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Sommario 

 La cooperazione pubblicitaria verticale è una strategia di marketing secondo cui il 

produttore finanzia i dettaglianti, sobbarcandosi una porzione dei costi necessari per 

l’implementazione di campagne pubblicitarie locali, per incrementare le vendite dei suoi 

prodotti nei punti vendita. 

Dopo aver introdotto l’argomento e presentato i concetti fondamentali di teoria dei giochi 

(Capitoli 1 e 2), nel Capitolo 3 approfondiamo criticamente tre lavori scientifici che propongono 

modelli diversi di cooperazione pubblicitaria verticale all’interno di una catena di distribuzione 

composta da un produttore e un dettagliante. In tutte le pubblicazioni si applica come strumento 

di indagine la teoria dei giochi, con i due giocatori -il produttore e il dettagliante- che fissano i 

prezzi e la somma da investire in pubblicità in quattro giochi diversi, di cui tre non cooperativi 

(Nash e Stackelberg -sia con il produttore che con il dettagliante leader-) e uno cooperativo. 

Infine, nel Capitolo 4 proponiamo una nuova catena di distribuzione, composta da due 

dettaglianti e un produttore, presentando e analizzando gli equilibri di Nash e di Stackelberg 

ottenuti nel nuovo modello.  

 

  

Abstract 

Vertical cooperative advertising is a marketing strategy according to which 

manufacturers, in order to boost their sales, pay for a portion of retailer advertising costs to give 

an incentive to local advertising level. 

Having presented the topic and introduced the basilar concepts of game theory (Chapter 1 and 

2), in Chapter 3 we critically review three papers that propose different models to describe price 

along advertising decisions in a one-retailer-one-manufacturer supply chain by a game theoretic 

approach, which consists of four different games: Nash, Stackelberg Manufacturer, Stackelberg 

Retailer, and Cooperative game. 

Lastly, in Chapter 4 we propose a two-retailers-one-manufacturer model, analyzing its Nash 

and Stackelberg equilibria. 
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1. Introduction 

Nowadays, the global economy is characterized by the harshest competition ever. 

Technological advances have been one of the most crucial factors enhancing the 

competitiveness of the market. The creation of new distribution channels, such as the e-

commerce, has dramatically increased the supply capacity of firms from all over the World, 

which are now able to enter and compete in new markets without huge investments. Thus, many 

Small and Medium Enterprises (SMEs) have decided to focus on their core business to compete 

efficiently. However, to rationalize firms’ operations, more coordination with other channel 

parties is needed, to manage activities across all the levels of economic chain without wasting 

resources. 

Competition interests not only manufacturers -implications of cheap work force have been 

already studied in depth-, but also retailers: today, Italian shirt retailers have to compete with 

German and Chinese ones, who could exploit their pronged network to expand through new 

markets. 

Competition, pushing down good prices, has improved the overall welfare of customers, who 

have also started demanding for more multifaceted services and commodities. In this situation, 

factors as strategic positioning and operating efficiency have gained importance, since they 

represent fundamental chances to obtain competitive advantages. 

A flourished literature about channel coordination already exists (Aust and Busher, 2013). 

However, some further researches regarding one particular aspect of the coordination, the 

cooperative advertising strategy, should be carried out. 

Advertising constitutes an important part of many firms’ marketing strategy. As shown in Fig. 

1, in 2015 World’s advertising expenditure was $531 billion, and experts forecast a 4.6% 

increase for 2016 (Nielsen1, 2015). Italian firms have spent $6.3 billion on advertising last year 

(1.7% more than in 2014 if we consider digital advertisement expenditures too), recording the 

first increase since 2008, when the expenditure reached a peak at $8.9 billion, and Italian biggest 

advertisers are Procter & Gamble ($118 million), Volkswagen ($101 million), and Barilla 

($91.8 million). 

 

                                                

1 Nielsen is a US global information and measurement company, which conducts market researches annually. 
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Manufacturer’s and retailer’s advertising campaigns present several differences and have 

complementary effects. On the one hand, manufacturers’ advertisement aims at influencing 

potential customers and raising brand awareness. It is long-term focused and has a national 

dimension, since manufacturers are more interested on firm’s total sale than on results of a 

specific Point Of Sale (POS). Hence, this type of campaign wants to create and boost a specific 

brand image, influencing sales for several periods, but with an effect decreasing over time. On 

the other hand, retailers’ advertisement tries to attract clients to particular POSs, offering 

discounts and promotion. It is often regional, short-term oriented, and focus on price as a key 

variable for product description. 

Clearly, the two types of advertising offer balanced advantages and both parties could benefit 

from a strategic coordination. In particular, cooperation would be highly beneficial for the 

manufacturers, since their advertising campaigns enhance the brand image but, to grow as a 

firm, they need to increase their volume of sales. Thus, if the level of retailers’ advertisements 

is not sufficient to satisfy the manufacturers’ demand of local advertising, financial contribution 

of manufacturers to support retailers’ advertising will be profitable, since manufacturers’ 

additional revenues will exceed the higher costs implied. Another reason that can induce 

manufacturers to implement a cooperative advertising program is the competition of shelf 

spaces (Aust and Busher, 2013). According to this point, manufacturers can offer financial 

support for local advertising, in exchange for good space in retailers’ POSs.   

6,27 25,19
26,03

42,29

74,21

182,62

174,39

Italy Germany United	Kingdom Japan China United	States Rest	of	the	World

Fig.	1.	Advertising	expenditure	in	2015	(data	in	billion)	
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Anyhow, which is the most profitable manufacturers’ cooperative advertising participation rate 

is still unknown. According to some studies about the US advertising market (Nagler, 2006), 

most of the manufacturers set their participation rate at 50% or 100%2. This great difference 

and the absence of a clear theoretical background have suggested many researchers to analyse 

this topic, in order to find mathematical models able to  identify the most efficient cooperative 

advertising strategy according to some specific variables (usually pricing and level/cost of 

advertising3). 

Five different kinds of cooperative advertising have been considered in literature (Aust and 

Busher, 2013). Firstly, Vertical Cooperative Advertising, which is defined as a financial 

agreement where manufacturers offer to share a certain percentage of their retailers’ advertising 

expenditures (Bergen and John, 1997). This type of cooperation is the most common in 

literature, and it is the one analysed in this work. Secondly, Cooperative Advertising in 

Franchising4, in which franchisors charge uniformly the cost of advertising campaigns between 

franchisees. Other authors consider the cooperation between competitors in the same supply 

chain (Horizontal Cooperative Advertising5). In this case, the aim of collaboration is to promote 

a general category of product and not, as usual, a specific brand. Another field of analysis is 

Cooperative and Predatory Advertising, where authors take into account the competitors’ 

predatory advertising strategies and the positive influences of cooperation on the parties’ 

demand6. Lastly, part of the literature is interested in Joint Advertising Decisions7, according 

to which cooperative advertising and collusive decision coincide, and parties can cooperate 

through either contracts or incentive strategies. 

                                                

2 Nagler (2006) collected data of 2,286 US firms, noting that 95% of them fixed a participation rate of 50% or 
100%. 
3 For more information regarding the consequences of considering either the cost or the level of advertising as a 
variable, see Aust and Busher (2013). 
4 Related studies are Bhattacharyya and Lafontaine (1995), Sen (1995), Dant and Berger (1996), Desai (1997), 
Rao and Srinivasan (2001), Micheal (2002), Hempelmann (2006), and Sigué and Chintagunta (2009). 
5 Related studies are Kinnucan (1997), Miles, White, and Munilla (1997), Krishnamurthy (2001 and 2000), Alston, 
Freebairn, and James (2001), Depken, Kamerschen, and Snow (2002), Bass, Krishnamoorthy, Chakravarti and 
Janiszewski (2004), Prasad, and Sethi (2005), Crespi and James (2007), and Lu, Thompson, and Tu (2007). 
6 Related studies are Amrouche, Martin-Hérran, and Zaccour (2008), Depken and Snow (2008), Karray and 
Martin-Hèrran (2008 and 2009), Erickson (2009), Viscolani and Zaccour (2009), Ma and Ulph (2012), and 
Viscolani (2012).  
7 Related studies are El Ouardighi, Jorgensen, and Zaccour (2003), Buratto and Zaccour (2009), Simbanegavi 
(2009), and Karray (2011). 
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The aim of this work is to review critically three research contributions regarding mathematical 

modelling of Vertical Cooperative Advertising -from now on, we refer to this simply as 

cooperative advertising-, suggesting some hints and changes to improve the proposed models. 

We will apply a game-theoretic approach, whose basic concepts, required to understand the 

analysis, will be introduced in the next section. 
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2. Theoretical Framework 

Myerson (Aust, 2014, p.1) defines game theory as “the study of mathematical models of 

conflict and cooperation between intelligent rational decision-makers (…), which provides 

general mathematical techniques for analysing situations in which two or more individuals 

make decisions that will influence one another’s welfare”. Therefore, a game theoretic 

approach, explicitly considering the interdependence between parties, is an appropriate tool to 

study cooperative advertising, allowing a characterization of players’ behaviours and 

bargaining power during decision-making process. In line with previous papers, we will present 

four different game-theoretic models based on one cooperative and three non-cooperative 

games (Nash, Stackelberg Manufacturer, and Stackelberg Retailer). 

A game is defined as a “situation in which more than one individual has to make a decision and 

these decisions are interdependent” (Aust, 2014, p.12). It has three basic elements: 

• Set of players; 

• Set of actions or possible strategies for each player; 

• Expected utility function over each possible action profile for each player. 

A widely used notation indicates each player as 𝑝 and the set of players as 𝑁 = 1,… , 𝑛 , with 

𝑝 ∈ 𝑁. Players have to choose a strategy 𝑠* ∈ 𝑆*, where 𝑆* represents the strategy set for every 

𝑝 ∈ 𝑁. Through a Cartesian product, we obtain all the possible strategy combinations of the 

game: 𝑆 = 𝑆,×𝑆.×…	×𝑆0. With 𝑠 ∈ 𝑆 we indicate a single combination of strategies. 

Furthermore, it is required a utility function to assign players a specific utility, depending on 

their strategies. We denote this function by 𝑢*(𝑠) and define 𝑈 = 𝑢, 𝑠 , … , 𝑢0(𝑠) . The utility 

levels obtained by players in each situation are called pay-offs. Defined these three aspects, we 

can refer to a specific game as 𝐺 = 	 (𝑁, 𝑆, 𝑈). 

Chronology of decision-making process and time-period of games are other two crucial factors. 

Do the players play simultaneously? Or sequentially? Does the game last one period (static 

games) or more (dynamic games)? These characteristics are important to adopt the correct 

resolution method. Another interesting distinction among games is based on the players’ 

payoffs. There are both zero sum game -if the sum of the whole pay-offs achieved by players 

is 0-, and non-zero-sum game -if the sum is different-.  

To analyse in depth the game solutions, we have to consider the information available to 

players. Games can be with complete information, in which all the knowledge is shared by the 

parties, and incomplete information (called Bayesian game), where players know game 
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conditions only partially. Cooperative advertising literature (and this work too) has used only 

complete information games to study cooperative advertising programs. 

Lastly, it is important to notice that every game can be represented in different ways, according 

to its features. For instance, a static game with a finite number of strategies is usually 

summarized with its normal form, while a sequential game with its extensive form -a tree 

diagram-. Anyway, since the games studied in this work are static and have an infinite number 

of strategies, we will study them algebraically. 

 

 

2.1. Nash Equilibrium 

The concept of Nash Equilibrium (NE) was introduced by John Forbes Nash Jr. (1950), 

and it is used to solve a game in which power is equally distributed between players and all the 

decisions are taken simultaneously. Before applying this solution concept, it is useful to 

simplify the game. In fact, postulating complete information and rationality of players’ 

behaviours and expectations, they will never use a Strictly Dominated Strategy (SDS) because 

such behaviours are inconsistent with their utility maximization. SDSs are, in fact, strategies 

that give to players a lower utility regardless of decisions taken by other players. 

To be clearer, consider a game in which there are two players 𝐴 and 𝐵, whose strategies are 𝑐 

and 𝑑 and pay-offs are described in the normal form represented by Tab.18. Formally, 𝑁 =

𝐴, 𝐵  and 𝑆: = 𝑆; = 𝑐, 𝑑 . In this case, strategy 𝑑 is dominant for both player, as they always 

maximize their utilities playing 𝑑 instead of 𝑐. Hence, we can simplify the game eliminating 

the row and column of strategy 𝑐, and the Nash Equilibrium of the game will be NE= (𝑑, 𝑑) 9. 

 

 

 

 

                                                

8 By convention, the first number of the matrix refers to the utility of player 𝐴, whilst the second to the utility of 
player 𝐵. All different scenarios are obtained through the intersection of strategies on rows and columns. 
9 By convention, with the first strategy we mean what player 𝐴 will play and with the second what 𝐵 will. 
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  Player 𝑩 

 𝒄 𝒅 

Player 𝑨 
𝒄 -1; 5 3;6 

𝒅 3; 4 4;5 

 

 

As seen above, the elimination of all the SDSs makes easier finding the Nash Equilibrium. But 

what is a Nash Equilibrium? A Nash Equilibrium is a strategy profile10 for which no player has 

incentive to deviate if he/she thinks that other players will play according to the equilibrium. In 

other words, a Nash equilibrium is a vector of strategies in which no player has an incentive to 

change unilaterally his/her strategy since he/she is already playing his/her best strategy given 

what the other players are doing. To apply this solution concept we have to assume complete 

information. 

Formally, in a game with 𝑁 players, 𝑝 ∈ 𝑁, and 𝑠* ∈ 𝑆*, we use 𝑠A*, with 𝑠A* ∈ 𝑆A*, to indicate 

the strategy profiles of other players. The function that maximizes the utility of player 𝑝 given 

what is played by – 𝑝 is called Best Response function (𝐵𝑅), and it is denoted by 𝐵𝑅* 𝑠A* . If 

we define 𝑠*∗=𝐵𝑅* 𝑠A*∗  and 𝑠A*∗ =	𝐵𝑅A* 𝑠*∗ , then the NE will be the combination of strategies 

𝑠∗ = 𝑠*∗, 𝑠A*∗ .   

A brief example shall illustrate how to use the NE concept in economic applications. Consider 

two firms (𝑁 = 1,2 ), which produce quantities 𝑞, and 𝑞. respectively. Let the inverse demand 

function be 

 

𝑃 𝑄 = 𝑎 − 𝑄, (2.1) 

 

where 𝑎 is a constant and 𝑄 = 𝑞, + 𝑞.. The cost function for both firms is: 

 

𝐶* 𝑞* = 𝑐*𝑞* with 𝑝 ∈ 1,2 . (2.2) 

                                                

10 If we consider mixed strategies, the number of Nash equilibria can be infinite (Tadelis, 2013). 

Tab.1. Normal form of a game with two strictly dominated strategies 
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Hence, considering identical constant marginal cost 𝑐, = 𝑐. = 𝑐, the players’ payoff function 

(profits) will be: 

 

𝑢* 𝑞,, 𝑞. = 𝑞*(𝑎 − 𝑞, + 𝑞. − 𝑐). (2.3) 

 

Now, to find a NE, we have to determine a pair of quantities (𝑞,∗, 𝑞.∗) such that 𝑞,∗ is player 1’s 

best reply against 𝑞.∗, and vice versa11. This means that 𝑞,∗ solves the following maximization 

problem: 

 

MaxPQ	𝑢, 𝑞,, 𝑞.
∗ = 𝑞,(𝑎 − 𝑞, + 𝑞.∗ − 𝑐) (2.4) 

s.t. 0 ≤ 𝑞, < +∞.  

 

In the same way, 𝑞.∗ is the solution of 

 

MaxPV𝑢. 𝑞,
∗, 𝑞. = 𝑞.(𝑎 − 𝑞,∗ + 𝑞. − 𝑐) (2.5) 

s.t. 0 ≤ 𝑞. < +∞. 

 

We obtain the player 1’s 𝐵𝑅 applying the First Order Condition (FOC) at (2.3), that is: 

 

𝜕𝑢, 𝑞,, 𝑞.∗

𝜕𝑞,
= 𝑎 − 2𝑞, − 𝑞. − 𝑐 = 0. (2.6) 

 

The same for player 2: 

 

                                                

11 This kind of game is known as Cournot Duopoly, outlined by Antoine Augustin Cournot in 1838. 
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𝜕𝑢. 𝑞,∗, 𝑞.
𝜕𝑞.

= 𝑎 − 2𝑞. − 𝑞, − 𝑐 = 0. (2.7) 

 

We can easily check the Second Order Condition (SOC), noting that both (2.6) and (2.7) present 

a negative second derivative. Therefore, we obtain the equilibrium quantities through the 

following system: 

 

𝑞,∗ =
𝑎 − 𝑞.∗ − 𝑐

2

𝑞.∗ =
𝑎 − 𝑞,∗ − 𝑐

2

	, (2.8) 

 

with 𝑞*∗ ≤ 𝑎 − 𝑐, in order to respect the conditions of the problems (2.4) and (2.5). Thus, 

solving (2.8) we get 𝑞Y∗ =
ZA[
\

 and, therefore, the Nash Equilibrium will be: NE= 𝑞,∗ =

ZA[
\
, 𝑞.∗ =

ZA[
\

. 

 

 

2.2. Stackelberg Equilibrium 

The Stackelberg equilibrium concept (established by von Stackelberg in 1934) can be 

applied in sequential games12, and not in simultaneous as the NE. It allows us to incorporate a 

hierarchical structure in the game, modelling channel leadership (of retailer or manufacturer) 

in the supply chain relationships. The player who moves first is called leader, the other follower, 

and, as to find the Nash Equilibrium, we have to assume complete information. In game theory, 

this solution concept is defined as Sub-game Perfect Nash Equilibrium (SPNE), and it is a 

subset of the NE: all the SPNE are also NE, but the opposite is not true13. 

                                                

12 The model was thought to study and analyse oligopolistic situation, in which players compete in quantities. For 
more information, see Marktform und Gleichgewicht (von Stackelberg, 1934). 
13 For more information, see Tadelis (2013). 
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Mathematically, to compute the set of SPNE, we have to proceed with backward induction: 

firstly, we have to find the best response function of the follower and, given the strategy chosen 

by him/her, we maximize the utility of the leader. 

To exemplify, let us consider the same situation described in the previous section: there are two 

firms that have to choose quantities 𝑞, and 𝑞.. Their demand function is (2.1) and the utility 

function is (2.3). However, now players do not play simultaneously. Player 1 is the leader and 

player 2  the follower. Since it is a complete information game, player 1 can anticipate exactly 

what player 2 will play. Hence, proceeding by backward induction, we start maximizing for 

player 2. The maximization problem is the same as described in (2.5), and the solution will be 

obtained solving (2.7). Now, player 1 maximizes his/her profits considering player 2’s 𝐵𝑅. 

Thus, substituting 𝑞. =
ZAPQA[

.
 in (2.4), the maximization problem for player 1 becomes: 

 

MaxPQ	𝑢, 𝑞,,
𝑎 − 𝑞, − 𝑐

2 = 𝑞,(𝑎 − 𝑞, −
𝑎 − 𝑞, − 𝑐

2 − 𝑐) (2.9) 

s.t. 0 ≤ 𝑞, < +∞.  

 

Again, firstly we apply the FOC at (2.9) and, having checked the negativity of the second 

derivative, we solve the final system, finding the following solution: 

  

𝑞,∗ =
ZA[
.

,  with 𝑎 − 𝑐 > 0 (2.10) 

𝑞.∗ =
𝑎 − 𝑐
4 , (2.11) 

 

The Sub-game Perfect Nash Equilibrium will be SPNE= (ZA[
.
	 , ZA[APQ

.
) , with an equilibrium 

path -that is what players effectively produce- of	𝑞, =
ZA[
.

 and 	𝑞. =
ZA[
_

.  
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2.3. Bertrand Equilibrium 

The Bertrand equilibrium is completely different from the Stackelberg and Cournot ones, since 

we can apply these latter if and only if players’ utility function is continuous, whilst Bertrand 

solution concept is used in case of discontinuous utility functions. 

To exemplify, consider the same situation described in 2.1. and assume simultaneous price 

competition. Expression (2.1) indicates the inverse demand function. Here, we need the direct 

one. Hence, after few simple manipulations, we obtain: 

 

𝑄 𝑝 = 𝑎 − 𝑝. (2.12) 

 

Having supposed homogenous goods, price sensitive consumers, and no capacity restrictions 

(both firms can produce any quantity at marginal cost), the two firms set a specific price. 

Consumers buy goods from the firm offering the lower price and, in the case of identical prices, 

we impose that consumers will equally split their purchases between the firms. 

Therefore, calling 𝑝, and 𝑝. the prices set by the two firms, the quantity sold by firm 𝑖14 will 

be: 

 

𝑞Y =
0																𝑝Y > 𝑝AY
a *
.
												𝑝Y = 𝑝AY

𝑄(𝑝)										𝑝Y < 𝑝AY

 , (2.13) 

with 𝑖 ∈ 1,2 .  

 

Denoting with 𝑐 the marginal costs of the firms, the payoff functions will be: 

 

                                                

14 In this section we denote the general firm with 𝑖, since we use the notation 𝑝 to indicate the pricing variable. 
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𝑢Y(𝑝Y, 𝑝AY) =

0																																													𝑝Y > 𝑝AY
1
2 (𝑝Y − 𝑐)(𝑎 − 𝑝Y)													𝑝Y = 𝑝AY
(𝑝Y − 𝑐)(𝑎 − 𝑝Y)																𝑝Y < 𝑝AY

 (2.14) 

with 𝑖 ∈ 1,2 .  

 

Now, we can find the Bertrand Equilibrium. However, the process we have to apply is different 

from those described in the previous two sections. The utility function (2.14) is, in fact, 

discontinuous, and we cannot derive it; yet we can solve the problem finding the players’ BRs. 

First of all, to simplify the resolution process, we assume that, if indifferent, player 𝑖 will set 

his/her price at 𝑝Y = 𝑐. With regard to player 1, he/she has an incentive to lower his/her price 

and to seize the market, but only if the price set by the competitor is higher than player 1’s 

marginal cost 𝑐. On the contrary, if competitors set a price equal to or lower than player 1’s 

marginal cost, player 1’s BR will be 𝑝Y = 𝑐. Formally15: 

 

𝑝Y∗(𝑝AY) =
𝑐																	𝑝. ≤ 𝑐
𝑝. − 𝜀							𝑝. > 𝑐 , (2.15) 

with 𝑖 ∈ 1,2 .  

 

Intersecting equations (2.15) -calculated for both the players- , we are able to derive the unique 

equilibrium of this Bertrand game16: NE= 𝑝,∗ = 𝑐, 𝑝.∗ = 𝑐 .  

It is interesting to note that, in the example above where players present identical marginal 

costs, equilibrium profits are 0 and retail price is equal to their marginal cost. This is called 

“Bertrand’s paradox” since, through a price competition between two firms with identical 

marginal costs, we find the same equilibrium that we would have obtained with a perfect 

competition model, where there are an infinite number of competitors. 

                                                

15 With the parameter 𝜀 we indicate an infinitesimal positive value.   
16 Formally, the “Bertrand Equilibrium” is a Nash equilibrium. However, in this work we improperly refer to it as 
“Bertand Equilibrium”, but only to distinguish it from the equilibrium concept presented in section 2.1.. 
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Nonetheless, this is not true for all the Bertrand games. The same process can be applied, with 

different results, to solve situations in which players present different cost function, as we will 

see in chapter 4. 

 

 

2.4. Cooperation 

The last solution concept we introduce is the cooperation one. Here, we consider all 

players as they were only one. They do not maximize their own utility singularly, but together. 

In the literature, inefficiency created by uncoordinated decisions has been already studied and, 

in this kind of game, we want to maximize the overall utility of the system. The profits obtained 

will be greater than (or at least equal to) those derived with NE or SPNE solution concepts. 

Algebraically, we have to sum all the utility functions of the players and maximize the function 

obtained.  

Starting from the same situation described in the section 2.1., demand function will be (2.1), 

while the cost function (assuming that firms have the same marginal cost) will be: 

 

𝐶 𝑄 = 𝑐𝑄, (2.16) 

 

which is obtained summing the firms’ cost functions (2.2). The maximization problem will be: 

 

Maxa𝑢, 𝑄 = 𝑄(𝑎 − 𝑄 − 𝑐) (2.17) 

s.t	0 ≤ 𝑄 < +∞,	  

 

and the solution, calculated through the FOC, is: 

 

𝑄 = ZA[
.

 with	𝑎 − 𝑐 > 0. (2.18) 
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The effective agreement about the levels of production and the amount of profits received by 

players is described in the following section, while Tab.2 represents a summary of the optimal 

production levels obtained in the solution concepts presented.  

 

Demand function 𝑃 𝑄 = 𝑎 − 𝑄 = 𝑎 − 𝑞, − 𝑞. 

Cost function 𝐶 𝑄 = 𝑐𝑄 

Cournot duopoly production 𝑞* =
𝑎 − 𝑐
3  

Stackelberg duopoly production17 𝑞, =
𝑎 − 𝑐
2  

	𝑞. =
𝑎 − 𝑐
4  

Cooperation production 𝑄 =
𝑎 − 𝑐
2  

 

 

2.5. Bargaining Theory 

Lastly, to fully comprehend the models that will be presented in chapter 3, it is necessary 

to introduce some concepts about the bargaining theory18. Bargaining models are commonly 

used to find a split of total profits gained in a cooperative game between two or more players. 

The results of the division depend on both the utility function of the players and the selected 

bargaining model. The most common model, widely used in the literature, is the Nash 

Bargaining one, which can be symmetrical or asymmetrical. In the former case, it considers 

only one parameter: the functional form of players’ utility. In the latter, the parameters are two: 

the functional form and the bargaining power. 

Formally, each player 𝑝 has to fix his share 𝑦* of total profits 𝑌, with 0 ≤ 𝑦* ≤ 𝑌 and 𝑦** =

𝑌. Now, indicating with 𝑣* = 𝑢*(𝑦*) each player’s utility according to a specific split, we are 

able to present two different Nash Bargaining models: the symmetric and the asymmetric. 

                                                

17 Where firm 1 is leader and firm 2 is follower. 
18 For more information regarding to bargaining theory and its mathematical model, see Aust (2014). 

Tab.2. Optimal production in each game scenario. 
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2.5.1. Symmetric Nash Bargaining Model 

Introduced by Nash in 1950, this model proposes a bargaining solution that maximizes 

the total utility 𝑣g, where 𝑣g = 𝑣** , 𝑣* = 𝑢*(𝑦*), and 𝑦* represents the share obtained by 

player 𝑝. Consider a situation where two players (𝑁 = 1,2 ) bargain their shares  𝑦, and 𝑦. of 

a total amount 𝑌 of money. The maximization problem is given by: 

 

MaxhQ,hV𝑣,i. = 𝑣,𝑣. = 𝑢,(𝑦,)𝑢.(𝑦.) (2.19) 

s.t. 𝑦, + 𝑦. = 𝑌,   0 ≤ 𝑦, ≤ 𝑌,   0 ≤ 𝑦. ≤ 𝑌.  

  

The utility function of players will be the following: 

 

𝑢* 𝑦* = 𝑦*
jk   with 𝑝 ∈ 1, 2 , (2.20) 

 

where 𝜆* depends on functional form of players’ utilities: 𝜆* > 1 indicates convex function, 

𝜆* = 1 linear, and 𝜆* < 1 concave. Replacing (2.20) in (2.19), the problem becomes: 

 

MaxhQ,hV𝑣,i. = 𝑦,
jQ𝑦.

jV (2.21) 

s.t. 𝑦, + 𝑦. = 𝑌,           0 ≤ 𝑦, ≤ 𝑌,   0 ≤ 𝑦. ≤ 𝑌.  

 

Considering that 𝑦, + 𝑦. = 𝑌	 ⇒ 𝑦. = 𝑌 − 𝑦,, we can  rewrite the problem (2.21) in a simpler 

univariable form: 

 

MaxhQ𝑣,i. = 𝑦,
jQ 𝑌 − 𝑦, jV (2.22) 

s.t. 0 ≤ 𝑦, ≤ 𝑌.  
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Having set the FOCs of (2.22) and checked the SOCs, the solution will be: 

 

𝑦* =
jk

jQijV
𝑌   with 𝑝 ∈ 1,2 . (2.23) 

  

 

2.5.2. Asymmetric Nash Bargaining Model 

Harsanyi and Selten (1972) proposed a modification of the classic Nash Bargaining 

model, by integrating it with a new parameter, the bargaining power, denoted by 𝜇*, with 

𝜇* = 1* . The utility function proposed is the same of the previous model (𝑢* 𝑦* = 𝑦*
jk), 

but 𝑣g, the overall utility of players, becomes 𝑣g = 𝑣*
ok

* . Adapting the situation described 

in (2.19), the maximization problem will be the following:  

 

MaxhQ,hV𝑣,i. = 𝑦,
oQjQ𝑦.

oVjV (2.24) 

s.t. 𝑦, + 𝑦. = 𝑌,   0 ≤ 𝑦, ≤ 𝑌,   0 ≤ 𝑦. ≤ 𝑌.  

 

Again, since 𝑦, + 𝑦. = 𝑌	 ⇒ 𝑦. = 𝑌 − 𝑦,, problem (2.24) becomes: 

 

 

MaxhQ𝑣,i. = 𝑦,
oQjQ 𝑌 − 𝑦, oVjV (2.25) 

s.t. 0 ≤ 𝑦, ≤ 𝑌,  

 

and the solution of (2.25) leads to this share for both players: 

 

𝑦* =
okjk

oQjQioVjV
𝑌  with 𝑝 ∈ 1,2 . (2.26) 
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Of course, this model is more complete and complex than the classical one, as it allows us to 

consider another players’ feature -the parties’ bargaining power- to determine the solution of 

the bargaining game. 
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3. Literature Review 

Several papers have studied the co-op advertising strategy, according to which the 

manufacturer has some incentives to find a financial agreement with the retailer, supporting a 

certain fraction (participation rate) of the retailer’s advertising expenditures in order to increase 

the overall sale volume. Yet three works in particular have dramatically contributed to the 

development of the co-op advertising mathematical static models. In this part of the work, we 

firstly analyse the model proposed by Xie and Neyret (2009). Then, we will present the model 

by SeyedEsfahani et al. (2011); and, lastly, the one by Aust and Busher (2012). 

 

  

3.1. Xie and Neyret (2009) 

Basing on two papers by Huang and Li (2001 and 2002), the authors want to develop a 

mathematical model that describes vertical co-op advertising. However, while Huang and Li 

considered only one variable -the advertising level-, Xie and Neyret deal with pricing as another 

decision variable, so as to describe static co-op advertising strategy. Other authors have already 

proposed models including the price variable, but always presupposing a dynamic environment. 

In Xie and Neyret (2009), the authors describe four game scenarios: (i) Nash game, (ii) 

Stackelberg Retailer game, (iii) Stackelberg Manufacturer game, and (iv) Cooperation game. 

 

 

3.1.1. Model 

The authors propose a single-manufacturer-single-retailer channel. Decision variables 

are the prices chosen by both the manufacturer -wholesale price 𝑝p- and the retailer -market or 

retail price 𝑝q-, the advertising levels, and the participation rate. Having called 𝑎 and 𝐴 the 

retailer’s and the manufacturer’s advertising investment, they consider the consumer demand 

function proposed by Jorgensen and Zaccour (1999): 

 

𝑉 𝑎, 𝐴, 𝑝q = 𝛼 − 𝛽𝑝q 𝐷 −
𝐵

𝑎v𝐴w
, (3.1) 
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where 𝛼, 𝛽, 𝐵, 𝐷, 𝛾, and 𝛿 are positive constants. It is important to note that, because demand 

function cannot be negative, 𝑉 𝑎, 𝐴, 𝑝q  has to be positive. Hence 𝑉 𝑎, 𝐴, 𝑝q > 0 ⇒ 𝑝q <
z
{

. 

To simplify the algebra, the pricing variables have to be greater than 0 and less than 1. 

The first part of the formula (25) - 𝛼 − 𝛽𝑝q  - is the demand-price curve, which decreases 

with 𝑝q. The second - (𝐷 − ;
Z|P}

) - represents the effect of advertisements on sales, and it is the 

same as proposed by Huang and Li (2001). However, equation (3.1) does not take into 

consideration the advertising saturation effect: a diminishing marginal effect for increasing 

advertising expenditures (Aust, 2013). As we can see in the following two papers, a simple 

function that takes into consideration the advertising saturation can be obtained replacing 𝑎 

and 𝐴 with their square roots19.  

Another important variable is the participation rate 𝑡 -fraction of the local advertising paid by 

the manufacturer-, whilst notable parameters are the manufacturer’s unit production cost 𝑐 

(constant), and the retailer’s unit cost 𝑑 (constant). Tab.3 shows a brief summary of the model. 

Profit functions are20: 

 

Πp = 𝑝p − 𝑐 𝛼 − 𝛽𝑝q 𝐷 −
𝐵

𝑎v𝐴w
− 𝑡𝑎 − 𝐴, (3.2) 

Πq = 𝑝q − 𝑝p − 𝑑 𝛼 − 𝛽𝑝q 𝐷 −
𝐵

𝑎v𝐴w
− 1 − 𝑡 𝑎, (3.3) 

Πpiq = 𝑝q − 𝑐 − 𝑑 𝛼 − 𝛽𝑝q 𝐷 −
𝐵

𝑎v𝐴w
− 𝑎 − 𝐴. (3.4) 

 

Some conditions are required for the non-negativity of the manufacturer (𝑝p > 𝑐), retailer 

(𝑝q > 𝑝p + 𝑑), and whole system (p� > 𝑐 + 𝑑) profits. Then, the authors, “in order to handle 

                                                

19 The definition of the saturation effect given above is improper. In the following model, in fact, the marginal 
effect of an additional advertising unit is undoubtedly decreasing but, to have an actual saturation effect, the limit 
of the marginal effect, as advertising approaches infinity, has to be zero -and this is not the case-. However, 
according to the literature, we will refer to the decreasing effect of advertising as advertising saturation effect.  
20 Throughout this work, with subscripts 𝑀, 𝑅, and 𝑀 + 𝑅 we mean the function regarding manufacturer, retailer, 
and both players together, respectively. 
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the problem in an equivalent but more convenient way” (Xie and Neyret, 2008, p.1378), apply 

some changes of variables21: 

 

𝑎� = 𝛼 − 𝛽 𝑐 + 𝑑 , 

𝑝q� =
{
Z�

𝑝q − 𝑐 + 𝑑 , 

𝑝p� =
{
Z�
(𝑝p − 𝑐), 

𝐵� = z��

{
𝐵, 

𝐷� = z��

{
𝐷, 

𝐴� = :

{
� Q
|�}�Q

𝐵, 

𝑎� = Z

{
� Q
|�}�Q

, 

Π� = �

{
� Q
|�}�Q

, 

 

obtaining the following profit expressions:  

 

Πp� = pp� 1 − pq�
𝐴�

𝐵�
,

viwi,
−

1
𝑎�v𝐴�w

− 𝑡𝑎� − 𝐴�, (3.5) 

Πq� = pq� − pp� 1 − pq�
𝐴�

𝐵�
,

viwi,
−

1
𝑎�v𝐴�w

− 1 − 𝑡 𝑎�, (3.6) 

Πpiq� = pq� 1 − pq�
𝐴�

𝐵�
,

viwi,
−

1
𝑎�v𝐴�w

− 𝑎� − 𝐴�. (3.7) 

 

                                                

21 See the appendix of Xie and Neyret (2009) for details.  



 26 

Even though these changes of variables make computations indeed simpler, applying them we 

lose some important information about key parameters. With the new functions, for instance, 

we do not have a direct feedback regarding the influence of manufacturer’s and retailer’s cost 

on the optimal co-op advertising level. The price variable effect is not clear too, since we do 

not know how much manufacturer and retailer mark-ups influence profits. As we shall see, the 

model proposed in Aust and Busher (2012) is an evolution of that presented in Xie and Neyret 

(2009), as it operates without any substitutions of parameters, achieving more interesting and 

broad results. 

 

𝒑𝑹 Retail price 

𝒑𝑴 Wholesale price 

𝒕 Participation rate 

𝒂 Retailer local advertising level 

𝑨 Manufacturer national advertising level 

𝜶 Intercept of the demand function 

𝒄 Manufacturer’s production cost 

𝒅 Retailer’s unit cost 

𝜷 Marginal effect of price on the demand 

𝑩 Effect of the advertising level on the demand (inversely proportional) 

𝑫 Sales saturate asymptote 

𝜸 Effect of local advertising on the demand 

𝜹 Effect of global advertising on the demand 

 

 

 

 

 

Tab.3. Legend of Xie and Neyret’s model 
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3.1.2. Nash Game 

As explained in section 2.1., the Nash Equilibrium concept is applied in situation in 

which players have the same decision power and play simultaneously, not cooperatively, to 

maximize their own profits. Formally, the manufacturer’s decision problem is22: 

 

Max�,:,*�Πp = 𝑝p 1 − 𝑝q
𝐴

𝐵
,

viwi,
−

1
𝑎v𝐴w

− 𝑡𝑎 − 𝐴 (3.8) 

s.t. 0 ≤ 𝑡 ≤ 1,  𝐴 ≥ 0,  	0 ≤ 𝑝p ≤ 1.  

  

While, the retailer’s problem is: 

  

MaxZ,*�Πq = 𝑝q − 𝑝p 1 − 𝑝q
𝐴

𝐵
,

viwi,
−

1
𝑎v𝐴w

− (1 − 𝑡)𝑎 (3.9) 

s.t. 𝑎 ≥ 0,   	0 ≤ 𝑝q ≤ 1. 

 

Looking at (3.8), the optimal participation rate 𝑡 is indeed zero: 𝑡 negatively affects the profit 

function of the manufacturer and he/she will fix it at the lowest possible value. This is rational, 

as the game is played in one period only (static) and players’ strategies are chosen at the same 

time. Therefore, there are no incentives for the manufacturer to participate in the local 

advertising expenditure. Then, manufacturer’s profits increase with 𝑝p. However, the optimal 

𝑝p cannot be equal to 1 (the maximum possible value), because in this case profits for both the 

players will be 0. In fact, we have that 0 ≤ 𝑝p ≤ 1, 0 ≤ 𝑝q ≤ 1, and 𝑝q ≥ 𝑝p: thus if 𝑝p =

1 ⇒ 𝑝q = 1 ⇒ Πq = Πp = 0.    

At this point, authors consider another assumption before solving (3.8) and (3.9), that is: 

 

𝑝q − 𝑝p = 𝑝p, (3.10) 

                                                

22 For simplicity, hereafter we remove the superscript (’) from (3.5), (3.6), and (3.7).  
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hence 𝑝p = *�
.

. This condition imposes equal margins for the retailer and manufacturer. It is a 

very restrictive assumption valid only for specific values of the parameters. Without imposing 

(3.10) the authors would have been able to derive more interesting solutions (see Aust and 

Busher, 2012, section 3.3.). 

Anyhow, the unique Nash Equilibrium23 will be: 

  

𝑝pg =
,
\
,   𝑝qg =

.
\
,  𝑡g = 0, (3.11) 

𝑎g =
𝛾
𝛿

w
𝛾

9 	

,
viwi,

, (3.12) 

𝐴g =
𝛿
𝛾 𝑎

g. (3.13) 

 

  

3.1.3. Stackelberg Retailer and Manufacturer Game 

The second and third situations studied aim at reproducing supply-chain scenarios in 

which one of the players has some advantages over the other parties. Interestingly, authors 

analyse two situations where either the manufacturer or the retailer is the leader (known as 

Manufacturer Stackelberg game and Retailer Stackelberg game, respectively). 

The most prevalent Stackelberg game studied by co-op advertising literature is the 

Manufacturer leadership game. This is because scholars generally assume that this type of 

leadership is predominant, but it was true only until a few decades ago, when many 

manufacturers dominated retailers. Nowadays, the situation has changed, and even retail 

leadership relationships are common. Huang, Li, and Mahajan recognized this trend in 2002, 

citing as example Procter & Gamble (P&G) and Walmart: at the beginning, P&G 

                                                

23 Throughout this work, the superscript 𝑁 indicates a Nash Equilibrium. For further information about algebra, 
see the appendix of Xie and Neyret (2009). 
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(manufacturer) dominated over Walmart (retailer), but then the relationship has evolved, and 

they have become partners. 

Xie and Neyret (2009) start solving the Retailer leadership situation through backward 

induction. Firstly, they calculate the manufacturer best responses of 𝑡,	𝐴, and 𝑝p. Again, as in 

the Nash game, they find that the optimal participation rate is 𝑡 = 0, since the manufacturer 

plays second and does not have any incentive to fix different participation ratio. Equal margins 

are assumed too (3.10). Solving the maximization problem (3.8) 24, they obtain: 

 

𝑡 = 0,    𝑝p = *�
.
,    	𝐴 = wZ�|*� ,A*�

.

Q
}�Q. (3.14) 

 

Replacing the manufacturer BRs in (3.9), we solve the maximization of retailer’s profits: 

 

MaxZ,*�Πq =
1
2𝑝q 1 − 𝑝q

𝐴

𝐵
,

viwi,
−

1

𝑎
v

wi,𝛿
w

wi,

1
2 𝑝q(1 − 𝑝q)

A w
wi,

− 𝑎 (3.15) 

s.t. 𝑎 ≥ 0,   	0 ≤ 𝑝q ≤ 1.  

 

Solutions25 of (3.15) and the consequently simplifications of (3.14) allow us to calculate the 

Stackelberg Retailer Equilibrium:  

  

𝑝p
�� = ,

_
,   𝑝q

�� = ,
.
,   𝑡�� = 0, (3.16) 

𝑎�� =

𝛾
𝛿 𝛿 + 1

w 𝛾
𝛿 + 1

8

,
viwi,

, (3.17) 

𝐴�� = w(wi,)
v

𝑎�q. (3.18) 

                                                

24 See the appendix of Xie and Neyret (2009) for details.  
25 Throughout this work, the superscript 𝑆qindicates the Stackelberg Retailer Equilibrium. 
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With regard to the Stackleberg Manufacturer game, there are few differences with respect to 

the previous game. We start solving the maximization of the retailer profits to find his/her best 

responses: 

 

𝑝q =
,i*�
.

,   𝑎 = v ,A*� V

_ ,A� :}

Q
|�Q. (3.19) 

 

After that, taking into account expressions (3.19) and solving the maximization problem with 

regard to the manufacturer, they find the following value of 𝑡26: 

 

𝑡�� =
3 + 𝛾 𝑝p − 𝛾 + 1
2 + 𝛾 𝑝p − 𝛾

. (3.20) 

 

Now, Xie and Neyret (2009) consider two situations. Since 𝑡 cannot be negative, we have that 

either  𝑝p
�� > ,iv

\iv
⇒ 𝑡 > 0 or  𝑝p

�� ≤ ,iv
\iv

⇒ 𝑡 = 0. However, because of the complexity of 

calculations, they do not solve analytically the problem, but through a numerical simulation. 

Using MATLAB, they derive the following diagrams27 of the manufacturer price and 

participation ratio. 

 

                                                

26 Throughout this work, the superscript 𝑆p indicates the Stackelberg Manufacturer Equilibrium. 
27 Source: Co-op advertising and pricing models in manufacturer-retailer supply chains by Xie and Neyret (2009). 



 31 

 

Fig.1. Manufacturer price 𝑝p
�� 

 

 

Fig.2. Participation ratio 𝑡�� 

 

 

3.1.4. Cooperation 

The last game is the only cooperative among those studied in Xie and Neyret (2009). 

Bearing in mind the concepts introduced in section 2.4., the solution is obtained by this 

maximization problem: 
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Max*�,Z,:Πpiq = 𝑝q 1 − 𝑝q
𝐴

𝐵
,

viwi,
−

𝐵
𝑎v𝐴w

− 𝑎 − 𝐴 (3.21) 

s.t. 𝑎 ≥ 0, 	𝐴 ≥ 0,  	0 ≤ 𝑝q ≤ 1.  

 

The results28 will be: 

 

𝑝q[� =
,
.
,	 𝐴[� = w

v
𝑎[�,      	𝑎[� =

|
}

}
v

_

Q
|�}�Q

. (3.22) 

 

Of course, players will accept to cooperate only if they obtain at least the same amount of profits 

received without cooperation. To find analytically the cases in which cooperation is feasible, 

they solve the following equation through a numerical simulation with MATLAB, assuming 

that the cooperation is feasible “if and only if both the manufacturer and the retailer cannot get 

any higher profits in other games” (Xie and Neyret, 2008, p.1378): 

 

Πpiq[� = Πp[� + Πq[� ≥ Πp��� + Πq��� (3.23) 

With max Πp
��, Πp

��, Πpg = Πp��� and max Πq
��, Πq

��, Πqg = Πq���. 

 

We do not report the analytical solutions of (3.23), since they do not give any useful insights 

for our analysis, but we summarize the results in the diagram below (Fig.329). 

 

                                                

28 See the appendix of Xie and Neyret for details. The superscript 𝑐𝑜 indicates the Cooperative Equilibrium. 
29 Source: Co-op advertising and pricing models in manufacturer-retailer supply chains by Xie and Neyret (2009). 
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Fig.3. Whole channel’s profits 

 

Clearly, cooperation is always feasible, even though the criterion of cooperation presupposed 

by authors is restrictive. In fact, imposing condition (3.23), they assume that players can pass 

from one typology of the game to another, in whichever situation. On the contrary, the typology 

of the game is not a decision variable but a given situation. It is unjustified a comparison 

between total cooperative payoffs and the sum of the maximum payoffs available for retailer 

and manufacturer, since players have to participate at the same game and, consequently, they 

cannot be both leader or both follower. Thus, a condition imposing that cooperative payoffs 

have to be greater than the sum of manufacturer leader’s and retailer leader’s profits (which are 

usually the maximum profits available for the players), is clearly unwarranted. In other words, 

if the feasibility condition is bond with the overall payoffs received by players, cooperation 

should always be feasible because, to solve cooperative game, we have to maximize the total 

profits of the system. Therefore, condition (3.23) is, indeed, unnecessarily restrictive. 

However, if we take into consideration the way in which players split the total cooperative 

profits, the results could be different. In this case, players will cooperate only if the amount of 

profits effectively received is greater than that obtained without cooperation. Thus, the 

feasibility will be strictly dependent on the bargaining results. 

In section 3.3.6. we will propose a different feasibility condition that takes into accounts the 

factors aforementioned. 
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3.1.5. Bargaining Model 

The approach used to split the cooperation profits is the Symmetric Nash bargaining 

model (see 2.4.1.), in which the bargaining outcome is obtained by maximizing the product of 

players’ utilities.  

The authors present three different situations, in which parameters 𝜆, and 𝜆., which describe  

the functional form of players’ utilities, assume different values: (i) 𝜆, = 𝜆. = 1, (ii) 𝜆, < 1 

and 𝜆. = 1, and (iii) 𝜆, < 1 and 𝜆. < 1. Of course, if 𝜆, = 𝜆., players will equally split profits; 

but if, for instance, 𝜆, < 𝜆., the agreement will be beneficial for player 2 (see (2.23)). 

Later, in Aust and Busher (2012), we will see a more developed bargaining model, the 

Asymmetric Nash one, which incorporates another parameter: the bargaining power. 

  

 

3.1.6. Conclusions 

The main results of the paper are about the optimal advertising and prices levels in the 

four different scenarios. Looking at the data, Xie and Neyret conclude that, firstly, in the 

coordinated situation players spend more in advertising but retail price is the lowest and, 

secondly, that leader, both in the Retailer and in the Manufacturer Stackelberg Game, invests 

less in advertising campaign than in the other cases, since he/she manages the follower to spend 

more. With regard to the profits, they notice that the manufacturer chooses to be leader only 

when 𝛿 > 0,5. In the other cases, he/she prefers to play as follower (interestingly, the Nash 

equilibrium always provides him/her with the lowest profits, see Fig.430). Lastly, they find that 

coordination is always feasible, in spite of the condition stated in the equation (3.23), which is 

unnecessarily restrictive.  

 

                                                

30 Source: Co-op advertising and pricing models in manufacturer-retailer supply chains by Xie and Neyret (2009). 
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Fig.4. Manufacturer’s profits in different scenarios 

 

 

3.2. SeyedEsfahani, et al. (2011) 

The second model analysed is an evolution of the previous one. Again, the authors want 

to derive the optimal level of co-op advertising in a supply-chain model, and they present the 

same four different games seen in Xie and Neyret (2009): three non-cooperative games (Nash, 

Stackelberg Retailer and Stackelberger Manufacturer) and one cooperative game. However, the 

model presents some significant differences. 

  

 

3.2.1. Model 

The model consists in a supply chain with one manufacturer and one retailer. The former 

supplies all his/her products to the same retailer at a price 𝑝p, the latter sells the manufacturer’s 

products only, at a price 𝑝q. To simplify the solution process, authors impose that 𝑝p, 𝑝q ∈

[0,1]. National advertising expenditures are represented by the parameter 𝐴 (manufacturer’s 

advertising), while local advertising expenditures by the parameter 𝑎 (retailer’s advertising). 

Then, along the lines of standard literature, they propose the following demand function: 

 

𝑉 𝑎, 𝐴, 𝑝q = 𝑉¢𝑔 𝑝q ℎ(𝑎, 𝐴), (3.24) 
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where 𝑉¢ is the base demand, whilst 𝑔(𝑝) and ℎ(𝑎, 𝐴) are functions describing, respectively, 

the effect of retail price and of advertising levels on the demand. While Xie and Neyret assume 

a linear relationship between the demand and retail price, in this model the functional form of 

𝑔(𝑝) is more general: 

 

𝑔(𝑝q) = (𝛼 − 𝛽𝑝q)
Q
¥, (3.25) 

 

in which 𝛼, 𝛽	and 𝑣 are positive constants. In particular: 𝛼 is the intercept of the demand 

function, 𝛽 is the marginal effect of price on the demand, and 𝑣 determines the functional form 

of 𝑔(𝑝). Values of 𝑣 < 1, 𝑣 = 1, and 𝑣 > 1 correspond to convex, linear and concave demand-

price curves, respectively. As suggested by Piana (2004), different types of society bring 

different shapes of demand-price curves: linear when the reserve prices are uniformly 

distributed, concave if a huge number of consumers have the same reserve price and only a few 

are rich or poor, and convex if there is a polarized distribution of reserve prices (heavy tail 

distribution). 

The function describing the advertising effect - ℎ(𝑎, 𝐴) - is another evolution of that proposed 

by Xie and Neyret (2009) -see equation (3.1)-, since it incorporates the advertising saturation 

effect: 

 

ℎ 𝑎, 𝐴 = 𝑘, 𝑎 + 𝑘. 𝐴. (3.26) 

 

Applying a square root to 𝑎 and 𝐴, they obtain a function where additional advertising generates 

diminishing returns, reproducing the saturation effect already studied by past literature31. 

Parameters 𝑘, and 𝑘. reflect the effectiveness of local and national advertising. Replacing 

(3.26) and (3.25) in (3.24), we obtain the model demand function: 

 

                                                

31 See for more information Simon and Arndt (1980), Kim and Staelin (1999) and Karray and Zaccour (2006). 
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𝑉 𝑎, 𝐴, 𝑝q = 𝑉¢(𝛼 − 𝛽𝑝q)
,
§(𝑘, 𝑎 + 𝑘. 𝐴). (3.27) 

 

The condition 𝑝 < z
{

 is required to avoid negative demand. Now, calling 𝑐 the manufacturer’s 

production cost and 𝑑 the retailer’s unit cost, the profit functions are the following: 

 

Πp = 𝑉¢ 𝑝p − 𝑐 𝛼 − 𝛽𝑝q
Q
¥(𝑘, 𝑎 + 𝑘. 𝐴) − 𝑡𝑎 − 𝐴, (3.28) 

Πq = 𝑉¢ 𝑝q − 𝑝p − 𝑑 𝛼 − 𝛽𝑝q
,
§(𝑘, 𝑎 + 𝑘. 𝐴) − 1 − 𝑡 𝑎, (3.29) 

Πpiq = 𝑉¢ 𝑝q − 𝑐 − 𝑑 𝛼 − 𝛽𝑝q
,
§(𝑘, 𝑎 + 𝑘. 𝐴) − 𝑎 − 𝐴. (3.30) 

 

Other conditions are necessary to avoid negative profits, thus: 𝑝p > 𝑐 and 𝑝q > 𝑝p + 𝑑. 

Moreover, to simplify the analysis and calculations, the authors apply the following changes of 

variables: 

 

𝛼� = 𝛼 − 𝛽(𝑐 + 𝑑), 

𝑝q� =
{
z�

𝑝q − 𝑐 + 𝑑 , 

𝑝p� =
{
z�
(𝑤 − 𝑐), 

𝑘,� =
©ªz

�Q
¥ �Q

{
𝑘,, 

𝑘.� =
©ªz

�Q
¥ �Q

{
𝑘.. 

 

Thus, the profits functions can be rewritten as follows: 

  

Πp� = 𝑝p� 1 − 𝑝q�
Q
¥(𝑘,� 𝑎 + 𝑘.� 𝐴) − 𝑡𝑎 − 𝐴, (3.31) 

Πq� = 𝑝q� − 𝑝p� 1 − 𝑝q�
,
§ 𝑘,� 𝑎 + 𝑘.� 𝐴 − 1 − 𝑡 𝑎, (3.32) 
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Πpiq� = 𝑝q� 1 − 𝑝q�
,
§ 𝑘,� 𝑎 + 𝑘.� 𝐴 − 𝑎 − 𝐴. (3.33) 

 

For the sake of simplicity, since now we refer to (3.31), (3.32), and (3.33) without the 

superscript (′). 

 

𝒑𝑹 Retail price 

𝒑𝑴 Wholesale price 

𝒕 Participation rate 

𝒂 Retailer local advertising level 

𝑨 Manufacturer national advertising level 

𝜶 Intercept of the demand-price curve 

𝒄 Manufacturer’s production cost 

𝒅 Retailer’s unit cost 

𝑽𝟎	 Base demand 

𝜷 Marginal effect of price on the demand 

𝒌𝟏 Marginal effect of local advertising (under square root) 

𝒌𝟐 Marginal effect of global advertising (under square root) 

𝒗 Parameter of the functional form of demand-price curve 

 

 

 

3.2.2. Nash Game  

In a Nash game players determine their strategies independently and simultaneously. To 

find the equilibrium, we have to solve the following maximization problems: 

  

Tab.4. Legend of SeyedEsfahani et al. (2011) 
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Max�,:,*�Πp = 𝑝p 1 − 𝑝q
,
§ 𝑘, 𝑎 + 𝑘. 𝐴 − 𝑡𝑎 − 𝐴 (3.34) 

s.t. 0 ≤ 𝑡 ≤ 1,  	𝐴 ≥ 0,  0 ≤ 𝑝p ≤ 1,  

 

MaxZ,*�Πq = (𝑝q − 𝑝p) 1 − 𝑝q
,
§ 𝑘, 𝑎 + 𝑘. 𝐴 − (1 − 𝑡)𝑎 (3.35) 

s.t. 𝑎 ≥ 0,  	𝑝p ≤ 𝑝q ≤ 1.  

 

As in the previous model, it is easy to prove that the optimal participation rate (𝑡) is zero, since 

it has a negative impact on the objective function (3.34). Furthermore, function (3.34) is 

increasing with regard to 𝑝p. However, 𝑝p = 1 cannot be a solution, as 𝑝q ≥ 𝑝p and 𝑝p, 𝑝q ∈

[0,1]: if 𝑝p = 1 ⇒ 𝑝q = 1 ⇒ Πq = Πp = 0.    

Again, the authors tackle the problem assuming a very restrictive constraint: 

 

𝑝q − 𝑝p = 𝑝p, (3.36) 

 

hence 𝑝p = *�
.
. In Aust and Busher (2012), authors will not use assumption (3.36) and obtain 

more interesting results. Anyway, now we can solve problems (3.34) and (3.35), finding the 

unique Nash Equilibrium32: 

 

𝑝pg =
§

.§i,
,   𝑝qg =

.§
.§i,

,   𝑡g = 0, (3.37) 

𝑎g =
1
4𝑘,

.𝑣.
1

2𝑉 + 1

.
§i.

, (3.38) 

𝐴g =
1
4𝑘.

.𝑣.
1

2𝑣 + 1

.
§i.

. (3.39) 

  

                                                

32 See the appendix of SeyedEsfahani et al. (2011) for further information. 
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It is remarkable the relationship between the equilibrium levels of retail and manufacturer prices 

in (3.37) and those in (3.11). Solutions (3.37) are the general form of (3.11) because, to calculate 

the latter, authors have assumed the linearity of price-demand curve. On the contrary, in (3.37) 

the functional form is tied with the parameter 𝑣. In fact, if we impose the condition 𝑣 = 1 

(linearity of price-curve demand), (3.11) and (3.37) will coincide. 

Overall, the Nash Equilibrium of this model is more interesting than that found in Xie and 

Neyret (2009), as it provides some evidence about the influence of the functional form of the 

price-demand curve. Nonetheless, even this form is limited by condition (3.36). 

  

 

3.2.3. Stackelberg Retailer and Manufacturer Game 

We start solving the Stackelberg Retailer game. Firstly, we take manufacturer’s best 

responses, which are the same as found in the Nash game: 

 

𝑡 = 0,   𝑝p = *�
.

,  𝐴 = ,
_
𝑘..𝑣.

,
.§i,

V
¥i.. (3.40) 

 

Then, we replace equations (3.40) in the maximization problem (3.35). The 𝑆q equilibrium 

obtained33 is: 

 

𝑝q
�� = §

§i,
	,   𝑝p

�� = §
.(§i,)

,   𝑡�� = 0, (3.41) 

𝑎�� =
𝑘,.

16 𝑣
. 1
𝑣 + 1

.
§i.

, (3.42) 

𝐴�� =
𝑘..

16 𝑣
. 1
𝑣 + 1

.
§i.

. (3.43) 

 

                                                

33 See the appendix of SeyedEsfahani et al. (2011) for further information. 
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Secondly, we calculate the equilibrium of the Stackelberg Manufacturer game. The BRs of the 

follower are again the same we have obtained in the Nash game: 

 

𝑎 = ,
_
𝑘,.𝑣.

,
.©i,

V
¥i.,  𝑝q =

§i²
§i,

. (3.44) 

 

Incorporating these value in problem (3.34), the 𝑆p can be calculated34: 

 

𝑝q
�� = §i*�

³�

§i,
	,   𝑝p

�� = .§ §i, ´Vi _§V §i, V´V ´Vi, §Vi(§i.)V

(§i.)Vi_´V(§i,)V
 

with 𝑘 = ´V
´Q
, 

(3.45) 

𝑡�� =
𝑝q
�� 3𝑣 + 2 − 𝑣
𝑝q
�� 𝑣 + 2 + 𝑣

, (3.46) 

𝑎�� =
𝑣 1 − 𝑝p

��

𝑝p
�� 𝑣 + 2 + 𝑣

𝑘,𝑣
1 − 𝑝p

��

𝑣 + 1

,
§i,

.

, (3.47) 

𝐴�� =
𝑝p
��𝑘.
2

1 − 𝑝p
��

𝑣 + 1

,
§

.

.	 (3.48) 

 

From the expressions above, it is difficult to derive meaningful and intuitive results. However, 

in section 3.2.6., we will analyse the equilibrium values graphically. 

 

 
3.2.4. Cooperation 

Lastly we study the Cooperation game, in which both channel members agree to 

cooperate, maximizing their profits jointly. The maximization problem will be:  

                                                

34 See the appendix of SeyedEsfahani et al. (2011) for further information. 
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Max*�,Z,:Πpiq = 𝑝q 1 − 𝑝q
Q
¥ 𝑘, 𝑎 + 𝑘. 𝐴 − 𝑎 − 𝐴, (3.49) 

s.t. 𝑎 ≥ 0,	        𝐴 ≥ 0,  	0 ≤ 𝑝q ≤ 1,  

 

and the unique cooperative solution is35: 

 

𝑝q[� =
§

§i,
,    		𝐴[� = ,

.
𝑘.𝑣

,
§i,

Q
¥i,

.

,				𝑎[� = ,
.
𝑘,𝑣

,
§i,

Q
¥i,

.

. (3.50) 

 

As in Xie and Neyret (2009), to determine when cooperation is actually feasible, the authors 

are not interested in 𝑝p	and 𝑡, and impose the following condition: 

 

Πpiq[� = Πp[� + Πq[� ≥ Πp��� + Πq���, (3.51) 

with max Πp
��, Πp

��, Πpg = Πp��� and max Πq
��, Πq

��, Πqg = Πq���.  

 

Processing the profit functions of the four different games through MATLAB, they obtain 

Fig.536, in which there are five different regions. Tab.4 specifies the maximum players’ profits 

in each of these regions. 

 

 

Fig.5. Five regions for the feasibility of the cooperation. 

                                                

35 See the appendix of SeyedEsfahani et al. (2011) for further information. 
36 Source: A game theoretic approach to coordinate pricing and vertical co-op advertising in manufacturer-
retailer supply chains by SeyedEsfahani et al. (2011). 

ify the feasibility of this problem. In order to understand this, we
need to show that (pco,wco,aco,Aco, tco) exists:

Pco
m ¼ Pmðpco;wco; aco;Aco; tcoÞP max PSM

m ;PSR
m ;P

N
m

! "
¼ Pmax

m ;

ð19Þ

Pco
r ¼ Prðpco;wco; aco;Aco; tcoÞP max PSM

r ;PSR
r ;P

N
r

! "
¼ Pmax

r :

ð20Þ

By integrating Eqs. (19) and (20), equivalently we have:

Pco
mþr ¼ Pco

m þPco
r P Pmax

m þPmax
r : ð21Þ

By combining Figs. 4 and 5, Fig. 7 is obtained, which has five re-
gions. Table 3 determines the maximum profits of the manufacturer
and the retailer in each region.

The next step is to verify the condition in Eq. (21) for each re-
gion of Fig. 7 to understand if a feasible solution is achieved. In re-
gion (I), the maximum profit of the manufacturer corresponds to
the SR game, while the retailer’s is obtained in the SM game.
Fig. 8 illustrates the relative difference between cooperation and
non-cooperation.

D1 ¼
Pco

mþr % PSR
m þPSM

r

! "

Pco
mþr

& 100:

According to Fig. 8, the relative difference is positive, hence, the
condition in Eq. (21) holds true and the feasible solution is certain
to exist. The comparison results in regions (II) and (III) are identical
and imply that the maximum profit of both sides is obtained in the
SR game. As illustrated in Fig. 6, it is obvious that the condition in
Eq. (21) holds true in these two regions, as the cooperation case
yields the highest profits for the whole system. Thus, the coopera-
tion game is feasible in these two regions. In regions (IV) and (V),
the maximum profits of the retailer and the manufacturer are ob-

tained, respectively in the SR and the SM. Similar to the approach
used in region (I), Fig. 9 illustrates the relative difference D2 be-
tween cooperation and non-cooperation; this displays that the con-
dition in Eq. (21) holds true in these two regions and the feasibility
of the cooperation is obvious.

D2 ¼
Pco

mþr % PSR
m þPSM

r

! "

Pco
mþr

& 100:

We showed that the cooperation game is feasible; therefore, this
resulted in the manufacturer and the retailer’s willingness to
cooperate. The next issue that is to be resolved is the sharing of
the extra gained profit. The profit-sharing problem is discussed
in Section 5.

5. Bargaining problem

In this section, a feasible region for the variables w and t is pre-
sented. Finally, the Nash bargaining model will be used to solve the
profit-sharing problem in this region. We use a similar approach
employed by Xie and Wei (2009) and Xie and Neyret (2009) to

Fig. 7. Five regions to discuss the feasibility of the cooperation game.

Table 3
Maximum profit of supply chain members in five regions of Fig. 7.

Region Pmax
m Pmax

r

(I) PSR
m PSM

r
(II) and (III) PSR

m PSR
r

(IV) and (V) PSM
m PSR

r

Fig. 8. Relative difference D1in regions (I).

Fig. 9. Relative difference D2in regions (IV) and (V).
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Region 𝚷𝑴𝐦𝐚𝐱 𝚷𝑹𝐦𝐚𝐱 

(i) Πp
�� Πq

�� 

(ii) and (iii) Πp
�� Πq

�� 

(iv) and (v) Πp
�� Πq

�� 

 

Thanks to Fig.5 and Tab.5, we are now able to solve (3.51), since we can derive the value of 

Πp��� and Πq��� in the five different areas. Without further calculi, we can notice that 

cooperation is practicable in (ii) and (iii), because both players obtain maximum profits in 𝑆q 

game and, by definition, the cooperation equilibrium maximizes the profits of the whole system 

in any situation. To check the other three areas, authors introduce the following equations: 

 

Δ, =
Πpiq[� − Πp

�� + Πq
��

Πpiq[� ×100, (3.52) 

Δ. =
Πpiq[� − Πp

�� + Πq
��

Πpiq[� ×100. (3.53) 

 

Equations (3.52) and (3.53) represent the difference (in percentage) between cooperative profits 

and the maximum profits obtained by chain members in areas (i) and (iv)-(v), respectively. 

As clearly represented by Fig.637 and Fig.738, the cooperation game is always feasible. 

 

 

 

                                                

37 Source: A game theoretic approach to coordinate pricing and vertical co-op advertising in manufacturer-
retailer supply chains by SeyedEsfahani et al. (2011). 
38 Source: A game theoretic approach to coordinate pricing and vertical co-op advertising in manufacturer-
retailer supply chains by SeyedEsfahani et al. (2011). 

Tab.5. Maximum profits for players in the five situations of Fig.5. 
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Fig.6. Graphic representation of (3.52). 

 

 

 

Fig.7. Graphic representation of (3.53). 

 

Nevertheless, condition (3.51) is unnecessarily restrictive (see 3.1.4.), and we refer to section 

3.3.6. to propose a different feasibility condition. 

Moreover, until now, we have not considered other two variables: the wholesale price 𝑝p and 

the participation rate 𝑡. Individual profits, calculated according to functions (3.31) and (3.32), 

are indeed dependent on these variables and they are analysed in the following section, where 

we will describe a model about internal agreement between cooperative players. 

 

 

ify the feasibility of this problem. In order to understand this, we
need to show that (pco,wco,aco,Aco, tco) exists:

Pco
m ¼ Pmðpco;wco; aco;Aco; tcoÞP max PSM

m ;PSR
m ;P

N
m

! "
¼ Pmax

m ;

ð19Þ

Pco
r ¼ Prðpco;wco; aco;Aco; tcoÞP max PSM

r ;PSR
r ;P

N
r

! "
¼ Pmax

r :

ð20Þ

By integrating Eqs. (19) and (20), equivalently we have:

Pco
mþr ¼ Pco

m þPco
r P Pmax

m þPmax
r : ð21Þ

By combining Figs. 4 and 5, Fig. 7 is obtained, which has five re-
gions. Table 3 determines the maximum profits of the manufacturer
and the retailer in each region.

The next step is to verify the condition in Eq. (21) for each re-
gion of Fig. 7 to understand if a feasible solution is achieved. In re-
gion (I), the maximum profit of the manufacturer corresponds to
the SR game, while the retailer’s is obtained in the SM game.
Fig. 8 illustrates the relative difference between cooperation and
non-cooperation.

D1 ¼
Pco

mþr % PSR
m þPSM

r

! "

Pco
mþr

& 100:

According to Fig. 8, the relative difference is positive, hence, the
condition in Eq. (21) holds true and the feasible solution is certain
to exist. The comparison results in regions (II) and (III) are identical
and imply that the maximum profit of both sides is obtained in the
SR game. As illustrated in Fig. 6, it is obvious that the condition in
Eq. (21) holds true in these two regions, as the cooperation case
yields the highest profits for the whole system. Thus, the coopera-
tion game is feasible in these two regions. In regions (IV) and (V),
the maximum profits of the retailer and the manufacturer are ob-

tained, respectively in the SR and the SM. Similar to the approach
used in region (I), Fig. 9 illustrates the relative difference D2 be-
tween cooperation and non-cooperation; this displays that the con-
dition in Eq. (21) holds true in these two regions and the feasibility
of the cooperation is obvious.

D2 ¼
Pco

mþr % PSR
m þPSM

r

! "

Pco
mþr

& 100:

We showed that the cooperation game is feasible; therefore, this
resulted in the manufacturer and the retailer’s willingness to
cooperate. The next issue that is to be resolved is the sharing of
the extra gained profit. The profit-sharing problem is discussed
in Section 5.

5. Bargaining problem

In this section, a feasible region for the variables w and t is pre-
sented. Finally, the Nash bargaining model will be used to solve the
profit-sharing problem in this region. We use a similar approach
employed by Xie and Wei (2009) and Xie and Neyret (2009) to

Fig. 7. Five regions to discuss the feasibility of the cooperation game.

Table 3
Maximum profit of supply chain members in five regions of Fig. 7.

Region Pmax
m Pmax

r

(I) PSR
m PSM

r
(II) and (III) PSR

m PSR
r

(IV) and (V) PSM
m PSR

r

Fig. 8. Relative difference D1in regions (I).

Fig. 9. Relative difference D2in regions (IV) and (V).
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ify the feasibility of this problem. In order to understand this, we
need to show that (pco,wco,aco,Aco, tco) exists:

Pco
m ¼ Pmðpco;wco; aco;Aco; tcoÞP max PSM

m ;PSR
m ;P
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By integrating Eqs. (19) and (20), equivalently we have:

Pco
mþr ¼ Pco

m þPco
r P Pmax

m þPmax
r : ð21Þ

By combining Figs. 4 and 5, Fig. 7 is obtained, which has five re-
gions. Table 3 determines the maximum profits of the manufacturer
and the retailer in each region.

The next step is to verify the condition in Eq. (21) for each re-
gion of Fig. 7 to understand if a feasible solution is achieved. In re-
gion (I), the maximum profit of the manufacturer corresponds to
the SR game, while the retailer’s is obtained in the SM game.
Fig. 8 illustrates the relative difference between cooperation and
non-cooperation.
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mþr % PSR
m þPSM

r

! "

Pco
mþr

& 100:

According to Fig. 8, the relative difference is positive, hence, the
condition in Eq. (21) holds true and the feasible solution is certain
to exist. The comparison results in regions (II) and (III) are identical
and imply that the maximum profit of both sides is obtained in the
SR game. As illustrated in Fig. 6, it is obvious that the condition in
Eq. (21) holds true in these two regions, as the cooperation case
yields the highest profits for the whole system. Thus, the coopera-
tion game is feasible in these two regions. In regions (IV) and (V),
the maximum profits of the retailer and the manufacturer are ob-

tained, respectively in the SR and the SM. Similar to the approach
used in region (I), Fig. 9 illustrates the relative difference D2 be-
tween cooperation and non-cooperation; this displays that the con-
dition in Eq. (21) holds true in these two regions and the feasibility
of the cooperation is obvious.
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We showed that the cooperation game is feasible; therefore, this
resulted in the manufacturer and the retailer’s willingness to
cooperate. The next issue that is to be resolved is the sharing of
the extra gained profit. The profit-sharing problem is discussed
in Section 5.

5. Bargaining problem

In this section, a feasible region for the variables w and t is pre-
sented. Finally, the Nash bargaining model will be used to solve the
profit-sharing problem in this region. We use a similar approach
employed by Xie and Wei (2009) and Xie and Neyret (2009) to

Fig. 7. Five regions to discuss the feasibility of the cooperation game.

Table 3
Maximum profit of supply chain members in five regions of Fig. 7.

Region Pmax
m Pmax

r

(I) PSR
m PSM

r
(II) and (III) PSR

m PSR
r

(IV) and (V) PSM
m PSR

r

Fig. 8. Relative difference D1in regions (I).

Fig. 9. Relative difference D2in regions (IV) and (V).
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3.2.5. Bargaining Model 

The bargaining model is the same as used by Xie and Neyret (2009) and takes into 

account only one parameter 𝜆. According to the theoretical model explained in section 2.4.1., 

the utility functions of players are: 

 

𝑢p = ΔΠpj�, (3.54) 

𝑢q = ΔΠqj�, (3.55) 

 

where 𝜆 indicates the form of the utility function, and ΔΠ is the difference between the profits 

obtained through cooperation and the maximum profits received in other situations. Therefore, 

following the model proposed by Nash, the solution is derived by the following optimization 

problem: 

 

Maxº��,º��𝑢p𝑢q=	ΔΠpj�	ΔΠqj� (3.56) 

s.t. ΔΠp + ΔΠq = ΔΠ, ΔΠq ≥ 0, ΔΠp ≥ 0.  

   

Analytical solutions of (3.56) are not interesting for our analysis39. It is remarkable only that, 

if the functional form is the same for both players, they will split the extra profits equally.  

 

 

3.2.6. Conclusions 

The proposed model, if compared to Xie and Neyret (2009), presents two significant 

improvements. Firstly, the relationship between price and demand is more general, including 

three different shapes of the demand-price function (linear, convex, and concave). Thus, we can 

observe the effects of the shape on the optimal values of players’ decision variables and profits. 

                                                

39 For further information about the bargaining equilibrium, see the appendix of SeyedEsfahani et al. (2011). 
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Secondly, the model includes the advertising saturation effect in demand function, according 

to which each incremental amount of advertising causes a progressively lesser effect on demand 

increase. 

Results, in contrast, are similar to those of past literature. Retail price is the lowest in the 

cooperative game, whilst advertising expenditures are higher in the non-cooperative ones. 

Again, the highest amount of profits is obtained in cooperative situation (see Fig.1040). Lastly, 

manufacturers always prefer to be retailer’s follower rather than compete in a Nash game 

(Fig.841), while this is not true for the retailer (Fig.942). 

 

 

 

 

Fig.8. Manufacturer’s profits. 

                                                

40 Source: A game theoretic approach to coordinate pricing and vertical co-op advertising in manufacturer-
retailer supply chains by SeyedEsfahani, et al. (2011). 
41 Source: A game theoretic approach to coordinate pricing and vertical co-op advertising in manufacturer-
retailer supply chains by SeyedEsfahani, et al. (2011). 
42 Source: A game theoretic approach to coordinate pricing and vertical co-op advertising in manufacturer-
retailer supply chains by SeyedEsfahani, et al. (2011). 
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Fig.9. Retailer’s profits 

 

 

 

Fig.10. System’s profits 

 

With regard to the models flaws, two conditions are too restrictive: conditions (3.36) -that 

assumes equal margin for the two players-, and (3.51) -the feasibility condition-. In Aust and 

Busher (2012), condition (3.36) is not assumed and, about assumption (3.51), we will propose 

a modification in section 3.3.6.. 
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3.3. Aust and Busher (2012) 

Aust and Busher (2012) is an expansion of existing models about advertising and pricing 

decisions in a one-manufacturer-one-retailer supply chain. A game-theoretic approach is used 

to analyse the usual four types of game: Nash, Stackelberg Retailer, Stackelberg Manufacturer, 

and Cooperative.  

 

 

3.3.1. Model 

The model is very close to that proposed in SeyedEsfahani et al. (2011). The price and 

advertising demand functions are similar to (3.25) and (3.26) respectively, and there are few 

differences with regard to the variables and parameters considered. The base demand 𝑉¢	, the 

manufacturer’s production cost 𝑐, and the retailer’s unit cost 𝑑 are not included; while the 

authors denote by 𝑝p the manufacturer’s margin and by 𝑝q the retailer’s one.  Calling  𝑝 the 

price of the good, we have: 

 

𝑝p = 𝑝 − 𝑝q. (3.57) 

 

The rest of the model is summarized in Tab.4 (see section 3.2.1.). Manufacturer and retailer 

profit functions are the following: 

 

Πp = 𝑝p 𝛼 − 𝛽(𝑝p + 𝑝q)
,
§(𝑘, 𝑎 + 𝑘. 𝐴) − 𝑡𝑎 − 𝐴, (3.58) 

Πq = 𝑝q 𝛼 − 𝛽(𝑝p + 𝑝q)
,
§(𝑘, 𝑎 + 𝑘. 𝐴) − 1 − 𝑡 𝑎. (3.59) 

 

The main difference between (3.58)-(3.59) and (3.28)-(3.29) is that, in Aust and Busher (2012), 

the retail price 𝑝 is split into the wholesale price 𝑝p and retailer’s margin 𝑝q. In this way, we 

do not have to introduce any condition assuming identical margins for both players, as in Xie 

and Neyret (2009) and SeyedEsfahani et al. (2011), in which this condition is required (see 

(3.10) and (3.36)) to avoid Πq = 0 in equilibrium. Relaxing this assumption, we are able to get 
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further insights into pricing as a decision variable. Some conditions are necessary for the 

validity of the model: (i) all the parameters and variables have to be positive; (ii) 𝑝p + 𝑝q <
z
{

 

to avoid negative price-demand, and (iii) 0 ≤ 𝑡 < 1 to facilitate calculations. 

No further simplifications and change of variables are applied; therefore, we do not lose other 

important information about key parameters. 

 

 

3.3.2. Nash Game 

Having assumed a symmetrical distribution of power between the manufacturer and 

retailer, we can find the NE, where players take decisions simultaneously and not cooperatively. 

Players’ decision problems are: 

 

Max�,:,*�Πp = 𝑝p 𝛼 − 𝛽(𝑝p + 𝑝q)
,
§(𝑘, 𝑎 + 𝑘. 𝐴) − 𝑡𝑎 − 𝐴 (3.60) 

s.t. 𝑝p < z
{
− 𝑝q,        𝐴 ≥ 0,  0 ≤ 𝑡 < 1,  

  

MaxZ,*�Πq = 𝑝q 𝛼 − 𝛽(𝑝p + 𝑝q)
,
§(𝑘, 𝑎 + 𝑘. 𝐴) − (1 − 𝑡)𝑎 (3.61) 

s.t. 𝑝q <
z
{
− 𝑝p, 𝑎 ≥ 0.  

 

Firstly, we have to impose the FOCs for both problems. The optimal value of 𝑡, as we noticed 

in previous models, is 0. The manufacturer does not have any incentive to fix a different level 

of participation rate, since 𝑡 negatively affects his/her profit function. With regard to the other 

variables, we set »��
»¼�

, »��
»:
, »��
»¼�

, and »��
»Z

 equal to 0. The solutions of the two maximization 

problems are the following43: 

 

                                                

43 See the appendix of Aust and Busher (2012) for the proof.  
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𝑝qg = 𝑝pg =
z§

{ ,i.§
,   𝑝g = .z§

{ ,i.§
,           𝑡g = 0, (3.62) 

𝐴g =
𝑣.𝑘..

4𝛽.
𝛼

1 + 2𝑣

.
§i., (3.63) 

𝑎g =
𝑣.𝑘,.

4𝛽.
𝛼

1 + 2𝑣

.
§i.. (3.64) 

 

Interestingly, even without assuming equal margins for the players, the equilibrium leads to 

𝑝q = 𝑝p, showing that assumptions (3.10) and (3.36), at least in this kind of game, are not 

restrictive. Moreover, both players will spend the same amount in advertisements if the 

effectiveness of local (𝑘,.) and global (𝑘..) advertising coincide. Subdivision of advertising 

expenditure in the channel is influenced only by the effectiveness of the two kinds of 

advertising. Parameters 𝛼 and 𝛽, on the contrary, cause only a decrease/increase of the overall 

level, without influencing advertising repartition between players.  

 

 

3.3.3. Stackelberg Retailer and Manufacturer Game 

In this part, we study the model presupposing an asymmetrical distribution of power 

between players. In the first case, we assume an advantage for the manufacturer (Stackelberg 

Manufacturer game), who is aware of the retailer’s best response prior to maximize his/her 

utility. Formally, we start solving the retailer’s maximization problem, which is the same as 

described in (3.61) and leads to these best response functions: 

  

𝑝q =
§(zA{*�)
{ ,i§

,  (3.65) 

𝑎 =
𝑘,.𝑝q.(𝛼 − 𝛽 𝑝p + 𝑝q )

.
§

4(1 − 𝑡). . (3.66) 

 

Replacing (3.65) and (3.66) in (3.60), the manufacturer’s maximization problem becomes: 
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Max�,:,*� = 𝑝p 𝛼 − 𝛽(𝑝p +
𝑣(𝛼 − 𝛽𝑝p)
𝛽 1 + 𝑣

)

,
§
(𝑘,

𝑘,.𝑝q.(𝛼 − 𝛽 𝑝p + 𝑝q )
.
§

4(1 − 𝑡).
+ +𝑘. 𝐴)

− 𝑡
𝑘,.𝑝q.(𝛼 − 𝛽 𝑝p + 𝑝q )

.
§

4(1 − 𝑡).
− 𝐴 

(3.67) 

s.t. 𝑝p < z
{
− 𝑝q,  𝐴 ≥ 0,  0 ≤ 𝑡 < 1.  

  

After some simplifications, the Stackelberg Manufacturer equilibrium is the following (note 

that, for the sake of simplicity, we have maintained in the solution the variable 𝑝p44): 

 

𝑝q
�� =

𝑣 𝛼 − 𝛽𝑝p
𝛽 1 + 𝑣  

𝑝p
�� = .z§´V §i, iz§ _´V ,i§ V ´Vi, i(§i.)V

{((§i.)Vi_´V(§i,)V)
  with 𝑘 = ´V

´Q
, 

𝑝�� = z§i{*�
{ ,i§

, 𝑡�� = {*� .i\§ Az§
{*� .i§ iz§

, 

(3.68) 

𝐴�� =
𝑘..𝑝p.

4
𝛼 − 𝛽𝑝p
1 + 𝑣

.
§
, (3.69) 

𝑎�� =
𝑘,.(𝛽𝑣𝑝p + 2𝛽𝑝p + 𝛼𝑣).

16𝛽.(𝑣 + 1).
𝛼 − 𝛽𝑝p
1 + 𝑣

.
§
. (3.70) 

 

In the second case, the retailer plays as a leader (Stackleberg Retailer game), and we follow the 

same steps described above to deduce the solutions. This time, we start deriving the 

manufacturer’s best responses of problem (3.60), finding that: 

 

𝑡 = 0,    𝑝p = zA{*�
.{

,  𝐴 = ´VV*�V(zA{ *�i*� )V

_
. (3.71) 

 

Substituting (3.71) in (3.61), the maximization problem becomes: 

                                                

44 For further details, see the appendix of Aust and Busher (2012). 
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MaxZ,*�Πq = 𝑝q 𝛼 − 𝛽
𝛼 − 𝛽𝑝q
2𝛽 + 𝑝q

,
§

× 

×(𝑘, 𝑎 + 𝑘.
𝑘..𝑝p.(𝛼 − 𝛽 𝑝p + 𝑝q ).

4 ) − 𝑎 

(3.72) 

s.t. 𝑝q <
z
{
− 𝑝p, 𝑎 > 0,  

 

whose solution is 

 

𝑝q
�� = Az§(,i§A´V .i\§ i ,i§ VA.´V§ ,i§ i´½(§i.)V

.{(§i,)(.§´VA§A,)
,      with 𝑘 = ´V

´Q
,  

𝑝p
�� = § zA{*�

{ ,i§
, 𝑝�� = z§i{*�

{ ,i§
,  𝑡�� = 0, 

(3.73) 

𝐴�� =
𝑘..𝑣.

4𝛽.
𝛼 − 𝛽𝑝p
1 + 𝑣

.
§i.

, (3.74) 

𝑎�� =
𝑘,.𝑝q.

4
𝛼 − 𝛽𝑝q
1 + 𝑣

.
§
. (3.75) 

 

The existence condition of (3.73) is 𝑣 ≠ (2𝑘. − 1)A,. 

Looking at (3.68) and (3.73), it is clear that, this time, the assumption of identical margins seen 

in Xie and Neyret (2009) and SeyedEsfahani et al. (2011) is restrictive. In fact, considering that 

𝑝p + 𝑝q = 𝑝, 𝑝p = 𝑝q implies that *�
*
= ,

.
 and, as shown in Fig.1145, this condition holds only 

for specific values of parameters 𝑣 and 𝑘.  

 

                                                

45 Source: Vertical cooperative advertising and pricing decision in a manufacturer-retailer supply chain: A game-
theoretic approach by Aust and Buscher (2012). 
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Fig.11. Ratio of wholesale price and price in a Stackelberg Retailer equilibrium. 

 

 

3.3.4. Cooperation 

Finally, we analyse the same cooperative game studied before, adapted to this new 

model. The decision problem is: 

  

Max*,:,Z	Πpiq = 𝑝 𝛼 − 𝛽𝑝
,
§(𝑘, 𝑎 + 𝑘. 𝐴) − 𝐴 − 𝑎 (3.76) 

s.t. 𝑝 < z
{
,    𝐴 ≥ 0,	 𝑎 ≥ 0.  

 

In (3.76), we no longer consider variables 𝑝p and 𝑝q, since they have no influence on the total 

profits, and we maximize it with respect to 𝑝, 𝑎, and A. The optimal solution obtained is the 

following46: 

 

                                                

46 See the appendix of Aust and Busher (2012) for further details. 
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𝑝[� = z§
{(§i,)

,	        𝐴[� = §V´VV

_{V
z
,i§

V
¥i.,	     𝑎[� = §V´QV

_{V
z
,i§

V
¥i.. (3.77) 

 

As in the Nash game, the optimal levels of advertising (𝑎 and 𝐴) will differ only if players’ 

publicity effectiveness (𝑘, and 𝑘.) takes different values.  

With regard to the feasibility condition, in Aust and Busher (2012) it is the same as assumed in 

Xie and Neyret (2009) and SeyedEsfahani et al. (2011) -see (3.23) and (3.51)-. The authors 

impose that players will agree to cooperate only if they receive a higher amount profits than in 

any other game. As noticed in section 3.1.4., this condition is restrictive without reason, since 

the authors consider the game played a choice and not an exogenous condition. 

Anyhow, the solution method is the same as seen in SeyedEsfahani et al. (2011), but 

conclusions are significantly different. In fact, if in SeyedEsfahani et al. (2011) cooperation is 

always feasible, here it is not. Using a numerical computation with MATLAB, the authors prove 

that for high value of 𝑣 the solution could be unfeasible, as it is clearly shown in Tab.647 (where 

other parameters are set equal to 𝛼 = 10, 𝛽 = 1, 𝑣 = 8, 𝑘p = 2, and 𝑘q = 1), since Πp
�� +

Πq
�� > Πpiq[� 48. 

It is important to note that, to have a complete cooperative solution, we need an effective 

division of cooperative profits, which can be obtained through the bargaining game described 

in the following section. Furthermore, in section 3.3.6., we will present a different feasibility 

condition, which takes into account the actual profits received by players -the split of 

cooperative profits in the bargaining game- to determine whether a game is feasible. 

 

 

 

 

 

                                                

47 Source: Vertical cooperative advertising and pricing decision in a manufacturer-retailer supply chain: A game-
theoretic approach by Aust and Buscher (2012). 
48 Take into consideration the bold numbers in Tab.6. to check that Πp

�� + Πq
�� > Πpiq[� . 
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 𝒑𝑴 𝒑𝑹 𝒑 𝑨 𝒂 𝒕 𝚷𝑴 𝚷𝑹 𝚷𝑴i𝑹 

𝑵 4.71 4.71 9.41 19.39 4.85 0 29.09 43.64 72.73 

𝑺𝑴 8.77 1.09 9.86 46.77 13.19 0.88 59.96 13.15 73.11 

𝑺𝑹 4.45 4.99 9.44 17.13 5.38 0 26.72 43.77 70.49 

𝒄𝒐 - - 8.89 81.12 20.28 - - - 101.40 

 

 

3.3.5. Bargaining Model 

In Xie and Neyret (2009) and SeyedEsfahani et al. (2011) the bargaining model used is 

the Symmetrical one, in which the only parameter taken into account is 𝜆, which describes the 

players’ utility functional form. 

On the contrary, in Aust and Busher (2012), the authors introduce the Nash Asymmetrical 

model (see section 2.4.2.) that, firstly presented in Harsanyi and Selten (1972), incorporates a 

new parameter, the bargaining power 𝜇. According to section 2.4.2. and calling ΔΠ* the 

difference between the profits obtained by player 𝑝 in a cooperative game and the maximum 

profits received by him/her among the other games, the manfacturer’s and retailer’s utility 

functions remain the same as described in SeyedEsfahani et al (2011) -see (3.54) and (3.55)-. 

The formulation of the bargaining model, instead, is different and includes the bargaining power 

too (with 𝜇p + 𝜇q = 1). Hence, the objective function 𝑣piq that we have to maximize is given 

by: 

 

𝑣piq = ΔΠp
j�o�ΔΠq

j�o�. (3.78) 

 

The maximization problem will be the following: 

 

 

Tab.6. Numerical computation with MATLAB. 
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Maxº��,º��𝑣piq = ΔΠp
j�o�ΔΠq

j�o� (3.79) 

s.t. ΔΠ = ΔΠ𝑀 + ΔΠ𝑅,  ΔΠp ≥ 0,  ΔΠq ≥ 0   

  

and the solution49 is: 

 

ΔΠp =
𝜆p𝜇p

𝜆p𝜇p + 𝜆q𝜇q
ΔΠ, (3.80) 

ΔΠq =
𝜆q𝜇q

𝜆p𝜇p + 𝜆q𝜇q
ΔΠ. (3.81) 

 

Observing (3.80) and (3.81), we can note that identical utility functional form (𝜆) and 

bargaining power (𝜇) between players lead to an equal split of extra profits. With regard to the 

bargaining power, the authors have studied its effect setting 𝜆q = 𝜆p = 𝑐, with 𝑐 a generic 

constant. They conclude, as it can be intuitively deduced from (3.80) and (3.81), that “the player 

with the higher bargaining power will be able to get the bigger share of profits” (Aust and 

Busher, 2012, p.477). 

In addition, focusing on (3.79), we can reformulate the problem in a simpler way, through a 

new parameterization. Firstly, since we are interested only in the fraction of the extra profits 

received by players and not in the absolute value of their earnings, we can impose, without 

losing significant information, ΔΠ = 1. Therefore, the situation becomes a distribution problem 

of two positive quantities (ΔΠp and ΔΠq)  whose sum is one. Then, to generalize the problem, 

we replace the variables ΔΠp and ΔΠq with 𝜎p and 𝜎q, and the exogenous parameters 𝜆p𝜇p 

and 𝜆q𝜇q with ωÄ and ω�. The problem becomes: 

 

MaxÅ�,Å�𝜎p
Æ�𝜎q

Æ� (3.82) 

s.t. 𝜎p + 𝜎q=1,  𝜎p ≥ 0,  𝜎q ≥ 0.  

                                                

49 For further details, see the appendix of Aust and Busher (2012). 
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And its solution will be : 

 

𝜎p∗ =
ωp

ωp + ωq
, (3.83) 

𝜎q∗ =
ωq

ωp + ωq
, (3.84) 

 

with 𝜎p∗ ∗ 100 and 𝜎q∗ ∗ 100 that represent the percentage of the extra profits received by the 

manufacturer and the retailer, respectively. 

 

 

3.3.6. A New Feasibility Condition 

As already stressed above, the feasibility condition imposed in the previous three models 

is inadequate and restrictive. In fact, coordinated games should always be feasible if we 

consider the overall payoffs obtained the key variable to determine whether cooperation is 

practicable, since, by definition, cooperating players maximize system’s profits. In Xie and 

Neyret (2009) and SeyedEsfahani et al. (2011), the authors, in spite of assuming conditions 

(3.23) and (3.51), arrive at the same conclusion: for each value of the parameters, players have 

incentive to cooperate. In Aust and Busher (2012), instead, the results are different because of 

the unwarranted feasibility condition (3.51). 

Anyway, starting from the previous section we can propose a different feasibility condition, 

focusing on the amount of profits received by players, individually. To present formally this 

condition, we have to modify slightly the bargaining model solved in the section above. In Aust 

and Busher (2012) players split only the extra profits they acquire thanks to cooperation 

(ΔΠpiq), while our bargaining game is interested in the overall coordinated profits. Denoting 

with Πp and Πq the share they get of the overall cooperative profits Πpiq, with Πp + Πq =

Πpiq, the objective function (3.78) will become: 
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𝑣piq = Πp
j�o�Πq

j�o�, (3.85) 

 

with 𝜆 and 𝜇 that indicate the players’ utility functional form and the bargaining power. Thus, 

the maximization problem will be: 

 

Max��,��𝑣piq = Πp
j�o�Πq

j�o� (3.86) 

s.t. Πpiq = Πp + Πq,	  Πp ≥ 0, Πq ≥ 0   

  

Solutions of (3.86) will correspond to those of the previous section, see (3.80) and (3.81): 

 

Πp =
𝜆p𝜇p

𝜆p𝜇p + 𝜆q𝜇q
Πpiq, (3.87) 

Πq =
𝜆q𝜇q

𝜆p𝜇p + 𝜆q𝜇q
Πpiq. (3.88) 

 

If we call ΠpÇ  and ΠqÇ  the profits received by manufacturer and retailer in a specific game 𝐺, 

with 𝐺 ∈ 𝑁, 𝑆q, 𝑆p , cooperation will be feasible if and only if: 

 

Πp =
𝜆p𝜇p

𝜆p𝜇p + 𝜆q𝜇q
Πpiq ≥ ΠpÇ

Πq =
𝜆q𝜇q

𝜆p𝜇p + 𝜆q𝜇q
Πpiq ≥ ΠpÇ

. (3.89) 

 

Expression (3.89) offers a more realistic condition associated with the individual profits 

received by players. According to (3.89), they decide to cooperate taking into account several 

factors: (i) the non-cooperative game they could play, (ii) the cooperative profits, (iii) their 

utility functional form, and (iv) bargaining power. Replacing conditions (3.23) and (3.51) with 

(3.89), we could surely derive more precisely when cooperation is actually feasible. 
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3.3.7. Conclusions 

One of the main contributions of Aust and Busher (2012) is that, without the 

assumptions (3.10) and (3.36) that presuppose identical margins, the authors derive unrestricted 

and broader results. Thus, we obtain the three diagrams below about the wholesale  (Fig.1250), 

retailer (Fig.1351), and retail price (Fig.1452). Note that no manufacturer costs are assumed. 

Hence, wholesale and retailer prices coincide with the manufacturer’s and retailer’s margin. 

Focusing on Fig.14, we can see that consumers usually benefit more from a non-cooperative 

Nash game than from a Stackelberg Retailer/Manufacturer game, since the retail price is 

generally lower. However, even if not represented in the picture, the lowest retail price results 

from supply chain members’ cooperation, which ensures the maximum customer welfare, due 

to the lowest price. 

Looking at Fig.11, we can see how restrictive is the condition regarding identical margins 

between retailer and manufacturer assumed by previous works. This condition is valid only for 

particular values of the parameters, while, for instance, for small values of 𝑘 and 𝑣 the retailer 

obtains a higher margin. However, this paper presents a couple of flaws, since authors remove 

two parameters to simplify the calculations: the manufacturer’s production and retailer’s unit 

cost (denoted in this work by 𝑐 and 𝑑, respectively). An analysis of a model that includes both 

players’ costs (as in SeyedEsfahani et al., 2011) and splits the price in manufacturer’s and 

retailer’s margin (as in Aust and Busher, 2012) would be surely interesting, as it would allow 

us to observe how much costs influence the optimal value of decision variables, without losing 

information about players’ margin. 

 

 

                                                

50 Source: Vertical cooperative advertising and pricing decision in a manufacturer-retailer supply chain: A game-
theoretic approach by Aust and Buscher (2012). 
51 Source: Vertical cooperative advertising and pricing decision in a manufacturer-retailer supply chain: A game-
theoretic approach by Aust and Buscher (2012). 
52 Source: Vertical cooperative advertising and pricing decision in a manufacturer-retailer supply chain: A game-
theoretic approach by Aust and Buscher (2012). 
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Fig.12. Manufacturer’s price 𝑝p. 

 

 

 Fig.13. Retailer margin 𝑝q.  

 

 

Fig.14. Retail price 𝑝. 

 

With regard to the bargaining model, here the authors apply the Nash Asymmetrical one, in 

order to derive a bargaining solution that incorporates both players’ utility functional form and 

the bargaining power. Therefore, results are more complete, as they take into account a new 
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variable. However, the feasibility condition implied is restrictive -see 3.1.4.-. According to 

(3.51), in fact, players could reject cooperation even though there are no possibility to achieve 

higher profits through non-cooperative behaviours, given the game structure. In section 3.3.6., 

we propose a different feasibility condition (3.89.), which states that players will cooperate if 

and only if they receive, after the bargaining game, a higher amount of profits than through 

non-cooperative behaviours: this feasibility condition allows us to derive more realistic and 

meaningful results.  

Above all, Aust and Busher (2012) presents the most complete and interesting model of co-op 

advertising in supply-chain. However, there are some key points that need improvements. In 

the final chapter of this work, we propose a different co-op advertising model, adding another 

supply chain member (a retailer), and including manufacturer’s and retailer’s costs. 
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4. Co-op advertising in supply chain: A new model 

In the last part of this work, we present a new game-theoretical analysis of co-op 

advertising in supply chain management. The aim of this new model is to improve and develop 

the ideas presented in past researches, with some significant changes. We propose a different 

game structure with three players53 (one manufacturer and two retailers) where, firstly, the two 

retailers compete in a Bertrand game and, secondly, the winner of the first game plays with the 

manufacturer in a Nash, Stackleberg Retailer, or Stackelberg Manufacturer game (see Fig.15). 

 

 

4.1. Model 

We introduce a single-manufacturer-double-retailer channel, in which the overall game 

presents two steps: (i) firstly, the two retailers compete in a Bertrand game (see section 2.3. for 

further details); (ii) secondly, the retailer with the lower costs will play against the manufacturer 

in one of the three alternative scenarios: Nash, Stackleberg Retailer, and Stackelberg 

Manufacturer game. 

Our aim is to reproduce a situation in which the manufacturer and one of the two retailers have 

to sign an exclusive partnership agreement, according to which both parties can buy/sell 

products of the counterparty only. Assuming that retailers can compete only by price (without 

considering other possible differentiations, such as networking, clients, reputation, and so 

forth), the manufacturer will deal with the winner of the Bertrand game, who is able to sell 

products at the lowest price (increasing the manufacturer’s sales and profits). 

Denoting with the subscripts 𝑀, 𝑅,, and 𝑅. the variables regarding to the manufacturer and the 

two retailers, we call 𝑝p, 𝑝qQ, and 𝑝qV the players’ margin (with 𝑝q∗ that indicates the margin 

of the retailer who wins the Bertrand competition54). We obtain the following retail price 𝑝: 
 

𝑝 = 𝑝p + 𝑝∗, (4.1) 

                                                

53 Another two-retailers-one-manufacturer model is studied in Aust (2014). 
54 Throughout this part, with the subscript ∗ we indicate all the variables with respect to the retailer who has won 
the first-step Bertrand game. 
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With regard to the consumer demand function, it is the same as used in Aust and Busher 

(2012)55: 

   

𝑉 𝑎∗, 𝐴, 𝑝 = 𝛼 − 𝛽𝑝
Q
¥(𝑘q∗ 𝑎∗ + 𝑘p 𝐴). (4.2) 

 

                                                

55 For further details with regard to the nomenclature used, see Tab.7.  

Retailer 2 

Case (v): 
𝑑𝑖 < 𝑑−𝑖 − 1, 
with 𝑖 ∈ {1,2} Stackelberg Manufacturer 

Bertrand 
competition 

Case (vi): 
𝑑1 = 𝑑2 

Retailer 1 
 

Manufacturer 

Retailer 2 

Case (i): 
𝑑𝑖 < 𝑑−𝑖 − 1, 
with 𝑖 ∈ {1,2} Nash Competition 

Bertrand 
competition 

Case (ii): 
𝑑1 = 𝑑2 

Retailer 1 
1 

Manufacturer 

Retailer 2 

Case (iii): 
𝑑𝑖 < 𝑑−𝑖 − 1, 
with 𝑖 ∈ {1,2} Stackelberg Retailer 

Bertrand 
competition 

Case (iv): 
𝑑1 = 𝑑2 

Retailer 1 
1 

Manufacturer 

Fig.15. Summary of the model. 

 



 65 

As in past literature56, the demand price curve 𝛼 − 𝛽𝑝
Q
¥ decreases with 𝑝, and its functional 

form depends on the parameter 𝑣: 𝑣 > 1, 𝑣 < 1, and 𝑣 = 1 correspond to concave, convex, and 

linear function, respectively. The function describing the advertising effect (𝑘,∗ 𝑎∗ + 𝑘Ä 𝐴) 

takes into account the saturation effect, as the partial derivatives with respect to 𝑎∗ and 𝐴	are 

negative. Unlike Aust and Busher (2012), here we consider the retailers’ (𝑑, and 𝑑.)	and 

manufacturer’s (𝑐) marginal costs too. 

Profit functions are: 

 

Πp = (𝑝p − 𝑐) 𝛼 − 𝛽𝑝
Q
¥(𝑘q∗ 𝑎∗ + 𝑘p 𝐴) − 𝑡∗𝑎∗ − 𝐴, (4.3) 

Πq∗ = (𝑝q∗ − 𝑑∗) 𝛼 − 𝛽𝑝
Q
¥(𝑘q∗ 𝑎∗ + 𝑘p 𝐴) − (1 − 𝑡∗)𝑎∗, (4.4) 

Πpiq∗ = (𝑝 − 𝑐 − 𝑑∗) 𝛼 − 𝛽𝑝
Q
¥(𝑘q∗ 𝑎∗ + 𝑘p 𝐴) − 𝑎∗ − 𝐴. (4.5) 

  

Lastly, we have to assume several conditions. Parameters 𝑑,, 𝑑., 𝑐, 𝑘qQ, 𝑘qV, 𝑘p, 𝛼, and 𝛽  

must be positive and, similarly, variables 𝑎,, 𝑎., and 𝐴 have to be ≥ 0. The demand function 

has to be positive too. Hence, looking at (4.2): 

 

𝛼 − 𝛽𝑝 > 0,  (4.6) 

 

and, consequently, 𝑝 < z
{

.  With regard to the participation rates, 0 ≤ 𝑡, ≤ 1	and 0 ≤ 𝑡. ≤ 1.  

 

 

 

 

                                                

56 See SeyedEsfahani et al. (2011) and Aust and Busher (2012). 
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𝒑𝑹𝟏 Retailer 1 margin 

𝒑𝑹𝟐 Retailer 2 margin 

𝒑𝑹∗ Margin of the Bertrand game’s winner 

𝒑𝑴 Manufacturer margin 

𝒕𝟏 Participation rate for player 1 advertising 

𝒕𝟐 Participation rate for player 2 advertising 

𝒕∗ Participation rate for Bertrand game winner 

𝒂𝟏 Retailer 1 local advertising level 

𝒂𝟐 Retailer 2 local advertising level 

𝒂∗ Bertrand game winner local advertising level 

𝑨 Manufacturer national advertising level 

𝜶 Intercept of the demand-price curve 

𝜷 Marginal effect of price on the demand 

𝒄 Manufacturer’s production cost 

𝒅𝟏 Retailer 1’s unit cost 

𝒅𝟐 Retailer 2’s unit cost 

𝒅∗ Bertrand game winner’s unit cost 

𝒌𝑹𝟏 Marginal effect of retailer 1’s local advertising (under square root) 

𝒌𝑹𝟐 Marginal effect of retailer 2’s local advertising (under square root) 

𝒌𝑹∗ Marginal effect of the Bertrand game winner’s advertising (under square root) 

𝒌𝐌 Marginal effect of global advertising (under square root) 

𝒗 Parameter of the functional form of demand-price curve 

 

 

Tab.7. Legend  
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4.2. Nash Game 

Before we apply the classic NE concept, we have to solve the Bertrand game where 

players’ strategic variable is the price.  

An essential assumption to facilitate calculations is to set the minimum quantity for which 

retailers can undercut their price at 157, and not 𝜀. In addition, we have to impose the other 

conditions seen in section 2.1.3. too: homogenous goods, price sensitive consumers, and no 

capacity restrictions for the firms. Furthermore, we hypothesize that, in case of identical prices 

set by retailers, the consumers will equally split their purchases between the firms. As a result, 

both retailers have an incentive to lower their price to seize the market, taking into account that 

their profits have to be positive. 

We can distinguish two cases: in the first one, retailers present different marginal cost (𝑑, ≠

𝑑.); in the second one, retailers’ marginal costs are identical (𝑑, = 𝑑.). We are not interested 

in the latter situation since, as we have seen in 2.3., if players have the same marginal costs the 

Bertrand competition will lead to zero profits. Therefore, players do not have any incentive to 

compete. With regard to the former case, marginal costs can be either 𝑑, < 𝑑. or 𝑑, > 𝑑.. 

These scenarios are symmetrical, so we can focus on the circumstance in which 𝑑, < 𝑑. + 1 -

remember that costs can decrease/increase by at least one- and generalize the results.  

Hence, imposing the condition: 

 

𝑑, < 𝑑. + 1,  (4.7) 

 

we obtain the following players’ BRs: 

 

𝑝,∗ 𝑝. =
𝑑,, 															 𝑝. ≤ 𝑑,
𝑝., 															 𝑝. = 𝑑, + 1

𝑝. − 1,																			𝑝. > 𝑑, + 1
, (4.8) 

𝑝.∗ 𝑝, =
𝑑., 															 𝑝, ≤ 𝑑.
𝑝,, 															 𝑝, = 𝑑. + 1

𝑝, − 1,																			𝑝, > 𝑑. + 1
, (4.9) 

                                                

57 The minimum increase and decrease for price variables is 1. 
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Intersecting (4.8) and (4.9), we derive the optimal retailers’ margins58: 

 

𝑝,;Ì = 𝑑. − 1, (4.10) 

𝑝.;Ì = 𝑑.. (4.11) 

 

 The equilibrium will be: NE= 𝑝,∗ = 𝑑. − 1, 𝑝.∗ = 𝑑. . Retailer 1, being more efficient than 

retailer 2, has incentive to lower his/her price at 𝑑. − 1, so as to supply all the demands on 

his/her own (note that assumption (4.6) ensures positive profits). At the same time, player 2 is 

indifferent to offer any price 𝑝. ≥ 𝑑. but, for the sake of simplicity, we impose that he/she sets 

price at his/her marginal cost. 

At the end, the exclusive partnership agreement will be signed between the manufacturer and 

retailer 1, who now have to compete in a Nash game. Referring to functions (4.3) and (4.4), 

profits are:  

 

Πp = (𝑝p − 𝑐) 𝛼 − 𝛽 𝑝p + 𝑑. − 1
,
§(𝑘qQ 𝑎, + 𝑘p 𝐴) − 𝑡,𝑎, − 𝐴, (4.12) 

ΠqQ = (𝑑. − 𝑑, − 1) 𝛼 − 𝛽 𝑝p + 𝑑. − 1
,
§(𝑘qQ 𝑎, + 𝑘p 𝐴) − (1 − 𝑡,)𝑎,, (4.13) 

 

in which we have replaced 𝑝 with	𝑝p + 𝑝q and 𝑝q with	𝑑. − 1. Consequently, the 

maximization problems will be: 

 

Max�Q,:,*�Πp = (𝑝p − 𝑐) 𝛼 − 𝛽(𝑝p + 𝑑. − 1)
,
§(𝑘qQ 𝑎, + 𝑘p 𝐴) − 𝑡,𝑎, − 𝐴 (4.14) 

s.t. 0 ≤ 𝑡, ≤ 1,	 𝐴 ≥ 0,	  0 ≤ 𝑝p ≤ 1,  

  

                                                

58 Throughout this work, the superscript 𝐵𝐸 indicates a Bertrand Equilibrium. 
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MaxZΠqQ = (𝑑. − 𝑑, − 1) 𝛼 − 𝛽(𝑝p + 𝑑. − 1)
,
§(𝑘qQ 𝑎, + 𝑘p 𝐴) − (1 − 𝑡,)𝑎, (4.15) 

s.t. 𝑎 ≥ 0.  

 

With regard to 𝑡,, it is easy to see that its optimal value is 0, since it negatively affects the 

manufacturer’s profit function. Then, deriving Πp with respect to 𝐴 and 𝑝p, and Πq with 

respect to 𝑎,, we obtain: 

 

𝜕Πp
𝜕𝑝p

=
𝐴𝑘p + 𝑎,𝑘qQ 𝛼 + 𝛽 − 𝛽𝑑. − 𝛽𝑝p

,
§A, 𝛽𝑐 − 𝛽𝑝p + 𝛼𝑣 + 𝛽𝑣 − 𝛽𝑑.𝑣 − 𝛽𝑝p𝑣
𝑣

, (4.16) 

𝜕Πp
𝜕A =

𝑘p(𝑝p − 𝑐)(𝛼 − 𝛽 𝑑. + 𝑝p − 1 )
,
§

2 𝐴
− 1,	 (4.17) 

𝜕ΠqQ
𝜕𝑎,

=
𝑘qQ(𝑑. − 𝑑, − 1)(𝛼 − 𝛽 𝑑. + 𝑝p − 1 )

,
§

2 𝑎,
− 1,	 (4.18) 

 

where 𝑣 ≠ 0. Applying the FOCs  to (4.17) and (4.18) -that are »��
»Ï

= 0 and 
»��Q
»ZQ

= 0- we 

obtain the following values for 𝐴 and 𝑎,: 

 

𝐴 =
𝑘p. 𝑝p − 𝑐 . 𝛼 − 𝛽 𝑑. + 𝑝p − 1

.
§

4 , (4.19) 

𝑎, =
𝑘qQ
. 𝑑. − 𝑑, − 1 . 𝛼 − 𝛽 𝑑. + 𝑝p − 1

.
§

4 . (4.20) 

 

Replacing (4.19) and (4.20) in (4.16), the expression becomes: 
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𝜕Πp
𝜕𝑝p

=

𝑘p
𝑘p. 𝑝p − 𝑐 . 𝛼 − 𝛽 𝑑. + 𝑝p − 1

.
§

4 + 𝑘qQ
𝑘qQ
. 𝑑, − 𝑑. + 1 . 𝛼 − 𝛽 𝑑. + 𝑝p − 1

.
§

4

𝑣
×	

×
𝛼 + 𝛽 − 𝛽𝑑. − 𝛽𝑝p

,
§A, 𝛽𝑐 − 𝛽𝑝p + 𝛼𝑣 + 𝛽𝑣 − 𝛽𝑑.𝑣 − 𝛽𝑝p𝑣

𝑣
. 

(4.21) 

 

Imposing »��
»*�

= 0 (FOC), we find the optimal value of 𝑝p59. Expression (4.21) is equal to 0 

when the numerator is 0, which is true if and only if 𝛽𝑐 − 𝛽𝑝p + 𝛼𝑣 + 𝛽𝑣 − 𝛽𝑑.𝑣 − 𝛽𝑝p𝑣 =

0 is null, since the other two factors are strictly positive: the former, because it is a sum of two 

positive factors; the latter, because we have already imposed that the demand function has to 

be positive. Substituting the optimal value of 𝑝p in (4.17) and (4.18), we calculate60 all the 

equilibrium values of the decision variables: 

  

𝑝pg =
{[iz§i{§A{ÐV§

{i{§
,   𝑡g = 0, (4.22) 

𝐴g =
𝑘p. 𝑣.

𝛼 + 𝛽 − 𝛽𝑐 − 𝛽𝑑.
𝑣 + 1

.
§
(𝛼 + 𝛽 − 𝛽𝑐 − 𝛽𝑑.).

4𝛽.(𝑣 + 1). , 
(4.23) 

𝑎,g =
𝑘qQ
. 𝛼 + 𝛽 − 𝛽𝑐 − 𝛽𝑑.

𝑣 + 1

.
§
(𝑑. − 𝑑, − 1).

4 . 
(4.24) 

 

  

4.3. Stackelberg Retailer and Manufacturer Game 

The next two games analysed are the Stackelberg ones, where it is assumed an 

asymmetrical distribution of power. Firstly, we study the Stackelberg Retailer situation. With 

regard to the first step, the Bertrand game, the reasoning is the same proposed before. Again, 

                                                

59 In this entire chapter, we assume a profit curve progress similar to those derived in papers studied in chapter 3, 
where the Hessian matrix is always negative definite. Thus, through the FOCs, we find the optimal values of the 
decision variables.  
60 The calculations have been performed through a MATLAB computation, whose script is shown in the 
appendix. 
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we are interested only in the situation in which 𝑑, ≠ 𝑑., because if marginal costs are identical 

the retailers’ profits will be 0. The same conditions assumed before must be true and the 

solutions of the game are (4.10) and (4.11), with retailer 1 who signs the exclusive agreement 

with the manufacturer.  

Formally, we start solving the Stackleberg game maximizing the follower’s profits. The 

maximization problem is (4.14) and derivatives with respect to 𝑝p and 𝐴 are (4.16) and (4.17), 

respectively. Applying the FOC to (4.17), we derive (4.19) and, replacing (4.19) in (4.16), we 

obtain the following equation: 

 

𝜕Πp
𝜕𝑝p

=

𝑘p
𝑘p. 𝑝p − 𝑐 . 𝛼 − 𝛽 𝑑. + 𝑝p − 1

.
§

4 + 𝑘qQ 𝑎,

𝑣
×	

×
𝛼 + 𝛽 − 𝛽𝑑. − 𝛽𝑝p

,
§A, 𝛽𝑐 − 𝛽𝑝p + 𝛼𝑣 + 𝛽𝑣 − 𝛽𝑑.𝑣 − 𝛽𝑝p𝑣

𝑣
. 

(4.25) 

 

 To find manufacturer’s BRs, we need the value of 𝑝p for which »��
»*�

= 0. As equation (4.21), 

expression (4.25) is equal to 0 if and only if 𝛽𝑐 − 𝛽𝑝p + 𝛼𝑣 + 𝛽𝑣 − 𝛽𝑑.𝑣 − 𝛽𝑝p𝑣 = 0, since 

the other two factors at numerator cannot zero -the first one, because it is a square root times a 

positive parameter; the second one because in section 4.1. we have imposed a positive demand 

function-. 

Consequently, we find that: 

 

𝑝p =
𝛽𝑐 + 𝛼𝑣 + 𝛽𝑣 − 𝛽𝑑.𝑣

𝛽 + 𝛽𝑣 , (4.26) 

 

which is exactly the same value of equation (4.22). Of course, replacing (4.26) in (4.19), we 

derive player 1’s best response with regard to variable 𝐴, that will be equal to (4.23): 
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𝐴 =
𝑘p. 𝑣.

𝛼 + 𝛽 − 𝛽𝑐 − 𝛽𝑑.
𝑣 + 1

.
§
(𝛼 + 𝛽 − 𝛽𝑐 − 𝛽𝑑.).

4𝛽.(𝑣 + 1). . 
(4.27) 

 

Looking at (4.18) and considering that the optimal values of 𝑝p and 𝐴 are the same of the Nash 

game, we can conclude that even the equilibrium value of 𝑎, will be identical to (4.24). 

However, for the sake of clarity, we solve the problem in the analytical way, replacing (4.26) 

and (4.27) in (4.13), that becomes: 

 

ΠqQ =
𝑑. − 𝑑, − 1 𝛼 + 𝛽 − 𝛽𝑐 − 𝛽𝑑.

,
§

v + 1
,
§

𝑘qQ 𝑎, +
𝑘p. 𝑣

𝛼 + 𝛽 − 𝛽𝑐 − 𝛽𝑑.
.(§i,)

§

2

2 𝑣 + 1
§i,
§

𝐴 − 𝑎,. (4.28) 

 

Deriving with respect to 𝑎,, we find 

 

𝜕ΠqQ
𝜕𝑎,

=
𝑘qQ(𝑑. − 𝑑, − 1) 𝛼 + 𝛽 − 𝛽𝑐 − 𝛽𝑑2

1
𝑣

2 𝑎,(𝑣 + 1)
,
§

− 1,	 (4.29) 

 

which is equal to 0 for the same value of 𝑎, expressed in (4.24). Summing up, the equilibrium 

values will be: 

  

𝑝p
�� = {[iz§i{§A{ÐV§

{i{§
,  𝑡�� = 0, (4.30) 

𝐴�� =
𝑘p. 𝑣.

𝛼 + 𝛽 − 𝛽𝑐 − 𝛽𝑑.
𝑣 + 1

.
§
(𝛼 + 𝛽 − 𝛽𝑐 − 𝛽𝑑.).

4𝛽.(𝑣 + 1). , 
(4.31) 

𝑎,�� =
𝑘qQ
. 𝛼 + 𝛽 − 𝛽𝑐 − 𝛽𝑑.

𝑣 + 1

.
§
(𝑑. − 𝑑, − 1).

4 . 
(4.32) 
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But why, in this model, do the Nash and the Stackelberg Retailer equilibrium coincide? 

The reason is that, introducing a first-step Bertrand game, we remove one decision variable, the 

retailer price, which is set equal to 𝑑. − 1. Thus, the maximization of the objective function 

(4.12) is completely independent of the retailer’s decision variable 𝑎, (look at (4.16) and 

(4.17)). Therefore, solving (4.12) and (4.13) simultaneously or before the (4.12) and 

successively the (4.13) will obviously lead to the same results. 

Let me investigate further on the Nash and Stackelberg Retailer’s solutions found above, 

focusing on the the optimal values for decision variables describing the local (𝑎,) and global 

(𝐴) advertising levels. Setting 𝛼 = 10, 𝛽 = 1, 𝑐 = 1, and 𝑑, = 4, we plot the following three 

graphs, considering on the x and y axis the retailer 2’s marginal costs 𝑑. and the retailer 1 local 

advertising efficiency 𝑘qQ, respectively. Some constraints are required. On the x axis, 𝑑. has to 

be greater than 5 since the initial condition states that 𝑑, < 𝑑. − 1 and, at the same time, it has 

to be smaller than 10, because for every value of 𝑣 the optimal level of 𝑎, must be positive. 

In Fig.16, in which we have set 𝑣 = 1, we can see that the optimal value of 𝑎, is positively 

influenced by 𝑘qQ. This is rational, because advertising expenditures will be higher the more is 

the advertising effectiveness. The effect of 𝑑., instead, is positive at the beginning, whilst is 

negative for higher values of 𝑑.. The explanation is intuitive: at the beginning, an increase of 

𝑑. affects positively retailer 1’s margin (𝑝q = 𝑑. − 𝑑, − 1) yet, for higher values, the effect is 

compensated by the negative influence that a higher margin has on the consumer demand. 

 

 

Fig.16. Local advertising level 𝑎,g = 𝑎,
��, with 𝑣 = 1 
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Moreover, the demand functional form has a significant impact on the advertising level. In 

Fig.17 and Fig.18, we represent the same situation described before, changing the value of 𝑣, 

which is equal to 2 and ,
.
 respectively. As clearly shown, a concave demand function (Fig.17, 

where 𝑣 > 1) leads to lower values of 𝑎,, while a convex one (Fig.18, where 𝑣 < 1) to higher.  

 

 

Fig.17. Local advertising level 𝑎,g = 𝑎,
��, with 𝑣 = 2 

 

Fig.18. Local advertising level 𝑎,g = 𝑎,
��, with 𝑣 = ,

.
 

 

Overall, the lower is the value of 𝑣, the higher is the retailer 1’s incentive to increase his/her 

expenditures in advertising. 

With regard to the global advertising level 𝐴, the results are quite different. Looking at Fig.19, 

the effectiveness of global advertising is, again, positively related with variable 𝐴 but, 

differently from what seen in Fig.16, the optimal value decreases with respect to 𝑑.. The 
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manufacturer, in fact, prefers a retailer margin as low as possible, to maximize the volume of 

sales. 

 

  

Fig.19. Global advertising level 𝐴g = 𝐴��, with 𝑣 = 1 

 

The effect of the demand functional form and of player’s marginal costs are the same as 

appreciated for retailer: small values of 𝑣 and 𝑐 increase the global advertising level (Fig.2061). 

 

 

Fig.20. Global advertising level 𝐴g = 𝐴��  

                                                

61 To plot this graph we have to set other two parameters. We impose 𝑘p = 2 and 𝑑. = 5. 



 76 

 

The last situation we analyse is the Stackelberg Manufacturer game. The main difference with 

the previous scenario is that we cannot set ex ante the optimal participation rate equal to 0. 

Objective functions are the same -(4.12) and (4.13)-, but now we start deriving (4.13) with 

regard to 𝑎,, finding (4.18). Applying the FOC to (4.18): 

 

𝑎, =
𝑘qQ
. 𝛼 − 𝛽(𝑑. + 𝑝p − 1)

.
§(𝑑. − 𝑑, − 1).

4(𝑡, − 1).
. (4.33) 

 

Substituting (4.33) in (4.12), manufacturer’s profits becomes: 

 

Πp = (𝑝p − 𝑐) 𝛼 − 𝛽 𝑝p + 𝑑. − 1
,
§ 	 𝐾qQ

𝑘qQ
. 𝛼 − 𝛽 𝑑. + 𝑝p − 1

.
§ 𝑑. − 𝑑, − 1 .

4 𝑡, − 1 . + 𝑘p 𝐴 − 

−𝑡,
𝑘qQ
. 𝛼 − 𝛽 𝑑. + 𝑝p − 1

.
§ 𝑑. − 𝑑, − 1 .

4 𝑡, − 1 . − 𝐴. 

(4.34) 

 

Taking the derivative of (4.34) with respect to 𝐴, 𝑝p, and 𝑡,, we find: 

 

𝜕Πp
𝜕A =

𝑘p(𝑝p − 𝑐)(𝛼 − 𝛽 𝑑. + 𝑝p − 1 )
,
§

2 𝐴
− 1,	 (4.35) 

 

 

𝜕Πp
𝜕𝑡,

=
𝑘qQ
. 𝛼 − 𝛽 𝑑. + 𝑝p − 1

.
§ 𝑑. − 𝑑, − 1 .

2 𝑡, − 1 . × 

×
𝑡,

𝑡, − 1
+

𝑘qQ
. (𝑐 − 𝑝p)( 𝛼 − 𝛽 𝑑. + 𝑝p − 1

,
§

2(𝑡, − 1)
𝑘qQ
. 𝛼 − 𝛽 𝑑. + 𝑝p − 1

.
§ 𝑑. − 𝑑, − 1 .

4 𝑡, − 1 .

−
1
2

,	

(4.36) 
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𝜕Πp
𝜕𝑝p

= 𝐴𝑘p +
𝑘qQ
. 𝛼 − 𝛽 𝑑. + 𝑝p − 1

.
§ 𝑑. − 𝑑, − 1 .

4 𝑡, − 1 . 𝑘qQ 𝛼 − 𝛽(𝑑. + 𝑝p − 1
,
§ + 

+

𝛽 𝐴𝑘p +
𝑘qQ
. 𝛼 − 𝛽 𝑑. + 𝑝p − 1

.
§ 𝑑. − 𝑑, − 1 .

4 𝑡, − 1 . 𝑘qQ 𝛼 − 𝛽 𝑑. + 𝑝p − 1
,
§A, 𝑐 − 𝑝p

𝑣
+ 

+
𝛽𝑘qQ

. 𝑡, 𝛼 − 𝛽 𝑑. + 𝑝p − 1
.
§A, 𝑑. − 1 − 𝑑, .

2𝑣 𝑡, − 1 . + 

+
𝛽𝑘qQ

\ 𝑐 − 𝑝p 𝛼 − 𝛽 𝑑. + 𝑝p − 1
.
§A, 𝛼 − 𝛽 𝑑. + 𝑝p − 1

,
§(𝑑. − 1 − 𝑑,).

4𝑣 𝑡, − 1 . 𝑘qQ
. 𝛼 − 𝛽 𝑑. + 𝑝p − 1

.
§ 𝑑. − 𝑑, − 1 .

4 𝑡, − 1 .

. 

(4.37) 

 

The first step is to find the manufacturer’s best response with regard to 𝐴. Being the derivative 

(4.35) exactly the same of (4.17), the BR will be the same as found in (4.19). Now, imposing 

the FOC on (4.36) -»��
»�Q

= 0-, we derive two values for t: 

 

𝑡,, =
.[iÐQAÐVA.*�i,
ÐQA.[AÐVi.*�i,

,   𝑡,. =
ÐQA.[AÐVi.*�i,
.[iÐQAÐVA.*�i,

. (4.38) 

  

Bearing in mind that the participation rate has to be 0 ≤ 𝑡, ≤ 1 by definition, solutions in (4.38) 

can be valid only for specific values of parameters and 𝑝p. To solve the problem we have to 

replace (4.38) and (4.19) in (4.37), in order to find the optimal value of 𝑝p. Unfortunately, 

because of the complexity of the expressions, we are not able to conclude the calculations62 and 

we interrupt here our analysis. 

  

                                                

62 The calculations have been performed through a MATLAB computation, whose script is shown in the 
appendix. 
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5. Conclusions 

In this work, we have considered several aspects of vertical cooperative advertising strategies, 

analysing three similar works. All of them presuppose a one-retailer-one-manufacturer supply 

chain model, in which manufacturers have some incentives to participate in retailers’ 

advertising expenditure, in order to increase the level of local-oriented advertising campaign. 

This support is known, in literature, as participation rate and its optimal value depends on 

several crucial factors.  

In the models proposed, it is applied a game-theoretic approach, since this tool allows us to 

incorporate the interdependencies between players. The situation is indeed simplified and only 

few parameters are taken into account, such as the effectiveness of advertising, the price 

elasticity of the demand, and players’ marginal costs. The effects of other factors, like the 

competition between multiple manufacturers/retailers, or the influence of complementary and 

substitutive products, deserve further research.  

In chapter 2, we have introduced the essential notions related to game theory, which are required 

to understand the analysis, focused on four game scenarios. In the Nash game, players do not 

cooperate and play simultaneously. No one has any informational advantage and participation 

rate is always zero, since manufacturers have no incentive to set the variable at a different level. 

On the contrary, in the Stackelberg Retailer and Stackelberg Manufacturer game, one of the 

players has the leadership: he/she plays before of the other party and, bearing in mind his/her 

preference and utility function, he/she maximizes his/her profit function. These two kinds of 

game aim at reproducing a situation in which either the manufacturer or the retailer obtains the 

channel leadership. The last game is the cooperative one, where authors maximize the overall 

system profits. However, with regard to the feasibility condition for this game, the one used in 

the model presented is too restrictive. In previous papers, in fact, the admissibility condition 

has been always related to the overall cooperative profits, which are compared with the sum of 

the maximum payoffs achievable by players in the other games. In section 3.3.6., we propose 

an alternative, according to which we should consider the effective division of cooperative 

profits between players (through the bargaining model) to determine whether an equilibrium is 

feasible. 

In chapter three, we start our literature review with Xie and Neyret (2009). The authors present 

an interesting demand function -(3.1)-, finding results for all the scenarios. Yet, so as to derive 

the objective functions, they assume a very limiting restriction, according to which 
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manufacturer and retailer set the same price, both in Nash and Stackelberg games. Furthermore, 

using the Symmetric Nash bargaining model, authors overlook the bargaining power effect.  

In SeyedEsfahani et al. (2011), a more general demand function is assumed, which involves a 

shape parameter (𝑣) and the saturation advertising effect. In any case, because of the same 

assumption about players’ prices aforementioned and of the bargaining model used (Symmetric 

Nash), even these results are not too indicative. 

Lastly, we have presented the work by Aust and Busher (2012), which is the most complete and 

interesting among those studied. The demand function is the same as used in SeyedEsfahani et 

al. (2011), even though the players’ marginal costs are not considered anymore; however, 

removing the condition imposing identical players’ margins, the results obtained are 

noteworthy. Interestingly, without assumptions (3.10) or (3.36), Nash game’s solution leads to 

equal players’ margins but, looking at Fig.11., it is clear that, in Stackelberg games, the identical 

margin condition is reasonable only for specific values of parameters. Then, applying the 

Asymmetric Nash bargaining model, authors derive broader bargaining solutions too. 

At this point, there are several possible directions for further investigation. First of all, a model 

involving more decision makers (and not only one retailer and one manufacturer) could be 

closer to reality. In the same way, a different demand function, a more complex bargaining 

game, and a new feasibility condition (as that theorised in section 3.3.6.) could enrich the 

results. We have tried to propose an evolution in chapter 4, where the model becomes a one-

manufacturer-two-retailers supply chain. Adding a new player, we have been able to reproduce 

horizontal price competition between retailers, simulating a situation in which the manufacturer 

wants to sign an exclusive partnership agreement with the retailer offering the lowest margin, 

in order to increase the volume of sales. In this case, since the players’ functions are 

discontinuous, we cannot apply the classic solution procedure, but the Bertrand game (see 2.3.). 

Having solved the first game between retailers, we apply three of the game concepts seen 

before: the Nash, Stackelberg Manufacturer, and Stackelberg Retailer games. 

With regard to the Nash and Stackelberg Retailer games, the results are exactly the same since 

the retailer’s maximization problem is independent of the optimal value of manufacturer’s 

decision variables. Hence, if we solve all the FOCs simultaneously or with a specific order, the 

results do not change. Looking at Fig.16., Fig.17., Fig.18., and Fig.19., we can see how the 

retailer 2’s marginal costs influence the local (positively at the beginning, negative for higher 

values of 𝑑.) and global (negatively) advertising level. This result is interesting, since it gives 

us some insights on the influence that other retailers’ marginal costs have on Nash and 
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Stackelberg equilibria. Lastly, we have tried to solve the Stackelberg Manufacturer game. Here, 

the calculation process is considerably more complex, because we cannot set the optimal 

participation rate automatically equal to 0. Unfortunately, even with the support of software 

such as MATLAB, we have not been able to derive a complete solution for our problem. With 

regard to this point, next studies could be helpful. 

The developments of the literature regarding vertical cooperative advertising strategies can be 

various. Future research could apply first-step Bertrand competition to different situations, 

introducing new supply chain members or changing the second-step game (i.e. a cooperative 

game).  Moreover, presupposing a horizontal competition among manufacturers or a different 

demand function, related to new parameters such as player reputation or market expansion, 

could be another interesting direction for further investigation63. 

 

 
  

                                                

63 Number of words: 14,407.  
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Appendix: MATLAB scripts64 used in chapter 4 

 

A.1 Nash Game (Section 4.2.) 

clear; % remove all variables from the current workspace 
clc;   % clear all input and output from the Command Window display, giving 
a "clean screen" 
  
% Parameters 
syms alpha beta v km c d1 d2 kr1 kr2 km; 
% Variables of interest 
syms pm pr1 pr2 t1 t2 a1 a2 A; 
  
% General conditions 
% ------------------ 
% 1. Costs must be positive 
assume(d1>0); 
assume(d2>0); 
assume(c>0); 
  
% 2. % Positive advertising effects 
assume(kr1>0); 
assume(kr2>0); 
assume(km>0); 
  
% 3. % Positive advertising level 
assume(a1>0); 
assume(a2>0); 
assume(A>0); 
  
% 4. Positive functional parameter v  
assume(v>0); 
  
% 5. Participation rates in [0,1] 
assume(t1<=1 & t1>=0); 
assume(t2<=1 & t2>=0); 
  
% Nash game. Case 1: d1 < d2 - 1 
assume(d1<d2-1); 
 assume(pm<(alpha/beta-d2+1)); % To avoid negative demand function 
  
t1 = 0; % Optimal value of t1 for Pim (Manufacturer Profit function) 
  
% Pim: Manufacturer Profit function 
Pim = (pm - c)*(alpha - beta*(pm + d2 - 1))^(1/v) * (kr1*sqrt(a1) + 
km*sqrt(A)) - t1*a1 - A; 
 
% Pir1: Retailer 1 Profit function 
Pir1 = (d2 - 1 - d1)*(alpha - beta*(pm + d2 - 1))^(1/v) * (kr1*sqrt(a1) + 
km*sqrt(A)) - (1 - t1)*a1; 
 
dPim_pm = diff(Pim,'pm'); 
dPim_pm = simplify(dPim_pm); 
pretty(dPim_pm); 
  
  

                                                

64 MATLAB Symbolic Toolbox is needed to run the scripts. 
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dPim_A = diff(Pim,'A'); 
dPim_A = simplify(dPim_A); % pretty(dPim_A); 
% Solution to dPim_A = 0 for A: it depends only on pm 
A_sol = solve(dPim_A,A,'ReturnConditions',true);  
 
dPir1_a1 = diff(Pir1,'a1'); 
dPir1_a1 = simplify(dPir1_a1); % pretty(dPir1_a1); 
% Solution to dPir1_a1 = 0 for a1: it depends only on pm 
a1_sol = solve(dPir1_a1,a1,'ReturnConditions',true 
  
dPim_pm_Aa1sol = subs(dPim_pm,[A,a1],[A_sol.A,a1_sol.a1]); 
dPim_pm_Aa1sol = simplify(dPim_pm_Aa1sol); 
 
syms Z; 
Z = (beta*c - beta*pm + alpha*v + beta*v - beta*d2*v - beta*pm*v); 
pmstar = solve(Z,pm,'ReturnConditions',true);  
Astar = subs(A_sol.A,pm,pmstar.pm); Astar = simplify(Astar); 
a1star = subs(a1_sol.a1,pm,pmstar.pm); a1star = simplify(a1star);  

 

 

A.2 Stackelberg Retailer Game (Section 4.3.) 

clear; % removes all variables from the current workspace 
clc;   % clears all input and output from the Command Window display, 
giving a "clean screen" 
  
% Parameters 
syms alpha beta v km c d1 d2 kr1 kr2 km; 
% Variables of interest 
syms pm pr1 pr2 t1 t2 a1 a2 A; 
  
% General conditions 
% ------------------ 
% 1. Costs must be positive 
assume(d1>0); 
assume(d2>0); 
assume(c>0); 
  
% 2. % Positive advertising effects 
assume(kr1>0); 
assume(kr2>0); 
assume(km>0); 
  
% 3. % Positive advertising level 
assume(a1>0); 
assume(a2>0); 
assume(A>0); 
  
% 4. Positive functional parameter v  
assume(v>0); 
  
% 5. Participation rates in [0,1] 
assume(t1<=1 & t1>=0); 
assume(t2<=1 & t2>=0); 
  
% Stackelberg Retailer Game. Case 1: d1 < d2 - 1 
assume(d1<d2-1); 
 assume(pm<(alpha/beta-d2+1)); % To avoid negative demand function 
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t1 = 0; % Optimal value of t1 for Pim (Manufacturer Profit function) 
  
% Pim: Manufacturer Profit function 
Pim = (pm - c)*(alpha - beta*(pm + d2 - 1))^(1/v) * (kr1*sqrt(a1) + 
km*sqrt(A)) - t1*a1 - A; 
 
% Pir1: Retailer 1 Profit function 
Pir1 = (d2 - 1 - d1)*(alpha - beta*(pm + d2 - 1))^(1/v) * (kr1*sqrt(a1) + 
km*sqrt(A)) - (1 - t1)*a1; 
 
dPim_pm = diff(Pim,'pm'); 
dPim_pm = simplify(dPim_pm); % pretty(dPim_pm); 
  
  
dPim_A = diff(Pim,'A'); 
dPim_A = simplify(dPim_A); % pretty(dPim_A); 
% Solution to dPim_A = 0 for A: it depends only on pm 
A_sol = solve(dPim_A,A,'ReturnConditions',true 
  
  
dPim_pm_Asol = subs(dPim_pm,A,A_sol.A); 
dPim_pm_Asol = simplify(dPim_pm_Asol); 
 
syms Z; 
Z = (beta*c - beta*pm + alpha*v + beta*v - beta*d2*v - beta*pm*v); 
pmstar = solve(Z,pm,'ReturnConditions',true);  
Astar = subs(A_sol.A,pm,pmstar.pm); Astar = simplify(Astar);  
  
%Replace pmstar and Astar in Pir1 
Pir1_pmstar_Astar = subs(Pir1,[pm,A],[pmstar.pm,Astar]); 
Pir1_pmstar_Astar = simplify(Pir1_pmstar_Astar);  
  
dPir1_pmstar_Astar_a1 = diff(Pir1_pmstar_Astar,'a1');  
dPir1_pmstar_Astar_a1 = simplify(dPir1_pmstar_Astar_a1);  
  
% Solution to dPir1_pmstar_Astar_a1 = 0 
a1star = solve(dPir1_pmstar_Astar_a1,a1,'ReturnConditions',true); a1star.a1 
= simplify(a1star.a1);  
 
 
 
 

A.3 Stackelberg Manufacturer Game (Section 4.3.) 

clear; % removes all variables from the current workspace 
clc;   % clears all input and output from the Command Window display, 
giving a "clean screen" 
  
% Parameters 
syms alpha beta v km c d1 d2 kr1 kr2 km; 
% Variables of interest 
syms pm pr1 pr2 t1 t2 a1 a2 A; 
  
% General conditions 
% ------------------ 
% 1. Costs must be positive 
assume(d1>0); 
assume(d2>0); 
assume(c>0); 
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% 2. % Positive advertising effects 
assume(kr1>0); 
assume(kr2>0); 
assume(km>0); 
  
% 3. % Positive advertising level 
assume(a1>0); 
assume(a2>0); 
assume(A>0); 
  
% 4. Positive functional parameter v  
assume(v>0); 
  
% 5. Participation rates in [0,1] 
assume(t1<=1 & t1>=0); 
assume(t2<=1 & t2>=0); 
  
% Stackelberg Manufacturer Game. Case 1: d1 < d2 - 1 
assume(d1<d2-1); 
 assume(pm<(alpha/beta-d2+1)); % To avoid negative demand function 
  
% Pim: Manufacturer Profit function 
Pim = (pm - c)*(alpha - beta*(pm + d2 - 1))^(1/v) * (kr1*sqrt(a1) + 
km*sqrt(A)) - t1*a1 - A; 
 
% Pir1: Retailer 1 Profit function 
Pir1 = (d2 - 1 - d1)*(alpha - beta*(pm + d2 - 1))^(1/v) * (kr1*sqrt(a1) + 
km*sqrt(A)) - (1 - t1)*a1; 
 
dPir1_a1 = diff(Pir1,'a1'); 
dPir1_a1 = simplify(dPir1_a1); 
  
% Solution to dPir1_a1 = 0; 
dPir1_a1sol = solve(dPir1_a1,a1,'ReturnConditions',true); 
dPir1_a1sol.a1 = simplify(dPir1_a1sol.a1);  
 
% Replace the optimal value of a1 in Pim; 
Pim_a1 = subs(Pim,a1,dPir1_a1sol.a1); 
Pim_a1 = simplify(Pim_a1);  
  
dPim_a1_pm = diff(Pim_a1,'pm'); dPim_a1_pm = simplify(dPim_a1_pm);  
dPim_a1_A = diff(Pim_a1,'A'); dPim_a1_A = simplify(dPim_a1_A);  
dPim_a1_t1 = diff(Pim_a1,'t1'); dPim_a1_t1 = simplify(dPim_a1_t1);  
  
% Solution to dPim_a1_A = 0; 
dPim_a1_Asol = solve(dPim_a1_A, A, 'ReturnConditions',true); 
dPim_a1_Asol = simplify(dPim_a1_Asol.A); 
 
% Solution to dPim_a1_t1 = 0; 
dPim_a1_t1sol = solve(dPim_a1_t1,t1, 'ReturnConditions',true); 
dPim_a1_t1sol = simplify(dPim_a1_t1sol.t1); 
 
% Two solutions found 
dPim_a1_t1sol1 = dPim_a1_t1sol(1); dPim_a1_t1sol2 = dPim_a1_t1sol(2); 
  
% Substitution of Asol and t1sol1 
dPim_a1_pm_Asol_t1sol1 = 
subs(dPim_a1_pm,[A,t1],[dPim_a1_Asol,dPim_a1_t1sol1]); 
dPim_a1_pm_Asol_t1sol1 = simplify(dPim_a1_pm_Asol_t1sol1); 
 
% Solve to get pmstar1. Warning: Cannot find explicit solution. 
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pmstar1 = solve(dPim_a1_pm_Asol_t1sol1,pm,'ReturnConditions',true); 
  
  
% Substitution of Asol and t1sol2 
dPim_a1_pm_Asol_t1sol2 = 
subs(dPim_a1_pm,[A,t1],[dPim_a1_Asol,dPim_a1_t1sol2]); 
dPim_a1_pm_Asol_t1sol2 = simplify(dPim_a1_pm_Asol_t1sol2); 
 
% Solve to get pmstar2. Warning: Cannot find explicit solution. 
pmstar2 = solve(dPim_a1_pm_Asol_t1sol2,pm,'ReturnConditions',true); 
  
% Solution to dPim_a1_pm = 0; Warning: Cannot find explicit solution. 
%dPim_a1_pmsol = solve(dPim_a1_pm, pm, 'ReturnConditions',true); 
 

 

 

A.4 Fig.16, 17, and 18 

clear; 
clc; 
 
% Plot of a1* with a linear demand function (v=1). Fig.16. 
v=1; 
alpha=10; 
beta=1; 
c=1; 
d1=4; 
 
syms a1(kr1,d2); 
  
a1(kr1,d2) = (kr1^2*((alpha+beta-beta*c-beta*d2)/(v+1))^(2/v)*(d2-d1-
1)^2)/4; 
ezsurf(a1,[5,10,0,5]); 
  
pause; 
 
clear; 
  
% Plot of a1* with a concave demand function (v>1). Fig.17. 
v=2; 
alpha=10; 
beta=1; 
c=1; 
d1=4; 
  
syms a1(kr1,d2); 
  
a1(kr1,d2) = (kr1^2*((alpha+beta-beta*c-beta*d2)/(v+1))^(2/v)*(d2-d1-
1)^2)/4; 
ezsurf(a1,[5,10,0,5]); 
  
pause; 
  
clear; 
  
% Plot of a1* with a convex demand function (v<1). Fig.18. 
v=0.5; 
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alpha=10; 
beta=1; 
c=1; 
d1=4; 
  
syms a1(kr1,d2); 
  
a1(kr1,d2) = (kr1^2*((alpha+beta-beta*c-beta*d2)/(v+1))^(2/v)*(d2-d1-
1)^2)/4; 
ezsurf(a1,[5,10,0,5]) 

 

 

A.5 Fig.19 

clear; 
  
% Plot of A* with a linear demand function (v=1). Fig.19. 
v=1; 
alpha=10; 
beta=1; 
c=1; 
  
syms A(km,d2); 
  
A(km,d2) = (km^2*v^2*((alpha+beta-beta*c-beta*d2)/(v+1))^(2/v)*(alpha+beta-
beta*c-beta*d2)^2)/(4*beta^2*(v+1)^2); 
ezsurf(A,[0,3,0,5]); 
 
 
A.6 Fig.20 

% Plot of A* with v[1,2]. Fig.20. 
km=2 
alpha=10; 
beta=1; 
d2=5; 
  
syms A(v,c); 
  
A(v,c) = (km^2*v^2*((alpha+beta-beta*c-beta*d2)/(v+1))^(2/v)*(alpha+beta-
beta*c-beta*d2)^2)/(4*beta^2*(v+1)^2); 
ezsurf(A,[0,6,1,2]); 
 
 

 

 


