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• Reasons:

• For small notch radii, the formulas for 𝐾𝑓 and for the fatigue limit seen in Machine Design course’s lectures, based on the Peterson studies, 

differed from the empirical data available in literature.

• As 𝐾𝑡𝑛 increases, the real fatigue limit continues to decrease, but not as quickly as expected, then it tends to a plateau that the Peterson formula 

does not describe well. As the notch radius decreases, the notch acts as a crack of equal depth at some point.

• Aim:

• I therefore decided to address the topic of descriptions of alternative methods that can be found in the literature that solve, at least in part, this 

problem, which was later studied in MatLab environment. The fidelity between the parameters 𝐾𝑡𝑛 taken from the book Peterson’s Stress 

Concentration Factors by Walter D. Pilkey and its possible approximations of common use for some geometries has been verified in this relation.

• Introduction:

• This article deals with the fatigue study for notched components, mainly through a stress-control approach. The article investigates the tension of 

specimens with stress raisers.

• Slope of the notched specimen shifted down from the one of the unnotched piece. Factor that characterize the severity of the notch as a stress 

raiser: 𝐾𝑡 =
𝜎

𝑆
.

• Example of values of 𝐾𝑡 (Peterson’s stress concentration factors).

• Assumed linear elastic behaviour of the piece.
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Phases
• The work is divided in two phases.

• 1) the concept of fatigue of materials, parameters and 

related factors that influence their resistance are 

introduced. Then different methods for the fatigue study 

of notched components are presented.

• 2) Finally, the results from the graphs of the book 

Peterson’s Stress Concentration Factors will be 

compared with graphs produced in MatLab environment 

through approximated formulas.
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Matlab code for an isotropic two-dimensional drilled plate, under 
uniaxial tension

• 𝐾𝑡𝑔 =
2+(1−

𝑑

𝑊
)3

1−
𝑑

𝑊

, 𝐾𝑡𝑛 = 2 + (1 −
𝑑

𝑊
)3 (Heywood 

(1952)).

• Further formulae of theoretical stress 

concentration factors are obtained from the 

Peterson manual.

• Matlab script used to study how, as the ratio
𝑑

𝑊
varies, vary:

A) 𝐾𝑡𝑔 and 𝐾𝑡𝑛 for Peterson formulae and the 

approximate ones from Heywood

B) the notch sensitivity index q

C) the fatigue life reduction factor 𝐾𝑓

D) the fatigue limit for a notched specimen

• In blue the theoretical stress concentration 

factor referred to the gross tension (Heywood 

formula);in yellow the same factor (Peterson’s 

formula); in red the theoretical stress 

concentration factor referred to the net 

tension (Heywood formula); in green the 

same factor through (Peterson’s formula).

• Notch sensitivity index →(Peterson) 𝑞 ≜
1

1+
𝑎

𝑟

.

• Radius ↔
𝑑

𝑊
. (Material with tensile strength of 

500 MPa → a=0.265 from table IX of the UNI 

7670).

• In blue the trend of the fatigue life reduction 

factor for a notched specimen (Heywood); in 

red the "more correct formula" to calculate

𝐾𝑡𝑛.

• 𝑅𝑓=0.5 + 𝜎𝑅 = 500 𝑀𝑃𝑎 → 𝜎𝑎∞,−1 = 250 𝑀𝑃𝑎.

• syms x y

• dersig1= diff(realtension1,x);

• dersig11=matlabFunction(dersig1);

• dersig2= diff(realtension2,x);

• dersig22=matlabFunction(dersig2);

• criticalpoint1=fzero(dersig11,0.2)

• criticalpoint2=fzero(dersig22,0.2)

• criticalpoint1 = 0.0475

• criticalpoint2 = 0.0474

• Critical at a value of 
𝑑

𝑊
≅ 0.047, which 

corresponds to a diameter of the hole of 𝑑 ≅
7 𝑚𝑚 for a plate’s width of 𝑊 = 150 𝑚𝑚.
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Matlab code for an isotropic two-dimensional drilled plate, under 

uniaxial tension
• Define the fatigue limit of the 

notched specimen vs the 𝐾𝑡𝑛
factor: 𝜎 ∗𝑎∞,−1= 𝑓(𝐾𝑡𝑛), and 

thus also 𝑞 = 𝑓 𝐾𝑡𝑛 →
𝑑

𝑊
=

𝑓(𝐾𝑡𝑛).

• u=linspace(2,3,1000);

• S=zeros(1,length(u));

• for i=1:length(S)

• p=u(i);

• syms x

• S_i=vpasolve(2+0.284*(1-x)-
0.6*(1-x).^2+1.32*(1-x).^3-p);

• S(1,i)=S_i(1);

• Vpasolve → three roots: a real 

one and two complexes 

conjugated.

• end

• %we do likewise for the 
Heywood formula

• A=zeros(1,length(u));

• for i=1:length(A)

• p=u(i);

• syms x

• A_i=vpasolve(2+(1-x).^3-p);

• A(1,i)=A_i(1);

• end

• %I can thus express fatigue 
limits as functions of the Ktn
factor 

• realtension1= 
250./((1./(1+(0.265./((150.*A)./2)))).*(u
-1)+1);

• realtension2= 
250./((1./(1+(0.265./((150.*S)./2)))).*(u-
1)+1);

• figure(5)

• plot(u,realtension1,'b'); grid

• hold on

• plot(u,realtension2,'r’)

• Incorrect result after 𝐾𝑡𝑛 ≅ 2.9, 

(
𝑑

𝑊
≅ 0.047).

• The curves with q as a variable 

and with q as a unit-value 

diverge more and more as 𝐾𝑡𝑛 →
3.

• 𝐾𝑡𝑛 between 2 and 3. Different 

study interval (between 1 and 5) 

→ essential discontinuity (vertical 

asymptote) , in the case of a 

variable notch sensitivity index.
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Matlab code for an isotropic two-dimensional bar with opposite u-

shaped notches, under uniaxial tension
• Formulas applied only to very thin flat members, with two-dimensional state of stress (plane stress).

• For an infinite or semi-infinite plate, the stress concentration factor for an elliptical hole: 𝐾𝑡𝑛 = 1 + 2
𝑡

𝑟
(same

equation in literature for a crack of length 2t); also applied to U-shaped notches, especially for
𝑡

𝑟
→ 1 (Isida,

1955).

• F.I. Barrata and D.M. Neal (1970) → photoelastic tests → 𝐾𝑡𝑛 = 0.780 + 2.243
𝑡

𝑟
ቈ

቉

0.993 + 0.180
2𝑡

𝐻
−

1.060
2𝑡

𝐻

2
+ 1.710

2𝑡

𝐻

3
1 −

2𝑡

𝐻

• Instead, R.B. Heywood (1952) gave: 𝐾𝑡𝑛 = 1 +
𝑡

𝑟

1.55
𝐻

𝑑
−1.30

𝑛

, with 𝑛 =

𝐻

𝑑
−1+0.5

𝑡

𝑟

𝐻

𝑑
−1+

𝑡

𝑟

and 𝑡 =
𝐻−𝑑

2

• Other formulas from Peterson’s manual (Kikukawa (1962), Flynn and Roll (1966), Appl and Koerner (1969))

• MatLab script, same goals as before (𝐾𝑡𝑛 for Heywood, Kikukawa and Barrata, index q, life reduction factor 𝐾𝑓,

fatigue limit)

• Note that Barrata’s formula will be displayed in Blue, Heywood’s one in red, Kukawa’s formula (in case of

2<(t/r)<50) in yellow, Kukawa’s formula (in case of 0.1<(t/r)<2) in green.

• Demonstration of the relations and express them according as a function of
𝑟

𝑑
: 𝑥 =

𝑟

𝑑
; 𝑎 =

𝐻

𝑑
;

1

𝑟
=

𝑑

𝑟
∗
1

𝑑
=

1

𝑥∗𝑑
;

𝑡

𝑟
=

𝐻−𝑑

2∗𝑟
=

𝑎∗𝑑−𝑑

2∗𝑟
=

𝑑

𝑟
∗
𝑎−1

2
=

𝑎−1

2∗𝑥
;

2∗𝑡

𝐻
=

𝐻−𝑑

𝐻
= 1 −

𝑑

𝐻
= 1 −

1

𝑎
=

𝑎−1

𝑎

•
𝐻

𝑑
= 1 would implies no notch (t=r=0), so 𝐾𝑡𝑛 = 1.



slide 7

Analytical methods for fatigue design with notch effects

Marco Todescato

Matlab code for an isotropic two-dimensional bar with opposite u-

shaped notches, under uniaxial tension
• Specific case: H/d=1.1, H/d=1.2, H/d=1.5

• Material with 500 MPa tensile strength, (a=0.265 from table IX UNI7670), a=H/d=1.3 and d=100 mm → H=130 mm and t=(H-d)/2=15 mm

• Rf=0.5 → Fatigue limit = 250 MPa

• At very low ratios → limit of applicability (critical points 0.0025, 0.0029, 0.0026, 7.2166e-04).

• Fatigue limit vs Ktn (four different matrices filled with the real roots of the problem).
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The fatigue notch factor, fracture mechanics, notches sensitivity 

and empirical estimates to know the value of 𝐾𝑓
• The real reduction factor, the fatigue notch factor 𝐾𝑓 =

𝜎𝑎𝑟

𝑆𝑎𝑟
. 𝐾𝑓 ≠ 𝐾𝑡 explained by:

• (1) Local stress value decreases while moving away from the notch (decreasing of the stress gradient 
𝑑𝜎

𝑑𝑥
), the material sensitive to 

average stress in the process zone. 𝐾𝑓 ≜
𝑇ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝜎 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑧𝑜𝑛𝑒

𝑆𝑎
=

𝜎𝑒

𝑆𝑎
< 𝐾𝑡; crystal grains vs. the equalization of the stress on 

small dimensions

• (2) Weakest-link effects

• (3) Analysis of cracks in the fracture mechanics theory (non-propagating cracks). Stress intensity factor 𝐾 = 𝑙𝑖𝑚
𝑟,𝜃→0

( 𝜎𝑦 2𝜋𝑟), 𝐾 =

𝐹𝑆 𝜋𝑎. K (the continuous curve fourth fig.) → two different curves 𝐾𝐴 and 𝐾𝐵. “l’”: crack length where 𝐾𝐴 = 𝐾𝐵, 𝑙
′ =

𝑐

1.12
𝑘𝑡𝑔

𝐹

2

−1

. 

𝐾𝑠 = 1.12𝜎𝑠 𝜋𝑙 of the unnotched member similar to the 𝐾𝑎 for the notched member. After 𝑙′, K in the notched always lower than 
the value of 𝐾𝑠. Drop ​​of 𝐾𝑏 as compared to 𝐾𝑠 → cracks to grow slower on the carved piece → longer lives. Interesting situation : 

smaller 𝑙′ value for sharper notches (fatigue limit).

• (4) Reverse yielding, at low life cycles for high stress amplitudes (strain-approach).

• Notch sensitivity: 𝑞 ≜
𝐾𝑓−1

𝐾𝑡−1
. Completely sensitive piece to notches: 𝑞 = 1 and 𝐾𝑓 = 𝐾𝑡; no sensitiveness: 𝑞 = 0 and 𝐾𝑓 = 1 ∀ 𝐾𝑡.

• Peterson’s formula (1959): 𝑞 =
1

1+
𝛼

𝜌

. α tabulated or, for steels, α as a function of the ultimate stress in axial or bending loading 

conditions: 𝑙𝑜𝑔𝛼 = 2.654 ∗ 10−7𝜎𝑢
2 − 1.309 ∗ 10−3𝜎𝑢 + 0.01103. 𝐾𝑓 = 1 +

𝐾𝑡−1

1+
𝛼

𝜌

.

• Kuhn and Hardrath (1952) based on H. Neuber relations: 𝑞 =
1

1+
𝛽

𝜌

. β as a function of the ultimate stress too (Neuber) (for steels 

and for heated-treated aluminum). 

• These equations for estimating 𝐾𝑓 not used for acute notches.
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Summary
• The equations used in MatLab codes for estimating 𝐾𝑓 should not be used for acute 

notches.

• Peterson’s formula increasingly incorrect for more and more ductile materials at short 

life, owing to the yielding of the specimen → need to define another factor 𝐾𝑓′ that 

varies according to the life of the piece: 1 ≤ 𝐾𝑓′ ≤ 𝐾𝑓. The limit on the left is achieved 

at short life, the one on the right at long life.

• For low stresses applied for many times (the long-life fatigue strength over 106 cycles), 

other factors are used (for the type of load, for the actual size and surface finish etc.,) 

to obtain the true fatigue limit.

• Moreover, if the stress exceeds the yield strength or if we encounter sharp notches or 

some great complexities, the methods checked before become useless or at least 

definitely wrong → the need to find another method, such as the “estimated S-N 

curves”. Advantage of including geometric and manufacturing details usually very 

difficult to evaluate. Juvinall or Budynas: very imprecise with damages due to 

occasional serious cycles or due to corrosion.

• Effect of the mean stress for notched members → the Goodman or Gerber equations. 

Cons: complications of these formulas by local yielding. In these cases, it is better to 

use the Smith, Watson and Topper (SWT) equation or the Walker equation.

• If available in other manuals, an S-N curve from test data. Not every possible 

geometry can be found on manuals → data of similar components or notched 

members. Matching by notch radius or a similar length parameter l’.

• Problem with the sequence effect, that characterize a loading history with small 

fraction numbers of high-stress cycles, leading to local failure at the notches by 

yielding, subsequently causing a variation of the mean stress due to residual stresses.

Do not use S-N curves and Palmgren-Miner rule.

• To overcome this problem:

A) Using the rule Palmgren-Miner formula in a relative form: 𝐵𝑓 σ1 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛
𝑁𝑗

𝑁𝑓𝑎𝑖𝑙𝑢𝑟𝑒,𝑗
=

𝐷 ≠ 1 where D can be different from unity, as written;

B) Corten-Dolan cumulative damage procedure (1968);

C) Strain-based approach, especially in local yielding cases;

D) Fracture mechanics theory based on a crack-growth approach.

• In the second part of the report, I explained how, for some specific geometric 

examples, the formulas concerning the fatigue life of a specimen that can be found in 

the literature have practical limits: after decreasing the value ​​of notch radius by a lot, 

they find a limit of applicability (different limits for different geometries and formulas).

• I created a code where, once the input data are determined, a theoretical fatigue life 

limit is calculated, as a function of the 𝐾𝑡 and for the different possible formulations 

given by the scientific literature.


