitude calculated at the
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end of Chapter 2, thus obtaining the corrections ∆φ(χ̄) and ∆ lnA(χ̄) in terms of the metric
perturbations (equations (4.25) and (4.62)).

In Chapter 5, given that the total correction to the amplitude is related to the relative
correction to the luminosity distance by (5.4), we calculated the expression for ∆DL/D̄L, which
is given by (5.25). The final step consisted in the calculation of the angular power spectrum
CDL
l associated with the relative correction to the luminosity distance. The final expression

CDL
l = C

(S+V )
l + C

(T )
l is given by two contributions. The first one is due to the scalar and

vector corrections which contain the metric perturbations Φ, Ψ and the velocity term v∥ = n ·v,
the second one to the tensor corrections coming from the primordial gravitational waves hTT

ij . We

see from (5.108) that C
(T )
l encodes information about primordial gravitational waves through

the presence of the primordial tensor power spectrum PT0(k). Future work requires to include
a numerical evaluation of the tensor contributions to CDL

l in order to estimate the impact of
these relativistic corrections.
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Appendix A

Conformal transformations

The following part is based on Appendix G of [71] and Appendix D of [72].
A metric ĝµν arises from g̃µν via a conformal transformation if

ĝµν = ω2(x)g̃µν , (A.1)

where ω2(x) is a nonvanishing function.
It can be easily verified that the inverse conformal transformation is

ĝµν =
1

ω2(x)
g̃µν . (A.2)

Indeed

ĝµρĝρν =
1

ω2(x)
g̃µρω2(x)g̃ρν = g̃µρg̃ρν = δµν . (A.3)

In our case, since ĝµν =
g̃µν
a2

,

ω =
1

a
. (A.4)

The covariant derivatives associated with g̃µν and ĝµν are denoted respectively as ∇̃µ and ∇̂µ.

The Christoffel symbols Γ̂
µ
νρ associated with ĝµν can be written as Γ̂

µ
νρ = Γ̃

µ
νρ + Cµ

νρ, where Cµ
νρ

is a tensor, given that it is the difference of two connections. In order to find the expression of
Cµ
νρ in terms of a and g̃µν we proceed in the following way:

Γ̂
µ
νρ =

1

2
ĝµσ
[︃
∂ν ĝρσ + ∂ρĝνσ − ∂σ ĝνρ

]︃
=

1

2ω2
g̃µσ
[︃
∂ν(ω

2g̃ρσ) + ∂ρ(ω
2g̃νσ)− ∂σ(ω

2g̃νρ)

]︃
= Γ̃

µ
νρ +

1

2ω2
g̃µσ2ω

[︃
g̃ρσ∂νω + g̃νσ∂ρω − g̃νρ∂σω

]︃
= Γ̃

µ
νρ +

1

ω

[︃
δµρ ∇̃νω + δµν ∇̃ρω − g̃µσ g̃νρ∇̃σω

]︃
= Γ̃

µ
νρ + Cµ

νρ ,

(A.5)

where

Cµ
νρ ≡ 1

ω

(︃
δµρ ∇̃νω + δµν ∇̃ρω − g̃µσ g̃νρ∇̃σω

)︃
. (A.6)

In the following part we will demonstrate that conformal transformations leave null geodesics
invariant.
We begin by showing that null curves are left null under a conformal transformation. Indeed
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the tangent vector of a curve xµ(l) which is null with respect to g̃µν is also null with respect to
ĝµν :

ĝµν
dxµ

dl

dxν

dl
=

g̃µν
a2

dxµ

dl

dxν

dl
= 0 . (A.7)

The next step consists in showing that a null geodesic with respect to ∇̃σ is also a null geodesic
with respect to ∇̂σ.
If xρ(l) is a geodesic with respect to ∇̃σ and l is an affine parameter, the geodesic equation takes
the form

k̃
ρ∇̃ρk̃

σ
= 0 , (A.8)

where k̃
ρ
= dxρ

dl .

In order to see if k̃
ρ
satisfies the geodesic equation with respect to ∇̂σ, we analyze k̃

ρ∇̂ρk̃
σ
. By

using (A.5) and (A.8) we obtain

k̃
ρ∇̂ρk̃

σ
= k̃

ρ
∂ρk̃

σ
+ k̃

ρ
Γ̂
σ
ρλk̃

λ

= k̃
ρ
∂ρk̃

σ
+ k̃

ρ
Γ̃
σ
ρλk̃

λ
+ k̃

ρ
Cσ
ρλk̃

λ

= k̃
ρ∇̃ρk̃

σ
+ ak̃

ρ
[︃
δσρ ∇̃λ

(︃
1

a

)︃
+ δσλ∇̃ρ

(︃
1

a

)︃
− g̃στ g̃ρλ∇̃τ

(︃
1

a

)︃]︃
k̃
λ

= −k̃
σ
k̃
λ∇̃λ(lna)− k̃

σ
k̃
ρ∇̃ρ(lna) + k̃

ρ
k̃ρg̃

στ ∇̃τ (lna) .

(A.9)

Therefore in general a geodesic with respect to ∇̃ρ is not a geodesic with respect to ∇̂ρ. However,

if we consider the specific case of null geodesics (k̃
ρ
k̃ρ = 0), the previous equation becomes

k̃
ρ∇̂ρk̃

σ
= −2k̃

σ
k̃
ρ∇̃ρ(lna) , (A.10)

which is a non-affinely parametrized geodesic equation. Indeed, if xµ(χ) is a geodesic with
respect to ∇̂σ and χ is an affine parameter, the geodesic equation written in terms of a generic
parameter l(χ) becomes

dl

dχ

d

dl

(︃
dl

dχ

dxµ

dl

)︃
+ Γ̂

µ
νρ

(︃
dl

dχ

)︃2dxν

dl

dxρ

dl
= 0(︃

dl

dχ

)︃2d2xµ

dl2
+

d2l

dχ2

dxµ

dl
+ Γ̂

µ
νρ

(︃
dl

dχ

)︃2dxν

dl

dxρ

dl
= 0

(A.11)

d2xµ

dl2
+ Γ̂

µ
νρ

dxν

dl

dxρ

dl
= −

d2l
dχ2(︂
dl
dχ

)︂2 dxµdl

k̃
ρ∇̂ρk̃

µ
= −

d2l
dχ2(︂
dl
dχ

)︂2 k̃µ .
(A.12)

Comparing it to equation (A.9) we get

d2l
dχ2(︂
dl
dχ

)︂2 = 2
dχ

dl

d

dχ
lna . (A.13)

Thus the relation between the two parameters l and χ is given by

dl

dχ
= Ca2 , (A.14)
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where C is a constant of proportionality.
Therefore

k̃
µ
=

dxµ

dl
=

dχ

dl

dxµ

dχ
=

1

C
1

a2
k̂
µ
, (A.15)

where k̂
µ
= dxµ

dχ .

Summarizing, if xµ(l) is a null geodesic with respect to ∇̃σ and l is an affine parameter, xµ(χ) =
xµ[l(χ)] is a null geodesic with respect to ∇̂σ (and χ is an affine parameter if dl ∝ a2dχ). In
other words, if the null vector k̃

µ
satisfies k̃

ρ∇̃ρk̃
σ
= 0 and dl ∝ a2dχ, k̂

µ ∝ a2k̃
µ
satisfies

k̂
ρ∇̂ρk̂

σ
= 0.
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Connection coefficients in a general
gauge

The components of g̃µν = a2ĝµν and g̃µν = (1/a2)ĝµν are given by

g̃00 = a2ĝ00 = −a2(1 + 2A) , g̃00 =
1

a2
ĝ00 = − 1

a2
(1− 2A) ,

g̃0i = a2ĝ0i = −a2Bi , g̃0i =
1

a2
ĝ0i = − 1

a2
Bi ,

g̃ij = a2ĝij = a2(δij + hij) , g̃ij =
1

a2
ĝij = − 1

a2
(δij − hij) .

(B.1)

We calculate, at linear order in the metric perturbations, the Christoffel symbols Γ̂
µ
νρ associated

to the comoving metric ĝµν = ḡµν+δgµν = ηµν+δgµν , where ηµν is the Minkowski metric. Since

Γ̂
µ
νρ = δΓ̂

µ
νρ =

1

2
ḡµσ(∂ρδgνσ + ∂νδgρσ − ∂σδgνρ) , (B.2)

we find

Γ̂
0
00 = δΓ̂

0
00 =

1

2
ḡ0σ(∂0δg0σ + ∂0δg0σ − ∂σδg00) =

1

2
ḡ00∂0δg00 = −1

2
∂0(−2A)

= ∂0A ,

Γ̂
0
0i = δΓ̂

0
0i =

1

2
ḡ0σ(∂iδg0σ + ∂0δgiσ − ∂σδg0i) =

1

2
ḡ00(∂iδg00 + ∂0δgi0 − ∂0δg0i)

= ∂iA ,

Γ̂
0
ij = δΓ̂

0
ij =

1

2
ḡ0σ(∂jδgiσ + ∂iδgjσ − ∂σδgij) =

1

2
ḡ00(∂jδgi0 + ∂iδgj0 − ∂0δgij)

= −1

2
(−∂jBi − ∂iBj − ∂0hij) =

1

2
∂jBi +

1

2
∂iBj +

1

2
∂0hij ,

Γ̂
i
00 = δΓ̂

i
00 =

1

2
ḡiσ(∂0δg0σ + ∂0δg0σ − ∂σδg00) =

1

2
δij(∂0δg0j + ∂0δg0j − ∂jδg00)

=
1

2
(−∂0B

i − ∂0B
i + 2∂iA) = −∂0B

i + ∂iA ,

Γ̂
i
0j = δΓ̂

i
0j =

1

2
ḡiσ(∂jδg0σ + ∂0δgjσ − ∂σδg0j) =

1

2
δik(∂jδg0k + ∂0δgjk − ∂kδg0j)

=
1

2
(−∂jB

i + ∂0h
i
j + ∂iBj) = −1

2
∂jB

i +
1

2
∂iBj +

1

2
∂0h

i
j ,

Γ̂
i
jk = δΓ̂

i
jk =

1

2
ḡiσ(∂kδgjσ + ∂jδgkσ − ∂σδgjk) =

1

2
δil(∂kδgjl + ∂jδgkl − ∂lδgjk)

=
1

2
∂kh

i
j +

1

2
∂jh

i
k −

1

2
∂ihjk .

(B.3)
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For completeness we report the Christoffel symbols Γ̃
µ
νρ associated to the metric g̃µν . Given that

we already calculated Γ̂
µ
νρ, in order to find the explicit expression for Γ̃

µ
νρ we can use (A.5) and

(A.6), which we rewrite here:

Γ̃
µ
νρ = Γ̂

µ
νρ − Cµ

νρ = Γ̂
µ
νρ +

1

a

(︁
δµρ ∇̃νa+ δµν ∇̃ρa− g̃µσ g̃νρ∇̃σa

)︁
. (B.4)

Therefore, neglecting second order terms in the metric perturbations, we obtain

Γ̃
0
00 = Γ̂

0
00 +

1

a

(︁
2δ00∂0a− g̃0σ g̃00∂σa

)︁
= ∂0A+

1

a

(︁
2∂0a− g̃00g̃00∂0a

)︁
= ∂0A+

∂0a

a

[︁
2− (1− 2A)(1 + 2A)

]︁
= ∂0A+H ,

Γ̃
0
0i = Γ̂

0
0i +

1

a

(︁
δ00∂ia+ δ0i ∂0a− g̃0σ g̃0i∂σa

)︁
= ∂iA+

1

a

(︁
−g̃00g̃0i∂0a

)︁
= ∂iA+

∂0a

a

[︁
−(1− 2A)Bi

]︁
= ∂iA−HBi ,

Γ̃
0
ij = Γ̂

0
ij +

1

a

(︁
δ0j∂ia+ δ0i ∂ja− g̃0σ g̃ij∂σa

)︁
= Γ̂

0
ij +

1

a

(︁
−g̃00g̃ij∂0a

)︁
= Γ̂

0
ij +

∂0a

a
(1− 2A)(δij + hij) =

1

2
∂jBi +

1

2
∂iBj +

1

2
∂0hij +H(δij + hij − 2Aδij) ,

Γ̃
i
00 = Γ̂

i
00 +

1

a

(︁
δi0∂0a+ δi0∂0a− g̃iσ g̃00∂σa

)︁
= −∂0B

i + ∂iA+
1

a

(︁
−g̃i0g̃00∂0a

)︁
= −∂0B

i + ∂iA+
∂0a

a

[︁
−Bi(1 + 2A)

]︁
= −∂0B

i + ∂iA−HBi ,

Γ̃
i
0j = Γ̂

i
0j +

1

a

(︁
δij∂0a+ δi0∂ja− g̃iσ g̃0j∂σa

)︁
= Γ̂

i
0j +

1

a

(︁
δij∂0a− g̃i0g̃0j∂0a

)︁
= Γ̂

i
0j +

∂0a

a
(δij −BiBj) = −1

2
∂jB

i +
1

2
∂iBj +

1

2
∂0h

i
j +Hδij ,

Γ̃
i
jk = Γ̂

i
jk +

1

a

(︁
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(B.5)
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Special functions and some useful
properties

Spherical Bessel functions

Spherical Bessel functions satisfy the differential equation

∂2
xjl = −2

∂xjl
x

+

[︃
l(l + 1)

x2
− 1

]︃
jl . (C.1)

Other important relations used in this thesis are

∂xjl = jl−1 −
l + 1

x
jl (C.2)

and

jl−1 + jl+1 =
2l + 1

x
jl . (C.3)

We report here the lowest spherical Bessel functions:

j0(x) =
sinx

x
, (C.4a)

j1(x) =
sinx

x2
− cosx

x
, (C.4b)

j2(x) =
(3− x2) sinx

x3
− 3 cosx

x2
. (C.4c)

Spherical harmonics

In order to prove the useful relation∫︂
dΩY ∗

lm(1− µ2)
|r|
2 eirϕeixµ =

√︁
4π(2l + 1)

√︄
(l + |r|)!
(l − |r|)!

iril
jl(x)

x|r|
δmr . (C.5)

we proceed as in App. A2 in [65]. Relation (C.5) for r = 2 is equivalent to (5.97), which is
used in the thesis for the calculation of the tensor contributions to the angular power spectrum
associated with the relative variation of the luminosity distance. Following the notation and
convention of [65], the spherical harmonics which appear in (C.5) are given by

Ylm(θ, ϕ) = ϵm

√︄
2l + 1

4π

(l − |m|)!
(l + |m|)!

P
|m|
l (cos θ)eimϕ (C.6)
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where Pm
l are the associated Legendre polynomials, ϵm = 1 if m > 0 and ϵm = (−1)m if m ⩽ 0.

The Legendre polynomials satisfy the differential equation

Pm
l (x) = (−1)m(1− x2)

m
2

dm

dxm
Pl(x) (m ≥ 0) . (C.7)

Spherical harmonics are orthonormal, with normalization∫︂
dΩY ∗

lm(n)Yl′m′(n) = δll′δmm′ . (C.8)

In order to prove (C.5) we will also use the plane wave expansion in spherical harmonics

eik·x = 4π
∑︂
lm

iljl(kx)Y
∗
lm(k̂)Ylm(x̂) . (C.9)

By using the definition (C.6) of spherical harmonics the left-hand side of (C.5) becomes∫︂
dΩY ∗

lm(1− µ2)
|r|
2 eirϕeixµ

= ϵm

√︄
2l + 1

4π

(l − |m|)!
(l + |m|)!

∫︂ 2π

0
dϕ eiϕ(r−m)

∫︂ π

0
dθ sin θ(1− cos2 θ)

|r|
2 P

|m|
l (cos θ)eix cos θ

= ϵr

√︄
2l + 1

4π

(l − |r|)!
(l + |r|)!

2πδrm

∫︂ 1

−1
dµ (1− µ2)

|r|
2 P

|r|
l (µ)eixµ

= ϵr
√︁

4π(2l + 1)

√︄
(l − |r|)!
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δrm
1

2

∫︂ 1

−1
dµ (1− µ2)

|r|
2 P

|r|
l (µ)eixµ

= ϵr
√︁
4π(2l + 1)

√︄
(l − |r|)!
(l + |r|)!

δrmI
|r|
l (x) ,

(C.10)

where µ = cos θ and

I
|r|
l (x) =

1

2

∫︂ 1

−1
dµ (1− µ2)

|r|
2 P

|r|
l (µ)eixµ . (C.11)

Comparing (C.10) and (C.5) and since (−1)ri|r| = ir for r < 0, we deduce that we have to prove
the following relation:

I
|r|
l (x) =

(l + |r|)!
(l − |r|)!

i|r|+l jl(x)

x|r|
. (C.12)

In order to prove it we proceed by induction: we show that if (C.12) holds for a generic r > 0,
the it holds for r + 1. We start by proving that (C.5) holds for r = 0. Therefore we have to
prove that ∫︂

dΩY ∗
lmeixµ =

√︁
4π(2l + 1)iljl(x)δm0 . (C.13)

Using (C.8) and given that

eix cos θ = 4π
∑︂
lm

iljl(x)Y
∗
lm(ẑ)Ylm(n) , (C.14)
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we find ∫︂
dΩY ∗

lmeixµ =

∫︂
dΩY ∗

lm(n)4π
∑︂
l′m′

iljl(x)Y
∗
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= 4π
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∗
l′m′(ẑ)δll′δmm′

= 4πiljl(x)Y
∗
lm(ẑ)

= 4πiljl(x)

√︃
2l + 1

4π
δm0 ,

(C.15)

which is exactly (C.13).
Having proved that (C.5) holds for r = 0, we proceed by showing that, if it holds for r > 0,

then it holds for r + 1. By inserting (C.7) in (C.11) we obtain

Ir+1
l (x) =
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2
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,

(C.16)

where in the last passage we integrated by parts. Proceeding with the calculations we find

Ir+1
l (x) =

1

2
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−1
dµ (−1)r
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Pl(µ)
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x)]ie
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x)]iI

r
l (x) ,

(C.17)

where in the second and last passages we used respectively (C.7) used (C.11). Assuming that
(C.5) holds for r, we insert (C.12) in (C.17). We obtain

Ir+1
l (x) =

(l + r)!

(l − r)!
ir+l+1[2(r + 1)∂x + x(1 + ∂2

x)]
jl(x)

xr
. (C.18)

Using the differential equation (C.1) we find

[2(r + 1)∂x + x(1 + ∂2
x)]

jl(x)
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= −2r(r + 1)

jl(x)
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+ l(l + 1)

jl(x)

(xr+1)

= (l + r + 1)(l − r)
jl(x)
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(C.19)

Therefore (C.18) becomes

Ir+1
l (x) =

(l + r)!

(l − r)!
ir+l+1(l + r + 1)(l − r)

jl(x)

xr+1

=
(l + r + 1)!

(l − r − 1)!
ir+l+1 jl(x)

xr+1
,

(C.20)

which proves the hypothesis (C.12).
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