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Sommario
Questa tesi presenta lo sviluppo e l’implementazione del sistema Lookinglass, un sistema

di Generazione Aumentata dal Recupero (RAG) innovativo, progettato per potenziare

le capacità dei modelli linguistici integrando avanzati meccanismi di recupero delle in-

formazioni. I modelli linguistici tradizionali, pur essendo notevolmente avanzati nella

generazione di contenuti, spesso incontrano difficoltà nel garantire l’accuratezza fattuale

e nella gestione di query complesse e multi-step. Per superare queste limitazioni, il

sistema Lookinglass incorpora un framework robusto che assicura alta precisione e affid-

abilità nella generazione delle risposte.

L’architettura del sistema è progettata meticolosamente per gestire in modo efficiente

sia dati strutturati che non strutturati, sfruttando tecniche all’avanguardia di elabo-

razione del linguaggio naturale e database vettoriali per migliorare la gestione delle query.

Tra le caratteristiche principali figurano la sintesi avanzata, l’efficace pre-elaborazione

dei dati e la gestione sicura dei documenti, tutti elementi che contribuiscono alla sua

performance superiore in applicazioni aziendali come la risposta a domande basate su

documenti e la generazione di contenuti.

Attraverso test e sperimentazioni approfondite, il sistema Lookinglass ha dimostrato

significativi miglioramenti in termini di accuratezza e rilevanza, specialmente in domini

ad alta intensità di conoscenze. La sua capacità di fornire risposte dettagliate e precise,

unitamente a forti misure di privacy dei dati, lo rende uno strumento potente per deci-

sioni basate sui dati. Questa tesi sottolinea l’applicabilità del sistema in scenari reali e

suggerisce direzioni per futuri miglioramenti, tra cui l’augmentazione dei dati in tempo

reale e la funzionalità di agenti automatici.
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Abstract
This thesis presents the development and implementation of the Lookinglass Retrieval-

Augmented Generation (RAG) system, a novel approach designed to enhance the capa-

bilities of language models by integrating advanced information retrieval mechanisms.

Traditional language models, despite their impressive generative capabilities, often strug-

gle with factual inaccuracies and the handling of complex, multi-hop queries. To address

these limitations, the Lookinglass system incorporates a robust framework that ensures

high precision and reliability in response generation.

The system’s architecture is meticulously designed to manage both structured and un-

structured data efficiently, leveraging state-of-the-art natural language processing tech-

niques and vector databases for enhanced query handling. Key features include advanced

summarization, effective data preprocessing, and secure document management, all of

which contribute to its superior performance in business applications such as document-

based question answering and content generation.

Through comprehensive testing and experimentation, the Lookinglass system has

demonstrated significant improvements in accuracy and relevance, particularly in knowledge-

intensive domains. Its ability to provide detailed and precise answers, coupled with

strong data privacy measures, makes it a powerful tool for data-driven decision-making.

This thesis underscores the system’s applicability in real-world scenarios and suggests di-

rections for future enhancements, including real-time data augmentation and automated

agent functionality.
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1
Introduction

In this chapter, a brief introduction to Retrieval-Augmented Generation (RAG) systems,

their significance, primary applications, and associated challenges will be presented.

1.1 Importance of data retrieval and generation

In today’s data-driven business landscape, the ability to effectively retrieve and gen-

erate relevant information is essential for strategic decision-making. As organizations

accumulate massive volumes of structured and unstructured data from various sources,

the challenge lies in identifying and extracting specific data points that address unique

business needs. Efficient data retrieval systems play a crucial role in quickly access-

ing the most pertinent information from vast and complex data pools, minimizing time

and effort spent on manual data exploration. The true value, however, lies in generating

meaningful insights and actionable information from the retrieved data, whether through

concise summaries, visualizations, or natural language responses that directly address

the posed queries. These capabilities empower decision-makers to identify trends, un-

derstand market dynamics, and gain a deeper understanding of business opportunities.

For instance, a financial services company can benefit from advanced data retrieval

systems to monitor and analyze market changes, helping adjust portfolios based on new

data and maximizing returns. Similarly, healthcare organizations rely on data retrieval

to quickly access patient histories and research findings, enabling them to deliver person-

alized treatment and improve patient outcomes. Thus, data retrieval and generation are

the cornerstones of data-driven decision-making, enabling organizations to unlock the

full potential of their data assets, uncover hidden patterns, and make informed choices

that drive strategic growth and success.

1.2 Rise of Large Language Models (LLMS)

The recent introduction and rapid adoption of Large Language Models (LLMs) mark a

transformative leap in how organizations handle and interact with data. These power-

ful models, such as GPT-3, BERT, and others, leverage deep learning to understand,

process, and generate natural language text, ushering in a new era of automated con-

tent generation, customer service, and data interpretation. Trained on massive datasets,

LLMs have demonstrated an unprecedented ability to generate human-like text, revolu-

tionizing various domains, including business intelligence and decision support systems.

These models exhibit unparalleled versatility in generating coherent and contextually
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1. Introduction

relevant responses to complex queries. Their ability to comprehend and process vast

data, combined with their capacity to generate high-quality text, has sparked interest

across industries. For instance, marketing firms can use LLMs to analyze social media

sentiment and create targeted campaigns aligned with current consumer trends. Sim-

ilarly, customer service chatbots powered by LLMs can efficiently handle and respond

to customer queries, improving satisfaction and streamlining interactions. As a result,

these advanced language models have opened new avenues for enhancing data interac-

tion, automating information retrieval, and improving decision-making processes within

organizations.

1.3 Limitations of LLMs in Data Retrieval and Generation

While Large Language Models (LLMs) have transformed natural language processing

and generation, their reliance on pre-trained data presents significant challenges in dy-

namic business environments. LLMs are trained on static datasets and cannot incor-

porate updated information into their responses. This limitation can lead to outdated

or irrelevant answers, particularly in rapidly changing industries like finance and tech-

nology. Additionally, LLMs often struggle with specialized queries that require precise

data interpretation or domain-specific knowledge. For instance, in healthcare, providing

accurate answers about emerging treatments necessitates access to the latest clinical

guidelines and research studies—something that static training data cannot accommo-

date.

Furthermore, LLMs are prone to "hallucination," a phenomenon where they generate

plausible-sounding but factually incorrect information due to the absence of updated

data. This issue is particularly concerning in data-driven business contexts, where ac-

curate and current information is essential for effective decision-making. Depending on

outdated, incomplete, or misleading information can lead to suboptimal resource allo-

cation, strategic missteps, and potential financial losses. These limitations highlight

the need to integrate the language understanding and generation capabilities of LLMs

with data retrieval mechanisms that can ensure responses are grounded in the most rel-

evant and accurate information available. A Retrieval-Augmented Generation (RAG)

system offers a solution by addressing these limitations and enabling organizations to

generate contextually appropriate and factually accurate responses based on up-to-date

information.

1.4 Retrieval-Augmented Generation Systems

Retrieval-Augmented Generation (RAG) systems have emerged as a promising approach

to enhance the capabilities of large language models (LLMs) by combining them with

external knowledge retrieval mechanisms. These systems aim to address some of the

inherent limitations of LLMs, such as their inability to access up-to-date information

beyond their training data and their tendency to generate hallucinated or factually

incorrect content when dealing with knowledge-intensive tasks. The core idea behind

RAG systems is to augment the generation process of LLMs by incorporating relevant
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1. Introduction

information retrieved from external knowledge sources. This is typically accomplished

through a three-step process: (1) indexing and storing information from external data

sources in a searchable format, (2) retrieving relevant chunks of information based on the

input query or prompt, and (3) providing the retrieved information as additional context

to the language model during the generation process. By integrating external knowledge

retrieval into the generation process, RAG systems can potentially overcome some of the

limitations of LLMs. First, they can mitigate the issue of LLMs being limited to the

knowledge present in their training data by allowing access to up-to-date and domain-

specific information from external sources. Second, they can reduce the likelihood of

hallucinations or factual errors by grounding the generation process in relevant retrieved

information.

The potential benefits of RAG systems include:

1. Improved factual accuracy: By leveraging external knowledge sources, RAG

systems can generate more factually accurate responses, especially in knowledge-

intensive domains where LLMs may struggle due to limited training data.

2. Access to up-to-date information: RAG systems can retrieve and incorporate

the latest information from external sources, allowing them to provide more current

and relevant responses compared to LLMs relying solely on their training data.

3. Domain adaptability: RAG systems can be tailored to specific domains by

indexing and retrieving information from domain-specific knowledge sources, en-

abling them to generate more domain-relevant and accurate outputs.

4. Transparency and interpretability: By exposing the retrieved information

used in the generation process, RAG systems can provide more transparency and

interpretability compared to black-box LLM generations, allowing users to verify

the sources and validity of the generated content.

While RAG systems offer promising potential, they also face challenges such as effi-

cient and accurate retrieval, effective integration of retrieved information into the gener-

ation process, and managing the trade-off between computational complexity and per-

formance.

1.5 Objectives and Scope of the Study

The primary objective of the study is to develop and enhance the Retrieval-Augmented

Generation (RAG) system, Lookinglass, aiming to integrate information retrieval mech-

anisms to significantly improve the accuracy and reliability of responses generated by

language models. This research focuses on addressing the limitations of traditional

language models by reducing the occurrence of hallucinations, effectively handling com-

plex and multi-hop queries, and ensuring robust privacy measures to protect sensitive

information. The scope of the study encompasses the comprehensive design and imple-

mentation of system requirements and specifications necessary for a robust RAG system

within a business context, ensuring its applicability in various real-world business sce-

narios such as document-based question answering, information retrieval, and content

generation.
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1.5.1 Objectives

The primary objective of this thesis is to develop and implement a Retrieval-Augmented

Generation (RAG) system, named "The Lookinglass," which addresses the limitations

of current Large Language Models (LLMs) in business environments. Specifically, the

objectives include:

1. Enhance Language Model Capabilities: Integrate advanced retrieval mecha-

nisms to reduce instances of hallucinations, ensuring the language model generates

factually accurate and reliable responses.

2. Improve Handling of Complex Queries: Develop capabilities to manage long-

tail data and multi-hop queries, enabling the system to reason over multiple pieces

of supporting evidence for complex business inquiries.

3. Address Privacy Concerns: Implement robust data handling and retrieval

processes to mitigate the risk of data leakage, ensuring the confidentiality of pro-

prietary and private datasets.

4. Facilitate Practical Business Applications: Design the system to be versatile

and applicable across various business tasks, including document-based question

answering, information retrieval, and content generation.

1.5.2 Scope

The scope of this thesis encompasses the comprehensive design, and development of

the Retrieval-Augmented Generation (RAG) system, Lookinglass. It includes a detailed

examination of the system architecture, focusing on the critical components necessary

for integrating advanced retrieval mechanisms to improve the accuracy and reliability

of language model responses. The thesis also addresses the implementation of robust

privacy and security measures to protect sensitive information, ensuring the system’s

compliance with data protection standards.

Additionally, User interface design is another key area, aimed at providing a seamless

and intuitive experience for users. Through these detailed explorations, the thesis aims

to contribute to the advancement of RAG systems in practical business applications,

demonstrating their potential to enhance various business tasks, from document-based

question answering to content generation and information retrieval.

1. System Design and Architecture: Detailed exploration and documentation of

the system architecture for the Lookinglass RAG system, including data extrac-

tion, data upsert processes, and the query mechanisms for both structured and

unstructured data.

2. Implementation of Retrieval Mechanisms:: Development and integration of

advanced information retrieval techniques to enhance the accuracy and reliability

of responses generated by the language model. This includes designing indexing

methods, efficient search algorithms, and seamless data augmentation processes.
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3. Privacy and Security Measures:: Implementation of robust privacy and secu-

rity protocols to ensure the confidentiality and protection of sensitive data. This

involves developing mechanisms to prevent data leakage, enforce access controls,

and utilize encryption methods for data security.

4. User Interface and Experience Design:: Designing an intuitive and user-

friendly interface for users to interact with the Lookinglass system. This involves

creating clear input mechanisms for queries, ensuring easy-to-understand outputs,

and enhancing the overall user experience.

1.6 Structure of the Thesis

This thesis is organized into five major chapters, each of which addresses specific aspects

of the development and implementation of the Retrieval-Augmented Generation (RAG)

system, "The Lookinglass."

Chapter 2: Literature Review The Literature Review chapter provides an overview of

previous research related to Retrieval-Augmented Generation systems and their integra-

tion with Large Language Models (LLMs). This chapter highlights key advancements,

existing challenges, and gaps in current literature that the Lookinglass system seeks to

address.

Chapter 3: Methodology The Methodology chapter outlines the design and implemen-

tation of the Lookinglass system. It covers the overall system architecture, including

data retrieval and processing pipelines, query handling mechanisms, and response gen-

eration strategies. The chapter also discusses technical aspects like metadata storage,

data chunking, and embedding vector storage.

Chapter 4: Experiments and Results The Experiments and Results chapter presents a

thorough evaluation of the Lookinglass system through extensive testing and validation.

This chapter describes the experimental setup, including the hardware and software

environments, datasets, and types of queries used. It analyzes the system’s performance

in terms of precision, accuracy, and reliability across various query complexities and data

types. The results highlight the system’s strengths in delivering accurate and relevant

information and identify potential areas for improvement. This evaluation demonstrates

the practical applicability of Lookinglass in real-world business scenarios and guides

future development efforts.

Chapter 5: Conclusion and Future Work The Conclusion and Future Work chapter

summarizes the key findings of the research and provides an analysis of the Lookinglass

system’s strengths and limitations. The chapter also outlines the potential implications

of the system in practical business environments and identifies areas for future improve-

ment and research.
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2
Literature Review

The evolution of artificial intelligence (AI) and natural language processing (NLP) has

revolutionized data interaction in business environments, driven by advancements in

Large Language Models (LLMs) like BERT and GPT. While these models have signif-

icantly improved language understanding, their static nature often limits the relevance

and accuracy of their responses in dynamic contexts. To overcome these limitations,

Retrieval-Augmented Generation (RAG) systems have emerged, combining LLMs with

data retrieval mechanisms to enhance decision-making efficiency and information accu-

racy, which this literature review will explore in depth.

2.1 Large Language Models(LLMs)

The development of large language models has been significantly propelled by the in-

troduction of the Transformer model, detailed in [6], which revolutionized NLP with its

self-attention mechanism. Building on this, BERT [1] brought about groundbreaking

improvements in NLP by enabling deep bidirectional understanding of text. Follow-

ing this, OpenAI’s GPT series further advanced the field with generative pre-training,

particularly with and GPT-3 [2] showcasing exceptional capabilities in text generation.

These advancements set the stage for sophisticated systems like Retrieval-Augmented

Generation (RAG).

2.1.1 Transformers

The introduction of the Transformer model in [6] marked a significant advancement

in sequence transduction models by eliminating the need for recurrence and convolu-

tion, which are traditionally employed in neural network architectures for tasks such

as machine translation and language modeling. The Transformer relies entirely on self-

attention mechanisms, allowing for greater parallelization during training and signifi-

cantly reducing the time required to reach state-of-the-art performance. For example,

the Transformer achieved a BLEU score of 28.4 on the WMT 2014 English-to-German

translation task and 41.0 on the English-to-French task, both with much shorter training

times compared to previous models. This paradigm shift not only improved the efficiency

of training but also demonstrated superior performance by learning global dependencies

more effectively than models based on recurrent neural networks or convolutional neu-

ral networks [6]. The Transformer model’s architecture consists of an encoder-decoder

structure that leverages multi-head self-attention and fully connected feed-forward layers.
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2.1.3 GPT and Its Impact

GPT (Generative Pre-trained Transformer) is a groundbreaking language model devel-

oped by OpenAI, which has significantly advanced the field of natural language process-

ing (NLP). The core innovation of GPT lies in its transformer-based architecture, which

allows for powerful language understanding and generation capabilities. GPT’s primary

innovation is the transformer architecture, introduced by [6]. Unlike previous models

that relied on recurrent neural networks (RNNs), the transformer architecture uses self-

attention mechanisms to process input data in parallel, rather than sequentially. This

approach allows for the handling of long-range dependencies and the efficient processing

of large datasets.

Another crucial innovation in GPT is its unsupervised pre-training approach. GPT is

pre-trained on a large corpus of text using a language modeling objective, which involves

predicting the next word in a sequence. This pre-training allows the model to learn a

wide range of linguistic patterns, grammar, facts, and some degree of common sense

knowledge. Once pre-trained, GPT can be fine-tuned on specific tasks with relatively

small amounts of task-specific data, making it highly versatile and efficient for various

NLP applications.

GPT-3, the third iteration of the GPT model, represents a significant leap in scale

and capability. GPT-3 has 175 billion parameters, making it the largest language model

ever created at the time of its release [2]. The scaling up of parameters has resulted in

substantial improvements in the model’s ability to understand and generate human-like

text.

The performance of GPT-3 across various NLP tasks is remarkable. It has demon-

strated state-of-the-art results in tasks such as translation, question answering, and cloze

tasks. One of the most impressive aspects of GPT-3 is its ability to perform few-shot

learning, where it can generalize from just a few examples provided in the prompt. This

ability to perform tasks with minimal examples showcases the model’s deep understand-

ing and flexibility.

One of the key contributions of GPT-3 is its ability to perform few-shot learning[2],

which allows the model to understand and execute tasks based on just a few examples

provided in the prompt. This is achieved through "in-context learning," where the model

uses the context provided by the user to adapt its responses without any gradient updates

or fine-tuning.

The impact of few-shot learning is significant because it reduces the need for large

task-specific datasets, which are often expensive and time-consuming to obtain. GPT-

3’s performance in few-shot settings often rivals or exceeds that of models that have been

fine-tuned on large amounts of task-specific data. For instance, in tasks like TriviaQA

and CoQA, GPT-3 has achieved impressive results with minimal example inputs[2].

Despite its advancements, GPT-3 is not without challenges. The model’s reliance on

vast amounts of data from the internet means it can inadvertently generate biased or

inappropriate content[2]. Furthermore, while GPT-3 performs well on many tasks, it

still struggles with tasks requiring deep reasoning, contextual understanding over long

documents, and certain types of commonsense reasoning. These limitations highlight the

ongoing need for improvements in language models to ensure they can handle a broader
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of information retrieval systems, making RAG particularly valuable for tasks requiring

up-to-date knowledge and detailed information, such as complex question answering and

specialized domain applications.

2.2.1 RAG vs LLM

Retrieval-Augmented Generation (RAG) models have emerged as a significant advance-

ment over traditional Large Language Models (LLMs), particularly in handling knowledge-

intensive tasks. Traditional LLMs, such as GPT-3 and BERT, store knowledge implicitly

within their parameters, which limits their ability to access and manipulate external, up-

to-date information effectively. This limitation is particularly evident in their struggle

to provide accurate responses about recent events or rarely mentioned facts [7] [8].

RAG models address these limitations by incorporating a retrieval mechanism that

allows the model to access and utilize external knowledge sources dynamically during

the generation process. This integration of a dense vector index of a large corpus, such

as Wikipedia, enables RAG models to condition their responses on relevant and up-

to-date information retrieved from this corpus. As a result, RAG models can provide

more accurate and contextually relevant answers compared to traditional LLMs that

rely solely on pre-trained knowledge[7].

One of the key advantages of RAG models over traditional LLMs is their ability to

generate more specific, diverse, and factual language. By leveraging retrieved passages

during the response generation, RAG models significantly reduce the likelihood of gener-

ating hallucinations, a common issue with traditional LLMs where the model generates

plausible but incorrect or misleading information[7]. This makes RAG models particu-

larly useful in applications requiring high factual accuracy, such as open-domain question

answering and fact verification tasks.

Moreover, the hybrid architecture of RAG models, which combines parametric and

non-parametric memory, allows for more flexible and interpretable knowledge manage-

ment. Knowledge in RAG models can be easily updated and expanded by modifying the

external corpus, without needing to retrain the entire model. This capability addresses

a major challenge faced by traditional LLMs, which require substantial retraining to

incorporate new information [8].

For instance, the RAG models fine-tuned for various NLP tasks have consistently

outperformed parametric seq2seq models and task-specific retrieve-and-extract archi-

tectures, setting new state-of-the-art results in several open-domain QA tasks. This

performance improvement is attributed to the effective combination of retrieved context

with the model’s pre-existing knowledge, enhancing both the accuracy and relevance of

the generated responses[7].

2.2.2 RAG concept and Structure

Retrieval-Augmented Generation (RAG) is a hybrid model that integrates the strengths

of both parametric and non-parametric memory to enhance language generation. Tradi-

tional large language models (LLMs) store knowledge within their parameters, but this

approach has limitations in accessing, updating, and verifying the knowledge, leading
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the retrieval process. Methods like Make-An-Audio use captioning and audio-text re-

trieval to generate captions for language-free audio, addressing data sparsity issues and

improving the retrieval outcome [3].

Retriever Enhancements

Enhancements to the retriever are critical as they directly influence the quality of the

content fed into the generator. Recursive retrieval and chunk optimization are two sig-

nificant techniques in this area. Recursive retrieval involves performing multiple searches

to gather richer and higher-quality content, as seen in the ReACT method, which uses

Chain-of-Thought (CoT) to break queries down for recursive retrieval [3] [11]. Chunk

optimization adjusts the size of the data chunks retrieved to improve the retrieval results,

with methods like LlamaIndex employing a ’small to big’ principle to fetch finer-grained

content initially and then returning richer information [3].

Generator Enhancements

Enhancements to the generator are crucial for improving the quality of the final output.

Prompt engineering and decoding tuning are two important methods in this category.

Prompt engineering involves designing prompts that better utilize the retrieved data,

with techniques like Chain of Thought (CoT) prompting and active prompt design signif-

icantly improving the output quality [3]. Decoding tuning adjusts the hyperparameters

of the generator to balance diversity and quality, as demonstrated by InferFix, which

balances the temperature in the decoder to achieve optimal results [3].

Result Enhancements

Result enhancements focus on refining the generated output to meet the specific needs

of downstream tasks. Output rewrite is a key technique here, where the generated

content is rewritten to align better with the task requirements. SARGAM, for example,

refines outputs in code-related tasks by employing a specialized transformer that aligns

generated content with real-world code context [3].

Pipeline Enhancements

Pipeline enhancements aim to optimize the entire RAG process from retrieval to gen-

eration. Adaptive retrieval and iterative RAG are prominent methods in this category.

Adaptive retrieval dynamically decides whether retrieval is necessary based on the com-

plexity of the query, using classifiers to guide this decision-making process. Self-RAG,

for instance, uses a trained generator to determine the necessity of retrieval based on

the input query [3]. Iterative RAG refines results through multiple cycles of retrieval

and generation, allowing for progressively improved outputs. RepoCoder employs this

approach to enhance code completion by refining queries with previously generated code

[3][12].
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2.3 Challenges with RAG

Despite the significant advancements in Retrieval-Augmented Generation (RAG) sys-

tems, there remain numerous challenges that limit their full potential. These challenges

span various aspects of the technology, from operational efficiency to robustness and

scalability. Addressing these issues is crucial for enhancing the performance and appli-

cability of RAG systems in diverse domains. Moreover, identifying and exploring future

directions for research and development will be key to overcoming these obstacles and

driving further innovation in this field. This section discusses the primary challenges

faced by RAG systems and outlines potential avenues for future advancements.

RAG vs. Long Context

One of the primary challenges for RAG is managing long contexts. With advancements

in LLMs, handling extensive contexts exceeding 200,000 tokens has become feasible.

However, this capability raises questions about the necessity of RAG when LLMs can

incorporate entire documents directly. Providing LLMs with a large amount of context

at once can significantly slow down inference speeds. Moreover, RAG’s chunked retrieval

and on-demand input improve operational efficiency and allow for observable retrieval

and reasoning processes, making RAG indispensable for verifying generated answers and

managing complex problems requiring substantial material to answer[13].

Robustness Against Noise and Contradictory Information

RAG systems often struggle with robustness when confronted with noise or contradic-

tory information during retrieval. The quality of RAG output can deteriorate signifi-

cantly due to the presence of such adversarial inputs. Studies have shown that including

irrelevant documents can sometimes unexpectedly increase accuracy, highlighting the

complexity of developing strategies that effectively integrate retrieval with generation

models. Enhancing the robustness of RAG against such inputs is a key area of ongoing

research[13].

Hybrid Approaches

Combining RAG with fine-tuning (FT) emerges as a leading strategy to optimize per-

formance. The challenge lies in determining the optimal integration approach—whether

sequential, alternating, or through end-to-end joint training. This hybrid method aims

to harness both parameterized and non-parameterized advantages, yet balancing these

aspects requires further exploration. The introduction of small language models (SLMs)

with specific functionalities into the RAG system and fine-tuning them based on RAG

results is a promising direction[13].

Scaling Laws of RAG

The scalability of RAG models remains an open question. While scaling laws are well-

established for LLMs, their applicability to RAG is less certain. Initial studies suggest

that smaller models might sometimes outperform larger ones, an intriguing possibility
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that warrants further investigation. Understanding how to scale RAG models effectively

is crucial for enhancing their capabilities and performance[13].

Production-Ready RAG

Practical deployment of RAG systems involves several engineering challenges. Enhancing

retrieval efficiency, improving document recall in large knowledge bases, and ensuring

data security are critical issues. Preventing inadvertent disclosure of document sources

or metadata by LLMs is particularly challenging. Developing robust, efficient, and secure

RAG systems that can be readily adopted in production environments is essential for

the broader application of this technology[13].

Multi-modal RAG

Expanding RAG beyond text to incorporate multi-modal data, including images, audio,

and video, presents additional challenges. Developing models that can effectively retrieve

and generate across various data modalities is complex and requires sophisticated inte-

gration strategies. This expansion holds significant potential but also demands robust

methodologies to manage the increased complexity and ensure consistent performance

across different types of data[13].

2.4 Domain-Specific Applications of RAG Systems

Retrieval-Augmented Generation (RAG) systems represent a significant advancement

in the field of artificial intelligence, combining the strengths of dynamic information

retrieval with sophisticated generative models. This integration allows RAG systems

to access and utilize current, domain-specific knowledge, enhancing their relevance and

accuracy across various applications. The versatility of RAG makes it a powerful tool in

diverse fields such as healthcare, finance, and education, where the need for precise, up-

to-date information is paramount. By bridging the gap between static data and dynamic

retrieval, RAG systems provide innovative solutions to complex challenges, making them

indispensable in today’s data-driven world.

2.4.1 Healthcare Applications

Retrieval-Augmented Generation (RAG) systems have shown significant promise in en-

hancing various healthcare applications by combining the strengths of retrieval-based

and generation-based models. These systems leverage external knowledge bases to gener-

ate accurate, contextually relevant, and up-to-date responses, making them particularly

useful in the healthcare domain.

Medical Report Generation

One of the primary healthcare applications of RAG is in the generation of medical re-

ports. Traditional approaches to medical report generation often rely on predefined

templates, which can limit the diversity and specificity of the generated reports. RAG
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information with image features. This results in reports that are not only accurate but

also capture subtle and significant medical findings that may be missed by generation-

only models [4].

2.4.2 Business Applications

Retrieval-Augmented Generation (RAG) systems have shown substantial potential in

enhancing various business applications by integrating the capabilities of information

retrieval with the generative power of large language models (LLMs). This combination

allows businesses to access, process, and utilize vast amounts of data more effectively,

leading to improved decision-making, customer service, and data management.

Financial Data Analysis

RAG systems are particularly effective in the financial sector, where they can be used

to analyze large volumes of financial statements and reports. By dynamically retrieving

relevant data and generating insightful summaries, these systems help financial analysts

and decision-makers extract critical information efficiently. For instance, the use of RAG

in financial statement analysis enables the system to parse through extensive financial

documents, retrieve pertinent data points, and generate comprehensive reports that

highlight key financial metrics and trends [16] .

Customer Service Enhancement

In the realm of customer service, RAG systems have revolutionized the way companies

handle customer inquiries and support tickets. By integrating knowledge graphs with

retrieval-augmented generation, RAG systems can provide accurate and contextually

relevant responses to customer queries. This approach not only improves the quality

of customer support but also significantly reduces the time required to resolve issues.

The integration of RAG with knowledge graphs ensures that the system maintains the

structure and relationships within customer service data, leading to more precise and

useful answers [17].

For example, LinkedIn’s deployment of RAG for customer service involved creating a

knowledge graph from historical issue tickets and using it to enhance the retrieval and

answering process. This method improved retrieval accuracy by 77.6% in Mean Recip-

rocal Rank (MRR) and boosted BLEU scores for answer quality by 0.32, demonstrating

significant gains in both retrieval performance and response quality [17].

Table-to-Answer Systems

Another critical application of RAG systems in business is in generating answers from

large, structured data sets like tables. The ERATTA (Extreme RAG for Table-To-

Answers) system is a prime example, where multiple LLMs are used to authenticate

user access, route queries, retrieve data, and generate natural language responses. This

system is particularly beneficial for enterprise-level data products, enabling real-time

responses to user queries about highly varying and large data tables. ERATTA has
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retrieval systems. This approach is crucial for enhancing the efficacy of information re-

trieval in educational contexts, as it helps educators and content developers understand

what information is missing or inadequately covered. For example, the AskPandi sys-

tem uses RAG to mimic user behavior and generate relevant follow-up questions, thus

identifying areas where educational content can be improved [19].

Enhancing Interactive Learning

Interactive learning platforms can significantly benefit from RAG systems by providing

more relevant and accurate responses during student interactions. For example, in the

context of a math chatbot used by middle-school students, RAG was employed to retrieve

relevant content from textbooks and generate responses that are both accurate and

pedagogically sound. This method ensures that the chatbot’s answers are aligned with

the educational curriculum and provide meaningful learning support to students [5].

2.5 Evaluation Metrics and Validation of RAG Systems

In the evaluation of Retrieval-Augmented Generation (RAG) systems, it is crucial to fo-

cus on several key metrics and validation methodologies to ensure the effectiveness and

reliability of these systems. The following sections provide an overview of the most im-

portant evaluation metrics and validation techniques for RAG systems, drawing insights

from several key papers in the field.

2.5.1 Evaluation Metrics

Retrieval Evaluation

Retrieval performance in RAG systems is primarily assessed using metrics that gauge

the relevance and accuracy of the retrieved documents. Key metrics include:

• Mean Average Precision at K (MAP@K): This metric evaluates the average

precision of the top-K retrieved documents. It is calculated as the mean of the

precision scores at different recall levels for the top-K retrieved documents. Higher

MAP@K values indicate better retrieval performance [20].

• Mean Reciprocal Rank at K (MRR@K): This metric measures the rank

position of the first relevant document in the top-K retrieved documents. The

reciprocal rank of the first relevant document is averaged over all queries. MRR@K

is particularly useful for understanding how quickly a relevant document appears

in the ranked list[20].

• Hit Rate at K (Hit@K): This metric indicates the proportion of queries for

which at least one relevant document is found within the top-K retrieved docu-

ments. A higher hit rate suggests that the retrieval system is effective in fetching

relevant documents early in the ranking[20].

Several recent studies provide valuable insights into the evaluation of RAG systems:
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• MultiHop-RAG: This study highlights the challenges of answering multi-hop

queries, which require reasoning over multiple pieces of evidence. The authors de-

veloped a novel dataset, MultiHop-RAG, to benchmark the retrieval and reason-

ing capabilities of various state-of-the-art language models. Their findings indicate

that existing RAG methods struggle with multi-hop queries, underscoring the need

for improved retrieval strategies[21].

• RAGGED: This paper focuses on the evaluation of RAG systems in noisy environ-

ments. It introduces the RAGGED dataset, which includes queries with varying

levels of noise and complexity. The study emphasizes the importance of robust

retrieval mechanisms to handle noisy inputs effectively [22].

Generation Evaluation Metrics

Generation quality in RAG systems is evaluated based on the accuracy and relevance of

the generated responses. Important metrics include:

• Accuracy: This metric measures the proportion of correct answers generated by

the RAG system compared to the ground truth answers. It is a direct indicator of

the system’s ability to produce correct and relevant responses[20].

• BLEU Score: This metric assesses the quality of the generated text by comparing

it to reference texts. BLEU (Bilingual Evaluation Understudy) score considers

the overlap of n-grams between the generated and reference texts, providing a

quantitative measure of textual similarity[20].

• ROUGE Score: Similar to BLEU, ROUGE (Recall-Oriented Understudy for

Gisting Evaluation) evaluates the overlap of n-grams, but it also considers recall

and precision. ROUGE is particularly useful for summarization tasks where the

completeness of the content is important[20].

Several recent studies provide valuable insights into the evaluation of generation qual-

ity in RAG systems:

2.5.2 Validation Techniques

To ensure the robustness and generalizability of RAG systems, various validation tech-

niques are employed:

Cross-Validation: This technique involves partitioning the dataset into multiple

subsets and training the model on each subset while validating it on the remaining

data[20]. Cross-validation helps in assessing the model’s performance across different

data splits, ensuring that it is not overfitting to a particular subset.

Human Evaluation: Although automated metrics are useful, human evaluation

remains the gold standard for assessing the quality of generated responses[20]. Human

evaluators rate the responses based on relevance, coherence, and factual accuracy. This

subjective assessment provides insights into the practical usability of the system.

Benchmark Datasets: Utilizing standardized benchmark datasets, such as MultiHop-

RAG, is essential for consistent evaluation and comparison of RAG systems[20]. These
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datasets provide a diverse set of queries and corresponding ground truth answers, en-

abling comprehensive performance evaluation.

2.6 Gaps in the Literature and Justification for the Lookinglass

Current challenges such as handling complex queries, minimizing factual inaccuracies,

and ensuring data privacy highlight the necessity for innovative solutions. This study

introduces Lookinglass, a robust RAG system designed to address these critical gaps

and enhance the practical utility of language models in real-world scenarios.

2.6.1 Identified Gaps

• Factually Incorrect Responses: Traditional language models often generate re-

sponses that are factually incorrect or misleading. Existing research highlights the

issue of "hallucinations" where models produce inaccurate outputs.

• Handling Complex Queries: There is a significant challenge in managing long-tail

data and multi-hop queries that require reasoning over multiple pieces of support-

ing evidence. Most systems struggle with such complex queries.

• Privacy Concerns: Implementing robust mechanisms to prevent data leakage is

crucial. The system must ensure that sensitive information is protected and only

accessible to authorized users. This involves developing strong access controls,

encryption, and other security measures.

• Practical Business Applications: While there is a growing interest in applying

language models to business contexts, many existing systems are not versatile or

robust enough to handle diverse business tasks effectively.

2.6.2 Justification for the Lookinglass

The gaps identified underscore the necessity for an advanced RAG system, like Lookin-

glass, with the following justifications:

• Reducing Hallucinations: By integrating sophisticated retrieval mechanisms, Look-

inglass aims to minimize instances of hallucinations, thereby enhancing the accu-

racy and reliability of language model outputs. This improvement is critical for

applications requiring high factual correctness.

• Complex Query Management: The ability to handle multi-hop queries and long-

tail data is essential for addressing complex business inquiries. Lookinglass is

designed to manage such complexity, providing accurate responses by reasoning

over multiple pieces of evidence.

• Ensuring Privacy and Security: The system allows users to set customizable se-

curity levels, ensuring that only authenticated users with the appropriate level of

security can access sensitive information. This feature is particularly useful for
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organizations that need to maintain strict confidentiality while allowing controlled

access to critical data.

• Versatile Business Applications: The system’s design focuses on practical business

applications, such as document-based question answering, information retrieval,

and content generation. This versatility ensures that Lookinglass can be effectively

utilized across various real-world business scenarios.

Overall, the development of Lookinglass addresses the critical gaps in current RAG

systems by enhancing factual accuracy, managing complex queries, ensuring security,

and supporting a wide range of business applications. This study is justified by the need

to overcome the limitations of existing language models and provide a more reliable,

secure, and versatile solution for business contexts.

2.7 Summary

This chapter provides a comprehensive analysis of the advancements and challenges

in artificial intelligence (AI) and natural language processing (NLP), focusing on the

evolution of Large Language Models (LLMs) like BERT and GPT, and the emerg-

ing paradigm of Retrieval-Augmented Generation (RAG). The chapter highlights the

transformative impact of LLMs, enabled by innovations such as the Transformer model,

BERT’s bidirectional training, and GPT’s generative capabilities. Despite these ad-

vancements, traditional LLMs face limitations in dynamic and contextually accurate

information generation, addressed by RAG systems that integrate retrieval mechanisms

to enhance response accuracy and relevance. Detailed comparisons between RAG and

LLMs emphasize RAG’s superior ability to handle complex, knowledge-intensive tasks

by dynamically accessing external information. The review also explores the struc-

tural components, advantages, and technological enhancements of RAG, along with its

domain-specific applications in healthcare, business, and education. Challenges such as

handling long contexts, robustness against noise, and scalability are discussed, under-

scoring the need for ongoing research. The chapter concludes by identifying gaps in

current systems, justifying the development of the Lookinglass system to address these

issues and improve practical applications in real-world scenarios.
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The ultimate goals of the Retrieval-Augmented Generation (RAG) system, Lookinglass,

are centered around enhancing the capabilities of language models by integrating informa-

tion retrieval mechanisms to improve response accuracy and reliability. This document

outlines the system requirements and specifications essential for developing an effective

and robust RAG system in a business context.

3.1 Primary Goals and Objectives

The Lookinglass RAG system aims to overcome several challenges associated with tra-

ditional language models. The key goals include:

1. Enhancing Language Model Capabilities: By integrating retrieval mecha-

nisms, the system aims to reduce instances of hallucinations where language mod-

els generate factually incorrect or misleading responses [23]. This enhancement is

critical for ensuring that the outputs of the language model are both accurate and

reliable.

2. Improving Handling of Complex Queries: The system is designed to better

manage long-tail data and multi-hop queries, which require reasoning over multiple

pieces of supporting evidence [21]. This capability is vital for addressing complex

business inquiries that go beyond simple, single-hop responses.

3. Addressing Privacy Concerns: The Lookinglass includes mechanisms to mit-

igate the risk of data leakage, ensuring that the use of proprietary and private

datasets does not inadvertently expose sensitive information. This is achieved

through robust data handling and retrieval processes that prioritize confidential-

ity.

4. Facilitating Practical Business Applications: The system is intended to be

versatile and applicable across various business tasks such as document-based ques-

tion answering, information retrieval, and content generation, thereby enhancing

the practical utility of language models in real-world business scenarios.

3.2 Requirments

The requirements for the Lookinglass RAG system encompass both functional and non-

functional aspects. Functionally, it must accurately retrieve relevant documents, seam-

41



3. Methodology

lessly integrate retrieved data into the generation process, produce coherent and factually

accurate responses, and offer a user-friendly interface. Non-functionally, it must ensure

high performance, reliability, scalability, and security, handling a high volume of queries

efficiently while protecting sensitive data.

3.2.1 Functional Requirements

• Accurate Information Retrieval: The system must be capable of retrieving

relevant documents and data efficiently. This involves sophisticated indexing tech-

niques and the ability to search large datasets quickly.

• Effective Augmentation of Retrieved Data: Once data is retrieved, the sys-

tem must integrate it seamlessly into the generation process. This includes pre-

processing the retrieved information to ensure it is in a suitable format for the

language model to use.

• Robust Response Generation: The language model component should be ca-

pable of generating coherent, contextually appropriate, and factually accurate re-

sponses based on the retrieved information. This requires advanced natural lan-

guage processing techniques and fine-tuning of the language model.

• User-Friendly Interface: The system should provide an intuitive interface for

users to interact with. This includes clear input mechanisms for queries and easy-

to-understand outputs.

3.2.2 Non-Functional Requirements

• Performance: The system must be able to handle a high volume of queries

without significant latency. This includes efficient data retrieval and response

generation processes to ensure quick turnaround times.

• Reliability: The system should operate consistently under varying conditions. It

should maintain a high level of accuracy and dependability in its outputs.

• Scalability: The architecture should support scaling to accommodate increas-

ing data volumes and user demands. This involves designing the system to be

extensible and capable of integrating additional resources as needed.

• Security: The system must prioritize the protection of sensitive data. This in-

cludes implementing strong access controls to prevent unauthorized access and

data breaches.

3.3 System Architecture

The Lookinglass system architecture 3.1 integrates advanced language models with ro-

bust information retrieval mechanisms, utilizing MongoDB for extracted data storage
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it suitable for embedding. This involves cleaning and formatting the data to ensure

it is ready for word embedding using the OpenAI ADA model.

Embedding

Embedding is a crucial step in the data preparation process because it transforms

textual data into numerical vectors. These vectors capture the semantic meaning

of the text, allowing the Lookinglass system to perform efficient similarity searches

and advanced data analysis. By converting text into a numerical format, embed-

dings enable the system to understand and process the underlying patterns and

relationships within the data, which is essential for various applications such as

recommendation systems, semantic search, and natural language processing tasks.

Why We Chose OpenAI ADA

We have chosen the OpenAI ADA model for embedding due to its high performance

and versatility. ADA is known for its ability to produce high-quality embeddings

that effectively capture the nuances and context of the text. It offers several

advantages:

1. Accuracy: ADA provides highly accurate embeddings, which improve the

overall performance of the Lookinglass system in terms of search relevance

and data analysis [24].

2. Efficiency: The model is optimized for efficiency, allowing for fast processing

of large volumes of data without compromising on quality [24].

3. Scalability: ADA can handle a wide range of text types and sizes, making it

a scalable solution for diverse data sets and applications within Lookinglass

[24].

4. Robustness: The embeddings generated by ADA are robust, meaning they

maintain their quality and relevance even when applied to varied and com-

plex text data. By leveraging the capabilities of the OpenAI ADA model,

the Lookinglass system ensures that the data is accurately and efficiently

embedded, enabling powerful and precise search and analysis functionalities

[24].

DeepDive: Enhanced Upsert with Summarization

The DeepDive feature provides an enhanced upsert option that includes summarization.

This feature is optional and can be enabled by the user for additional insights and

detailed query capabilities The turbo upsert process involves generating summaries of

the original documents using a GPT model. These summaries, along with the original

data vectors, are then upserted into the Pinecone database.

Summarization

The summarization process in the Lookinglass system is a critical component of the

DeepDive feature, which provides enhanced query capabilities by generating detailed

summaries of documents. This process leverages a MapReduce strategy to efficiently
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into a single reduce task. This task is responsible for aggregating the individ-

ual summaries and tables of contents generated by the map tasks.

2. Final Summarization: The reduce task combines the individual summaries

into a comprehensive summary that encapsulates the entire original docu-

ment. It also consolidates the tables of contents into a cohesive structure

that reflects the summarized content.

3. Output of the Whole Summary: The final output of the reduce task is a

document that includes the complete summary of the original text along with

a detailed table of contents. This document provides a comprehensive and

organized overview of the original content, making it easier for Lookinglass

to navigate.

The MapReduce-based summarization process in the Lookinglass system offers several

advantages:

1. Scalability: By dividing the document into smaller parts and processing them in

parallel, the system can efficiently handle large volumes of text data.

2. Efficiency: The parallel processing approach reduces the time required to generate

summaries, making the system more responsive and capable of handling high loads.

3. Comprehensiveness: The generation of detailed summaries and tables of contents

ensures that Lookinglasss have access to concise yet comprehensive overviews of

the original documents.

4. Enhanced Query Capabilities: The detailed summaries generated by the DeepDive

feature enable the system to handle complex and specific queries, providing users

with more precise and relevant information.

Use Cases of DeepDive

The DeepDive summarization feature provides additional information that enhances the

system’s ability to respond to detailed and specific queries. Some example use cases

include:

1. Character Development Analysis: For example, analyzing the development

of a specific character in a novel over multiple chapters.

2. Comparative Analysis: Comparing themes, topics, or figures across different

documents or sections within a document.

Costs of DeepDive Upsert

While the DeepDive provides significant benefits, it also comes with certain costs:

1. Time: The process takes more time compared to a normal upsert due to the

additional steps involved in summarization using the GPT-3.5 model.

2. Cost: The summarization process incurs costs associated with the use of the

GPT-3.5 model provided by OpenAI.
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• DataFrame Overview: Extract comprehensive information such as: RangeIn-

dex, Number of columns, Column names, Number of non-null values, Data

type of each column

• First and Last Rows : Extract the first and last rows of the DataFrame

This detailed overview is crucial for data analysis and validation, providing query

module with a clear understanding of the structure and content of the data.

5. Description Summary The description summary generation process in the Look-

inglass system utilizes the capabilities of the GPT-4 model to produce detailed and

informative summaries of tables. This is achieved by providing the model with a

metadata of the table, which it then uses to create a natural language description.

This description includes key components, columns, statistics, and other notable

characteristics of the table.

The GPT-4 model reviews the provided table metadata to understand the key

elements such as the number of rows and columns, data types, and any notable

statistics or characteristics. Based on this review, the model generates a coherent

and informative description. For example, the description may highlight the num-

ber of rows and columns, the types of data present in each column, key statistics

such as mean values and standard deviations, and any significant data points or

observations.

• Infer Summary: Use the metadata to create a descriptive summary of the

table, highlighting key aspects and characteristics.

• Generate Summary with GPT-4: Employ the advanced capabilities of the

GPT-4 model to produce a high-quality summary that captures the essence

of the table. The description summary provides Lookinglass with a quick and

insightful overview of the table, enhancing its ability to effectively utilize the

data in the table.

6. Vectorization and Upsert: After the summarization process, the structured

data, is vectorized using the Ada embedding model. The vectorized data is then

upserted into the Pinecone vector database, ensuring it is indexed and searchable

for efficient retrieval and analysis.

The upsert process for both structured and unstructured data within the Lookinglass

system ensures that data is accurately and efficiently integrated into the Pinecone vector

database. This process involves meticulous steps including data retrieval, preprocessing,

metadata cleaning, information extraction, summarization, and vectorization using the

Ada embedding model. By following these comprehensive workflows, the Lookinglass

system guarantees that data is clean, well-organized, and readily available for advanced

analysis and application. This robust integration enhances the system’s capability to

provide precise and relevant information to its users.
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effective for understanding the context and meaning behind the question, rather

than relying solely on keyword matching.

• Query Summaries: For summaries, the system retrieves the top 5 documents

that are most semantically similar to the standalone question. This ensures

that the concise, high-level insights provided by the summaries are relevant

to the user’s query.

• Query Original Documents: For original documents, the system retrieves the

top 10 documents that are most semantically similar to the standalone ques-

tion. This provides a deeper and more comprehensive understanding of the

topic in question.

3. Removing Similar Documents: After the initial retrieval of documents, both

summaries and original documents undergo a process to remove similar documents.

This step is essential for ensuring that the final set of results is diverse and not

cluttered with redundant information. Removing similar documents helps in main-

taining the uniqueness of the responses. It ensures that the information provided

to the user is varied and comprehensive, rather than repetitive.

4. Pruning Original Documents: Pruning Original Documents is a critical phase

in the query process that ensures the most relevant documents are retained while

less pertinent ones are discarded. This step is executed using GPT model to assess

the relevance of each document to the user’s question.

Process

a) Context and Question Review: The system first reviews the content of each

document (referred to as the context) alongside the user’s standalone question.

This involves a thorough examination of both the document content and the

question to understand their respective details.

b) Relevance Assessment: Using GPT model, the Lookinglass determines if the

document contains information that answers the user’s question. This assess-

ment is not limited to exact matches but also considers partial relevance. If

any part of the document addresses the question, it is deemed relevant.

c) Filtering Based on Relevance:

• True Relevance: If the document is found to be relevant (even partially),

it is marked as relevant.

• False Relevance: If the document does not contain any pertinent infor-

mation, it is marked as irrelevant and excluded from further processing.

d) JSON Output: The relevance determination is output as a JSON object with

a boolean result. This object indicates whether each document should be

retained (’true’) or discarded (’false’) based on its relevance.

By filtering out irrelevant documents, this pruning phase ensures that the sub-

sequent steps in the query process focus only on the most pertinent and useful

information. This enhances the efficiency and accuracy of the system’s responses,

providing users with highly relevant and precise answers to their queries.
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5. Pruning Summaries: In this phase, OpenAI model is used to assess the relevance

of each structured summary of the documents to the user’s question. The process

involves a detailed review of both the document summary and the user’s query to

ensure that only pertinent documents are retained.

Process

a) Review Structured Summary and Table of Contents: The content of the struc-

tured summary and the table of contents are carefully examined to understand

the key topics and sections covered by the document.

b) Analyze User’s Question: The user’s question is thoroughly reviewed to iden-

tify the specific information or topics being queried.

c) Compare Topics and Sections: The pages and topics covered in the original

document are identified and compared with those mentioned in the structured

summary. This comparison helps determine if the relevant information can

be found within the pages covered by the summary.

d) Determine Relevance: If the system finds that the answer to the question can

be found within the range of pages that the summary covers, it marks the

document as relevant. This relevance is determined based on several criteria:

• Specific topics, page numbers, or sections mentioned in the query that

match the structured summary.

• The query references the name of the source document and matches the

source of the structured summary.

• General themes or topics in the query that are broadly covered in the

structured summary.

If there is no connection between the query and the summary, the document

is marked as irrelevant.

e) Generate Result: The system responds with a JSON object indicating whether

the document is relevant (true) or not (false), ensuring that only the most

pertinent documents are kept for further processing.

By employing this detailed pruning process, the Lookinglass system effectively

filters out irrelevant documents, focusing on those that are most likely to contain

the answers to the user’s questions. This enhances the accuracy and relevance of

the final results provided to the user.

6. Filter Chain: The filter chain phase is a crucial step in the query process for

unstructured data within the Lookinglass system. This phase ensures that the most

relevant portions of the documents are identified and utilized to answer the user’s

question accurately. Using GPT model, the system reviews the summaries and

generates specific filters for pinpointing the relevant sections within the documents.

Process

During the filter chain phase, the retrieved unique pruned summary documents are

analyzed to determine which sections of the original documents are most pertinent

to the user’s query. This is achieved by generating MongoDB filters that target
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specific pages or sections within the documents based on their relevance to the

query.

a) Reviewing Content: The system carefully examines the table of contents and

the structured summary of each document. This helps in understanding the

scope and details covered in different sections of the document.

b) Analyzing the Question: The user’s question is reviewed to identify the specific

information or topics being queried. If the language of the question and

the summary differ, the question is translated to match the language of the

summary.

c) Answer Generation: Based on the summary, the system attempts to an-

swer the question. If it is possible to answer the question directly from the

summary, the system generates a concise response. If the summary does

not contain sufficient information to answer the question, the system states

"NO_ANSWER" to indicate this.

d) Page Identification: The system identifies the pages within the original docu-

ment that are most likely to contain the relevant information needed to answer

the question. This is done by correlating the topics and sections mentioned

in the table of contents and the structured summary with the query.

e) Filter Construction: A MongoDB filter is constructed to target the fields

"source" and "pages". The filter specifies the document source and includes

a list of page numbers that are relevant to the query. This filter helps in

retrieving only the necessary sections of the document for further processing.

f) Output: The system responds with a JSON object that includes the answer

to the query (if available) and the constructed filter. If the document is not

relevant to the question, the filter value is set to "NO_FILTER".

Example

To illustrate how the filter chain phase works, consider the following example:

{

"context": "<<<source: The Great Gatsby (text).pdf\n>>>\n########

Document’s Metadata:\n- Title: The Great Gatsby\n- Author(s):

F. Scott Fitzgerald\n- Date of Publication: 1925\n- Upload and/or

Last Modification: Uploaded on 2024-05-14\n- Source/URL: Not

provided\n- Total Pages (Document): 193\n- Uploader: User with

email ata@impssbl.com\n\n### Table of Contents (ToC):\n-

Chapter 1: \"In my younger and more vulnerable years\" -

Page 3-25\n- Chapter 2: \"About half way between West Egg and

New York\" - Page 26-42\n- Chapter 3: \"Party at Gatsby’s\" -

Page 43-65\n- Chapter 4: - Page 66-86\n- Chapter 5: - Page

87-103\n- Chapter 6: - Page 104-119\n- Chapter 7: - Page 120-156

\n- Chapter 8: - Page 157-170\n- Chapter 9: - Page 174-180\n-

Post-Gatsby’s Death Events: - Page 181-185\n- Final Reflections
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and Conclusion: - Page 186-193\n\n### Summaries and Key Points b

Section:\n#### Chapter 6: \"In my younger and more vulnerable years

\"\n-87-103\n- Summary Points:**\n - Narrator returns home to find

Gatsby’s house brightly lit, initially mistaking it for a fire or a

party.

"question": "How did Daisy Buchanan see Jay Gatsby?"

}

Filter chain output:

{

"answer": "Daisy Buchanan’s view of Jay Gatsby is complex and

evolves over the course of the novel. Initially, she is charmed and

intrigued by Gatsby’s wealth and the aura of mystery surrounding him.

Their reunion is marked by emotional tension and awkwardness, but they

eventually reconcile, and Gatsby’s demeanor changes to one of well-

being. However, as the story progresses, Daisy’s feelings become

conflicted, especially during the confrontation with Tom Buchanan.

She admits to having loved both Tom and Gatsby, but ultimately,

she withdraws from Gatsby, overwhelmed by the situation and the

revelations about Gatsby’s past.",

"filter": "{’source’: ’The Great Gatsby (text).pdf’,

’pages’: { ’$in’: [’87’, ’88’, ’90’, ’91’, ’92’, ’93’, ’94’, ’95’,

’127’, ’143’, ’144’, ’146’, ’148’] }}"

}

This process ensures that the query system efficiently identifies and retrieves the

most relevant sections of documents, providing accurate and contextually appro-

priate responses to user queries.

7. Query Docs and Generate Initial Responses: In these phases, the system

takes the answers generated using the filter chain and combines them with other

potential sources and page numbers identified during the filter chain process to

create initial responses. The key steps involved are:

a) Query Documents: The system queries the necessary documents from the

Pinecone vector database using the filters generated in the previous steps.

This ensures that only the most relevant documents are retrieved for answer-

ing the query.

b) Combine Generated Answers: The retrieved documents are combined with the

answers generated during the filter chain phase. This combination includes

mixing the content from the filter chain’s generated answers with the new

information obtained from the vector database queries.

c) Remove Similar Documents: After gathering all relevant documents and gen-

erated answers, the system performs a deduplication process to remove any

similar documents. This step ensures that the initial responses are unique
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and free from repetition.

d) Integrate Data from Summaries and Originals: Once the process is completed

for all documents derived from the summaries, the system integrates these

with the data retrieved from the original documents. This integration cre-

ates a comprehensive set of initial responses that include insights from both

summaries and original texts.

e) Final Deduplication: After combining the integrated data, a final deduplica-

tion process is performed to remove any remaining similar documents. This

final step ensures that the responses are diverse and cover a wide range of

information without redundancy.

8. QA Chain: The QA chain is the final phase in generating an answer for the user’s

query. This phase ensures that if there is an answer, it is accurately provided to

the user. If no relevant answer can be found, the system returns an "IDK" (I don’t

know) response. During this phase, all the potential answers gathered up to this

point are consolidated and sent to the QA module, which utilizes the OpenAI GPT

model to produce a coherent and accurate response.

Process

a) Gathering Potential Answers: All the answers identified during the previous

phases are collected. These answers come from both the initial responses

generated from the filter chain and the documents queried from the Pinecone

vector database.

b) Utilizing Context: The gathered answers and the context in which they were

found are sent to the QA module. This module uses the OpenAI GPT model

to review the context and formulate a comprehensive answer.

c) Answer Generation: The GPT model processes the provided context to gen-

erate a helpful and relevant answer to the user’s question. It strictly uses the

information available in the context and avoids fabricating any details.

d) Listing Sources: The model also lists the source files utilized to craft the an-

swer. This ensures transparency and traceability of the information provided.

e) IDK Response: If the model cannot generate an answer from the provided

context, it returns an empty array, indicating that no relevant information

was found. In such cases, the system responds with "IDK" (I don’t know) to

the user.

f) JSON Output: The final response is formatted as a JSON object containing

the answer and the list of source files used. This structured format ensures

clarity and consistency in the responses provided to the user.

Example:

• Question: What mitigation strategies for climate change are discussed in

the document?

• Context: The context provided includes summaries and sections from var-

ious documents that may contain relevant information about climate change

mitigation strategies
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b) Adjusts any relative dates mentioned in the conversation to their exact dates

based on the current date.

c) Ensures the rephrased question eliminates ambiguity by replacing pronouns

with specific entities mentioned in the conversation history. The result is a

concise and contextually clear standalone question that accurately reflects the

user’s intent, setting the stage for an effective query of the structured data.

2. Query Tables: In the Query Tables phase, the system utilizes the standalone

question generated in the previous step to search for relevant tabular data within

the Pinecone vector database. This is done using an similarity search method that

efficiently retrieves the most relevant documents. The process involves:

a) Executing a Similarity Search: The system performs a similarity search within

the vector database using the standalone question as the query. This search

method leverages the semantic understanding of the query to find documents

that are contextually similar.

b) Applying Filters: To ensure the relevance of the results, the search is filtered

to target only tabular data. Additional access filters are applied as specified

by the data access parameters.

c) Retrieving Results: The system retrieves the top results from the search, typi-

cally the four most relevant documents. These documents are then used in the

subsequent steps of the query process to generate accurate and comprehensive

answers to the user’s question.

By utilizing this similarity search approach, the Lookinglass system ensures that

the most pertinent tabular data is identified and used to provide precise responses

to complex queries.

3. Find Related Documents: The Find Related Documents phase involves two key

steps to ensure that only the most relevant documents are considered for generating

the final response.

a) Removing Similar Documents: Similar to the process used for unstructured

data, this step involves removing documents that are highly similar to each

other. This deduplication ensures that the final set of documents is diverse

and does not contain redundant information. The system analyzes the se-

mantic content of the retrieved documents and filters out those that are too

similar, retaining only unique and relevant entries

b) Relevance Check: After removing similar documents, the system conducts a

relevance check to determine which documents are most pertinent to the user’s

query. This step involves evaluating each document summary to identify the

one that best matches the query’s requirements.

The process includes:

• Reviewing Summaries: Each DataFrame summary is reviewed to un-

derstand its content and context, which includes the table’s source and

name.

58



3. Methodology

• Assessing Relevance: The summaries are assessed for relevance by com-

paring their content with the user’s query. The system looks for mentions

of specific tables, file names, or other relevant details that are directly

addressed in the query.

• Identifying the Most Relevant Summary: The system identifies the index

of the most relevant DataFrame summary, along with its source and table

name, based on how well it matches the query.

For instance, if a user’s query asks about specific details within a table, the system

will evaluate the query against the summaries of available DataFrames. It then

selects the summary that most accurately aligns with the query, ensuring that the

selected document is highly relevant.

By removing duplicates and verifying the relevance of each document, the system

ensures that the final set of documents used to generate responses is both unique

and directly related to the user’s question, thereby enhancing the accuracy and

effectiveness of the query results.

4. Code Generation for Generating the Answer: In this phase, the system

processes the relevant tables and documents to generate the necessary code that

will answer the user’s query. This process involves several detailed steps to ensure

that the generated code is accurate, efficient, and capable of handling the data

appropriately.

a) Extracting Information from Tables: The system starts by gathering general

information about the DataFrame. This includes summarizing the range in-

dex, listing the columns along with their data types and non-null counts, and

providing a markdown representation of the DataFrame. If the DataFrame is

small, the entire table is included; for larger DataFrames, only the head (first

few rows) and tail (last few rows) are used.

b) Preparing for Code Generation: Using the extracted information, the system

prepares the DataFrame summary and the user’s question for further pro-

cessing. This setup ensures that the context needed for code generation is

well-defined and comprehensive.

c) Generating Python Code: The system then formulates Python code to per-

form the necessary operations on the DataFrame. this step is done using

OpenAI model.

d) Handling Data and Outputs: The generated code includes steps to how to

store the final answer. For questions involving visualizations, the code uses

Plotly to create aesthetically appealing and professional graphs.

e) Ensuring Code Quality: To maintain code quality, the system ensures that

special characters, new lines, and quotes are properly handled and escaped.

This meticulous approach to code generation ensures that the system can effectively

process the DataFrame and provide accurate and relevant answers to the user’s

questions. The generated code is designed to be robust, readable, and capable

of producing professional-quality outputs, whether they are textual answers, or

visualizations.
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5. Code Execution and Final Response: Once the code is generated, it is exe-

cuted along with the fetched table to derive the final answer. The execution process

involves running the Python code within the specified environment, utilizing the

data from the relevant DataFrame. This step ensures that all calculations, data

manipulations, and visualizations are performed accurately based on the user’s

query. The system captures the output, whether it is a text-based answer, a table,

or a graphical representation, and prepares it for delivery to the user.

If the execution of the code yields a valid answer, it is formatted appropriately

and returned to the user. This ensures that the response is both accurate and

relevant to the query. However, if the code execution does not produce a meaningful

answer, the system defaults to returning an "IDK" (I don’t know) response. This

mechanism ensures that the user is always provided with a clear and honest answer,

maintaining the integrity and reliability of the Lookinglass system. By handling

both successful and unsuccessful queries in this manner, the system upholds its

commitment to providing precise and dependable information.

the query module of the Lookinglass system is a sophisticated and robust framework

designed to handle both structured and unstructured data queries with precision and

efficiency. Through a series of meticulously designed phases, including generating stan-

dalone questions, querying databases, removing duplicate documents, checking relevance,

and generating executable code, the system ensures that users receive accurate and rel-

evant answers to their queries. The integration of advanced natural language processing

and data manipulation techniques enables Lookinglass to provide high-quality responses,

whether they are textual answers, detailed tables, or professional-grade visualizations.

This comprehensive approach not only enhances the user experience but also ensures

that the information provided is reliable and actionable, solidifying Lookinglass as a

powerful tool for data-driven decision-making.

3.4 Visual Overview of the Lookinglass

This section presents images of the Lookinglass environment, showcasing its user inter-

face and key features. These visuals illustrate how users interact with the system and

navigate its functionalities, providing a clear understanding of the platform’s design and

capabilities.

3.4.1 Upload Documents

The image 3.9 illustrates how users can upload documents into the Lookinglass with

special configuration settings. The interface allows users to customize the upload process

to meet specific needs, ensuring that documents are properly secured, categorized, and

prepared for advanced processing.

• Security: Users can define who has access to the uploaded documents. This set-

ting ensures that sensitive information is protected and only accessible to autho-

rized personnel. By configuring the security options, users can control permissions

and maintain data confidentiality.
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data. The upsert process ensures that newly extracted data is efficiently integrated

into the Pinecone vector database, with special mechanisms for handling both data

types. The query module leverages advanced techniques to provide accurate and relevant

responses to complex user queries.

Finally, the visual overview of the Lookinglass environment illustrates the user inter-

face and key functionalities, emphasizing ease of document upload and efficient query

handling. The system’s design ensures that users can securely upload, categorize, and

query documents, facilitating advanced data-driven decision-making in a business con-

text.
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4
Experiments and Results

In this chapter, we present the results of our comprehensive testing and experimenta-

tion on the Lookinglass Retrieval-Augmented Generation (RAG) system. The primary

goal is to evaluate the system’s effectiveness in enhancing language model capabilities

through integrated information retrieval mechanisms. We conducted a series of tests to

assess the accuracy of information retrieval, the quality of generated responses, perfor-

mance under different conditions, and the system’s ability to handle complex queries.

Additionally, we evaluated data privacy and security measures to ensure sensitive infor-

mation is adequately protected. These results will provide a thorough understanding

of the system’s strengths and areas for improvement, demonstrating its applicability in

real-world business contexts.

4.1 Experimental Setup

In this section, we detail the experimental setup used to evaluate the Lookinglass

Retrieval-Augmented Generation (RAG) system. This includes the hardware and soft-

ware environment, the datasets, the types of queries, the methodology for measuring

and recording results, and the steps taken to ensure reproducibility.

4.1.1 Hardware and Software Environment

The experiments were conducted using a system hosted on Digital Ocean, utilizing a

microservice architecture. Each major component of the system (extraction, upsert, and

query) was hosted on a dedicated endpoint. This setup ensures scalability and efficient

handling of tasks by distributing the load across multiple services.

4.1.2 Datasets

To comprehensively evaluate the Lookinglass system, we used two types of datasets:

unstructured and structured data.

1. Unstructured Data:

We selected 10 different types of unstructured data to simulate the diverse real-world

applications of the system:
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# Documents Type

1 Research Paper

2 News Article

3 Technical Manual

4 Legal Document

5 Books

6 Blog Post

7 Corporate Report

8 Medical Record

9 Product Review

10 Email

Table 4.1.: Document Types

2. Structured Data:

We used 10 files consisting of both CSV and Excel formats, with some Excel files con-

taining multiple sheets and requiring preprocessing to clean special characters and anno-

tations. This setup was intended to test the system’s ability to handle structured data

effectively.

4.1.3 Types of Queries

We designed 90 questions, categorized into three levels of complexity to evaluate the

system’s performance comprehensively:

• Simple Questions:

Focus on basic facts directly stated in the document.

Example: "What is the main focus of the document?"1

• Intermediate Questions:

Require contextual understanding and integration of multiple pieces of information.

Example: "What is the significance of transformers in the development of LLMs?"2

• Advanced Questions:

Involve in-depth analysis, synthesis, and critical thinking.

Example: "Compare the architectural differences between encoder-decoder and causal

decoder models in LLMs."3

4.1.4 Measurement and Recording of Results

The testing process involved sending each question as a query to the system using a

Python script, storing the responses, and manually scrutinizing them for accuracy. Pre-

cision was calculated separately for simple, intermediate, and advanced questions. Given

1This questions is from [23]
2This questions is from [23]
3This questions is from [23]
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Type of Questions Number of Questions

Simple Questions 30

Intermediate Questions 30

Advanced Questions 30

Table 4.2.: Number of Questions for Each Type

the system’s deployment in a real environment, manual examination of responses ensured

a thorough evaluation.

Precision Calculation

The precision for each question type is calculated using the following formula:

Precisiontype =
Number of Correct Answers

Total Number of Questions

Where:

• Precisiontype is the precision for the specific question type (simple, intermediate,

or advanced).

• Number of Correct Answers is the count of correct responses for the specific ques-

tion type.

• Total Number of Questions is the total number of questions for the specific type

(in this case, 30).

Since each question type has 30 questions, the precision for each type can be calculated

as:

Precisionsimple =
Number of Correct Answerssimple

30

Precisionintermediate =
Number of Correct Answersintermediate

30

Precisionadvanced =
Number of Correct Answersadvanced

30

4.1.5 Steps to Ensure Reproducibility

To enhance the reproducibility of the experiments and account for the inherent nonde-

terminism of LLM-based applications like the Lookinglass, we implemented the following

procedure:

1. Multiple Attempts per Question: Each question was sent to the Lookinglass five

times. This approach helps in observing the consistency of the system’s responses

and mitigates the effects of any random variations in the output.

2. Recording Consistent Answers: For each of the five attempts, the system’s response

was recorded. We specifically tracked whether the response was correct or incorrect

for each attempt.
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3. Calculating Precision per Attempt: Precision was calculated separately for each of

the five attempts.

4. Average Precision Calculation: After calculating precision for each of the five at-

tempts, the average precision for each question type was determined by taking the

mean of the five precision values. This provides a more robust measure of the

system’s performance, accounting for variability across multiple runs.

The average precision for each question type is calculated as:

Average Precisiontype =
1

5

5∑

i=1

Precisiontype, attempt
i

Where:

• Average Precisiontype is the average precision for the specific question type

(simple, intermediate, or advanced).

• Precisiontype, attempt
i

is the precision for the i
th attempt.

By implementing this approach, we ensure that our evaluation of the Lookinglass

system is comprehensive and reproducible. The repeated trials help to smooth out any

anomalies and provide a clearer picture of the system’s true performance.

4.2 Precision Results

In this section, we present the precision results for the Lookinglass Retrieval-Augmented

Generation (RAG) system across different types of queries: simple, intermediate, and

advanced, for both structured and unstructured data. Each question type was tested

through five trials to ensure robustness and account for the system’s variability. The

table below shows the precision for each trial and the average precision for each question

type, providing a clear assessment of the system’s performance.

Unstructured Data

Question Type Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average Precision

Simple 0.97 0.97 0.94 0.97 0.94 0.96

Intermediate 0.94 0.97 0.94 0.94 0.90 0.94

Advanced 0.94 0.90 0.90 0.94 0.90 0.91

Table 4.3.: Precision for Each Question Type Across 5 Trials for Unstructured Data

Structured Data

The precision results in 4.4 and 4.3 indicate that the Lookinglass system performs con-

sistently well across different types of queries, with higher precision observed for simpler

queries. The variability across trials is minimal, demonstrating the system’s robustness.

However, advanced queries, particularly with structured data, showed slightly lower pre-

cision, highlighting an area for potential improvement. These results underscore the

68



4. Experiments and Results

Question Type Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average Precision

Simple 0.97 0.97 0.97 0.94 0.97 0.97

Intermediate 0.94 0.97 0.97 0.94 0.90 0.94

Advanced 0.87 0.90 0.90 0.90 0.90 0.89

Table 4.4.: Precision for Each Question Type Across 5 Trials for Structured Data
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Figure 4.1.: Precision for Each Question Type Across 5 Trials for Unstructured Data According
to 4.3
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Figure 4.2.: Precision for Each Question Type Across 5 Trials for Structured Data According
to 4.4

system’s applicability in real-world scenarios, while also providing a direction for further

refinement.
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4.3 Summary

In this chapter, we presented a comprehensive evaluation of the Lookinglass Retrieval-

Augmented Generation (RAG) system. Our experiments were designed to assess the

system’s effectiveness in enhancing language model capabilities through integrated in-

formation retrieval mechanisms. We conducted tests using both structured and unstruc-

tured datasets, covering various types of documents and queries of differing complexities.

The results demonstrated the system’s robust performance in terms of precision across

multiple trials, with consistent accuracy for simple and intermediate queries, and satisfac-

tory precision for advanced queries. Additionally, we ensured the reproducibility of our

experiments by repeating each query multiple times and calculating average precision.

These findings provide a clear understanding of the system’s strengths and potential

areas for improvement, affirming its applicability in real-world business contexts and

guiding future development efforts.
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Conclusions

This thesis successfully developed the Lookinglass Retrieval-Augmented Generation (RAG)

system, enhancing language model capabilities through advanced information retrieval

mechanisms. The system demonstrated significant improvements in generating accurate,

reliable responses, handling complex queries, and ensuring data privacy. Future work

will focus on integrating real-time data augmentation, implementing automated agent

functionality. These advancements will further solidify Lookinglass as a powerful tool

for data-driven decision-making in various business contexts.

5.1 Future work

While the Lookinglass system has shown promising results, there are several areas for

future improvement and expansion to further enhance its capabilities:

1. Realtime Data Augmentation:

Integrating real-time data augmentation capabilities would allow users to access

updated information, such as recent laws or live updates from the stock market,

directly through the system. This could be achieved by developing APIs that

connect to real-time data sources. For example, integrating financial APIs for live

stock market data or legal databases for the latest legislative changes. The system

would then retrieve, process, and integrate this data into the response generation

process in real-time.

2. Automated Agent Functionality:

Implementing automated agent functionality where users can set predefined jobs

that the system executes independently, notifying users upon completion. This

would enhance user convenience and efficiency.

Develop a job scheduling module that allows users to define tasks and set criteria

for execution. The system would monitor these criteria, execute the tasks as

conditions are met, and notify users via their preferred communication channels

(e.g., email, SMS) once the tasks are completed. For instance, a user could set a

job to monitor stock prices and perform calculations, with the system delivering

the final analysis when ready.

By addressing these future work areas, the Lookinglass system can further solidify

its position as a powerful tool for data-driven decision-making, offering users even more

robust, accurate, and timely information across various domains and applications.
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5.2 Conclusion

The objective of this thesis was to develop and enhance the Retrieval-Augmented Gen-

eration (RAG) system, Lookinglass, to improve the accuracy and reliability of responses

generated by language models. The research focused on integrating information retrieval

mechanisms to address the limitations of traditional language models, particularly in

business contexts.

Throughout this thesis, we have explored the fundamental aspects of RAG systems,

from the importance of data retrieval and generation to the rise and limitations of

Large Language Models (LLMs). We designed and implemented a comprehensive system

architecture for Lookinglass, incorporating advanced data extraction, upsertion, and

querying techniques. Our experiments and results demonstrated the system’s ability to

handle complex queries.

Key findings from our research include:

• Enhanced Language Model Capabilities: By integrating advanced retrieval

mechanisms, Lookinglass significantly reduced instances of hallucinations, ensuring

the generation of factually accurate and reliable responses.

• Improved Handling of Complex Queries: The system effectively managed

long-tail data and multi-hop queries, providing accurate responses to complex busi-

ness inquiries.

• Robust Privacy Measures: The implementation of strong data handling and

retrieval processes ensured the confidentiality of proprietary and private datasets.

• Practical Business Applications: The system proved versatile and applica-

ble across various business tasks, including document-based question answering,

information retrieval, and content generation.

Overall, the Lookinglass RAG system demonstrated its potential to enhance data-driven

decision-making in business environments by providing precise and relevant information

quickly and efficiently.
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A
Appendix

In this appendix, additional images from the system environment are presented to provide

a comprehensive visual overview of the system’s interface and functionalities.

Query: Give me map of the world with its according number of internet users. A.1

Query: Is there a connection between gender and age in the deaths from the Titanic

disaster? A.2
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A. Appendix

Figure A.1.: Response to a query from structured data, including the visualization diagram
and the sources from which the data was extracted.

Figure A.2.: Response to a query from structured data, including the visualization diagram
and the sources from which the data was extracted.
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