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Abstract

Data Petri have important applications especially within concurrent and discrete-event systems.
To faithful represent a system, a DPN must respect the Soundness properties, i.e. those properties that
guarantee the proper functioning of the system. In a system a series of events can occur in a certain
order and to be correct we must be sure that no possible combination of events can lead to inconsistent
results.

Data Petri Nets are an extension of standard Petri Nets work, with data and concepts of constraint
programming. While in basic petri nets the transitions are limited to consuming tokens from the
incoming place and adding them to the outgoing place, in the DPN a constraint will be represented in
the transition and the task of our program is to verify whether this constraint will always be respected,
will never be respected or whether in some cases it will be respected and in others not.

In logic programming, constraints can be of many types, but in this thesis we will only deal with
logical constraints that use one of the six relational operators (=,#,>,<, >, <) which will relate a
variable to a constant, or a variable to another variable. The domain of these variables is the set of
real numbers R or the set of boolean values, true and false. After defining the field of application it is
essential to find a way to verify the soundness of the system and to do this we proceed as recently
proposed by Felli et al. [1]: with the construction of the Constraint Graph. Through the implementa-
tion of the algorithms that are detailed in this thesis it is possible to verify the soundness of a DPN,
knowing that DPN and Constraint Graph are related to each other through the obs-simulation, so if
the Constraint Graph is data-aware sound, then the DPN is also data-aware sound.
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Part 1

Petri Nets






Introduction

Soundness of Data Petri Net

Petri nets are created to represent a discrete distributed system. A variant of the classic Petri nets
is represented by the Petri nets extended with data. This variant introduces the use of data where
transitions are governed by guards, i.e. conditions that express a series of constraints on the values of
variables. The conditions we consider the variable - constant case or the variable - variable case. In this
work both types of constraints will be treated and each variable can be read or written. In the case of a
variable in writing all the previous constraints will be removed, while in reading it will verify that the
new constraint added keeps the set of constraints satisfiable. Verification of the Soundness property in
DPN are an infinite state systems, and thus cannot be verified by enumeration of the states. For this
reason, a possible solution is to generate the Constraint Graph for which the Soundness properties
will have an outcome equivalent to those of the DPN, but it is a finite structure [1]. This document
shows the various steps that have been followed to implement of the Constraint Graph, starting
first from a theoretical analysis of the classic Petri Nets and then from the subsequent extension
with data. The three properties that guarantee the Data-Aware Soundness and the implementation
of the algorithms to generate the Constraint Graph will be exposed later. The starting point is the
Paper Soundness Verification of Decision-Aware Process Models with Variable-to-Variable conditions
(Marco Montali, Massimiliano De Leoni and Paolo Felli) in which the theoretical elements for the
implementation of this work are explained. Soundness verification algorithm is implemented with the
Java programming language and structured with a graphical interface so as to be able to view the
DPNs and the subsequent transformation into a Constraint Graph. Some operations required the use
of constraint handlers to compute the satisfiability of constraints or the extension of constraints with
new implied constraints (the saturation operation). This was possible thanks to two types of Solver:
the Constraint Solver and SMT Solver. Initially the project was implemented with the Constraint
Solver, but then, given the strong inefficiency on large DPNs, we switched to SMT Solvers which are
more efficient. Choco Solver was used as CS, while Z3 was used as SMT. An interesting aspect was
comparing the time taken by these two types of Solver for medium-large sized examples. Finally, for
the generation of test examples, the ProM software was used which is able to process files in .pnml
format, i.e. a file expressed in XML language which allows you to define petri nets. In the last part the
part relating to the generation of both random and non-random DPN is managed and is tested on
an increasing number of nodes. Large case tests also consider the size of the constraint sets and the
number of variables in them.






CHAPTER 1

Introduction to standard Petri nets

In this chapter, standard Petri nets are introduced and then extended with data. The functioning of the Data
Petri Net includes all the rules foreseen by the Petri nets, for this reason the first step will be to know well all the
rules that characterize a Petri net in order to then be able to study its extensions. The objective of this chapter is
to be a summary of all the preliminary concepts need for the implementation of the project.

1.1 Petri Nets

The applications and theory within Petri nets began with C.A. Petri in the early 1960s from
which they take their name. Since then this area has been greatly developed both in theory and in
applications, particularly for its usefulness in identifying basic aspects of concurrent systems from
both a mathematical and conceptual point of view. In the context of Distributed Systems, Petri Nets
are often used to describe the structure of a distributed system as a graph. The graph represented is
bipartite, i.e. composed of two types of nodes: Places and Transitions, and each node of one type can
only have nodes of the other type connected by arcs. An example of Petri Net is shown in Figure 1.1.

The Places are graphically represented by white circles, while the transitions by rectangles. Each
Place can have Tokens inside it, represented by a black circle inside the Places.

Figure 1.1: An example of Petri Net
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1.2 Formal Definition of Petri Net

A Petri Net is defined by a triple (P,T,F) as Rozenberg et al. shows in [5] where

e P: Places of the Petri Net, represented by a circle;
» T :Transition of the Petri Net, represented by a Rectangle;

* F: Arcs of the Petri Net, they can connect a Transition to a Place or viceversa and graphically
represented by arrows. Formally it can be represented by the notation F C (P x T) U (T x P).

and the following properties are respected:

* for every t € T there exists p,q € P such that (p,t),(t,q) € F
e foreveryt € Tand p,q € P, if (p,t),(t,q) € F, thenp # q.

We define the set X as the elements of the Petri Net and formally X =P U T. a Net N = (P, T,F) can in
fact be seen as a directed graph Gy: the nodes of Gy are the elements of X and there is an edge from
two elements x to y iff (x,y) € F. Thus, the reflexive and transitive closure F* and the transitive closure
F' indicate the paths in Gy: (x, y) € F* iff there is a (possibly empty) directed path from x to y, and (x,
y) € FT iff there is a nonempty directed path from x to y.

The sets of places, transitions and arcs of a Petri Net N are defined respectively by Sy, Ty and Fy.
In a Petri Net there are also the sets of pre-set (°x) and post-set (x*). Pre-set is defined by *x = {y € N

| (yx) € Fn, while post-set is defined by x* = {y € N | (x,y) € Fy}. In Figure 1.1 the pre-set of T2 is
given by p2,p3, while the post set of P3 is T2. The other properties that are obtained are properties
that derive from the properties of graphs such as the concept of directed path or strongly connected
component. A directed path of a net is a sequence of elements (xp ... X;) where the starting element is
xp and the final element is xx, formally a sequence of elements satisfying x; € x*;_1 for eachi (1 <i <
k). If an element is isolated, then *x = x* = . In Figure 1.1 the sequence P1 - T1 - P3 - T2 - P4 is a path
with starting element P1 and final element P4. An undirected path is a non-empty sequence (xg ... xy)
of elements satisfying x; € *x;—1 U x ®;—1 for eachi (1 <1i < k). The starting element is xo and the final
element is x;. A Petri Net is strongly connected if there exists a directed path for each two elements
of the net, while is weakly connected if there exists an undirected path for each two elements of the
net. A weakly connected net is strongly connected if and only if for each directed arc (x,y) there is a
directed path leading from y to x.

1.3 Transition Firing and Marking

The states of a Petri Net are defined by the concept of marking. State changes occur within the
network which are caused by the occurrences of transitions. A marking of a network N is a function
that maps each place to the number of tokens in the place. Formally the function is defined as follows,
m: Sy — NN where N ={0,1,2,3, ...}. The null marking is the marking that maps each place to the value
0. From the marking it is possible to define the concept of Transition Firing: a transition (t) is enabled
by a marking m if m marks all the places in *t. Its occurrence transforms m into the marking m’, which
is defined for each place s by m’(s) =

m(s) - lifse®t-t*
m(s) + lifs e t®*—°*t
m(s) otherwise
A marking is called dead if enables no transition of N. An example of dead marking is the null
marking since a transition always requires at least one token from incoming places.
Given m, marking of a Petri Net, a finite sequence of transitions (3, ..., t) is called a finite sequence
of occurrences enabled by m if there are markings (m; , my, ... , my) such that:

t t t
m—1>m1—2>...—k>mk
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Transition can fire Transition not enabled

o O—

Figure 1.2: An Example of Transition Firing

A sequence of transitions is simplified with o = ty, tp, ... t;. A marking m’ is said to be reachable

from a marking m if there is a finite sequence m % m'. A Petri Net can also be unlimited, i.e. admitting
an infinite sequence of transition occurrences. From this definition we define the following properties:

e If there is a finite occurrence sequence (¢) which originates in m and destination in m” and m’
enables an occurrence sequence (¢)’ then o ¢’ is also enabled to m.

¢ if there is an occurrence sequence ¢ that goes from m to m” and from 1 to I’ then m’(s) - m(s) =
I'(s) - I(s) for each place s.

* An infinite transition sequence is enabled for marking m if and only if every finite prefix of the
sequence is enabled for m.

e if m and | are markings satisfying m(s) > 1(s) for every place s, every occurrence sequence
enabled in m is also enabled in m.

In each Petri Net there is an initial and final marking, usually represented graphically by the
number of tokens present in each place respectively in an initial and final configuration. An occurrence
sequence of a marked net must be enabled by the initial marking and thus the reachable marking set
is determined by the set of markings reachable by the initial marking. An example of Transition Firing
is shown in Figure 1.2 .

1.4 Boundary of a Petri Net

A Place of a petri net is said to be k-limited if in each reachable marking it contains at most k
tokens, so in this case the net is said to be bounded. In formal terms, a Petri Net is said to be bounded
with bound b if m(s) < b for each reachable marking m, i.e. if all its places are b-bounded. If k = 1
then the network is defined as binary or safe, in fact each place can have one token or none. A binary
network generally works like a finite state automaton. In case the network is not k-limited then it is
said to be unlimited.

An example of an unlimited Petri Net is shown in Figure 1.3 .

1.5 Construction of the reachability set of a Petri Net

The reachability properties of a Petri Net can be analyzed using the reachability tree. This data
structure is built using a depth-first logic in which the root node represents the initial marking
and at each level k the markings reachable in k steps are represented. Markings that no longer
enable transitions or that have already been visited are called leaf nodes. When a leaf is reached, a
backtracking operation is possibly performed in case there are still markings to visit. If the Petri net is
unbounded then the reachability tree is infinite and therefore the algorithm that generates it will not
have a termination. So to solve this problem we can use the Coverage Tree data structure, used to
represent unlimited petri nets. Instead of assigning a different token value for each Place, you can
check in which Place there is an unlimited number of tokens and replace the number with a variable
(usually w ) in this way it is possible to algorithmically construct the tree without an infinite loop.
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@

Figure 1.3: "Example of Unlimited Petri Net

Figure 1.4: Example of Conflict

1.6 Particular structures of Petri nets

* Conflict: Case in which from a Place there are two outgoing arcs towards two transitions, but
only one of the two can trigger. In this case the classic decision criterion is to choose the transition
in a non-deterministic way (Figure 1.4)

* Concurrency + Synchronization: Case in which two transitions which have no input point in
common are both enabled and are followed by output points which are also input points for a
common transition. (Figure 1.5)

* Confusion: Case where two competing transitions and both conflicting with other third transi-
tions (Figure 1.6)

1.7 Soundness of a Petri Net

To guarantee the Soundness of a Petri Net it is necessary to respect the following properties:

¢ Unboundness : there is no bound on the number of tokens that a place can hold, in particular a
Finite Marked Petri Net is bounded if and only and there is a bound b such that all its places are
b-bounded and therefore this property fails for infinite nets and you can’t verify the soundness .

* Deadlocks and Livelocks : there’s a situation when you cannot reach the end (Example in Figure
1.7), so each live marked net must have at at least one transition firing.

* Improper Termination : if there’s a token in the output place, then there are no tokens in other
places (Example in Figure 1.8)



§1.7 — Soundness of a Petri Net

Figure 1.5: Example of Concurrency + Synchronization

Figure 1.6: "Example of Confusion"
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P4
P3 Deadlock P7
] i AND Joi
oin
p1 AND Split P8
Never able
to finish
P2 i P&

Figure 1.7: This figure shows an example of a deadlock that makes it impossible for the entire network to arrive
at the final place.

O>
O[> |
il

Figure 1.8: This image shows that a token is present in the destination place, but at the same time another token
is present in another internal place.
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Figure 1.9: The figure shows an example of a dead transition, in fact in this case the transitions a and b cannot
fire at the same time and consequently the two places entering the transition f cannot simultaneously
have the token that allows it to fire.

¢ Dead Transitions : the presence of transitions that can never be activated (Example in Figure
1.9), so every marking is reachable from initial marking.

1.8 Examples of Petri Nets

In this section we will analyze some interesting examples of Petri nets that allow us to understand
how they work, especially when the net is characterized by a graph in which different situations need
to be managed.

1.8.1 Producer-Consumer problem

For each transition the local states with one edge entering the transition, i.e. the input places, are
replaced by local states with edges leaving the transition, i.e. the exit places. The system therefore
consists of three elements:

* The Producer: It must buffer the units that the system must produce

* The Buffer: This element stores the drives it receives from the manufacturer, but only one drive
can be present within the buffer at any given time

e The Consumer: Fetch units from the buffer.

Very important to underline the fact that there is no direct communication between producer and
consumer, but they must cooperate asynchronously via the buffer. In fact, the producer has the task of
filling the buffer, the consumer of emptying it.

The producer can be in the two local states pll or pl2. In the local state pll can perform the
transition p and enter state pl2 consequently moving the token from one state to another. It can then
synchronize with the buffer through the shared transition sr. The producer returns to state P11 and
the buffer place contains a token, indicating that the buffer is full. The shared transition can flush
the buffer and the consumer moves to its local state with2. Then the consumer can transition ec2 (i.e.
consume the unit) and return to its local state withl. Meanwhile the producer could have transitioned
pr independently and could have transitioned sr as soon as the buffer was empty.
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con1
pl1
ecl
pr
Buffer

con?2

sr ec?
Consumer

Figure 1.10: Producer - Consumer Example

1.8.2 Mutual Exclusion Problem

The system consists of three components:

¢ (1 (First component);
* C2 (Second component);

e P (Shared Resource).

At any moment, only one component can use the shared resource and this resource also represents
the only point of communication between the two components, which in fact never communicate
directly. To schedule access to the resource it is necessary to verify if the shared resource is available by
checking if there is a token in place P. In mutual exclusion the shared resource needs checks to prevent
some other process from trying to use a resource that is currently being used by another process.
The critical section of component 1 is represented by the coml location and that of the component 2
by the com2 location. The non-critical part of the component is represented by the positions ri (the
remainder) and wi (expected) with i which can have the value 1 or 2. Thus, component i has local
states ci, ri, and wi. I can perform ini, outi and di actions (enter critical section, exit critical section
and an action outside the critical section). To enter or exit the critical section it must synchronize with
the authorization component, which has local states p (resource is not used), cl (resource is used by
component 1) and c2 (resource is used by component 1), and can perform the actions ini and out, i =
1,2. When component i has obtained authority and is done using the resource, it returns authority to
position p through transition outi.
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c2
C1

Figure 1.11: Mutual Exclusion Example






CHAPTER 2

Data Petri Net

After having analyzed the general rules of petri nets we move on to the study of its extension with data.
The data is represented inside variables and the transitions contain guards where two elements are compared
through a relational operator. Guards can be either variable-constant constraints or variable-variable constraints.
This means that a transition to be able to trigger will not only need to have at least a certain number of tokens,
but also its guard must be true.

2.1 From Petri Nets to Data Petri Nets

After having introduced the standard definition of petri net it is now essential to define the concept
of Data Petri Net and all the associated definitions. In DPN the concept of guard becomes fundamental,
which is associated with conditions that are conjunctions or disjunctions of atoms of the form variable-
operator-constant or variable-operator-variable. Variables take values from Domains given by pairs D
= <AD,) D> where AD is a set of possible values and }_D is a set of binary predicates on AD .

Domain examples are given by:

* DR=<R, {<>=}>
e DZ=<Z,{<,>=}>
¢ Dbool = <{true,false}, {=}>
¢ Dstring = <S, {=}>

Also all these binary predicates are closed under negation, so for each predicate its negation is
included (for example {=} includes also {#}) and it is indicated with the symbol @ ). The Domain
is defined for each variable. A set of variables V is expected, where Vw indicates a variable that is
written, while Vr indicates a variable that is read. Each variable is associated with a type and the
constraints are created using at least one variable.

Given a set of variables V, a constraint is the largest set containing:

e Vb ®Ap < ve(V'UV¥Y and ® € ¥ D;
e ViD® VoD < vlie(V'UVY¥,v2e V' and ® € Y D.

So the conditions predict an operator between two variables or between a variable and a constant
that must have the same domain. The variables must undergo an assignment operation indicated
by the function §: (V" U V¥) — u. Given a variable assignment  and a guard ® = (v & x), where v
represents the value of a variable and x a variable or a constant, it is said that ® evaluates to true when
variables are substituted for B, written ®[f] = true . A State Variable Assignment (SV) is a function « :
V ->u which assigns values to each variable v € V with the restriction (VD) € AD .

15
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2.2 Formal Definition

Given these premises it is now possible to give a formal definition of Data Petri Net (DPN) which
is an extension of the traditional Petri nets with add-ons. While a traditional Petri net is defined by
three parameters (P,T,F), a DPN (N) is defined as N = <P,T,F,V,dom,«I, read, write, guard>, where:

e P: finite set of Place;

e T: finite set of Transition;

¢ F: the set of arcs that connect Place-Transition or vice versa;
e V: finite set of Variables;

¢ dom: function assigning a domain D to each v € V.

¢ al:initial SV assignment;

e read: T — 2V, set of variables read from a transition;

e write: T — 2V, set of variables written by a transition;

e guard : T — ®(V) returns a guard associated with the transition.

Therefore a Data Petri Net provides an initial marking (Mj) from which the system begins its
process and evolves until it reaches a specific final marking M. read(t) and write(t) respectively
indicate the set of variables in V" and V¥ that are mentioned in the guard of transition t.

2.2.1 Semantics Execution

To define the transitions from one state to the next, it is essential to define the semantic execution
of the system. Given a DPN N, the set of possible states of N is formed by all pairs (M,x) where:

e M e B(P)! is the marking of the Petri Net;

* wnisa SV assignment.

As in traditional petri nets, a transition must have the conditions to be able to trigger and in order
to reach the final marking it is essential that until the final marking is reached there is always at least
one transition that can be triggered, thus updating the marking. At each transition that is triggered, an
update of variables and a pair (t, 8) where t is a transition and p represents the update of the variables
occurs.

2.3 Legal Transition Firing

A DPN N evolves from state (M, «) to state (M’, o) with transition firing (t, ) which has guard(t)
=0 —

B(V") = a(v), if v € read(t), variable assignment 8 assigns values to « like a read variable;

* The new SV assignment «’ is like « but updated as B and processed as:

ar,(v):[a"(v_ifvarite(_r]
{ Bl ") otherwise

* Bisvalid, called ®f = true and the guard is satisfied when the value is assigned according to .

e Each input of t contains at least one token (M(p)>0) for some p € P and (p,t) € F
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Figure 2.1: An example of DPN

¢ The new tagging is elaborated according to the semantic executions of the Petri net, denoted by
M [t>M'.

A legal transition is defined by writing (M, o) — (M’, a’) through the pair (t, §). In order to reach a
final marking it may be necessary to perform more than one transition and therefore this concept is
also extended to a sequence of transitions called traces ((t',8), ..., (t", ")) and this allows traversing
the different reachable markings (M9, &9y, ... (M",a™). A DPN can have many traces and a trace set is
defined as the set of all possible traces of a DPN. An example of DPN is shown in Figure 2.1. This
DPN contains two variables a and b. Places are represented by circles, while transitions by rectangles.
Above the transitions in curly brackets are the guards, i.e. the constraint to be evaluated to trigger or
not the transition. The constraint consists of the elements described above, and both variable-constant
constraints and variable-variable constraints are represented in the example. In this example, the
tokens are not shown, for the simple fact that it is a very standard example where there is a token in
the place pg, while in all the others there are 0. therefore the initial numbering will be [pg = 1,p1 = 0,p2
=0,p3 = 0]. At this moment there are not yet the tools to be able to understand if the DPN respects the
data-aware soundness properties, however imagining that all the transitions can be performed, the
subsequent markings will become in the order:

¢ Marking: [po = 1,p1 = 0,p2 = 0,p3 = 0] (Initial Marking);
* Marking: [po =0,p1 = 1,p2 =0,p3 =0];

* Marking: [pp =0,p1 =0,p2 = 1,p3 =0];

* Marking: [po = 0,p1 = 0,p2 = 0,p3 = 1] (Final Marking).

2.4 Data-Aware Soundness

In order to evaluate the soundness of a DPN it is essential to verify compliance with the Data-
Aware Soundness properties, in order to quantify the achieved markings and the SV assignments for
the case variables. Given a DPN N where we write (M,a) —* (M’,a"), if there is a sequence of legal
transitions leading from (M,«) to (M’,a”). Given two markings M” and M” of N, then we establish that
M’">M <= JpeP | M’ (p)>M(p)edpecP | M"(p)>M(p). ADPN with initial marking M and
final marking M is said to be data-aware sound if and only if the following properties are verified:

* V(M, a) € Reachy . Fa’ . (M, a) =* (My, a');
* VM, a) € Reachy .M ge My — (M =My);
e Vte T. 3M My, al, a2, B, (M1,a1) € Reachy e (M1, a1) — (M, ap) through (t,5).
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Where Reachy represents the set of reachable states starting from the initial markup M; and the
initial variable assignments «j. The first property implies that to verify soundness a final marking
must always be reached. The second property implies that a final marking is always reached such that
there are no tokens in the network that are not in the output place. For the verification of the second
property, the concept of compatibility between two markings is used, which occurs when a marking
always has in all places a number of tokens > or < of the other. Two markings are comparable only if
they are also compatible and if the > condition is true, then the analyzed marking must be equivalent
to the final one. The third condition instead verifies the absence of dead transitions, i.e. if there is
no way that a transition can be triggered. This can happen as in traditional petri nets whereby the
number of tokens present in the place can never be > of the tokens required by the transition, or if,
for example, a set of constraints make a certain constraint unsatisfiable in any case. For example, if a
transition occurs with the constraint alw) > 5, it means that the variable a is written and all subsequent
reading constraints on this variable must take into account that a cannot be < 5. In fact, if later I
encounter a transition with the constraint a(r) < 2, this transition can never be triggered, because in
any case a can’t be less than 2.

2.5 Problems verifying the Soundness of a DPN

Checking the Soundness of a DPN can be problematic since it is undecidable. DPNs cannot be
directly algorithmically analyzed due to the presence of data and their respective updates, in fact they
involve a state space that can have infinite states and this occurs in particular when the case data are
updated using arithmetic operators.

If the DPN provided only variable-constant cases it would be possible to analyze the Soundness
through the transformation of the DPN into a CPN (Colored Petri Net), but this work is carried out on
more general forms which also include variable-variable cases. For this reason the technique to be
adopted is different and instead of a CPN the Constraint Graph is used which is an abstraction of the
original process, at least from the point of view of Soundness. Being in finite states, the Constraint
Graph allows to analyze the three properties of Soundness without running into the problem of
infinite states. For this reason, the goal of this work is to create software that, given a DPN, is able to
transform it into a Constraint Graph and then verify its three Soundness properties.

2.6 Constraint Graph of a DPN

Given a DPN, M is defined as the set of markings of N and M the initial marking. C, denotes the
set of possible constraints in V. The Gragh Constraint CGy is then defined as a tuple where (5,59,A)
are:

* S C Mx2GC, is a set that includes all the nodes of the Constraint Graph;

* Sp = (M],Cyp) € Sis the initial node where the initial constraints given by set Cy are given by Cy
=UveVi{v=a(v)h

* A CSx(TUTr)xS,is the arc set which is defined by mutual induction as described below.

So S represents the node set of the Constraint Graph, where each node is composed of a marking
of N and a constraint set representing its constraints. SO instead is an element of S which represents
the initial node of the CG, in which it has an initial marking and a constraint set in which it inserts the
constraints foreseen by the initial variable assighments. Finally A represents the set of arcs which in
formal terms is defined with:

A transition (M,C),t,(M’,C")) isin A <— :

e M It>M;
¢ ' =C @ guard(t) is satisfiable.
A transition (M,C), 7, M',C")) ¢in A <—

e write(t) = ©;
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Figure 2.2: This example shows a Constraint Graph example, in this case you can see that it is a graph with only
one node type.

e JM’ s.t. M[t>M’;
o C” =C @ —guard(t) is satisfiable.
An example of Constraint Graph of the DPN in figure 2.1 is shown in figure 2.2

2.7 Types of Transition

There can be two types of transitions in a Constraint Graph. The first type of transition provides
that given a node (M,C), a new node (M’,C’) can be reached via a transition t € T of the DPN <=
A(M,C) — (M’,C")) via the transition t. The conditions are as follows:

* M’ is the marking according to the transition t from M due to the underlying petri net;

¢ The Constraint Set C’ obtained by adding the guard of t to the current set C of the first algorithm
that will be analyzed later is satisfiable. In this case after the triggering of a transition its guard
must be true and compatible with the new SV assignment.

The first type of transition is also defined within the DPN, however there is a second type of
transition that must be explicitly managed in the Constraint Graph: Silent Transitions. A guard always
expects a true or false branching, so the CG has to handle both the true case (first type of transition)
and the false case (second type of transition or silent transition). Given a node (M,C), a new node
(M’, C’) can also be reached through a series of Silent Transitions T <= A((M,C), taur, (M’,C"))
denoted as (M,C) — (M’,C’) through the transition 77. In this case it requires:

¢ Transition t is not writing a variable;
¢ tcan be triggered given the M marking of the original DPN;
® The constraint Set C” obtained by adding the negation of the guard is satisfiable.

This case simulates the case-based reasoning that is required to consider every possible SV as-
signment that is produced in the original DPN after a transition is triggered. Intuitively an edge
labeled with 77 is intended to model all SV assignments consistent with the current Constraint set in
which the guard of t is not true. Constraint solvers are also used in the work, in particular the two
technologies of Constraint Solver and SMT Solver.
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2.8 The obs-Simulation Relation

The obs-simulation relation connects the reachability graph of a DPN <V, E> and its Constraint
Graph <5,50,A>. We say that a relation R C Sx V

* is a obs-simulation of the DPN from the Constraint Graph if and only if (s,(M,«)) € R implies that

£
for some (M, ) i (M’,a’) then there exists a single-step trace fragment o with obs(c’) = t and s %
s” such that (s’,(M’,«")) € R.

* is a obs-simulation of the Constraint Graph from the DPN if and only if for each single-pass trace

fragmentoes % ¢’ there exists (M, «) tg (M’,a”) with obs(c) = t such that (s’,(M’, alpha’)) € R.

A node of the Constraint Graph obs-simulates a state of the DPN if there is an obs-simulation
relationship R of the DPN by the Constraint Graph, such that they are included in the relationship.
We also say that the Constraint Graph obs-simulates the DPN if SO obs-simulates (MI, al). Same thing
goes for the opposite. As proved in [1] The important lemma that we can derive from this relation is
that the Constraint Graph obs-simulates the DPN. The result of this lemma implies that the constraint
graph can reproduce any possible execution of the reachability graph, and therefore of the DPN. This
gives us a very formal and precise characterization of the ability of the constraint graph, which is
finite state, to take into account the possible infinite executions of the DPN. This does not imply that
any property that is true in the DPN is also true in the Constraint Graph or vice versa. However,
the three Data-Aware Soundness properties return the same result in the DPN and the Constraint
Graph. From the previous result we derive the theorem that if a Constraint Graph is data-aware sound,
then the corresponding DPN is also data-aware sound. The difference is that the Constraint Graph
is finite-state and therefore it is always possible to verify the data-aware soundness properties. So
we can say that the Constraint Graph is a correct abstraction of the DPN regarding the verification of
the Soundness. From this we then arrive at the goal of the project: to automatically implement the
DPN Constraint Graph and verify the soundness properties to then tell the user whether the DPN is
data-aware sound or not.

2.9 Algorithms to Implement
In this section we will analyze the algorithms to be implemented within the project and their

pseudocodes to be used as a starting point.

2.9.1 Algorithm 1: Construction of the new Constraint Set

The operation of adding a constraint to the Constraint Set is represented in the form C"'=C @ ¢
and the algorithm to obtain it is the following:

Algorithm 1: Procedure for computing C’ = C @ c
if ¢ = (v ® x) then
C'" <~ C" U {(v © x)}
if ¢ = (v¥% ® x) then

C'" «— C’ U {(v¥ ©® x}
C’' <4 saturate(C’)
foreach ¢ = (v ® y) or ¢ = (y ® v') in C’ do
C' < C'" \ {c}
foreach (v¥ ® z) in C’' do
C'" « Cc'" \ (v¥ © =z}
if z # v then
0. C'" < ¢Cc’ U {(v" ® z2)}
1 return saturate(C’)

= O oo JJdJo Ul wbhdE

The algorithm receives as input a constraint set C and the constraint of the guard c and the new
constraint set is obtained by adding the constraint c to set C. We consider x,y,z as read constants
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or variables (€ V"). Theoretically, it also requires a saturation operation which, given a set of input
constraints, returns the set itself with the addition of all those constraints which are logical implications
of the constraint set. This is done using the variables and constants present in the constraint set and
combining them with all possible relation operators. On a practical level, in the implementation with
SMT Solver the second saturation operation is removed and replaced with a more efficient mechanism
that allows to obtain the same result.

Bearing in mind that the symbol ® includes any relation operator (=,#,>,<,>,<), line 1 verifies
that the constraint has the first variable in reading and in that case it simply adds the constraint c to the
constraint set C. The more complicated case is the one on line 3 where it is verified that the constraint
has the variable v in writing. In this case the new constraint with the variable being written is added
to the new constraint set and is also extended to all the constraints applied through saturation. When
a write constraint is inserted, the variable is initialized again to a new value and therefore basically
performs a reset operation. This translates into a loop that iterates through the entire constraint set
and eliminates all the constraints that contain that variable being read. The next loop also releases
the constraints with the write variable but then re-insert them with the read variable, except that
the second operand is not the variable itself. Whether the variable v is read or written, the result is
returned after applying the saturation function.

29.2 Algorithm 2: Construction of the Constraint Graph

This is the algorithm to be implemented. As input, a DPN N, an Initial Marking M is received,
while as regards the output, two results are returned:

* A Boolean value indicating whether the Constraint Graph is data-aware sound or not.
¢ A set S containing all nodes of the Constraint Graph

* a Set A containing all edges of the Constraint Graph

In the previous chapters, the constituent elements of the Constraint Graph have been presented,
from nodes to arcs, up to the markings. Now the goal of this algorithm is to build the Constraint Graph
and verify its Soundness properties. All this by exploiting the algorithm for building a new constraint
set which was explained in the previous chapter and which is represented in the pseudocode with
the symbol @©. The algorithm starts by creating an initial node sy which among its elements takes
the initial marking M; and the Constraint Set made up of all the initial State Assignments. The first
node is thus added to the set S and consequently each Constraint Graph will be composed of at least
one node. The set of Arcs, on the other hand, is initialized to and will be updated with the new arcs
inserted. The latter set might not even contain elements at the end of the algorithm, in fact if there is a
transition with a guard that always has false as a result, no new nodes are created and consequently
no new arcs are created. In fact, the transition would always be false, while its Silent Transition would
always be true, but this implies that the guard of the Silent Transition is a logical implication of the
initial node’s Constraint Set, consequently it would be equivalent and does not create a copy of the
node. The last part of the initial state concerns the initialization of the set L, which contains a series of
nodes of the constraint graph. In the initial case this set will contain only the element sy . Subsequently
the first while loop begins which at each iteration will extract a node from L and will continue until
the set L is completely emptied.

Algorithm 2: Data-Aware Soundness-checking procedure

Input: A DPN N = <P, T,F,V,dom, a;, read,write, guard> and an initial marking
M; for N.

Output : true if N is data-aware sound, false otherwise
1. Co < U €y {v = ar(v)}

2. sg « <My, Cop>

3. S < {sp}

4. A+ O

5. L < {sp}
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6. while L # @ do

7. (M, C) <4 pick(L)

8. L« L\ {MC}

9. foreach t € T s.tM—t>M’ do

10. C'" < C @ guard(t)

11. C" < C

12. if write(t) = @ then

13. C" < C" & —guard(t)

14. if satisfiable(C’) then

15. if 3 M,C) € s s.t M > M A Cc’ =C then
16. return false

17. S — S U {(M,C")}

18. A<+ AU {<MC),t, (M",C")>}

19. L+« LU {W,C")}

20. if satisfiable(C”) A C # C” then

21. S 4~ S U {MC")}

22. A<+ AU {<(M,C), T, (M, C")>}

23. L« LU {mMC")}

24. return analyzeConstraintGraph (<S, sg, A>)

210 Solver and Constraint Programming

Constraint programming refers to a programming paradigm where the relationships between

variables are represented in the form of constraints. A Constraint Satisfaction Problem is defined by:

e A set of variables V = {X{,Xy, ..., X;;}
¢ A Domain for each variable D = {D,D, ..., D}

¢ A set of constraints on these variables

The constraint is defined as a relationship between variables that defines a subset of the Cartesian

product of the domains Dy xDsx...xD;, Finding the solution to a constraint satisfaction problem means
finding an assignment of values to variables consistent with the constraints. A constraint satisfaction
problem can be represented with the Constraint Graph and in fact this representation has been used
to verify the Soundness properties of a DPN. Some fundamental elements of constraint programming
and which will be present implicitly or explicitly are the following:

* Constraint Store: A collection of the constraints of the problem which will also be the basis of

the implementation of all the main algorithms for the construction of the Constraint Graph;

Satisfiability: a collection of constraints is satisfiable (consistent) if there is (at least) one solution.
In the program there will be a specific satistiable() function which, given a Constraint Store as
input, will tell if the set of constraints is satisfiable or not. This function uses Solvers which, as
we will see later, can be of various types.

Constraint Propagation: Inference of new constraints starting from the given ones. This part in
the implementation of the program will be represented implicitly: in fact initially there was the
saturation function which, given a set of constraints, extends it with all the constraints that are
a logical consequence of that set. However the saturation function implemented with a naive
algorithm has created many problems of inefficiency and so it was decided to use a mechanism
through SMT Solver whereby given two sets of different constraints it is verified whether one is
a logical implication of the other and vice versa with the end result of greatly improving the
efficiency of the program.
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2.10.1 Constraint Solver

The Constraint Solver is a solver of constraints, defined by Constraint Programming. Constraint
Programming is a combinatorial problem solving paradigm that relies on many techniques. Users
declare constraints on feasible solutions for a set of decision variables. In addition to constraints, users
specify the method for solving these constraints, and the latter can be based on methods such as
historical backtracking and constraint propagation. There are many constraint solvers, Choco Solver
is used in this work. Choco is an open source java library dedicated to constraint programming
where the user defines his problem declaratively by specifying the set of constraints that must be
satisfied in each solution. The problem is then solved with constraint filtering algorithms with a search
mechanism.

2.10.2 SMT Solver

SMT is the acronym of Satisfiability Modulo Theories. It involves determining whether a mathe-
matical formula is satisfiable, in particular by generalizing the Boolean satisfiability problem (SAT)
to more complex formulas involving real integers or more complex data structures. Expressions are
interpreted within a certain formal theory in first-order logic with equality. SMT solvers such as the
Z3 have been used as building blocks of many applications in computer science, including automated
theorem proving, program analysis, and software testing. The SMT problem is typically NP-Hard.
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Building the Constraint Graph
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CHAPTER 3

Building a Data Petri Net

This second part of the thesis describes in detail how the program has been implemented. The programming
language used is Java with the object paradigm. For the realization of the software it is necessary to define the
elements for the construction of the Data Petri Net. The various constraints, the Places, the Transitions, the arcs
and all the constituent elements of a Data Petri Net will then be defined. Once the DPN has been created, it will
be translated into the Constraint Graph.

3.1 Place

The first constituent element of a DPN is the Place, represented by a special class. As we know
from the previous chapters, a Petri net is a bipartite graph, i.e. defined by two types of nodes, one of
these two types is the Place. the Place class inside contains a name that is represented as a string and a
certain number of tokens. Graphically the Place is represented as an unfilled circle, while its tokens
represented by small circles filled with black inside. In the practical implementation of Place, a further
boolean attribute has been added: the finalPlace attribute indicates whether a given place is part of the
final marking or not. A Place is final if it represents one of the places that the system must reach to
complete its process.

3.2 Transition

The second element of the bipartite graph of a petri net is given by the transition, which requires a
certain number of tokens from incoming Places to be triggered and which generates a certain number
of tokens from outgoing Places. To represent this information, the following attributes were created:

¢ A list of edges entering the transition;
* Alist of edges leaving the transition;

* A constraint of the specific MyConstraint class which will represent the guard associated with
the transition;

* a type string that has the value W if the first variable is writing or R if the first variable is reading;
* A cost variable that defines how many tokens the transition needs to fire;

* A addTokens variable that defines how many tokens should be generated in outgoing places.

A transition is represented graphically by a rectangle and labeled with the guard that must be true
in order to be able to shoot. The Transition class contains a method that checks if the transition can be
triggered. Both Places and Transitions are subclasses of an Object class, in this way it is possible to
create data structures of Objects and enclose both Place and Transition.

27
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3.3 Arc

After implementing the two types of nodes that can exist in a DPN, the edges must be defined
in order to connect them. In a Petri net an arc must necessarily connect two nodes of different types,
therefore it is not possible to have a Place connected to another Place and the same thing is true
between two transitions. So the attributes that the Arc class has are:

¢ The Place associated with the arc;
¢ The Transition associated with the arc;

e The Direction of the arc which can be Place-Transition, therefore with source the Place and
destination the Transition or Transition-Place with source the Transition and destination the
Place.

3.4 Constraints

Another fundamental element of a Data Petri Net concerns the constraints. For the constraints, a
special class has been created containing three attributes:

* The first operand which must necessarily be a variable and which is of type String.

* The relational operator that binds the first item to the second. Also of type String and can have
six values: {=,#,>,<,>,<}

* An integer flag that takes the value 0 if the first operand is for reading (stored in the constant
READV) and the value 1 if the first operand is for writing (stored in the constant WRITEV);

Within this class there is also a negate() method that allows you to obtain the negation of that
constraint. The possible combinations are the following:

* The operator # becomes =;
* The operator = becomes #;
* The > operator becomes <;
* The operator < becomes >;
* The operator < becomes >;

¢ The operator > becomes <.

So far we have only handled two of the three constituent elements of a constraint: the first operand
and the operator. As regards the management of the second operand, the distinction of a variable-
constant or variable-variable constraint must be made. To do this, two subclasses of the constraint
class are defined.

3.4.1 Variable-Constant Constraints

If the second operand is a constant, a special subclass is created with an attribute of type double.
The value of this attribute is returned by the getConstant() method. Therefore, to define a constraint of
this type, an instance of this subclass will be created directly by specifying the name of the variable,
the operator and the constant. The operator and first variable will be defined in the superclass, while
the real value in the subclass. For example to define a(®) > 5 we execute:

" _n non

MyConstraintOneV ov = new MyConstraintOneV("a”,5,">");
ov.setRW(MyConstraint. WRITEV);
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Figure 3.1: The DPN generated by the software and corresponding to the DPN in Figure 3.1

3.4.2 Variable-Variable Constraints

If the second operand is a variable, a special subclass is created with an attribute of type String.
The value of this attribute is returned by the getSecondString() method. Therefore, to define a constraint
of this type, an instance of this subclass will be created directly by specifying the name of the two
variables and the operator. The operator and the first variable will be defined in the superclass, while
the second variable in the subclass. Note that the second variable is always read. For example, to
define a(*) > b(") you can use the following code:

" _mon

MyConstraintTwoV tv = new MyConstraintTwoV("a”,"b",”>");
ov.setRW(MyConstraint. WRITEV);

3.5 Graphic representation of the DPN

Through the Java programming language it was possible to represent a DPN in graphical form.
in particular the swing and awt libraries for the part relating to the graphics of the program and the
mxgraph library for the part relating to the construction of the graph.

As we said in previous chapters, the program has the requirement not to have variables with
undefined value, so all the variables present in the DPN must be initialized with some constraints.
Taking the generated DPN as an example in Figure 2.1. In this specific case it is assumed that the
variables are initialized with a = 0 and b = 10 and the output generated by the program is shown in
Figure 3.1 . The program window shows a tabbed menu where it is possible to view the DPN or the
Constraint Graph abbreviated as CG. Places are represented by circles, while transitions by rectangles.
Arcs, on the other hand, are represented by arrows connecting place to transition or vice versa. In the
right pane, the initial markup is shown specifying the initial tokens for each place, the final markup
and the initial variable assignments.







CHAPTER 4

The elements of a Constraint Graph

The implementation of the DPN was described in the previous chapter, however the tools that allow
transforming the DPN into a Constraint Graph and thus verifying the data-aware soundness properties have not
yet been described. In this and in the next chapters we deal with these points and in particular in this chapter we
define the structure of a Constraint Graph by analyzing all its constituent elements. Once these elements have
been described, their graphic display is shown within the program.

4.1 Marking

One of the constituent elements of the node of a Constraint Graph is the marking, already mentio-
ned in the chapter on DPNs. Marking has also been defined within the program by implementing the
Marking class.

The marking is given by a vector that associates a certain number of tokens to each Place.

There are two attributes in this class:

¢ A HashMap of type <Place, Integer> which is the data structure that associates a certain number
of tokens to each Place;

* A set of Places which contains Places with tokens greater than 0 and which is used for various
control operations and for graphical display of the nodes of the Constraint Graph.

The Constructor just initializes the attributes as empty. While to add an element within the
HashMap the addElement method is used. For the rest, the various Get and Set methods are inserted.

4.2 Node

Every graph is made up of nodes and so this is also true for the Constraint Graph. At the
implementation level, the CGNode class has been created.
The CGNode class has 3 main attributes:

* A constraint set V containing the constraints associated with the node;
* A tag M containing the tag of the node;
* A String name containing the name of the node

It foresees two constructors who, given a set of constraints V and a marking M, create the new
node. The difference between the two constructors is that you can specify the guard or not.
Otherwise all the Get and Set methods of the attributes are present.

31
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Figure 4.1: An example of DPN

4.3 Arcs

A graph consists of a set of nodes that are interconnected by edges and the same is true for the
Constraint Graph. Arcs have been implemented within the CGArc class.
The attributes of the class are as follows:

* Source : represents the source CGNode;
¢ Transition t: represents the transition between the two nodes;

¢ Destination: represents the destination CGNode.

The constructor method simply takes values for each of the attributes as parameters and creates
the object. For the rest, the various Get and Set methods are inserted.

4.4 Graphic representation of the Constraint Graph

In the last chapter, the following DPN was illustrated, bearing in mind that the variables are
initialized with a = 0 and b = 10. and results in the following Constraint Graph shown in Figure 4.2.

The Constraint Graph also represents the Silent Transitions, i.e. the negated guards of the transi-
tions. In the figure, however, it can be seen that the silent transition of b<a, i.e. b>a, is not represented.
To understand why, we need to keep in mind the following cases on transitions:

* Case 1: The guard of the transition is always true, in this case a single node is created in the
constraint graph which represents the case in which the guard is true;

* Case 2: The guard of the transition is always false, in this case no new node is created in the
Constraint Graph, this because the frue case can never occur and at the same time the guard
constraint in the case false is already an implication of the current node, so if a new node were
created, it would simply be equivalent to the one that generated it;

* Case 3: The guard of the transition can be either true or false, in this case two new nodes are
created, one for the transition and the other for the silent transition.

Only a subset of all node constraints are represented in the curly braces for ease of visualization
and this is also the reason why inside CGNode I created the guard attribute. For example, all the nodes
of this Constraint Graph have within them the constraint b = 10 which is not represented within the
curly braces with the sole exception of the initial node. One difference between the Constraint Graph
and the DPN is that while the DPN is a bipartite graph for which there are two types of nodes, in the
Constraint Graph there is only one type of node.
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Figure 4.2: The Constraint Graph corresponding to the DPN in Figure 4.1
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Info

Initial marking: {p0=1p1=0p2=0p3=0}
Final marking: {p1=0, p2=0, p3=1, p0=0}
Inivial SV assign.: (b=10.0) (a=0.0)

Constraints

¢3 [p1=1] : [(b>5.0), (a>10.0), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (b>=10.0), (a!=5.0), (b>=5.0), (b!=5.0)]
c5 [p1=1] : [(b>5.0), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (a<=10.0), (b>=10.0), (al=5.0), (b>=5.0), (b!=5.0)]
0 : [{b=10.0), (a=0.0)]

7 [p3=1] : [(b>5.0), (a>10.0), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (b>=10.0), (al=5.0), (b>=5.0), (b<a), (b!=5.0)]
1 [p1=1] : [(b>5.0), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (b>=10.0), (a!=5.0), (b>=5.0), (bl=5.0)]
c4 [p2=1] : [(b>5.0), (a>10.0), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (b>=10.0), (al=5.0), (b>=5.0), (b<a), (b!=5.0)]

Figure 4.3: The Constraint Graph generated by the software corresponding to the Constraint Graph in Figure 4.2

This illustration also allows us to know if the DPN respects the data-aware soundness properties
and as can be seen from the two crossed out nodes the answer is no. In fact there are two nodes that
cannot reach a final state; one where the marking is {P1} and a = 10 and one where the marking is {P2}
and a < 10 since being b = 10, the transition with guard b < a can never occur. This DPN therefore
violates the data-aware soundness property 1 which dictates reaching a node with final marking from
any node of the Constraint Graph. However, in the next chapters we will describe in detail how to
build the Constraint Graph and how to verify algorithmically that the three data-aware soundness
properties are respected.

In the implementation of the program the java classes used for the graphical display are the same
ones used for the DPN, with the difference that in this case a single type of node has been used. For
completeness, all the various nodes of the Constraint Graph have been inserted in the panel on the
right with the set of all their constraints attached, while inside the rectangle only the guard of the
transition that led to the creation of the node is represented.

€2 [p2=1] : [(b>5.0), (b>=a), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (a<=10.0), (b>=10.0), (a!=5.0), (b>=5.0), (b!=5.0)]

6 [p3=1] : [(b>5.0), (b>=a), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (a<=10.0), (b>=10.0), (al=5.0), (b>=5.0), (b!=5.0)]






CHAPTER S

SMT Solver

In the Software SMT Solver is used to perform operations on constraints, in particular it will be used for the
operations of saturation, satisfiability and equivalence checking of two nodes. Microsoft’s Z3 is used as SMT
Solver and the interaction takes place through pipes with the shell. This Chapter will describe what an SMT
Solver is, what Z3 is and how the software can interact with it.

5.1 Introduction to SMT Solvers

SMT is the acronym of satisfiability modulo theories and has the objective of determining
whether a Boolean formula is satisfiable. This type of technology generalizes the Boolean satisfiability
problem (SAT) to more complex formulas involving data structures and primitive data such as real
numbers. SMT Solvers are tools that aim to solve the SMT problem for specific logical theories. In
the implemented program Z3 was used as SMT Solver which had numerous important applications,
especially in the following areas:

¢ Program analysis;
e Software Test;
¢ Automated Theorem Proving;

¢ Checking programs

5.2 Introduction to Z3

Z3 is an efficient SMT Solver for symbolic logic developed by Microsoft as Leonardo de Moura et
al. shown in [4]. Each component of this Solver implements specialized algorithms which together
form the software as a whole. Z3 has numerous applications in software verification, theorem proving,
and program analysis. Z3 supports arithmetic, fixed-size bit vectors, extensional arrays, data types,
uninterpreted functions, and quantifiers. Z3 is implemented in C++ language and its architecture is
composed of the following elements:

* Simplifier: the input formulas are processed through an efficient, but incomplete simplification.
The simplifier uses the standard rules of algebraic reduction and performs contextual simplifica-
tion as it identifies definitions within a context and reduces the remaining formulas using the
definition;

* Compiler : The simplified abstract syntax tree of the formula is converted into a different data
structure including a set of clauses.
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¢ Congruence Closure Core: receives truth assignments to atoms from the SAT Solver. Atoms
can be specific atomic equations and formulas such as arithmetic inequalities. This propagation
occurs through a data structure called E-graph where its nodes can indicate one or more
theoretical solvers. When two nodes join, the set of solver references are joined, and their union
is propagated as an equality to the theory solvers at the intersection of the two solver reference
sets.

* SAT Solver: This solver integrates standard search pruning methods such as two-check literals
for efficient Boolean constraint propagation using conflict clauses, a phase cache to drive case
splits, and performs backtracking not chronological.

* Theory Combination: The traditional methods for combining theoretical solvers rely on the
solvers’ ability to obtain all the implied equalities or processing steps that introduce added
literals into the search space.

* Deleting Clauses: Instantiating the quantifier has the side effect of producing new clauses
containing new atoms in the search space. Z3 garbage collects clauses with its own atoms and
terms that are not useful in concluding the ramifications. Conflict clauses, and the literals used
in them, are not deleted, however, so instantiations of quantifiers that were useful in producing
conflicts are kept as a side effect.

¢ Theory Solvers: Z3 uses a linear arithmetic solver. Array theory uses lazy instantiation of the
array axioms.

* Quantifier instantiation using E-matching: Z3 uses new algorithms that identify matches on
E-graphs incrementally and efficiently.

* Model Generation: Z3 has the ability to produce models as part of the output. Models assign
values to constants in the input and generate partial function graphs for function predicates and
symbols.

* Relevancy Propagation: Solvers based on DPLL(T) assign a potentially boolean value to all
atoms appearing in a target. In practice, many of these atoms are of no interest, and Z3 ignores
these atoms for expensive theories, such as bit vectors, and inference rules, such as instantiating
quantifiers.

The set of all these components form the architecture shown in Figure 5.1:

5.3 Z3 operations for implementation

Z3 is a very complex solver that allows you to perform a large number of operations and going
into it in detail is not the goal of this thesis. Only a few operations need to be used in this document.
First you need to specify the logic to be used in our software, among the main types that Z3 makes
available you can find:

* QF_LRA : quantifier-free linear real arithmetic
e QF_LIA : quantifier-free linear integer arithmetic
e QF_RDL : quantifier-free real difference logic

e QF_IDL : quantifier-free integer difference logic

QF_RDL logic is used in the implementation since it is powerful enough to represent the variable-
to-constant and the variabile-to-variable constraints needed to create the constraint graph.
First, it is essential to know how to declare variables of both real and boolean types

(declare fun RealVar () Real)
(declare-const BoolVar Bool)

The second step is to define constraints via assert.
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Figure 5.1: The Architecture of Z3

(assert (op (- varl wvar2) value))

In this case, instead of op, one of the six relational operators must be inserted and the operation
written in this way verifies the following equation:

varl - var2 op value

Once all the constraints represented as differences of values have been specified, it is possible to
check whether the set of constraints is satisfiable or not through the following command:

(check-sat)

the following results can be returned:
e sat: if the constraint set is satisfiable;
¢ unsat : if the constraint set is unsatisfiable.

In some algorithms such as saturation, an incremental approach may be needed, i.e. the possibility

of dynamically inserting and removing certain constraints. This can be done for example with the
following commands

(push)
(assert ...)

(check—-sat)
(pop)

The push operation adds a level on the stack from which one or more constraints can be pushed
via assert Through check-sat it is possible to verify that the set of constraints with the addition of the
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Runnable {

result;

[] buffer =

yte[1024];
length = @; (length = istrm_.read(buffer)) != -1; )

String(buffer, .UTF_8);
SEa= StringTokenizer(s);

token = st.nextToken();
(token.equals(“sat”) || token.equals(“unsat”)) {
.result.add(token);

ostrm_.write(buffer, @, length);

Figure 5.2: The implementation of the Pipe to interact with Z3

new constraints is satisfiable or not and finally with pop the last inserted level of the stack is removed,
thus returning to the set of starting constraints.

Finally another useful application for the implementation of this software is to verify that two sets
of constraints are logical implication of each other (C1 <= (C2).

If the following statement is not satisfiable then the two sets of constraints are equivalent.

(assert (not (= Cl C2))

5.4 Interaction with Z3

Before describing the saturation algorithm it is essential to describe how the interaction between
Z3 and the program written in Java takes place. Z3 is SMT Solver used for our application.
There are two approaches to interacting with Z3 through Java:

¢ Pipe interaction, ie using Z3 in another process and creating a communication channel between
the Constraint Graph construction software process and the process using Z3;

¢ Integration of Z3 within the software through specific APIs of the programming language.

For the implementation of the project, the first approach was used, ie a communication channel
was built between the command line shell and our software.

To do this, the SyncPipe class was created. This class implements the pipe to create communication
between the program and the command shell. It implements a Thread where in its run() method it
reads everything that is written by Z3 and once it finds a "sat" or "unsat" it updates its result. Figure
5.2 shows the implementation of the Run method of the SyncPipe class where you can create a byte
buffer where you write and read the commands to be transmitted on the command line to run Z3.

After creating this class it is necessary to create the class that uses the pipe to create an interaction
between the program and Z3. At the implementation level, the Z3Interation class has been defined as
shown in Figure 5.3 and 5.4. This class allows the program to interact with Z3, to do this it is necessary
to configure the Z3 build path in the DirectorySMT2.txt file starting from the folder with the project
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reader = BufferedReader( FileReader("DirectorySMT2.
strings = ArraylList<String>();
line = reader.readlLine();
cont = @;
(line != ) {

S StringTokenizer(line);
st.nextToken();
(cont == 8) {
build = st.nextToken();
¥

line = reader.readlLine();
cont++;

Figure 5.3: The first part of the Interation with Z3 through Pipe.

name. Once configured, the file is opened and the path is read. The basic version of this program is
implemented for Windows operating systems, in fact it activates a Process class object to which it
sends the cmd command to open the command prompt. However it is also possible to extend to the
Linux operating system by replacing

String[] command ={"cmd"};
with:
String[] command ={"/bin/bash"};

Subsequently, thanks to the SyncPipe class, a pipe is created to guarantee the interaction between
the command prompt and the program. From the command prompt, go to the build folder and start
sending the various commands to run on the Z3. The outputs of the commands will be stored in
p-getOutputStream and are directed to the standard input and the final result is stored inside the
global variable result. In the rest of the class there are the various Get and Set methods.
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[] command ={"cmd"};
.getRuntime().exec(command);
= Thread( SyncPipe(p.getErrorStream(),
.start();

Thread( SyncPipe(p.getInputStream(),
2.start();

stdin = PrintWriter(p.getOutputStream());
stdin.println("cd “+build);
stdin.println("z3 -in");

( command)
.println(command);

®

stdin.close();

returnCode = p.waitFor();

.out.println("Return code " + returnCode);

Figure 5.4: The second part of the Interation with Z3 through Pipe.



CHAPTER 6

Construction of the new Constraint Set

The program to be developed essentially involves the implementation of two algorithms, one to update
the set of constraints and another for the actual construction of the Constraint Graph with control functions to
verify the Soundness properties. The first algorithm is used by the second to update the constraint set of the
new node to be created. In the next paragraphs we will proceed with the analysis of these two algorithms and
their implementation. The results produced by the program must then be subsequently tested to validate their
correctness and identify any errors. This chapter analyzes the process of building a new Constraint Set which
will then define the node of the Constraint Graph.

6.1 Saturation Algorithm

A fundamental building block in the creation of the software is the saturation algorithm which,
given a set of constraints, is able to detect which constraints are the implication of that particular
set. For example, if within the current constraint set contains a > 10, then a > 5 is a constraint that is
implied. In the Saturation algorithm, 3 sets are taken into consideration:

e V : Set of Variables;
e Cost : Set of Constants;

* Op : Set of Operators.

The set of operators includes the 6 relational operators >, <, >, <, =, #. As a first step, all possible
constraints are computed by combining each variable-variable and variable-constant pair for each
possible operator. Each constraint is verified if it is an implication of the Constraint Set (C) by verifying
the following property:

C = v <= CU —wvis unsatisfiable.

In case the input Constraint Set is not satisfiable, the set itself is returned. In this work, the
Saturation algorithm required the use of a series of external mechanisms in order to manage the
constraints:

¢ Constraint Solver: A set of classes which provide methods which allow to verify the satisfiability
of a set of constraints, in particular Choco Solver has been used;

¢ SMT Solver: another technique to be able to manage a set of constraints. It turns out that for the
type of constraints that must be managed in this work it is the most efficient solution.

Both versions have been implemented in the program. When using the Constraint Solver, saturation
has two roles in the construction of the constraint graph : to compute the set C @ c (Algorithm 1) and
to check if two constraint sets are equivalent in Algorithm 2. As the experimental evaluation will show
in chapter 8,9 and 10, saturation is the most computationally intensive part of the program. For this
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2> (Set<hyc ..'.>un){
result HashSet<>();
T |a[\) {
r‘esult add(c. getFir‘stStrmg()),
(c &8 !N.getBooleanVars().contains(c.getFirstString())) {
result.add(c.getSecondString());

s -S)
raint c : s.getV()) {
result add(c getFirstString());
(c &% IN.getBooleanVars().contains(c.getFirstString())) {
result.add(c.getSecondString());

Figure 6.1: The Algorithm to select all Variables from a Constraint Set

reason we have found a way with SMT Solver to verify that two sets of constraints are implication of
each other without resorting to saturation and thus increasing the efficiency of the program.

Some functions common to both saturation algorithms will be described below, bearing in mind
however that the saturation algorithm from Constraint Solver has several limitations compared to
that from SMT Solver.

6.1.1 The selection of variables

In the implementation of the software the variables are represented as strings and in both cases
it is useful to have a set containing all the variables without repetitions, for this reason the function
orderVariables(Constraint Set) has been implemented, which returns in output a Set of strings with the
names of all the variables.

The implemented code is in Figure 6.1:

This method allows you to extract from a set of constraints, the set of all the strings that identify
variables within that set. The first string of a constraint is always added, while in the second case
only if the constraint is of the variable-variable type and if the variable is not a boolean, i.e. contained
within a Petrinet string set obtained via getBooleanVars(). In fact, if the variable is boolean, the type of
constraint is variable-variable, but in reality the second string can assume 3 values:

e “” : Undefined value

e “true” : True value

e “false” : False value

They are three strings, but they are not variables, so they should be excluded from adding to the
final set. This algorithm is used to extract the Set of Strings of all the variables present within the set
of input constraints.

6.1.2 All possible constraints of a Constraint Set

The saturation algorithm is based on verifying that every possible constraint obtained from
the combination of the six relation operators with the set of variables and constants present is an
implication of the Constraint Set. To do this, the allPossibleConstraint(Constraint Set) function was
implemented which takes a Constraint Set as input and returns the Set of all possible constraints, as
shown in Figure 6.2.

The first part of the code defines the three sets to consider:



§6.1 — Saturation Algorithm 43

Set<MycC aint> onstraint> curr) {

Set<String» listVar = new HashSet<>();
Set<Double> listConst HashSet<>();
Set<String> Operators W HashSet<>();

Operators.add("<'
Operators.add(">’
Operators.add("='
Operators.add(
Operators.add(
Operators.add(”

My C onst "t ¢ @ cu "[..) {
listVar.add(c.getFirstString());
(c ) {
ov = (
listConst.add(ov.getConstant());

(c Y g
listVar.add(c.getSecondString());

X

}

Figure 6.2: The first part of algorithm to select all possible Constraints given variables and constants

* The set of variables (Strings);
¢ the set of constants (double);
¢ the set of operators (strings).

The three lists are then initialized. The six relational operators are added to the operator list.
Subsequently a cycle is made distinguishing between variable-constant constraints and variable-
constraints. In any case, the first variable is added to the set of variables, while if the second operand
is a constant it is added to the set of constants, if instead it is a variable it is also added to the set of
variables. The reason why an object of class Set and not List was used is to avoid storing the same
string more than once.

Subsequently, all the possible combinations of constraints are performed: we start from the variable-
constant constraints and then move on to the variable-variable constraints. For variable-variable
constraints, you check that you don’t enter a constraint that combines a variable with itself. All new
constraints are added to the result constraint set and output.

6.1.3 The Limitations of Saturation with Choco Solver

The first implementation of the Saturation algorithm used the Constraint Solver Choco Solver. An
important premise to make is that this saturation algorithm has some more limitations than the one
implemented with SMT Solver, which instead represents the definitive solution. These limitations
concern the following points:

¢ The difficulty of managing real numbers which forced a conversion of double variables into
integers, using the IntVar class;

¢ The heavy inefficiency of Constraint Solver compared to SMT Solver, which is why we switched
from Constraint Solver to SMT Solver.



44 6 — Construction of the new Constraint Set

> result = HashSet<>();
listVar) {
listConst) {
op : Operators) {
M raint newConstr = new MyConstraintOneV(v,c,op);
result.add(newConstr);

vl : listvar) {
v2 : listVar) {
(!(vl.equals(v2))) {
( op : Operators) {
MyConstraint newConstr = MyConstraintTwoV(vl,v2,0p);
result.add(newConstr);

result;

Figure 6.3: The second part of algorithm to select all possible Constraints given variables and constants

For this reason this saturation algorithm is actually incomplete, however it allows you to compare
the technology of the Constraint Solver and that of the SMT Solver and understand which of the two
is more advantageous than the other, at least for the types of constraints that are managed in this
program. In fact, using saturation with Choco Solver on an example that generated 69 nodes took
about 10 minutes to compute the entire Constraint Graph, while with Z3 it took only 40 seconds.

Furthermore with Z3 it is possible to work with variables of real type and thus solving the other
limitation of Choco Solver.

6.14 Implementing Saturation with Z3

Using the incremental commands seen in chapter 5.2 and the subsequent interaction with Z3 seen
in chapter 5.3 it is possible to implement the saturation algorithm with Z3 efficiently and also taking
into account the real numbers. To implement the saturation algorithm it is necessary to define the
constraints of the current set in Z3 by declaring all the variables inside it. The variable "wildcard" set
to 0 is also specified, so it is possible to represent constraints like y = 10 as (assert (= (-y wildcard) 0)), i.e
y-wilcard = 0.

The next part is to enter the constraints of the current Constraint Set in variable-constant form

Immediately afterwards the constraints of the current Constraint Set are entered in the form
variable-variable. Furthermore, the constraint is added in the else branch if the constraint concerns a
boolean variable.

Once all the current constraints of the Constraint Set have been added, all the possible constraints,
previously calculated with the function seen in Chapter 5.3.2, are added and the saturation is imple-
mented by verifying with (push) and (pop) that each individual constraint is a logical implication of
the current Constraint Set. So in the formula it occurs:

C U —c is not satisfiable

where C is the current Constraint Set and c is the constraint to add and check if it is a logical
implication of C.



§6.1 — Saturation Algorithm

45

3int> (Set<h 1S > curr)
.result = &rra\L1st<>(),

> variabl = orderVariables(c
t> res = Has hSut<>(\urr),

Setc¢ traint> allConstraints = HashSet<>();
allConstraints.addAll(allPossibleConstraints(curr));
List< r > allConstraintsList =

Z3= Z3Interation();
z3.addCommand (" (set ‘_j )F_RD );

var : variabl) {

(IN. gutBoolnanVars() contalns(var)) {
z3.addCommand( " ¢ = +var+'

z3.addCommand (

}

3. addCommand (
.addCommand (

Figure 6.4: The first Part of Saturation Algorithm

(Myc c :curr) 4
(IN. gutBnolpanVars() contains(c.getFirstString())) {
(c 1AL
ov = ( ) €
(ov.getConstant() >= @) {
(lov.getOp().equals ( 1)

z3.addCommand( ] +ov.getop()+ +ov.getFirstString()+

s

i
z3.addCommand ( +ov.getFirstString()+"

.getConstant() < @) {
(!ov.getOp().equals( DA
z3.addCommand (" (: +ov.getop()+

{
23.addCommand (

+ov.getFirstString()+

+ov.getFirstString()+"

Figure 6.5: The second Part of Saturation Algorithm

= ArraylList<>(allConstraints);

+ov.getConstant()+

+ov.getConstant()+

+ov.getConstant()+"))");

1)

+ov.getConstant()+ N

);
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(c ) {
(c.getFirstString().equals(c.getSecondString())) {
23 .addCommand ( T -1 +c.getFirstString()+ A
z3.addCommand ( sser +copyConstraint.getOp()+ +copyConstraint.getFirstString()+" "+copyConstraint.getSecondString()+

(!c.getOp().equals(

{
(c.getFirstString().equals(c.getSecondString())) {
z3.addCommand (" (2 +c.getop()+ +c.getFirstString()+" "+c.getSecondString()+

23.addCommand ( +c.getop()+ +c.getFirstString()+" "+c.getSecondString()+

{
(c.getFirstString().equals(c.getSecondString())) {

23.addCommand ( +c.getFirstString()+" “+c.getSecondString()+

23.addCommand ( t +c.getFirstString()+" "+c.getSecondString()+

(!c.getSecondString().equals("") &8& c.getOp().equals(“=")) {
z3.addCommand(" (assert +c.getOp()+" "+c.getFirstString()+" "+c.getSecondString()+ 35

Figure 6.6: The third Part of Saturation Algorithm

c : allConstraintsList) {
straint neg = c.negate();
(IN.getBooleanVars().contains(c.getFirstString()) && !c.getFirstString().equals(“") & !c.getFirstString().equals("fa ) && !c.getFirstString().equa
z3.addCommand (" (pu )5

(neg DRt
ov ) neg;
(ov.getConstant() ) {
(lov.getOp().equals( N {
z3.addCommand ( E +ov.getop()+ “+ov.getFirstString()+ +ov.getConstant()+

{
z3.addCommand ( +0v.getFirstString()+ +ov.getConstant()+ )i

.getConstant() < 8) {
(lov.getOp().equals( )0
z3.addCommand(“(a +ov.getop ()+ +ov.getFirstString()+ (“+ov.getConstant()+

z3.addCommand ( +ov.getFirstString()+ +ov.getConstant()+ )

Figure 6.7: The fourth Part of Saturation Algorithm
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(neg DL

(!neg.getOp().equals )) {

z3.addCommand(" (assert ("+neg.getOp()+" (- "+neg.getFirstString()+" "+neg.getSecondString()+"
i

z3.addCommand(" (a t (not - "+neg.getFirstString()+" "+neg.getSecondString()+") @ i
¥

z3.addCommand (" (che
z3.addCommand (" (pc

)
b

z3.closePipe();

List<St

(resZ3.size() == allConstraintsList.size()) {
i =0; i<resZ3.size(); i++) {
(resZ3.get(i).equals("unsat")) {

res.add(allConstraintslList.get(i));

=int> removed = HashSet<>();
yConstraint r : res) {
(N.getBooleanVars().contains(r.getFirstString())) {
if(r.getOp().equals("!=") && !r.getSecondString().equals("")) {
removed.add(r);

i

(

lyConstraint r2 : removed) {
res.remove(r2);

Figure 6.9: The sixth Part of Saturation Algorithm

First of all, it is checked whether the new constraint to be inserted is of the type variable-constant
or variable-variable. Then the (check-sat) command is executed to return sat or unsat and finally remove
the last constraint with (pop).

Once all the constraints have been inserted, the pipe is closed with the closePipe() method.

Finally, inside the Z3Interation class, a list of strings is stored that takes into account all the results,
i.e. it will be a collection of sat or unsat for each constraint evaluated. Check that the number of elements
of this list is the same as the set of all possible constraints, since otherwise it would mean that the
algorithm has not stored the result of each constraint. In the final Constraint Set res all those constraints
that resulted in unsat are added Finally, the constraints from the res set which concern a boolean
variable and which use the /= operator (i.e. #) are removed since for simplicity of representation it
was decided to represent all the constraints of a boolean variable with the = operator, in fact if for
example var /= false then it is true that var = true.

6.2 The New Constraint Set Construction Algorithm

Now there are all the elements to implement the algorithm for the construction of the new
Constraint Set defined in Chapter 2. In the practical implementation the following solution was
implemented.

The algorithm takes 3 parameters as input: the DPN N, the Set of Constraint current and the
transition guard c. To avoid problems of passing by address, the values present in the Current Set
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(Set<M S > current,

> curr = HashSet<
Constraint cur : current) {
curr.add(cur);

i

Figure 6.10: The first part of the New Constraint Set Algorithm

(c.getRW() == MyConstraint.READV) {
curr.add(c);
curr;

(c.getRW() == MyConstraint.WRITEV) {

Figure 6.11: The second part of the New Constraint Set Algorithm

have been copied within the curr set and all subsequent operations are performed on this specific Set.
The next part provides for the two cases for which the constraint can be read or written. In the case
of reading, the constraint is simply added to Set curr and the resulting set of constraints returned.
The Saturation operation has been omitted, since with Z3 it is possible to verify if two nodes of the
constraint graph are equivalent in a more efficient way.

In the case of the constraint in writing, the constraint c is inserted inside the Set curr. A new
constraint is created where the writing variable is rendered adding WRITE at the end of the name and
the control variable is set to true. Then the Saturation operation is carried out.

Once the saturation has been performed, the new set of constraints is updated in the following
basic steps:

¢ 1) All constraints containing the previous variable are eliminated;

¢ 2) The constraints left with the variable with the addition of WRITE are renamed to the original
variable name.

Finally, all the constraints to be removed are removed and the new constraints are added with the
renamed variable.

(c.getRW() == MyConstraint.WRITEV) {
(e
s

) |

curr.add( MyConstraintTwoV(c.getFirstString()+"WRITE", c.getSecondString(), c.getOp()));

curr.add(c);

}

curr = saturate(curr);

Figure 6.12: The third part of the New Constraint Set Algorithm
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> removed = HashSet<>();
yC traint flowC : curr) {
(flowC.getFirstString().equals(c.getFirstString()) || flowC.getSecondString().equals(c.getFirststring())) {
removed.add(flowC);

MyConstraint flowC : removed) {
curr.remove(flowC);

Set< > removed2 = HashSet<>();
Set« "aint> adding = HashSet<>();
(MyConstraint flowC : curr) {
(flowC.getFirstString().equals(c.getFirstString()+"WRITE")) {
removed2.add(flowC);
(flowC ) {
ov = ( ) flowC;
adding.add( MyConstraintOneV(c.getFirstString(),ov.getConstant(), ov.getOp()));

(flowC ) {
tv = ( ) flowC;
adding.add( MyConstraintTwoV(c.getFirstString(),tv.getSecondString(), tv.getOp()));

Figure 6.13: The fourth part of the New Constraint Set Algorithm

(flowC.getSecondString().equals(c.getFirstString()+"WRITE")) {
removed2.add(flowC);
(flowC ) {
£ = ) flowC;
adding.add( MyConstraintTwoV(tv.getFirstString(),c.getFirstString(), tv.getOp()));

MyConstraint flowC : removed2) {
curr.remove(flowC);

MyConstraint flowC : adding) {
curr.add(flowC);

Figure 6.14: The fifth part of the New Constraint Set Algorithm

t cu : current) {

(cu.getFirstString().equals(c.getFirstString()) && cu.getRW() == MyConstraint.WRITEV) {
curr.remove(cu);
(cu ) {
avi=l Yeu;
ov.setRW(MyConstraint.READV);
curr.add(ov);

(cu ) 1
Ev =N ) cu;

¥

(!tv.getSecondString().equals(c.getFirstString())) {
tv.setRW(MyConstraint.READV);
curr.add(tv);

Figure 6.15: The sixth part of the New Constraint Set Algorithm






CHAPTER 7

Construction of the Constraint Graph

Once the first algorithm that deals with the construction of the new Constraint Set starting from a given
guard has been defined, we proceed with the construction of a new node. A new node will not always be created:
in fact if the new node will be equivalent to another existing node it will simply use the already created node or
in other situations it may happen that the new node must not be created and there must be an interruption of the
algorithm since you would be creating a Constraint Graph with an infinite number of nodes. All these aspects
will be explored in this chapter.

7.1 The Satisfiability Function

This algorithm allows to verify if a given set of constraints given in input is satisfiable. The
Satisfiable feature described here involves using Z3 as the SMT Solver that you interact with via pipe
at the command prompt. Then it refers to the Z3Interation class whose implementation details will be
described later.

The first step involves defining an object of class Z3Interation to tell the program that it needs to
interact with Z3. Subsequently a Set of Strings is created where inside all the variables of the set of
constraints are taken through the orderVariables function. Then the actual interaction with Z3 begins
by starting to send commands. The first command specifies the logic with which Z3 will have to
work: i.e. the logic that allows real type constraints to be processed: QF_RDL. By scrolling through
the previously defined Set of Strings, all the variables within Z3 are declared, both real and boolean.
Finally, a "Wildcard" variable is created and initialized to zero, to allow to represent unary constraints
as difference constraints.

The next step is to insert assertions inside Z3 to specify all the various variable constraints, then
with a for loop iterates all the constraints of the current set. In the case of a variable-constant constraint,
then essentially two main factors must be verified:

e If the constant value is greater or less than zero;

1

¢ If the operator is a operator.

Both cases are related to the syntax of Z3, in fact a number less than 0 must be inserted in round
brackets, since the ’-’ is read as an operator between two values, while in the second case the operator
"I="as for example represented in a PNML generated with ProM, it is represented as (not (= ... )). These
operations are performed if the variable does not belong to the variable returned by getBooleanVars
of the Petrinet class, ie if it is not a boolean variable.

The other case is that of a variable-variable constraint, in this case the check on the positive or
negative constant is eliminated and only the check of the operator "!=" remains. If, on the other hand, it
were to be a constraint on a Boolean variable, a simple assert is added with the constraint, represented
in the else branch. The reason why the operator is = is that constraints on a boolean variable can be
of 5 types:

51
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(Set< traint> curr)
.result = ArraylList<>();

> variabl = orderVariables(curr);

230 nteration();
z3.addCommand (" (set-logic QF_RDL)");

var : variabl) {
(!N.getBooleanVars().contains(var)) {
z3.addCommand("” (declare-fun “+var+"

}

{
z3.addCommand(

3
Iy

z3.addCommand (" (declare-Ffur
z3.addCommand (™ :

Figure 7.1: The first part of Satisfiable Algorithm

(Setql int> curr)
.result = ArraylList<>();

> variabl = orderVariables(curr);

z3 = new Z3Interation();
z3_addCommand(" (set-logic QF_RDL)");

var : variabl) {
(IN.getBooleanVars().contains(var)) {
z3.addCommand( lare-f +var+"

}

{
z3.addCommand(

¥
¥

z3.addCommand ("
z3.addCommand (

Figure 7.2: The second part of Satisfiable Algorithm
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(Set«! aint> curr)
.result = ArraylList<>();

ing> variabl = orderVariables(c

z3 = new Z3Interation();
z3.addCommand (" (set-logic QF_RDL)");

( var : variabl) {
(!N.getBooleanVars().contains(var)) {
z3.addCommand (" (declare-fun "+var+"(

i

{
z3.addCommand (" (declare-const

¥
Iy

z3.addCommand (" (declare-fun joll
z3.addCommand ("

Figure 7.3: The third part of Satisfiable Algorithm

e variable = true;
¢ variable = false;
¢ variable != true;

¢ variable != false;

“nrr

¢ variable = “” (undefined value)

In satisfiable if the variable has no defined value then it is simply not parsed. As far as the operator
’I="is concerned, it has simply been transformed into ‘=" when it is inserted in the list of strings of
boolean variables present in the Petrinet class: in fact variable != false is equivalent to variable =
true, while variable != true is equivalent to variable = false. Finally, once all the constraints have been
entered in Z3, the command (check-sat) is added to verify whether the set of constraints is satisfiable
(SAT) or not (UNSAT).

The last part of the method instead checks the returned result and in turn returns the value true
or false. The value of the global variable "result" is taken which always takes into account the last
interaction and the Pipe is closed. The reason the width of the list is checked is that it should return a
single "SAT" or "UNSAT".

7.2 Check Equivalence Nodes

To verify that two nodes are equivalent, the checkCGClone method has been implemented.

This algorithm is used to check whether two sets of constraints subjected to saturation would
obtain the same set of constraints, without using the saturation itself, thus making the program more
efficient. First a new object of class Z3Interation is defined to create a pipe to which to send the various
Z3 commands. Then a set of strings and another set of constraints are created where all the variables
present and all the constraints present in newS are inserted respectively.

Then all the variables present in the entire set of nodes of the Constraint Graph are added to S

We start by declaring all variables both boolean and non-boolean and specifying the logic to use
for the constraints, i.e. QF_RDL. As in the case of Satisfiable, the wildcard variable initialized to 0 is
also defined which will be used to define the various constraints in Z3.
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(Set< int> curr)
.result = ArraylList<>();

> variabl = orderVariables(curr);

230 Z3Interation();
z3.addCommand (" (set-1c QF_RDL)");

var : variabl) {
(!N.getBooleanVars().contains(var)) {
z3.addCommand(" (declare-fun "+var+"() R

}

{
z3.addCommand(

3
Iy

z3.addCommand ( * ( de
z3.addCommand (

- che
z3CheckClone = Interation();
.CONtSMT++;
diff;
start = .currentTimeMillis();

=> variables = HashSet<>();
> total = HashSet<>();
(MyConstraint ¢ : news.getV()) {
(c {
g());
}

(c i &&
variables.add(c.getFirstString()
variables.add(c.getSecondString(

)
n

variables.add(c.getFirstStri
N.getBooleanVars().contains(c.getFirstString())) {
)s
}
(c && N.getBooleanVars().contains(c.getFirstString())) {
variables.add(c.getFirstString());

1
)
)

1
total.add(c);

Figure 7.5: The first part of the algorithm to check the equivalence of two nodes

-5) {
c : s.getv()) {

variables.add(c.getFirstString());
(c && !N.getBooleanVars().contains(c.getFirstString())) {

variables.add(c.getFirstString()):
variables.add(c.getSecondString());

(c && N.getBooleanVars().contains(c.getFirstString())) {
variables.add(c.getFirstString());

Figure 7.6: The second part of the algorithm to check the equivalence of two nodes
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> variablesNode = HashSet<>();

‘.getv(;) {

variablesNode.add(c.getFirstString());
}
if(c && !N.getBooleanVars().contains(c.getFirstString())) {
variablesNode.add(c.getFirstString());
variablesNode.add(c.getSecondString());
}
(c &8 N.getBooleanVars().contains(c.getFirstString())) {
variablesNode.add(c.getFirstString());

1
variablesNode.addAll(variables);
z3CheckClone.addCommand (" (set-logic

( var : variables) {
(IN.getBooleanVars().contains(var)) {

z3CheckClone.addCommand (" (dec +var+"() R
}

. z3CheckClone.addCommand (

¥

by
z3CheckClone.addCommand (" (declare-1
z3CheckClone.addCommand (" (ass

Figure 7.7: The third part of the algorithm to check the equivalence of two nodes

The same thing is done for the variables inside checkNode and once this is finished the two sets of
variables are merged to then move on to sending commands to Z3. We start by declaring all variables
both boolean and non-boolean and specifying the logic to use for the constraints, i.e. QF_RDL. As in
the case of Satisfiable, the Jolly variable initialized to 0 is also defined which will be used to define the
various constraints in Z3.

Once you have finished inserting the constraints of the first node, you need to insert the constraints
of the second node linked by the conjunction and.

The insertion of the constraints of the second node is then also completed.

Finally the operation is performed (check-sat) and the result is returned as output. The pipe is also
closed and all parentheses are closed.

7.3 Construction of the Constraint Graph

Now there are all the elements to implement the final algorithm that builds the Constraint Graph
and verifies its Soundness properties.

In the practical implementation, an initial markup, a list of initial constraints v and the Petri net
N are taken as input. The counter will be used only in test phases to check the number of nodes of
the Constraint Graph. Three constraint sets are initialized CO which will contain the initial constraint
set, C1 which will contain the transition constraint set and C2 which will contain the constraint set to
be processed for the Silent Transition. A control variable unlimitedCG is set to false and is used to
verify that the Constraint Graph is not unlimited, in this way by clicking on the graphic button of
the "Check Data-Aware Soundness" program the writing "Unlimited Data Petri Net" appears. The
subsequent operations initialize a HashMap of tokens associated with the various places and a set of
Places associated with the Places with tokens greater than 0 in the initial marking.

In this way it is possible to create the node CO, which is the initial node of the Constraint Graph
and is also added to the Sets S and L.

The next step is a while loop that ends only when the node set of the Constraint Graph L is empty.
Within the cycle, the current node is extracted and copied within a copy set to avoid passages by
address of the objects present within it and to be able to carry out modification operations without
affecting the original node. The visit of the DPN takes place by scrolling through the various arcs
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command = 2
command =
cont = @;
(MyConstraint ¢ :
cont++;
(cont <= n
command
i

command +

S.getV()) {

S.getv().si:e()j ) {

command + ] g

(IN.getBooleanVars().contains(c.getFirstString())) {
(c

ov
(ov.getConstant()
(lov.getOp().equals(

command = command +

1
i

(ov.getConstant() <
(lov.getOp().equals(
command

command = command +

command = command +

il &
= i
>= 8) {

Jles

N A

+ov.getOp()+ "+ov.getFirstString()+ +ov.getConstant()+")";

{

‘+ov.getFirstString()+ "+ov.getConstant()+"))";

e) {
BRI
+ov.getOp()+"

= command + - "+ov.getFirstString()+ “+ov.getConstant()+

{

+ov.getFirstString()+ +ov.getConstant()+"

Figure 7.8: The fourth part of the algorithm to check the equivalence of two nodes

z3CheckClone =

. CONESMT++;
diff;
start =

> variables

>

variables
¥

(c
variables
variables

}

(c

variables

}
total.add(c);

S, c
3Interation();

.currentTimeMillis();

= HashSet<>();
total = HashSet<>();
etV()) {

) {

.add(c.getFirstString());

1 && !
.add(c.getFirstString())
.add(c.getSecondString()

N.getBooleanVars().contains(c.getFirstString())) {
)s

&& N.getBooleanVars().contains(c.getFirstString())) {
.add(c.getFirstString());

Figure 7.9: The fifth part of the algorithm to check the equivalence of two nodes



§7.3 — Construction of the Constraint Graph 57

(!N.getBooleanVars().contains(c.getFirstString())) {
(c i
ov = ( e
(ov.getConstant() >= 8) {
('ov.getOp().equals( ") {
command = command + "("+ov.getOp()+ +ov.getFirstString()+" joll '+ov.getConstant()+")";

t

command = command + “(not (= '+ov.getFirstString()+" jolly) “+ov.getConstant()+

%

(ov.getConstant() < @) {
(lov.getOp().equals("!=")) {
command = command + “("+ov.getOp()+" ‘+ov.getFirstString()+" jolly) ("+ov.getConstant()+

{

command = command + "(not "+ov.getFirstString()+ 11 "+ov.getConstant()+"))

1
1
if(c it
(!c.getop().equals("!=")) {
command = command + '+c.getOp()+ +c.getFirstString()+" “+c.getSecondString()+

{

command = command + "(not (= ‘+c.getFirstString()+" "+c.getSecondString()+

Figure 7.10: The sixth part of the algorithm to check the equivalence of two nodes

z3CheckClone = 3Interation();
. CONTSMT++;
diff;
start = .currentTimeMillis();

s> variables = HashSet<>();
> total = HashSet<>();

yCon ¢ & news.getV()) {
(c ' ) {
variables.add(c.getFirstString());
}
(c B& !N.getBooleanVars().contains(c.getFirstString())) {
variables.add(c.getFirstString());
variables.add(c.getSecondString());
¥
(c 8& N.getBooleanVars().contains(c.getFirstString())) {
variables.add(c.getFirstString());

1
total.add(c);

Figure 7.11: The seventh part of the algorithm to check the equivalence of two nodes
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Mi, List<

cont = @;
Set < > C1
Set < > C2
Set <MyC > Ce

HashSet<>();
HashSet<>();
HashSet<>(v);

.unlimitedCG = 3

Set< > pStart = HashSet<>();
Iterator itMa = Mi.getMarking().entrySet().iterator();

< b ser> tokens = HashMap<>();
Iterator places = N.getPlaces().entrySet().iterator();

(places.hasNext()) {

Map.Entry entryPlace = (Map.Entry) places.next();
value = ( ) entryPlace.getValue();

tokens.put(value, value.getTokens());

}

(itMa.hasNext()) {
Map.Entry entry = (Map.Entry)itMa.next();
pStart.add(( ) entry.getKey());

Figure 7.12: The first part of the algorithm to construct the Constraint Graph

setP(pStart);
.setMarking(tokens);

.50 = CGNode(Mi,Ce);
nodesCG.put(“c"+cont,S8);
.50.setName("c0");

cont++;
15.5 = HashSet<>();
S.add(Se);
J1 = HashSet<>();
Set<CGNode> L =
L.add(50);

Figure 7.13: The second part of the algorithm to construct the Constraint Graph
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Set<Arc)> arcs = HashSet<>();
(!L.isEmpty()) {

current = L.iterator().next();
L.remove(current);

<P1 ,Integer> copy = HashMap<>();
tor placeMark = N.getPlaces().entrySet().iterator();

Set<MyConstr > currentCopy = new HashSet<>(current.getV());
current.setV(currentCopy);

Set<Place> startPlaces = current.getM().getP();
( a : N.getArcs()) {
(a.direction.equals(
arcs.add(a);

.D ion.PLACE_TO_TRANSITION) && startPlaces.contains(a.getPlace())) {

k
X

Figure 7.14: The third part of the algorithm to construct the Constraint Graph

Set< > p = current.getM().getP();
(larcs.isEmpty()) {
a = arcs.iterator().next();
arcs.remove(a);
(placeMark.hasNext()) {
Map.Entry entryPlace = (Map.Entry) placeMark.next();
value = ( ) entryPlace.getValue();

copy.put(value, value.getTokens());

(a.direction.equals( on.PLACE_TO_TRANSITION)) {
( addToken : N Arcs()) {
(addToken.direction.equals( i ion.TRANSITION_TO_PLACE) && addToken.getPlace().equals(value)) {
copy.put(value, value.getTokens() + addToken.getTransition().getCost());

Figure 7.15: The fourth part of the algorithm to construct the Constraint Graph

present within N, for this reason the set of arcs takes as its initial elements the arcs that start from an
initial Place.

Then another while loop is opened which will repeat as long as there are arcs within the set arcs.
Each iteration extracts the current arc and extracts the markup and copy inside copy.

Subsequently, it is verified whether the arc is of type Place to Transition and if Set p contains the
place pointed to by the arc. If the condition is true, then it is verified that the constraint associated
with the transition of the arc is in reading or writing. In the first case a new set C1 is simply created
and the new transition constraint is added with newConstraintSet(). In the case of writing instead, set
Cl is created with a copy of the constraints of the current Set. subsequently, if the constraint does not
fall within the particular case of v op v, whereby the first and second variable are the same variable,
then all the constraints containing the variable being written are removed.

Also at the end of the write operation the new constraint is added with newConstraintSet(). Next
we define Set C2 initialized to the constraint set of the current node. Subsequently, the negation of the
constraint of the transition to C2 is added if the operation is in read and the variable is not boolean.
Neg’s RW flag is also set to READV to prevent the neg flag from being set to write for any reason.

The subsequent operations instead deal with the boolean variables and therefore the variables are
contained within N.getBooleanVars(). Constraints are added to C1, but if they are variable != true
or variable != false they are converted to variable = false and variable = true respectively. Then the
previous modified constraints are removed from C1.

Subsequently, it is verified whether the Set of constraints C1 is satisfiable and if it is true, a flag
is defined initially initialized to true and then possibly modified later in case of a counterexample.
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(a.direction.equals( 4 .PLACE_TO_TRANSITION) && p.contains(a.getPlace())) {

(a.getTransition().getConstraint().getRW() == raint.READV) {
€1 = HashSet<>(currentCopy);
C1l = newConstraintSet(C1,a.getTransition().getConstraint(),N);

G- HashSet<> (currentCopy);

(la.getTransition().getConstraint().getFirstString().equals(a.getTransition().getConstraint().getSecondstring())) {
Set< t > removed = HashSet<>();
(MyConstraint flow : C1) {
(flow ) {
(flow.getFirstString().equals(a.getTransition().getConstraint().getFirstString())) {
removed.add(flow);

(flow ) {
(flow.getFirstString().equals(a.getTransition().getConstraint().getFirstString()) || flow.getSecondString().equals(a.getTransition().getCol
removed. add(flow);

Figure 7.16: The fifth part of the algorithm to construct the Constraint Graph

nstraint rm : removed) {
Cl.remove(rm);

iy
}

C1l = newConstraintSet(Cl,a.getTransition().getConstraint(),!

i

(@i = HashSet<>();
C2.addAll(current.getV());

(a.getTransition().getConstraint().getRW() == 1S t.READV && !N.getBooleanVars().contains(a.getTransition().getConstraint().getFirstString())) {
1strai neg = a.getTransition().getConstraint().negate();
neg. setRW( r nt.READV);
C2.addAll(newConstraintSet(C2,neg,N));

Figure 7.17: The sixth part of the algorithm to construct the Constraint Graph

invarlant = a.getTransition().getConstraint

(a.getTransition().getConstraint().getOp().equals( ) 8&& N.getBooleanVars().contains(a.getTransition().getConstraint().getFirstString()))
(a.getTransition().getConstraint().getSecondString().equals(
a.getTransition().setConstraint( onstraintTwoV(a.getTransition().getConstraint().getFirstString(),
a.getTransition().getConstraint().setRW(invariant);
Cl.add(a.getTransition().getConstraint());

(a.getTransition().getConstraint().getSecondString().equals("false")) {
a.getTransition() i /ConstraintTwoV(a.getTransition().getConstraint().getFirstString(),
a.getTransition() i RW(invariant);
Cl.add(a.getTransition().getConstraint());

> removed = HashSet<>();
[ 2 (i
(N.getBooleanVars().contains(r.getFirstString())) {
(r.getop() .equals( ) && !r.getSecondString().equals("")) {
removed.add(r);

traint r2 : removed) {
C1.remove(r2);

Figure 7.18: The seventh part of the algorithm to construct the Constraint Graph
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(satisfiable(C1)) {

firedTransition = 5
M1 = Marking();
>pl = HashSet<>();

Iterator currentCopyM = N.getPlaces().entrySet().iterator();

:(currentCopyM. hasNext()) {
Map.Entry entryPlace = (Map.Entry) currentCopyM.next();
value = ( ) entryPlace.getValue();
M1.getMarking().put(value, current.getM().getMarking().get(value));
3

( tp : N.getArcs()) {
(tp.direction.equals(Dir on.TRANSITION_TO PLACE) &R tp.getTransition().equals(a.getTransition())) {

arcs.add(tp);
pl.add(tp.getPlace());
M1.getMarking().put(tp.getPlace(),M1.getMarking().get(tp.getPlace()) + tp.getTransition().getAddTokens());

Figure 7.19: The eigth part of the algorithm to construct the Constraint Graph

(tp.direction.equals .PLACE_TO_TRANSITION) &8 tp.getTransition().equals(a.getTransition())) {
(current.getM().getP().size() > 1 && a.getTransition().getIncomingArcs().size() <= 1) {
pExclude : current.getM().getP()) {
(!(pExclude.equals(tp.getPlace()))) {
pl.add(pExclude);

¥
:

Ml.setP(pl);

List<Arc> arcIncoming = a.getTransition().getIncomingArcs();
Set<Place> pla = HashSet<>();

( ai : arcIncoming) {

pla.add(ai.getPlace());

( flowPl : pla) {
(current.getM().getMarking().get(flowPl) - a.getTransition().getCost() < @) {
firedTransition = 3

i
M1.getMarking().put(flowP1l, M1l.getMarking().get(flowPl) - a.getTransition().getCost());

Figure 7.20: The nineth part of the algorithm to construct the Constraint Graph

The marking M1 and the Set of Place pl are also defined in order to be able to define the marking of
the new node that will eventually have to be created. The initial numbering is initially initialized to a
copy of the current node’s numbering. Then we start to iterate all the arcs and the first case occurs: if
the arc is of type transition to place and the transition corresponds to that of the arc then the new arc
is added to the set of arcs to be iterated in the previous while loop , the place of the arc is added to
the set pl and finally the marking of M1 is updated by adding the number of tokens it takes from the
transition to which it is connected.

The second case instead is to check if the arc is of the place to transition type and if the transition
associated with the arc is the same as the transition of the current node. In that case it is necessary
to check if the transition is able to trigger and therefore it is necessary to see if all the places that
have an arc with destination in that transition have a number of tokens greater than or equal to the
cost required by the transition. If even just one of these places does not have a sufficient number of
tokens, then the firedtransition flag is set to false. The marking of the new node will have the values
decremented by the cost of its transition into the previously defined incoming places.

The next step is to check through the checkUnlimitedCG function if the Constraint Graph is
unlimited and therefore it will have to return false to avoid an infinite loop. If this is not the case, then
a new node is created with a current transition, the marking M1 and the set of nodes C1, however to
be included in the Set of nodes S it is necessary to verify that the node is not already present (i.e. has
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(checkUnlimitedCG( .S,€1,m1)) {
.unlimitedCG = 5

news = CGNode(M1,C1,a.getTransition());

present
copyNewsS
newA =

checkNode : S) {

Figure 7.21: The tenth part of the algorithm to construct the Constraint Graph

(checkNode.getM().getP().equals(newS.getM().getP()) && checkNode.getM().getMarking().equals(newS.getM().getMarking())) {

res = checkCGClone(newS,checkNode);

(res.equals("unsat")) {
present = 5
copyNewS = checkNode;

3

(present) {
(firedTransition) {
(!current.getName().equals(copyNewS.getName())) {

newA = CGArc(current,a.getTransition(), copyNewsS) ;
.out.println(” “+current.getName()+" -> "+copyNewS.getName());
.A.add(newA);

Figure 7.22: The eleventh part of the algorithm to construct the Constraint Graph

the same set of constraints taking into account the constraints involved, but also the marking itself).
In this regard, the present flag is used, initially set to false and which will eventually become true
if a counterexample is found. We then start scrolling through all the nodes of the Constraint Graph
already built in S.

If the current node in S and the newly created one have the same marking and checkCGClone()
verifies that they also have the same set of constraints (thus the result of checkCGClone must be
"unsat"), then the flag present is set to true.

If the present flag is true, it checks if the firedTransition flag is also true and if so, it checks that the
name of the current node and the new one do not have the same name and the arc is created between
the two nodes already existing.

If it is not present, the new arc is created, the new node inserted in Set S and the contElements flag
is used to avoid nodes with the same name: in fact, in the graphic representation for each node of the
constraint graph only the guard constraint and place names having tokens greater than zero, so in case
of nodes with the same guard, same places with tokens greater than zero, but with a different number
of tokens between the places would give rise to a single node in the visualization of the Constraint
Graph. Finally the new node is added to Set L which will be subsequently extracted in one of the next
iterations of while(!L.isEmpty()).
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(firedTransition) {
newA = CGArc(current,a.getTransition(),news);
.S.add(newS);
contElements = ©;

( s :5){

(s.getName() != ) {
(s.getName().contains("T: "+newS.getGuard().getConstraint()+ "+newS.getM().getP())) {
contElements++;
1
}

(contElements == 8) {
nodesCG. put( +newS.getGuard().getConstraint()+ ‘+newS.getM().getP(),nens);
news. setName( +newS.getGuard().getConstraint()+ +newS.getM().getP());

b

{
nodesCG. put( +news. getGuard() .getConstraint()+ +newS.getM().getP()+" "+contElements,news);
newS . setName( +newS.getGuard().getConstraint()+"\n “+newS.getM().getP()+" “"+contElements);

.out.printIn(" "+current.getName()+ +newS. getName());
.out.println( E +newS. getName()+ str t: "+a.getTransition().getConstraint()+" Marking: "+newS.getM().getP());
cont++;
.A.add(newA);
L.add(news);

Figure 7.23: The twelveth part of the algorithm to construct the Constraint Graph

If C1 is not satisfiable, then the negation of the constraint is added to the current set in order to
make the comparison between set C2 and the current set true. In fact, if the Set of constraints should
not be satisfiable then automatically the negation of the constraint is an implication of the current set
of constraints and also the marking would remain the same.

The next part instead concerns the management of the boolean variables as occurred in a similar
way to the case of C1.

It then checks that C2 is satisfiable, that the constraint set C2 is different from the current one, and
that the transition flagRW is not set to write. In the event that these three conditions are met, the new
node is created but before inserting it into S, it is checked, as done in the case of C1, if a similar node
does not already exist.

Then, as in the case of C1, the same operations are carried out depending on whether the node is
already present or not.

Finally, the last part of this method is to run the analyzeConstraintGraph function to tell the
program if the constraint graph is sound:

7.4 Verification of Data-Aware Soundness properties

In the pseudocode presented in chapter 6.1, reference is made to the AnalyzeConstraintGraph()
function, in which the three data-aware soundness properties are checked, which we summarize as:

* V(M, a) € Reachy . Ja". (M, a) =* (Mg, ');
* V(M, a) € Reachy .M ge My — (M =My);
e VteT. 3M My, al, a2, B, (M1,a1) € Reachy e (M1, a1) — (Mj, ap) attraverso (t,B).

These properties are checked individually and if even one of these three properties is false then the
whole system will not be data-aware sound. The other situation that could occur is that a Constraint
Graph has an infinite number of nodes and for which the algorithm must automatically return the
result false. In that case the condition occurs:

e I(M,CeSstM' >MAC =C)

As already seen in the pseudocode in chapter 6.1 .



64 7 — Construction of the Constraint Graph

{

current.getV().add(a.getTransition().getConstraint().negate());

}

C2.add(a.getTransition().getConstraint().negate());

1t> addConstraints = HashSet<>();

Constr r:c2) {
(N.getBooleanVars().contains(r.getFirstString())) {
(r.getOp().equals("!=") && !r.getSecondString().equals("")) {
(r.getSecondString().equals("truse")) {
addConstraints.add( MyConstraintTwoV(r.getFirstString(),"f

(r.getSecondString().equals(“false")) {
addConstraints.add( MyConstraintTwoV(r.getFirstString(), "true

Jj
3

C2.addAll(addConstraints);

Figure 7.24: The thirteenth part of the algorithm to construct the Constraint Graph

(satisfiable(C2) && !(current.getV().equals(C2)) && a.getTransition().getConstraint().getRW() != t .WRITEV) {

st = ( ) a.getTransition().clone();
st.setConstraint(a.getTransition().getConstraint().negate());
news = CGNode (current.getM(),C2,st);

present =
copyNewS =
newA = 5

¢ checkNode : S) {

(checkNode. getM() .getP().equals(newS.getM().getP()) && checkNode.getM().getMarking().equals(newS.getM().getMarking()) && !checkNode.equals(current)) {

res = checkCGClone(newS, checkNode);

(res.equals( I
present = 5
copyNewS = checkNode;

Figure 7.25: The fourteenth part of the algorithm to construct the Constraint Graph
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(present) {
(!current.getName().equals(copyNewS.getName())) {
newA = CGArc(current,st,copyNews);
.out.println( +current. gethame()+ +copyNewS . getName());
.A.add(newA);

¥
{

newA = CGArc(current,st,news);
contElements = 8;
( s :S){
(s.getName().contains("S] +newS.getGuard().getConstraint()+ “+newS.getM().getP())) {
contElements++;

b

(contElements == @) {
nodesCG. put("s ‘+newS.getGuard().getConstraint()+"\n "+newS.getM().getP(),news);
news . setName("s +newS.getGuard().getConstraint()+"\n "+newS.getM().getP());

g

nodesCG.put(” +newS.getGuard() . getConstraint()+ +newsS.getM().getP()+" "+contElements,neus);
newS.setName("ST: "+newS.getGuard().getConstraint()+"\n "+newS.getM().getP()+" “+contElements);

.S.add(newS);
cont++;

.A.add(newA);
L.add(newsS);

Figure 7.26: The fifteenth part of the algorithm to construct the Constraint Graph

.out.println("");
.out.println("NODES

SRS

.out.println("Name: "+s.getName());
.out.println("Marking: "+s.getM().getMarking());
.out.println("Constraints: "+s.getV());
.out.println("");

analyzeConstraintGraph(

Figure 7.27: The sixteenth part of the algorithm to construct the Constraint Graph
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( start, Set<CGNode> S, Set<CGArc> A) {

DFSUtil(start,visited,S,A);

2an> visited, Set<CGNode> S, Set<CGArc> A) {

(a.getDestination().getName().equals(ve
(v ed.get(a.getSource(
DFSUtil(a.getSource(),vis

Figure 7.28: Implementation of DFS Algorithm

7.4.1 Property1l

The first property (V(M, a) € Reachy . M ge My = (M = My)) it is verified using the Depth First
Search algorithm, i.e. the depth search algorithm on a graph as Cormen et al. shows in [6]

The DFS algorithm is implemented using two methods. These two methods implement the depth-
visitation algorithm of a graph starting from an initial node. In this case, however, a modification
has been made: in fact, in the original algorithm the initial node is the root one and the exploration
continues up to the last nodes, called leaves, instead in this case the final nodes (without outgoing
arcs) are the nodes and continue the visit up to the initial nodes.

After the DFS algorithm it is possible to implement the checkProperty1() method which implements
the verification of property 1 of Data-Aware Soundness, ie it verifies that it is possible to arrive at a
node with final marking for any possible path of the graph. We use the set visited (global variable
within the class) to insert all the nodes that have already been visited and we use the previously
defined DFS algorithm to fill the elements of the set visited. In the final part it checks that all elements
of visited are set to true, otherwise false is returned.

7.4.2 Property 2

Property 2 (V(M, a) € Reachy . M ge My = (M = My)) itis implemented using a function that
allows to obtain the final marking. This function, given a set of nodes of the Constraint Graph and a
set of arcs, creates a new set of nodes which contains the final nodes of the Constraint Graph, within
which there are also the final markings.

Then the checkProperty2() function is implemented. This function takes as input the Petri net N and
the Node set S which represents the created nodes of the Constraint Graph. For each node of S the
comparison with the final marking is made. The first if inside the while loop checks if the number of
tokens inside each CGS Place is less than that of the final markup. If even only one case should be
true, it means that the condition for which M must be greater than or equal to Mf is not respected,
therefore in this the while loop is interrupted and one moves on to the next CGS node. If it is only
equal, a counter is increased which indicates how many Places of the marking are valid for respecting
property 2. If instead it is greater, the counter is increased, but a flag is also set to 1 to indicate that the
CGS marking can actually be greater than or equal to the final one.

Finally, the next part provides for the check that property 2 is violated by verifying three conditions
jointly with the logical operation of AND:

* That the counter is equal to the size of the mark, otherwise it means that the cycle would have
terminated early and consequently it is not greater than or equal;

e Che flagMax = 1, which indicates that at least one token greater than the final markup is present.
® That the Places with values greater than 0 in CGS and in the final markup are equivalent

If all 3 of these conditions are true then false is returned, otherwise true is returned.
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s : .S) {

visited.put(s,

5 : S) o

p : s.getM().getP()) {
(p.getFinalPlace()) {
DFS(s,S,A);

(Entry<CGNode, ! ean> entry: visited.entrySet()) {
(entry.getValue() == ) {

2

Figure 7.29: The Implementation of the algorithm to check Property 1 of Data-Aware Soundness

(Set<CGNode> nodes, Set<CGArc»> arcs) {
HashSet<>();

NOo{

( fp : n.getM().getP()) {
1f(fp.getFinalPlace()) {

.MF.add(n);
s

Figure 7.30: The algorithm to get the Final Marking of DPN
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flagMax = @;
Iterator<Entry< 3 »>> it = CGS.getM().getMarking().entrySet().iterator();
Map.Entry<Place,Integer> runTokens .next();
Iterator<Entry<Pl 5 : >> 1tMF etFinalMarking().getMarking().entrySet().iterator();
Map.Entry< ,Integer> finalTokens F.next();
(CGS.getM().getMarking().size() = getFinalMarking().getMarking().siz
(it.hasNext() && itMF.hasNext()) {
(runTokens.getValue() < finalTokens.getValue()) {
runTokens = it.next();
finalTokens = itMF.next();

(runTokens.getValue() > finalTokens.getValue()) {
cont++;
flagMax = 1;
1

cont++;

runTokens = it.next();
finalTokens = itMF.next();
i

(CGS.getM().getMarking().size()-1 == cont && flagMax == 1 && N.getFinalMarking().getP().equals(CGS.getM().getP())) {

}

Figure 7.31: The Implementation of the algorithm to check Property 2 of Data-Aware Soundness

7.4.3 Property 3

Property 3 (Vt € T. AM;,My, a1, a2, B, (M1, «1) € Reachy and (My, a1) = (M, ap) through (¢,) )
is implemented through the checkProperty3() method. That is, it is necessary to verify the absence of
dead transitions within the DPN. A dead transition can occur in two ways within a DPN:

e If a transition cannot be triggered due to an insufficient number of tokens inside the incoming
Place (as in traditional petri nets);

¢ If a transition cannot fire due to a guard that can never be verified.

So to verify this property we scroll through all the transitions of the DPN present in Petrinet N,
another loop is nested within the for loop which scrolls through all the arcs of the Constraint Graph
and verifies that the transition associated with that node is the same as the transition current. In that
case you stop iterating through the edges, increment a find flag that says the transition has been found,
and move on to the next transition. Once the two for loops have ended, it is verified that the find flag
has a value different from the number of transitions, if it is true the algorithm returns false, otherwise
true.

7.4.4 Unlimited Constraint Graph

To verify that a Constraint Graph is unbounded ( 3(M, C € S s.t M’ > M land C’ = C)) the
checkUnlimitedCG() method is implemented. This function checks if the Constraint Graph being
generated is unbounded and consequently needs the ConstructCG method to finish, otherwise it
would go into an infinite loop. The parameters passed as input are a Set of constraints C1, a Set of
already created Nodes of the Constraint Graph S and a Marking M. The visit of the nodes present in
S is carried out, it is checked if the set of constraints C1 is identical to the set of constraints present
in node s and if they have the same places with tokens greater than 0. If the case is true, then the
marking M is scrolled together with that of node s and it is verified whether the marking of s has at
least one token higher than that of M. If this last condition is true then the algorithm returns the true
value which will return the false value to the constructCG method to say that the Soundness cannot
be verified since the Constraint Graph is infinite.
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t : N.getTransitions()) {

a: A){

if(t.equals(a.getTransition())) {
find++;

3

}

if(find != N.getTransitions().size()) {

3

¥

Figure 7.32: The Implementation of the algorithm to check Property 3 of Data-Aware Soundness

(Set<Cq S >.C1; M) {
SRSy

(Cl.equals(s.getV()) && M.getP().equals(s.getM().getP())) {
Iterator<Entry<Pl % t >> itM = M.getMarking().entrySet().iterator();
(itM.hasNext()) {
Map.Entry< e, > entryM = itM.next();
Iterator<Entry< e >> itS = s.getM().getMarking().entrySet().iterator();
(itS.hasNext()) {
Map . Entry< " > entryS = itS.next();

(entryS.getKey().equals(entryM.getKey()) && entryM.getValue() > entryS.getValue() && M.getP().contains(entryS.getKey())) {

H

Figure 7.33: The algorithm to check if the Constraint Graph is unlimited
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.finalMarking(S,A);
.propl = checkPropertyl
.prop2 checkProperty
.prop3 = checkProperty
.out.println("PRC
.out.println(’
.out.println(

.propl) {
( -prop2) {
( .prop3) {

>

Figure 7.34: The final algorithm to check Data-Aware Soundness properties

7.4.5 The complete algorithm

Finally we now have all the elements to implement AnalyzeConstraintGraph(). In this part the three
CheckProperty functions and the final marking one are called and the Data-Aware Soundness of the
DPN is verified. If all three properties are true then the algorithm returns true, otherwise it returns
false.



Part 111

Software Test

71






CHAPTER 8

The Petri Net Markup Language

The common format for representing a Petri Net is the Petri Net Markup Language (PNML) format. Through
the ProM software it is possible to take a .pnml file that represents a standard Petri Net and extend it with
variables to then generate the new PNML adapted to the Data Petri Net. Once the file in .pnml format has been
created, the Constraint Graph construction program must be able to read its content and transform it into a Data
Petri Net on which to create its algorithms.

8.1 Introduction to ProM

ProM stands for Process Mining and is a Toolkit, i.e. a set of basic software tools, for Process
Mining and Business Process Management, used to facilitate and standardize the development of
more complex derivative applications. Process mining is concerned with extracting knowledge about
a (business) process from its process execution logs. ProM is an extensible framework that supports a
wide variety of process mining techniques in the form of plug-ins. It is platform independent as it is
implemented in Java.

ProM is a software that has many applications and in this document the relevant part concerns the
management of Petri Nets and Data Petri Nets. Within the program it is possible to import a file in
.pnml format which represents a standard Petri net with no data (Figure 8.1)

Once the .pnml file has been imported, it is possible to transform it into a Data Petri Net. First you
have to click on the "Use resource” button indicated in green (Figure 8.2) to select the desired petri net:

I8 ProM UlTopia = [m]

B Apri X

- EEEL =

[) standarapetriNet.pnmi

Nome file; [standargPetriniet pnmi

Tipo difile: [Tutti e

Figure 8.1: ProM software : select PNML File

73
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Workspace

Figure 8.2: ProM software : Use Resource Button

Create/Edit PetriNet With Data

Figure 8.3: ProM software : Create/Edit Petri Net

In the screen that appears, select the item in green "Create/Edit Petri Net with Data" and then
press the "Start" button.

In the screen that appears next, click on "create variable" to create a new variable. You must specify
the type of the variable which can be of five types:

® java.lang.String : A String;

® java.lang.Long : An Integer;

* java.lang.Double : A Real;

® java.lang.Date : A date;

¢ java.lang.Boolean: A Boolean.

In addition to this, the name of the variable and its minimum and maximum value must also be
specified when the type is real or integer. Once the variables have been entered, click on "Next".

In the following screen, all the guards of the various transitions must be entered, specifying which
variables of the constraint are in read and which in write. Transition names are written inside the
<text> tag of the .pnml format.

Finally, the Data Petri Net is created and displayed. The variables are represented inside yellow
hexagons, while the Places and the Transitions are represented as seen previously. Guards are inserted
into the arc entering the transition.
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Variable Name Type Minimum Value Maximum Value
class javalanglong -128000 127000
class javalang.Long -128000 127000

Add Variable Remove Variable

Figure 8.4: ProM software : Insert the Variables
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Add Read/Write Operations and Guards

Transition Variables Read Variable Written

tau finish

tau firstDoChild
tau skipChild
tau start

. Finish

Figure 8.5: ProM software : Insert Variables

Petri Net with Data

Transition

Figure 8.6: ProM software : Visualization of DPN
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I8 proM UlTopia = (=] X

Figure 8.7: ProM software : Export to Disk

Finally, the last part involves clicking on "Export to disk", to save the new .pnml format which also
takes into account the variables and guards.

Now the new .pnml file has been generated which extends a standard Petri Net into a Data Petri
Net and it is essential to understand the main markers found within the generated file in order to
allow the Constraint Graph construction program to generate the corresponding DPN.

8.2 Petri Net Markup Language main markers

This section analyzes the .pnml file generated by analyzing the various markers that compose it.

8.2.1 The generated File

The generated file includes the following content:

8.2.2 Definition of Markers

Below is the definition of all the markers present in the generated file:

® <pnml>: indicates the opening of a Petri Net Markup Language;

® <net>:indicates the opening of a network, among its attributes it specifies the network identifier
and its type;

e <name>: indicates the name of the Petri net;
e <text>:indicates a text to insert;

® <place>: A fundamental element of the program that indicates the opening of a Place in which
its identifier is specified;

» <graphics>: Element used only for PrOM which defines how it should be displayed, inside it
contains the tags position and dimension which respectively specify the position and size of the
element to be displayed graphically;

» <initialMarking> : This tag allows you to specify an initial marking;

* <transition>: Another fundamental element of the constraint graph construction software which
requires an identifier exactly like the Places. The difference with the Petri Net standards is the
presence of the guard attribute which specifies the transition guard.

* <writeVariable> : Indicates a variable being written;
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* <readVariable> : Indicates a variable being read;

e <arc>: Another fundamental element of the Data Petri Net and indicates an arc that connects a
Place to a Transition or vice versa. Equipped with an identifier and two attributes source and
target which respectively indicate the id of the source element and that of the target element;

* <arctype> : indicates the type of arc;
* <finalMarkings> : final marking container;

* <marking>: Contains a markup, i.e. it contains <place> tags which instead of the id attribute have
the idref attribute since they refer to a place already defined and the number of tokens is written
inside the <text> tag;

* <varigbles> : container of all the variables present within the Data Petri Net, this attribute is also
present only in a PNML of a Data Petri Net and not of a Standard Petri Net

* <variable defines a variable with the attributes maxValue and minValue to respectively indicate
the maximum and minimum value and the attribute type which indicates the type of the variable
. The name of the variable is specified inside the <name> tag.

8.3 Creation of the PNML Reader

The program for constructing the Constraint Graph implements a class called PNMLReader which
allows to extract the information needed to generate the DPN. This class is used to take an input
PNML file and create the DPN based on what is specified in the input. So this class simply implements
a file read and string parsing operation. The main elements of a PNML file are:

* <place id="name”> : where <place indicates a place and id indicates its name;

* <transition guard="V" id="name”> : where <transition indicates a transition, the guard its
associated constraint and id the name of the transition;

* <arc id="name” source="namel” target="name2”> : where <arc indicates an arc, id indicates the
name of the arc, source the name of the source element and target the recipient item name;

* <uariables> : indicates the variables present in the document.

As for the V constraint, it consists of two operands and one operator. The strings of the DPN
variables are contained within the <variables> tag, if the second operator does not fall within those
variables, then it is a constant and the constraint is therefore variable-constant.

While for the operators the following 6 operators are defined:

Operator Symbol
Not Equal I=
Equal =
Greater &gt;
Lower &lt;
Greater or Equal | &ge;
Lower or Equal &le;

The implementation of the PNML Reader is shown in Figure 8.8 - Figure 8.19. This class simply
consists of a file reading operation to store the data necessary for the construction of the DPN within
variables.

This first part shows the initialization of the variables (Figure 8.8). A series of variables are
initialized as a series of empty strings which will concatenate read characters as soon as the element
they refer to begins. To verify that a certain tag and an attribute associated with it have been identified
when reading the .pnml file, a series of boolean variables are also initialized to false which will become
true as soon as the element is identified.
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path;
file;
scanner;
List¢ > places;
List< ion> transitions;
i Set< > variables;
Set< > booleanVariables;
startVariables;
boolVariable = -

path, net) {

.path = path;

“Fidlal s File( .path);
places = ArraylList<>();
transitions = Arraylist<>();

s | e ey

variables = HashSet<>();
booleanVariables = HashSet<>();
startVariables = :

.scanner = Scanner( -File);
startPlace = 3
startTransition = i
startToken = g

readwWrite =

readOp = 3
readEll =

readEl2 =
readName = -

Figure 8.8: PNML Reader : Initialization of Variables

The next step is reading information about places (Figure 8.9). Subsequently, the file is read line by
line and the places are identified as the first element. Once <place id= has been identified, it begins to
scroll the line character by character and as soon as it encounters the quotation marks (with ascii code
34) the place start flag is set to true. It then concatenates subsequent characters until the quotes are
read again.

Once the id of a place has been read, the startPlace flag is set to true and will return to false only
when the closing </place> tag is found. In the meantime it is checked whether there is an initial
marking. This operation involves checking if the <initialMarking> tag is present inside the line and if
present it starts reading character by character and starts concatenating the number of tokens after
finding the closing angle bracket of the tag. The characters that are concatenated must necessarily
be digits. Finally, once all the data has been obtained, the place is created with its specific id and its
possible initial marking by converting the string of tokens into an integer value (Figure 8.10).

The next Part define the reading of transitions information (Figure 8.11 - 8.14). The operation of
reading transitions is very similar to that of places. The transition starts when the <transition> tag is
encountered. The following lines may contain the tag <readVariable> or <writeVariable> and indicate
whether the variable indicated in the first operand is read or written and this is specified by a special
flag which is set to 0 if it is reading and to 1 if it is writing. The initiation of the constraint occurs
when the guard attribute is encountered in the transition line. The first element to be read will be
the first variable, then the relational operator and finally the second value. If the second value has a
value composed exclusively of digits then a variable-constant constraint will be created, otherwise
variable-variable.

The next part concerns the reading of the arcs that connect the elements of the graph. arc reading
starts when a line with tag <arc> is read, then arc id in attribute id, source element in attribute will
be read source and the destination element in the destination attribute. Finally it runs through all the
places and transitions to determine if it is a place-transition arc or the other way around (Figure 8.15 -
8.17)

The last part concerns the reading of the variable names which starts when the <variable> tag is
read and more specifically it starts concatenating the characters when it has read the <name> tag
(Figure 8.18 - 8.19)

Now it is possible to generate DPN starting from ProM through the .pnml format and read them
inside the Constraint Graph Construction software.
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(scanner.hasNextLine()){
line = scanner

place =
endPlace =

(1line.toL & i place.tolLowerCase())) {
[]1 myChars = line.toCharArray();
ascii = -1;
startld = 5
i = @; i<myChars.length; i++) {
ascii = myChars[i];
(ascii && startId
startld = 5

(ascii == 34 8& startId ==

3

}
(ascii != 34 && startId == ) {
id = id+myChars[i];
¥

startPlace = 5

(1ine.tolLowerCase().contains(initialMarking.tolLowerCase()) && startPlace == ) {
initial anner.nextLine();
[1 myChars nitial.toCharArray();
start =
tokens = g

Figure 8.9: PNML Reader : Information about places part 1

i = 8; i<myChars.length; i++) {
(myChars[i] == ) {
start = i;

myChars[start + (i-start+1)];
&& ascii <= 57)
= tokens+myChars[start + (i-start+1)];
startToken = g

{ .

i

(line.tolLowerCase().contains(endPlace.tolowerCase()) && startPlace == ) {
(!tokens.equals("")) {
(first != ) {
places.add( .place(id, .parseInt(tokens)));

}
{
first = %
substitute = i
places.add( ) .parseInt(tokens)));

tokens = "";

Figure 8.10: PNML Reader : Information about places part 2
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transition =
endTransition =
readvariable =
writevariable = riteVariab
(line.contains(writevariable)) {
readWrite = 1;

(line.tolLowerCase().contains(endTransition)) {
startT = 2

(readel2.matches("[@-9]+")) {
(readWrite == 8) {
AN = transition(readName, N5

i
{
t1 = net.transition(readName, "W");
3y
tl.setConstraint( MyConstraintOneV(readEll, .parseInt(readEl2),readOp));
tl.getConstraint().setRW(readWrite);

(readWrite == @) {

ti= transition(readName, )
}

{

t1 = net.transition(readName, "W");
+
t1l.setConstraint( MyConstraintTwoV(readEll, readE1l2, readOp));
tl.getConstraint().setRiW(readurite);

Figure 8.11: PNML Reader : Information about Transition part 1

readName =

readOp =

readEll

readEl2 S
readiirite = ©;
transitions.add(t1);

(line.tolLowerCase().contains(transition.tolLowerC
startT = 3
mycharsT = StringBuffer(line);
startgll = o
endEll = 5
i = 8; icmycharsT.length(); i++) {
(mycharsT.charAt(i) == & i + 7 < mycharsT.length() ) {
(mycharsT.charAt(i+l) == 88 mycharsT.charAt(i+2) =
i = i48;
startEll =
endEll =

&% mycharsT.charAt(i+3) == 'r' && mycharsT.charAt(i+

(endE11l == && startEll == )
(mycharsT.charAt(i) != '&' && mycharsT.charAt(i) != 8& mycharsT.charAt(i) != ) {
readEll = readEll + mycharsT.charAt(i);
i=1341;

{
endEll = =
(mycharsT.charAt(i) == || mycharsT.charAt(i) == ) {
1= i+1;

Figure 8.12: PNML Reader : Information about Transition part 2
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TreadEll.equals
(readOp.equals("") && (mycharsT.charAt(i) == || mycharsT.charAt(i-1) == || mycharsT.charAt(i) == ) {
(mycharsT.charAt(i) == && mycharsT.charAt(i-1) != ) {
readOp = =0
1 ="331;
i
(mycharsT.charAt(i-1)
readop = "1=";
i=i+1;

}

(mycharsT.charAt(i) == ‘&') {
readOp = readOp+mycharsT.charAt(i)+mycharsT.charAt(i+l)+mycharsT.charAt(i+2)+mycharsT.charAt(i+3);
i = i+4;

(readOp.equals ("8
readOp = 5

(readOp.equals("&l
readOp = =

(readOp.equals(“&le;
readOp =

(readOp.equals(
readOp = 3

Figure 8.13: PNML Reader : Information about Transition part 3

(!readOp.equals(”") &% readEl2.equals("")) {

(mycharsT.charAt(i) != ) {
readEl2 = readEl2 + mycharsT.charAt(i);
i=1i+1;

¥

(mycharsT.charAt(i) == && i-3 < mycharsT.length()) {
(mycharsT.charAt(i+1) == && mycharsT.charAt(i+2) == 8& mycharsT.charAt(i+3) == ) {
i= i+4;
(mycharsT.charAt(i) != ) {
readName = readName + mycharsT.charAt(1);
i=i+1;

Figure 8.14: PNML Reader : Information about Transition part 4

arc = "<a d=";
(line.tolowerCase().contains(arc.tolLowerCase())) {

~ [] mychars = line.toCharArray();
startArcName = A
startSourceName = s
startDestinationName = o
i = @8; i<mychars.length; i++) {

ascii = mychars[i];
(i != mychars.length - 1) {
(mychars[i] == && mychars[i+1] == 8& startArcName == ) {
startArcName = =
1= i+3;
(startArcName == ) {

readArcName = readArcName+mychars[i];

(startArcName == &8& ascii == 34) {
startArcName =

(mychars[i] == && mychars[i+1] == 'e' && startSourceName == )
startSourceName = 5
SLES LR

(startSourceName == && ascii != 34) {
readSource = readSource+mychars[i];

(startSourceName == && ascii ==
startSourceName = 5

Figure 8.15: PNML Reader : Information about Arcs part 1
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&& mychars[i+l] == && startDestinationName ==
startDestinationName = 5
JN=R1-+35

(startDestinationName == t && ascii != 34) {
readDestination = readDestination+mychars[i];

(startDestinationName == && ascii == 34) {
startDestinationName = 3
}
}

(readSource.equals(substitute)) {
readSource = s

pS H
pD H
S 5
EDi= =
p : places) {
(p.getName().equals(readSource)) {
pS = p;

(p.getName().equals(readDestination)) {
pD = p;

t : transitions) {
(t.getName().equals(readSource)) [
tS = t;

Figure 8.16: PNML Reader : Information about Arcs part 2

(ts I= 8& pD != ) {
.arc(readArcName, tS, pD);

(pS != && tD != ) {
net.arc(readArcName, pS, tD);
}
readArcName = =
readSource = “";
readDestination = =

Figure 8.17: PNML Reader : Information about Arcs part 3

variables =
endVariables = 2 et

(line.tolowerCase().contains(variables.tolLowerCase())) {
startVariables = H
boolVariable

(line.tolLowerCase().contains(endVariables.tolowerCase())) {
startVariables = i

var = "";
(startVariable

(line.contains("]
boolVariable =

(line.tolLowerCase().contains( e>")) {
i = @; i<line.length(); i++) {
(line.charAt(i) == 8& i+5 < line.length()) {
(line.charAt(i+l) == && line.charAt(it+2) == ‘'a' && line.charAt(i+3) == 'm' && line.charAt(i+4) ==
1= 1+46;
(line.charAt(i) != ) {
var = var + line.charAt(i);
Jo= gl

Figure 8.18: PNML Reader : Information about Variables part 1

&& 1i]
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(boolVariable == ) {
.variagbles.add(var);

{

.booleanVariables.add(var);

(places.size() > @) {
places.get(places.size()-1).setFinalPlace();

( ex) {
.getLogger( 7 .getName()).log( .SEVERE,

Figure 8.19: PNML Reader : Information about Variables part 2

8.4 Generate Random Petri Nets with Processes and Logs Generator
(PLG)

One of the major criticalities that occurs when trying to create random Data Petri Nets is that it is
generally very complex to create algorithms that expect to create scalable Data Petri Nets, due to the
fact that the Petri Nets and to an even greater extent the Data Petri Net follow strict rules and a small
violation is enough to prevent the creation of complex Constraint Graphs. A situation of Unlimited
Petri Data Net or the presence of dead transitions will be sufficient to have a heavy truncation of the
number of elements of the generated graph.

To generate test cases, the Processes and Logs Generator software was also used, which allows you to
generate processes with a structure very similar to that of a standard Petri Net, then the part relating
to the data, then variable initialization and transitions guards is carried out manually.

After installing the program, first click on New Process present at the top left of the program. The
following screen will then open, on which you have to work on the parameters that are listed below

* New process name : The name of the process;
* Max And branches : The maximum number of transitions in parallel;
¢ Max XOR branches : The maximum number of branches outgoing from a place.

e Sequence weight : This should be set to a minimum value, since transitions connected to other
transitions should not be generated.

For example, with the parameters set in the previous image, the following graph is generated
where the Activities represent the transitions, while both x and + depicted with a yellow rhombus
represent the places.

Finally we proceed manually to enter all the parts concerning the data.
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|22| New Random Process Configuration

New Random Process Configuration

X

.1 Read Online Help |

Use this dialog to set the new process parameters.

i
New process name |Process 1

Maximum depth |

Max AND branches |

Max XOR branches |

Sequence weight '

Single activity weight '
Skip weight '
AND weight '
XOR weight '

Cancel Reset values

Figure 8.20: PLG : Selection of Elements

/ Activity E
».
& ><+\

N
A e ol

Pa

Activity D
A
Activity A X <
Start '/\/ e >

Activity G

Figure 8.21: PLG : Visualization of the Petri Net
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CHAPTER 9

Test on Examples of DPN

In the final part of this document the behavior of the program is verified by generating some examples and
showing their output. For each example we will explain the behavior of the program and why it returns a correct
result.

9.1 Generation of DPNs

DPN generation within the software is possible through three options:
* Reading a .pnml file with PNML Reader (See Chapter 8);

* Generation of a random DPN with a random number of Places, Transitions, variables and depth
of the tree structure;

* Generation of a DPN with a fixed number of tree depth and variables;

Once the program has been executed, the menu will appear in Figure 9.1:
By selecting "Import a PNML File" a screen will appear in which it is possible to specify the path
of the file in the appropriate text box in .pnml format and then press "Submit" to generate it.

9.1.1 The Automatic DPN Generator

To automate the process described above, a DPN Generator was created directly within the
software, capable of generating a series of transitions, places and relative arcs to then be given as

Generate New DPN:

Import a PNML File

Random DPN

Random DPN preconfigured

= ————————.--..

Figure 9.1: The Buttons to decide how to generate a DPN

87
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E] Insert the path of PNML File

Submit

Figure 9.2: The Textfield in which insert the PNML File

Insert your configuration :ﬁ

Insert number of variables:

Insert the depth of the True structure

Submit

Figure 9.3: The random DPN preconfigured menu

input for the construction of the Constraint Graph. The DPN Generator is used in Chapter 10 to test
the performance of the program.

The function that generates a DPN with all tokens set to 1 both in the places and in the costs/additions
of the transitions takes the name of generateDPNuwithoutToken.

The logic of this algorithm is to generate a DPN which has a tree structure. Furthermore, to avoid
dead transitions truncating the Constraint Graph, thus making the generation of Constraint Graphs
with large number of nodes very difficult, only constraints using the operator /= (not =) are used. To
avoid repeated constants, a Set generated is used in which all the constants that are inserted in the
constraints are stored, in this way each node originates both the node for the transition and for the
Silent Transition. The algorithm verifies that each Transition has only one incoming Place, while more
branches can start from the Places for the transitions (branching factor) You can specify a number
given by the n variable which indicates the maximum depth of the tree. So to determine the maximum
number of Places in a graph is given by (branching factor)”. The initial constraint is initialized to a
random value which also uses the /= operator and is represented in the initialize() function. In the last
operation, once the tree structure has been created, all the transitions are reunited in a Place which
will be the final Place of the DPN and therefore the final Place will be the only Place to have multiple
Transitions as parents thus transforming the data structure from Directed Acyclic Graph (DAG) tree.

The Automatic DPN Generator also allows you to specify parameters in order to partially
customize the generated DPN. (Figure 9.5)

Among its input parameters that can be modified by the user are the number of variables and the
depth of the tree, which however excludes the last level of depth which will be represented by the
final place which rejoins all the parallel transitions. This data structure provides a high parallelization
and thus allows to better control the creation of new nodes in terms of number of nodes generated.
The code shown in the various figures is a simplification of the algorithm, in fact in its final version it
also allows you to insert constraints of the type variable != variable.

Figure 9.4 shows the initialization of the variables, including a list of Places, Transitions and Arcs
that will be the constituent elements of the Constraint Graph. In addition to this there is an integer list
to check for integers that have already been generated as a constant for the constraints.
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net;
n;
+ Set<MyConstraint> initialConstraints;
Set<Integer> generated;
List<Place> places;

List<Transition> transitions;
List<Arc> arcs;
contTransition;
contPlace;
contArc;
» List<Transit > flowTransition;
List<T sition> newTransition;

Figure 9.4: DPN Generator : Variable Initialization

Figure 9.5 shows the method of initializing variables when there is only one variable. In the case of
multiple variables, a for loop is added and a list of strings is used instead of the “"x” variable.

In the constructor the variables defined in 9.4 are initialized and the initial Place is initialized
together with a transition and connected with a Place-Transition arc (Figures 9.6 - 9.7).

Then the tree structure is created through a loop that extracts each transition and connects it to one
or more places. Places, on the other hand, can be connected exclusively to a single transition, in this
way it will be sufficient for a single place to have a sufficient number of tokens to trigger the transition
(Figure 9.8 -9.9)

Each time a place is created it will have a transition at the output, therefore in order to create
a place that has a final markup it is necessary to join all the leaf transitions to the final place, thus
transforming the data structure from tree to acyclic directed graph (Figure 9.10)

An example of a possible final result is given by the example in Figure 9.11. The generated graph
has depth (depth+1) as it also adds the final place which joins all the transitions.

9.2 Examples

The following paragraphs will show the results obtained for some example DPNs created with
ProM, trying to show all the various cases that could occur.

9.2.1 Example Constraint Graph Data-Aware Sound

Figure 9.12 shows an example of a DPN that is completely data-aware sound. This is demonstrated
in Figure 9.13 with the construction of a Constraint Graph capable of respecting all three data-aware
soundness properties. The graphical result of the three properties of data-aware soundness is shown
in figure 9.14.

9.2.2 Property 1 Violation Example

Figure 9.16 shows an example of a generated Constraint Graph in which the first property of
Data-Aware Soundness is violated, in fact in the case where a = 10, or in the case where a < 10 it is not
possible to arrive at a final node. Indeed, the Constraint Graph contains two "dead nodes" with no
outgoing transitions (c7 and c2) that violates property 1, as correctly detected by the program (Figure
9.17). Figure 9.15 shows the DPN associated with Figure 9.16.

9.2.3 Violation Property 2 Example

Figure 9.19 shows an example of a generated Constraint Graph in which the first property of
Data-Aware Soundness is violated, In fact analyzing all the possible paths there are two nodes of the
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£ () {

> res = new HashSet<>();

x = (int) ( .random()*160);
oV = MyConstraintOneV("x",x,"!
generated.add(x);
ov.setRW(MyConstraint.READV);
res.add(ov);
initialConstraints.add(ov);

Figure 9.5: DPN Generator : Constraint Initialization

= net;
.n = 4;
.contTransition = 9;
.contPlace = @;
.contArc = 0;
.contRemoveTransition = 9;
.flowTransition = ArrayList<>();
.newTransition = ArraylList<>();
places = ArrayList<>();
transitions = ArrayList<>();
arcs = ArrayList<>();
.initialConstraints = HashSet<>();
ls.generated = HashSet<>();
places.add( .net.place("p2",1));
random;
{
random = ( I ¢ .random()*n);
(generated.contains(random));

Figure 9.6: DPN Generator : Constructor part 1
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gener‘ate .add(ranaom);

transitions.add( .net.transition("te", "R"));
transitions.get(@).setConstraint( MyConstraintOneV("X",random, "!
transitions.get(@).getConstraint().setRW(MyConstraint.READV);
flowTransition.add(transitions.get(9));

contTransition++;

contPlace++;

arcs.add( .net.arc("a@", places.get(@), transitions.get(8)));
contArc++;

Figure 9.7: DPN Generator : Constructor part 2

() {

i=0; i<n; i++) {
(!flowTransition.isEmpty()) {
last = flowTransition.remove(9);
contRemoveTransition++;

randomPlace = (int) ( .random()*2+1);
(3 j = @; j<randomPlace; j++) {
places.add(this.net.place("p"+contPlace));
' random;

{

random = ( Yo .random()*1@
} .le(generated.contains(random));
generated.add(random);

readWrite = (int) ( .random()*2);

RW = "'

Figure 9.8: DPN Generator : Generate DPN without token part 1
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transitions.add( .net.transition("t"+contTransition, RW));
transitions.get(contTransition).setConstraint( MyConstraintOneV("X",random,"!="));
transitions.get(contTransition).getConstraint().setRW(readuWrite);

newTransition.add(transitions.get(contTransition));

arcs.add( .net.arc("a"+contArc, last , places.get(contPlace)));

arcs.add( .net.arc("a"+contArc, places.get(contPlace), transitions.get(contTransition)));
contPlace++;

contArc = contArc + 2;

contTransition++;

Figure 9.9: DPN Generator : Generate DPN without token part 2

t : newTransition) {
flowTransition.add(t);

Z = 0; z < newTransition.size(); z++) {
newTransition.remove(@);

places.add( .net.place("p"+contPlace));
places.get(contPlace).setFinalPlace();

( t : flowTransition) {
arcs.add(this.net.arc("a"+contArc, t, places.get(contPlace)));
contArc++;

Figure 9.10: DPN Generator : generate last Place of DPN
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1(x01=6681268 0)

PS5 — M4 pi5(x01=4357132.0

t6(x01=9408225.0)

p0

t7(x01=7005619.0

t8(x01=6737304.0)

t3(x01=1220827.0)

(9(x01=5302014.0)

Figure 9.11: The Example of DPN generated by the algorithm

[[oPN [co |

y)lm(zpm 0) }_ —}/_ Info
p0 ALy - 4 pi p2 b3 Initial marking: {p0=1p1=0p2=0p3=0}
R R

Final marking: {p1=0, p2=0, p3=1, p0=0}

Inivial SV assign.: (b=10.0) (a=0.0)

Figure 9.12: DPN of Example 1

[ bPN [ ce

Info

Initial marking: {p0=1p1=0p2=0p3=0}
Final marking: {p1=0, p2=0, p3=1, p0=0}
Inivial SV assign.: (b=10.0) (a=0.0)

Constraints

¢3 [p1=1] : [(b>5.0), (a>10.0), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (b>=10.0), (a!=5.0), (b>=5.0), (b!=5.0)]

c5 [p1=1] : [(b>5.0), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (a<=10.0), (b>=10.0), (a!=5.0), (b>=5.0), (b!=5.0)]

0 : [{b=10.0), (a=0.0)]

2 [p2=1] : [(b>5.0), (b>=a), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (a<=10.0), (b>=10.0), {al=5.0), (b>=5.0}, (b!=5.0)]
7 [p3=1] : [(b>5.0), (a>10.0), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (b>=10.0), (a!=5.0), (b>=5.0), (b<a), (b!=5.0)]
c1 [p1=1] : [(b>5.0), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (b>=10.0), (a!=5.0), (b>=5.0), (b!=5.0)]

c4 [p2=1] : [(b>5.0), (2>10.0), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (b>=10.0), (a!=5.0), (b>=5.0), (b<a), (b!=5.0)]
6 [p3=1] : [(b>5.0), (b>=a), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (a<=10.0), (b>=10.0), (al=5.0), (b>=5.0), (b!=5.0)]

Figure 9.13: Constraint Graph of Example 1
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Message

@ Property 1: true

Property 2: true
Property3: true

P9

OK

Figure 9.14: Soundness of Example 1

2(a>10.0)

| Info

A R Initial marking: {p0=1p1=0p2=0p3=0}
& g S & & Final marking: {p1=0, p2=0, p3=1, p0=0}

Inivial SV assign.: (b=10.0) (a=0.0)

Figure 9.15: DPN of Example 2

[ DPN [ co

Info

Initial marking: {p0=1p1=0p2=0p3=0}
Final marking: {p1=0, p2=0, p3=1, p0=0}
Inivial SV assign.: (b=10.0) (a=0.0)

Constraints

c4 [p2=1] : [(b>5.0), (a>10.0), (a>5.0), (a>=5.0), (b<=10.0}, (b=10.0), (b>=10.0), (a!=5.0), (b>=5.0), (b!=5.0)]

¢6 [p3=1] : [(p>5.0), (a>10.0), (a>5.0), (a>=5.0), (b<=10.0), (0=10.0), (b>=10.0), (a!=5.0), (b>=5.0), (b<a), (b!=5.0)]

€3 [p1=1] : [(b>5.0), (a>5.0), (a>=5.0), (b<=10.0), (a>=10.0), (b=10.0), (b>=10.0), (al=5.0), (b>=5.0), (b!=5.0)]

0 : [(b=10.0), (a=0.0)]

¢1 [p1=1] : [(b>5.0), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (b>=10.0), (al=5.0), (b>=5.0), (b!=5.0)]

¢5 [p1=1] : [(b>5.0), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (a<=10.0), (b>=10.0), (a!=5.0), (b>=5.0), (b!=5.0)]

7 [p1=1] : [(b>5.0), (a>5.0), (a>=5.0), (b<=10.0), (a>=10.0), (b=10.0), (a<=10.0), (b>=10.0), (al=5.0), (b>=5.0), (bl=5.0)]
2 [p2=1] : [(b>5.0), (a<10.0), (b>=a), (@>5.0), (a>=5.0), (b<=10.0), (b=10.0}, (b>=10.0), (a!=5.0), (b>=5.0), (b!=5.0)]

Figure 9.16: Constraint Graph of Example 2

Message

@ Property 1: false

Property 2: true
Property3: true

OK

Figure 9.17: Soundness of Example 2
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["DPN | c6 |

p1 2(b>10.0) Info
po Ju—@{} p2 Initial marking: {p0=1p1=0p2=0}
4 7 Final marking: {p2=1, p0=0, p1=0}

Inivial SV assign.: (b=10.0) (a=0.0)

Figure 9.18: DPN of Example 3

[ DPN [ ce

Info

Initial marking: {p0=1p1=0p2=0p3=0}
Final marking: {p1=0, p2=0, p3=1, p0=0}
Inivial SV assign.: (b=10.0) (a=0.0)

Constraints

3 [p1=1] : [(b>5.0), (a>10.0), (2>5.0), (a>=5.0), (b<=10.0), (b=10.0), (b>=10.0), (al=5.0), (b>=5.0), (b!=5.0)]

5 [p1=1] : [(b>5.0), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (a<=10.0), (b>=10.0), (al=5.0), (b>=5.0), (b!=5.0)]

<0 : [(b=10.0), (2=0.0)]

€2 [p2=1] : [(b>5.0), (b>=a), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (a<=10.0), (b>=10.0), (al=5.0), (b>=5.0), (b!=5.0)]
7 [p3=1] : [(b>5.0), (a>10.0), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (b>=10.0), (al=5.0), (b>=5.0), (b<a), (b!=5.0)]
o1 [p1=1] : [(b>5.0), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (b>=10.0), (al=5.0), (b>=5.0), (b!=5.0)]

¢4 [p2=1] : [(b>5.0), (a>10.0), (2>5.0), (a>=5.0), (b<=10.0), (b=10.0), (b>=10.0), (al=5.0), (b>=5.0), (b<a), (b!=5.0)]
6 [p3=1] : [(b>5.0), (b>=a), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (a<=10.0), (b>=10.0), (al=5.0), (b>=5.0), (b!=5.0)]

Figure 9.19: Constraint Graph of Example 3

Constraint Graph in which one will have marking [P1 = 0, P2 = 1] and another will have marking [P1
=0, P2 = 2] which are compatible and one is strictly greater than other as correctly detected by the
program (Figure 9.20). Figure 9.18 shows the DPN associated with Figure 9.19.

9.2.4 Violation Property 3 Example

Figure 9.22 an example of a generated Constraint Graph where the third property of Data-Aware
Soundness is violated. This is the example seen in Figure 9.12 but with a modification that leads to the
violation of property 3 as correctly detected by the program (Figure 9.23). This happens because in
one of the transitions a cost of 2 has been inserted instead of 1, in this way the incoming Place having
only 1 token has a number < of the tokens required by the transition and therefore this transition
cannot occur. Figure 9.21 shows the DPN associated with Figure 9.22.

9.2.5 Unlimited Petri Data Net Example

An example of Unlimited Petri Data Net is shown in Figure 9.25, in fact it is not possible to
determine a maximum number of tokens for the second node, it could potentially increase to infinity
and since each node with a number of different tokens must originate a new node, yes would give rise

Message -

@ Property 1: true

Property 2: true
Property3: true

OK

Figure 9.20: Soundness of Example 3
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[ DPN [ co |

_}[ﬁ 12(a>10.0) }_\ f Info
00 m p2 i 03 Initial ing: {p0=1p1=0p2=0p3=0}

o

Final marking: {p1=0, p2=0, p3=1, p0=0}

1N
Inivial SV assign.: (b=10.0) (a=0.0)

Figure 9.21: DPN of Example 4

[ DPN | co

Info

Initial ing: {p0=1p1=0p2=0p3=0}
Final marking: {p1=0, p2=0, p3=1, p0=0}
Inivial SV assign.: (b=10.0) (a=0.0)

Constraints

¢3 [p1=1] : [(b>5.0), (a>10.0), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (b>=10.0), (a!=5.0), (b>=5.0), (b!=5.0)]

€0 : [(b=10.0), (a=0.0)]

c2 [p2=1] : [(b>5.0), (b>=a), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (a<=10.0), (b>=10.0), (al=5.0), (b>=5.0), (b!=5.0)]
¢1 [p1=1] : [(b>5.0), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (b>=10.0), (a!=5.0), (b>=5.0), (b!=5.0)]

¢4 [p1=1] : [(b>5.0), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (a<=10.0), (b>=10.0), (a!=5.0), (b>=5.0), (b1=5.0)]

¢5 [p3=1] : [(b>5.0), (b>=a), (a>5.0), (a>=5.0), (b<=10.0), (b=10.0), (a<=10.0), (b>=10.0), (al=5.0), (b>=5.0), (b!=5.0)]

Figure 9.22: Constraint Graph of Example 4

Message

_ Property 1: false

Property 2: true
Property3: false

OK

Figure 9.23: Soundness of Example 4
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[ DPN | ce

p0 —AL1 pt1(@=>5.0) —1— 3 p1

—H3—¥ 13(2>10.0) Info

Figure 9.24: DPN of Example 5

Initial marking: {p0=1p1=0}
Final marking: {p0=0, p1=1}
Inivial SV assign.: (a=0.0)

| DPN | CG
]
s | [p1=1]
]
™ p1=1]
\K’ =
[p1=10]

Info

Initial marking: {p0=1p1=0}
Final marking: {p0=0, p1=1}
Inivial SV assign.: (a=0.0)

Constraints

c1 [p1=1] : [(a>5.0), (a>=5.0), (a!=5.0)]

c2 [p1=10] : [(a>10.0), (a>5.0), (a>=5.0), (a!=5.0)]
c0 : [(a=0.0)]

c3 [p1=1] : [(a>5.0), (a>=5.0), (a<=10.0), (a!=5.0)]

Figure 9.25: Constraint Graph of Example 5

to an infinite loop and consequently the Constraint Graph cannot be calculated since it is of infinite

size as correctly detected by Figure 9.26. Figure 9.24 shows the DPN associated with Figure 9.25.

9.2.6 Boolean Variables Example

Here is an example using boolean variables. Boolean type variables have some advantages, but
also disadvantages compared to real variables. Its main advantage is that it has a binary domain, i.e. it
can only have frue or false values, and it also has only two possible operators = or # . Consequently,
all Boolean variable constraints can be represented with a single operator. In fact, if variable # true,
then it can be transformed into variable = false since it is equivalent. Using only the = operator do not
allow to represent transitions where an arbitrary value is written to a boolean variable. Hence the

PNML syntax has been extended by allowing expressions with empty right hand side boolVar=

transition.

Message °

@ Unlimited Data Petri Net

OK

Figure 9.26: Soundness of Example 5

in
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[ DPN [ cG |

,.;l t2{boalVar=true) F Info
p0 AL #(boolVarl=) p1 p2 Initial marking: {p0=1p1=0p2=0}

R Final marking: {p2=1, p0=0, p1=0}

t3(boalVarl=true} Inivial SV assign.: (boolVar=)

Figure 9.27: DPN of Example Boolean Variables

| DPN | CG

c3 Info
[p1=1]

ol Initial marking: {p0=1p1=0p2=0}
[p2=1]| Final marking: {p2=1, p0=0, p1=0}
Inivial SV assign.: (boolVar=)

ST/t2

3

[p(il'l'l}

] Constraints

c2 c2 [p2=1] : [(boolVar=true), (boolVar!=)]
[p2=1]]| e1 [p1=1] : [(boolVar!=)]
c4 [p2=1] : [(boolVar=false), (boolVar!=)]
c5 [p1=1] : [(boolVar=true), (boolVar!=false), (boolVar!=)]
c0 : [(boolVar=)]
c3 [p1=1] : [(boolVar!=true), (boolVar=false), (boolVar!=)]

g (

NN

c5
[p1=1]

Figure 9.28: Constraint Graph of Example Boolean Variables

Message -

@ Property 1: true

Property 2: true
Property3: true

OK

Figure 9.29: Soundness of Example Boolean Variables



CHAPTER 10

Constraint Graph Scalar Times Test

As Final part of the document we test the execution times of the algorithm at the scalar size of the Constraint
Graph. In this chapter we will therefore display a series of tables and graphs showing the behavior of the software
as the size of the Constraint Graph and the number of variables increases. Finally, a brief conclusion will be given
on the work and the possible future developments it could involve.

10.1 Hardware

The computer used to run the program has the following hardware features:

e CPU : Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz;
e RAM : 8,00 GB (7,89 GB usable);

* Operating System : Windows 10, 64-bit operating system, x64-based processor

10.2 Experiments with a single variable and small Constraint Sets.

In this first part we test small instances, ie an average Constraint Set of the nodes of the Constraint
Graph equal to 2 and with a single variable for the entire Constraint Graph. In subsequent extensions
these two parameters will be extended and the various results obtained will be compared.

10.2.1 Time versus number of nodes

In this section, an analysis of time versus the number of nodes will be made, taking into conside-
ration the saturation time, satisfiability time, the equivalence verification algorithm and finally the
remaining time. The time measurement table is shown in figure 10.1 . As it is possible to see from
the various figures, all the times follow an almost linear trend, i.e. as the number of nodes increases
there is a directly proportional increase in the various types of time, in particular in the saturation and
Satisfiable time.

The table of measurements contains the following elements:

¢ Identifier Test;
* N° Nodes : the number of nodes in Constraint Graph;

* N° Arcs : the number of arcs in Constraint Graph;

Total Time (ms) : The total time execution of the program;

¢ Saturation Time (ms) : The time of Saturation taken by the program;

99
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Test N° Nodes N° Arcs Total Time (ms) T. Satur T.Satisf. | T.Equival. | T.Remained |Const. Set. Sat|Const. Set. Satis. | Av.CS Satis. | Av.CS Satur
1 13 12 3.510 443 1.671 0 1.396 12 60 273 2,00
2 54 62 14.092 1.531 8.891 2.059 1.611 42 488 4,07 2,00
3 100 116 25.979 2.039 14.199 7.401 2.340 56 765 4,03 2,00
4 210 226 60.170 7.136 28.764 9.019 15.251 184 1.276 3.51 2,00
G 503 556 122.924 22241 72.727 23.000 4.956 562 2.892 3.21 2,00
6 1.004 1.208 317.030 63.890 183.659 51.382 12.099 1.608 6.196 293 2.00
7 2.006 2.402 577.044 111.286 332.742 112.969 20.047 2.802 12.744 3.12 2,00
8 5.012 5.721 1.446.170 196.448 773.960 391.840 83.922 4.742 32.503 3,57 2,00
9 10.002 11.439 3.877.278 536.511 2.028.130 939.174 373.463 9.870 64.004 3.51 2,00
10 15.005 18.209 5.810.050 526.356 2.563.749 1.870.955 848.990 12.298 114.069 3.89 2,00
11 20.008 24.390 6.142.500 874.321 3.308.580 1.358.940 600.659 20.400 139.543 3.55 2,00
12 50.015 54.345 15.356.250 2.012.345 8.834.234 3.546.245 963.426 51.000 345.234 3.52 2,00
13 100.054 107.345 30.712.500 4.324.563 16.923.456 | 7.124.535 2.339.946 102.000 702.456 3,58 2,00
14 200.097 205.346 61.425.000 7.564.345 | 33.923.245 | 14.239.400 5.698.010 204.000 1.420.456 3.62 2,00
15 500.104 508.987 153.562.500 23.546.544 |83.194.563 | 34.573.422 | 12.247.971 510.000 3.424.678 3,49 2,00
16 1.000.154 1.012.453 307.125.000 49345245 |168.346.234| 68.923.458 | 20.510.083 1.020.000 7.024.635 3,58 2.00

Figure 10.1: Time Measurement Table (Part 1)

* Satisfiable Time (ms): The time of Satisfiable taken by the program;

* Check Equivalence Time (ms) : The time of Check Equivalence of two nodes taken by the
program;

* Remained Time (ms) : The time taken by the program to run other operations;

* Constraint Set Saturation : the sum of Constraint Set Size of all nodes passed as argument to
Saturation ;

* Constraint Set Satisfiable : the sum of Constraint Set Size of all nodes passed as argument to
Satisfiable;

* Average Constraint Set Saturation : Ratio between the Constraint Set Size Saturation and the
number of saturation functions performed;

* Average Constraint Set Saturation : Ratio between the Constraint Set Size Satisfiable and the
number of satisfiable functions performed;

* Average Time Saturation (ms): Ratio between the Saturation time and the number of saturation
functions executed;

* Average Time Satisfiable (ms): Ratio between the Satisfiable time and the number of satisfiable
functions executed;

¢ Average Time Check Equivalence (ms): Ratio between the Check Equivalence of two nodes time
and the number of check equivalence functions executed;

e number of saturation functions;
e number of satisfiable functions;
* number of check equivalence of two nodes functions.

Figure 10.1 and Figure 10.2 contains the Tabular data of the test. Figures 10.3 to 10.8 plots time
measurements with respect to the number of nodes of the constraint graph for Saturation Time,
Satisfiable Time, Check Equivalence of two Nodes Time, Remained Time and Total Time. Remained
Time is obtained by the Total Time minus Satisfiable, Check Equivalence and Saturation Time. Finally
Figure 10.8 summarize all results.
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AV.Time Satu | Av.Time Satis |/Av. Time Eq.| N°Satur | N°Satis | N°Equival.
74 76 0 6 22 0
73 74 66 21 120 31
73 75 68 28 190 109
78 79 72 92 364 125
79 81 73 281 900 314
87 87 79 804 2.114 651
79 82 73 1.401 4.082 1.546
83 85 76 2.371 9.102 5.145
109 111 a7 4.935 18.258 9.709
86 87 76 6.149 29.350 24.747
85 84 76 10.231 39.283 17.856
79 90 79 25.990 98.208 44.640
84 86 80 51.180 196.416 89.280
74 86 80 102.360 | 392.832 178.560
92 85 155 255.900 | 982.080 223.200
96 86 154 511.800 1 1.964.160 1 446.400
Figure 10.2: Time Measurement Table (Part 2)
N°® Nodes vs Saturation Time (millisec)
60.000.000
50.000.000
o 40.000.000
g 30.000.000 = T. Satur
B
i 20.000.000
10.000.000

0

0 200.000

Nodes

Figure 10.3: N° Nodes vs Saturation Time
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N° Nodes vs Satisfiable Time (millisec)

180.000.000
160.000.000
140.000.000
120.000.000
100.000.000
80.000.000
60.000.000
40.000.000
20.000.000

0
0 200.000 400.000 600.000 800.000 1.000.000 1.200.000

Nodes

= T Salisf,

Satisfiable

Figure 10.4: N° Nodes vs Satisfiable Time

N° Nodes vs Check Equivalence Time (millisec)
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30.000.000
20.000.000 -
10.000.000 -

T FFFS

— T, Equival.

Check Equivalence
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Figure 10.5: N° Nodes vs Check Equivalence Time
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N Nodes vs Remained Time (millisec)
25.000.000

20.000.000 -
15.000.000
10.000.000

T Remained
5.000.000

Remained Time

LSS S

Nodes

Figure 10.6: N° Nodes vs Remained Time

N° Nodes vs Total Time (millisec)
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250.000.000
200.000.000
150.000.000
100.000.000
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R
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Figure 10.7: N° Nodes vs Total Time
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N°® Nodes vs All Times (millisec)

350.000.000
300.000.000
250.000.000
200.000.000 — Total Time (ms)
g 150.000.000 = T. Salur
E T.Satisf.
lf_c 100.000.000 e T. EqUiVa.
50.000.000 — T Remained
0
o
R N
T b o @ QP

N N

MNodes

Figure 10.8: N° Nodes vs All Times

10.2.2 Number of Operations Measures

Figures 10.9 - 10.12 analyzes the number of Saturation, satisfiability and equivalence check ope-
rations that have been performed. With only one variable the number of satisfiability functions is
greater than with the other two functions.

10.3 Experiment with varying the size of the Constraint Set

The experiments conducted so far have limited themselves to analyzing cases in which the
Constraint Set has about 2 constraints for each satisfiability and saturation operation. It should be
borne in mind that the Saturation and Satisfiability algorithms take a Constraint Set as input, while
the equivalence verification algorithm takes two nodes of the Constraint Graph as input and analyzes
its Constraint Sets with Z3, so it is essential to understand how the program behaves when the size
of Constraint Sets change. Now we will examine the behavior of the program as the size of the
Constraint Set increases, in particular we will try three other cases: 10, 100 and 1000 constraints for
each Constraint Set.

Figure 10.14 to 10.19 shown the complete table of all cases.

10.3.1 Time analysis as the size of the Constraint Set varies

Analyzing the timing of the various functions, it can be seen that the most inefficient function is
the saturation function and we analyzed his behavior by analyzing his average time and reporting it
on a relative graph (Figure 10.20). The most efficient function, on the other hand, is that of satisfiability,
which grows by a few units as the Constraint Set increases (Figure 10.21). The control function
of the equivalence of two nodes grows to a greater extent than the satisfiability function, but still
remains much lower than the saturation function and therefore its advantage in terms of efficiency is
confirmed (Figure 10.22). Finally, in its total time it is possible to observe the entire timing occupied
by the program as the Constraint Set varies (Figure 10.23).
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N® Nodes vs All measures
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Figure 10.9: N° Nodes vs All Measures
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N° Nodes vs N° Satisf.
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Figure 10.11: N° Nodes vs N° Satisfiable
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N° Nodes | Av.CS Satis. | Av.CS Satur
13 2,73 2,00
54 4,07 2,00
100 4,03 2,00
210 3,51 2,00
503 3,21 2,00
1.004 2,93 2,00
2.006 3,12 2,00
5.012 357 2,00
10.002 3,51 2,00
15.005 3,89 2,00
20.008 3,55 2,00
50.015 3,52 2,00
100.054 3,58 2,00
200.097 3,62 2,00
500.104 3,49 2,00
1.000.154 3,58 2,00

Figure 10.13: Tables that shows the average Constraint Set Dimension (the Dimension is defined by the quantities
of constraints) for each test executed.

Test N° Nodes N° Arcs Total Time (ms) T. Satur T.Satisf. | T.Equival. | T.| i Const. Set. Sat|Const. Set. Satis. | Av.CS Satis. | Av.CS Satur
i 13 12 2.501 242 1.248 0 1.011 30 203 11,28 10,00
2 54 62 9.780 639 6.349 1.858 937 80 1.116 12,13 10,00
3 100 116 25.026 4.552 14.016 4.830 1.628 570 2430 12,03 10,00
4 210 226 56.706 11.961 29.787 7.726 7.232 1.470 4.555 10,80 10,00
5 503 556 156.555 15.316 65.563 41.583 34.093 1.840 10.650 11.89 10,00
6 1.004 1.208 276.093 39.059 148.664 75.460 12.910 4.620 24.327 12,18 10,00
I/ 2.006 2.402 559.463 64.192 287.935 181.456 25.880 7.030 42.176 11,80 10,00
8 5.012 5.721 1.898.325 239.745 891.841 650.526 116.213 24630 124.638 11.89 10,00
9 10.002 11.439 3.488.677 575.650 1.708.879 801.303 402.845 58.850 223.025 11,27 10,00
10 15.005 18.209 5.617.778 823.453 2.653.246 | 1.434.536 706.543 79.460 294555 10,35 10,00
11 20.008 24.390 7.523.845 1.102.345 3.723452 | 1.824.623 873.425 107.450 402485 10,26 10,00
12 50.015 54.345 16.516.315 2.342.453 8.824.563 | 3.525.736 1.823.563 242,450 952.385 10.11 10,00
13 100.054 107.345 32.318.947 4.823.424 | 17.235.636| 6.935.252 3.324.635 472.450 1.862.565 10,05 10,00
14 200.097 205.346 65.096.762 9.234.535 |35.022.456 | 14.104.525 6.735.246 943.240 3.712.435 10,03 10,00
15 500.104 508.987 153.951.766 25.635.645 [81.235.623 | 31.835.252 | 15.245.246 2.423.530 8.645.275 10,01 10,00
16 1.000.154 1.012.453 319.410.752 52.345.245 [169.365.347| 69.353.525 | 28.346.635 5.245.240 17.864.265 10.01 10.00

Figure 10.14

: Table with all measures with Dimension 10 of Constraint Set. (part 1)
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AV.Time Satu
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Av. Time Eq.
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Figure 10.15: Table with all measures with Dimension 10 of Constraint Set. (part 2)

Test N°® Nodes N° Archi Total Time (ms) T. Satur T.Satisf. | T.Equival. | T. i Const. Set. Sat| Const. Set. Satis. | Av.CS Satis. | Av.CS Satur
1 13 12 4.069 1.534 1.431 0 1.104 500 1.814 100.78 100,00
2 54 62 18.642 6.077 8.630 2.620 1.315 2.000 10.700 100,94 100,00
3 100 116 35.801 12.928 15.769 5.652 1.452 4.400 19.925 101.66 100,00
4 210 226 72.397 24.621 31.818 13.201 2.756 7.700 38.014 105.01 100.00
5 503 556 194.629 88.618 79.051 22231 4.729 28.000 92.726 101,23 100,00
6 1.004 1.208 458.278 164.547 183.152 94.702 15.877 50.400 208.084 101,90 100,00
1 2.006 2.402 831.100 331.860 324.618 136.631 37.991 97.700 366.999 101,49 100,00
8 5.012 5.721 2.239.405 669.827 854.515 496.834 218.229 202.100 944,539 101,80 100,00
9 10.002 11.439 6.741.421 2.192.541 2.154.363 1.152.655 1.241.862 597.400 2.022.176 101,32 100,00
10 15.005 18.209 10.418.245 2.934.523 2.835.635 1.824.635 2.823.452 873.400 2.827.400 100,43 100,00
11 20.008 24.390 15.094.726 4.100.345 3.824.562 | 2.635.252 4.534.567 1.135.300 3.777.400 100,32 100,00
12 50.015 54.345 31.259.389 8.335.324 9.356.356 | 4.802.463 8.765.246 2.335.200 8.536.500 100,14 100,00
13 100.054 107.345 72.658.882 15.935.352 | 18.245.353 | 10243525 | 28.234.652 4.433.500 17.257.200 100,07 100,00
14 200.097 205.346 166.941.424 33.245.253 | 37.246.356 | 18.025.252 | 78.424.563 9.345.200 34.225 500 100,04 100,00
15 500.104 508.987 371.069.767 68.343.532 | 85.245.356 | 37.246.256 | 180.234.623 | 19.453.500 80.146.500 100,01 100,00
16 1.000.154 1.012.453 802.698.032 128.452.453 |175.254.663| 74.356.253 | 424.634.663 | 32.836.400 169.257.400 100,01 100,00

Figure 10.16: Table with all measures with Dimension 100 of Constraint Set. (part 1)
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Figure 10.17: Table with all measures with Dimension 10 of Constraint Set. (part 2)

Test N° Nodes N° Arcs Total Time (ms) T. Satur T.Satisf. T. Equival. | T.| i Const. Set. Sat|Const. Set. Satis.| Av.CS Satis. | Av.CS Satur
1 13 12 12.874 10.336 1.073 383 1.082 1.000 10.007 1000,70 1000,00
2 54 62 357.848 339.752 10.630 5.661 1.805 32.000 98.090 1000,92 1000,00
3 100 116 847.925 729.095 25.009 73.427 20.394 62.000 222389 1001.75 1000,00
4 210 226 1.612.562 1.330.857 45.033 230.141 6.531 112.000 388.447 1001.15 1000.00
5 503 556 4.287.629 2.934.535 103.462 1.249.525 107 243.000 960.524 1096.49 1000.00
6 1.004 1.208 8.987.528 5.953.472 234.525 2.735.364 64.167 479.000 1.758.374 1001.35 1000,00
if: 2.006 2.402 20.611.243 12.435.674 356.752 7.635.254 183.563 967.000 2.929.524 1029.71 1000,00
8 5.012 5.721 47.068.757 27.245.345 924.635 18.245.253 653.524 2.145.000 6.618.524 1012,94 1000,00
<) 10.002 11.439 96.155.734 52345234 | 2.834.524 | 39.252.524 | 1.723.452 4.234.000 15.849.524 1005,36 1000,00
10 15.005 18.208 134.298.670 70.346.245 3.424.646 | 58.024.525 2.503.254 5.724.000 18.319.524 100464 1000,00
1 20.008 24.3%0 203.305.943 108.243.534 | 3.924.632 | 85.335.325 5.802.452 8.034.000 22.429.524 1003,78 1000,00
12 50.015 54.345 512.647.598 283.452.453 | 10.245.256 | 203.525.253 | 15.424.636 20.023.000 49.608.524 1001,71 1000,00
13 100.054 107.345 1.230.020.799 582.456.740 |21.945.256 | 587.351.436 | 38.267.367 44.234.000 102.537.524 1000,83 1000,00
14 200.097 205.346 2.841.357.999 1.345.234.674 | 44.245.254 |1.353.524.446| 98.353.625 89.342.000 201.323.524 1000,42 1000,00
15 500.104 508.987 7.496.392.677 3.400.463.035 | 87.352.452 |3.624.524.555| 384.052.635 | 182.342.000 435.436.524 1000,18 1000,00
16 1.000.154 1.012.453 17.406.479.697 6.635.256.365 [180.245.256/8.655.352.444(1.935.625.632| 365.234.000 873.608.524 1000.10 1000.00

Figure 10.18: Table with all measures with Dimension 1000 of Constraint Set. (part 1)
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AV.Time Satu | Av.Time Satis [Av. Time Eq.| N°Satur | N°Satis | N°Equival.
10.336 107 383 1 10 1
10.617 108 37 32 98 15
11.760 113 1.166 62 222 63
11.883 116 1.566 112 388 147
12.076 118 1.712 243 876 730
12.429 134 2.098 479 1756 1304
12.860 125 2.547 967 2845 2998
12.702 142 2.384 2145 6534 7654
12.363 180 2.504 4234 15765 15674
12.290 188 2.496 5724 18235 23245
13.473 176 2:731 8034 22345 31245
14.156 207 3.168 20023 49524 64243
13.168 214 4.044 44234 102453 145253
15.057 220 3.548 89342 201245 381342
18.649 201 2.910 182342 435352 1245353
18.167 206 3.033 365234 873524 2853535

Figure 10.19: Table with all measures with Dimension 10 of Constraint Set. (part 2)
Saturation Time (millisec) - Different Constraint Set Size
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Figure 10.20: The analysis of Saturation Time when Constraint Set Dimension increase.
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Figure 10.21: The analysis of Satisfiable Time when Constraint Set Dimension increase.

Check Equivalence Time (millisec) - Different Constraint Set Size
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Figure 10.22: The analysis of Check Equivalence of two Nodes Time when Constraint Set Dimension increase.
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Total Time - Different Constraint Size
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Figure 10.23: The analysis of the Total Time of program when Constraint Set Dimension increase.

10.3.2 Total Time Composition Analysis

Once the various timings and the total time have been analyzed, it is important to understand
which of these algorithms takes up more or less time. For this reason, its percentage of occupation has
been calculated for each function. The Tables are shown in Figures 10.24, 10.25, 10.26, 10.27.

Now you can average each dimension of the Constraint Set and see how the time composition
changes as the Constraint Set increases. As can be seen in Figures the satisfiability function remains
much more constant as input increases than the equivalence checking algorithm and saturation, and as
input increases it occupies an increasingly smaller percentage of the total time . It is a different matter
for saturation that as the Constraint Set and the inputs increase, both its time and the percentage
of total time occupied increase significantly. Also in the equivalence control algorithm there is an
increase as the size of the Constraint Set increases, but it is still much more efficient than saturation.

10.4 Time saved from using two-node equivalence checking

It is now possible to estimate the time saved by using the two-node equivalency check algorithm
instead of using double saturation. In the double saturation algorithm, saturation occurs every time
the algorithm for building the new Constraint Set is called up, in addition to the cases already foreseen
by the saturation which is not removed. Considering the average saturation value for each program
execution, multiply it by the number of calls to the new Constraint Set construction algorithm. To
obtain the new total time, the total time of the algorithm with equivalence control is considered and
the time taken for the equivalence function is subtracted and the previously calculated product is
added.

In Figures 10.30, 10.31, 10.32, 10.33 tables are shown showing the estimate of the total time with
double saturation and the time calculated for the equivalence algorithm and it is shown how much
percentage of time is saved. Finally, Figure 10.31 shows an average of savings for each Constraint Set
and shows how this average changes as the size of the Constraint Set increases.

10.5 Experiments with different number of variables.

The complexity of the algorithms that use SMT Solver is not due only to the increase in the number
of constraints within the Constraint Set, but also by the number of variables that are present within it.
Up to now, Constraint Sets that only included one variable have been tested and in this section the
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Nodes YeSatur YhSatis YEquiv %0ther
10 12,62 47 61 0,00 39,77
50 10,86 63,09 14,61 11,43
100 7,85 54,66 28,49 9,01
200 11,86 47,80 14,99 25,35
500 18,09 59,16 18,71 4,03
1000 22,05 57,93 16,21 3,82

2000 19,29 57,66 19,58 3,47
5000 13,58 53,52 27,10 5,80

10000 13,84 52,31 24,22 9,63

15000 9,06 4413 32,20 14,61

20000 14,23 53,86 22,12 9,78

50000 13,10 53,86 22,12 10,91

100000 14,08 53,86 2212 9,93

200000 12,31 53,86 22,12 11,70

500000 15,33 53,86 22,12 8,68

1000000 16,07 53,86 22,12 7.95

Figure 10.24: Composition of Total Time with Constraint Set Dimension 2

Nodes YeSatur %Satis %Equiv %Other
10 9,68 49,90 0,00 40,42
50 6,53 64,92 18,97 9,58
100 18,19 56,01 19,30 6,51
200 21,09 52,53 13,62 12,75
500 9,78 41,88 26,56 21,78
1000 14,15 53,85 27.33 4,68

2000 11,47 51,47 32,43 4,63
5000 12,63 46,98 34,27 6,12

10000 16,50 48,98 22,97 11,55

15000 14,66 47,23 25,54 12,58

20000 14,65 49,49 24,25 11,61

50000 14,18 53,43 21,35 11,04

100000 14,92 53,33 21,46 10,29

200000 14,19 53,80 21,67 10,35

500000 16,65 52,77 20,68 9,90

1000000 16.39 53.02 25 7 8.87

Figure 10.25: Composition of Total Time with Constraint Set Dimension 10
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Nodes YeSatur Y%.Satis Y%Equiv %Other
10 37.70 35,17 0,00 27.13
50 32,60 46.29 14,05 7.05
100 36,11 44,05 15,79 4,06
200 34,01 43,95 18,23 3,81
500 45,53 40,62 11,42 243
1000 35,91 39,97 20,66 3,46

2000 39,93 39,086 16,44 4,57
5000 29,91 38,16 22,19 9.74

10000 32,52 31,96 17,10 18,42

15000 28,17 27,22 17,51 27,10

20000 27,16 25,34 17.46 30,04

50000 26,67 29,93 15,36 28,04

100000 21,93 2511 14,10 38,86

200000 19,91 22,31 10,80 46,98

500000 18.42 22,97 10,04 48,57

1000000 16.00 21,83 9.26 52,90

Figure 10.26: Composition of Total Time with Constraint Set Dimension 100

Nodes Y%Satur %Satis Y%Equiv %0Other
10 80,29 8,33 2,97 8,40
50 94,94 2,97 1,58 0,50
100 85,99 2,95 8,66 2,41
200 82,53 2,79 14,27 0,41
500 68,44 241 29,14 0,00
1000 66,24 2,61 30,44 0,71

2000 60,33 1,73 37,04 0,89
5000 57,88 1,96 38,76 1,39

10000 54,44 2,95 40,82 1,79

15000 52,38 2,55 43,21 1,86

20000 53,24 1,93 41,97 2,85

50000 55,29 2,00 39,70 3,01

100000 47,35 1,78 47,75 3.1

200000 47.34 1,56 47.64 3,46

500000 45,36 1,17 48,35 5,12

1000000 38,12 1,04 49,72 11,12

Figure 10.27: Composition of Total Time with Constraint Set Dimension 1000

Constraint Set | Av. Satur. (%) | Av.Satisf. (%) | Av.Equiv. (%) |Av.Other (%)
2,00 14,01 54,29 20,79 10,91
10 14,10 51,85 22,01 12,04
100 30,16 33,37 14,40 22,07
1000 61,89 2,55 32,63 2,94

Figure 10.28: Table of Average Percentage
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Figure 10.29: The variation of Composition of Total Time
Nodes Added Satur. | Total Time (With Equivalence) Total Time (With Double Saturation) Time Saved (%)
10 18 3.510 4.839 27,46
50 82 14.092 18.011 21,76
100 234 25.979 35.618 27,06
200 392 60.170 81.557 26,22
500 1.106 122.924 187.463 34,43
1.000 1.894 317.030 430.289 26,32
2.000 3.624 577.044 751.941 23,26
5.000 9.231 1.446.170 1.819.160 20,50
10.000 18.534 3.877.278 4.953.037 21,72
15.000 26.424 5.810.050 6.200.996 6,30
20.000 36.352 6.142.500 7.890.130 22,15
50.000 89.425 15.356.250 18.842.203 18,50
100.000 178.845 30.712.500 38.699.854 20,64
200.000 358.355 61.425.000 73.667.828 16,62
500.000 902.356 153.562.500 202.019.032 23,99
1.000.000 1.824.521 307.125.000 414.112.905 25,84

Figure 10.30: The variation of Saved Time Percentage for Constraint Set Size 2

Nodes Added Satur. | Total Time (With Equivalence)| Total Time (With Double Saturation) | Time Saved (%)
10 18 2.501 3.953 36,73
50 82 9.780 14.475 32,43
100 234 25.026 38.883 35,64

200 352 56.706 80.876 29,85
500 1.106 156.555 207.034 2438
1.000 1.894 276.093 360.758 23,47
2.000 3.624 559.463 708.920 21,08
5.000 9.231 1.898.325 2.146.332 11,55

10.000 18.534 3.488.677 4.500.305 22,48

15.000 26.424 5617.778 6.921.591 18,84

20.000 36.352 7.523.845 9.428.626 20,20

50.000 89.425 16.516.315 21.630.458 23,64

100.000 178.845 32.318.947 43.642 670 25,95

200.000 358.355 65.096.762 86.076.010 24,37

500.000 902.356 153.951.766 217.566.036 29,24

1.000.000 1.824.521 319.410.752 432.136.596 26,09

Figure 10.31: The variation of Saved Time Percentage for Constraint Set Size 10.
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Nodes Added Satur. | Total Time (With Equivalence) | Total Time (With Double Saturation) | Time Saved (%)
10 18 4.069 9.591 57,58
50 82 18.642 41.489 55,08
100 234 35.801 97.153 63,15
200 392 72.397 188.721 61.64
500 1.106 194.629 521.670 62,69
1.000 1.894 458.278 1.025.253 55,30
2.000 3.624 831.100 1.949.104 57,36
5.000 9.231 2.239.405 4.807.027 54,36
10.000 18.534 6.741.421 12.604.483 46,52
15.000 26.424 10.418.245 17.425.448 40,21
20.000 36.352 15.084.726 26.864.980 43,81
50.000 89.425 31.259.389 59.632.738 47,58
100.000 178.845 72.658.882 129.816.698 44,03
200.000 358.355 166.941.424 280.185.680 40,42
500.000 902.356 371.068.767 653.509.716 43,22
1.000.000 1.824.521 802.698.032 1.447.507.498 44,55

Figure 10.32: The variation of Saved Time Percentage for Constraint Set Size 100.

Nodes Added Satur. | Total Time (With Equivalence) | Total Time (With Double Saturation) | Time Saved (%)
10 18 12.874 198.538 93,52
50 82 357.848 1.222.802 70,74
100 234 847.925 3.526.244 7595
200 392 1.612.562 6.040.421 73,30
500 1.106 4.287.629 16.394.465 73,85
1.000 1.894 8.987.528 29.792.615 69,83
2.000 3.624 20.611.243 59.580.831 65,41
5.000 9.231 47.068.757 146.073.751 67,78
10.000 18.534 96.155.734 286.040.330 66,38
15.000 26.424 134.298.670 401.017.188 66,51
20.000 36.352 203.305.943 607.747.684 66,55
50.000 89.425 512.647.598 1.575.053.305 67.45
100.000 178.845 1.230.020.799 2.997.633.320 58,97
200.000 358.355 2.841.357.999 6.883.633.643 58,72
500.000 902.356 7.496.392.677 20.699.742.240 63,79
1.000.000 1.824.521 17.406.479.697 41.897.451.468 58,45

Figure 10.33:

The variation of Saved Time Percentage for Constraint Set Size 1000.
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Figure 10.34: The variation of Average Saved Time Percentage for each Constraint Set.

Test N° Nodi N° Archi | Tempo Totale T. Satur T.Satisf. T. Equival. |T. i Const. Set. Satur [Const. Set. Satis.| Av.CS Satis.| Av.CS Satur
1 13 12 158.745 155.745 1.326 82 1.592 499 1.602 100 100
2 54 62 1.231.334 1.218.189 10.279 1.120 1.746 3.536 10.371 101 102
3 100 116 1.266.101 1.228.841 16.304 18.055 2.901 3.195 15.899 100 101
4 210 226 3.388.294 3.344.602 30.195 9.375 4.122 10.873 33.834 101 101
5 503 556 11.777.310 11.534.584 98.960 125.421 17.345 29.492 98.980 101 101
6 1.004 1.208 23.091.283 21.737.472 132.878 1.135.588 85.345 51.712 204.121 101 101
7 2.006 2.402 46.891.931 43.999.592 340.845 2.412.930 138.564 98.800 370.165 101 100
8 5.012 5.721 100.294.520 88.759.402 887.775 10.145.408 501.935 207.353 934.500 100 101
9 10.002 11.439 297.845.272 274.083.673 2.031.665 20.186.379 1.543.555 600.100 2.115.445 101 100
10 15.005 18.209 465.374.936 419.915.356 3.010.280 40.324.665 2.124.635 892.234 2.894.500 100 101
11 20.008 24.390 611.155.165 532.068.144 4.097.324 72.043.935 2.945.762 1.154.632 3.904.054 101 101
12 50.015 54.345 1.243.794.290 | 1.068.768.784 | 9282464 | 160.640.280 | 5.102.762 2.356.400 8.761.952 101 100
13 100.054 107.345 2.535.5569.812 | 2.172.199.428 | 1.938.060 | 350.888.490 | 10.533.834 4.538.334 1.812.445 101 101
14 200.097 205.346 5.649.822.035 | 4.828.445.862 | 38.175.506 | 763.765.135 | 19.435.532 9.518.543 35.373.634 101 101
15 500.104 508.987 12.446.010.305 | 10.448.339.530 | 87.464.368 |1.873.955.160| 36.251.247 19.830.542 82.559.824 101 101
16 1.000.154 1.012.453 [22.910.226.508 | 18.143.740.284 | 180.625.248 14.508.428.635| 77.432.341 33.790.964 168.918.056 101 101

Figure 10.35: Measurement Table with Constraint Set Size 100 and number of variables 100 (part 1)

tests will be enriched with many variables. In particular, to guarantee compatibility with the previous
examples, Constraint Sets have been generated with constraints on 100 and 1000 variables and their
behavior is compared.

The possibility of adding variables and also having variable - variable constraints that always use
the != operator is added in the DPN Automatic Generator in order to complicate the operations that
the solver has to do.

In the case of a Constraint Set with 100 variables there are at least 100 constraint initialization, one
for each variable, consequently the tested Constraint Sets cannot have less than 100 constraints. For this
reason the tests were performed on Constraint Sets of average size around 100 and 1000 constraints.
With 100 constraints we obtain the data present in the table, with the percentage composition shown
in the table. While with 1000 constraints the measures are present in the table with the percentage
composition shown in the table. Observing the data, it is possible to notice how the execution time
increases considerably and the saturation algorithm comes to occupy over 90% of the total time of the
algorithm, thus confirming that it is the bottleneck of the program.

The program has also been tested with 500 variables and a Constraint Set of size 1000. The
measurement table is shown in Figure 10.41 and 10.42, while the percentage composition table is
shown in Figure 10.43.

Finally, an average Constraint Size of 1000 is applied with a number of variables in the constraints
of 1000. In Figures 10.37 there is the table of the measurements performed, while in Figure 10.44 and
10.45 there is the percentage composition of the various functions. Subsequently, the variation of the
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AV.Time Satu Av.Time Satis |Av. Time Eq.| N°Satur N°Satis N°Equival.
31.149 83 82 5 16 1
34.805 101 80 35 102 14
38.401 103 107 32 158 168
30.969 a0 81 108 334 116
39.502 102 431 292 980 291
42.456 66 1.028 512 2021 1105
44.534 g3 1.345 988 3665 1794
43.234 a5 1.742 2053 9345 5824
45.673 a7 1.843 6001 20945 10953
47.534 104 2.355 8834 28945 17123
46.542 106 2.845 11432 38654 25323
45.356 107 3.345 23564 86752 48024
48.342 108 3.642 44934 17945 96345
51.234 109 4,123 94243 350234 185245
53.215 107 4.824 196342 817424 388465
54231 108 5823 334564 1672456 774245
Figure 10.36: Measurement Table with Constraint Set Size 100 and number of variables 100 (part 2)
Nodes YeSatur %Satis %Equiv %0ther
10 98,11 0,84 0,05 1,00
50 98,93 0,83 0,09 0,14
100 97.06 1,29 1,43 0,23
200 98,71 0,89 0,28 0,12
500 97,84 0,85 1,06 0,15
1000 94,14 0,58 4,92 0,37
2000 93,83 0,73 515 0,30
5000 88,50 0,89 10,12 0,50
10000 92,02 0,68 6,78 0,52
15000 90,23 0,65 8,66 0,46
20000 87,06 0,67 11,79 0,48
50000 85,93 0,75 12,92 0,41
100000 85,67 0,08 13.84 0,42
200000 85,46 0,68 13,52 0,34
500000 83,95 0,70 15,06 0,29
1000000 79.19 0.79 19.68 0.34
Figure 10.37: Percentage Composition of Constraint Size 100 and number of variables 100
Test N° Nodi N° Archi Tempo Totale T. Satur T.Satisf. T. Equival. | T.Remained | Const. Set. Sat | Const. Set. Satis. | Av.CS Salis. | Av.CS Satur
1 13 12 2.366.515 2.359.929 5.076 428 1.082 3.003 12.012 1.001 1.001
2 54 62 42.052.767 41.994.285 48.703 7.974 1.805 53.053 113.226 1.002 1.001
3 100 116 53.634.327 53.489.115 99.450 25.368 20.394 67.067 234.000 1.000 1.001
4 210 226 90.261.015 89.999.189 173.340 81.955 6.531 113.000 405.810 1.002 1.000
5 503 556 187.315.740 185.598.336 399.659 1.299.389 18.356 231231 923.000 1.000 1.001
6 1.004 1.208 373.237.575 368.655.936 790.885 3.727.620 63.134 456.456 1.838.670 1.002 1.001
7 2.006 2.402 804.904.361 793.352.490 1.270.855 10.099.782 181.234 985.985 2.940.870 1.002 1.001
8 5.012 5.721 1.930.731.811 | 1.903.324.335 3.041.575 23.727.655 638.246 2.343.000 6.835.000 1.000 1.000
9 10.002 11.439 3.988.242.584 | 3.922.852.680 7.208.145 56.539.296 1.642.463 4.828.824 16.377.690 1.002 1.001
10 15.005 18.209 4.937.046.398 | 4.835.764.950 8.671.488 90.207.508 2.402.452 5.934.000 19.375.356 1.001 1.000
11 20.008 24.390 6.733.959.807 | 6.566.275.788 | 10.414.464 | 151.730.310 5.539.245 8.131.123 23.502.912 1.002 1.001
12 50.015 54.345 17.658.564.495 | 17.295.489.770 | 22.158.045 | 326.594.326 | 14.322.354 21.367.346 50.345.490 1.002 1.001
13 100.054 107.345 37.037.176.151 | 36.141.341.670 | 45.560.250 | 812.614.356 | 37.659.875 44.562.000 101.346.245 1.001 1.000
14 200.097 205.346 76.537.679.861 | 73.938.543.525 | 92.871.602 |2.404.921.435| 101.343.299 90.543.453 204.972.126 1.002 1.001
15 500.104 508.987 |155.651.544.599|154.221.643.268| 200.432.568 | 864.036.288 | 365.432.475 188.641.453 443.340.912 1.002 1.001
16 1.000.154 1.012.453 |312.344.251.969|309.311.076.845| 384.763.925 |2.069.423.535| 578.987.664 376.911.535 847.326.270 1.002 1.001

Figure 10.38: Measurement Table with Constraint Set Size 1000 and number of variables 100 (part 1)
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AV.Time Salu Av.Time Satis |Av. Time Eq.| N°Satur N°Satis N°Equival.

786.643 423 428 3 12 1
792.345 431 443 53 113 18
798.345 425 453 67 234 56
796.453 428 443 113 405 185
803.456 433 1.703 231 923 763
808.456 431 2.430 456 1835 1534
805.434 433 3.123 985 2935 3234
812.345 445 2.813 2343 6835 8435
813.195 441 3.564 4824 16345 15864
814.925 448 3.823 5934 19356 23596
808.356 444 4.534 8123 23456 33465
810.245 441 5.102 21346 50245 64013
811.035 450 5.634 44562 101245 144234
817.425 454 6.323 90453 204563 380345
818.356 453 6.834 188453 442456 126432
821.467 455 7.103 376535 845635 291345

Figure 10.39: Measurement Table with Constraint Set Size 1000 and number of variables 100 (part 2)

Nodes YeSatur %Salis YEquiv %0Other
10 899,72 0,21 0,02 0,05
20 99,86 0,12 0,02 0,00
100 99,73 0,19 0,05 0,04
200 99,71 0,19 0,09 0,01
500 99,08 0,21 0,69 0.01

1000 98,77 0,21 1.00 0,02

2000 88,96 0,16 1,25 0,02

5000 98,58 0,16 1,23 0,03

10000 98,36 0,18 142 0,04

15000 97.95 0,18 183 0.05

20000 97,51 0.15 2,25 0,08

20000 97,94 0,13 1,85 0,08

100000 97,58 0,12 2,19 0,10

200000 96,60 0,12 3,14 0,13

500000 99,08 0,13 0,56 0,23

1000000 99,03 0,12 0,66 0.19

Figure 10.40: Percentage Composition of Constraint Size 1000 and number of variables 100

N® Nodes N° Arcs Total Time (ms) T. Satur T.Satisf. T. Equival. i i Const. Set. Satur Const. Set. Satis. Av.CS Satis.| Av.CS Satur
13 12 28.752.530 28.736.936 12.928 1.543 1.123 8.032 501 502
54 62 374.596.506 374.485.783 83.636 25.344 1.743 51.603 502 501
100 116 563.794.625 563.422.985 231.744 117.434 22.482 142.568 501 502
210 226 1.251.720.755 1.251.011.762 406.049 264.492 38.452 249.494 500 502
503 556 2.146.640.048 2.144.196.522 969.149 1.428.030 46.345 121.743 562.623 501 501
1.004 1.208 3.918.939.726 3.914.423.175 1.591.912 2.854.394 70.245 207.815 920.668 501 502
2.006 2.402 11.096.353.625 11.085.181.035 2.697.753 8.286.603 188.234 549.690 1.516.542 502 502
5.012 5.721 32.710.199.590 32.677.845.462 6.264.090 25.406.304 683.734 1.426.500 3.436.692 500 502
10.002 11.439 66.125.539.474 66.051.842.828 13.545.634 58.271.665 1.879.347 2.772.534 7.532.034 501 501
15.005 18.209 84.468.070.799 84.352.433.760 16.802.688 96.119.964 2.714.387 3.629.745 9.248.848 501 502
20.008 24.390 115.220.768.523 115.034.346.075 | 21.787.230 158.681.808 5.943.410 4.626.735 12.024.406 501 502
50.015 54.345 279.485.936.116 | 279.059.318.624 | 44.362.054 363.810.121 18.445.317 11.027.000 24.771.692 500 502
100.054 107.345 609.707.344.359 | 608.650.137.342 | 95.695.425 | 925.079.420 36.432.172 22.660.731 50.835.030 501 502
200.097 205.346 | 1.297.017.535.180 | 1.294.013.151.002 | 187.963.764 | 2.708.078.625 | 108.341.7839 45.799.468 100.824.246 502 501
500.104 508.987 |2.866.551.113.097 | 2.855.662.425.362 | 422.478.784 | 10.077.177.075 | 389.031.876 95.868.354 220.004.512 501 502
1.000.154 1.012.453 |5.999.412.373.233 | 5.970.374.466.435 |868.770.784 | 26.115.868.125 | 2.053.267.889 186.544.845 446.847.268 501 502

Figure 10.41: Measurement Table with Constraint Set Size 1000 and number of variables 500 (part 1)
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AV.Time Satu | Av.Time Satis |Av. Time Eq.| N°Satur N°Satis N°Equival.

7.184.234 808 1.543 4 16 1
7.642.567 812 1.584 49 103 16
7.935.535 816 1.654 71 284 71
8.123.453 817 1.674 154 497 158
8.823.854 863 1.845 243 1123 774
9.432.345 868 2.184 415 1.834 1.301
10.123.453 893 2.743 1.095 3.021 3.021
11.453.854 915 3.234 2.853 6.846 7.856
11.935.642 901 3.655 5.534 15.034 15.943
11.642.848 912 3.999 7.245 18.424 24.036
12.456.345 910 4.743 9.235 23.953 33.456
12.653.456 899 5.653 22.054 49.346 64.357
13.456.482 945 6.236 45.231 101.265 148.345
14.183.453 934 6.975 91.234 201.246 388.255
14.923.453 964 7.845 191.354 438.256 1.284.535
16.034.523 976 9.025 372.345 890.134 2.893.725

Figure 10.42: Measurement Table with Constraint Set Size 1000 and number of variables 500 (part 2)

Nodes %Satur %Satis SeEquiV %0Other
10 8595 0,04 0,01 0,00
50 99,97 0,02 0,01 0,00
100 99,83 0,04 0,02 0,00
200 99,94 0,03 0,02 0,00
500 99,89 0,05 0,07 0,00
1000 99,88 0,04 0,07 0,00
2000 99,80 0,02 0,07 0,00
5000 99,90 0,02 0,08 0,00

10000 99,89 0,02 0,09 0,00

15000 99,86 0,02 0,11 0,00

20000 99,84 0,02 0,14 0,01

50000 99,85 0,02 0,13 0,01

100000 99,83 0,02 0,15 0,01

200000 99,77 0,01 0,21 0,01

500000 99,62 0,01 0,35 0,01

1000000 99,52 0.01 0.44 0.03

Figure 10.43: Percentage Composition of Constraint Size 1000 and number of variables 500
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N° Nodes N° Arcs Total Time (ms) T. Satur (ms) T.Satisf. (ms) |T. Equival. (ms)|T. i (ms)|Const. Set. Satur | Const. Set. Satis. | AvV.CS Satis. | Av.CS Satur
13 12 85.512.457 85.494.784 13.716 2.834 1.123 4.004 12.024 1.001 1.002
54 62 1.119.426.907 1.119.207.495 139.513 78.156 1.743 51.051 121.242 1.001 1.002
100 116 1.422.257.734 1.421.610.435 282.608 342.228 22.462 63.063 243.486 1.001 1.002
210 226 3.006.569.143 3.005.096.848 471.233 962.610 38.452 124124 413.826 1.001 1.002
503 556 6.063.016.240 6.056.119.419 1.097.856 5.752.620 46.345 257.257 953.953 1.001 1.001
1.004 1.208 10.797.921.913 10.784.539.216 2.239.572 11.072.880 70.245 424.424 1.937.868 1.001 1.002
2.006 2.402 27.658.612.718 27.624.995.892 3.625.803 29.802.789 188.234 1.054.053 3.129.246 1.001 1.002
5.012 5.721 70.737.245.158 70.645.178.258 8.066.604 83.316.562 683.734 2.573.000 6.948.942 1.000 1.001
10.002 11.439 134.466.062.262 134.262.795.025 18.710.700 182.677.190 1.879.347 5.250.245 15.955.848 1.001 1.002
15.005 18.209 193.268.925.523 192.877.642.188 22.208.060 366.360.888 2.714.387 7.531.524 19.364.345 1.001 1.001
20.008 24.3%0 271.311.405.003 270.732.854.378 27.195.264 545.411.951 5.943410 9.467.000 23.447 424 1.000 1.001
50.015 54.345 693.692.599.443 692.488.000.344 59.984.412 1.126.169.370 18.445.317 22.478.456 51.636.066 1.001 1.002
100.054 107.345 1.441.265.314.516 | 1.438.035.137.030 | 123.413.056 | 3.070.332.258 36.432.172 45.290.245 104.442.468 1.001 1.002
200.097 205.346 2.949.048.035.550 | 2.939.615.227.770 | 237.774.916 | 9.086.691.075 108.341.789 89.466.000 202.534.000 1.000 1.000
500.104 508.987 6.683.446.191.888 | 6.648.611.093.532 | 524.178.825 | 33.921.887.655 389.031.876 193.756.563 443.229.690 1.001 1.002
1.000.154 1.012.453 |13.545.527.108.154 [13.451.092.472.935| 1.067.675.140 | 91.313.692.190 | 2.053.267.889 380.943.563 895.238.904 1.001 1.002

Figure 10.44: Measurement Table with Constraint Set Size 1000 and number of variables 1000 (part 1)
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Figure 10.45: Measurement Table with Constraint Set Size 1000 and number of variables 1000 (part 2)

various average times in absolute values of the three functions that interact with the SMT Solver
(Saturation, Satisfiable and Check Equivalence) is analyzed using as a reference the test with the
highest magnitude number of the Constraint Set (1000) as the number varies of variables (Figures
10.47 , 10.48, 10.49). Finally, the percentage change is shown as the number of variables increases,
assuming we have a Constraint Set Size with 1000 constraints (Figure 10.50). As can be seen from the
table and the graph, the average of the saturation percentages already becomes very close to 100%
already with 100 variables and with 1000 variables it gets even closer. Opposite trend instead for the
other functions that go towards 0%.
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10 99,98 0,02 0,00 0,00
50 99,98 0,01 0,01 0,00
100 99,95 0,02 0,02 0,00
200 99,95 0,02 0,03 0,00
500 99,89 0,02 0,09 0,00
1000 99,88 0,02 0,10 0,00
2000 99,88 0,01 0,11 0,00
5000 99,87 0,01 0,12 0,00
10000 99,85 0,01 0,14 0,00
15000 99,80 0,01 0,19 0,00
20000 99,79 0,01 0,20 0,00
50000 99,83 0,01 0,16 0,00
100000 99,78 0,01 0,21 0,00
200000 99,68 0,01 0,31 0,00
500000 99,48 0,01 0,51 0,01
1000000 99,30 0,01 0,67 0,02
Figure 10.46: Percentage Composition of Constraint Size 1000 and number of variables 1000
Constraint Set Size 1000 - Number Variables - Saturation Time el
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Figure 10.47: Variation of the Saturation time as the number of variables increases in an average Constraint Set
per node with 1000 constraints.
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Constraint Set Size 1000 - Number Variables - Satisfiable Time
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Figure 10.48: Variation of the Satisfiable time as the number of variables increases in an average Constraint Set
per node with 1000 constraints.
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Figure 10.49: Variation of the Check Equivalence time as the number of variables increases in an average
Constraint Set per node with 1000 constraints.
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Figure 10.50: Variation of the percentage occupied for a certain time on the total time
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CHAPTER 11

Conclusion

11.1 Conclusion and Future Developments

In this thesis we wanted to perform a gradual approach by describing the implementation of each
single step in order to then arrive at the final result. The project has a very practical purpose, in fact
its main objective is to apply what has been prepared only at a theoretical level. With this work it is
possible to verify if a certain Data Petri Net is always Sound in all the possible states it can be in or if it
needs to be reformulated because it does not respect the three properties of data-aware soundness. In
a simple DPN it is not possible to verify that these three properties are solidly verified, for this reason
it is necessary to implement the Constraint Graph and then verify the three properties on it. To do
this, a top-down methodology was used in which the global problem was taken and broken down
into many sub-problems which gave rise to different algorithms integrated with each other and which
together made it possible to achieve the final result. In the measurements performed, it was observed
that the real bottleneck of this algorithm is saturation, so it will be important in the future to find more
efficient algorithms that manage to obtain the same result and make the program more scalable. A
possible future extension is to add debugging functions for which it is possible to pass back to the user
what causes the three data-aware soundness properties to fail. Data Petri Nets are still a very specific
topic unlike Petri Net Standards and the aim of this thesis is to add further material to this topic.
During the last decades, different ways have been introduced to integrate business processes with
different types of data according to the various specific needs of the business realities. The software
can have important applications in Process Mining and in particular in all areas in which Petri nets
are used. The software is implemented with the Java programming language and therefore requires a
Java Virtual Machine to run and works for Linux or Windows based operating systems.
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