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Abstract

In this thesis we study bootstrap percolation on regular trees and
on hyperbolic lattices, both of which belong to the category of nona-
menable graphs. This is di�erent from what is usually done, since most
of the existing work and literature on bootstrap percolation considers
the process on Euclidean lattices. First, we take care to precisely
de�ne the process in a way general enough to include both the case
of nonamenable graphs and the Euclidean case. We then proceed to
prove that, on regular trees, the critical probability for full infection
and the one for percolation are both nontrivial. Branching processes
are the most importat tool that we use in this part. Finally, we show
that the same holds true also on hyperbolic lattices. This is done with
two di�erent approaches: once using general results available for all
nonamenable graphs, and another time using what previously obtained
for regular trees. Crucial in this last step is a procedure by which
certain regular trees can be embedded into hyperbolic lattices.
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Introduction

Bootstrap percolation is a probabilistic model, de�ned on a (in�nite) graph,
which describes the evolution of a random initial con�guration of infected vertices
according to a deterministic dynamics: infected vertices remain infected forever
and healthy vertices become infected if and only if they have at least a certain
number r (which we call facilitating parameter of the model) of infected neighbours.
By random initial con�guration we mean that at time 0 each vertex of the graph
is infected with probability 0 � p � 1, indipendently of all other vertices.

This process has already received a lot of attention on the Euclidean lattice
Zd, a setting in which many techniques have already been developed and many
problems have been solved. The aim of this thesis is to study what happens in a
more unusual setting, the one of nonamenable graphs. In particular, we focus on
regular trees and hyperbolic lattices. Moreover, we will only concern ourselves with
qualitative (topological, one might say) questions regarding the �nal con�guration,
i.e. the con�guration from which the process no longer evolves. Intuitively, one
can already see that both a smaller r (corresponding to an easier spread of the
disease) and a bigger p (corresponding to more initial infected vertices) lead to
more infected vertices in the �nal con�guration. So one could ask, for example:
given a �xed r, is there a \nontrivial critical value" 0 < pf < 1 of the parameter
p such that the graph is completely infected only if p > pf? Is there an analogous
critical probability pc for the event of having an in�nite cluster of infected vertices
in the �nal con�guration? In this second case, is the in�nite cluster unique or are
there in�nitely many of them?

We devote the beginning of the �rst chapter to a rigorous de�nition of the
model in this more general setting. Most of it is simply a direct transposition of the
usual de�nitions given for Euclidean lattices (and one could say that it has been
included just for the sake of completeness). A bit extra care, however, is required
in showing the well-posedness of the questions mentioned above: ergodicity has
to be formulated in terms of group actions and we provide some fairly general
su�cient conditions on the graph that ensure that everything works as expected.
We then proceed to de�ne a very similar model, which we call bootstrap percolation
with blocking parameter, and we show its relation to the model with facilitating
parameter. Even if conceptually there is no di�erence between the two models, it
will be useful to be able to think with both of them. The most interesting part of
the �rst chapter is perhaps the one in which we provide the proof of some very
general inequalities on the critical value pf . They do not require any additional
assumptions on the graph, but will nevertheless be crucial in obtaining the results
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on hyperbolic lattices. Finally, we conclude the �rst chapter with some very quick
reminders on branching processes.

In the second chapter we restrict our attention to (d + 1)-regular trees. In
the �rst part we give a complete proof of the nontriviality of pf for all reasonable
values of r. Here the main idea is that of studying (r−1)-forts: inuitively, these are
regions of the graph which, if initially healthy, never become infected, no matter
what happens in the rest of the graph. Branching processes are the main tool we
use to this purpose. Harris inequality is also needed. In the second part, instead,
we focus on pc, which is also nontrivial on regular trees. This time the strategy
is to orient the tree and study oriented bootstrap percolation. We describe the
main idea of this procedure and we state the precise result, but without providing
a proof, for which we refer to the literature.

Finally, in the third chapter we focus on hyperbolic lattices. We start with
some quick reminders on the hyperbolic plane. We then describe how to construct
hyperbolic lattices. These are graphs obtained by regular tilings of the hyperbolic
plane, i.e. tilings of the hyperbolic plane generated by a regular polygon. The most
evident di�erences from their Euclidean counterparts (for which there are only
three possibilities, the triangular, the square and the hexagonal lattice) are that
we have in�nitely many of them and that they are nonamenable. In particular,
they possess the following feature, which will be crucial for us: except for a few
special cases, a v-regular hyperbolic lattice contains, as subgraphs, regular trees
of degree (v − 1). We provide a precise statement on this and describe how to
prove it in a particular case. We continue by studying the critical probability pf
following two di�erent approaches. In the �rst one, we use a mix of results. Some
of them also hold in a setting more general than the one of hyperbolic lattices,
as for example the use of the Cheeger constant or the comparison with Bernoulli
site percolation. Others are more speci�c, as the study of �nite forts by means
of horodisks and hyperbolic trigonometry. Together, they provide a proof of the
nontriviality of pf for a considerably large class of hyperbolic graphs. In the
second approach, instead, we exploit the general inequalities presented in chapter
one and the aforementioned result on the embedding of trees in hyperbolic lattices.
This leads both to a cleaner proof and to an extension of the results obtained with
the �rst approach. Finally, we spend some words on the critical probability for
percolation and we state the nontriviality of the critical probability for uniqueness
as an open question.



Chapter 1

Description of the model and
fundamental tools

In this chapter we describe in detail the model of bootstrap percolation on a
general graph G. General means that we have tried to make as few hypotheses on
G as we found possible. We also describe an analogous (and for the context of
this thesis in fact equivalent) version of the model, which nontheless proves to be
useful in some proofs and is present in part of the literature. We then describe
the questions that we aim to study in the rest of the thesis and we explain in
detail the subtleties implied in the de�nitions of the critical values of the initial
density parameter. These are often omitted when speaking about G = Zd (the
most studied case), as their explanation is usually well known and only requires
basic classical tools anyway. However, we felt that in our more general context
some extra care was needed.

Finally, we have dedicated the last section to a brief review of branching
processes, which constitute the main probabilistic tool used in the second chapter.

1.1 Bootstrap Percolation

Throuhout this section we denote by G a simple, connected, undirected, locally
�nite, planar graph. We denote by V and E its vertex set and its edge set
respectively and we reserve the variables x, y, etc... for the elements of V . We also
assume that V is a countably in�nite set. We write x � y if (x, y) 2 E, and we
say that the vertices x and y are neighbours or, equivalently, that the edge (x, y)
is incident to x and to y. Moreover, we denote by Nx := fy 2 V : (x, y) 2 Eg the
set of neighbours of x in G. The degree of a vertex x 2 V is deg(x) := jNxj. A
(general) graph is said to be d-regular if every vertex has degree equal to d. We
also recall the de�nition of path, which is an ordered (�nite or in�nite) collection
of distinct vertices (y1, y2, . . . ) such that yn+1 2 Nyn for every n � 1. Finally,
given a vertex x 2 V , the connected component of x is the subset of V containing
x and all vertices that can be reached from x via a �nite path.

In this thesis we study a particular probabilistic model de�ned on G. This
means that we consider the vertices of G as sites, each of which can be in a certain
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2 Chapter 1. Description of the model and fundamental tools

state. Moreover, the choice of which state is assumed by each vertex is in
uenced
in some way by the graph structure (i.e. by how edges connect di�erent vertices).
Now let us give a precise meaning to these words.

1.1.1 What is bootstrap percolation?

Consider the set 
 := f0, 1gV and denote by η =
(
η(x) : x 2 V

�
a generic element

of 
. We say that η is a con�guration of the model and that 
 is the con�guration
space.

De�nition 1.1. Bootstrap percolation with facilitating parameter r and with
initial con�guration η0 2 
 is the (deterministic) process (ηn)n�0, indexed by
(discrete) time and with dynamics de�ned by the following recurrence relation:

8n = 1, 2, . . . ηn+1(x) =

8><>:
1, if ηn(x) = 1

1, if ηn(x) = 0 and
P

y2Nx
ηn(x) � r

0, if ηn(x) = 0 and
P

y2Nx
ηn(x) < r

(1.1)

We also de�ne the �nal (bootstrapped) con�guration as the pointwise limit

η1 := lim
n!1

ηn (1.2)

Remark 1.1. Observe that the limit in 1.2 is well de�ned (and belongs to 
).
Indeed, for every �xed x 2 V , the function η#(x) : N! f0, 1g is increasing.

Equivalently, this process can also be de�ned by focusing exclusively on the
evolution of sites which are in state 1. Initially, they are A0 := fx 2 V : η0(x) = 1g
and at each step their evolution is given by

8n = 1, 2, . . . An+1 = An [
�
x 2 V : jfy 2 V : y � xg \ Anj � r

	
When the process no longer evolves, the set of all vertices which are in state 1
is given by A1 :=

S
n�0An, so that the �nal con�guration is η1 = 1A1 . While

the former de�nition will prove to be a better notation later on, the second one
allows for more vivid interpretations of the process (of which there are many in
the literature), based on the fact that at any given time n each vertex x of G
is in one and only one of two di�erent states, depending on whether x 2 An or
x /2 An. We will settle for the interpretation in which being in state 0 means
being \healthy", whereas being in state 1 means being \infected". In this way,
An is thought of as the set of infected vertices at time n. With this choice, we
can informally rewrite the dynamics of the process in the following way:

• at each time step an healthy vertex becomes infected if and only if it has at
least r infected neighbours;

• infected vertices never heal, i.e. remain infected forever.

Remark 1.2. Since the dynamics of bootstrap percolation with facilitating param-
eter r is deterministic, the initial con�guration η0 completely determines the �nal
one!
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In this thesis we are interested in studying properties of the (sub)set of vertices
A1. Thus, even if in de�nition 1.1 on the preceding page the initial con�guration
is given arbitrarily, remark 1.2 tells us that the question of how to choose η0 is
of fundamental importance for the study of the �nal bootstrapped con�guration.
We postpone the discussion on the choice of the initial con�guration to the next
subsection.

Let us now introduce the terms with which we are going to talk about the
properties of A1.

De�nition 1.2. Fix a value for the parameter r and an initial con�guration η0.
We say that

• η0 (or A0) achieves full infection of complete infection if η1 � 1, i.e A1 = V ;
• given x 2 V , the infected cluster in the �nal con�guration containing x is

the set of all y 2 A1 such that there exist a �nite path from x to y made of
all infected vertices and is denoted by Cx;

• η0 percolates if there exist x 2 V such that jCxj =1.

A priori it is not clear whether the above de�nitions describe di�erent situations.
In fact, the �rst question to ask is whether they can happen at all! Subsequently,
many other questions could also arise. Is it possible to have connected components
of �nite size in A1

c? If η0 percolates, is Cx the unique cluster of infected vertices in
the �nal con�guration of could there be many of them? In this thesis, we consider
precisely these kind of questions (from a probabilistic point of view, more on that
in the next subsection) restricting our study to particular classes of graphs.

Before moving on, let us set G = Z2 (the \easiest" case) and take a look at
an example, simply to get an idea of what we are talking about.

(2, 2)(−2, 2)

n = 0

(2, 2)(−2, 2)

n = 1

(2, 2)(−2, 2)

n = 2

Figure 1.1: Bootstrap percolation on Z2 with facilitating parame-
ter r = 2: evolution of the initial con�guration η0(x) = 1A0 , where A0 =
f(−2,−2), (−2,−1), (−2, 0), (−2, 1), (−2, 2), (1,−2), (1,−1), (1, 1), (1, 2), (2, 0)g.
Healthy sites are represented by white dots. Infected sites are represented by
�lled dots of color black or red. The ones in red are the ones added at the n-th
step of the dynamics, which for the purpose of this picture is supposed not
to depend on sites which are not drawn (i.e. we are supposing that all of the
vertices which are not shown are healthy).

Looking at the process depicted in �gure 1.1, it is clear that it ceases to evolve
as early as n = 2, i.e. η2 = η1. Of course, this is due to the fact that we have
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chosen a rather boring initial con�guration. However, imagine that A0 contains
the whole subset

�
(−2, i), (1, i) : i 2 f. . . ,−1, 0, 1, . . . g

	
and consider the \strip"

S :=
�

(−1, j), (0, j) : j 2 f. . . ,−1, 0, 1, . . . g
	

. As long as A0 does not contain any
vertex of S, the vertices of S will never be infected, i.e. the �nal con�guration will
be such that η1(x) = 0 for every x 2 S. The set S is an example of the following
de�nition.

De�nition 1.3. A �nite or in�nite connected subset eV � V of vertices is called
a k-fort if each x 2 eV has outdegree smaller than of equal to k, i.e. if

8x 2 eV degV neV (x) := #fy 2 V n eV : (x, y) 2 Eg � k

The notion of k-fort is particularly important because it will allow us to state
an equivalent formulation of the statement \A0 achieves full infection" in terms
of some property of the initial con�guration. This is what the next proposition is
about.

Proposition 1.1. Failure of complete infection for bootstrap percolation with
facilitating parameter r is equivalent to the existence of an (r − 1)-fort of healthy
sites in the initial con�guration.

Proof. On the one hand, healthy vertices forming an (r − 1)-fort in the initial
con�guration will never get infected: they will never satisfy the condition required
by the dynamics of the process with facilitating parameter r, even if all other
vertices of the graph become infected. Viceversa, assume that for a certain η0 we
have that η1 fails to be completely infected. Then the healthy vertices in the
�nal con�guration contain an (r − 1)-fort (simply take x 2 A1c and consider the
connected component of A1

c containing x) and so, a fortiori, also A0 contains an
(r − 1)-fort.

References The connotation of r as \facilitating parameter" is taken from
[Sau+10]. In the literature one usually speaks about \threshold r bootstrap
percolation" (as in [FS08]) or simply \r-neighbour bootstrap percolation" (as in
[Mor17] or in [Har22]). We have decided to use the more cumbersome expression
\facilitating parameter" in order to distinguish it from another closely related model,
which we will introduce shortly, in which we talk about \blocking parameter".
The interpretation of the process as an illness which spreads can be found in
[Mor17]. Maybe it is more common to think about it as particles which spread (as
in [BPP06] and [FS08]), but we ask the reader please not to use this interpretation.
We will reserve it for the aforementioned model with \blocking parameter" (and
this is consistent with [Sau+10]). Misinterpreting how this terminology is used in
the present work would lead to great confusion.

1.1.2 Where does probability come into play?

In this subsection we address the question of how to choose the initial con�guration.
The short answer is that we will study bootstrap percolation with facilitating



1.1 Bootstrap Percolation 5

parameter r with a randomly chosen set of initially infected vertices A0. This
means that the process will start from a random initial con�guration η0 and will
then evolve deterministically to some �nal bootstrapped con�guration. In this
sense, we have that also η1 is random and that the various de�nitions in 1.2 on
page 3 are random events, so that we can ask questions about their probability.
This also has some really practical motivations: results expressed in the form of
\averages" or of \almost surely statements" are not only more robust than results
which depend on the exact initial con�guration, but often also the only possible
ones!

Let us describe precisely what we mean by \A0 is chosen randomly". We �x a
parameter 0 � p � 1 and we consider the probability space (
,A,Pp), where the
state space is 
 = f0, 1gV , the σ -algebra A is the product σ -algebra on 
 and
Pp is the Bernoulli product measure on A. With these de�nitions, \A0 is chosen
randomly" means x 2 A0 if and only if η(x) = 1, where η = (η(x) : x 2 V ) 2 
 is
sampled under the probability measure Pp. This is the same as saying that we
place each vertex of G in A0 independently at random with probability p. We
think about p as the initial density, i.e. as the density of infected sites in the
initial con�guration. We see that the usual Bernoulli site percolation is nothing
other than bootstrap percolation at time 0 with initial condition sampled under
Pp. In this sense, we could say that bootstrap percolation generalizes the usual
Bernoulli site percolation by adding a dynamics. More on this in remark 1.9 on
page 15.

Remark 1.3. The probabilistic framework introduced in this subsection is a very
standard one. We recall here a few basic facts about it. The cardinality of 
 is the
same of R. On the set f0, 1g we consider the discrete topology, so in particular
it is compact. On the set 
 we consider the product topology, so that it is also
compact (recall that by Tychono�'s theorem every topological product of compact
spaces is compact). By de�nition, the product σ -algebra A is the one generated
by cylinder sets, which in this setting are simply the subsets of 
 depending
on �nitely many vertices, namely the subsets of 
 obtained by �xing the values
(η(x) : x 2 I), with I � V of �nite cardinality. Again by de�nition, the probability
Pp is the one under which every coordinate η(x) is a Bernoulli random variable of
parameter p.

From now on, when we speak about bootstrap percolation with facilitating
parameter r we always mean that the initial con�guration is chosen according
to Pp. Now we can be more precise in formulating our questions on the �nal
con�guration. For all possible given values of r, we are interested in studying how
the probabilities of the events of de�nition 1.2 on page 3 change as we vary the
parameter p.

We start by studying the event A1 = V and to this end, we introduce some
de�nitions.

De�nition 1.4. For a �xed value of r, de�ne

θf (p) := Pp[ η1 � 1 ] = Pp[A1 = V ] (1.3)
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Clearly 0 � θf (p) � 1, with θf (0) = 0 and θf (1) = 1. Moreover, the function
p 7! θf(p) is non-decreasing. We shall show it just below, adapting the proof of
the analogous result for site percolation to our case of bootstrap percolation. In
particular, this will provide the opportunity to use the notion of coupling, a very
important tool in probability.

Increasing coupling

Let us give a couple of de�nitions. Let η and η0 be two elements of 
 = f0, 1gV .
We write η � η0 if for every x 2 V it holds that η(x) � η0(x). This relation is a
partial order on the set 
.

De�nition 1.5. Let B 2 A. We say that B is an increasing event if η 2 B and
η � η0 imply η0 2 B. Analogously we say that a random variable X on f0, 1gV is
an increasing random variable if for every η � η0 we have X(η) � X(η0).

As an example, consider eV � V , a subset of the vertices of the graph. Then
the event B := fη 2 
 : η(x) = 1 for each x 2 eV g is increasing, because if η 2 B
and η � η0, then for every x 2 eV it holds 1 = η(x) � η0(x), so that for every x 2 eV
we have η0(x) = 1 and so η0 2 B. From this it is also easy to derive an example of
an increasing random variable by setting X(η) := 1B(η). The veri�cation that it
is indeed increasing is similar to what has just been done.

De�nition 1.6. Let (
1,A1,P1) and (
2,A2,P2) be probability spaces. A
probability measure Q on (
1 � 
2,A1 
A2) is called a coupling of P1 and P2 if
Q(� � 
2) = P1 and Q(
1 � �) = P2.

In words, a coupling is the procedure of de�ning two (families of) random
variables that are related in a speci�c way on one probability space. The product
measure P1 
P2 is clearly a coupling, but it is the trivial one, in the sense that
the relation between P1 and P2 that it encodes is the one of indipendence (i.e.
\no relation"). What we will use is an increasing coupling, i.e. a coupling which
encodes the relation \�".

Proposition 1.2. Fix p � p0. Consider the probability spaces (
,A,Pp) and
(
,A,Pp0), where Pp0 is also a Bernoulli product measure, but of parameter p0.
Then there exists a coupling Q of Pp and Pp0 such that Q[f(ηp, ηp0) : ηp � ηp

0g] = 1.

Proof. Let us recall that it is possible to use a uniformly distributed random
variable U on [0, 1] to sample an element of the set f0, 1g according to a Ber(p)
distribution. Indeed, the random variable de�ned to be 1 if U � p and 0 if
U > p is Ber(p)-distributed. In particular, we can represent our random initial
con�guration η0 using (Ux)x2V , a collection of i.i.d random variables, uniformly
distributed in [0, 1], indexed by the vertices of the graph G. The coupling of the
claim is obtained by using the same collection (Ux)x2V for both ηp and ηp

0
. In

this way, for any given vertex x 2 V we have that if ηp(x) = 1 then also ηp
0
(x) = 1

(because if Ux < p, than Ux < p0). This proves that Q-a.s. ηp � ηp
0
. Moreover

it is also clear, by what said above on the representation of Bernoulli random
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variables through a uniform distribution, that the marginals of distribution that
Q are the correct ones.

Corollary 1.1. Let B 2 A be an increasing event. Then the function p 7! Pp[B]
is non-decreasing.

Proof. We have

Pp[B] = Q[f(ηp, ηp0) : ηp 2 Bg] � Q[f(ηp, ηp0) : ηp
0 2 Bg] = Pp0 [B]

where the �rst and the last equality follow immediately from the de�nition of a
coupling of Pp and Pp0 , whereas the inequality comes from the particular property
of our coupling Q and from the hypothesis that B is increasing.

The event fη1 � 1g is clearly increasing: if a certain initial con�guration
evolves into full infection, then an initial con�guration containing the same and
possibly some more infected sites will also result in the graph being fully infected.
We conclude that the function p 7! θf (p) = Pp

�
fη1 � 1g

�
is really non-decreasing.

This result ensures that the second equality in the following de�nitions holds:

De�nition 1.7. The critical probability for full infection is

pf (G, r) := inffp : θf (p) = 1g = supfp : θf (p) < 1g 2 [0, 1] (1.4)

We observe that pf(G, r) is the particular value of the initial density p such
that healthy vertices in the �nal con�guration can only be found when p satis�es
p � pf (G, r). So having some result (i.e. estimate) on pf (G, r) would indeed give
us some information on how the probability of the event of full infection changes
as p varies. A priori, however, it is not clear why the given de�nition should be
better than the following one:

epf (G, r) := inffp : θf (p) > 0g = supfp : θf (p) = 0g

This time epf (G, r) is the particular value of the initial density p such that healthy
sites in the �nal con�guration can be found almost surely only when the initial
density p satis�es p � epf(G, r). In fact, which de�nition one choses does not
matter: we now prove that epf (G, r) = pf (G, r). The inequality epf (G, r) � pf (G, r)
is obvious (in epf(G, r) we are taking the in�mum over a bigger set). In order
to establish the other one, we revisit the notion of ergodicity. Again, the proof
will follow the guidelines of what is usually done for the more studied process
of Bernoulli site percolation onZd, but with an important di�erence. Because of
the nature of the graphs that we will consider in this thesis, it is not enough to
consider events and measures which are invariant under translations. Instead, it
is necessary to reformulate this notions in terms of group actions (of which, of
course, translation can simply be considered as a special case).
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Ergodicity

We continue to consider the measurable space (
,A) de�ned above. The following
de�nitions allow us to describe ergodicity with the level of generality that we need.

De�nition 1.8. Let Γ be a group of automorphism of G. Let P be a (general)
probability measure on A.

• The event B 2 A is called Γ-invariant if for any γ 2 Γ we have γB = B;
• the probability measure P is called Γ-invariant if for any γ 2 Γ and for any
B 2 A we have P[γB] = P[B];

• the set IΓ of all Γ-invariant events (is a σ-algebra, easy veri�cation, and) is
called Γ-invariant σ-algebra;

• the probability measure P is called Γ-ergodic if any Γ-invariant event has
probability 0 or 1.

These de�nitions are relevant for us because of the following lemma.

Lemma 1.1 (Ergodicity of the Bernoulli product measure). The Bernoulli product
measure Pp is Γ-invariant. Moreover, if Γ acts on G in such a way that each
vertex has an in�nite orbit, then the measure Pp is Γ-ergodic.

Proof. The �rst claim, namely that Pp is Γ-invariant, is clearly garanteed by the
fact that each coordinate η(x) is i.i.d.. For the second claim, see [LP17].

Remark 1.4. We point out that among all of the hypotheses that we have put on
G at the beginning of this thesis, being connected and locally �nite are the only
ones needed for the second part of the previous lemma.

Since the event A1 = V is (obviously) Γ-invariant, using the above lemma (all
of the graphs on which we will consider bootstrap percolation in this thesis satisfy
its hypotheses) we obtain that θf(p) 2 f0, 1g and thus θf(p) = 1 if and only if
θf (p) > 0. This implies epf (G, r) = pf (G, r) (we have just proved that the two sets
over which we are taking the in�mum are in fact the same set). From now on we
will simply write pf (G, r), thinking about one de�nition or the other according to
what is best for the context. More in general, one can give the following de�nition:

De�nition 1.9. A graph G satis�es the 0− 1 law for bootstrap percolation with
facilitating parameter r if Pp[A1] 2 f0, 1g.

In this context, the above lemma gives a su�cient condition for a graph G to
satisfy the 0-1 law.

References For all remarks on general probability theory, the reference that we
have used is the fairly recent book of Achim Klenke [Kle20]. Of course, there are a
lot of other classical books which would also be a perfect �t. When we say that we
have adapted the proofs which are usually studied for Bernoulli site percolation,
we refer to the proofs found in the lecture notes by Hugo Duminil-Copin [Dum18].
An extended treatment of ergodicity as introduced here is presented in the book
by Lyons and Peres [LP17].
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1.1.3 Bootstrap percolation with blocking parameter

In this subsection we present another de�nition of bootstrap percolation, which is
the one commonly used in the physics community. For example, it is the one used
in [Sau+10], the article from which the present thesis stems. Physicists usually
study bootstrap percolation in relation to kinetically constrained models, with the
aim of better understanding the phenomenon of glass formation. In this context, it
is more natural to think about the dynamics as particles which are removed, rather
than an illness which spreads. Also, in describing the initial random con�guration,
one uses the parameter of the Bernoulli product measure to describe the initial
density of the quantity which tends to disappear over time (i.e. density of healthy
vertices in our �rst de�nition, density of vertices occupied by a particle in the
physicists one), rather than the initial density of the quantity that increases over
time. We have used the words \another de�nition", because in general graphs it
describes an actually di�erent dynamics. However, for regular graphs (i.e. graphs
in which every vertex has the same degree), we will see that this new de�nition
simply amounts to a change of the parameter and so it may be better to say
\another interpretation" instead of \another de�nition". Nonetheless, this new
interpretation will be very useful to us, especially in 1.2 on page 13. Let us make
all of this precise.

We give name boostrap percolation with blocking parameter m to the model
used by physicists and we denote all the quantities used for this new model by an
additional bar on top. Vertices in the initial set �A0 are now considered occupied
by particles. The new rules for the dynamics are:

• at each time step an occupied vertex becomes free if and only if it has fewer
than m occupied neighbours;

• free vertices never become occupied, i.e. remain free forever.

We sample �A0 under a Bernoulli product measure of parameter �p.

Remark 1.5. Careful! As already noticed in the references to subsection 1.1.1, in
the mathematical literature one often �nds the interpretation \particles which
spread" for what we have described as \illness which spreads" (for example, this
is the case in [BPP06] and [FS08]). In this thesis we will use the interpretation
with particles and occupied sites only when we refer to the model with blocking
parameter and the interpretation with infected sites only when we refer to the
model with facilitating parameter.

De�nition 1.10. A vertex of G is called blocked if it is occupied in the �nal
con�guration (again intended as the con�guration in which the process no longer
evolves).

Moreover, we de�ne �θf (�p) := Pp̄[fthere is at least one blocked siteg]. It is an
increasing function. The proof is completely analogous to the one alreay done for
bootstrap percolation with facilitating parameter r and thus we do not repeat
it. With these de�nitions, the critical probability for the model with blocking
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parameter is de�ned as

�pf (G,m) := inff�p : �θf (�p) > 0g = inff�p : �θf (�p) = 1g
= supf�p : �θf (�p) = 0g = supf�p : �θf (�p) < 1g

The equality between the two in�ma is proved as done in the case of bootstrap
percolation with facilitating parameter r. It means that we can think about
�pf(G,m) equivalently as the critical density such that blocked sites only occur
above it or as the density such that blocked sites almost surely occur above it. A
\dictionary" to help comparison between the notations is provided in table 1.1.

Math community Physics community

vertices
infected (= occupied) free
healthy (= free) occupied

initial density
infected: p free: 1− �p
healty: 1− p occupied: �p

performed action to increase infected to remove particles

object of study clusters of healthy clusters of blocked

critical probability pf (G, r) �pf (G,m)

Table 1.1: Dictionary

In this thesis we will only consider bootstrap percolation on regular graphs
(but some almost regular graphs will appear in some proofs). So let us assume that
G is a d-regular graph. In this case, the dynamics of bootstrap percolation with
facilitating parameter r is exactly the same of the one of bootstrap percolation
with blocking parameter d− r + 1. Indeed, let us use the notation:

• Occ(x) =
��fy 2 V : y � x, y is occupiedg

��
• Free(x) =

��fy 2 V : y � x, y is freeg
��

where occupied and free are to be intended in the sense of the model with blocking
parameter. Then, by the hypothesis of d-regularity, we have that Occ(x) +
Free(x) = d for each given x 2 V and so

Occ(x) < m , d− Free(x) < m , Free(x) > d−m

which means precisely that for an appropriate choice of the parameters the rules
of the dynamics are equal:

to remove a particle from an
occupied vertex if and only if it has
fewer than m occupied neighbours

,
to remove a particle from an
occupied vertex if and only if it has
at least d−m+ 1 free neighbours

In particular, given A0, an initial con�guration of infected vertices for the bootstrap
percolation with facilitating parameter (d−m + 1), the vertices of the healthy
clusters of its �nal con�guration are exactly the blocked vertices of the bootstrap
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percolation with blocking parameter m and A0
c as initial con�guration of occupied

vertices. Finally, at the cost of being redundant, let us check that indeed the
critical probability pf (G, r) with p as density of healthy sites corresponds to the
critical probability �pf (G,m) with �p = 1− p as density of occupied sites:

�pf (G,m) = by de�nition, choice of �p

= inf
�

1− p : P1−p
�
jfblocked sitesgj � 1

�
= 1
	

switching interpretation

= inf
�

1− p : Pp

�
jfhealthy sites for η1gj � 1 ] = 1g taking the complement

= 1− sup
�
p : Pp

�
jfhealthy sites for η1gj = 0 ] = 0

	
by de�nition

= 1− pf (G, d−m+ 1)

Note that in the last equality we have used pf = epf .
References The description of the bootstrap percolation model with blocking
parameter is taken from [Sau+10]. Changes in notation have been made in order
to be coherent with the rest of this thesis.

1.1.4 Other critical probabilities

We have described how to de�ne the critical probability for full infection pf (G, r)
and how it seems to be a good object to consider if one wants to study whether
or not A1 = V . However, this is not the only interesting question that one
can ask about the �nal bootstrapped con�guration. For example, supposing
that A1 ( V , one could ask whether or not A1 contains an in�nite connected
component, namely if there are values of the initial density p such that the initial
set of infected sites manages to propagate to in�nity even though it does not infect
the whole graph. Or more, supposing that A1 contains an in�nite connected
component, one could ask whether or not that connected component is unique.
To try to answer this question, we propose two new de�nitions, analogous to the
critical probability for full infection pf(G, r). In order to fully justify them we
also need an additional assumption on G, which we state below.

De�nition 1.11. We de�ne the critical probability for percolation pc(G, r) as

pc(G, r) := inffp : θc(p) > 0g = supfp : θc(p) = 0g =

= inffp : θc(p) = 1g = supfp : θc(p) < 1g

where

θc(p) := Pp

�
f9 at least one in�nite connected component

of infected sites in the �nal con�gurationg
�

De�nition 1.12. We de�ne the critical probability for uniqueness pu(G, r) as

pu(G, r) := inffp : θu(p) > 0g = supfp : θu(p) = 0g =

= inffp : θu(p) = 1g = supfp : θu(p) < 1g
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where

θu(p) := Pp

�
fthere is a unique in�nite connected component

of infected sites in the �nal con�gurationg
�

The fact that the above de�nitions make sense and the reason why the equality
between the �rst and the second line in both de�nitions is true are both derived in
exactly the same way as already done for the critical probability for full infection.
Let us quickly repeat how the reasoning went. First of all, θc(0) = θu(0) = 0
and θc(1) = θu(1) = 1. Moreover, the events which de�ne θc(p) and θu(p) are
increasing. Thus also the functions p 7! θc(p) and p 7! θu(p) are increasing (use an
increasing coupling) and the de�nitions make sense. Finally, we assume that the
events through which we have de�ned θc and θu are Γ-invariant (this is the extra
assumption that we mentioned above; it is easily veri�ed for all the graphs which
we will consider in the following chapters). This means that we can apply 1.1 on
page 8 and obtain that they happen with probability 0 or 1. Thus the second line
of equalities in the above de�nitions is justi�ed.

Some very basic observations allow us to produce the following diagram:

0 1pc(G, r) pu(G, r) pf (G, r)

Indeed, every completely infected �nal con�guration also has a unique connected
component of infected sites. Moreover, it is also obvious that every �nal con-
�guration in which there is a unique in�nite connected component of infected
sites has at least one in�nite connected component of infected sites. Passing
to the probabilities, this immediatily yields θc(p) � θu(p) � θf(p) and thus
pc(G, r) � pu(G, r) � pf(G, r) (simply because going from left to right we are
taking the in�mum on smaller sets). We do not (yet) know what happens in the
dotted line in the �gure, i.e. we do not know if some (or all) of these critical
values for the parameter p are in fact 0, or 1, or the same value. For a given
�xed r we say that pf(G, r) is trivial if pf(G, r) 2 f0, 1g. We extend the use
of the word trivial also to the other critical probabilites, with the appropriate
adjustments. Sometimes we abuse it, depending on context. For example, if
we knew that 0 < pf(G, r) < 1, then pc(G, r) would be said to be trivial if
pc(G, r) 2 f0, pf(G, r)g. But if we knew that pu(G, r) < pf(G, r) < 1, then
pc(G, r) would be said to be trivial if pc(G, r) 2 f0, pu(G, r)g. It is possible that
this last pedantic remark on our part creates more confusion than it could solve
(then just ignore!). In the remaining of this thesis we restrict our study to some
particular classes of graphs G and we try to �nd for which values of r (if any)
the above critical probabilities are nontrivial. We immediately observe that there
are some trivial values of r for which the question about pf (G, r) is immediately
settled (for every G):

Remark 1.6. For r = 1 we always have pf (Td, 1) = 0. For r � D := maxx2V fdeg(x)g
we always have pf (G, r) = 1.
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Proof. Since for r = 1 a single infected site is enough to infect the whole tree (we
are supposing G to be connected), the only case in which we do not have full
occupation is the one in which the initial con�guration is made of all healthy sites.
However, this happens with nonzero probability if and only if p = 0, because we
have supposed the graph G to be in�nite. Thus pf (G, 1) = 0.

On the other hand, if r � D, then the dynamics is such that a healthy site
can become infected if and only if it is completely surrounded by infected sites
(if the graph is regular, but otherwise the following argument still holds). Let
x 2 V be a vertex whose degree is equal to D, the maximum degree of the
graph, and let y 2 Nx be one of its neighbours. Consider the set fx, yg and
the event B := fη0(x) = η0(y) = 0g. We observe that no initial con�guration
belonging to this event is capable of infecting the whole graph, since at any given
moment both x and y are connected to at most D − 1 infected neighbours (and
by the choise or r they need at least D of them to become infected). We have
Pp[A1 6= V ] > Pp[B] = (1− p)2 > 0 for every p < 1 and thus Pp[A1 = V ] = 0
(recall 0-1 event). We conclude that pf (G, r) = 0 for every r � D. In other words
we have found that, on every graph of maximum degree D, there always exists a
(D − 1)-fort of healthy sites with positive probability .

For this reason, in the remainder of this thesis we always implicitly assume
that 2 � r � maxx2V fdeg(x)g − 1 (at least whenever we talk about pf (G, r)).

1.2 General estimates on pf

We conclude this introduction to the model by stating and proving some general
inequalities on pf (G, r).

1.2.1 Comparison with the process on subgraphs

More precisely, for both the models with blocking and with facilitating parameter
we get an upper bound on the critical probability for bootstrap percolation on
a general graph G in terms of the critical probability for boostrap percolation
on one of its subgraphs (here general means under the hypotheses made at the
beginning of this chapter, but not necessarily regular).

Lemma 1.2. Let eG be a subgraph of the graph G. We consider boostrap percolation
with the same blocking parameter m on both of these graphs. Then:

�pf (G,m) � �pf ( eG,m)

Proof. Suppose that we have a �nal con�guration in eG which has at least one
blocked site. Then that site will be blocked also when considered in G, no matter
the value (occupied or free) of the sites in G which are not in eG. Indeed, for any

given vertex of eG, the number of its occupied neighbours in eG is less then or equal
to the number of its occupied neighbours in G. Informally, we could say that it is
easier to be blocked in G than in eG. This means exactly that for every �p we have
�θ
eG
f (�p) � �θGf (�p), which implies the thesis.
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Lemma 1.3. Let eG be a subgraph of the graph G such that eG contains all of
the vertices of G. We consider boostrap percolation with the same facilitating
parameter r on both of these graphs. Then:

pf (G, r) � pf ( eG, r)
Proof. Since eG contains all of the vertices of G, any initial con�guration oneG can be thought of as an initial con�guration on G. Now consider an initial
con�guration on eG which has no healthy sites in its �nal con�guration. The
bootstrap percolation process with facilitating parameter r on G started with
that initial con�guration will also have no healthy sites in its �nal con�guration,
because if the edges in eG were enough to infect the whole graph, then a fortiori the
edges in G will allow the initial con�guration to infect the whole graph. Informally,
we could say that being fully infected is easier for G than for eG. This means
exactly that for every p we have θ

eG
f (p) � θGf (p), which implies the thesis. Note that

the additional assumption on the vertices of eG made in this case is really necessary.
Without requiring it, there could be some regions of the vertices of G which are
not in eG which remain healthy, even if all the vertices of eG become infected. In
other words, there could exist r − 1-forts contained in V (G) n V ( eG).

Remark 1.7. Careful! In the two lemmas above the densities �p and p are really what
they are de�ned to be in 1.1 on page 10, i.e. if we consider them simultaneously
(e.g. in a regular graph), they refer to di�erent objects: one is the density of
occupied vertices and the other one is the density of free vertices.

We have one more lemma of this type. We say that a graph G is a union of
two graphs G1 and G2 if V (G) = V (G1) [ V (G2) and E(G) = E(G1) [ E(G2).
We write this as G = G1 [G2.

Lemma 1.4. If G = G1 [ G2 with G1 and G2 satisfying the 0-1 law, then
pf (G, r) � pf (G1, r) _ pf (G2, r).

Proof. Without loss of generality, assume that pf(G1, r) � pf(G2, r). Then, if
p > pf(G1, r), a.s. both G1 and G2 are fully infected. Thus a.s. also G is fully
infected and so p > pf (Gr), which gives the claim.

We conclude this subsection with one last remark, that will be useful later.

Remark 1.8. Assume that G is a d-regular graph. Fix 2 � r � d − 1 (recall

remark 1.6 on page 12). Let eG be a ed-regular subgraph of G. Then:

pf
( eG, ed− d+ r

� (a)
= 1− �pf ( eG, d− r + 1)

(b)

� 1− �pf (G, d− r + 1)
(c)
= pf (G, r)

where (a) and (c) come from the comparison between the critical probability for
the model with blocking and facilitating parameter in a regular graph presented
at the end of section 1.1.3 on page 9 and (b) is a direct consequence of lemma 1.2
on the preceding page. Summing up, we have obtained that

pf ( eG, ed− d+ r) � pf (G, r) (1.5)



1.2 General estimates on pf 15

This shows that in the particular setting of regular graphs, the critical probability
for full infection of a subgraph can also be used to bound pf (G, r) from below (and
not only from above, as shown in lemma 1.3 on the preceding page). Of course,
the catch is that in 1.5 we do not have anymore the same facilitating parameter
on both G and eG: the facilitating parameter on the subgraph is smaller than the
one on the graph (because ed− d < 0, since obviously the degree in a subgraph is
smaller than the one in the original graph).

1.2.2 Comparison with Bernoulli site percolation

We start with a simple remark, whose only aim is to get more acquainted with
the di�erences between Bernoulli and boostrap percolation.

(0, 0) (11, 0)

(11, 11)(0, 11)

n = 0 (0, 0) (11, 0)

(11, 11)(0, 11)

n = 3

. . .

Figure 1.2: We choose G = Z2, so that d = 4 and r = d − 1 = 3. Infected
sites are represented by �lled black dots, whereas healthy sites are represented
by �lled white dots. The one on the right is the �nal con�guration of the
region of Z2 which is shown: there are no further changes for n � 4. In the
initial con�guration we have circled in red vertices that sooner or later become
infected (in the terminology of 2.1 on page 27 these are weakly healthy vertices).
They constitute the \little branches" that are \pruned" by the bootstrap
dynamics. (Please note how the interior of the region we have chosen the states
of the sites randomly, but on the boundary we have arbitrarily set them to
be healthy (i.e. closed). Of course this is not what happens in the model,
but pictorially it helps to follow the evolution of the dynamics. In any case,
we are not showing a con�guration that it is impossible to observe: the event
fη : η(x) = 0 8 η on the boundary of the gridg has nonzero probability...).

Remark 1.9. On a d-regular graph G, consider bootstrap percolation with facil-
itating parameter r = d − 2. On the same graph, also consider Bernoulli site
percolation. For both models we take the same value of 0 < p < 1 as parameter
for the Bernoulli product measure. In the literature on Bernoulli site percolation
it is usual to consider a vertex to be open if it is chosen to be in state 1 with



16 Chapter 1. Description of the model and fundamental tools

probability p, so what in our notation the set of open vertices for the Bernoulli
percolation model is A0 = fx : η0(x) = 1g, the set of initially infected vertices for
the bootstrap percolation model. Thus we will represent an open (i.e. initially
infected) site with a black dot, in order to be coherent with 1.1 on page 3.

Let us �nally state the actual observation. Since the graph is d-regular and
the facilitating parameter is r = d− 1, at each given step an healthy site remains
healthy if and only if it has at least two healthy neighbours. In particular, consider
an in�nite cluster of healthy sites in the initial con�guration (i.e. an in�nite
component of closed sites for the Bernoulli percolation model) which does not
disappear in the �nal bootstrapped con�guration. For this to happen, it must
contain an (r − 1) = (d − 2)-fort of healthy vertices. An example of such a
fort would be a \chain" of sites which comes from in�nity and goes to in�nity
(i.e. a 2-regular tree). The e�ect of the bootstrap percolation dynamics is that
of \pruning" all the little branches that belong to the initial cluster and grow
outwards from the (d− 2)-fort. In other words, we could say that the (d− 2)-fort
is the only part of the considered initial in�nite cluster of closed sites for Bernoulli
percolation that remains also in the �nal con�guration of the bootstrap model.
Figure 1.2 on the previous page tries to give an idea of the phenomenon.

Now let us show how Bernoulli site percolation can provide an upper bound
to the critical probabilty for full infection.

Lemma 1.5. If in G there are no �nite (r − 1)-forts, then pf(G, r) � 1 −
pc(G), where pc(G) is the critical probability for percolation for the Bernoulli site
percolation model de�ned on G.

Proof. We have already seen that failure of full infection in the �nal con�guration
is equivalent to the existence of a (r − 1)-fort in the initial con�guration. Since
we are under the hypothesis that there are no �nite (r − 1)-forts, in order to have
failure of full infection we need an in�nite (r − 1)-fort in the initial con�guration.
If this happens, than in particular we are in the situation in which healthy sites in
the initial con�guration percolate, i.e. 1−p > pc(G) (the parameter corresponding
to the type of site which percolates should be greater than the critical probability
for percolation), i.e. p < 1 − pc(G). Summing up, if p is such that we have
θf (p) = 0, then p < 1− pc(G), i.e. pf (G, r) � 1− pc(G) (by de�nition).

References The inequalities on the critical probability for full infection come
from [Sau+10]. Here we have tried to present formal proofs. The comparison with
Bernoulli site percolation, instead, is to be found in [BPP06].

1.3 Branching Processes

We temporarily suspend the study of bootstrap percolation in order to give
the de�nition of branching processes and to recall some classical facts about
them. Loosely speaking, a branching process is a stochastic process, indexed by
the natural numbers, whose purpose is to serve as a model of a population in
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which each individual in the n-th generation produces some random number of
individuals in the (n+ 1)-th generation. The most common formulation is that of
the Galton Watson process, which we will use as a tool in our study of bootstrap
percolation on trees in the next chapter.

1.3.1 Galton Watson processes

In this section we denote by (
,A,P) a general probability space. Let p0, p1, p2, � � � 2
[0, 1] be such that

P1
k=0 pk = 1 and X be a random variable such that for every

k = 0, 1, 2, . . . we have P[X = k] = pk. Finally, let (Xn,i)n,i=0,1,2,... be an i.i.d.
family of random variables distributed as X.

De�nition 1.13. Let Z0 � 1 and set

8n = 0, 1, 2, . . . Zn :=

Zn−1X
i=1

Xn−1,i

The process (Zn)n=0,1,2,... is called a Galton-Watson process or branching process
and the probability vector (pk)k=0,1,2,... is called its o�spring distribution.

As already mentioned, we can interpret Zn as the number of individuals in n-th
generation of a randomly developing population. The i-ith individual in the n-th
generation has Xn,i o�spring in the (n+1)-th generation. Every branching process
has an associated tree obtained simply by having a vertex for every individual of
every generation and an edge between two vertices if one is in the o�spring of the
other.

An important tool in the study of branching processes are probability gener-
ating functions. Hence, let

φ(z) :=
1X
k=0

pkz
k

be the p.g.f. of the o�spring distribution (i.e. of the distribution of X).
One natural question that one can ask about a Galton-Watson process (and

maybe also the �rst one) is whether the population will eventually die out or not.
In order to study this, we de�ne:

De�nition 1.14. The extinction probability of the branching process (Zn)n�0 is

pext := P
�
9n � 1 : Zn = 0

�
= P

� [
n�1

fZn = 0g
�

= lim
n!1

P
�
Zn = 0

�
(1.6)

The equalities in the above de�nition are clearly true, because the sequence of
events

(
fZn = 0g

�
n�0

is increasing. Under what conditions do we have pext = 0,

pext = 1 or pext 2]0, 1[ ? It is clear that pext � p0, because p0 is simply the
probability already the �rst generation has 0 individuals. On the other hand, if
p0 = 0, every individual has at least a child a.s. and thus Zn is monotone in n,
so that pext = 0. The following theorem can be proved using the p.g.f. φ of the
o�spring distribution de�ned above:
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Figure 1.3: Generations 0 to 9 of a typical Galton-Watson tree with o�spring

distribution given by the p.g.f. φ(z) = (z+z2)
2 .

Theorem 1.1 (Extinction probability of the Galton Watson process). Assume
p1 6= 1. Then:

• fz 2 [0, 1] : φ(z) = zg = fpext, 1g and so, in particular, pext is the smallest
�xed point of φ in [0, 1];

• the following equivalences hold:

pext < 1 () lim
z"1

φ0(x) > 1 () E[X] =
1X
k=1

kpk > 1

Of course if p1 = 1 then pext = 0.

References There are countless references on branching process. We have used
[Kle20], [LP17] (from which we have taken �gure 1.3) and [B la17].



Chapter 2

Bootstrap percolation on trees

This chapter is devoted to bootstrap percolation on regular trees. More precisely,
we study the critical probabilities for full infection and for percolation. It is known
from the relevant literature that both of them are nontrivial. We give a full proof
of the result for pf and present the main idea of the proof for pc.

2.1 Critical probability for full infection

Let us start with some more de�nition from basic graph theory, mainly in order
to set the notation. A cycle in a graph is �nite sequence of vertices (y1, . . . , yn)
such that y1, . . . , yn−1 are distinct vertices, y1 = yn and yk+1 2 Nyk for every
1 � k � (n − 1). A tree is an undirected graph in which any two vertices are
connected by exactly one path, i.e. it is a connected undirected graph without
cycles. A rooted tree is tree in which one vertex is designated as the root, denoted
by o. For every vertex x in a rooted tree it is possible to de�ne the parent and the
children of x: the children are the deg(x)− 1 neighbours of x which are farther
from the root, the parent is the remaining neighbour. A vertex of a tree is called
a leaf if it has no children. A (d+ 1)-regular tree is a tree in which every vertex
has degree exactly equal to (d+ 1) and we will denote it by Td. The notation Td is
used to emphasize that in a (d+ 1)-regular tree every vertex, with the exception
of the root, has exactly d children (i.e. it emphasizes the branching number of
the graph, a more general notion for which one can consult, for example, [LP17]).
Finally, we de�ne a d-ary tree to be a rooted tree in which every vertex has exactly
d children. This is equivalent to saying that the root has degree d and every other
vertex has degree d+ 1.

2.1.1 Preliminaries

In view of remark 1.6 on page 12, for the remaining of this chapter we always take
2 � r � d. We prove that for these value of r the critical probability is indeed
nontrivial, following the work [BPP06].

First of all we recall the following fundamental tool, taught in every course in
percolation theory:

19
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Theorem 2.1 (Harris's inequality). We have:
• If B1 and B2 are increasing events, then Pp[B1 \B2] � Pp[B1]Pp[B2]
• If X and Y are increasing random variables with �nite second moments,

then Ep[XY ] � Ep[X]Ep[Y ].

Remark 2.1 (Harris's inequality for decreasing events). A decreasing event is
de�ned analogously to de�nition 1.5 on page 6, just with the inequality reversed.
Alternatively, we can say that the event B is decreasing if −1B is an increasing
random variable. We can also apply Harris's inequality to decreasing events or
to an increasing event and a decreasing event (in this last case the inequality is
reversed). An easy way to see it to use the second point of theorem 2.1 with the
(increasing) random variable 1B if B is increasing or −1B if B is decreasing.

In the proof of the main theorem of this �rst section we will also need two
other preliminary results. We state them as a lemma and as a proposition.

Lemma 2.1. Fix 2 � r � d. Then in the (d+ 1)-regular tree there are no �nite
(r − 1)-forts.

Proof. Suppose by contradiction that such a fort exists. Then each of its connected
components is again an (r − 1)-fort (this is true in general for all forts). Take one

of these connected components and call it eT . As a �nite connected subgraph of
a tree, it is again a tree (even though it will not be regular anymore, at least in
general). As can be done with all trees, select one of its vertices as root, thus

giving eT a parent-child structure. Being �nite, eT must have at least one leaf,
which we denote by x. The following relations have to be true for the outdegree
of v: (

degTdneT (v) = d because Td is d+ 1-regular and v is a leaf of eT
degTdneT (v) � r − 1 because eT if an (r − 1)-fort

which gives a contradiction! (recall that we are only considering r � d).

Let GW(d, q) denote the tree associated to a Galton-Watson process with
o�spring distribution Bin(d, q). The next one is a result on the probability of the
existence of a k-ary subtree of GW(d, q) with the same root of GW(d, q). This will
be crucial for the proof of the nontriviality of the critical probability for bootstrap
percolation on trees, but it is also of independent interest.

Proposition 2.1. Let k 2 N with k � 1. Let y = y(q) be the probability that
GW(d, q) does not contain a k-ary subtree starting from its root. Then y is the
smallest �xed point of the function

x
ϕ7! Bd,k,q(x) = Pp

�
Bin(d, q(1− x)) � k − 1

�
Proof. We denote the root by o and we consider its children. By the independence
hypothesis in the de�nition of branching processes (see 1.13 on page 17, each of
them can be considered as the root of a new Galton-Watson tree and thus has
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Figure 2.1: Set d = 7 and k = 3. The �gure above represents the graph of
the function x

ϕ7! Bd,k,q(x) = Pp

�
Bin(d, q(1− x)) � k − 1

�
(in orange) for this

choice of the parameters and for two di�erent values of q. In both cases we
have highlighted the �rst (going in the positive direction of the x-axis) point of
intersection between the graph of ϕ and the bisector of the I and IV quadrant:
this is exactly the point whose coordinates are the smallest �xed point of ϕ in
[0, 1]. Notice how in the �rst graph the only �xed point is 1, whereas in the
second graph we have three di�erent �xed points. The green line represents the
sequence (yn)n�0 used in the proof. From the �gure we can deduce that a.s.
there is no 3-ary tree in GW(7, 0.64) and that the probability of �nding a 3-ary
tree in GW(7, 0.66) is approximately 1− 0.11 = 0.89. Finaly, observe what a
great qualitative di�erence is caused by such a small change in the parameter q!

probability 1− y to be the root of a k-ary subtree. The event B1 = fo is not the
root of a k-ary tree rooted at og coincides exactly with the event B2 = fat most
k − 1 children of o are root of a k-ary subtreeg, so that we have

y = Pp[B1] = Pp[B2] =
k−1X
j=0

�
d

j

�(
q(1− y)

�j(
1− q(1− y)

�d−j
= Pp

�
Bin
(
d, q(1− y)

�
� k − 1

�
(2.1)
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where the �rst equality comes from the de�nition of y, the second one from
the fact that B1 and B2 are in fact the same event and in the third one we
are summing the probabilities of o having exactly j children which are root of
a k-ary subtree, with j at most k − 1. Indeed, in order for a children of o to
be itself a root of a k-ary subtree, �rst of all it must exist as a children, which
happens with probability q and then it must satisfy the said property, which
happens with probability 1− y. (A binomial distribution Bin(d, q) can be seen
as the sum of d i.i.d. Ber(q)-distributed random variables, so that if Bin(d, q)
represents the number of child, Ber(q) represents the existence of a single child).
Moreover, in [0, 1] we always have the �xed point 1. Thus y really is a �xed point
of x 7! Bd,k,q(x).

Now we want to show that y is the smallest such �xed point. Let (yn)n�0 be
the sequence where yn is the probability that GW(d, q) does not contain a k-ary
subtree of height n rooted at the same root o. Then the same reasoning as above
shows that yn = Bd,k,q(yn−1). In other words, (yn)n�0 can be viewed as a one
dimensional discrete dynamical system starting from the initial condition y0 = 0
and with dynamics given by the function Bd,k,q : [0, 1] ! [0, 1]. It is clear that
Bd,k,q 2 C1 and the direct calculation

∂

∂x
Bd,k,q(x) = dqPp

�
Bin
(
d− 1, q(1− x)

�
= k − 1

�
> 0 if x 2]0, 1[

shows that Bd,k,q is also increasing. Moreover Bd,k,q(y0) > 0 and thus by a classical
elementary result(yn)n�0 is increasing and converges either to the smallest �xed
point of Bd,k,q greater than y0 or to the upper endpoint of the interval, i.e. 1 (see
�gure 2.1 on the previous page). The fact that y is the smallest �xed point in the
whole domain [0, 1[ comes immediately from the fact that (yn)n�0 starts exactly
from the lower endpoint of the interval.

References Harris's inequality is a classical tool which can be found in many
textbooks. A statement with full proof can be found for example in [LP17], to
which we also refer for proposition 2.1 on page 20 (in fact [LP17] contains a
generalization of it, see section 5.7).

2.1.2 Nontrivial critical probability for full infection

We are now ready to prove the nontriviality of the critical probability for full
infection on trees.

Theorem 2.2. For every 2 � r � d, bootstrap percolation with facilitating
parameter r on the d+ 1-regular tree has nontrivial critical probability.

Proof. We start by considering an (r − 1)-fort of the tree. By lemma 2.1 on
page 20 we know that it must be in�nite. Moreover, it contains a (d + 2 − r)-
regular subtree, because by de�nition every vertex in the fort is incident to at
least (d + 1) − (r − 1) = d + 2 − r other vertices in the fort. Hence we can
rephrase proposition 1.1 on page 4 as \failure of complete infection for bootstrap
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percolation with facilitating parameter r on the d+ 1-regular tree is equivalent
to the existence of a (d+ 2− r)-regular subtree of healthy vertices in the initial

con�guration". In the following we denote such a subtree with eT .
Then, we observe that regular trees are graphs which satisfy the 0− 1 law for

bootstrap percolation with facilitating parameter r (in the sense of de�nition 1.9
on page 8), because the hypothesis of lemma 1.1 on page 8 are clearly satis�ed.
Thus having failure of complete infection with probability 1 is equivalent to having
failure of complete infection with positive probability and thus equivalent to

Pp

�
f9 o 2 V (Td) : o is the root of eT for some eT as de�ned aboveg

�
> 0 (2.2)

(clearly the event that there exist a vertex which is the root of some eT and

the event that some eT exists are the same). Note that with this reasoning we
have come to a question about Bernoulli percolation on trees, since we are now
interested in an event that only concerns the initial con�guration. This will allow
us to ignore the bootstrap dynamics, which is usually cause of di�culties.

In order to study 2.2, we reformulate it again in an equivalent way (the
usefulness of which will be explained shortly afterwards). We consider a new
graph �T , which is, by de�nition, a d-ary tree with a �xed healthy root. Then 2.2
is equivalent to:

Pp

�
�T contains a (d+ 1− r)-ary subtree made of (2.3)

healthy vertices and starting from the same root of �T
�
> 0

Proving that 2.2 implies 2.3 is easy. Indeed it su�ces to consider �T as a subgraph
of Td with o as its root, where o is one of the vertices for which the event in 2.2
happens. Let us explain why in detail. If o is connected only to healthy sites,
remove from Td one edge incident to o (it does not matter which one). If o is
connected to at least one infected vertex, remove from Td one of the edges between
o and an infected vertex. Now consider the connected component of o in this new
graph. It is a d-ary tree (because we have only cut a vertex in Td incident to o)
which contains a d+ 2− r-regular subtree rooted at o and made of only healthy
sites (because we add this healthy subtree before the cutting of the edge and we
have been careful not to cut an edge connected to a healthy vertex). Thus, in
particular, it is a �T for which 2.3 holds. Viceversa, assume that 2.3 holds. Fix an
healthy vertex o. Consider �rst a d-ary tree �T 1 rooted at o and de�ned as the
connected component containing o of the graph obtained from Td after having
removed one of the edges of Td connecting o to one of its healthy neighbours (if
o has an empty neighbour, otherwise simply remove an(y) edge). Then consider
another d-ary tree �T 2, again rooted at o, de�ned exactly in the same way. This
means that we could have T 1 = T 2 (if we remove the same edge in both de�nitions)
or T 1 6= T 2 (if we remove di�erent edges). In �gure 2.2 on the following page) we
have removed di�erent edges (careful: this implies that both of those edges are
incident to healthy neighbours of o!). De�ne the events:

for i 2 f0, 1g Bi := f �T i has a (d+ 1− r)-ary subtree made of healthy

vertices and starting from the same root of �T i g
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T3

o
cut edge

T 2

cut
edge

T 1

Figure 2.2: Construction of the trees T 1 and T 2 on the 4-regular tree T3.
Since here the condition 2 � r � d means r 2 f2, 3g, we obtain that if r = 2
(respectively r = 3), 2.3 on the preceding page means that both T 1 and T 2

contain a (3 + 1− 2) = 2-ary (respectively a (3 + 1− 3) = 1-ary) subtree with
positive probability.

We observe that they are decreasing, because for every i 2 f0, 1g, if η 2 Bi and
η0 � η, then also η0 2 Bi: if a certain con�guration realizes Bi, then the same
con�guration in which some infected vertices are replaced by healthy vertices
surely realizes Bi too. Finally, denoting with B the event of 2.2 on the previous
page, we have:

Pp[B] = Pp[B1 \B2] � Pp[B1]Pp[B2] > 0 (2.4)

where the �rst equality holds by construction, the �rst inequality is a consequence
of Harris' inequality (see remark 2.1 on page 20) and �nally the second inequality
holds because we are assuming 2.3 on the previous page. The importance of
constructing the trees T 1 and T 2 only by removing edges that connect o to one
of its healthy neighbours (if there are any) lies in the fact that otherwise the
�rst equality of 2.4 might not be satis�ed. We have thus proved the desired
equivalence.

We can now continue with the proof. As already noted, we had already
reduced our initial problem to a question in Bernoulli percolation. The usefulness
of working with 2.3 is that we are now considering Bernoulli percolation on a
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d-ary tree instead of a d-regular tree. Clearly, this does not change the nature
of the problem, but it allows a nicer expression of the connected component of
healthy sites of a �xed healthy vertex o. Indeed, in this setting this is exactly a
Galton-Watson tree rooted at o and with o�spring distribution Binom(d, 1− p),
because of the independence assumption in assigning the infected/healthy states
in the initial con�guration. Thus we can yet again reformulate 2.3 on page 23 in
an equivalent way and state that having failure of complete infection for bootstrap
percolation with facilitating parameter r on the d+ 1 regular tree with probability
one is equivalent to the existence of a (d+ 1− r)-ary subtree in a GW(d, 1− p)
with positive probability. But we have already solved this problem in 2.1 on
page 20! Substituting the values q = (1− p) and k = (d+ 1− r) in 2.1 on page 20
and summing up the content of this proof, what we have obtained is that failure
of complete infection for bootstrap percolation with facilitating parameter r on
the (d+ 1)-regular tree is equivalent to having 1− y(p) > 0, i.e. y(p) < 1, where
y = y(p) is the smallest �xed point of the function

x 7! Bd,r,1−p(x) = Pp

�
Bin(d, (1− p)(1− x)) � d− r

�
Reformulating one last time, what we have obtained is that

inffp : y(p) = 1g = inffp : θf (p) = 1g = pf (Td, r)

which concludes the proof.

We have seen how on regular graphs the model with facilitating and with
blocking parameter are in fact the same model. Thus one expects the above result
to also hold in the case of bootstrap percolation with blocking parameter. This is
what we check in the following corollary.

Corollary 2.1. On the d+ 1-regular tree, the critical probability for the model
with blocking paramter m is nontrivial for all 2 � m � d.

Proof. Since we are on a (d+1)-regular graph, recalling subsection 1.1.3 on page 9
we have �pf (G,m) = 1− pf (G, d+ 1−m+ 1), so that �pf (G,m) is nontrivial if and
only if pf (G, d+ 1−m+ 1) is nontrivial. By the above theorem, this happens if
and only if 2 � d+ 2−m � d, namely if and only if 2 � m � d.

References The proof presented in this section is the one that appears in [BPP06].
We have allowed ourselves to expand quite a bit the explanations of the various
steps, e.g. in the original work it was not explained how to use Harris's inequality.
In [FS08] another proof is presented, which uses oriented trees. This oriented
setting is the same which is used to study the critical probability for percolation
and we are going to present it in the next section.

2.2 Critical probability for percolation

We dedicate this section to the study of another one of the critical probabilities
that we have de�ned in the �rst chapter: the critical probability for percolation. In
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other words, we study for which values of p and r (if any) we have 0 < pc(Td, r) <
pf (Td, r), following [FS08]. We will only present one of the main ideas of this work,
which nonetheless makes very clear why the tree structure (and the additional
orientation that we are soon going to put on it) is crucial.

Di�erently from what done in the rest of the thesis, in this subsection we
consider boostrap percolation on an oriented graph. Accordingly, we will also
need to change the de�nition of the process: we need to consider an oriented
dynamics.

We start by orienting the tree Td in such a way that from any given vertex x
there are exactly d outgoing edges and exactly one incoming edge. We will denote

the tree oriented in this way by
−!
Td. In this new setting, we de�ne the oriented

neighbours of a given vertex x 2 V = V
(
Td
�

= V
(−!
Td
�

as the elements of the set
−!
Nx := fy 2 V : there exists an oriented edge from x to yg. In particular, in

−!
Td

we will always have
��−!Nx�� = d.

We then de�ne oriented bootstrap percolation with facilitating parameter r in
an analogous way to what already done for the nonoriented process. The initial
con�guration is the same, i.e. η0 = −!η0 is again sampled under a Bernoulli product
measure with parameter p. As for the oriented dynamics we set:

8n = 1, 2, . . . −−!ηn+1(x) =

8><>:
1, if −!ηn(x) = 1

1, if −!ηn(x) = 0 and
P

y2
−!
Nx

−!ηn(x) � r

0, if −!ηn(x) = 0 and
P

y2
−!
Nx

−!ηn(x) < r

(2.5)

namely, we have simply replaced the terms ηn and Nx in de�nition 1.1 on page 2
with their oriented counterparts. Again by substituting a symbol with itself
surmounted by an arrow, we obtain the de�nitions for the oriented critical proba-
bilities for full infection and for percolation respectively:

−!pf (Td, r) := inf
�
p :
−!
θf (p) > 0

	 −!pc (Td, r) := inf
�
p :
−!
θc (p) > 0

	
(2.6)

where −!
θf (p) := Pp

�−!η1 � 1
� −!

θc (p) := Pp

�
9x 2 V :

��−!Cx�� =1
�

By the symbol
−!
Cx we denote the connected component containing x of the subgraph

of
−!
Td obtained by considering the vertices fy 2 Td : −!η1(y) = 1g (and the oriented

edges between them of course). In other words,
−!
Cx is the cluster of infected sites

containing x in the �nal con�guration −!η1. We have the analogous de�nition for
Cx.

It is known from [FS08] that pf = −!pf (more on this in the paragraph on
references at the end of the subsection).

As we have already remarked, bootstrap percolation can be thought of as a
generalization of bernoulli site percolation. One could also say \knowing" bernoulli
site percolation, the missing piece in order to understand bootstrap percolation
is to \know" how the infection spreads from the set of initially infected sites. In
oder words, we would like to understand which sites start as healthy and become
infected. This is the motivation behind the following classi�cation:
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De�nition 2.1. Let (ηn)n�0 be a given oriented bootstrap percolation process
with facilitating parameter r. Then we de�ne ξ 2 f1, 0, 0gV in the following way:

ξ(x) :=

8><>:
1 if x is initally infected, i.e. −!η0(x) = 1

0 if x is weakly healthy, i.e. −!η0(x) = 0 and −!η1(x) = 1

0 if x is strongly healthy, i.e. −!η0(x) = 0

(2.7)

Before proceding, we also set up another piece of notation:
• −!p1 := Ep

�−!η1(x)
�
, for an x 2 V is the �nal density of infected sites (obviously

this de�nition does not depend on x);
• −!q1 := 1−−!p1 is the �nal density of healthy sites ;
• −!r1 := −!p1 − p is the density of weakly healthy sites.
The proof of 2.2 on page 22 in the previous section essentially came down

to �nding an appropriate branching process, which happened to be a certain
cluster of initially healthy sites, and use it to study the presence of an (r− 1)-fort.
In some sense, this is also what will be done in this section, albeit with weakly
healthy sites.

First of all, for a given x 2 V , we set

0@Ox

Wx

Sx

1A :=

0@# of initially infected neighbours of x
# of weakly vacant neighbours of x

# of strongly vacant neighbours of x

1A =

0B@
P

y2
−!
Nx

1fξ(y)=1gP
y2
−!
Nx

1fξ(y)=0gP
y2
−!
Nx

1fξ(y)=0g

1CA
Lemma 2.2. The distribution of (Ox,Wx, Sx) is trinomial with d as parameter
for the number of trials and p,−!r1, −!q1 as parameters for the probabilities of being
initially infected, weakly healthy and strongly healthy respectively, i.e.

Pp

�
Ox = i,Wx = j, Sx = k

�
=

d!

i! j! k!
pi (−!r1)j (−!q1)k

for all i, j, k 2 f1, . . . dg such that i+ j + k = d and 0 otherwise.

Proof. The choice for the parameters for the probabilities is clear. The structure
of a trinomial distribution, instead, comes from the fact that the random variables

fξ(y) : y 2
−!
Nxg are indipendent. Indeed, the value of ξ(y) can only be in
uenced

by the values of the sites belonging to the (oriened) branch of
−!
Td which has y

as root and cleary if y1, y2 2
−!
Nxg are distinct, then their respective subtrees are

disjoint.

Remark 2.2. The above preposition is the �rst time we get to see why orienting
the tree is so useful for our analysis: on a nonoriented tree fξ(y) : y 2 Nxg would
not be indipendent, since the value of one ξ(y) could infuence the one of ξ(x),
which is relevant for the values of all the ξ(y)'s.

We then de�neWx to be the cluster of weakly healthy sites containing x, with
the understanding that Wx = ; if ξ(x) 6= 0. The following holds:
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Proposition 2.2. The set Wx is either:
• empty, with probability 1−−!r1
• the set of the vertices of a Galton-Watson tree, with probability −!r1

In the second case, the o�spring distribution of the Galton Watson tree is the
condition distribution of Wx given Sx < d− r.

Proof. The �rst point is immediate. Thus assume that we are in the case Wx 6= ;,
i.e. we condition on the event fξ(x) = 0g. But we also have that fξ(x) = 0g =
fη0(x) = 0g \ fSx � d− rg, because a healthy vertex in the initial con�guration
becomes infected (at a certain point) if and only if in the �nal con�guration
its infected (oriented) neighbours are at least r (by the de�nition of oriented
bootstrap dynamics with facilitating parameter r). Equivalently, no more than
d − r neighbours are still healthy in the �nal con�guration, i.e. no more than
d − r neighbours are strongly healthy. This proves that the �rst generation
of the branching process really has the desired distribution. For the successive
generations we can repeat the argument just presented because of the indipendence
guaranteed by the orientation, which has already been explained in the proof
of 2.2 on the preceding page and in remark 2.2 on the previous page.

As nice as this result is, it is not enough for us. Indeed, we are interested in
percolation of infected sites in the �nal con�guration and not in percolation of
weakly healthy sites. Of course the two phenomena are di�erent, because both
weakly healthy sites and initially infected sites concur in percolation of infected
sites in −!η1. Surprisingly enough, once again a branching process comes up! Of
course it is not the one described just above, and to construct we need a new
de�nition:

De�nition 2.2. Let x 2 V be a �xed given vertex of the tree. The local cluster of
infected vertices of x in −!η1, denoted by Lx, and the boundary of initially infected
vertices of Lx, denoted by Ox, are de�ned as follows:

• if ξ(x) = 0, then Lx := Ox = ;;
• if ξ(x) = 1, then Lx := Ox := f1g;
• if ξ(x) = 0, thenOx := fy 2 V nWx : y 2

−!
Nz for some z 2 Wx and ξ(y) = 1g

and Lx :=Wx [ Ox.

With this new notion, we are able to describe the whole connected component

of infected sites containing x in the �nal con�guration, which we denote by
−!
C1,

as follows:

if C0 := Lx
Cn+1 :=

[
y2On

[
z2
−!
Ny

Lz

O0 := Ox
On+1 :=

[
y2On

[
z2
−!
Ny

Oz then
−!
C1 =

[
n�0

Cn

The construction of the sets (Cn)n�0 and (On)n�0 is represented in �gure 2.3 on

the facing page, which also makes clear why the representation of
−!
C1 through

the sets Cn is correct.



2.2 Critical probability for percolation 29

x

y

Wx Ox
C1 nO1 O1

Figure 2.3: Cluster of infected vertices of x for oriented bootstrap percolation
on the 4-regular tree T3 (e.g. with facilitating parameter r = 2). All of the
edges are oriented, but we have drawn only some of the arrows for greater
clarity of the picture. Black dots, white dots and half white/half black dots
represent, respectively, initially infected, strongly healthy and weakly healthy
sites. Vertices which are in the less opaque green region are the ones of O0 = Ox.
Vertices in any green region are the ones of C0. Analogously, vertices in the
less opaque blue region are the ones of O1, whereas vertices in any blue region
are the ones of C1. The only vertex in the only red region is the only element
of O2 = C2. For every n � 3 we have O3 = C3 = ;. Finally, the whole cluster
of infected vertices of x in the �nal con�guration is the set of all vertices which
are in a green, blue or red region. Sites which we have left empty are the
ones whose state we do not care about: they are not relevant for the cluster
of infected vertices of x. In this case the cluster is �nite, i.e. the branching
process of proposition 2.3 does not survive.

Remark 2.3. Strictly speaking, everything we have described above depends on
the chosen vertex x. However, by the regularity of the tree, it is clear that the
quantities that we have just de�ned \behave in the same way" no matter which is
the vertex that we have chosen. For example, the distribution of the number of
vertices in the local cluster of infected vertices of x, i.e. the distribution of

��Ox

��,
is the same for every x 2 V .
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Proposition 2.3. The sets in the sequence (On)n�0 contain the members of
successive generations of a branching process with initial distribution given by

��Ox��
and o�spring distribution given by the sum of d i.i.d. copies of

��Ox��. In particular,��−!C1�� =1 if and only if this branching process survives.

Proof. We do the proof by looking at �gure 2.3, but this is just to �x ideas and it
is clear that what we are saying holds in the general case. Consider the vertex
x: it represents the root of the branching process. That the �rst generation has
distribution

��Ox�� is by de�nition, since we have de�ned the elements of the �rst
generation of the branching process exactly as the elements of Ox.

Now we have to check that o�spring distribution is the one of the statement.
In order to do so, we have to describe what is the distribution of every element
of the �rst generation, i.e. what is the distribution of every vertex in the more
opaque green region. By de�nition, each of this vertices will have as descendants
all of the vertices in Oz for each one of their oriented neighbours x. For example,
consider y in the �gure and denote by fz1, z2, z2g its three oriented neighbours.
One of them, say z1, has an empty boundary of initially infected vertices, i.e.
Oz1 = ;, whereas each of the other two has a boundary of initially infected
vertices containing three elements. Thus in the �gure the descendants of y are
the six vertex in the more opaque blue region. Their number is distributed as��Oz1��+

��Oz2��+
��Oz3��. However, consider the subtrees of T3 obtained by choosing

the connected component containing zi of the graph T3 with the edges (y, zi)
removed. By the choice of the orientation, the states of the vertices in each of
these subtree are indipendent by the state of the vertex y (and they are also
indipendent of the vertices not in their connected component). This means that
the random variables

��Oz1�� are indipendent. Moreover, by remark 2.3 on the
previous page, they are also identically distributed and with the same distribution
of the cardinality of the boundary of initially infected vertices of x. Summing
up, we have obtained that

��Oz1��+
��Oz2��+

��Oz3�� = d
��Ox�� in distribution, which is

what we wanted.

The last part of the proposition follows immediately by construction:
−!
C1 is

exactly the whole connected component of infected vertices of x.

The article [FS08] goes on computing explicitly Ep[Ox], since this is the crucial
quantity from which the extinction of the branching process depends (as we have
recalled in chapter one). This, together with some other arguments based on
some other results which hold in general for every branching process, allows one
to prove theorem 2.3 below. In this theorem we have also added a result from the
second part of [FS08], the one in which the results obtained for oriented trees are
carried over to nonoriented trees.

Theorem 2.3. Let 2 � r � (d− 1). Then the critical probability for percolation is
nontrivial for both the oriented and non oriented model. More precisely, we have:

0 < −!pc (Td, r) < pf (Td, r) and 0 < pc(Td, r) <
−!pc (Td, r)
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In particular, it is interesting to note that the critical probabilities for per-
colation in the oriented and nonoriented case are di�erent, whereas the critical
probabilities for full infection in the two cases coincide.

Let us make one �nal remark, for more details on which we refer again to
the usual article of this section. For some values of d and r, the in�nite clusters
of infected sites that can be observed in the regime between pc and pf are not
presente in the initial con�guration. This means that there are cases in which the
bootstrap dynamics, albeit not able to fully infect the graph, is still capable to
\grow" in�nite clusters.

References The results of this subsection are taken from [FS08]. As usual, we
have indulged in writing out explicitly all of the details of what we have decided
to present. Note that this article also uses oriented trees also to provide an
alternative proof of the nontriviality of the critical probability for full infection.
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Chapter 3

Bootstrap percolation on hyperbolic
lattices

In this last chapter we study bootstrap percolation on hyperbolic lattices, a
particular class of regular graphs embedded in the hyperbolic plane. After a
rigorous de�nition, we give an idea and precise references of how it is possible to
embed a speci�c kind of tree into them. Then we study the critical probability
for full infection: �rst by means of general results, which hold for a larger class
or nonamenable graphs, and then by means of the inequalities proved in chapter
one, exploiting the aforementioned embedding. We conclude with a few words on
pc and pu.

3.1 Hyperbolic Lattices

Before de�ning hyperbolic lattices, we spend a few words on the hyperbolic plane,
mainly to describe which of its many models we have chosen to use and to recall
some classical results that we will need later on.

3.1.1 Hyperbolic plane

The hyperbolic plane is an example (arguably one of the most important) of
non-Euclidean geometry. We de�ne it as the di�erentiable manifold with base set
D := fz 2 C : jzj < 1g, obvious topology and charts (the ones induced by R2) and
equipped with the Riemannian metric

ds2 = 4
dx2 + dy2

(1− x2 − y2)2
where z = x+ iy

This is also known as the Poincar�e disk model. Let us make a list of how the
basic geometric objects are represented in this model:

• points are the elements of the set D, the open unit disk of the Euclidean
plane;

• \points at in�nity" are the elements of the set ∂D := fz 2 C : jzj = 1g
• lines are the diameters of D and the intersection with D of circles in C;

33
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• the angle between two lines meeting at a point is the Euclidean angle between
the tangents (in the Euclidean sense) to their support.

These are all classical results, with many proofs. For instance, they can be derived
analitically from the de�nition of the metric (as it is also the case for the other
results presented just below). The last point in particular is the main advantage of
this model over the other possible ones. Indeed, it is the right feature to highlight
the symmetry of hyperbolic lattices, as shown in the pictures of this chapter. We
will need a few other reminders:

• the hyperbolic re
ection of the point M in a line l is represented by the
re
ection of M in the circle whose support is l (in the usual sense in C and
considering straight lines as circles of in�nite radius);

• hyperbolic circles in D are drawn as Euclidean circles contained in D, but
(careful!) the hyperbolic center of a hyperbolic circle does not coincide with
the one of the Euclidean circle which represent it;

• a horocycle is a curve whose normal (or perpendicular) geodesics all converge
asymptotically in the same direction (in the Euclidean plane there is analog
of such a curve); in the Poincar�e disk model it is represented by a circle
contained in the disk which touches its boundary, see �gure 3.1 (of course
the point where it touches the boundary circle is not part of the horocycle,
since it is not even a point of D: it is point at in�nity, as de�ned above;
nevertheless it can be thought of the hyperbolic center of the horocycle).

(a) Horocycle with
normal curves.

(b) Hyperbolic
triangle.

Figure 3.1: (a) An horocycle (in blue) and some of its normal geodesics
(in red). Incidentally, it can also be observed that the representation of the
geodesics (i.e. lines) are really represented in the way we have described above.
[Image by Claudio Rocchini, Wikipedia] (b) Simply an hyperbolic triangle.

A whole theory of hyperbolic trigonometry can be developed, but we will need
in particular the following formula, for which �gure 3.1 sets the notation:

cosh(a) =
cos(β) cos(γ) + cos(α)

sin(β) sin(γ)
(3.1)

References Of course there is a lot of literature on the hyperbolic plane. We
mention [Can+97] as a quick and modern introduction (with good bibliography)
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and [Nee97] for an intuitive approach. An axiomatic treatment can also be found
at the beginning of [Mar07], to which we refer a lot in the next few subsections.

3.1.2 Regular tilings of the plane

There are di�erent ways of constructing hyperbolic lattices. We choose a construc-
tive approach, which we start to develop by de�ning tilings more in general (i.e.
not necessarily in the hyperbolic space). Let us introduce some notation:

• S(Q) = flines that support the edges of Qg, where Q is a polygon;
• S(E) :=

S
Q2E S(Q), where E is a set of polygons;

• ρK(E) :=
S
k2K, Q2E ρk(Q), where K is a set of lines and ρk is the re
ection

map through the line k 2 K.

De�nition 3.1. Let P be a convex polygon and inductively de�ne (Tk)k�1 by
setting T0 := fPg and Tk+1 := ρS(Tk)(Tk). We call T � :=

S1
k=0 Tk the tessellation

or the tiling generated by P if:
• every point of the plane belongs to at least one polygon in T �;
• the interiors of the elements of T � are pairwise disjoint.

A tiling (or tessellation) is said to be regular if the starting polygon P is regular,
i.e. if P is equilateral and equiangular. We will denote a regular tiling by the
symbol H (v, f), where f is the number of edges of P and v is the number of
polygons around each vertex of P .

Remark 3.1. Observe that the above de�nition is indipendent of the geometry that
we consider, in the sense that T � can be constructed using lines and re
ections of
any given geometry of the plane.

Example 3.1 (Regular tilings of the Euclidean plane). In the Euclidean plane
there are essentially only three possible regular tilings (with \essentially" we mean
that every possible tiling is obtained from one of these three through an isometry).
Let us prove this. In the Euclidean plane, a regular polygon with f edges has
interior angles equal to π− 2π

f
. Thus we can have a regular tiling with v polygons

around each vertex of P only if

v π
�

1− 2

f

�
= 2π , (f − 2)(v − 2) = 4

The only integer solutions to this equation are (v, f) 2 f(3, 6), (4, 4), (6, 3)g and
each of them really corresponds to a regular tiling, which is respectively the
triangular, square and hexagonal lattice.

In this thesis we are interested in regular tilings of the hyperbolic plane. The
key di�erence with respect to Euclidean regular tilings is that in the hyperbolic
plane the interior angles of a regular polygon can assume any value α in the
interval ]0, π− 2π

f
[. Thus we can arrange v polygons around each vertex of P only

if

2π

v
2
i
0, π
�

1− 2

f

�h
, 2π

v
< π

�
1− 2

f

�
, (f − 2)(v − 2) > 4
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Figure 3.2: All the possible regular tilings in the Euclidean plane. From left
to right: hexagonal, square and triangular lattice.

Figure 3.3: Two regular tilings generated by taking P to be an (hyperbolic)
equilateral triangle: in our notation, from left to right, they are the tiling
H(7, 3) and H(13, 3). In particular, observe how the bigger triangle has a
smaller interior angle, thus resulting in a regular tiling with a higher value of v.
[Image by Tomotoshi Nishino]

This condition is also su�cient for the existence of a regular tiling. Informally, the
reason is that in the hyperbolic plane the size of the regular polygon P uniquely
determines the value of α (there are no homotheties of the hyperbolic plane) and
moreover, as the circum-radius of P increases from 0 to +1, the value α of the
interior angles decreases from π

(
1− 2

f

�
to 0. It is thus possible to adjust the size

of P so that the value α is exactly 2π
v

. A formal proof of what just described
can be given by subdividing the polygon P into triangles and using the Poincar�e
theorem on tessellations generated by a triangle, as done in [Mar07]. Figure 3.3
depicts two di�erent regular tilings of the hyperbolic plane and well explains why
in the hyperbolic plane there are in�nitely many distinct regular tilings.

De�nition 3.2. Let f , v be such that (f − 2)(v − 2) > 4. Consider the regular
tiling of the hyperbolic plane obtained by the regular polygon with f edges
and with v polygons around each vertex. The hyperbolic lattice H (v, f) is the
graph which has the vertices and the edges of this tiling as vertex and edge set
(we committing an abuse of notation in using the same symbol for tilings). In
particular that H (v, f) is a v-regular graph.

Recall that the dual graph of a plane graph G is a graph that has a vertex for
each face of G, an edge for each pair of faces in G that are separated from each
other by an edge and a self-loop when the same face appears on both sides of an
edge.
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Remark 3.2. It is immediate to see that the dual of the hyperbolic lattic H (v, f)
is the hyperbolic lattice H (f, v).

References There are di�erent approaches to the de�nition of hyperbolic lattices.
We have chosen to follow the one due to Margenstern, who has published a lot of
papers on the topic. The book [Mar07] is a good collection and synthesis of many
of them. In any case, a speci�c reference where one can �nd the de�nitions of
tilings (or tessellation) and the Poincar�e theorem is [Mar09]. Other approaches are
more algebric. A complete reference is this direction is the book [CM72]. A more
concise one can be found at the beginning of [RNO92]. One last remark about
the notation. It seems that the prevalent one adopted outside of the statistical
mechanics domain uses the Schl�a
i symbol fp, qg to denote the tilings made from
a regular polygons with p edges and q copies of it around every vertex. We have
decided ourselves for H (v, f) (as in [RNO92]) in order to avoid confusion with
the parameter p of the Bernoulli product measure.

3.1.3 Embedding of trees in hyperbolic lattices

In this subseciton we describe the embedding of a particular tree in the hyperbolic
lattice H (v, f). This embedding will allow us to study bootstrap percolation on
hyperbolic lattices using the results of the previous chapter.

The argument is based on the splitting method developed by Margenstern.
First of all we need some de�nitions, which in fact hold in a much more general
context than the one of regular tilings of the hyperbolic plane.

De�nition 3.3. Consider �nitely many sets S0, . . . , Sk of some geometric metric
space X which are supposed to be closed with non-empty interior, unbounded and
simply connected. Consider also �nitely many closed simply connected bounded
sets P0, . . . , Ph with h � k. We say that the Si's and Pl's constitute a basis of
splitting if and only if:

• X splits into �nitely many copies of S0,
• any Si splits into one copy of some Pl and �nitely many copies of Sj 's, where

copy means an isometric image, and where, in the second condition, the
copies may be of di�erent Sj's, Si being possibly included.

It is assumed that the interiors of the copies of Pl's and the copies of the Sj's are
pairwise disjoint. The set S0 is called the head of the basis and the Pl's are called
the generating tiles.

Consider a basis of splitting of X, if any. We recursively de�ne a tree Tsplit
which is associated with the basis as follows. First, we split S0 according to the
second condition of the de�nition. This gives us a copy of say P0 which we call
the root of Tsplit and which we call also the leading tile of S0. In the same way, by
the second condition of the de�nition, the splitting of each Si provides us with a
copy of some Pl which we call the leading tile of Si. The splitting provides us also
with ki regions, Si1 , . . . , Siki which enter the splitting of Si. The regions which
enter the splitting of S0 according to the second condition of the de�nition are
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called the regions of the generation 1. Assume that we have all the regions of
generation n: Sn1 , . . . , Snmn

. By de�nition, their leading tiles constitute the nodes
of the generation n. We split again these Sj's according to the second condition.
We obtain mn tiles which are called the tiles of the generation n + 1 and, for
each Snh

which is some Si, we have a splitting which is the isometric image of the
splitting of Si, as above indicated. We say that the leading tiles of these copies of
the splitting of Si are called the sons of the leading tile of Snh

. By de�nition, the
sons of the leading tile of Snh

belong to the generation n + 1. The union of all
the sons of the nodes of the generation n constitutes the nodes of the generation
n+ 1. This recursive process generates an in�nite tree with �nite branching. This
tree, Tsplit, is called the spanning tree of the splitting, where the splitting refers to
the basis of splitting S0, . . . , Sk.

In the case of hyperbolic tilings the situation is a bit easier, in the sense that
we will always have only one generating tile, i.e. h = 0 and the unique generating
tile P0 is the polygon P of de�nition 3.1 on page 35. We proceed to illustrate the
de�nition 3.3 on the preceding page of basis of splitting and the construction of
its associated tree through a speci�c example. We consider as metric space X the
hyperbolic plane and as generating tile the regular polygon P0 with �ve edges
and interior angles equal to π. As sets S0, . . . , Sk we consider just two sets (i.e.
k=1), namely S0 := Q, a quarter of the hyperbolic plane, and S1 := R3, which we
will de�ne shortly. First we split the hyperbolic plane into �nitely many (four)
copies of Q, as in the �rst point of de�nition 3.3. Now we consider one of these
copies and split it according to the second point of de�nition 3.3. This is what is
depicted in �gure 3.4. As \copy of some Pl" we simply obtain a copy of P0, which

Figure 3.4: The splitting of Q which is associated to the pentagrid. The
construction of the spanning tree is highlighted. [Image taken from [Mar06]]

constitutes the root of the tree of the splitting and the leading tile of Q (recall
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that we have only one Pl). As \�nitely many copies of Sj 's" we obtain two copies
of Q (called R1 and R2 in the �gure) and one copy of R3, which we de�ne to be
the complement in Q of P0 [ R1 [ R2. It is now clear why we have chosen the
letter R: sets denoted with this letter represent what we have called "regions\ in
the construction of the tree of the splitting (and we have just listed all of the ones
in generation 1). In order to complete the description of the second point of the
de�nition of basis of splitting, what is left to do is to describe how the region R3

splits (for the regions R1 and R2 we can obviously repeat what just done, since
they are copies of Q). As leading tile it has a copy of P0(it must have, since there
is only this possibility) and as regions is has a copy of Q and a copy of R3, which
in the �gure are called respectively S1 and S2. With this we have concluded the
description of the two properties of the basis of the splitting and referred to the
terminology used in the general construction of the tree of the splitting. In the
�gure one can see two further steps of the recursion by which the tree is de�ned.

One last de�nition before stating the embedding theorem:

De�nition 3.4. We say that a tiling of X is combinatoric if it has a basis of
splitting and if the spanning tree of the splitting yields exactly the restriction of
the tiling to S0, where S0 is the head of the basis.

All hyperbolic tilings belong to the class of tilings described by the above
de�nition, as we will see just below. In this thesis we do not really have a need to
study general combinatoric tilings. We will be content to say that if a tiling is
combinatoric, then it is possible to associate a polynomial to the spanning tree of
the splitting and use it to study the tiling in an algorithmic way.

Theorem 3.1. Consider the hyperbolic lattice H (v, f). If f > 4, then there exist
a spanning tree of the lattice such that each vertex of the tree has degree v or v− 1.
If f = 4, then there exist a spanning tree of the lattice such that each vertex of the
tree has degree v − 1 or v − 2.

Proof. Given a certain hyperbolic lattice H (v, f), consider its associated tiling.
Suppose that we have proved that this tiling admits a basis of splitting and is
combinatoric. Then we can construct a spanning tree of the splitting and this is
exactly a spanning tree of the dual graph of the initial hyperbolic lattice. In other
words, we have obtained a spanning tree of the lattice H (f, v) (recall remark 3.2
on page 37).

Thus, in order to complete the proof, what is left to show is that every regular
tiling of the hyperbolic plane admits a basis of splitting and is combinatoric. This
is done by Margenstern and we refer to the paragraph at the end of this subsection
for some more comments and precise references.

Corollary 3.1. If f > 4 (respectively f = 4), it is possible to cover every
hyperbolic lattice H (v, f) with a collection of (possibly overlapping) embedded
(v − 1)- (respectively (v − 2))-trees.

Proof. We consider a spanning tree for the lattice H (v, f) with f > 4 (respectively
f = 4) given by theorem 3.1. It clearly contains a (v − 1)- (respectively (v − 2))-
regular subtree. This subtree is not spanning. By the symmetry properties of
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hyperbolic lattices, for every given vertex not in this subtree there exist another
spanning tree of H (v, f) which admits a subtree of the same regularity and
that contains the given vertex. Thus we can achieve the claim with a countable
collection of such subtrees.

References There are several works by Margenstern which explain how to obtain
a basis of splitting for the tiling H (v, f) (as explained in a previous \references"
paragraph, what he denotes by fp, qg what we have de�ned to be the tiling
H (q, p)). In the earlier papers, speci�c values of v and f are considered and very
concretely analyzed (e.g. the penta- and the heptagrid). Depending on whether v
is even or not, the ideas needed are susbstantially di�erent. A concise summary
of the case v even can be found in [Mar09], whereas [Mar07] is a more extended
presentation. Both of the above references also contain proofs of the case v odd,
albeit di�erent ones. The example of the pentagrid presented here is taken from
[Mar06], but it is also present in other works (always by Margenstern).

3.2 Critical probability for full infection

In this section we prove that the critical probability for full infection on hyperbolic
lattices is nontrivial, except for a few speci�c values of the parameters r, v and
f . We start by analyzing what happens when we try to apply some very general
results for nonamenable graphs: this already gives some interesting results. We
then proceed to a more tailored approach, based on the study of the model on
trees, presented in the second chapter, which improves the aforementioned results.

Remark 3.3. Hyperbolic lattices are transitive. This follows immediately from
the fact that they can be seen as the Cayley graph of a �nitely generated in�nite
group (as shown for example in [RNO92], but also see the other references at the
end of section 3.1.2 on page 35). In particular, this means that the hypotheses of
lemma 1.1 on page 8 are satis�ed and so hyperbolic lattices belong to the class of
graphs for which all of the de�nitions that we have given in the �rst chapter are
well posed.

Let us also remark that for the remaining of this chapter we will only consider
2 � r � (v − 1), as already done with regular trees. Indeed, the trivial values
of the facilitating parameter r = 1 and r = 2 have already been dealt with in
remark 1.6 on page 12.

3.2.1 Approach for general nonamenable graphs

As announced, in this section we apply some general results to hyperbolic graphs
and see what they yield. In particular, here we do not need in any way the
embedding of trees described in the previous section.
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Upper bound

We recall from lemma 1.5 on page 16 that we can �nd an upper bound for the
critical probability for full infection of the bootstrap percolation model using the
critical probability (for percolation) of the Bernoulli site percolation model. More
precisely, in the present setting lemma 1.5 states that for any hyperbolic lattice in
which there are no �nite (r − 1)-forts we have

pf
(
H (v, f), r

�
� 1− pc

(
H (v, f)

�
(recall that as usual we are only considering nontrivial values of r, i.e. 2 � r � v−1).
It is known that pc

(
H (v, f)

�
> 0 (see [BS01]), so we would have a nontrivial

upper bound on pf
(
H (v, f), r

�
if we could show that H(v, f) does not have �nite

(r − 1)-forts. This is exactly what the following proposition deals with.

Proposition 3.1. On the hyperbolic lattice H (v, f) �nite (r − 1)-forts exist
with positive probability only when r = v − 1, for all values of (v, f), and when
r = v − 2 for f = 3 irrespective of the value of v. (Also here we are omitting the
noninteresting cases r = 1 and r = v).

Proof. First we prove that (r−1)-forts really exist for the values of the parameters
of the proposition.

Fix any hyperbolic lattic H (v, f) and set r = v − 1. The subset of V =
V
(
H (v, f)

�
containing exactly the vertices of one of its elementary polygon is an

(r − 1) = (v − 2)-fort: indeed, every vertex in this subset has outdegree exactly
equal to (v − 2), thus satisfying the de�nition of (v − 2)-fort. Moreover, the event
\there exist one of the elementary polygons of the lattice with all healthy vertices"
clearly has strictly positive probability. For the second case, �x any hyperbolic
lattic of the type H (v, 3) and set r = v − 2. The subset of V containing exactly
one �xed vertex and all of its neighbours is an (r − 1) = (v − 3)-fort: indeed, the
�xed vertex has outdegree 0 and every other vertex in this subset has outdegree
(v − 3). The event \there exist one such subset of V with all healthy vertices"
again has strictly positive probability. Figure 3.5 depicts an example of these two
type of forts.

Let us now prove that for all other values of the parameters there can not
be (with strictly positive probability) any (r − 1)-forts. First of all we make the
trivial observation that a subset of V which is not contained in any horodisk
must necessarily be in�nite (if it was �nite, than it would be contained in a ball
with �nite radius and thus also in an appropriately chosen horodisk). Thus we
proceed to prove that for all the values of the parameters not discussed above,
any (r − 1)-fort is not contained in any horodisk and hence must be in�nite. The
problem can be reduced to considering only the \theoretical smallest" possible
(r−1)-fort, which is a subset of V with regular boundary1 such that the vertices of

1By boundary we mean what is usually called inner boundary. Rigorously, this means the
following. We consider the fort as a subgraph of H, with vertices given by the vertices of the
fort and with edges given by the set of all edges of H which connect two vertices of the fort.
Then the inner boundary of the fort is the set of vertices of the fort which have a common edge
with a vertex not in the fort.
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(a) (b)

Figure 3.5: (a) We consider bootstrap percolation with facilitating parameter
r = v−1 on the graph H(3, 7). The red dots are the vertices of a (v−2) = 1-fort
which happens with nonzero probability. (b) We consider bootstrap percolation
with facilitating parameter r = v − 2 on the graph H(7, 3). The red dots are
the vertices of a (v − 3) = 4-fort which happens with nonzero probability.

the boundary have outdegree r− 1 and are incident to exactly two other boundary
vertices (and thus incident to v − r − 2 vertices which belong to the fort but not
to its boundary). Such a fort may in fact not be feasible, but it does not matter:
if we prove that it can not be contained in any horodisk, then a fortiori no other
(r − 1)-fort can be contained in any horodisk.

Moreover, in doing so, it is not restrictive to just consider horodisks whose
boundary contains a vertex of the boundary of the (r − 1)-fort. Indeed, denote

with eV a generic (r− 1)-fort. If eV is not contained in any horodisk, of course it is
not contained in any horodisk whose boundary contains a vertex of the boundary
of eV . Viceversa, if eV is contained in a certain horodisk, then we can restrict this
horodisk until its boundary touches a vertex of the boundary of eV .

Let us �nally present the argument. Assume by contradiction that the
\theoretical smallest" possible (r − 1)-fort is �nite. Denote by x a vertex of its
boundary and assume that x is also contained in the boundary of a horodisk
containing the fort. Choose an edge connecting x to one of its two neighbours
which are also on the boundary and denote by l its length. Moreover, denote by
l� the length of the segment which lies on the line that supports the chosen edge
and whose extrema are x itself and the point of intersection between this line and
the horocycle. Since we are assuming the fort to be �nite, it must necessarily be
l < l�. We now compute l and l� explicitly by means of formula 3.1 on page 34,
using the triangles represented in �gure 3.6 on the facing page. Please note that
we have drawn the two triangles on two di�erent edges of the polygon, but this
was done for the sole purpose of making the drawing less intricate: we are really
thinking about the two segments of length l and l� as supported by the same line,
i.e. as surmounting, with one longer than the other. We obtain:

cosh(l) =
cos2

(
π
v

�
+ cos

(
2π
f

�
sin2

(
π
v

� cosh(l�) =
cos2

( (v−r)π
v

�
+ 1

sin2
( (v−r)π

v

�
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Figure 3.6: We consider bootstrap percolation with facilitating parameter
r = 3 on the graph H(5, 6). Some of the vertices of the \theoretical smallest"
(r−1) = 2 -fort are coloured in red. The horodisk which should (by contradiction,
and hence does not) contain it is coloured in light blue. The angles of the green
triangle adjacent to the edge of length l are computed as half the measure of the
angle of the regular polygon which generates the tiling, i.e. by solving for α the
equation α v = 2π (which comes from observing that x is the vertex of v distinct
angles of equal measure). The angle opposite to the edge of length l, instead, is
computed considering that a regular polygon with f edges can be partitioned
in f equilateral triangles, i.e. by solving for β the equation βf = 2π. We have
allowed ourselves to spend so many words about this because in computing
angles in the hyperbolic plane a lot of the usual formulas do not work: one
must remember that the sum of the angles of a triangle is always less than π
(and in fact proportional to de�cit of its angle sum from π)! The angles of the
red triangle are computed in a similar way, using the description of \theoretical
smallest" (r − 1)-fort that we have given in the proof. Observe that the angle
opposite to the edge of length l� has measure zero, again something that can
only happen in the hyperbolic plane.

It is not so hard to check (in any case Mathematica can help) that for r � v+1
2

these two formulas give cosh(l�) < cosh(l), i.e. l� < l. As explained above, this is
a contradiction with the assumption that the (r − 1)-fort is �nite. What about
the other values of r?

It is clear that the v-regularity of the hyperbolic lattice H(v, f) implies that
the angle between two edges connecting a boundary vertex of an (r − 1)-fort to
its nearest neighbours on the boundary is larger than 2π

v
(v − r). If 2π

v
(v − r) > π,

i.e. r < v
2
, then the angle at each boundary vertex is strictly larger than π and so,

by convexity argument, the fort must be in�nite. Thus we have proved that no
�nite (r − 1)-fort can exist also for the values of the parameters for which we did
not reach a contradiction with the inequality above. Since we have now covered
all possible cases, the proof is concluded.

The following corollary sums up the conclusion of the reasoning preceding the
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above proposition:

Corollary 3.2 (Nontrivial upper bound). Let 2 � r � (v − 1). We have
pf
(
H(v, f), r

�
< 1 if

• f = 3 and r � v − 3;
• f � 4 and r � v − 2

Lower bound

Now let us try to �nd a nontrivial lower bound. First of all we need the following
de�nition:

De�nition 3.5. An in�nite graph G has the anchored expansion property if for
some �xed vertex x 2 V the anchored Cheeger constant is positive:

i�(G) := lim inf

�
j∂eSj
jSj

: x 2 S � V, S is �nite and connected

�
> 0

We are interested in the above constant because of the following result, which
relates it to bootstrap percolation:

Proposition 3.2. Let Gd be a d-regular graph. If i�(Gd)+2r > d, then pf (Gd, r) >
0. In particular, if Gd has the anchored expansion property, then pf (Gd, dd/2e) > 0.

For transitive graphs (and by remark 3.3 on page 40 hyperbolic lattices are
transitive) the anchored Cheeger constant is the same as the more common edge
isoperimetric constant

�(G) := inf

�
j∂eSj
jSj

: ; 6= S � V, S is �nite

�
In general it is not clear how to compute either one of these constants and one
usually relies on estimates. But in our case we can do it explicitly!

Proposition 3.3. Let G be an in�nite plane regular graph with regular dual G�.
Denote by d the degree of the vertices of G and by d� the degree of the vertices of
G�. Then:

�(G) = (d− 2)

s
1− 4

(d− 2)(d� − 2)

Since the dual of the hyperbolic lattice H (v, f) is the hyperbolic lattice
H (f, v) (recall remark 3.2 on page 37) and both are regular, of degree v and f
respectively, we obtain that:

�
(
H (v, f)

�
= (v − 2)

s
1− 4

(v − 2)(f − 2)

Applying theorem 3.2 we obtain that pf
(
H (v, f), r

�
> 0 as soon as

(v − 2)

s
1− 4

(v − 2)(f − 2)
+ 2r > v (3.2)
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This immediately yields a non trivial lower bound for r � dv
2
e and any f . We can

do somewhat better with the exact solutions of inequality 3.2, which Mathematica
is able to compute symbolically:

Corollary 3.3 (Nontrivial lower bound). Let 2 � r � (v − 1). We have 0 <
pf
(
H(v, f), r

�
if

• f = 3, v � 7 and r � v
2
− 1

2

p
12− 8v + v2;

• f = 4 and v � 5;
• f 2 f5, 6g and v � 4;
• f � 7, v = 3, r = 2 or f � 7, v � 4.

Note how both the regularity and the nonamenability properties of hyperbolic
lattices were needed to be able to use the results which have lead to the previous
corollary.

Finally, considering the \intersection" of the values of the parameters for
which we obtain both a nontrivial upper bound and a nontrivial lower bound, we
obtain:

Corollary 3.4. Let H(v, f) be an hyperbolic lattice and let 2 � r � (v− 1). Then
0 < pf

(
H (v, f), r

�
< 1 if

• f = 3, v � 7 and v
2
− 1

2

p
12− 8v + v2 � r � (v − 3) (note that the set

of all r which satisfy the last condition is nonempty already for v � 6, so
everything is well posed);

• all the last three cases of 3.3 with the additional condition r � (v − 2) (and
so excluding the case v = 3).

References Bernoulli site percolation on hyperbolic graphs is studied in [BS01].
For the discussion on �nite (r − 1)-forts on hyperbolic lattices, instead, we refer
to the appendix of [Sau+10] (from which we have taken and edited �gure 3.6).
The use of the anchored expansion property for the study of pf on nonamenable
graphs (i.e. a proof of proposition 3.2 on the facing page) is found in [BPP06].
Finally, the computation of the edge isoperimetric constant (proposition 3.3 on
the preceding page) is performed in [LP17]. As far as we know, the application of
these results to hyperbolic lattices is not present in the existing literature.

3.2.2 Approach using embedded trees

As previously announced, we present here another approach to the study of the
critical probability for full infection on hyperbolic lattices, which allows to prove
the nontriviality of pf(H (v, f), r) for a larger class of values of the parameters
v, f and r (with respect to what already found in the previous section). We
will use the general inequalities for boostrap percolation of 1.2.1 on page 13, the
embedding of trees in hyperbolic lattices described in 3.1.3 on page 37 and the
result on the critical probability of boostrap percolation proved in 2.1.2 on page 22.
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Theorem 3.2. Let 2 � r � (v − 1) and denote by G = H (v, f) an hyperbolic
lattice. If f � 5, we have

8v � 5, 8 3 � r � v − 2 0 < pf (G, r) < 1

Instead, if f = 4 we have

8v � 7, 8 4 � r � v − 3 0 < pf (G, r) < 1

Proof. First let us make a remark. In both cases, the bounds from below on v
only serve to ensure that we are considering meaningful values of r. However,
apart from this, they play no role in the proof.

We start by considering the case f � 5 and by proving that for r � 3 the
critical probability pf (G, r) is strictly greater than 0. Using �rst the equivalence
with the model with blocking parameter (G is a v-regular graph) and then the
general inequality of lemma 1.2 on page 13, we obtain:

pf (G, r) = 1− �pf (G, v − r + 1) � 1− �pf ( eG, v − r + 1)

where eG is a v− 1-regular subtree of the spanning tree constructed in theorem 3.1
on page 39. Using the result on the nontriviality of critical probability for regular
trees (theorem 2.2 on page 22) with d + 1 = v − 1, we further obtain that

�pf( eG, v − r + 1) > 0 if v − r + 1 � v − 2, namely if r � 3. Plugging this in the
above equality we conclude this �rst part of the proof.

Now we show that for r � v − 2 the critical probability pf(G, r) is strictly

smaller than 1. We consider a colletion ( eGi)i � 1 of (v − 1)-regular trees which
covers the whole lattice G. We can then use the general inequality of lemma 1.3
on page 14 on the subgraph of G given by

S
i
eGi, which by construction satisties

the hypothesis of containing all the vertices of G. This gives the �rst inequality
in the following

pf (G, r) � pf

�[
i

eGi, r

�
� sup

i
fpf ( eGi, r)g = pf (Tv−2, r)

The second equality comes from the obvious generalization of lemma 1.4 on page 14
to a countable number of graphs, whereas the equality comes from the fact that
in our case all eGi are (v − 1)-regular trees. Using again the result on the non
triviality of critical probability for regular trees, we obtain that pf(G, r) < 1 if
r � v − 2.

The proof for f = 4 is done exactly in the same way: the only thing that
changes is that in this case the embedded trees are of lower degree, as stated in
theorem 3.1 on page 39.

References The content of this subsection is essentially a rewriting of one of
the results of [Sau+10]. It is interesting to note that in this same work a further
improvement of theorem 3.2 on the previous page is presented. It consists in
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studying a system of recurrence equations for certain probabilities de�ned directly
on the embedded tree of 3.1 on page 39, without cutting some of its edges to make
it regular. A numerical solution of this system allows to claim the nontriviality of
pf . We have decided not to present it here because it seems to be a very speci�c
result: a priori, for all the possible values of v and f a new system of equations
should be written and (numerically) solved.

3.3 Other critical probabilities

In order to simplify the notation, in this section we set H = H(v, f). Unless
otherwise stated, the values of v, f and of the parameter r are assumed to be
arbitrary, as long as pf (H, r) is nontrivial (e.g. they could be as in the hypothesis
of theorem 3.2 on page 45). We dedicate this section to the study of the other
critical probabilites that we have de�ned in the �rst chapter, i.e. pc(H, r) and
pu(H, r).

The results of the previous section imply that pc(H, r) and pu(H, r) are
bounded away from one and so for hyperbolic lattices we can improve the diagram
presented in 1.1.4 on page 12 in the following way:

0 1pc(H, r) pu(H, r) pf (H, r)

We remind that the dotted line represents the region in which we do not (yet)
know what happens, i.e. we do not know if some of the critical values for the
parameter p depicted above are in fact zero or the same value (except for pf (H, r),
which we know to be away from 0).

We start our discussion by proving a lemma which gives an upper bound on
the critical probability for percolation in terms of a subgraph of the initial graph,
analogously to what already done in lemma 1.2 on page 13.

Lemma 3.1. Let G be a general graph (i.e. G is as in the �rst chapter) and

let eG be one of its subgraphs. We consider boostrap percolation with the same
facilitating parameter r on both of these graphs. Then:

pc(G, r) � pc( eG, r)
Proof. It is almost obvious. Suppose that we have a �nal con�guration in eG which
has at least one in�nite connected component of infected sites. Then it will be
an in�nite connected component of infected sites also when considered in G, no
matter the value (healthy or infected) of the sites of G which are not in eG. Indeed,

for any given vertex of eG, the number of its infected neighbours is less then or
equal to the number of its infected neighbours in G. Informally, we could say that
it is easier to percolate in G than in eG. This means exactly that for every p we
have θ

eG
c (p) � θGc (p), which implies the thesis.

The following is an attempt at proving the nontriviality of the critical proba-
bility for percolation trying to use the same technique which was successful in the
problem of full infection.
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Proposition 3.4. Let 2 � r � (v − 1) and consider the hyperbolic lattice H(v, f).
If f > 4 the critical probability for percolation is nontrivial, i.e. we have that
0 < pc(H(v, f), r) < pf (H(v, f), r).

Proof. As showed in the proof of 3.1 on page 39, if follows from theorem 3.1 that
H(v, f) contains a (v − 1)-regular tree Tv−1 as a subgraph (this is where we use
the hypothesis f > 4). Thus the following chain of inequalities holds:

pc
(
H (v, f), r − 1

� (a)

� pc
(
Tv−1, r − 1

� (b)
< pf

(
Tv−1, r − 1

� (c)

� pf
(
H (v, f), r

�
where (a) comes from lemma 3.1 just above, (b) from the nontriviality of the
critical probability for trees stated in 2.3 on page 30 and (c) from inequality 1.5
on page 14 (inside remark 1.8).

Sadly the facilitating parameter of the LHS is di�erent from the one of the
RHS.

Open questions We recall that in chapter one we have also de�ned the critical
probability for uniqueness. Interesting open questions are whether or not the
critical probabilities for percolation and uniqueness are nontrivial. At the time
of writing, there is no literature on the triviality or nontriviality of pc and pu for
bootstrap percolation on hyperbolic lattices. However the matter has been settled
for Bernoulli site percolation in the article [BS01]. In this direction also the very
recent [GL22] is of interest. We stress one more time that it is very likely that a
successful approach to this question is going to be di�erent from the techniques
which are usually employed for bootstrap percolation in the Euclidean setting.
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