

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria dell'Energia

Relazione per la prova finale « Il futuro dell'idroelettrico: tra cambiamenti climatici e transizione energetica»

Tutor universitario: Prof. Giorgio Pavesi

Padova, 17/11/2023

Laureando: Tommaso De Vido

matricola nr. 1193842

IL FUTURO DELL'IDROELETTRICO - INTRODUZIONE

Mulino di Crowford - Inghilterra

Diga delle Tre gole - Cina

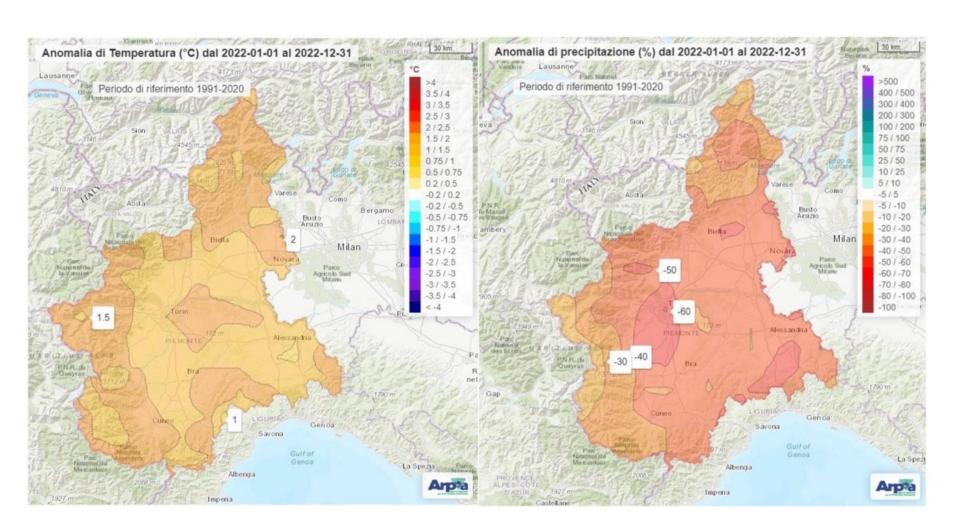
IL FUTURO DELL'IDROELETTRICO – IN ITALIA

Centrale Bertini - Lombardia

Diga del Vajont – Friuli Venezia Giulia

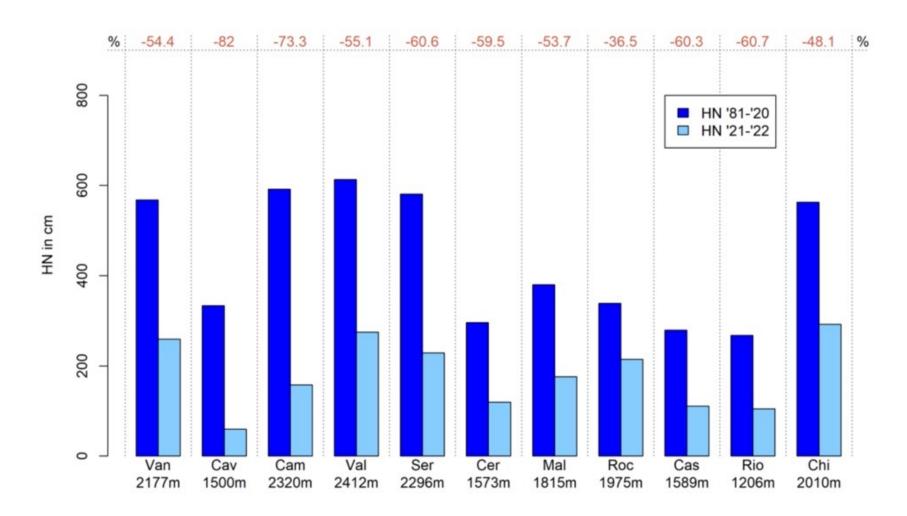
Diga del Chiotas - Piemonte

IL FUTURO DELL'IDROELETTRICO – POTENZA INSTALLATA

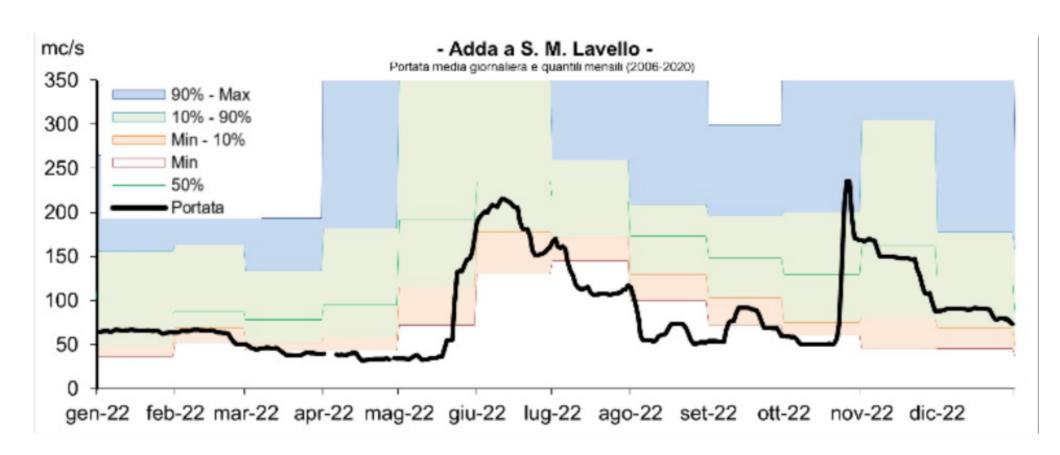


	P	< 12kW	12kW <	c= P < 20kW	20kW <	= P < 200kW	200kW	<= P < 1MW	1MW <	= P < 10MW	Р>	= 10MW	,	Fotale
Regione	Numero	Potenza [MW]												
PIEMONTE	14	0,1	28	0,5	341	29	386	191	256	650	55	2.226	1.080	3.097
VALLE D'AOSTA	6	0,05	11	0,2	64	6	72	36	41	144	26	919	220	1.106
LOMBARDIA	15	0,1	15	0,3	196	18	252	123	199	561	70	4.991	747	5.694
TRENTINO ALTO ADIGE	41	0,3	72	1	351	25	235	114	137	382	48	3.278	884	3.802
VENETO	13	0,1	10	0,2	172	13	130	63	59	173	22	1.138	406	1.387
FRIULI VENEZIA GIULIA	9	0,1	10	0,2	103	8	82	37	51	118	12	457	267	620
LIGURIA	2	0,01	1	0,02	41	4	30	13	23	70	2	24	99	111
EMILIA ROMAGNA	2	0,02	15	0,3	78	7	73	32	46	130	8	237	222	406
TOSCANA	4	0,04	4	0,07	93	8	76	34	45	126	8	259	230	428
UMBRIA	3	0,01	-	-	14	1	14	8	9	37	8	671	48	717
MARCHE	-	-	1	0,02	76	7	77	36	24	60	10	208	188	311
LAZIO	2	0,02	2	0,04	27	2	26	13	29	103	15	359	101	477
ABRUZZO	-	-	-	-	13	1	31	16	21	55	13	1.196	78	1.268
MOLISE	2	0,01	1	0,02	7	0,5	13	8	14	40	2	46	39	94
CAMPANIA	2	0,02	3	0,1	19	2	21	9	8	25	10	359	63	394
PUGLIA	-	-	1	- 0-	2	0,3	8	4	1151	-		-	10	4
BASILICATA	-		-	-	4	0,3	10	4	5	9	2	143	21	157
CALABRIA	1	0,01	- 0	-	12	1,3	32	15	18	53	11	846	74	915
SICILIA	1	0,01	3	0,05	5	0,4	6	3	11	46	5	105	31	155
SARDEGNA	3	-	-	-	-	-	1	1	6	23	11	542	18	566
Totale	117	1	176	3	1.618	135	1.575	760	1.002	2.803	338	18.005	4.826	21.707

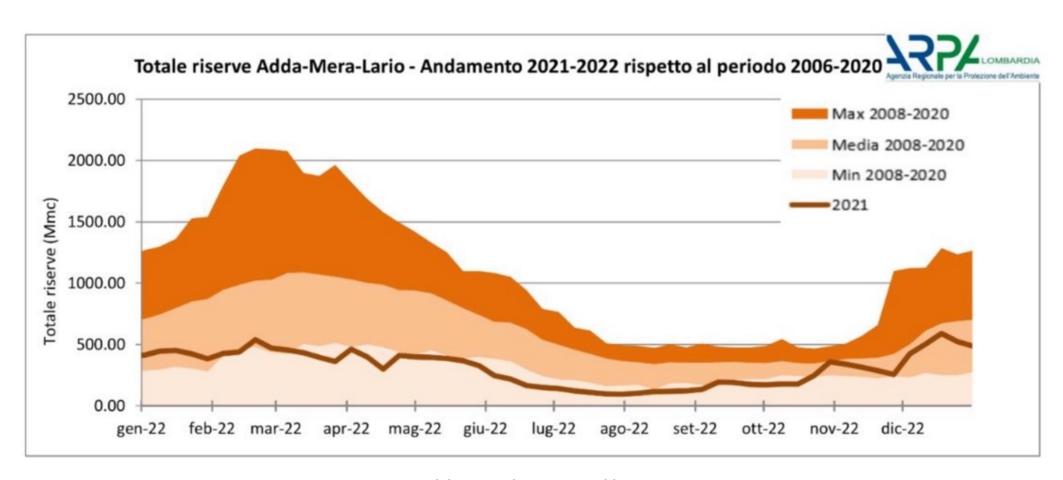
Dati Terna – Potenza installata in Italia



Anomalie di temperatura in Piemonte - ARPA

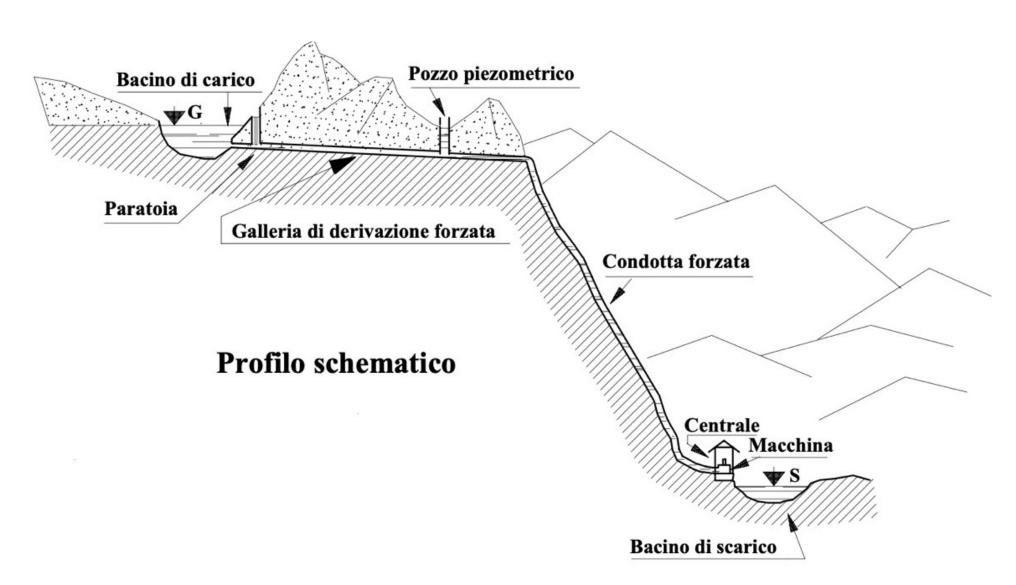


Precipitazioni nevose in Piemonte – Report SNPA



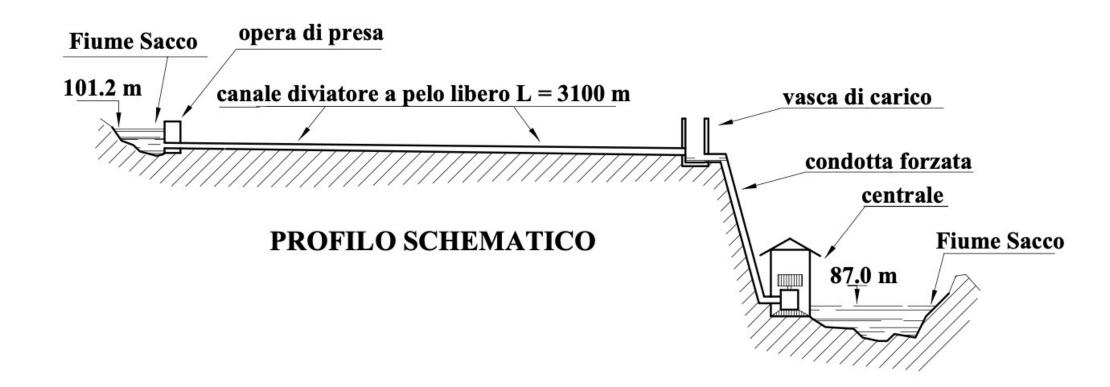
Portata media del fiume Adda in uscita dal lago di Como – Report SNPA

Riserve del Bacino idrico Fiume Adda – Report SNPA

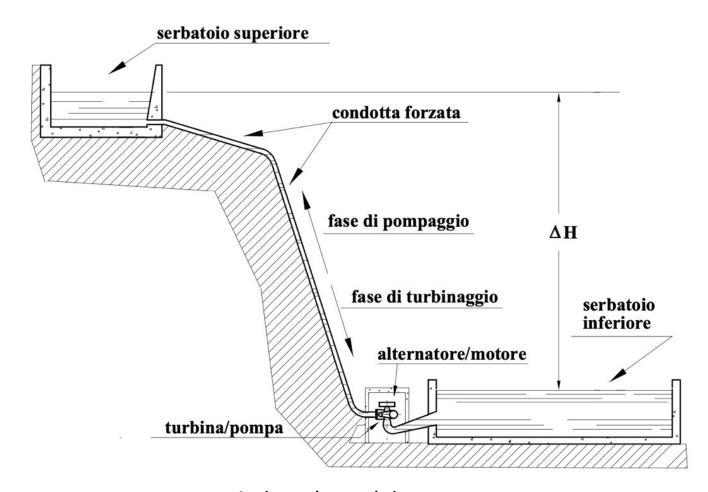

	Alpi								
	> 2000 m	2000-1500 m	1500-1000 m	< 1000 m	Prealpi				
Gennaio									
1961-1990	201	112	89	42	46				
1991-2020	189	92	63	18	22				
Scarto %	-6%	-18%	-30%	-56%	-53%				
Febbraio									
1961-1990	291	165	140	71	72				
1991-2020	244	120	91	27	25				
Scarto %	-16%	-27%	-35%	-61%	-66%				
Marzo									
1961-1990	407	212	158	25	29				
1991-2020	284	84	65	4.9	9.4				
Scarto %	-30%	-60%	-59%	-81%	-68%				
Aprile									
1961-1990	447	71	38.5	0.1	3.6				
1991-2020	273	11	7.0	0.0	0.3				
Scarto %	-39%	-85%	-82%	-100%	-92%				

Deficit precipitazione nevose - Veneto

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE IL FUTURO DELL'IDROELETTRICO — CENTRALI TIPO



DIPARTIMENTO DI INGEGNERIA INDUSTRIALE IL FUTURO DELL'IDROELETTRICO — CENTRALI TIPO



Impianto ad acqua fluente

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE IL FUTURO DELL'IDROELETTRICO — CENTRALI TIPO

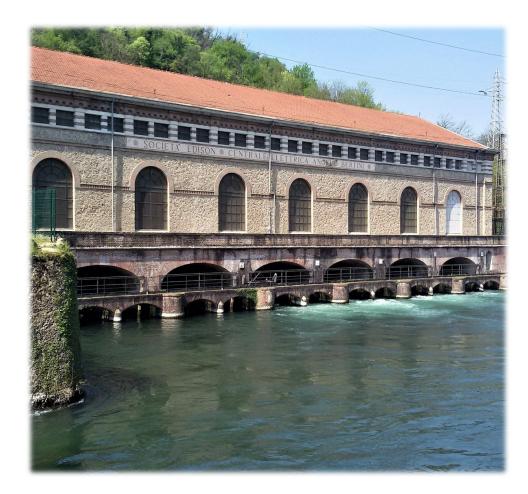
Impianto ad accumulazione

DIPARTIMENTO DI INGEGNERIA IL FUTURO DELL'IDROELETTRICO — CENTRALE EINAUDI INDUSTRIALE

Ingresso Impianto Idroelettrico Chiotas - Piemonte

Gestore: Enel

Turbine: Francis


Lago artificiale di Chiotas - Piemonte

Lago artificiale di Rovina - Piemonte

DIPARTIMENTO DI INGEGNERIA IL FUTURO DELL'IDROELETTRICO — ASTA DELL'ADDA INDUSTRIALE

Centrale idroelettrica Bertini

Anno di costruzione: 1898

Gestore: Edison

Turbine: Francis ad asse orizzontale

DIPARTIMENTO DI INGEGNERIA IL FUTURO DELL'IDROELETTRICO — ASTA DELL'ADDA INDUSTRIALE

Centrale idroelettrica «Esterle»

Anno di costruzione: 1914

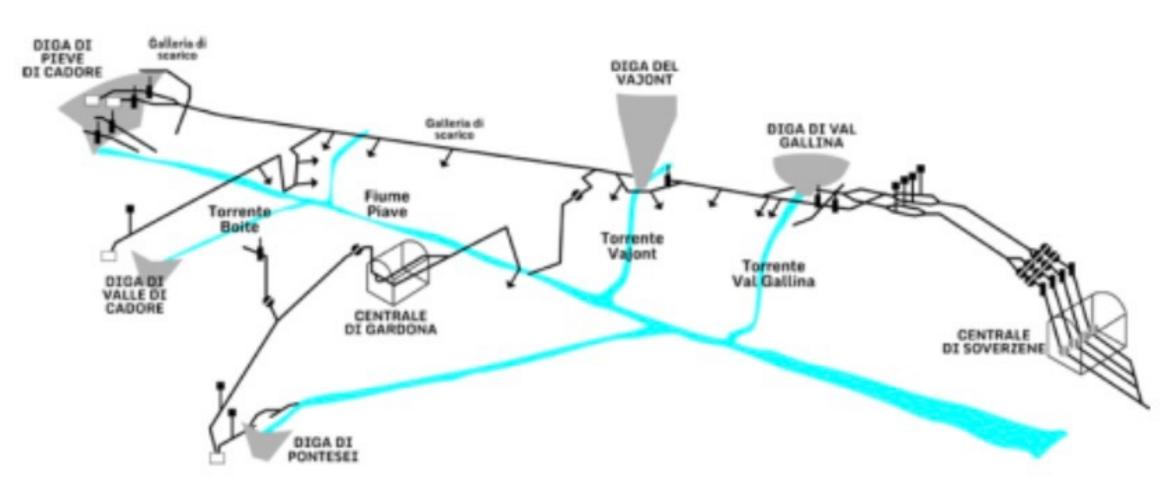
Gestore: Edison

Turbine: Francis ad asse orizzontale

DIPARTIMENTO DI INGEGNERIA IL FUTURO DELL'IDROELETTRICO — ASTA DELL'ADDA INDUSTRIALE

Anno di costruzione: 1917

Gestore: Edison


Turbine: Francis e Kaplan

Centrale idroelettrica «Semenza»

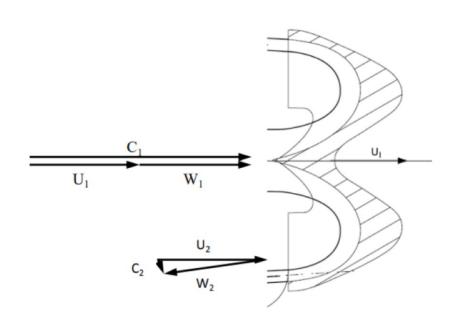
IL FUTURO DELL'IDROELETTRICO – GRANDE VAJONT

Progetto Grande Vajont - Veneto

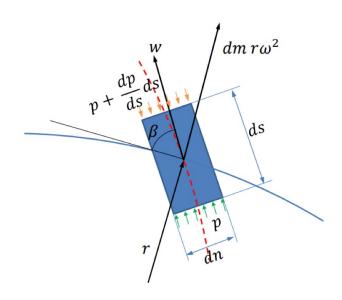
IL FUTURO DELL'IDROELETTRICO – GRANDE VAJONT

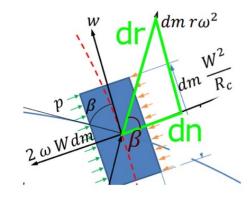
Centrale Achille Gaggia di Soverzene vista sala macchine - Veneto

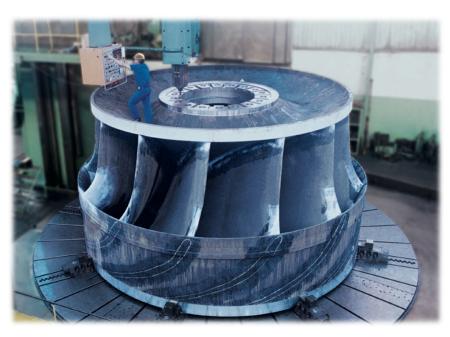
Centrale Achille Gaggia di Soverzene - Veneto

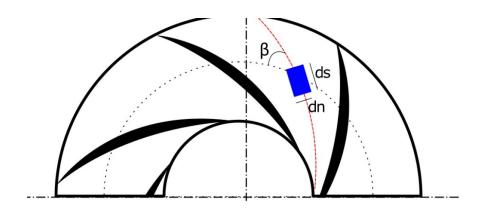


IL FUTURO DELL'IDROELETTRICO – TURBINA PELTON

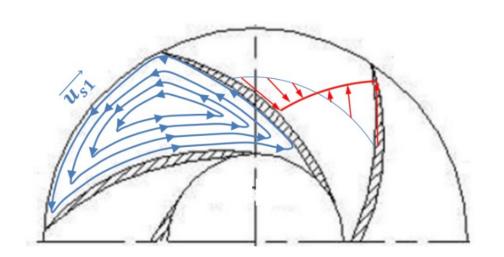

Esempio di Turbina Pelton



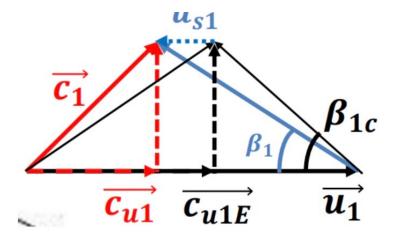

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE IL FUTURO DELL'IDROELETTRICO — TURBINA FRANCIS



$$-\frac{dp}{dn} + \rho \frac{W^2}{R_c} + \rho \cdot r\omega^2 cos\beta - 2\omega W \rho = 0$$

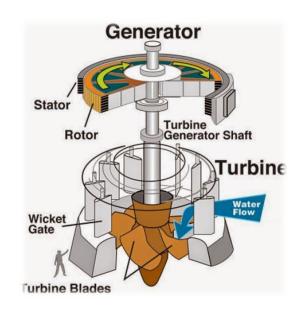


Esempio di Turbina Francis

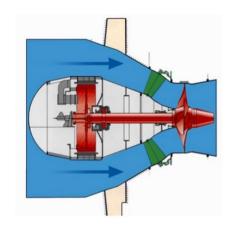


DIPARTIMENTO DI INGEGNERIA INDUSTRIALE IL FUTURO DELL'IDROELETTRICO — TURBINA FRANCIS

$$(gh_T)_E = u_1c_{u_1} - u_2c_{u_2} = u_1c_{u_1} = u_1(u_1 - u_{s_1} - c_{m_1}\cot\beta_1) = u_1^2\left(1 - \frac{u_{s_1}}{u_1} - \frac{c_{m_1}}{u_1}\cot\beta_1\right)$$



$$u_{s1} = u_1 \frac{\pi}{n_b} \sin \beta_{1c}$$


$$u_{s1} = u_1 \frac{\sqrt{\sin \beta_{1c}}}{n_b^{0.7}}$$

IL FUTURO DELL'IDROELETTRICO – TURBINA KAPLAN

Esempio di Turbina Kaplan ad asse verticale

Esempio di Turbina Kaplan a bulbo

Esempio di Turbina Kaplan ad «s»

IL FUTURO DELL'IDROELETTRICO – MICRO-IDROELETTRICO

IL FUTURO DELL'IDROELETTRICO – MICRO-IDROELETTRICO

Turbina VLH