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Introduction

Homological algebra studies chain complexes, meaning objects of the form

· · · A−2 A−1 A0 A1 · · ·d−3 d−2 d−1 d0 d1

where Ai are objects in an abelian category A and di+1 ◦ di = 0. A morphism of chain
complexes f : A• → B• is a commutative diagram of the form

· · · A−1 A0 A1 · · ·

· · · B−1 B0 B1 · · ·

d−2

f−1

d−1

f0

d0

f1

d1

d−2 d−1 d0 d1

Chain complexes and chain maps form an abelian category C(A) so one can talk about
exact sequenceces

0 A• B• C• 0 .

A basic but fundamental result in homological algebra states that any such short exact
sequence induces a long exact sequence

· · · H iA• H iB• H iC• H i+1A• · · ·

in A (see [5] for the proof). Two complexes in C(A) are considered the same if and only if
they are isomorphic. This notion of equivalence is very strict because we are more inter-
ested in the isomorphism classes of the cohomology objects rather than the isomorphism
classes of the terms themselves. A more natural notion of equivalences between complexes
is the notion of quasi-ismorphism: we want two complexes to be considered the same if
and only if there exists a morphism between them that induces isomorphisms on all the
cohomology objects. This leads to the definition of the derived category D(A). The goal
of the first chapter is to construct the derived category as the localization of the homotopy
category with respect to all quasi-isomorphisms. We will show that a morphism in the
derived category can be represented as a roof

C•

A• B•

f φ

where φ is a quasi-isomorphism, modulo a certain equivalence relation. The derived cat-
egory is always an additive category but in general it is not abelian so we can not talk
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about exact sequences in D(A). This problem is fixed by the triangulated structure in
D(A). We will define the notion of triangulated category, prove that the homotopy cat-
egory is triangulated and then prove that the localization functor induces a triangulated
structure in D(A). Then we will show that the notion of distinguished triangle generalizes
exact sequences. In the derived category D(A) one can consider the full subcategory D≤0

of complexes with zero cohomology in positive degree. Similarly one defines D≥0 as the
full subcategory of complexes with zero cohomology in negative degree. The intersection
D≤0 ∩D≥0 is the full subcategory of complexes with non-zero cohomology only (at most)
in degree zero which can be seen to be equivalent to A. The idea of a t-structure is
to replicate this situation in an arbitrary triangulated category by considering a pair of
full subcategories (D≤0,D≥0) and imposing certain properties on them so that the heart
D♥ = D≤0 ∩ D≥0 is abelian. This allows us to construct full abelian subcategories of
triangulated categories hence also of D(A). In the second chapter we give the definition of
a t-structure and prove that the heart is abelian. Then we show that t-structures induce
special cohomological functors called cohomology functors that generalize the standard
cohomology functor H0 and explain the notion of t-exactness. Then we describe some
of the most important constructions of t-structures: in particular the gluing technique
used by Beilinson, Bernstein and Deligne in their paper [1] on perverse sheaves and the
t-structure induced on D(A) by a torsion theory on A. We conclude with a brief discussion
on the concept of derived equivalence and its strong relation to t-structures.
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Chapter 1

The derived category D(A) and its
triangulated structure

1.1 Localization of categories

In this chapter I will introduce the notion of derived category of an abelian category and I
will prove some basic properties. A derived category can be thought of as an ideal setting
in which to do homological algebra. Given an abelian category A it is natural to consider
the category C(A) whose objects are chain complexes and the morphism are chain maps.
However in this category complexes are studied up to isomorphism, which is a very strict
notion of equivalence. It turns out that the most suitable notion for equivalence between
two complexes is the notion of quasi-isomorphism.

Definition 1.1.1 (Quasi-isomorphism). A map q : A• → B• is a quasi-isomorphism if
the induced map Hnq is an isomorphism for all n.

We want a category in which two complexes are considered the same if and only if they are
quasi-isomorphic. That is to say we want a morphism to be invertible if and only if it is
a quasi-isomorphism. The process of formally adjoining inverses to certain morphisms in
a category is called localization. This process is very general and can be defined through
a universal property in the following way:

Definition 1.1.2 (Localization). Let C be a category and S a class of morphisms. The
localization of C with respect to S is a category C[S−1] together with a functor Q : C →
C[S−1] such that the following two properties hold:

(L1) Qf is an isomorphism for every f ∈ S.

(L2) Q is universal with respect to the previous condition. That is given a functor
F : C → D such that Ff is an isomorphism for all f ∈ S then there exists a func-
tor F [S−1] : C[S−1] → D unique up to natural equivalence such that the following
diagram commutes.

C C[S−1]

D

Q

F
F [S−1]
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1.1. Localization of categories

This construction is very general but it is not always well-behaved. Ideally we would want
to represent morphisms in C[S−1] as ”fractions” of morphisms, where the numerator is a
morphism in C and the denominator is in S. However this in general is not true because
for example a morphism in C[S−1] of the form s−1

1 fs−2
2 can’t apriori be written in the form

s−1
3 f ′ because there is no property of commutativity between morphisms. This observation

leads to the following definition:

Definition 1.1.3. A class of morphism S is a multiplicative system if the following prop-
erties hold:

(MS1) the composition of two composable elements of S is in S. The arrow idX is in S for
every object X of C.

(MS2) Given a map φ ∈ S and two maps X → X ′′, Y ′ → Y there is always a commutative
diagram

X ′ X X ′′

Y ′ Y Y ′′

φ′ φ φ′′

such that φ′, φ′′ ∈ S.

(MS3) Given f, g : X → Y maps in C there exists a map φ ∈ S such that f ◦ φ = g ◦ φ if
and only if there exists a map ψ ∈ S such that ψ ◦ f = ψ ◦ g.

If S is a multiplicative system we get a nice represetation of the morphisms in C[S−1]:
given two objects X,Y of C a morphism between them in C[S−1] is an equivalence class
of diagrams

Y ′

X Y

f φ

such that φ ∈ S, modulo the following equivalence relation: (f1, φ1) ∼ (f2, φ2) if there
exists a commutative diagram

Y1

X Y3 Y

Y2

f3
f1

f2

φ1

φ2
φ3

such that φ3 ∈ S. In other words a morphism in the localized category is an equivalence
class of fractions of morphisms such that the ”denominator” is in S. Given morphisms
(f1, φ1) : X → Y and (f2, φ2) : Y → Z in C[S−1] the composition is the morphism
(f3 ◦ f1, φ3 ◦ φ2) where f3 and φ3 are any two maps such that φ3 ∈ S and the following
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1.1. Localization of categories

square commutes

C

A B

X Y Z

f3 φ3

f1

φ1 f2

φ2

This characterization is made precise in the following theorem.

Theorem 1.1.1. Let C be a locally small category and S a multiplicative system. Then:

(a) There exists a category C′ such that Obj(C′) = Obj(C) and the morphisms in C′ are
equivalence classes of diagrams as described above

(b) The category C′ is the localization of C with respect to S

Proof. (a) First of all I need to prove that the relation I defined earlier is in fact an
equivalence relation. The reflexive and symmetric properties are obvious. To prove
the transitivity suppose (f1, φ1) ∼ (f2, φ2) and (f2, φ2) ∼ (f3, φ3) This means there
exists a diagram

Z

T1 T2

A B C

X Y,

z1 z2

t1 t2 t3 t4

f1 f2

f3

φ3

φ1

φ2

such that t1 ◦ f1 = t2 ◦ f2, t1 ◦ φ1 = t2 ◦ φ2, t3 ◦ f2 = t4 ◦ f3, t4 ◦ φ3 = t3 ◦ φ2 and
t2, t4 ∈ S. Furthermore (MS2) implies that I can choose Z such that z2 ◦ t3 = z1 ◦ t2
and z2 ∈ S. I need to prove that z1 ◦ t1 ◦f1 = z2 ◦ t4 ◦f3 and z1 ◦ t1 ◦φ1 = z2 ◦ t4 ◦φ3.

z1 ◦ t1 ◦ f1 = z1 ◦ t2 ◦ f2

= z2 ◦ t3 ◦ f2

= z2 ◦ t4 ◦ f3

Similarly

z2 ◦ t4 ◦ φ3 = z2 ◦ t3 ◦ φ2

= z1 ◦ t2 ◦ φ2

= z1 ◦ t1 ◦ φ1

And so (f1, φ1) ∼ (f3, φ3). This shows that ∼ is in fact an equivalence relation. Now
I need to prove that the composition is well defined, always exists and is associative.
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1.1. Localization of categories

The existence is a direct consequence of (MS2). To prove that the composition is
well defined consider the following diagram

T

C C ′

A B,

X Y Z

t1 t2

c1 c3
c4c2

f1

φ1 f2

φ2

in which c1 ◦ φ1 = c2 ◦ f2 , c3 ◦ φ1 = c4 ◦ f2 and c2, c4 ∈ S.

As a consequence of (MS2) I can choose T such that t1 ◦ c2 = t2 ◦ c4. I need to prove
that t1 ◦ c1 ◦ f1 = t2 ◦ c3 ◦ f1 and t2 ◦ c4 ◦ φ2 = t1 ◦ c2 ◦ φ2. The second condition
obviously holds, as for the first:

t2 ◦ c4 = t1 ◦ c2

t2 ◦ c4 ◦ f2 = t1 ◦ c2 ◦ f2

t2 ◦ c3 ◦ φ1 = t1 ◦ c1 ◦ φ1

φ′1 ◦ t2 ◦ c3 = φ′1 ◦ t1 ◦ c1 (MS3)

φ′1 ◦ t2 ◦ c3 ◦ f1 = φ′1 ◦ t1 ◦ c1 ◦ f1

So now by replacing T with T ′ and t1, t2 with φ′1 ◦ t1, φ′1 ◦ t2 we are done.

To prove that the composition is associative we use a similar argument. Consider
the following diagram

Z

T1 T2

S1 S2

A B C

X1 X2 X3, X4

z1 z2

t3t2

s1

t1

s2 s3 s4

t4

f1

φ1 f2 φ2 f3

φ3

in which s1 ◦φ1 = s2 ◦ f2, s3 ◦φ2 = s4 ◦ f3, t1 ◦φ1 = t2 ◦ s3 ◦ f2, t4 ◦ f3 = t3 ◦ s2 ◦φ2

and s2, s4, t2, t4 ∈ S.

Furthermore I can choose Z such that z1 ◦ t2 ◦ s4 = z2 ◦ t4 and z2 ∈ S.
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1.1. Localization of categories

To see this simply apply (MS2) to the red diagram and notice that t2 ◦ s4 ∈ S as a
consequence of (MS1). I need to prove that z1 ◦ t1 ◦ f1 = z2 ◦ t3 ◦ s1 ◦ f1.

z1 ◦ t2 ◦ s4 = z2 ◦ t4
z1 ◦ t2 ◦ s4 ◦ f3 = z2 ◦ t4 ◦ f3

z1 ◦ t2 ◦ s3 ◦ φ2 = z2 ◦ t3 ◦ s2 ◦ φ2

φ′2 ◦ z1 ◦ t2 ◦ s3 = φ′2 ◦ z2 ◦ t3 ◦ s2 (MS3)

φ′2 ◦ z1 ◦ t2 ◦ s3 ◦ f2 = φ′2 ◦ z2 ◦ t3 ◦ s2 ◦ f2

φ′2 ◦ z1 ◦ t1 ◦ φ1 = φ′2 ◦ z2 ◦ t3 ◦ s1 ◦ φ1

φ′1 ◦ φ′2 ◦ z1 ◦ t1 = φ′1 ◦ φ′2 ◦ z2 ◦ t3 ◦ s1 (MS3)

φ′1 ◦ φ′2 ◦ z1 ◦ t1 ◦ f1 = φ′1 ◦ φ′2 ◦ z2 ◦ t3 ◦ s1 ◦ f1

So by replacing Z with Z ′ and z1, z2 with φ′1 ◦ φ′2 ◦ z1, φ
′
1 ◦ φ′2 ◦ z2 we are done. To

see that (idX , idX) is the identity for any object X consider the following diagram:

Z ′ Z

Z ′ X Z

Y ′ X X Y

id φ′ f id

f ′

φ′ id id f

φ

This shows that C′ is in fact a category.

(b) First of all we need to define the localizing functor Q : C → C′. We define Q such
that it maps every object of C to itself and Qf = (f, id). To prove that Q is a
functor we need to check that it maps the identity to the identity and it respects the
composition law. The fact that it maps the identity to the identity is obvious. The
fact that it respects the composition is clear when looking at the following diagram:

Z

Y Z

X Y Z

f Id

g

id f

id

.

So Q is a functor. Now we want to show that it maps elements of S into isomor-
phisms. So let s : X → Y be an element of S. We know that Qs = (s, id). An
obvious candidate for the inverse is (id, s). The following diagram shows that this is
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1.1. Localization of categories

the correct choice.

Y Y

Y Y Y

Y X Y X

X

id

id id id id

id
s

id

s id id

s

id
s

Now let F : C → D be a functor such that Fs is an isomorphism for all s ∈ S.

We need to prove that there exists a unique functor from F [S−1] : C′ → D such
that F [S−1] ◦ Q = F . We define F [S−1] as follows: it maps an object X to FX
and it maps the morphism (f, φ) to (Fφ)−1 ◦ Ff . First of all we need to prove that
it is indipendent from the choice of representatives. Consider two representations
of the same morphism (f1, φ1) ∼ (f2, φ2). There exists a diagram that exhibits the
equivalence:

T

Z Z ′

X Y

t1 t2

f1

f2 φ1

φ2

We know that

t1 ◦ f1 = t2 ◦ f2 =⇒ Ft1 ◦ Ff1 = Ft2 ◦ Ff2

t1 ◦ φ1 = t2 ◦ φ2 =⇒ Ft1 ◦ Fφ1 = Ft2 ◦ Fφ2

Now using the fact that Ft2, Fφ1, Fφ2 are invertible we get:

Ff2 = (Ft2)−1 ◦ Ft1 ◦ Ff1 Ft1 = Ft2 ◦ Fφ2 ◦ (Fφ1)−1.

Substituting we get

Ff2 = (Ft2)−1 ◦ Ft2 ◦ Fφ2 ◦ (Fφ1)−1 ◦ Ff1

= Fφ2 ◦ (Fφ)−1 ◦ Ff1

Therefore

(Fφ2)−1 ◦ Ff2 = (Fφ1)−1 ◦ Ff1

It is obvious that F [S−1] maps the identity to the identity. To show that it respects
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1.2. Constructing the derived category D(A)

the composition consider the following diagram:

C

A B

X Y Z

c1 c2

f1

φ1 f2

φ2

The square is commutative and c2 ∈ S so we get

(Fφ2)−1 ◦ Ff2 ◦ (Fφ1)−1 ◦ Ff1 = (Fφ2)−1 ◦ (Fc2)−1 ◦ Fc1 ◦ Ff1

We have proved that F [S−1] is a well defined functor furthermore it is trivial to check
that F = F [S−1] ◦Q. The only thing left to prove is that F [S−1] is the only functor
that makes the triangle commute. Every such functor must map (f, id) to Ff . But
then for φ ∈ S it must map (id, φ) to (Fφ)−1. Now notice that (id, φ)◦(f, id) = (f, φ)
and so we are done.

1.2 Constructing the derived category D(A)

Now we will apply this general construction to the case of the category C(A) and the
class of quasi-isomorphisms Q. We would like to simply consider C(A)[Q−1] but there is a
problem, which is the fact that Q is not a multiplicative system in C(A). So in order to get
a calculus of fractions for the morphisms in the derived category we need an intermediate
step.

Definition 1.2.1 (homotopy). Let f, g : A• → B• be chain maps. We say that f and g are
homotopic if there exists a family of morphisms kn : An → Bn−1 such that f−g = dk+kd.

Definition 1.2.2 (Homotopy category). Let A be an abelian category. The homotopy
category K(A) is a category such that Obj(K(A)) = Obj(C(A)) and the morphism in
K(A) are chain maps modulo homotopy equivalence.

The theorem that allows us to define D(A) is the following.

Theorem 1.2.1. The class of all quasi-isomorphisms in K(A) is a multiplicative system

To prove this we need some preliminary results. First of all I will make two observations
that I will use throughout this and the following sections.

Remark. Mitchell’ s embedding theorem states that every small abelian category admits
a fully faithful exact embedding in R-Mod for some ring R. Now for any diagram in
an abelian category I can consider the full subcategory whose objects are in the diagram.
This is obviously small and therefore can be embedded in R-Mod. This implies that I can
”chase” elements in any diagram.
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1.2. Constructing the derived category D(A)

Remark. Consider a morphism f : ⊕nj=1Ai → ⊕mk=1Bj where Ai, Bj are objects of an
abelian category. I can represent f as the matrix {fjk} where fjk : Aj → Bk is given by
fjk = pBj ◦ f ◦ iAj The properties of the canonical projections and inclusions imply that if I
have two such functions the composition is given by the matrix product and if an element
of ⊕nj=1Aj is represented as a column vector a = (a1, . . . , an)t then I can identify f(a) with
the usual matrix-vector product.

Now we need some definitions.

Definition 1.2.3 (Shift functor). Let A• be a complex we denote by A[1]• the complex
that satisfies A[1]n = An+1 and dA[1] = −dA This is clearly an endofunctor called the shift
functor. We denote by [n] the n-th iteration of [1]. This makes sense for all integers n
since [1] is invertible.

Definition 1.2.4 (Cone). Let f : A• → B• be a morphism of complexes. The cone of f
is the complex

Cone(f) = A[1]• ⊕B•.

with differentials given by d =

(
−dA 0
f dB

)
. It is immediate to check that

d2 =

(
−dA 0
f dB

)2

=

(
d2
A 0

−fdA + dBf d2
B

)
= 0

and so Cone(f) is a well defined complex.

Definition 1.2.5 (Cylinder). Let f : A• → B• be a morphims of complexes. The cylinder
of f is the complex

Cyl(f) = A• ⊕ Cone(f) = A• ⊕A[1]• ⊕B•.

with differentials given by d =

dA −1 0
0 −dA 0
0 f dB

. Once again it is easy to check that

d2 =

dA −1 0
0 −dA 0
0 f dB

2

=

d2
A 0 0
0 d2

A 0
0 −fdA + dBf d2

B

 = 0

The following lemma relates the notions of cone and quasi-isomorphism.

Lemma 1.2.1. Let f : A• → B•. Then:

(1) There is a short exact sequence of complexes

0 B• Cone(f) A[1]• 0i π .

(2) There is a long exact sequence of cohomology:

. . . Hn(B) Hn(Cone(f)) Hn+1(A) Hn+1(B) . . .Hni Hnπ Hn+1f
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1.2. Constructing the derived category D(A)

(3) f is a quasi-isomorphism if and only if Cone(f) is acyclic.

Proof. (1) is obvious: one checks easily that the maps i, π are chain maps and the exactness
of the sequence is trivial.
The short exact sequence on (1) induces a long exact sequence of cohomology. The only
thing to prove is that the ”Snake lemma” map is Hn+1f . To see this consider an element
of Hn+1(A) represented by an+1 ∈ An+1. Lift it to (an+1, 0) ∈ Cone(f)n, apply d to get
(dAa

n+1, fan+1) and lift it again to fan+1. This is a representative for the image of the
snake lemma map which therefore coincides with Hf .
Now assume Cone(f) acyclic. This means that Hn(Cone(f)) = 0 for all n. Therefore the
long exact sequence of cohomology breaks into the following exact pieces:

0 Hn(A) Hn(B) 0
Hnf

.

But this means exactly that f is a quasi-isomorphism.
Conversely assume that f is a quasi-isomorphism. Then the exactness of the long exact
sequence of cohomology at Hn(A) and Hn(B) for all n implies that Hi and Hπ are zero.
But now the exactness at Hn(Cone(f)) for all n implies that Cone(f) is acyclic.

The following lemma summarizes the main properties of the cone and the cylinder.

Lemma 1.2.2. For any morphism f : A• → B• there exists a commutative diagram

0 B• Cone(f) A[1]• 0

0 A• Cyl(f) Cone(f) 0

A• B•

α

i π

i

β

π

f

such that the rows are exact, α and β are quasi-isomorphisms, βα = idB and αβ ∼ idCyl(f).

Proof. The maps i and π are just the canonical inclusions and projections which can be
readily checked to be chain maps. The exactness of the rows is obvious. Let α be the
canonical inclusion and β be the morphism (f, 0, 1). To see that β is a chain map:

βdCyl(f) =
(
f 0 1

)dA −1 0
0 −dA 0
0 f dB

 =
(
fdA 0 dB

)
= dBβ.

To see that the first square commutes:

βi =
(
f 0 1

)1
0
0

 = f.

The commutativity of the second square is obvious. To see that βα = idB• :

βα =
(
f 0 1

)0
0
1

 = 1.
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1.2. Constructing the derived category D(A)

To see that αβ ∼ idCyl(f):

αβ − Id =

0
0
1

(f 0 1
)
−

1 0 0
0 1 0
0 0 1


=

−1 0 0
0 −1 0
f 0 0


=

 0 0 0
dA −1 0
0 0 0

+

 −1 0 0
−dA 0 0
f 0 0


=

0 0 0
1 0 0
0 0 0

dA −1 0
0 −dA 0
0 f dB

+

dA −1 0
0 −dA 0
0 f dB

0 0 0
1 0 0
0 0 0


= kdCyl(f) + dCyl(f)k

In particular α and β are invertible in K(A) and therefore they are quasi-isomorphisms.

Now we can prove that the class of quasi-isomorphisms forms a multiplicative system in
K(A).

Proof of Theorem 2. We need to check three properties. The first one is obvious. To
prove (MS2) suppose f : A• → B• is a quasi-isomorphism, g : C• → B• and h : A• → D•

morphisms and consider the following diagram in K(A):

Cone(ig)[−1] C• Cone(f)

Cone(f)[−1] A•, B• Cone(f)

Cone(f)[−1] D• Cone(hπ)

π∗

−π

ig

g

π f

h

i

−i

hπ i∗

We need to prove that the two central squares commute up to homotopy equivalence and
that π∗ and i∗ are quasi-isomorphisms. To prove the commutativity of the first square:

gπ∗ + fπ =
(
g f 0

)
=
(
g f dB

)
+
(
0 0 −dB

)
=
(
0 0 −1

)dC 0 0
0 dA 0
−g −f −dB

+ dB
(
0 0 −1

)
= hdCone(ig)[−1] + dBh

It is easy to see that h =
(
0 0 −1

)
is a family of morphisms from Cone(ig)[−1]n+1 =

Cone(ig)n to Bn and therefore induces a well-defined homotopy between gπ∗ and −fπ.
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1.2. Constructing the derived category D(A)

Similarly to prove the commutativity of the second square:

i∗h+ if =

0
f
h


=

−dAf
h

+

dA0
0


=

−dA 0 0
f dB 0
h 0 dD

1
0
0

+

1
0
0

 dA

= dCone(hπ)h
′ + h′dA

and once again h′ is a well-defined homotopy. To prove that π∗ is a quasi-isomorphism
notice that f quasi-isomorphism implies Cone(f) acyclic. Now consider the short exact
sequence

0 Cone(f)[−1] Cone(ig) C[1]• 0
π∗

The fact that Cone(f) is acyclic implies that the induced long exact sequence of cohomol-
ogy breaks into the following exact pieces:

0 HnCone(ig) HnC• 0
Hnπ∗ ∀n

But this shows that π∗ is a quasi-isomorphism. The fact that i∗ is a quasi-isomorphism
can be seen in the same way. This concludes the proof of (MS2).

Now let f : A• → B• be a morphism in K(A) and s : B• → C• a quasi-isomorphism such
that sf = 0. We need to show that there exists a quasi-isomorhism t : D• → A• such
that ft = 0. To prove this let hn : An → Cn−1 be a homotopy between sf and the zero
morphism and consider the following diagram:

Cone(s)[−1] B• C•

Cone(s)[−1] A• Cone(g)[−1]

π s

g

f

t

Let g be the morphism

(
f
−h

)
. We need to show that it is a chain map:

gdA − dCone(s)[−1]g =

(
f
−h

)
dA −

(
dB 0
−s −dC

)(
f
−h

)
=

(
fdA − dBf

sf − hdA − dCh

)
= 0

13



1.2. Constructing the derived category D(A)

Now we need to show that ft and the zero morphism are homotopic. Clearly it is enough
to show that gt is homotopic to the zero morphism.

gt =

(
f
−h

)(
1 0 0

)
=

(
f 0 0
−h 0 0

)
=

(
f dB 0
−h −s −dC

)
+

(
0 −dB 0
0 s dC

)

=

(
0 −1 0
0 0 −1

)dA 0 0
−f −dB 0
h s dC

+

(
dB 0
−s −dC

)(
0 −1 0
0 0 −1

)
= h′dCone(g)[−1] + dCone(s)[−1]h

′

Once again the fact that s is a quasi-isomorphism shows that Cone(s)[−1] is acyclic,
the long exact sequence of cohomology breaks into pieces and shows that t is a quasi-
isomorphism. The other part of (MS3) can be proved in the same way.

Now we can define the derived category of A.

Definition 1.2.6 (Derived category). Let A be an abelian category, and S the class of all
quasi-isomorphisms in K(A). We define D(A) as follows:

D(A) = K(A)[S−1].

We will conclude this section by proving that the derived category of an abelian category
is always additive, altough not of course abelian in general.

Theorem 1.2.2. Let A be an abelian category, then D(A) is an additive category.

Proof. First of all we need to endow HomD(A)(X,Y ) with an abelian group structure. Let
(f1, φ1), (f2, φ2) ∈ HomD(A)(X,Y ) and consider the following diagram

Z3

Z1 Z2

X Y X

φ4 φ3

f1

φ2φ1

f2

The property (MS2) implies that there exist dotted arrows that make the square commute
and such that φ3 is a quasi-isomorphism. But in a commutative square if three arrows
are quasi-isomorphisms then so is the fourth. But now it is easy to see that (f1, φ1) ∼
(φ4 ◦ f1, φ4 ◦ φ1) and (f2, φ2) ∼ (φ3 ◦ f2, φ4 ◦ φ1). We define (f1, φ1) + (f2, φ2) = (φ4 ◦ f1 +
φ3 ◦ f2, φ4 ◦ φ1). This definition is based on the idea of adding two fractions together for

14



1.2. Constructing the derived category D(A)

example in Q: we simply find a common denominator and then add the numerators. To
show that it is well defined consider the following diagram:

R

Z3 Z4

Z1 Z2

X Y X

r1 r2

φ4

φ6

φ5

φ3

f1

φ1 φ2

f2

Repeating the argument we used to prove that the composition is well defined in the
localized category we can find R such that r1 ◦ φ4 ◦ f1 = r2 ◦ φ6 ◦ f1, r1 ◦ φ3 = r2 ◦ φ5 and
r2 is a quasi-isomorphism. But then

r2 ◦ φ5 ◦ φ2 = r1 ◦ φ3 ◦ φ2

= r1 ◦ φ4 ◦ φ1.

And so the diagram

R

Z3 Z4

X Y

r1 r2

φ4◦f1+φ3◦f2

φ6◦f1+φ5◦f2

φ5◦φ2

φ4◦φ1

exhibits the equivalence (φ4 ◦ f1 +φ3 ◦ f2, φ4 ◦φ1) ∼ (φ6 ◦ f1 +φ5 ◦ f2, φ5 ◦φ2) as required.
The commutativity follows at once from the definition. It is easy to check that (0, id)
is the neutral element and that the inverse of (f, φ) is (−f, φ).The associativity is also
easy to see: given three morphisms in HomD(A) I can always reduce them to a common
denominator. But then the denominator of the sum is just the common denominator
and the numertor of the sum is the sum of the numerators. Since the sum in K(A) is
associative we are done. Next we need to prove that the composition is bilinear. To see
this consider (f1, φ1), (f2, φ2) ∈ HomD(A)(A,B) and (g, ψ) ∈ HomD(A)(B,C). We already
observed that we can always reduce ourselves to the case where the denominators are the
same so we can assume φ1 = φ2. But this implies that (g, ψ) ◦ (f1, φ1) = (t1 ◦ f1, t2 ◦ ψ)
and (g, ψ) ◦ (f2, φ1) = (t1 ◦ f2, t2 ◦ ψ) with t2 quasi-isomorphism. Therefore

(g, ψ) ◦ (f1, φ1) + (g, ψ) ◦ (f2, φ2) = (t1 ◦ f1, t2 ◦ ψ) + (t1 ◦ f2, t2 ◦ ψ)

= (t1 ◦ f1 + t1 ◦ f2, t2 ◦ ψ)

= (t1 ◦ (f1 + f2), t2 ◦ ψ)

= (g, ψ) ◦ ((f1, φ1) + (f2, φ2))

To conclude that D(A) is additive it is enough to show that for every pair of objects in
A,B ∈ D(A) the product A × B exists. We claim that for any A,B the object A × B

15
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(meaning the product of A and B in K(A)) is the required product. Furthermore the
canonical projections are given by (pA, id) and (pB, id). We have to show that A × B
satisfies the universal property so let Z be equipped with morphism (fA, φA) : Z → A and
(fB, φB) : Z → B and consider the following diagram

A B

A A×B B

Z

T1 T2

T1 × T2

φA

pA pB

φB
fA fB

fA⊕fB

t1 t2

.

Now consider the map in (φA, φB) : A × B → T1 × T2 in K(A). It is clear that it is a
quasi-isomorphisms since φA and φB are quasi-isomorphisms. But then we have shown
the existence of a morphism (fA ⊕ fB, φA ⊕ φB) : Z → A × B in D(A). To see that this
morphism satisfes the universal property consider the following diagram:

T1

A T1 × T2

A A×B Z

T1

φA p1

φA

pA φA⊕φB
fA⊕fB

fA

This shows that (fA ⊕ fB, φA ⊕ φB) ◦ (pA, Id) = (fA, φA). The other condition can be
checked in the same way. Now we need to show uniqueness. Suppose that there is another

morphism

C

Z A×B

c1 c2 that makes the diagram of the universal property

commute. This means that we can construct the following commutative diagram:

X1 C X2

A S1 Z S2 B

T1 T2

φA

c1

fA fB φB

16
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But then the induced maps C → S1 × S2 and T1 × T2 → S1 × S2 make the following
diagram commute:

T1 × T2

Z S1 × S2 A×B

C

fA⊕fB

c1

φA⊕φB

c2

Therefore the two morphism are actually the same and so we have proved uniqueness.

1.3 Triangulated categories

The goal of this section is to define triangulated categories and prove some basic properties.

Definition 1.3.1. A triangulated category is a triple (T , T,F) wih T an additive category,
T automorphism of T called the translation functor and F a family of distinguished tri-
angles satisfying certain properties. I will write X[n] for TnX and f [n] for Tnf whenever
the translation functor is obvious from the context. A triangle is a diagram of the form

X Y Z X[1]u v w

A morphism of triangles is a diagram of the form

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

f

u v

g

w

h f [1]

u′ v′ w′

The distinguished triangles are triangles that must satisfy the following properties:

(TR1) (a) X X 0 X[1]id is a distinguished triangle

(b) Any triangle isomorphic to a distinguished triangle is distinguished.

(c) Any morphism X Yu can be complete to a distinguished triangle

X Y X X[1].u v w

(TR2) A triangle X Y Z X[1]u v w is distinguished if and only if the

triangle Y Z X[1] Y [1]v w −u[1]
is distinguished.

(TR3) Given two distinguished triangles and two morphisms f : X → X ′ and g : Y → Y ′

there exists h : Z → Z ′ such that the following diagram is a morphism of triangles.

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

f g h f [1]

17
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(TR4) Given 3 distinguished triangles (α1, α2, α3), (β1, β2, β3), (γ1, γ2, γ3) such that β1◦α1 =
γ1 there exists a distinguished triangle (δ1, δ2, δ3) such that the following diagram
commutes:

X Y U X[1]

X Z V X[1]

W W Y [1]

Y [1] U [1]

α1 α2

β1 δ1

α3

γ1 γ2

β2 δ2

δ3

α1[1]

β3

β3

δ3

α2[1]

.

A category satisfying only the first three axioms is said to be pre-triangulated.

The axiom (TR4) is usually called the octahedron axiom because of the following way of
drawing the previous diagram:

Z

W

Y V

X

U

β2
γ2

β3
δ3

β1

α2

γ3

δ2

α1

γ1

δ1

α3

Lemma 1.3.1. Let T be a pre-triangulated category and let ∆ = X Y Z X[1]u v w

be a distinguished triangle. Then for any object U of T the following sequences are exact :

. . . Hom(U,X[i]) Hom(U, Y [i]) Hom(U,Z[i])

Hom(U,X[i+ 1]) . . . ,

. . . Hom(X[i+ 1], U) Hom(Z[i], U) Hom(Y [i], U)

Hom(X[i], U) . . .

u∗[i] v∗[i]

w∗[i]

w∗[i] v∗[i]

u∗[i]

18
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Proof. I will prove the exactness of the first sequence, a similar argument applies for the
second as well. First notice that it is enough to show exactness at the point Hom(U, Y [i])
for all i. Indeed if this holds then by applying the result to ∆ and the two distinguished
triangles obtained from it applying (TR2) twice we are done. The first step of the proof
consists in showing that the composition vu = 0. To do this consider the triangle ∆′ =

(X X 0 X[1])id and complete id, u to a morphism of triangles (id, u, h) : ∆′ → ∆.

X X 0 X[1]

X Y Z X[1]

u h

u v w

The map h must be the zero map buth then the commutativity of the middle square
implies vu = 0. This also shows that v∗[i] ◦ u∗[i] = 0 for all i. Now let f ∈ ker(v∗[i]). This
means v[i] ◦ f = 0. Now consider the following diagram:

U U 0 U [1]

X Y Z X[1]

g f g[1]

u v w

We can always find g that completes the diagram to a morphism of triangles. In fact I
can rotate the diagram using the axiom (TR2) then use (TR3) to construct g[1] and then
simply recover g = g[1][−1]. But now the commutativity of the first square tells me that
f = ug which is equivalent to saying that f ∈ Im(u∗[i]).

Corollary. Let T be pre-triangulated, suppose we are in the situation of axiom (TR3) and
that f, g are isomorphisms. Then so is h. In particular this shows that the completion of
a morphism to a triangle is unique up to isomorphism of triangles.

Proof. The diagram in (TR3) induces the following commutative diagram

Hom(Z ′, X) Hom(Z ′, Y ) Hom(Z ′, Z) Hom(Z ′, X[1]) Hom(Z ′, Y ′[1])

Hom(Z ′, X ′) Hom(Z ′, Y ′) Hom(Z ′, Z ′) Hom(Z ′, X ′[1]) Hom(Z ′, Y ′[1])

f∗ g∗ h∗ f [1]∗ g[1]∗

Now the previous lemma implies that the rows are exact and we know that f and g
are isomorphisms. This means we can apply the five lemma and get that h∗ is also an
isomorphism. In particular there exists φ : Z ′ → Z such that hφ = IdZ′ . Applying the
same reasoning to the other exact sequence we get a map ψ : Z ′ → Z such that ψh = IdZ .
This shows that h is an isomorphism as required.

Now we will give an alternative description of axiom (TR4) and prove that it is equiv-
alent to (TR4) modulo the first three axioms.

Lemma 1.3.2. Let T be a triangulated category and consider the following:
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(TR4’) Given morphisms α1 : X → Y and β1 : Y → Z I can complete them to an octahedron
diagram.

Then T satisfies (TR4) if and only if it satisfies (TR4’).

Proof. It is clear that (TR4) implies (TR4’), in fact given α1 and β1 I can complete them
and β1 ◦ α1 to three distinguished triangles and then apply (TR4). Now we need to show
that (TR4’) implies (TR4). Let ∆1 = (α1, α2, α3),∆2 = (β1, β2, β3) and ∆3 = (γ1, γ2, γ3)
be three distinguished triangles. Now use axiom (TR4’) to complete α1, β1 to the following
diagram:

X Y U ′ X[1]

X Z V ′ X[1]

W ′ W ′ Y [1]

Y [1] U [1]

α1 α′2

β1 δ′1

α′3

γ1 γ′2

β′2 δ′2

γ′3

α1[1]

β′3

β′3

δ′3

α2[1]

If we set ∆′1 = (α1, α
′
2, α
′
3),∆′2 = (β1, β

′
2, β
′
3) and ∆′3 = (γ1, γ2, γ3) then ∆1 and ∆′1 are

completions of the same morphism to a distinguished triangle so they are isomorphic.
This means that there exists an isomorphism φ1 : U → U ′ such that α′2 = φ1 ◦ α2 and
α3 = α′3 ◦ φ1. Similarly there exist isomorphisms φ2 : V → V ′ and φ3 : W → W ′

such that β′2 = φ3 ◦ β2, β3 = β′3 ◦ φ3, γ′2 = φ2 ◦ γ2 and γ3 = γ′3 ◦ φ2. Now we set
δ1 = φ−1

2 ◦ δ′1 ◦ φ1, δ2 = φ−1
3 ◦ δ′2 ◦ φ2 and δ3 = φ−1

1 [1] ◦ δ′3 ◦ φ3 and we claim that this are
the required maps. The triangle (δ1, δ2, δ3) is obviously distinguished so we only need to
show that the following diagram commutes:

X Y U X[1]

X Z V X[1]

W W Y [1]

Y [1] U [1]

α1

?

α2

β1 δ1

α3

γ1 γ2

β2 δ2

δ3

α1[1]

β3

β3

δ3

α2[1]

For example to see the commutativity of ?:

δ1 ◦ α2 = φ−1
2 ◦ δ

′
1 ◦ φ1 ◦ α2

= φ−1
2 ◦ δ

′
1 ◦ α′2

= φ−1
2 ◦ γ

′
2 ◦ β1

= γ2 ◦ β1

The commutativity of the other squares can be proved in the same way.
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1.4 The homotopy category K(A) is triangulated

Now we want to show that the homotopy category K(A) is triangulated. An obvious
choice for the translation functor is the shift functor. We say that a triangle in K(A) is
distinguished if it is isomorphic to a triangle of the form:

A• B• Cone(f) A[1]•
f i π

First we need a lemma.

Definition 1.4.1 (semi-split sequence). A short exact sequence of complexes 0 A• B• C• 0
f g

is said to be semi-split if there exist maps hn : Cn → Bn not necessarily forming a chain
map such that gnhn = idCn

Lemma 1.4.1. Any distinguished triangle in K(A) is isomorphic to a triangle

A• B• C• A[1]• such that 0 A• B• C• 0 is a semi-split short ex-
act sequence. Conversely every semi-split short exact sequence in C(A) can be completed
to a distinguished triangle in K(A)

Proof. For the first part consider the following diagram:

A• B• C• A[1]

A• B• Cone(f) A[1]

A• Cyl(f) Cone(f) A[1]

f g h

f i

α

π

∼=

i π π

We already proved that α is invertible in K(A) with inverse β and that βi = f . This
implies that the first and last triangles in the diagram are isomorphic but now simply
notice that 0 A• Cyl(f) Cone(f) 0 is a semi-split short exact sequence.

Now let 0 A• B• C• 0u v be a semi-split short exact sequence. Since it is semi-
split we can assume Bn = An ⊕ Cn, the maps An → Bn and Bn → Cn the canonical

inclusions and projections. The differential dB can be written as

(
dA −f
g dC

)
.The fact that

u is a chain map implies:

0 = dBu− udA

=

(
dA −f
g dC

)(
1
0

)
−
(

1
0

)
dA

=

(
0
g

)
.
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This implies g = 0. Furthermore the fact that dB is a chain map implies:

0 = d2
B

=

(
dA −f
0 dC

)2

=

(
d2
A −dAf − fdC
0 d2

C

)
This implies that f : C• → A[1]• is a chain map. The map f completes the semi-split
short exact sequence to a triangle. Now we need to show that it is distinguished. To see
this consider the following diagram

A• (A⊕ C)• C• A[1]•

A• (A⊕ C)• Cone(u) A[1]•

u

1

v

h

f

u i

2

π

3

where h =

f0
1

. To see that h is a chain map:

hdC − dCone(u)h =

f0
1

 dC −

−dA 0 0
1 dA −f
0 0 dC

f0
1


=

fdC0
dC

−
−dAff − f

dC


= 0

The commutativity of squares 1 and 3 are obvious. To see the commutativiy of 2 :

hv − i =

f0
1

(0 1
)
−

0 0
1 0
0 1


=

 0 f
−1 0
0 0


=

−dA f
0 0
0 0

+

dA 0
−1 0
0 0


=

−1 0
0 0
0 0

(dA −f
0 dC

)
+

−dA 0 0
1 dA −f
0 0 dC

−1 0
0 0
0 0


= kdA⊕C + dCone(u)k
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To see that h is an isomorphism in K(A) let π : Cone(u)→ C• be the canonical projection.
Clearly πh = idC• . To see that hπ ∼ id:

Id− hπ =

1 0 0
0 1 0
0 0 1

−
f0

1

(0 0 1
)

=

1 0 −f
0 1 0
0 0 0


=

1 dA −f
0 0 0
0 0 0

+

0 −dA 0
0 1 0
0 0 0


=

0 1 0
0 0 0
0 0 0

−dA 0 0
1 dA −f
0 0 dC

+

−dA 0 0
1 dA −f
0 0 dC

0 1 0
0 0 0
0 0 0


= k′dCone(u) + dCone(u)k

′

Theorem 1.4.1. The homotopy category K(A) with the shift functor and the distinguished
triangles defined above is triangulated.

Proof. We need to check the four axioms of a triangulated category:

(TR1) The conditions (b) and (c) follow at once from the definition of distinguished triangle
in K(A). To prove (a) consider the following diagram

X• X• 0 X[1]•

X• X• Cone(id) X[1]•

id

id i π

We claim that this is an isomorphism of triangles. The only non trivial things are the
fact that the middle square commutes and that the map 0→ Cone(id) is invertible
in K(A). To see that the middle square commutes:

i− 0 =

(
0
1

)
=

(
−dX

1

)
+

(
dX
0

)
=

(
−dX 0

1 dX

)(
1
0

)
+

(
1
0

)
dX

= dCone(id)h+ hdX
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To see that the map 0 → Cone(id) is an isomorphism it is enough to check that
0Cone(id) ∼ IdCone(id). To see this:

idCone(id) =

(
1 0
0 1

)
=

(
0 −dX
0 1

)
+

(
1 dX
0 0

)
=

(
−dX 0

1 dX

)(
0 1
0 0

)
+

(
0 1
0 0

)(
−dx 0

1 dX

)
= dCone(id)h+ hdCone(id)

(TR2) Suppose A• B• C• A[1]•
f

is distinguished and consider the follow-
ing diagram:

A• B• C• A[1]• B[1]•

A• B• Cone(f) A[1]• B[1]•

B• Cone(f) Cone(i∗) B[1]•

f g

∼=

h −f [1]

f i∗

1

π

θ

−f [1]

i∗ i π

2

Let θ be the morphism

−f1
0

. To see that it is a chain map:

dCone(i∗)θ − θdA[1] =

−dB 0 0
0 −dA 0
1 f dB

−f1
0

+

−f1
0

 dA

=

 dBf
−dA
−f + f

+

−fdAdA
0

 = 0

To see that the square 1 commutes:

i− θπ =

0 0
1 0
0 1

−
−f1

0

(1 0
)

=

f 0
0 0
0 1


=

f dB
0 0
0 0

+

0 −dB
0 0
0 1


=

0 1
0 0
0 0

(−dA 0
f dB

)
+

−dB 0 0
0 −dA 0
1 f dB

0 1
0 0
0 0


= hdCone(f) + dCone(i∗)h
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The commutativity of square 2 is obvious. Now let π∗ : Cone(i∗) → A[1]• be the
map

(
0 1 0

)
. It is clear that π∗θ = idA[1]• . If we show that θπ∗ ∼ idCone(i∗)

we are done. To see this:

id− θπ∗ =

1 0 0
0 1 0
0 0 1

−
−f1

0

(0 1 0
)

=

1 0 0
0 1 0
0 0 1

−
0 −f 0

0 1 0
0 0 0


=

1 f 0
0 0 0
0 0 1


=

1 f dB
0 0 0
0 0 0

+

0 0 −dB
0 0 0
0 0 1


=

0 0 1
0 0 0
0 0 0

−dB 0 0
0 −dA 0
1 f dB

+

−dB 0 0
0 −dA 0
1 f dB

0 0 1
0 0 0
0 0 0


= hdCone(i∗) + dCone(i∗)h

Conversely assume B• C• A[1]• B[1]•
g h −f [1]

is distinguished.

By applying twice what we just proved we get that A[1]• B[1]• C[1]• A[2]
−f [1] −g[1] −h[1]

is distinguished.

But since the shift functor reflects isomorphisms and we have Cone(−f [1]) ∼= Cone(f)[1]

the triangle A• B• C• A[1]•
f g h is also distinguished.

(TR3) We can assume we are in the following situation:

A• B• Cone(u) A[1]•

A′• B′• Cone(u′) A′[1]•

u

f

i

g h

π

f [1]

u′ i π

We need to find the dotted arrow h so that the diagram is a morphism of triangles.
It is easy to see that h = f [1]⊕ g is the correct choice.

(TR4) To prove the octahedral axiom we will rely heavily on Lemma 1.4.1. We can assume
that the triangles (α1, α2, α3), (β1, β2, β3), (γ1, γ2, γ3) are semi-split so that the maps
α1, β1, γ1 are canonical inclusions, the maps α2, β2, γ2 are canonical projections.
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1.4. The homotopy category K(A) is triangulated

Consider the following diagram:

X X ⊕ U U X[1]

X X ⊕ U ⊕W U ⊕W X[1]

W W X[1]⊕ U [1]

X[1]⊕ U [1] U [1]

i

i

π α3

δ1

i π

π

γ3

δ2 i

β3

β3

δ3

?

π

In Lemma 1.4.1 we proved that there is a relation between the differential of the

second object and the third map in a semi-split triangle. If dX⊕U =

(
dX −f
0 dU

)
then α3 = f . Furthermore if we set γ3 =

(
f g′

)
and β3 =

(
g′′

h

)
then since the

second object in both triangles is the same we get g′ = g′′ = g. Now we need to
construct the dotted arrows, prove that the diagram commutes and that (δ1, δ2, δ3)
is distinguished. Let δ1, δ2 be the canonical inclusion and projection. By applying
the relation between the third map and the differential to the triangle (i, π, β3) we
get :

dX⊕U⊕W =

dX −f −g
0 dU −h
0 0 dW

 .

But then since (i, π, γ3) is also semi-split we get

dU⊕W =

(
dU −h
0 dW

)
.

This means that if we set δ3 = h the triangle (δ1, δ2, δ3) is automatically distinguished
so the only thing left to prove is commutativity. All the squares commute trivially
except for ?. To see that this commutes:

iγ3 − β3δ2 =

(
f g
0 0

)
−
(

0 g
0 h

)
=

(
f 0
0 −h

)
=

(
0 0
dU −h

)
−
(
−f 0
dU 0

)
=

(
0 0
1 0

)(
dU −h
0 dW

)
−
(
dX −f
0 dU

)(
0 0
1 0

)
= kdU⊕W + d(X⊕U)[1]k
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1.5 The derived category D(A) is triangulated

Now we want to prove that the derived category is triangulated. Instead of proving it
directly we will show that the localization of a triangulated category with respect to a
class of morphisms S is triangulated provided that S satisfies certain properties.

Definition 1.5.1. Let T be a triangulated category with translation functor T and S a
multiplicative system of morphism. Then S is said to be compatible with the triangulation
if the following properties hold:

(a) s ∈ S if and only if T (s) ∈ S.

(b) In the diagram of axiom (TR3) if f, g ∈ S then h can be required to be in S.

Theorem 1.5.1. Let T be a triangulated category and S a multiplicative system of mor-
phisms compatible with the triangulation. Let TS := T [S−1] and define TS : TS → TS in
the natural way: TS = T on objects and T (f, φ) = (Tf, Tφ). A triangle in TS is distin-
guished if and only if it is ismorphic to the image of a distinguished triangle in T under
the localization functor. Then TS with the translation functor TS and the distinguished
described above is triangulated.

Proof. We need to check that the four axioms of a triangulated category hold.

(TR1) Let (f, φ) : X → Y be a morphism in TS . Complete f to a distinguished triangle

X Z U X[1]
f u w in T . Now consider the following diagram

Z U X[1]

X Y U X[1]

Z U X[1]

X Z U X[1]

f u◦φ

φ

φ w

f u w

This is clearly an isomorphism of triangles. The bottom one is distinguished and
so the top one must be distinguished. This proves that any morphism in TS can be
completed to a distinguished triangle so we are done.

(TR2) This is an obvious consequence of the fact that the rotation of a triangle commutes
with the localization functor.

(TR3) We can assume that the given distinguished triangles are the image of distinguished
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1.5. The derived category D(A) is triangulated

triangles in T .

X ′′ Y ′′ Z ′′ X[1]

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

u′′ v′′ w′′

u

φ1

v

φ2

w

φ3 φ1[1]

u′

f1

v′

f2

w′

f3 f1[1]

In this diagram the bottom two rows are the given distinguished triangles and
for example by u I mean the morphism (u, id) in TS . We are given morphisms
(f1, φ1), (f2, φ2) and we want to find a morphism (f3, φ3) that completes them to
a morphism of triangles. The maps u′′, v′′, w′′ are auxiliary maps that I will now
construct. The first part of the proof consists in showing that up to replacing the
representation of the morphism (f2, φ2) it is always possible to find u′′ such that the
squares XX ′′Y ′′Y and X ′X ′′Y ′′Y ′ commute. To see this first consider the following
diagram:

X ′′ Y ′′1

X ′ Y ′′

t

φ2◦u′

φ s

The property (MS2) of a multiplicative system implies the existence of the dotted
arrows that make the previous diagram commute and such that s ∈ S. It is obvious
that (f2, φ2) and (s ◦ f2, s ◦ φ2) so I can replace Y ′′ with Y ′′1 and set u′′ = t. This
makes the square XX ′′Y ′′Y commutative. The square XX ′Y ′Y may not commute
in T but we know that it commutes in TS . Now notice that (u′′ ◦ f1, φ2) represents
u′◦(f1, φ1) and (f2◦u, φ2) represents (f2, φ2)◦u. The fact that the square commutes
means that there exists Y ′′2 and maps t1, s1 : Y ′′ → Y ′′2 such that s1 ∈ S and the
following diagram commutes:

Y ′′

X Y ′′2 Y ′

Y ′′

t1
u′′◦f1

f2◦u

φ2

φ2
s1

The commutativity of the right triangle implies that t1 ◦ φ1 = s1 ◦ φ2. But then by
(MS3) there exists Y ′′3 and a map φ′2 : Y ′′2 → Y ′′3 such that φ′2 ◦ t1 = φ′2 ◦ s1. Now we
replace Y ′′ with Y ′′3 , φ2 with φ′2 ◦ s1 ◦φ2, f2 with φ′2 ◦ s1 ◦ f2 and u′′ with φ′2 ◦ s1 ◦u′′.
Again it is easy to see that the morphism (f2, φ2) does not change, but now the
commutativity of the left triangle implies that the square XX ′Y ′Y commutes in
T . Now the rest is easy: complete u′′ to a distinguished triangle (u′′, v′′, w′′) = ∆′′

in T . Set (u, v, w) = ∆ and (u′, v′, w′) = ∆′ for simplicity. Complete f1, f2 to a
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1.5. The derived category D(A) is triangulated

morphism of triangles (f1, f2, f3) : ∆′ → ∆′′ and φ1, φ2 to a morphism of triangles
(φ1, φ2, φ3) : ∆ → ∆′′. We can do this because of TR3 and we can also require
φ3 ∈ S because S is compatible with the triangulation. But now it is easy to see
that (f3, φ3) completes (f1, φ1), (f2, φ2) to a morphism of triangles and so we are
done.

(TR4) Let f : X → Y, g : Y → Z be morphisms in TS . Up to changing the representation
for the morphism g we can assume that f = (p, t), g = (qt, s) and gf = (qp, s) coming
from the following diagram

Z ′

Y ′

X Y Z

q

p t

s

Now using (TR4) in T we complete p, q to the following octahedron diagram:

X Y ′ U X[1]

X Z ′ V X[1]

W W Y ′[1]

Y ′[1] U [1]

p α2

qt δ1

α3

qp γ2

β2 δ2

δ3

α1[1]

β3

β3

δ3

α2[1]

We claim that the following diagram is the required octahedron diagram in TS with

the convention that a morphism A Bh means the morphism (h, id) in TS .

X Y U X[1]

X Z V X[1]

W W Y [1]

Y [1] U [1]

(p,t) α2◦t

(qt,s) δ1

α3

(qp,s) γ2◦s

β2◦s δ2

δ3

(p[1],t[1])

β3

β3

δ3

(α2◦t)[1]

The commutativity is an obvious consequence of the commutativity of the octahe-
dron in T so we only need to show that the four triangles are distinguished. For
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1.5. The derived category D(A) is triangulated

example to check that the first row is distinguished:

X Y U X[1]

X Y ′ U X[1]

(p,t) α2◦t

t

α3

p α2 α3

This diagram commutes and so it is a morphism of triangles, but t is an isomorphism
in TS so it is actually an isomorphism of triangles. This implies that the first row is
distinguished. Similarly the other triangles can be shown to be distinguished so we
are done.

Corollary. Derived categories are triangulated

Proof. Clearly it is enough to show that the class of quasi-isomorphism in K(A) is com-
patible with the triangulation. The first property is obvious: if q is a quasi-isomorphism
then Hnq is an isomorphism for all n but then Hnq[1] = Hn+1q is also an isomorphism for
all n and so q[1] is a quasi-isomorphism. To prove the second property recall that given
an exact triangle in K(A) there is an associated long exact sequence of cohomology. Now
consider the following situation:

A• B• C• A[1]•

A′• B′• C ′• A′[1]•

α1

f

α2

g

α3

h f [1]

β1 β2 β3

The two rows are distinguished, f, g are quasi-isomorphism, the first square commutes and
h is any morphism that completes the diagram to a morphism of triangles (which exists
because of (TR3)). This induces the following diagram for all n:

Hn(A•) Hn(B•) Hn(C•) Hn+1(A•) Hn+1(B•)

Hn(A′•) Hn(B′•) Hn(C ′•) Hn+1(A′•) Hn+1(B′•)

Hnf Hng Hnh Hn+1f Hn+1g

Applying the five-lemma to the previous diagram we get that h is also a quasi-isomorphism.

Remark. A complex A• is said to be bounded above if there exists n ∈ Z such that
Ai = 0 for i > n. A complex satisfying the dual condition is said to be bounded below
and a complex is bounded if it both bounded above and below. One can consider the full
subcategory C(A)+ ⊂ C(A) of bounded above complexes. Similarly one can consider the
full subcategory of bounded below complexes C(A)− and the full subcategory of bounded
complexes C(A)b. By considering morphisms modulo homotopy one gets K(A)∗ for ∗ =
+,−, b. Then if S denotes the class of quasi-ismorphisms then one can define

D∗(A) = K∗(A)[S−1]
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1.6. Distinguished triangles as generalized exact sequences

for ∗ = +,−, b. By repeating all the proofs in this chapter one finds that a morphism in
D∗(A) is represented by a roof (f, φ) modulo an equivalence relation and that D∗(A) has
a triangulated structure induced by K∗(A). This works because taking the cone or cylinder
of a morphisms between bounded above (resp. below) complexes yields a bounded above
(resp, below) complex.

1.6 Distinguished triangles as generalized exact sequences

Previously we proved that distinguished triangles in the homotopy category K(A) are in
correspondence with semi-split exact sequences in C(A). This shows that the triangulated
structure in K(A) is inadequate to describe all exact sequences in C(A). The derived
category can also be seen as the extension of K(A) that fixes this problem. In fact the
following holds:

Proposition 1.6.1. Every short exact sequence 0 A• B• C• 0

in C(A) can be completed to a distinguished triangle A• B• C• A•[1]

in D(A). Conversely every distinguished triangle in D(A) is isomorphic to one obtained
in this way.

Proof. Let 0 A• B• C• 0
f g

be a short exact sequence in C(A).
Then there is a morphism γ : Cone(f)→ C• given by f =

(
0 g

)
. We claim that this map

is a quasi-isomorphism. To see this first we notice that g is an epimorphism and therefore
so is γ. Now we consider the comples kerγ and we want to prove that it is acyclic. Indeed

let

(
a
b

)
be a cocycle. Since it belongs to a term of kerγ we know that g(b) = 0 which

means b = fa′ by the exactness of the sequence. Furthermore the fact that it is a cocycle
means that −dAa = 0 and fa + dBb = 0. The last condition together with the fact that
f is a monomorphism implies a = −dAa′. But then we have(

−dA 0
f dB

)(
a′

0

)
=

(
−dAa′
fa′

)
=

(
a
b

)

which shows that

(
a
b

)
is a coboundary and so kerγ is acyclic. Now consider the obvious

short exact sequence

0 kerγ Cone(f) C• 0
γ

.

This induces a long exact sequence of cohomology and applying the fact that the first
complex is acyclic we get precisely that γ is a quasi-isomorphism. Now consider the
following diagram

A• B• C• A[1]

A• B• Cone(f) A[1]

f g

f i π

γ
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1.6. Distinguished triangles as generalized exact sequences

It is trivial to check that the first two squares commute. Furthermore since γ is a quasi-
isomorphism it is invertible in D(A) and so we can find the dotted arrow h that makes the
third square commute. This map completes the diagram to an isomorphism of triangles
and since the bottom triangle is distinguished so is the top one. This shows why this
works only in D(A) and not in the homotopy category: we need γ to be invertible. The
converse is very easy: we alredy proved this for the homotopy category and it remains
true when passing to the derived category.

This shows that the distinguished triangles in the derived category generalize the notion of
exact sequences. Thinking of distinguished triangles as generalized exact sequences leads
to the following interpretation of the octahedron axiom:

Remark. A prototype for exact sequences in an abelian category is given by

0 X Y
Y

X
0

Now consider the chain of inclusions X Y Z . We can form the following
diagram

X Y
Y

X
X[1]

X Z
Z

X
X[1]

Z

Y

Y [1]

where all the triangles involved are distinguished and the square is obviously commutative.
By applying the octahedron axiom we get

X Y
Y

X
X[1]

X Z
Z

X
X[1]

Z

Y

Z

Y
Y [1]

Y [1]
Y

X
[1]

?
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This yields a distinguished triangle

Y

X

Z

X

Z

Y

Y

X
[1]

and the commutativity of the marked square implies that the map
Y

X

Z

X
is the

canonical inclusion. But then since all completions of a morphism to a distinguished
triangle are isomorphic we get an isomorphism

Z

Y
∼=

Z

X
Y

X

In other words the octahedron axiom can be thought of as a version of the third isomorphism
theorem.

The previous remark justifies the following definition:

Definition 1.6.1. Let T be a triangulated category and D ⊂ T a subcategory. The
category D is said to be closed by extensions if for any distinguished triangle

X Y Z X[1]

in T such that X,Z ∈ D then Y ∈ D.

The fact that distinguished triangles generalize exact sequences suggests that the tri-
angulated structure is the right setting to define cohomological functors.

Definition 1.6.2. Let T be a triangulated category and A an abelian category. A functor
F : T → A is called cohomological if for every distinguished triangle

X Y Z X[1]
f g h

in T the sequence

· · · FX FY FZ FX[1] · · ·Fh[−1] Ff Fg Fh Ff [1]

is exact.

Example 1.6.1. Let T be any triangulated category and X ∈ T an object. Then the
functors Hom(X,−) and Hom(−, X) are cohomological.

Example 1.6.2. The functor Hn : D(A)→ A is cohomological.
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Chapter 2

t-structures

2.1 t-structures and truncation functors

In this chapter I will define t-structures and prove that the heart of a t-sructure is an
abelian category. As I mentioned in the previous chapter the derived category D(A) is
additive but not abelian. It can be very important to identify full abelian subcategories of
derived categories and then ask what information this subcategories provide about D(A)
or even A itself. The tool used to construct full abelian subcategories of triangulated
categories (hence also of derived categories) is precisely the formalism of t-structures.
Before giving the formal definition we will start with a motivating example. Suppose
D = D(A) is the derived category of an abelian category A. Denote by D≥0 the full
subcategory formed by all the complexes A• such that H i(A•) = 0 for all i < n. Similarly
denote by D≤0 the full subcategory formed by all the complexes A• such that H i(A•) = 0
for all i > n and set D♥ = D≤0 ∩ D≥0.

Proposition 2.1.1. The obvious functor F : A → D♥ is an equivalence of categories.

In particular this shows that any abelian category can be embedded as a full subcategory
of its derived category.

Proof. We will show that the functor is fully faithful and essentially surjective. The
essential surjectiviy is easy to see: every object A• ∈ D♥ is isomorphic to the complex
with H0(A•) in degree zero and 0 everywhere else, but this is exactly FH0(A). Now we
need to show that the map

HomA(A,B) HomD♥(FA,FB)Φ

is an isomorphism for all A,B in A. This map sends f to the morphism Φ(f) such that
Φ(f)0 = f = (f, id) and Φ(f)n = 0 for all n different from zero. Now we define a map

HomD♥(FA,FB) HomA(A,B)Ψ

defined as follows: Ψ((f, s)) = (H0s)−1 ◦H0f . It is obvious that Ψ ◦ Φ = id so we only
need to check that Φ ◦ Ψ = id. To see this consider a generic element of HomD♥(A,B)
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2.1. t-structures and truncation functors

represented by the roof

C

FA FB

f s .

We need to show that Φ ◦ Ψ((f, s)) = (Ψ((f, s)), id) is equivalent to (f, s). To do this
consider the complex V defined as follows:

V n =


0 if n < 0

B if n = 0

Cn if n > 0

where the only non obvious differential d0 is simply the zero map. It is quite easy to check
that V is in D♥ and the map g : FB → V which is the identity in degree zero and 0
everywhere else is a quasi-isomorphism. Furthermore there is a map h : C → V which is 0
in negative degree, the identity in positive degree and (H0s)−1 in degree zero. If we show
that the following diagram is commutative we are done:

V

C FB

FA FB

h g

f

Ψ((f,s)) s

But since all the non trivial maps are in degree zero it is enough to show that the following
diagram commutes:

B

C0 B

A B

(H0s)−1

H0f

(H0s)
−1◦H0f H0s

The idea of trying to imitate this structure in a general triangulated category led to this
definition:

Definition 2.1.1. A t-structure on a triangulated category D is a pair of full subcategories
(D≤0,D≥0) such that the conditions a)− c) below are satisified. Let D≤n = D≤0[−n] and
D≥n = D≥0[−n].

(TS1) D≤0 ⊂ D≤1 and D≥1 ⊂ D≥0 .

(TS2) Hom(X,Y ) = 0 for any X ∈ D≤0, Y ∈ D≥1
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2.1. t-structures and truncation functors

(TS3) For any X ∈ D there exists a distinguished triangle A → X → B → A[1] with
A ∈ D≤0 and B ∈ D≥1

The core of the t-structure is the category D♥ = D≤0 ∩ D≥0

Proposition 2.1.2. If D = D(A) then the pair (D≤0,D≥0) as defined in the example
above is a t-structure.

Proof. The property (TS1) is trivial. For any complex A• we can consider the complex
τ≤0A

• defined as follows:

τ≤0A
n =


An n < 0

kerd0 n = 0

0 n > 0

dnτ≤0
=

{
dnA n > 0

0 n ≥ 0

Similarly we can consider the complex τ≥1A
• defined as follows:

τ≥1A
n =


0 n < 0

Imd0 n = 0

An n > 0

dnτ≥1
=


0 n < 0

i n = 0

dnA n > 0

Now we notice that A• ∈ D≤0 if and only if A• is quasi-isomorphic to τ≤0A
•. Similarly

B• ∈ D≥1 if and only if B• is quasi-isomorphic to τ≥1B
•. This implies that for A• ∈

D≤0, B• ∈ D≥1 the following holds:

HomD(A)(A
•, B•) ∼= HomD(A)(τ≤0A

•, τ≥1B
•).

Now consider a generic morphism in HomD(A)(τ≤0A
•, τ≥0B

•) represented by the diagram

C•

τ≤0A
• τ≥1B

•

f φ
.

The existance of the morphism φ implies that C• ∈ D≥1. But then up to changing the
representation of the morphism we can assume we are in this situation:

τ≥1C
•

τ≤0A
• τ≥1B

•

f φ

To prove (TS2) it is enough to show that HomK(A)(τ≤0A
•, τ≥1B

•) = 0. Indeed let f be
any such map:

· · · 0 0 C0 C1 C2 · · ·

· · · A−2 A−1 X0 0 0 · · ·

i

f0
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Clearly fn = 0 for all n different from zero. Furthermore by commutativity we have
i ◦ f0 = 0. But i is an inclusion so it is is monomorphism and this implies f0 = 0. But
then f is the zero morphism and so we are done. To prove (TS3) it is enough to notice
that for all A• there is a short exact sequence in K(A):

0 τ≤0A
• A• τ≥1A

• 0

which induces a distinguished triangle in D(A)

τ≤0A
• A• τ≥1A

• (τ≤0A
•)[1] .

This proof relies on the existence of τ≤0A
• and τ≥1A

• for all A• ∈ D. It is easy to check
that τ≤0, τ≥1 are actually functors called the truncation functors. The term t-structure is
an abbreviation for truncation structure. In fact the axioms for a t-structure were chosen
so that they would imply the existance of functors τ≤n, τ≥n satisfying the properties listed
in the following lemma that are trivial to check in the case of D = D(A).

Lemma 2.1.1. Let D be a triangulated category and (D≤0,D≥1) a t-structure. Then:

(a) There exist functors τ≤n : D → D≤n (resp. τ≥n : D → D≥n) that are right (resp,
left) adjoint to the correponding embedding functors.

(b) For any X ∈ D and n ∈ Z there exists a distinguished triangle of the form

τ≤nX X τ>nX (τ≤nX)[1] .

and any two distinguished triangles A → X → B → A[1] with A ∈ D≤n, B ∈ D>n
are canonically isomorphic.

(c) For any x ∈ D the following are equivalent:

(1) τ≤nX = 0

(2) the morphism X → τ>nX is an isomorphism.

(3) X ∈ D>n

(4) For all Z ∈ D≤n Hom(Z,X) = 0

(d) For m ≤ n there exist natural isomorphisms

τ≤m ∼= τ≤mτ≤n ∼= τ≤nτ≤m and τ≥n ∼= τ≥mτ≥n ∼= τ≥nτ≥m.

(e) The categories D≤m and D≥m are closed by extensions.

(f) For any m,n ∈ Z there exists a natural isomorphism

τ≥mτ≤n ∼= τ≤nτ≥m.
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Proof. (a) We will first show this for τ≤0 and τ≥1. For any X we can choose a dis-
tinguished triangle A → X → B → A[1] with A ∈ D≤0, B ∈ D≥1 and set
τ≤0X = A, τ≥1X = B. Of course this depends on the choice of the distinguished
triangle which is not necessarily unique but we will show that all such choices yield

isomorphic functors. Now for any morphism X Y
f

we can consider the dis-
tinguished triangles

A X B A[1]

A′ Y B′ A′[1]

a

f

a′

We know that for any exact triangle there is an associated long exact sequence
obtained applying the Hom-functor:

· · · Hom(A,B′[−1]) Hom(A,A′) Hom(A, Y ) Hom(A,B′) · · ·a′◦−

However A ∈ D≤0, B′ ∈ D≥1 and B′[−1] ∈ D≥1[−1] = D≥2 ⊂ D≥1 by (TS1). Then
(TS2) implies that Hom(A,B′) = Hom(A,B′[−1]) = 0 and so by exactness we get
an isomorphism

Hom(A,A′) Hom(A, Y )
∼=

a′◦−

This can be rephrased by saying that any morphism A→ Y factors uniquely through
h. Now the morphism f ◦ a induces a morphism f∗ : A → A′ and I simply set
τ≤0f = f∗. It is easy to see that this maps the identity to the identity so I only need
to show that it respects composition. To see this consider the following diagram:

A X Y Z

A′

A′′

τ≤0f

a f g

a′

τ≤0g

a′′

The morphism τ≤0(g◦f) is the unique morphism that composed with a′′ gives g◦f◦a.
But we have

a′′ ◦ τ≤0g ◦ τ≤0f = g ◦ a′ ◦ τ≤0f = g ◦ f ◦ a

and so τ≤0(g ◦ f) = τ≤0g ◦ τ≤0f . Now for any X ∈ D≤0, Y ∈ D we have

Hom(X,Y ) ∼= Hom(X, τ≤0Y ).

It is also easy to check the naturality in both arguments so τ≤0 is right adjoint to
the embedding functor. A similar argument shows that τ≥1 is a functor and is the
left adjoint of the correponding embedding. Now we define τ≤n = T−n ◦ τ≤0 ◦ Tn
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2.1. t-structures and truncation functors

and τ≥n = T 1−n ◦ τ≥1 ◦ Tn−1. To see that τ≤n is right adjoint to the embedding:

HomD≤n(X, τ≤nY ) = HomD≤n(X,T−n ◦ τ≤0 ◦ TnY )
∼= HomD≤0(TnX, τ≤0 ◦ TnY )
∼= HomD(TnX,TnY )
∼= HomD≤n(X,Y )
∼= HomD(X,Y )

The naturality of this isomorphism is a direct consequence of the naturality in the
case n = 0. A similar argument shows that τ≥n is the left adjoint to the corresponding
embedding.

(b) It is enough to consider the case n = 0 since the other cases can be obtained applying
the translation functor. The existance of the triangle is an obvious consequence of
the definition of the truncation functors. Now consider two distinguished triangles

∆ = (A X B A[1])

∆′ = (A′ X B′ A′[1])

a b

a′ b′

.

The morphism a factors uniquely through a′ yielding a morphism f : A → A′ and
a′ factors uniquely through a yielding f ′ : A′ → A. Similarly we get g : B → B′

and g′ : B′ → B. We claim that f and f ′ are inverses. To see this notice that
a′ ◦ f ◦ f ′ = a′. Now a′ factors through a′ also in the trivial way a′ = a′ ◦ id. By
uniqueness we get precisely f ◦ f ′ = id. Similarly a ◦ f ′ ◦ f = a and since a factors
also in the trivial way a = a ◦ id we get f ′ ◦ f = id. A similar argument shows
that g and g′ are inverses. Now the pair (f, id) can be completed to isomorphism
of triangles (f, id, g∗) : ∆→ ∆′. By comparing factorizations of b′ through b we get
that g∗ = g so that the isomorphism is canonical.

(c) We will first show that (1) is equivalent to (2). Indeed for any X ∈ D we have:

τ≤nX = 0 ⇔ T−n ◦ τ≤0 ◦ TnX = 0

⇔ τ≤0T
nX = 0

⇔ TnX → τ≥1T
nX is an isomorphism

⇔ X → T−n ◦ τ≥1 ◦ TnX is an isomorphism

⇔ X → τ>nX is an isomorphism

Next we will show that (2) =⇒ (3) =⇒ (4) =⇒ (2). Suppose X → τ>nX is an
isomorphism. We know that τ>nX ∈ D>n which is stable under isomorphisms and
so X ∈ D>n. Now assume X ∈ D>n and let Z ∈ D≤n. This means X = X0[−n], Z =
Z0[−n] with Z ∈ D≤0, X ∈ D≥1. But then

Hom(Z,X) = Hom(Z0[−n], X0[−n]) ∼= Hom(Z0, X0) = 0.
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2.1. t-structures and truncation functors

Now suppose Hom(Z,X) = 0 for all Z ∈ D≤n. In particular this is true for Z =
τ≤nX. But now I consider the distinguished triangle

τ≤nX X τ>nX (τ≤nX)[1]

The first morphism is zero so the second must be an isomorphism.

(d) The isomorphisms τ≤m ∼= τ≤nτ≤m and τ≥n ∼= τ≥mτ≥n are an obvious consequence of
part (c). Now for any X ∈ D, Y ∈ D≤m we have

HomD≤m(Y, τ≤mτ≤nX) ∼= HomD≤n(Y, τ≤nX) ∼= HomD(Y, τ≤nX)
∼= HomD(Y,X) ∼= HomD≤m(Y, τ≤mX)

which shows τ≤m ∼= τ≤nτ≤m. The other isomorphism can be checked in the same
way.

(e) I will prove that the categories D≤n are closed by extensions for all n. The other
case can be proved in a similar way. Let

X Y Z X[1]

be a distinguished triangle with X,Z ∈ D≤n. By applying the functor Hom(−, T )
we get the exact sequence

Hom(Z, T ) Hom(Y, T ) Hom(X,T )

The first and third terms are zero which implies that Hom(Y, T ) = 0 for all T ∈ D>n
which is equivalent to Y ∈ D≤n.

(f) For m > n both functors are identically zero as a consequence of (c) so we can
assume m ≤ n. Consider the following distinguished triangle

τ≤nτ≥mX τ≥mX τ>nτ≥mX (τ≤nτ≥mX)[1] .

We know from part (d) that τ>nτ≥mX = τ>nX so that the triangle becomes

τ≤nτ≥mX τ≥mX τ>nX (τ≤nτ≥mX)[1] .

Now we notice that τ≥mX, (τ>nX)[−1] ∈ D≥m so by rotating the previous triangle
and applying the fact that the category D≥m is closed by extensions we get that
τ≤nτ≥mX ∈ D≥m. Similarly there is a distinguished triangle

τ>mX τ≤nX τ≥mτ≤nX (τ>mX)[1]

which shows that τ≥mτ≤nX ∈ D≤n. We will first define a morphism φX : τ≥mτ≤nX →
τ≤nτ≥mX and then prove that it is an isomorphism. Consider the following diagram

τ≥mτ≤nX

τ≥mX τ≤nτ≥mX

∃!
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2.1. t-structures and truncation functors

The horizontal arrow is the canonical morphism and the vertical arrow is the image
under τ≤m of the canonical morphism τ≤nX → X. Since τ≥mτ≤nX ∈ D≤n we can
use the universal property of the adjunction and say that there is a unique dotted
arrow φ that makes the triangle commute. To prove that it is an isomorphism we
will need to use the octahedron axiom. Indeed consider the following diagram

τ<mX τ≤nX τ≥mτ≤nX (τ<mX)[1]

τ<mX X τ≥mX (τ<mX)[1]

τ>nX

(τ≤nX)[1]

It is clear that the three triangles are distinguished and the square commutes trivially
since the canonical morphism τ<mX → τ≤nX is the unique dotted arrow that makes
the following diagram commute:

τ≤nX X

τ<mX

We can apply the octahedron axiom and get the following diagram

τ<mX τ≤nX τ≥mτ≤nX (τ<mX)[1]

τ<mX X τ≥mX (τ<mX)[1]

τ>nX τ>nX

(τ≤nX)[1] (τ≥mτ≤nX)[1]

This implies the existence of a distinguished triangle

τ≥mτ≤nX τ≥mX τ>nX (τ≥mτ≤nX)[1]

We already proved that τ≥mτ≤nX ∈ D≤n and so (b) implies the existence of a unique
isomorphism of triangles

τ≥mτ≤nX τ≥mX τ>nX (τ≥mτ≤nX)[1]

τ≤nτ≥mX τ≥mX τ>nX (τ≤nτ≥mX)[1]

φX φX [1]
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2.2. The heart D♥ is abelian

To conclude we will show that the collection of morphisms φX is a natural transfor-
mation. To see this recall that for any X we have the commutative diagram

τ≥mτ≤nX

τ≥mX τ≤nτ≥mX

gX
φX

hX

and gX , hX are natural transformations. For any morphism f : X → Y in D we
have following diagram

τ≥mτ≤nY

τ≥mτ≤nX τ≥mY τ≤nτ≥mY

τ≥mX τ≤nτ≥mX

φY
gY

gX

τ≥mτ≤nf

hY

τ≥mf

hX

τ≤nτ≥mf

φX

We need to show that φY ◦ τ≥mτ≤nf = τ≤nτ≥mf ◦ φX . Indeed we have

hY ◦ φY ◦ τ≥mτ≤nf = gY ◦ τ≥mτ≤nf
= τ≥mf ◦ gX
= τ≥mf ◦ hX ◦ φX
= hY ◦ τ≤nτ≥mf ◦ φX

But now we simply recall that τ≥mτ≤nX ∈ D≤n which implies that the morphism
hY ◦ φY ◦ τ≥mτ≤nf factors uniquely through hY and so we are done.

The functor τ≥mτ≤n = τ≤nτ≥m is usually denoted by τ[n,m].

2.2 The heart D♥ is abelian

In this section we will prove the main result of this thesis.

Lemma 2.2.1. Let D be a triangulated category and ∆1 = (f, g, h), ∆2 = (f ′, g′, h′) two
distinguished triangles. Then ∆1⊕∆2 = (f⊕f ′, g⊕g′, h⊕h′) is distinguished. Furthermore
for any two objects X,Z ∈ D there is a distinguished triangle

X X ⊕ Z Z X[1]

Proof. Given two distinguished triangles

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

f g h

f ′ g′ h′
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2.2. The heart D♥ is abelian

we can consider the morphism X ⊕X ′ Y ⊕ Y ′f⊕f ′
and complete it to a distinguished

triangle

X ⊕X ′ Y ⊕ Y ′ Q (X ⊕X ′)[1]
f⊕f ′

We can use axiom (TR3) to complete the canonical projections to a morphism of distin-
guished triangles

X ⊕X ′ Y ⊕ Y ′ Q (X ⊕X ′)[1]

X Y Z X[1]

πX

f⊕f ′

πY φZ πX [1]

obtaining φZ : Q → Z. In a similar way we construct φ′Z : Q → Z ′ and therefore we get
φ = (φZ , φ

′
Z) : Q→ Z ⊕ Z ′. The way we constructed φ implies that the diagram

X ⊕X ′ Y ⊕ Y ′ Q (X ⊕X ′)[1]

X ⊕X ′ Y ⊕ Y ′ Z ⊕ Z ′ (X ⊕X ′)[1]

φ

is a morphism of triangles. The first triangle is distinguished so if we prove that φ is an
isomorphism we are done. Applying the functor Hom(A,−) we get the following diagram

Hom(A,X ⊕X ′) Hom(A, Y ⊕ Y ′) Hom(A,Q) Hom(A, (X ⊕X ′)[1]) Hom(A, (Y ⊕ Y ′)[1])

Hom(A,X ⊕X ′) Hom(A, Y ⊕ Y ′) Hom(A,Z ⊕ Z ′) Hom(A, (X ⊕X ′)[1]) Hom(A, (Y ⊕ Y ′)[1])

φ◦−

The first row is obviously exact. As for the second we notice that the Hom functor
commutes with direct sums so that the second row is the direct sum of two exact sequences
and so it is exact. Applying the five lemma we get that φ ◦ − : Hom(A,Z ⊕ Z ′) →
Hom(A,Q) is an isomorphism for all A and so by Yoneda lemma we get that φ : Z⊕Z ′ → X
is an isomorphism. This proves the first part of the lemma. For the second part simply
notice that for any X,Z there are distinguished triangles

X X 0 X[1]

0 Z Z 0

But then using the first part of the lemma we get that their direct sum is also distinguished
and so we are done.

Now we are ready to prove the main result of this chapter.

Theorem 2.2.1. Let D be a triangulated category and (D≤0,D≥0) a t-structure. Then

(i) The heart D♥ is an abelian category.
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2.2. The heart D♥ is abelian

(ii) An exact sequence

0 X Y Z 0
f g

in D♥ induces a distinguished triangle

X Y Z X[1]
f g

in D.

Proof. (i) The category D♥ is obviously pre-additive because it is the intersection of
two full subcategories of an additive category. To show that it is additive we need
to prove that given X,Y ∈ D♥ the direct sum X ⊕ Y is in D♥ but this is clear: the
previous lemma implies that the direct sum of X and Y is an extension and since
D≤0,D≥0 are stable under extensions so is their intersection D♥. Now we need to
define kernels and cokernels in D♥. Let f : X → Y be a morphism in D♥. We can
complete it to a distinguished triangle

X Y Z X[1]
f

The stability under extensions implies that Z ∈ D≤0∩D≥−1 and Z[−1] ∈ D≤1∩D≥0.
Now we define K = τ≤0Z[1] and C = τ≥0Z. Clearly K,C ∈ D♥ and there are
canonical morphisms K → Z[1]→ X and Y → Z → C. We claim that K and C are
respectively the kernel and cokernel of f and the morphisms we just defined are the
canonical inclusion and projection associated to the kernel and cokernel. For any
W ∈ D♥ we can apply the Hom functor to the distinguished triangle and get long
exact sequences

Hom(X[1],W ) Hom(Z,W ) Hom(Y,W ) Hom(X,W )

Hom(W,Y [−1]) Hom(W,Z[−1]) Hom(W,X) Hom(W,Y )

First of all we notice that Hom(X[1],W ) = Hom(W,Y [−1]) = 0 by (TS2). Fur-
thermore since W ∈ D♥ we can use the adjunctions between τ≤0 and τ≥ and the
correspondent embeddings and obtain

Hom(Z,W ) ∼= Hom(τ≥0Z,W ) = Hom(C,W )

Hom(W,Z[−1]) ∼= Hom(W, τ≤0Z[−1]) = Hom(W,K)

This means that the long exact sequences can be rewritten as

0 Hom(C,W ) Hom(Y,W ) Hom(X,W )

0 Hom(W,K) Hom(W,X) Hom(W,Y )
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2.2. The heart D♥ is abelian

The fact that this sequences are exact for all W ∈ D♥ means exactly that K and C are
the kernel and cokernel of f . To conclude the proof we need to show that the coimage and
the image of f are isomorphic. We start by embedding the canonical morphism Y → C
in a distinguished triangle

I Y C I[1]

In particular we notice that I ∈ D≥0. Now we consider the distinguished triangle

τ<0Z Z τ≥0Z (τ<0Z)[1]

and we notice that τ≥0Z = C and (τ<0Z)[1] = K[2]. Now consider the diagram

Y Z X[1] Y [1]

Y C I[1] Y [1]

K[2]

Z[1]

The three triangles are distinguished and the square commutes by definition of the map
Y → C. This means that we can apply the octahedron axiom and get the following
diagram

Y Z X[1] Y [1]

Y C I[1] Y [1]

K[2] K[2]

Z[1] X[2]

which means that the triangle

X[1] I[1] K[2] X[2]

is distinguished. This shows that I ∈ D≤0 and so I ∈ D♥. Furthermore we have distin-
guished triangles

I Y C I[1]

K X I K[1]
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2.3. Cohomological functors induced by t-structures

and the commutativity of the bottom square of the octahedron diagram implies that the
morphism K → X is exactly the canonical morphism of the kernel. Now by repeating the
same argument as before ( applying the Hom functors and noticing that the first term of
the exact sequence vanishes) we get that

Imf = ker(Y → cokerf) ∼= I ∼= coker(kerf → X) = coImf

(ii) Let 0 X Y Z 0
f

be an exact sequence in D♥. We can em-
bed f in a distinguished triangle

X Y W X[1]
f

As usual the stability under extensions implies W ∈ D≤0. The exactness of the short exact
sequence tells us that kerf = 0 and cokerf = Z. In the previous proof we showed how
to construct kernels and cokernels in D♥. In particular we have 0 = kerf = (τ≤0)W [1]
which means that W [1] ∈ D>0 =⇒ W ∈ D≥0 =⇒ W ∈ D♥. Furthermore we have
Z = cokerf ∼= τ≥0W ∼= W and so we are done.

2.3 Cohomological functors induced by t-structures

Previously we defined the functors τ[n,m] = τ≤0τ≥0 = τ≥0τ≤0. In order to understand the

behaviour of the functor τ[0,0] : D → D♥ we will first consider the special case D = D(A)
with the standard t-structure. Let A• ∈ D(A) be the complex

· · · A−1 A0 A1 · · ·d−1 d0 d1 .

Then we have

τ[0,0]A
• = τ≤0(. . .→ 0→ imd−1 → A0 → A1 → . . .)

= (· · · → 0→ imd−1 → kerd0 → 0→ . . .)

This complex is quasi-isomorphic to the complex H0A•. This means that composing
the functor τ[0,0] with the equivalence D♥ → A yields a functor isomorphic to the 0-
cohomology functor. This justifies the notation H0 for τ[0,0], furthermore we will also
define Hn = H0 ◦ Tn = Tn ◦ τ[n,n]. This functors are called the n-cohomology functors
induced by the tstructure and they turn out to be cohomological functors also in the
general case.

Theorem 2.3.1. Let D be a triangulated category and (D≤0,D≥0) a t-structure with heart
D♥. Then the functors Hn : D → D♥ are cohomological.

Proof. Let ∆ = X Y Z X[1] be a distinguished triangle. This proof

is divided in three steps.

(a) First we will show that if X,Y, Z ∈ D≥0 the sequence

0 H0X H0Y H0Z

46



2.3. Cohomological functors induced by t-structures

is exact. To see this consider an object W ∈ D♥, applying the cohomological functor
Hom(W,−) to ∆ we get the following exact sequence:

Hom(W,Z[−1]) Hom(W,X) Hom(W,Y ) Hom(W,Z) .

Now we notice that Hom(W,Z[−1]) = 0, Hom(W,X) ∼= Hom(W, τ≤0X) ∼= Hom(W,H0X)
and similarly for Y and Z so that the sequence

0 HomD♥(W,H0X) HomD♥(W,H0Y ) HomD♥(W,H0Z)

is exact. Since W is an arbitrary object in D♥ by the left-exactness of the Hom-
functor we get that the sequence

0 H0X H0Y H0Z (2.1)

is exact. Dually we get that if X,Y, Z ∈ D≤0 then the sequence

H0X H0Y H0Z 0 (2.2)

is exact.

(b) Now we only assume Z ∈ D≥0 and let W ∈ D<0. Arguing as before and noticing
that Hom(W,Z) = Hom(W,Z[−1]) = 0 we get Hom(W,X) ∼= Hom(W,Y ) we get
τ<0X ∼= τ<0Y and so the canonical morphism τ<0X → τ<0Y is an isomorphism.
Now consider the diagram

τ<0X X τ≥0X (τ<0X)[1]

τ<0X Y τ≥0Y (τ<0X)[1]

Z

X[1]

The triangles are distinguished and the square commutes so by applying the octa-
hedron axiome we get a distinguished triangle

τ≥0X τ≥0Y Z (τ≥0X)[1]

By applying (a) we get that the sequence (2.1) is exact under the assumption Z ∈
D≥0. Dually we get that the sequence (2.2) is exact provided that X ∈ D≤0.

(c) Now we will consider the general case. We can consider the composition τ≤0X →
X → Y and embed it into a distinguished triangle

τ≤0X Y W (τ≤0X)[1] .
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2.3. Cohomological functors induced by t-structures

Applying (b) to this triangle we get that

H0X H0Y H0Z

is exact. Now consider the following diagram

τ≤0X X τ>0X (τ≤0X)[1]

τ≤0X Y W (τ≤0)[1]

Z

X[1]

The square commutes by definition and the triangles are distinguished so by applying
the octahedron axiom we get

τ≤0X X τ>0X (τ≤0X)[1]

τ≤0X Y W (τ≤0)[1]

Z Z

X[1] (τ>0X)[1]

? .

In particular by rotating we get that the triangle

W Z (τ>0X)[1] W [1]

is distinguished. We notice that τ>0[1] ∈ D≥0 so by applying (b) again we get an
exact sequence

0 H0W H0Z

By gluing the two exact sequences we get an exact sequence

H0X H0Y H0Z

and the commutativity of the marked square in the octahedron diagram implies that
the composition H0Y → H0W → H0Z is precisely H0(Y → Z) and so we are done.
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2.3. Cohomological functors induced by t-structures

If we consider D = D(A) with the standard t- structure then a complex A• is zero if and
only if it is quasi-isomorphic to the zero complex and this is equivalent to HnA• = 0 for
all integers. This result does not generalize to arbitrary t- structures but it works if we
impose the following condition.

Definition 2.3.1. Let D be a triangulated category. A t-structure (D≤0,D≥0) is non-
degenerate if ⋂

n∈Z
D≤n =

⋂
n∈Z
D≥0 = {0}.

Proposition 2.3.1. Let D be a triangulated category and (D≤0,D≥0) a non-degenerate
t-structure. Then

(a) A morphism f : X → Y is an isomorphism in D if and only if H if are isomorphisms
in D♥ for all i ∈ Z.

(b) X ∈ D≤n if and only if H iX = 0 for all i > n. Dually X ∈ D≥n if and only if
H iX = 0 for all i < n.

Proof. (a) If f is an isomorphism then clearly H if is an isomorphism for all i ∈ Z. To
prove the converse we will first show that H iX = 0 for all i implies X = 0. If we add
the condition X ∈ D≥0 then H0X = τ≤0X = 0 so that X ∈ D≥1 and by iterating
this reasoning we get X ∈

⋃
n∈ZD≥n = {0}. A similar argument shows that if we

add the condition X ∈ D≤0 then X = 0. The general case follows from the equalities
H iτ≤0X = τ≤0H

iX = 0, H iτ≥1X = τ≥1H
iX = 0 and the distinguished triangle

τ≤0X X τ≥1X (τ≤0X)[1] .

Now let f be a morphism sucht that H if is an isomorphism for all i. We can embed
f in a distiguished triangle

X Y Z X[1]
f

.

By applyling the cohomological functor H0 we get the exact sequence

· · · H0X H0Y H0Z H1X · · ·H0f H1f
.

Since the maps H if are isomorphism we get that H iZ = 0 for all i. This implies
Z = 0 but then f is an isomorphism as required.

(b) It is enough to show this for n = 0 since the other cases can be obtained by shifting.
Suppose H iX = 0 for all i > 0. Then the identity H iτ≥1X = τ≥1H

iX implies
H iτ≥1 = 0 for all i. To see this simply notice H iX is zero for i > n and belongs to
D≤0 for i ≤ 0. But then applyig (a) we get that τ≥1X = 0 which implies X ∈ D≤0.
Conversely if X ∈ D≤0 then τ≥1X = 0 and so H iτ≥1X = 0 for all i. For i > 0 we
have H iX ∈ D≥1 and so

0 = H iτ≥1X = τ≥1H
iX = H iX

The other case follows from the dual argument so we are done.
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2.4 t-exact functors

A functor F : D1 → D2 between two triangulated categories is said to be exact if it
commutes with the shift functors and preserves distinguished triangles. This notion of
exactness if fairly weak in the sense that we are only requiring the functor to preserve the
triangulated structure. A more refined notion of exactness can be defined if we also have
t-structures (D≤0

1 ,D≥0
1 ) and (D≤0

2 ,D≥0
2 ) on D1 and D2 respectively.

Definition 2.4.1. Let F : D1 → D2 be an exact functor between triagulated categories and
(D≤0

i ,D≥0
i ) t-structures on Di for i = 1, 2. We say that F is left t-exact if F (D≥0

1 ) ⊂ D≥0
2 .

Dually F is t-right exact if F (D≤0
1 ) ⊂ D≤0

2 and F is t-exact if it is both left and right
t-exact.

The interest in t-exact functors lies in the fact that they induce exact functors (in the
traditional sense) between the hearts.

Definition 2.4.2. In the same setting as the previous definition we define

pF = H0 ◦ F ◦ ε1 : D♥1 → D
♥
2

where ε1 is the embedding D♥1 → D1 and H0 is the cohomology functor induced by the
t-strcture on D2.

Proposition 2.4.1. In the same setting as above if we assume F to be left t-exact then

(a) For any X ∈ D1 we have τ≤0 ◦ F ◦ τ≤0X ∼= τ≤0 ◦ FX. In particular for X ∈ D≥0
1

there exists an isomorphism pF ◦H0X ∼= H0 ◦ FX in D♥.

(b) pF : D♥1 → D
♥
2 is a left exact functor between abelian categories.

Proof. (a) There is a canonical morphism τ≤0 ◦ F ◦ τ≤0X → τ≤0 ◦ FX obtained by
applying the functor τ≤0 ◦F to the canonical morphism τ≤0X → X. This morphism
induces a canonical morphism

HomD≤0
2

(W, τ≤0 ◦ F ◦ τ≤0X)→ HomD≤0
2

(W, τ≤0 ◦ FX)

and by the Yoneda lemma if we show that this morphism is an isomorphism for
all W ∈ D≤0

2 then we are done. This is equivalent to proving that the canonical
morphism

HomD≤0
2

(W,F ◦ τ≤0X)→ HomD≤0
2

(W,FX)

is an isomorphism for all W ∈ D≤0
2 . Now consider the triangle

F ◦ τ≤0X FX F ◦ τ≥1X (F ◦ τ≤0X)[1] .

This is distinguished because it is obtained by applying the exact functor F to a
distinguished triangle. We can apply to it the cohomological functor H0 and obtain
the exact sequence

HomD2(W, (F ◦ τ≥1X)[−1]) HomD2(W,F ◦ τ≤0X) HomD2(W,FX)

HomD2(W,F ◦ τ≥1X)

.
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Now we notice that the left t-exactness of F implies (F ◦ τ≥1X)[1] and F ◦ τ≥1X are
objects in D≥1

2 and so the first and fourth term in the sequence are zero by (TS2).
This means that the canonical morphism

HomD≤0
2

(W,F ◦ τ≤0X)→ HomD2(W,FX)

is an isomorphism. In particular for X ∈ D≥0
1 we have the chain of isomorphisms

pF ◦H0X ∼= H0 ◦ F ◦H0X

∼= H0 ◦ F ◦ τ≤0 ◦ τ≥0X

∼= H0 ◦ F ◦ τ≤0X

∼= H0 ◦ FX

(b) For an exact sequence

0 X Y Z 0

in D♥1 we can always consider a distinguished triangle

X Y Z X[1]

in D1. By applying the exact functor F we get the distinguished triangle

FX FY FZ FX[1]

and applying to it the cohomological functor H0 we get the exact sequence

H−1 ◦ FZ H0 ◦ FX H0 ◦ FY H0 ◦ FZ .

Since F is left t-exact we have FZ ∈ D≥0
2 and so

H−1 ◦ FZ = (τ≥−1 ◦ τ≤−1 ◦ FZ)[−1] = 0.

This means that the exact sequence can be rewritten as

0 pFX pFY pFZ

which shows that pF is left exact. Dually if F is right t-exact then pF is right exact
and if F is t-exact then F is an exact functor.

2.5 Constructing t-structures

In this section we will descrive some methods and techniques to construct t-structures. A
triangulated category has many different t-structures but it may not be easy to construct
them. Furthermore most techniques to construct a t-structure rely on other t-structures
so they may not be easy to apply. We will start with some trivial constructions.
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Example 2.5.1. If (D≤0,D≥0) is a t-structure on D then

(a) (D≤n,D≥n) is a t-sructure on D for all n.

(b) ((D≥0)op, (D≤0)op) is a t-structure on Dop.

(c) Let D′ be a triangulated subcategory of D meaning a strictly full subcategory closed
with respect to the shift functor and such that if the first two objects in a distinguished
triangle are in D′ then so is the third. Then

((D′)≤0, (D′)≥0) = (D′ ∩ D≤0,D′ ∩ D≥0)

is a t-structure on D′ provided that D′ is stable under τ≤0. To check the firs axiom:

(D′)≤0 = D′ ∩ D≤0 ⊂ D′ ∩ D≤1 = (D′)[−1] ∩ D≤1 = (D′ ∩ D≤0)[−1] = (D′)≤1

and

(D′)≥1 = (D′ ∩ D≥0)[−1] = D′[−1] ∩ D≥1 = D′ ∩ D≥1 ⊂ D′ ∩ D≥0 = (D′)≥0.

The second axiom for ((D′)≤0, (D′)≥0)follows directly from the second axiom applied
to (D≤0,D≥0). To check the third axiom let X ∈ D′ and consider the distinguished
triangle

τ≤0X X τ≥1 (τ≤0X)[1]

in D. Since X ∈ D′ then τ≤0X ∈ D′ because of the stability under the truncation
functor but then since D′ is a triangulated subcategory we have that τ≥1X, (τ≤0X)[1] ∈
D′ and the previous triangle is distinguished in D′. To conclude we simply observe
that τ≤0X ∈ D′ ∩ D≤0 = (D′)≤0 and τ≥1X ∈ D′ ∩ D≥1 = (D′)≥1. The t-structure
((D′)≤0, (D′)≥0 is called the induced t-structure. It is obvious that (D′)♥ = D′ ∩D♥,
furthermore it follows from the proof of the third axiom that the truncation and coho-
mology functors of the induced t-structure are simply the restriction of the truncation
and cohomology functors to D′.

Now we will present three important ways to construct a t-structure.

Gluing

Let DF ,DU ,D be triangulated categories and

i∗ : DF → D
i∗, i! : D → DF
j!, j∗ : DU → D
j∗ : D → DU

exact functors satisfying the following properties:

(a) The two sequences (j!, j
∗, j∗) and (i∗, i∗, i

!) are triples of adjoint functors.

(b) The functors i∗, j∗, j! are fully faithful and they satisfy j∗i∗ = 0.
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(c) For every X ∈ D there exist unique maps i∗i
∗X → j!j

∗X[1] and j∗j
∗X → i∗i

!X[1]
that complete the unit and counit of the adjunctions descrived in (a) to distinguished
triangles

j!j
∗X X i∗i

∗X j!j
∗X[1]

i∗i
!X X j∗j

∗X i∗i
!X[1]

A collection of three triangulated categories and six exact functors satisfying this properties
is colled gluing data. Now suppose further that (D≤0

F ,D≥0
F ) and (D≤0

U ,D≥0
U ) are t-structures

on DF and DU respectively and we set

D≤0 = {X ∈ D : i∗X ∈ D≤0
F , j∗X ∈ D≤0

U }
D≥0 = {X ∈ D : i!X ∈ D≥0

F , j∗X ∈ D≥0
U }.

Then (D≤0,D≥0) is a t-structure on D.

Proof. We need to check the three axioms of the definition of t-structure. Axiom (TS1)
for (D≤0,D≥0) follows directly from axiom (TS1) applied to (D≤0

F ,D≥0
F ) and (D≤0

U ,D≥0
U ).

To check axiom (TS2) let X ∈ D≤0 and Y ∈ D≥1. Applying the cohomological functor
HomD(−, Y ) to the first triangle in (c) we get an exact sequence

HomD(i∗i
∗X,Y ) HomD(X,Y ) HomD(j!j

∗X,Y ) .

Now from the fact that (i∗, i
!) is an adjoint pair and axiom (TS2) applied to (D≤0

F ,D≥0
F )

we get
HomD(i∗i

∗X,Y ) ∼= HomD(i∗X, i!Y ) = 0

since i∗X ∈ D≤0
F and i!Y ∈ D≥1

F . A similar argument shows

HomD(j!j
∗X,Y ) ∼= HomD(j∗X, j∗Y ) = 0.

But then by exactness we get HomD(X,Y ) = 0 as required. Now we need to check axiom
(TS3) so let X be an object in D. There is a canonical morphism X → j∗τ≥1j

∗X obtained
by composing the unit of the adjunction (j∗, j∗) and j∗ applied to the canonical morphism
j∗X → τU≥1j

∗X. We can embed this morphism in a distinguished triangle

∆1 = (Y X j∗τ
U
≥1j
∗X Y [1])

Similarly there is a canonical morphism Y → i∗τ
F
≥1i
∗Y which can be embedded in a

distinguished triangle

∆2 = (A Y i∗τ
F
≥1i
∗Y A[1]) .

Now we can consider the morphism A → X obtained simply by composing A → Y → X
and embed it in a distinguished triangle

∆3 = (A X B A[1]) .
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We claim that ∆3 is the triangle required in axiom (TS3). In order to prove this we have
to show that j∗A ∈ D≤0

U , i∗A ∈ D≤0
F , j∗B ∈ D≥1

U and i!B ∈ D≥1
F . The three triangles we

just constructed fit in the following commutative diagram

A Y i∗τ
F
≥1i
∗Y A[1]

A X B A[1]

j∗τ
U
≥1j
∗X

Y [1]

so we can use the octahedron axiom and get the commutative diagram

A Y i∗τ
F
≥1i
∗Y A[1]

A X B A[1]

j∗τ
U
≥1j
∗X j∗τ

U
≥1j
∗X Y [1]

Y [1] i∗τ
F
≥1i
∗Y [1]

.

In paricular the triangle

∆4 = (i∗τ
F
≥1i
∗Y B j∗τ

U
≥1j
∗X i∗τ

F
≥1i
∗Y [1])

is distinguished. Now we apply the exact functor j∗ to the distinguished triangle ∆4 and
obtain the distinguished triangle

j∗∆4 = (j∗i∗τ
F
≥1i
∗Y j∗B j∗j∗τ

U
≥1j
∗X j∗i∗τ

F
≥1i
∗X[1]) .

Since j∗i∗ = 0 the first term of the triangle is zero. Furthermore since (j∗, j∗) is an adjoint
pair and j∗ is fully faithful the counit is an isomorphism which implies j∗j∗ ∼= id. Putting
everything together we proved that j∗B ∼= τU≥1j

∗X. In particular j∗B ∈ D≥1
U . Now we

apply the exact functor j∗ to the distinguished triangle ∆3 and obtain the distiguished
triangle

j∗∆3 = (j∗A j∗X j∗B j∗A[1]) .

We notice the the third object is isomorphic to τU≥1j
∗X and so by uniqueness of the

canonical triangles induced by truncation we have j∗A ∼= τU≤0j
∗X which shows j∗A ∈ D≤0

U .
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By applying the exact functor i∗ to the distinguished triangle ∆2 we get the distinguished
triangle

i∗∆2 = (i∗A i∗Y i∗i∗τ
F
≥1i
∗Y i∗A[1]) .

A similar argument as before shows that i∗i∗ ∼= id which implies i∗A ∼= τF≤0i
∗Y and so

i∗A ∈ D≤0
F . Finally applying the exact functor i! to the distinguished triangle ∆1 we get

the distinguished triangle

i!∆1 = (i!i∗τ
F
≥1i
∗Y i!B i!j∗τ

U
≥0j
∗X i!i∗τ

F
≥1i
∗Y [1]) .

As before we have i!i∗τ
F
≥1Y

∼= τF≥1Y . Furthemore for X ∈ DU and Y ∈ DF we have

HomDF
(Y, i!j∗X) ∼= HomD(i∗Y, j∗X) ∼= HomDU

(j∗i∗Y,X) ∼= HomDU
(0, X) = 0.

This shows that the third object in the distinguished triangle is zero so the first two must
be isomorphic. This implies i!B ∼= τF≥1Y and so in particular i!B ∈ D≥1

F . We proved that

A ∈ D≤0 and B ∈ D≥1 which shows that ∆3 is the required triangle.

This construction was used by Beilinson Bernstein and Deligne in their paper on perverse
sheaves [1]. Their goal was to show that a certain subcategory of the bounded derived
category of constructible sheaves over a topological space X was abelian. The word con-
structible means some kind of compatibility with a stratification of the space X (meaning
a filtration satisfying certain conditions). The technique of gluing t-structures allowed
them to prove by induction on the number of strata that the category of perverse sheaves
was the heart of the so called ”perverse t-structure” and so it was an abelian category.

t-structures induced by torsion theories

Let A be an abelian category. A torsion theory in A is a pair (T ,F) of full subcategories
of A thath satisfy the following properties:

(a) T = {X ∈ A | HomA(X,Y ) = 0 ∀ Y ∈ F}

(b) F = {Y ∈ A | HomA(X,Y ) = 0 ∀ X ∈ T }

(c) For all X ∈ A there is a short exact sequence

0 T X F 0

such that T ∈ T and F ∈ F .

If (T ,F) is a torsion theory then T is called the torsion class and F is calledd the torsion
free class. An object T ∈ T is called a torsion object while F ∈ F is called torsion free
object. Finally if

0 T X F 0

is a short exact sequence with T ∈ T and F ∈ F then T is called the torsion part of X
and F is the torsion free part of X. It can be shown that the torsion and torsion free
parts of an object X are unique up to isomorphism by showing that they correspond to
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the adjoint functors to the embeddings T → D and F → D. Now we will show that a
torsion theory on A induces a t-structure on D = Db(A). Indeed if we set

D≤0 = {A• ∈ D | H iA• = 0 for i > 0, H0A• ∈ T }
D≥0 = {A• ∈ D | H iA• = 0 for i < −1, H−1A• ∈ F}

then (D≤0,D≥0) is a t-structure on D.

Proof. The axiom (TS1) is clear. To check (TS2) let A• ∈ D≤0, B• ∈ D≥1 and g ∈
HomD(A•, B•) represented by the roof

C•

A• B•

f s .

In particualr f ∈ HomK(A)(A
•, C•) and C• ∼= A• in D so that C• ∈ D≥1. Now we consider

the standard t-structure on Db(A) and we will denote it by (D≤0
s ,D≥0

s ). We notice that
D≤0 ⊂ D≤0

s so that τ s≤0A
• ∼= A•. FurthermoreD≥1 ⊂ D≥0

s and so τ≤0C
• ∼= H0C•[0] ∼= F [0]

where F [0] denotes the complex with F in degree zero and 0 everywhere else and F ∈ F .
Now consider the commutative diagram

τ s≤0A
• A•

τ s≤0C
• C•

τs≤0f

∼

f .

If we show that HomK(A)(τ
s
≤0A

•, F [0]) ∼= 0 we are done because this would imply τ s≤0f =
0 =⇒ f = 0 =⇒ g = 0. Let h ∈ HomK(A)(τ≤0A

•, F [0]). We notice that the maps in
degree different than zero are necessarily zero. Now consider the following diagram

A−1 kerd0
A cokerd−1

A = H0A• = T

0 F

d−1
A

h0
.

The commutativity of the square shows that h0 ◦d−1
A = 0 and so by the universal property

of the cokernel h0 factors uniquely through T . But any map T → F is necessarily zero
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and so h0 = 0. To prove (TS3) let A• ∈ D and consider the following diagram

0 0

0 Imd−1 E T 0

0 Imd−1 kerd0 H0A• 0

F F

0 0

µ

.

To construct it we start with the middle horizontal sequence and the right vertical sequence
which is exact by definition of torsion theory. Then we construct the horizontal sequence on
the top by pullback along µ and we define the map kerd0 → F as the only map that makes
the square commute. A simple diagram chasing shows that the middle vertical sequence
is also exact. Now we define a complex A′• as follows: A′i = Ai for i ≤ −1, A′0 = E
and A′i = 0 for i > 0. The only non obvious differential d−1

A′ is given by the compositon
A−1 → Imd−1 → E. Then we have H0A′• = T so that A′• ∈ D≤0. Finally if we set

A′′• =
A•

A′•
then we have H0A′′• = F so that A′′• ∈ D≥1. The exact sequence

0 A′• A• A′′• 0

in C(A) induces a distinguished triangle

A′• A• A′′• A′•[1]

which is the required triangle.

An easy example of this construction if the following: consider A = Ab the category
of abelian groups. Then there is a torsion theory in A given by torsion and torsion free
groups. In particular this shows that the category

D♥ = {A• ∈ Db(Ab) | H0A• is a torsion group, H−1A• is torsion free, H iA• = 0 for i 6= 0,−1}

is a full abelian subcategory of Db(Ab).

Derived equivalences

Whenever mathematicians study a certain class of objects they do so up to a certain
equivalence relation. If this equivalence is very strict then they are studying this objects
in detail but it will be harder to prove general results. Conversely if the equivalence is
very weak then it is generally easier to study but a lot of information is lost. It is always
an important challenge in mathematics to find an equivalence relation between objects
that is strict enough to capture relevant information but also weak enough that it makes
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the study manageable. One of the reasons why category theory is so prevalent in modern
mathematics is that it allows the study of categories not up to isomorphism but up to
equivalence of categories. In the case of abelain categories there is a weaker notion of
equivalence between them that is still interesting.

Definition 2.5.1. Two abelian categories A,B are said to be derived equivalent if their
bounded derived categories are equivalent as triangulated categories, meaning there is an
equivalence of categories that is also an exact functor.

There many examples in mathematics were two interesting abelian categories are not
equivalent but are derived equivalent. One way of thinking about this is the following:
an equivalence between abelian categories must be exact. Passing to the bounded derived
categories fixes the lack of exactness so that if this was the only obstruction to constructing
an equivalence we obtain a derived equivalence. We will now show that the notion of
derived equivalence is strictly related to the concept of t-structures. Indeed suppose A,B
are derived equivalent but not equivalent and let

F : Db(A)→ Db(B)

be an exact equivalence. We know that the heart of the standard t-structure (D≤0
A ,D≥0

A )

is A and similarly the heart of the standard t-structure (D≤0
B ,D≥0

B ) is B. It is immediate
to check that an exact equivalence maps t-structures to t-structures and so we get a t-
structure (FD≤0

A , FD≥0
A ) in B with heart A and a t-structure (F−1D≤0

B , F−1D≥0
B ) in A with

heart B. This shows that if A and B are derived equivalent then A is a full subcategory of
Db(B) and B is a full subcategory of Db(A). Another way of saying this is that if A and B
are derived equivalent then there is an abstract triangulated category T that is equivalent
to the bounded derived categories of A and B and interepreting T as the derived category
of A is equivalent to declaring that the t-structure (D≤0

A ,D≥0
A ) is the standard t-structure

and the same holds for B. However it should be mentioned that not all t-structures in
Db(A) induce derived equivalences and in fact if B is the heart of a t-structure in Db(A)
there is not even a canonical functor from Db(B)→ Db(A).
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