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Chapter 1

Introduction

At a fixed energy scale the number of equivalent effective theories at our disposal to describe physical
processes can be remarkable. A way that has been used as a guide to choose among features equivalent
at a certain energy scale is the behaviour at high energies, in the ultraviolet (UV), of the same
effective theories. For example renormalizability has been widely used, namely only theories whose
UV divergences can be absorbed by appropriate counterterms are considered. More recently the
compatibility with quantum gravity is being used, i.e. those theories that, after the coupling to
gravity, present features incompatible with the known theories of quantum gravity are discarded.

The quantum gravity theory usually used for the compatibility method is string theory because it is
the only quantum gravity theory that has passed all the required tests until now. It is a theory that,
in the supersymmetric case, is defined in 11 dimensions that need to be decreased to the classic 4.
This is performed compactifying the extra dimensions, but the great variety of ways to do it produces
a landscape of possible different effective theories.

To such landscape of theories descending from string theory we can counterpose the set of all the
remaining low energy theories that do not originate from it: the swampland. This gives the name
Swampland program to the research aimed to select between different effective theories using the
compatibility with quantum gravity. The main idea behind it is to use some criteria, called swampland
conjectures, to distinguish between effective theories that are completable into string theory and those
that are not. This method is explained in more details in the second chapter.

In this thesis we are going to analyze and use to swampland conjectures: the Anti de Sitter (AdS)
conjecture and the de Sitter (dS) conjecture, these forbids respectively non-susy stable AdS vacua and
stable (or mildly unstable) dS vacua, putting in the swampland all the effective theories that contain
them.

String theory is not the only theory that, when compactfied to lower dimensions, originate a landscape
of vacua. In fact even ordinary quantum field theories do it when coupled to gravity, for example in
[1] it was shown that compactifying the Standard Model (SM) coupled to gravity in 4 dimensions on a
circle S1 and on a torus T 2 creates a landscape of lower dimensional vacua. They are obtained through
the 1-loop quantum corrections of the terms appearing after the compactification of the SM terms.
Such corrections will create a potential for the scalar fields parameterizing the circle and the torus
and its minima become the vacuum points. The potential and thus its vacua are mainly influenced by
the lightest SM degrees of freedom, in particular their existence depends greatly on the values of the
neutrino masses.

Later in [2, 3, 4] the AdS conjecture was applied to the SM lower dimensional vacua. If a consistent
dimensional reduction of a theory results to be incompatible with quantum gravity then also the higher
dimensional one should be. This allowed to put constraints on the neutrino masses because only the
that do not generate stable AdS vacua are permitted.

This thesis focuses on refining some of the previous results, following especially [3] which analyzed the
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4 CHAPTER 1. INTRODUCTION

landscape of SM vacua and applied the AdS conjecture, with the application of the dS conjecture as
well. In chapter 2 the swampland program as well as the conjectures we are going to use are presented
and quickly reviewed. We show how they are derived and the other conjectures they originate from,
the Weak Gravity Conjecture and the Distance Conjecture.

In the third chapter the dimensional reduction is explicitly performed on the Einstein–Hilbert action
to obtain the kinetic terms for the fields parameterizing the compactified dimensions. Moreover, the
quantum corrections generating the potential are presented and they are computed for two particular
cases.

In chapter 4 the consistency of the dimensional truncation is checked and the vacuum conditions are
derived. We look at the equations of motion originated from the compactified actions, we evaluate
them at the background and eventually we perturb them. This gives the conditions that the potential
needs to fulfill to have a stable vacuum.

In the fifth chapter we evaluate numerically the potential to check what are the neutrino masses that
make rise to AdS or dS vacua. The analysis is performed for different cases, being the neutrino mass
terms Dirac or Majorana or with Normal or Inverted Hierarchy.

Eventually in chapter 6 the work done is summed up and the results, in particular of chapter 5, are
showed in a more schematic way.



Chapter 2

The string theory swampland

The construction of a consistent quantum theory of gravity is one of the major goals in modern
theoretical physics. This is not at all a simple task, even though many progresses are being made.
One of the aspects that is currently being widely explored [5, 6, 7] consists in the discrimination of
the theories that can be completed at high energies in a quantum gravity theory (in particular string
theory) from those that can not. To achieve this goal the effort rotates around the development of
some conjectures that can provide effective methods and constraints to use and impose on the analysed
theories. Their name comes from the fact that they are not formally proven. In particular in the thesis
the focus will be on the AdS stability conjecture [8] and the de Sitter conjecture [9, 10].

2.1 The swampland and the landscape

The modern approach to study quantum field theories is to treat them as Effective Field Theories,
which describe the physics at a given energy scale, but may break down when higher energies are
involved. These theories derive from complete theories eliminating (integrating out) the heaviest
degrees of freedom: as we consider lower and lower energies some degrees of freedom become less
important than others, therefore they can be integrated out to create a theory more suitable to
describe the physics at those energy scales. There can be identical EFTs coming from different
complete UV theories, because as the energy decreases, i.e. moving towards the infrared (IR), the
irrelevant operators, which were dominating in the UV, will lose their importance.

What is depicted in the above paragraph is the general procedure to get an EFT from a UV complete
theory. However we do not know what is the physics in the UV, thus we can only suppose how a UV
should look like. Actually in physics the majority of the calculations is performed using EFTs and
even the quantum field theory describing the Standard Model (SM) is thought as an EFT. Indeed
a further hint of its EFT nature is that, when the SM is coupled to gravity, we know it is going to
be inconsistent at high energies, and therefore, as any other EFT, we expect it to be completed by
adding new degrees of freedom. However, without principles that could guide us, this becomes a very
challenging task.

The use of EFTs is actually more unavoidable than it could transpire from the above paragraphs:
we can not disregard them, because we do not know what is the physics at energy scales beyond the
ones we are able to test in the experiments and therefore the possible UV completions of any EFT
are numerous if not infinite. The EFTs become then an essential tool to carry out calculations and
to make predictions. In fact a real plethora of EFTs for very disparate fields of physics has been
developed throughout the years.

Given the great number of EFTs in the IR, we would need a mechanism to discriminate between
them. That could be derived from the coupling of a theory in the UV to gravity since this imposes
very binding constraints. Indeed among the various quantum theories of gravity only one has passed,
at least until now, all the tests required: string theory. So we could expect that any consistent EFT
should originate from it.

String theory is one of the most known and used candidate quantum theories of gravity. Nevertheless
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6 CHAPTER 2. THE STRING THEORY SWAMPLAND

it presents some problematic features when it comes to the application to the infrared physics. In the
supersymmetric case it is a theory defined in 10 dimensions, thus we need a method for the dimensional
reduction to get back to 4 dimensions. The number of possible vacua, and therefore different theories
derivable from it, is huge because all the viable compactifications to get to a 4D theory are numerous.
In fact, for example, the number of different vacua in a particular scenario has been estimated to
be of the order of 1027200 [11]. Due to these huge numbers the past approach based on the rigorous
construction of an EFT from string theory has proven itself futile in charting all the possible theories
originated from it. So it would appear that, if too many self consistent EFTs can be derived from string
theory, it has little utility when the IR physics is involved: we could simply take any effective theory
in agreement with the observations to perform calculations and it would be almost impossible to make
unique predictions about the results of future experiments. Moreover, even if all the string theory
vacua were known there is no clear selection mechanism to discriminate between them. Recently, to
overcome such difficulties, there was a shift in the attitude of the community and a new method is
being developed: the swampland program. It is based on the idea that not everything can descend
from string theory, even though its landscape of vacua is huge, it is not infinite. Therefore not all the
EFTs that get coupled to gravity can be UV completed in a consistent way.

The swampland idea consists in testing the self consistency of a certain theory when coupled to gravity.
Self consistency can be a very good tool to fix theories, in particular at high energies, such as the ones
occurring when gravity effects become not negligible. Here self consistency can be used to have almost
a unique theory. Unfortunately, at low energies it is far less efficient as it can be seen by looking at
the number of self consistent EFTs originating from string theory.

If a UV theory is known, then how to obtain an EFT from that is widely understood. Vice versa it
is not at all trivial to reach a more complete theory, or more specifically a quantum gravity theory,
from an effective one. An EFT is valid only below a certain cut-off Λ, when the energy is increased
and reaches Λ then the theory must be modified, for instance adding new degrees of freedom. But
there can be several choices and so, from the same EFT, it is possible to get to very different UV
completions. Besides, when gravity gains relevance, the theory is likely to break down unless the
changes made to keep it consistent are very deep. This is not possible for all the EFTs. It is then
from here that the idea of the swampland is born.

Definition 1. The Swampland is the set of effective field theories that do not fulfill the requirements
to be consistently completed in a quantum gravity theory.

Definition 2. The Landscape consists of all the low energy theories that can descend from a quantum
theory of gravity.

This is illustrated in Figure 2.1. These definitions remain pointless unless we can identify some criteria
that allow to distinguish the theories that belong to the swampland from the ones that belong to the
landscape. That is the reason why the main purpose of the swampland program is to build those
criteria and to learn how to apply and take advantage of them.

2.2 The conjectures

In order to fulfill the task of discriminating the belonging of an EFT to the swampland or to the
landscape a certain number of criteria has been proposed. They are called Swampland Conjectures
because they have not been formally proven even if more and more evidence for their validity is being
gathered. The conjectures can be roughly split in two categories: the string derived ones and the
string inspired ones. The former consist in imposing some of the same characteristics of the known
and rigorously constructed string theory vacua on the EFTs. So these type of criteria constrain the
EFTs that present characteristics not consistent with the ones obtainable from string theory. The
latter do not use directly the string theory vacua, but bind the EFTs on the basis of the structures
and features that should appear at higher energies. From this it can be seen that the level of rigour
of the swampland conjectures is somewhat subjective. For the string derived conjectures it could
be questioned that maybe they would not satisfy other vacua that we are not technically able to
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This is justified saying that if the equality is satisfied at a certain point, only supersymmetry can
protect it at all loop orders.

2.2.2 Swampland Distance Conjecture

This conjecture was first proposed in [14]. In string theory the magnitude of any parameter is controlled
by the vacuum expectation value (vev) of a type of scalar fields called Moduli. They live in a metric
space named moduli space. Modifying their values, namely moving in the moduli space, allows to
change the values of the parameters of the theory.

In string theory all the symmetries are associated to gauge degrees of freedom and then to gauge
couplings because global symmetries are forbidden [15]. The main heuristic argument for such pro-
hibition is based on black hole physics. Let us consider a theory with a U(1) global symmetry and
a Schwarzschild black hole created putting together an arbitrary number of particles charged under
that symmetry. The subsequent global charge will not affect the metric and so neither the black hole
horizon. Semi-classically the black hole will lose mass through the Hawking radiation, but it will not
lose its global charge. Thus deducing the charge of a black hole of known mass becomes impossible.
We may associate an infinite entropy to such uncertainty because an infinite number of states can give
rise to the same black hole geometry. However this would be in contradiction with the expectation that
the entropy of a black hole is finite. Such inconsistency has led to the idea that no global symmetries
should be present in a quantum gravity theory.

Given that moving in the moduli space modifies the values of the couplings, in principle we may reach
regions of that space where a gauge coupling goes to zero, recovering a global symmetry. This happens
because a symmetry that is originally global is made consistent in quantum gravity by coupling the
respective current to some gauge field, but if the coupling vanishes then the global symmetry is
restored. This is therefore problematic. The issue can be solved establishing the responsible point in
moduli space at an infinite field distance so that it becomes not reachable. However, as long as we are
approaching that point, its problematic nature should slowly be revealed. The SDC states that this
is always the case when getting further in the moduli space in any direction as it is thought to be non
compact, therefore any path would lead towards infinity. Hence moving in any direction would slowly
and continuously break down the EFT description. Formally the conjecture is defined comparing the
theory at a point p and at a point p0 on the moduli space with d (p, p0) > T for any positive T . In p
we have an infinite tower of light state with mass

m ∼ e−αT , (2.4)

with α > 0. Then in the limit T → ∞ the number of state with mass smaller than a fixed value
becomes infinite. This means that, when going to infinity in the moduli space, an infinite tower of
light states appears at low energies invalidating the EFT since we should consider and integrate in all
of those states, which is impossible.

2.2.3 The AdS stability conjecture

This conjecture was first introduced in [8] and states that no non-supersymmetric stable AdS vacua
can exist in a consistent theory of quantum gravity. Therefore if such a vacuum appears in an EFT,
then such a theory or, if possible, the values of the parameters that allowed its presence must be
discarded. It is usually simple to create instabilities without supersymmetry, but it is only with the
presence of gravity that this seems to happen all the time.

The way the AdS conjecture originates from the WGC involves the charges of the branes, and so their
fluxes, in a particular theory. Let us consider a particle in a quantum field theory. Moving in time
this particle will draw a path called world-line that in space-time is a one dimensional object. If the
particle is charged it will couple to a 1-form Aµ, namely a one dimensional potential. With Aµ we can
build a field strength Fµν and therefore an electromagnetic field which will generate a flux. If, instead
of a particle, we had a string, the argument would be the same, but with a 2-form Bµν and a field
strength Fµνρ. If we had a three dimensional object instead of a string we would have a 3-form and a
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2.2.4 The dS conjecture

The history of our universe can be split in three different eras: radiation domination, matter domina-
tion and dark energy domination which is the one we live in now because the 70% of the total energy
is dark energy. The domination of the dark energy, i.e. of the cosmological constant, is characterized
by an accelerated expansion of the universe, thus the beginning of this era has caused the shift of
the metric from a Friedmann–Robertson–Walker one to a de Sitter one with a positive cosmological
constant.

Hence our universe would seem to be approaching a de Sitter phase. Nevertheless the construction of
dS vacua in string theory has proven to be harder than expected, indeed no attempt has been fully
successful so far. This difficulty could be due to technical problems intrinsic in such a construction or
it could be a hint of a deeper feature of quantum gravity that forbids somehow dS vacua.

Starting from the idea mentioned above, in [9] a new conjecture has been proposed. It takes the name
of dS conjecture. The intention is to forbid dS vacua imposing an inferior bound to the magnitude of
the gradient of the scalar potential in an EFT, such as

|∇V | > A, (2.5)

for some A > 0. But with this definition some problems arise since it forbids any kind of vacua, even
AdS and Minkowski ones. To address the issue the conjecture has been formally defined to be

Mp
|∇V |
V

≥ c, (2.6)

where c is a constant of order 1. In this way the constant A stops to be a constant and start
depending on the scalar field φ whose potential is V . In this way AdS vacua, for which V is negative,
and Minkwski vacua, for which V = 0, are allowed. Moreover, as it should be for any conjecture,
when gravity is lifted, namely Mp → ∞ then the condition is automatically fulfilled.

However, a natural objection to the dS conjecture arises: its application and therefore the absence
of dS vacua would seem to prevent the accelerating expansion of the universe. This problem can be
solved employing the same tools used for the inflation in the early universe, that is the expansion is
driven by a scalar field rolling down the not too steep slope of a potential. This kind of models are
known under the name of Quintessence [18]. Hence, if this were the case of present day expansion,
putting dS vacua in the swampland would not be problematic. Current observations require ∇V and
V to be of the same order and small in Planck units, and, in order to have the accelerated expansion,
we should demand the parameter ω in the equation

P = ωρ, (2.7)

to be ω < −1/3. This is compatible with equation (2.6) as long as c <
√
2 [9].

However the dS conjecture so formulated is questionable. Indeed some problematic examples have
been found. For instance, in [19], it was pointed out that the Higgs potential in the Standard Model
gives

|∇V |
V

∼ 10−55. (2.8)

In this case the computed value differs by many orders of magnitude from the expected one that was
of order one. Such result can be explained with the existence of more scalar fields in the SM potential,
but we would be forced to discard a theory that has proven to work perfectly so far.

In [10] a sharpened version of the conjecture based on entropy arguments has been proposed. It was
shown that such a refinement evades all the adduced counter examples. It is formulated saying that
in a quantum gravity theory a scalar potential has to satisfy either equation (2.6) or

min (∇i∇jV ) ≤ −c′ V
M2

p

, (2.9)

where c′ is a positive constant of order one and min (∇i∇jV ) is the smallest eigenvalue of the Hessian
of the potential. Such condition, if satisfied, makes the fluctuations of the scalar field making up the
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potential not-negligible. This invalidates the following semi-classical argument which leads to derive
the first condition of the conjecture (2.6), so that if (2.9) is satisfied, then we expect (2.6) not to be
respected. All the examples found so far that do not respect the first condition do respect the second
one.

The justification of the sharpened version is based on the use of the Gibbons–Hawking entropy [20] of
dS space which relates the entropy to the radius R of the event horizon

SGH ∼ R2 ∼ 1

Λ
, (2.10)

where Λ is the cosmological constant. Λ is then linked to the dimension of the Hilbert space. With
an accelerated expansion, that is with c <

√
2 in eq.(2.6), we get an apparent horizon with

R =
1√
V
. (2.11)

The existence of the apparent horizon enables us to use the Bousso bound [21] that states that the
entropy on a hypersurface with area A is bounded by

S ≤ A

4
. (2.12)

The second condition of the dS conjecture, namely eq.(2.9), is needed because, as explained in [10],
this semi-classical description of the entropy breaks down if there is a too strong instability and the
apparent horizon inside the event horizon essential to compute the entropy can not exist.

The first condition, instead, is obtained computing the entropy explicitly. Let us parameterize the
number of particle species appearing gradually for the SDC as we move towards infinity in the moduli
space as

N (φ) ∼ n (φ) ebφ, (2.13)

with dn
dφ ≥ 0 since the increase of states in the SDC is monotonic and with b ∼ O(1). We expect

the entropy of the tower of states to increase with the number of particle species N . We can then
parameterize the entropy with N and with the radius R of the apparent horizon as

Stower ∼ NγRδ, (2.14)

where also γ, δ ∼ O(1) [10]. Now we can apply the Bousso bound inside the horizon. Note that in the
infinite distance limit N grows exponentially and so R must change in an opposite way in order not
to violate the limit. Furthermore as N increases the bound is expected to be saturated so that we
have, using eq.(2.11),

V ∼ 1

R2
∼ N

−2γ
2−δ . (2.15)

From this we can recover eq.(2.6) noting that

∣

∣

∣

∣

∂V

∂φ

∣

∣

∣

∣

∼ 2γ

2− δ
N

−2γ
2−δ

−1∂n

∂φ
ebφ +

2γb

2− δ
N

−2γ
2−δ . (2.16)

Thus, since dn
dφ ≥ 0 and 2− δ ≥ 0 because R was exponentially suppressed, we have that

∣

∣

∣

∣

∂V

∂φ

∣

∣

∣

∣

≥ cV =
2γb

2− δ
N

−2γ
2−δ , (2.17)

and therefore

c =
2γb

2− δ
∼ O(1). (2.18)

We have then found the first of the conditions (2.6) of the dS conjecture.



Chapter 3

KK reduction and quantum potential

An interesting consequence of the AdS and the dS conjectures is the possibility to constrain some
parameters in an EFT so that stable non-supersymmetric AdS vacua or stable (and mildly unstable)
dS vacua do not appear. Let us take the Standard Model: it is not defined on an AdS or dS space
so the conjecture seems at first sight to be inapplicable here, however if the SM were consistent with
string theory, then also its compactifications would. Such compartifications, which can be performed
over a great variety of manifolds, allow the rise of a potential and, possibly, of a forbidden AdS or dS
vacuum for some new scalar fields [1, 2, 3, 4]. This permits to constrain the masses and the type (Dirac
or Majorana) of the neutrinos since it will turn out that they are the massive degrees of freedom most
responsible for the aforementioned potential.

We are going to use the compactification in the case of a circle and a torus [22]. The compactification
of the Einsten–Hilbert (EH) action gives rise to kinetic terms for the scalar fields parameterizing the
manifold. Instead, the potential we need for the possible appearance of the vacua is obtained from
the 1-loop quantum corrections of the compactified terms referring to the different particle species in
the standard model [23, 24]. We are going to see how to obtain it explicitly in the compactification
from 5 to 4 dimensions for a massive scalar field and a massive vector field.

3.1 Kaluza-Klein reduction

The technique of compactification consists in considering one or more of the spatial dimensions to be
cyclic so that every point and element in a certain direction presents itself again and again. Such a
situation becomes then indistinguishable from a circle (or another geometrical figure, depending on
what compact manifold we are compactifying on).

Historically it was firstly used by Theodor Kaluza in a famous article (of which [25] is a modern
translation) with further contributions by Oskar Klein [26]. He proved the possibility of deriving the
Einstein–Maxwell lagrangian, combining electromagnetism and general relativity, from a 5 dimensional
EH action, that is from general relativity in five dimensions. This fact was then known as Kaluza–
Klein miracle. Later on the compactification technique has been widely used until it became one of
the fundamental features of theories born to live in a number of dimensions higher than four.

Practically, to perform the calculation, the components of the metric representing the cyclic dimensions
need to be parameterized with suitable fields. Then the higher dimensional fields are expanded in
Fourier modes, among which there is a massless one that, in our case, is the only we will keep in the
lower dimensional EFT. Next, computing explicitly the EH action makes new kinetic terms for this
fields comes out while from quantum corrections a potential comes out (see section 3.2).

In the following the compactification on a circle and on a torus of the EH action plus a cosmological
constant using Cartan’s formalism is performed explicitly. It would clearly be possible to compute the
Ricci scalar directly without the use of the vielbeins, but that would take much longer and would be
more in danger of making mistakes.
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3.1.1 Circle S
1 case

In this case the z direction gets compactified on a circle, so that

z ∼ z + 2πR, (3.1)

where R is the radius of the circle. This means that all the points with z-coordinate multiple of 2πR
are identified with each other, see Figure 3.1.
Regarding the parameterization of the metric, a four dimensional metric can always be parameterized
as

ĝMN =

(

gµν +AµAν Aµ

Aν φ

)

, (3.2)

where a hat indicates the four dimensional quantities. Here and in what follows there is a distinction
between spacetime indices and vielbein indices we have to bear in mind: the former ones are the
capital latin letters M and N that take the values 0, 1, 2, z and the greek ones that run from 0 to 2;
the latter ones are I, J,K,L that can be 0, 1, 2, 3 and i, j, k, l that are 0, 1, 2. Note that with spacetime
indices the compactified directions is indicated with a z while in vielbein indices with a 3. Besides, all
the five dimensional quantities that could be confused with the four dimensional ones are indicated
with a hat. Let us go back to the metric, in order to simplify the calculations, the vectors can be
omitted since they will not affect the scalar part of the resultant theory. Another smart choice to
make everything easier is to change the definition of φ, that is usually called dilaton, and to adjust
the parameterization of ĝMN as

ĝMN =

(

e2βφgµν 0
0 e2αφ

)

. (3.3)

In this case computing the determinant is particularly easy, it reads

det(ĝ) = e2(α+dβ)det(g), (3.4)

where d is the number of non compactified dimensions (in our case d = 3).

Before starting to compute the EH action, there is another remark that has to be made: the dilaton
will be considered independent of the compactified dimension. This corresponds to a reduction of the
particle content of the theory. In fact a scalar field in our case can be expanded in fourier modes as

φ (xµ, z) =
+∞
∑

n=−∞
φ(n) (xµ) einz/R. (3.5)

Given that for a massless scalar field the equation of motion is �φ = 0, then the fields φ(n) have to
satisfy

(

�− n2

R2

)

φ(n) = 0, (3.6)

therefore we have a massless scalar field for n = 0 and an infinite tower of massive fields for n 6= 0.
Usually the radius of the circle is set to be very small, otherwise we would see it, hence from eq.(3.6)
we see that the masses of the resultant scalar fields become big [22], thus they are irrelevant for the low
energy physics and can be safely neglected. We are reducing the particle content of the theory because
an infinity of massive fields has been thrown away, then we are effectively truncating the theory to
the φ massless sector. Such truncation is said to be consistent if the equations of motion computed
from the original action and then truncated are equal to the ones derived from the truncated action
[27]. We will check such consistency for the truncations we are going to perform in the next chapter.
The truncation process, which gives rise to a new theory with a different particle content, needs not
to be confused with the derivation of an EFT as depicted in the previous chapter. In the latter some
heavy degrees of freedom, irrelevant under a certain energy scale, are integrated out, which means
that they will modify the theory by adding new interaction terms between the remaining fields, so
that they replace the interactions that were earlier mediated by the same heavy fields. In this way a
solution of the EFT can only be an approximated solution of the original theory. On the other hand
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the truncation does not change the interactions between the remaining fields and, if consistent, the
solutions to the new equations of motion are solutions even to the original ones.

Let us go forward to the actual calculation. The EH action plus a cosmological constant is [28]

SEH =

∫

d4x
√

−ĝ
[

1

16πĜ

(

R̂− 2Λ
)

]

. (3.7)

It is quite convenient to use the vielbeins, i.e. to choose basis vectors such that

ds2 = ĝMNdx
MdxN = ηIJE

IEJ , (3.8)

where here and in the following the signature of the flat space metric η is (−,+,+,+). Hence we
choose

Ei = eβφei, E3 = eαφdz, (3.9)

where the lowercase latin letters stands for the vielbein indices and ei indicates the three dimensional
vielbeins. In order to get the Ricci scalar we firstly need the spin connection and the curvature 2-form
(which is indicated with a tilde to distinguish it from the Ricci tensor). The former can be extrapolated
from

dEI = −ω̂I
J ∧ EJ ⇒







dEi = −ω̂i
j ∧ Ej − ω̂i

3 ∧ E3,

dE3 = −ω̂3
j ∧ Ej .

(3.10)

So in our case we get

dEi = βe−βφ∂jφE
j ∧ Ei − ωi

j ∧ Ej ,

dE3 = αe−βφ∂jφE
j ∧ E3.

(3.11)

From this we can obtain the spin connection, that is

ω̂i
j = ωi

j + βe−βφ
(

∂jφE
i − ∂iφEj

)

,

ω̂3
i = αe−βφ∂iφE

3.
(3.12)

Now we need the curvature 2-form that is defined as

R̃I
J = dω̂I

J + ω̂I
K ∧ ω̂K

J ⇒







R̃i
j = dω̂i

j + ω̂i
k ∧ ω̂k

j + ω̂i
3 ∧ ω̂3

j ,

R̃3
i = dω̂3

i + ω̂3
k ∧ ω̂k

i.
(3.13)

After a lot of algebra we can write the result in our case as

R̃i
j =r

i
j + Ek ∧ Ele−2βφ

(

βδi[l∂k]∂jφ+ β2ηj[l∂k]φ∂
iφ− β2∂mφ∂mφδ

i
[kηl]j − β2δi[l∂k]φ∂jφ

−βηj[l∂k]∂iφ
)

− βe−βφ
(

∂kφω
k
j ∧ Ei + ∂kφω

ik ∧ Ej

)

,

R̃3
i = Ej ∧ E3e−2βφ

(

α(α− 2β)∂iφ∂jφ+ α∂i∂jφ+ αβηij∂kφ∂
kφ
)

+ αe−βφ∂jφE
3 ∧ ωj

i,

(3.14)

where rij is the 3 dimensional curvature 2-form. In order to get the Ricci scalar with the formula

R̂ = ηIJRK
IKJ = 2R3 i

i3 +Rj i
ij , (3.15)

we need the Riemann tensor that is given by

R̃I
J =

1

2
dxM ∧ dxNR I

MN J , (3.16)

so that, turning the spacetime indices M and N to vielbein indices, we have
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R̃3
i =

1
2E

k ∧ EjR 3
kj i + Ej ∧ E3R 3

j3 i,

R̃i
j =

1
2E

k ∧ ElR i
kl j + Ek ∧ E3R i

k3 j .
(3.17)

From this we need only the two terms appearing in eq.(3.15) that are

Ri j
ji = δki η

ljR i
kl j = e−2βφR+ 2e−2βφ

(

β(1− d)∂i∂
iφ− β2(1− d)(2− d) (∂φ)2

)

R3 i
i3 = −ηijR3 3

ij = e−2βφ
(

α (β (2− d)− α) (∂φ)2 − α∂i∂
iφ
)

+ αe−2βφ∂kφω
kj

j ,
(3.18)

where R is the 3 dimensional Ricci scalar. So for the four dimensional one we get

R̂ = e−2βφR+ e−2βφ
(

2α (β (2− d)− α)− β2 (d− 1) (d− 2)
)

(∂φ)2 − 2e−2βφ (α+ β (d− 1))�φ.
(3.19)

Inserting this expression in eq.(3.7), we obtain

S =
1

16πĜ

∫

d3x

∫ 2πR

0
dz

√−ge(α+dβ)φ
(

e−2βφR− 2Λ + e−2βφ (2α (β (d− 2)− α)

−β2 (d− 1) (d− 2)
)

(∂φ)2 − 2e−2βφ (α+ β (d− 1))�φ
)

.

(3.20)

Here the coefficient in front of the new Ricci scalar does not resemble the EH action, thus we can

choose appropriately α and β to move in what is called the Einstein frame, namely when the coefficient
of the Ricci scalar is 1,

α = −β (d− 2) , β2 =
1

2 (d− 1) (d− 2)
. (3.21)

Then, choosing d = 3 we get α = −1
2 and β = 1

2 . With this choice and the redefinition of the
gravitational constant in three dimensions [29] as

G =
Ĝ

2πR
, (3.22)

we arrive at the final form of the action

S =
1

16πG

∫

d3x
√−g

(

R− 2eφΛ− 1

2
(∂φ)2

)

, (3.23)

where an irrelevant total derivative �φ has been neglected.

In the end, from the EH action plus a cosmological constant we obtained the kinetic term for the
extra scalar field parameterizing the metric. Moreover, note that we can add to this action any other
expression coming from the original action, as it will be the case of the quantum potential presented
in section 3.2.

3.1.2 Torus T
2 case

In the previous section the compactification on the circle did not need a particular geometrical con-
struction since the identification of points in a single dimension, i.e. on a circle, does not present very
complex aspects, see Figure 3.1.

Otherwise, when two dimensions are involved, the construction gets slightly more involved as different
and more complex manifold can be implicated. We are going to use a torus whose construction can
be found in [29].









20 CHAPTER 3. KK REDUCTION AND QUANTUM POTENTIAL

Torus compactification

The compactification of two spatial dimensions y and z on a torus makes use of the above construction,
indeed the metric can be parameterized as

ĝMN =







gµν 02

02

A
τ2

Aτ1
τ2

Aτ1
τ2

A|τ |2
τ2






, (3.35)

where A is the area of the torus. Note that now the greek indices run from 0 to 1 and we refer to the
compactified dimensions in vielbein indices as 2 and 3 while in spacetime indices as y and z. All the
comments made in the case of the circle remain valid, in fact even here it is better to use Cartan’s
formalism. In order to find the vielbeins let us write down the line element

ds2 = gµνdx
µdxν +

A

τ2
dy2 + 2

Aτ1
τ2

dydz +
A

τ2
|τ |2dz2 = ηIJE

IEJ , (3.36)

where I, J = 0, 1, 2, 3. Hence we can choose the third and fourth vielbeins to be

E2 =

√

A

τ2
(dy + τ1dz) , E3 =

√

Aτ2dz. (3.37)

Now, proceeding as before we look for the spin connections using the adapted version eq.(3.10)

dEi = −ωi
j ∧ Ej ,

dE2 =

(

∂iA

2A
− ∂iτ2

2τ2

)

Ei ∧ E2 +
∂iτ1
τ2

Ei ∧ E3,

dE3 =

(

∂iA

2A
+
∂iτ

2τ2

)

Ei ∧ E3,

(3.38)

where i, j = 0, 1. So that the spin connections read

ω̂2
3 = −∂iτ1

2τ2
Ei,

ω̂2
i =

(

∂iA

2A
− ∂iτ2

2τ2

)

E2 +
∂iτ1
2τ2

E3 ,

ω̂3
i =

(

∂iA

2A
+
∂iτ2
2τ2

)

E3 +
∂iτ1
2τ2

E2.

(3.39)

Now using the form for the T 2 of eq.(3.13) we can obtain the curvature 2-form

R̃i
j = rij −

(

∂iτ2∂jτ1
2τ22

− ∂iτ1∂jτ2
2τ22

)

E3 ∧ E2, (3.40)

R̃2
i =

(∇j∂iA

2A
− ∇j∂iτ2

2τ2
− ∂iA∂jA

4A2
+

3

4

∂iτ2∂jτ2
τ22

− ∂iA∂jτ2
4τ2A

+
∂iτ2∂jA

4τ2A
− ∂iτ1∂jτ1

4τ22

)

Ej ∧ E2

+

(

∂iA∂jτ1
4Aτ2

− 3

4

∂iτ2∂jτ1
τ22

+
∇j∂iτ1
2τ2

− ∂iτ1∂jτ2
4τ22

+
∂iτ1∂jA

4τ2A

)

Ej ∧ E3,

(3.41)

R̃3
i =

(∇j∂iA

2A
+

∇j∂iτ2
2τ2

− ∂iA∂jA

4A2
− ∂iτ2∂jτ2

4τ22
+
∂iA∂jτ2 + ∂iτ2∂jA

4Aτ2
+

3

4

∂iτ1∂jτ1
τ22

)

Ej ∧ E3

+

(∇j∂iτ1
2τ2

− ∂iτ1∂jτ2
2τ22

+
∂iA∂jτ1 + ∂iτ1∂jA

4Aτ2
− ∂iτ1∂jτ2 + ∂jτ1∂iτ2

4τ22

)

Ej ∧ E2,

(3.42)
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R̃2
3 =

(∇j∂iτ1
2τ2

− ∂jτ2∂iτ1
2τ22

)

Ei ∧ Ej +

(

∂iA∂
iA

4A2
− ∂iτ2∂iτ2

4τ22
− ∂iτ1∂iτ1

4τ22

)

E3 ∧ E2, (3.43)

where rij is the curvature two-form relative to the non compactified dimensions. Now we can extract
the Riemann tensor from a formula similar to eq.(3.16)

R̃i
j =

1

2
EK ∧ ELR i

KL j =
1

2
Ek ∧ ElR i

kl j + E2 ∧ ElR i
2l j + E3 ∧ ElR i

3l j + E3 ∧ E2R i
32 j , (3.44)

R̃2
i =

1

2
EK ∧ ELR 2

KL i = Ej ∧ E2R 2
j2 i + Ej ∧ E3R 2

j3 i, (3.45)

R̃3
i =

1

2
EK ∧ ELR 3

KL i = Ej ∧ E2R 3
j2 i + Ej ∧ E3R 3

j3 i, (3.46)

R̃2
3 =

1

2
EK ∧ ELR 2

KL 3 = Ei ∧ EjR 2
ij 3 + E3 ∧ E2R 2

32 3. (3.47)

Comparing these ones with the previous ones we can read the the components of the Riemann tensor.
The ones we are going to need are

Rk
ikj = Rij , (3.48)

R i
i2 2 = ηijR 2

2j i = −�A

2A
+

�τ2
2τ2

+
(∂A)2

4A2
− 3

4

(∂τ2)
2

τ22
+
∂iA∂

iτ2
2Aτ2

+
(∂τ1)

2

4τ22
, (3.49)

R3
232 = −(∂A)2

4A2
+

(∂τ2)
2

4τ22
+

(∂τ1)
2

4τ22
, (3.50)

Ri
3i3 = −ηijR 3

j3 i = −�A

2A
− �τ2

2τ2
+

(∂A)2

4A2
+

(∂τ2)
2

4τ22
− ∂iA∂

iτ2
2Aτ2

− 3

4

(∂τ1)
2

τ22
, (3.51)

where Rij is the two dimensional Ricci tensor in vielbein indices. Let us then proceed to the full Ricci
tensor. We will need only three of its four components (still in vielbein indices) Rij , R22 and R33.
They are

R̂ij = RK
iKj = Rk

ikj +R2
i2j +R3

i3j , (3.52)

R22 = RK
2K2 = Ri

2i2 +R3
232, (3.53)

R33 = RK
3K3 = Ri

3i3 +R2
323. (3.54)

Hence, inserting the components of the Riemann tensor we find

R̂ij = Rij −
∇j∂iA

A
+
∂iA∂jA

2A2
− ∂iτ1∂jτ1

2τ22
− ∂iτ2∂jτ2

2τ22
, (3.55)

R22 = −�A

2A
+

�τ2
2τ2

− (∂τ2)
2

2τ22
+

(∂τ1)
2

2τ22
+
∂iA∂iτ2
2Aτ2

, (3.56)

R33 = −�A

2A
− �τ2

2τ2
+

(∂τ2)
2

2τ22
− (∂τ1)

2

2τ22
− ∂iA∂iτ2

2Aτ2
. (3.57)

Now we only need one final step to get to the Ricci scalar

R̂ = ηIJ R̃IJ = ηijR̃ij + R̃22 + R̃33 = R− 2�A

A
+

(∂A)2

2A2
− (∂τ1)

2

2τ22
− (∂τ2)

2

2τ22
. (3.58)
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We can finally insert everything in the EH action (3.7). Noting that
√
−ĝ = A

√−g and redefining
the gravitational constant similarly to the S1 case we arrive at

S2 =
1

16πG2

∫

d2x
√−g

(

AR+
(∂A)2

2A
− A

2τ22
(∂τ1)

2 − A

2τ22
(∂τ2)

2 − 2ΛA

)

, (3.59)

where a total derivative has been neglected. The form of the compactified action is not unique, but it
is defined up to a conformal transformation of the type gµν = A2αg̃µν . To compute it let us proceed
like in [30]. The new Christoffel symbol is

Γρ
µν = Γ̃ρ

µν +
α

A

(

δρν∇̃µA+ δρµ∇̃νA− gµν∇̃ρA
)

= Γ̃ρ
µν + δΓρ

µν , (3.60)

where all the quantities with a tilde are relative to the metric g̃µν . Note that, while Γ
ρ
µν is not a tensor,

δΓρ
µν is, therefore when we apply to it the covariant derivative we get more Christoffel symbols. Hence,

after using the usual formula for the Riemann tensor, many terms can be inserted in the covariant
derivatives applied to δΓ and we obtain the simpler formula

Rα
βµν = R̃α

βµν + ∇̃µδΓ
α
βν − ∇̃νδΓ

α
βµ + δΓτ

βνδΓ
α
τµ − δΓτ

βµδΓ
α
τν

= R̃α
βµν +

α

A

(

δαν

(

∇̃µ∇̃βA− ∇̃µA∇̃βA

A

)

+ δαβ

(

∇̃µ∇̃νA− ∇̃µA∇̃νA

A

)

−g̃βν
(

∇̃µ∇̃αA− ∇̃µA∇̃αA

A

)

− δαµ

(

∇̃ν∇̃βA− ∇̃νA∇̃βA

A

)

−δαβ

(

∇̃ν∇̃µA− ∇̃νA∇̃µA

A

)

+ g̃βµ

(

∇̃ν∇̃αA− ∇̃νA∇̃αA

A

))

.

(3.61)

Contracting two indices we get the Ricci tensor

Rµν = Rα
µαν = R̃µν − αg̃µν

�̃A

A
+ αg̃µν

(∂A)2

A2
, (3.62)

and then the Ricci scalar

R = gµνRµν = A−2α

(

R̃− 2α

A
�̃A+

2α

A2
(∂A)2

)

. (3.63)

Inserting in (3.59) we have

S2 =
1

16πG2

∫

d2x
√

−g̃A2α+1

(

A−2αR̃− 2αA−2α−1�A+A−2α−2

(

2α+
1

2

)

(∂A)2

−A
−2α

2τ22

(

(∂τ1)
2 + (∂τ2)

2
)

− 2Λ

)

.

(3.64)

The two dimensional case is a special one, indeed we can not move to the Einstein frame, i.e. the
one with 1 as coefficient of the Ricci scalar, no matter what value of α we choose. We can, however,
simplify the action choosing α = −1/4 and neglecting the total derivative. We reach then the form

S2 =
1

16πG2

∫

d2x
√

−g̃
(

AR̃− A

2τ22

(

(∂τ1)
2 + (∂τ2)

2
)

− 2ΛA1/2

)

, (3.65)

which agrees with [4]. As in the S1 case the action can be enriched by the terms appearing in the
original theory and by the ones obtainable with quantum corrections.
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3.2 1-loop quantum potential

The application on the Standard Model of the conjectures showed in the previous chapter requires
the existence of a scalar potential presenting Anti de Sitter or de Sitter vacua. The compactification
of the EH action generated some kinetic terms for the fields parameterizing the circle and the torus.
To obtain a potential for them we need to carry out the compactification on the other fields in the
Standard Model and to compute quantum corrections up to, at least, first order in ~.

Fluctuations are an intrinsic feature of all quantum theories. Most calculations are performed exploit-
ing such feature in perturbation theory, namely we look for solutions around a constant minimum.
This means that as we increase the order of the perturbation the results are more and more precise.
Computing higher order corrections is often a quite difficult task. One way to obtain the quantum
potential we need (i.e. the part of the correction not involving derivatives on the fields) is to use the
quantum effective action Γ[φ] and the background field method [23]. Γ[φ] is such that replacing the
normal action S[φ] with it and using the tree-level rules gives the full quantum theory. Clearly now
the problem has shifted towards the computation of Γ[φ]. Let us consider a QFT with a scalar field
φ and an external source J , we have the partition function

Z[J ] = e
i
~
W [J ] =

∫

Dφ exp

[

i

~

∫

d4x (L[φ] + J(x)φ (x))

]

, (3.66)

whereW [J ] is the connected generating functional, also called Wilsonian effective action. The effective
action is obtained from W [J ] by means of a Legendre transform

Γ[Φ] =W [J ]−
∫

d4x
δW [J ]

δJ(x)
J(x),

δW [J ]

δJ(x)
= Φ(x), (3.67)

where Φ(x) is the quantum average of φ(x). The seeked effective potential V (φ̂) is defined starting
from Γ[Φ] and setting Φ at a constant value φ̂

Γ[φ̂] = −V (φ̂)

∫

d4x. (3.68)

Practically we expand eq.(3.66), as in [31], replacing φ(x) = Φ(x) + η(x) where η(x) represents the
fluctuations over the quantum average. So we get

∫

d4x (L[φ] + J(x)φ(x)) =

∫

d4x (L[Φ] + J(x)Φ(x)) +

∫

d4xη(x)

(

δL[φ]

δφ(x)

∣

∣

∣

∣

φ=Φ

+ J(x)

)

+
1

2

∫

d4xd4y η(x)
δ2L[φ]

δφ(x)δφ(y)

∣

∣

∣

∣

φ=Φ

η(y) + . . . .

(3.69)

Clearly the path integral, which was performed over the full φ(x), will be now computed only for
η(x) since Φ(x) does not fluctuate. Therefore combining eq.(3.66) with eq.(3.67) and inserting the
expansion we get an expression for the quantum effective action. Keeping only terms up to second
order in η in eq.(3.69) provides the first order quantum corrections to Γ

Γ[Φ] =

∫

d4xL[Φ]− i~ log

∫

Dηexp

[

i

2~

∫

d4xd4y η(x)
δ2L[φ]

δφ(x)δφ(y)

∣

∣

∣

∣

φ=Φ

η(y)

]

. (3.70)

The term with only one η is neglected because when performing the path integral it will generate only
terms containing the source that is eventually set to zero, making all the contribution vanish.

This procedure gives the full Γ, but we are interested only in the quantum corrections to the scalar
potential, therefore it is sufficient to set the quantum average to a constant value as in eq.(3.68).

What we did until now is the general procedure, however for the compactification case it is analogous:
the compactification is explicitly performed for the different fields of the Standard model and then
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the quantum effective action is computed using eq.(3.70). In the following we set ~ = 1. For the S1

case the formula we are going to use in Chapter 5 comes from [1]. Here the metric is parameterized
in a slightly different way and, besides, periodic boundary conditions have been specified

V (R) =
2πr3Λ

R3
+
∑

i

(2πR)
r3

R3
(−1)2siniρi(R), (3.71)

where R is the radius of the circle, r is a scale to be set later, the sum over i indicates all the species
in the theory, s their spin, n their degrees of freedom and ρ is

ρ(R) = ∓
∞
∑

n=1

2M4

(2π)4
K2(2πRMn)

(2πRMn)2
, (3.72)

here the minues stands for bosons and the plus for fermions. With respect to the T 2 case we are going
to use the formula from [2]

V (A, τ1, τ2,Mi) = 4π2A

[

∑

i

ρi (A, τ1, τ2,Mi) + Λ

]

, (3.73)

where A, τ1 and τ2 are the parameters of the torus, the sum runs, as before, on the different particle
species and ρ is

ρ (A, τ1, τ2,M) = − 1

(2π)4A2







2
(√

AM
)3/2

τ̃
1/4
2

∞
∑

p=1

1

p3/2
K3/2

(

2πp
√
AM

√

τ̃2

)

+2τ̃2AM
2

∞
∑

p=1

1

p2
K2

(

2πp
√
AM√
τ̃2

)

+4
√

τ̃2

∞
∑

n,p=1

1

p3/2

(

n2 +
AM2

τ̃2

)3/4

cos (2πτ̃1pn)K3/2



2πpτ̃2

√

n2 +
AM2

τ̃2







 ,

(3.74)

where τ̃i = τi/ |τ |2. Now let us see explicitly how to get to eq.(3.72) with the compactification from 5
to 4 dimensions for two specific cases.

3.2.1 Massive scalar case

Let us begin with the calculation of the effective potential for a massive scalar field in the compacti-
fication from 5 to 4 dimensions. We have that

0 ≤ x5 ≤ 2πR, φ(xµ, x5) =
+∞
∑

n=−∞
φ(n)(xµ)einx5/R. (3.75)

For simplicity the metric is parameterized as

ds2 = gµνdx
µdxν + φdx5dx5. (3.76)

The usual action for the scalar field is

S =

∫

d5xφ(xµ, x5)
(

�−M2
)

φ(xµ, x5). (3.77)

To compute the functional trace we will obtain during the evaluation of eq.(3.70) we need, like in [4],
to set the normalization of the wavefunctions

ψn =
einx5/R

√

2πR
√
φ

=⇒
∫ 2πR

0
dx5

√
gS1

ψ∗
mψn =

∫ 2πR

0
dx5

√
φ

2πR
√
φ
ei(n−m)x5/R = δmn. (3.78)



3.2. 1-LOOP QUANTUM POTENTIAL 25

So that the functional trace will be

tr5D
(

−∂25D +m2
)

=
∑

n

∫ 2πR

0
〈n|x5〉 〈x5|tr

(

−∂24D − φ−1∂2x5

)

|n〉

=
∑

n

∫ 2πR

0
ψ∗
nψntr

(

−∂24D +
n2

φR2
+M2

)

dx5

=
2πR

2πR
√
φ

∑

n

tr

(

−∂24D +
n2

φR2
+M2

)

.

(3.79)

Let us apply the backgorund field method explained in the prior section, i.e. let us split φ in constant
background and quantum fluctuations parts φ = φ̂+η. Then the quantum effective action is obtained
through the formula

Γ[φ̂] = −2πRV ol4dV (φ̂)− i log

∫

Dηexp

(

i

2

∫

d5xd5y η(x)
δ2S

δφ(x)δφ(y)

∣

∣

∣

∣

φ=φ̂

η(y)

)

= −2πRV ol4dV (φ̂)− i log

∫

Dηexp

(

i

2

∫

d5xη(x)
(

�−M2
)

η(x)

)

.

(3.80)

We need to evaluate the second term: we use a Fourier transform and expand it in the five dimensional
modes

1

2

∫

d4k d4k̃ d4xdx5
(2π)4

ei(k+k̃)x
∑

n,m

ei(n+m)x5/Rη̃(n)(k)

(

−k̃2 − m2

φR2
−M2

)

η̃(m)(k̃)

= −2πR

2

∫

d4k
∑

n

η̃(n)(k)

(

k2 +
n2

φR2
+M2

)

η̃(−n)(−k),
(3.81)

where we used eq.(3.78) and
∫

d4xei(k+k̃)x = (2π)4δ(4)(k + k̃). (3.82)

Solving the path integral gives

Γ[φ̂] = −2πRV ol4dV (φ̂)− i log det
(

�−M2
)−1/2

= −2πRV ol4dV (φ̂) +
i

2
tr log

(

−�+M2
)

= −2πRV ol4dV (φ̂) +
i

2

2πR

2πR
√
φ

∑

n

∫

d4k d4x 〈x|log
(

k2 +
n2

φR2
+M2

)

|k〉 〈k|x〉

= −2πRV ol4dV (φ̂)− 1

2

2πRV ol4d
2πR

√
φ

∑

n

∫

d4k

(2π)4
log

(

k2 +
n2

φR2
+M2

)

,

(3.83)

where in the last equality a Wick rotation has been performed. Comparing with eq.(3.68) we can read
the quantum potential

Veff (φ) =
1

2

∑

n

1

2πR
√
φ

∫

d4k

(2π)4
log

(

k2 +
n2

φR2
+M2

)

. (3.84)

Starting with any particle species leads to this same formula multiplied by the number of degrees
of freedom of that particular species [4]. Such a formula is affected by a divergence, therefore a
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regularization procedure is needed. Let us use the zeta function regularization

Veff (φ,M) = −1

2

d

ds

∑

n

1

2πR
√
φ

∫

d4k

(2π)4

(

k2 +
n2

φR
+M2

)−s
∣

∣

∣

∣

∣

s=0

= − d

ds

1

64π3R
√
φ

∑

n

∫ ∞

0
dk k3

(

k2 +
n2

φR2
+M2

)−s
∣

∣

∣

∣

∣

s=0

= − d

ds

1

64π3R
√
φ

∑

n

(

M2 + n2

φR2

)2−s

(2− s)(1− s)
= − d

ds

(

φR2
)s−5/2

64π3(2− s)(1− s)
F
(

s− 2; 0, φR2M2
)

,

(3.85)

where F (s; a, c) is, as in [24],

F (s; a, c) =
+∞
∑

n=−∞

1

[(n+ a)2 + c2]s
. (3.86)

This function, since it is a sum on all the values of n, is periodic for a of period 1, thus it is possible
to expand it in Fourier series of coefficients cp and period T = 1

F (s; a, c) =
∑

p

ei2πacp =
∑

p

ei2πa
1

T

∫

T
dye−i2πyF (s; y, c)

=
∑

p

ei2πpa
∫ 1

0
dye−i2πpy

∑

n

1

[(n+ y)2 + c2]s
.

(3.87)

Exchanging the sum and the integral and making the substitution z = n+ y leads to

F (s; a, c) =
∑

p

e2πipa
∑

n

∫ n+1

n
dze−2πipze2πipn

1

[z2 + c2]s
. (3.88)

Sewing together the integrals so that the domain of integration is R gives

F (s; a, c) =
∑

p

e2πipa
∫ +∞

−∞
dze−2πipz 1

[z2 + c2]s
, (3.89)

where ei2πpn = 1 with p, n ∈ Z has been used. To proceed further we make use of

1

zs
=

1

Γ(s)

∫ ∞

0
dt ts−1e−zt, (3.90)

so that

F (s; a, c) =
∑

p

e2πipa
∫ +∞

−∞
dze−2πipz 1

Γ(s)

∫ ∞

0
dt ts−1e−(z2+c2)t

=

√
π

Γ(s)

∑

p

e2πipa
∫ ∞

0
dt ts−3/2e−c2t−p2π2/t

=

√
π

Γ(s)
|c|1−2s





∫ ∞

0
duus−3/2e−u + 2

∞
∑

p=1

cos(2πpa)

∫ ∞

0
duus−3/2e−u+c2p2π2/u



 ,

(3.91)

to get to the third line we used the substitution u = c2t. In the second term of the last line we can
recognise a modified Bessel function of the second kind

K−ν(z) = Kν(z) = 2ν−1z−ν

∫ ∞

0
dt
e−t−z2/4t

t1−s
, (3.92)
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and a Euler Gamma function in the first one. Hence we have

F (s; a, c) =

√
π

Γ(s)
|c|1−2s



Γ

(

s− 1

2

)

+ 4

∞
∑

p=1

(πp|c|)s−1/2cos(2πpa)Ks− 1

2

(2πp|c|)



 . (3.93)

The first term makes rise to contributions that are then reabsorbed in a counter term [24], therefore
we can neglect it. Reminding eq.(3.85) we need to derive this expression with respect to s. Since
lim

s→−2

1
Γ(s) = 0, we have to derive only the factor Γ(s) and then set s to −2

lim
s→−2

d

ds

1

Γ(s)
= lim

s→−2

(

−ψ
(0)(s)

Γ(s)

)

= 2, (3.94)

where ψ(0)(s) is said digamma function. Thus we obtain

lim
s→−2

d

ds
F (s; , a, c) = 8

√
π|c|5

∞
∑

p=1

(πp|c|)−5/2cos(2πpa)K−5/2(2πp|c|). (3.95)

In our case the parameters are a = 0 and c =
√
φLM . Inserting everything in eq.(3.85) we obtain the

final formula of the quantum effective potential for the massive scalar field which agrees with [1]

Veff (φ,M) = −
∞
∑

p=1

2M5

(2π)5
K5/2

(

2πp
√
φLM

)

(√
φLM

)5/2
. (3.96)

3.2.2 Massive vector case

Let us now consider a more complicated situation: a massive vector in the compactification from 5 to
4 dimensions. Its number of degrees of freedom is equal to the dimension of the space-time minus 1
that is fixed by the gauge choice. After the compactification and an appropriate definition of fields a
5d massive vector gives rise to a 4d massive vector (3 degrees of freedom) and to a massive scalar (1
degree of freedom). Thus we should obtain eq.(3.84) multiplied by 4. Initially the equation of motion
of the 5d field is

∂MF
MN =M2AN =⇒

{

∂µF
µ5 =M2A5

∂µF
µν + ∂5F

5ν =M2Aν ,
(3.97)

where FMN is the field strength and AN the vector field. The space is compactified as in the massive
scalar case, therefore we can expand the field in the five dimensional modes















Aµ(x, y) =
+∞
∑

n=−∞
Aµ(n)(x)einy/R

A5(x, y) =
+∞
∑

n=−∞

√

φ
M2

(

n2

φR2 +M2
)

ϕ(n)(x)einy/R.

(3.98)

The choice of the fields for the expansion is not random, in fact it will make the final result neater.
In terms of the newly defined fields the equations of motion read















√

n2

φR2+M2

√
φM2

�ϕ(n) − in
φR∂µA

µ(n) =

√

M2

φ

(

n2

φR2 +M2
)

ϕ(n)

∂µF
µν(n) − in√

φR2M2

√

M2 + n2

φR2 +M2∂νϕ(n) =
(

M2 + n2

φR2

)

Aν(n).

(3.99)

Proceeding as in the usual derivation of the Proca equation for a massive vector field we take the
divergence of the second equation in (3.99)

∂µA
µ(n) = −

in√
φR2M2

�ϕ(n)

√

n2

φR2 +M2
, (3.100)
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and we insert it in the first equation of (3.99) getting

�ϕ(n) =

(

M2 +
n2

φR2

)

ϕ(n), (3.101)

that is, as we wanted, the equation of motion for a 4d massive scalar field. To get also the equation
for the 4d massive vector we have to redefine Aµ

Aµ(n) = V µ(n) −
in√

φR2M2
∂µϕ(n)

√

n2

φR2 +M2
, (3.102)

so that ∂µV
µ(n) = 0 as it should be for a massive vector. In fact using this redefinition in the second

equation of (3.99) we have

∂µF
µν =

(

M2 +
n2

φR2

)

V ν(n). (3.103)

We have therefore found the correct definition of the new 4 dimensional fields. Now we can use them
to compute the quantum potential we were looking for. The action of a massive vector field is

S =

∫

d4xdy

[

−1

4
FMNF

MN − 1

2
M2VMV

M

]

=

∫

d4xdy

(

−1

4
FµνF

µν − 1

2
Fµ5F

µ5 − M2

2
AµA

µ − M2

2
A5A

5

)

.

(3.104)

With the above field definition we have that

Fµ5 =
+∞
∑

n=−∞
einy/R

(

∂µϕ
(n) − in

R
V (n)
µ −

n2

φR2∂µϕ
(n)

n2

φR2 +M2

)

. (3.105)

Therefore

S =

∫

d4xdy
∑

n,m

ei(n+m)y/R

[

−1

4
F (n)
µν F

µν(n)

− 1

2φ

(
√

M2φ

M2 + n2

φR2

∂µϕ
(n) − in

R
V (n)
µ

)(
√

M2φ

M2 + m2

φR2

∂µϕ(m) − im

R
V µ(m)

)

−M
2

2φ

√

φ

M2

(

M2 +
n2

φR2

)

ϕ(n)

√

φ

M2

(

M2 +
n2

φR2

)

ϕ(m)

−M
2

2



V (n)
µ −

in√
φR2M2

∂µϕ
(n)

√

n2

φR2 +M2







V µ(m) −
im√

φR2M2
∂µϕ(m)

√

m2

φR2 +M2









=
∑

n

∫

d4x

[

−1

4
F (n)
µν F

µν(−n) − 1

2

(

M2 +
n2

φR2

)

V (n)
µ V µ(−n)

−1

2
∂µϕ

(n)∂µϕ(−n) − 1

2

(

M2 +
n2

φR2

)

ϕ(n)ϕ(−n)

]

.

(3.106)

Now we can clearly recognise the action of a 4d massive vector field with mass M2 + n2

φR2 and of a
scalar field with the same mass. Going to the momentum space gives

S = −
∫

d4k
∑

n

{

Ṽ (n)
µ (k)

[

1

2
ηµν

(

k2 +
n2

φL2
+M2

)

− 1

2
kµkν

]

Ṽ (−n)
ν (−k)

+ ϕ̃(n)(k)

(

k2 +
n2

φL2
+M2

)

ϕ̃(−n)(−k)
}

.

(3.107)
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In momentum space the zero divergence condition of the massive vector becomes kµVµ = 0. Such condi-

tion will make the first term contribute to the final effective potential with a factor 3 log
(

k2 + n2

φR2 +M2
)

since the functional trace of eq.(3.83) is evaluated using the eigenvalues of the matrix constructed with

this first term. The second one, instead, will contribute with log
(

k2 + n2

φR2 +M2
)

.

The result for the other particles is similar to the one of the massive scalar and massive vector. In
fact in general the formula for the potential is [4]

VS1 = (−1)2sp+1 np
2

∑

n

1

2πR
√
φ

∫

d4k

(2π)4
log

(

k2 +
n2

φR2
+M2

)

, (3.108)

which, when compactifying from 4 to 3 dimensions, turns into eq.(3.72) after calculations similar to the
ones presented in the paragraph 3.2.1. Here sp is the spin of the considered particle and np its degrees
of freedom. In the following we will consider the graviton (with spin 2 and 2 degrees of freedom), the
photon (spin 1 and 2 degrees of freedom), the neutrinos (fermions with spin 1/2 and 2 or 4 degrees of
freedom depending on their nature being Majorana or Dirac) and eventually an axion (a scalar boson
with spin 0 and 1 degree of freedom).
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Chapter 4

Application to the SM

In order to apply the conjectures on the results obtained in the previous chapter we need to study
the actions (3.23) and (3.59) with the addition of the potential from the 1-loop quantum corrections.
This is the same approach followed by [1, 2, 3, 4]. The first step is to check the consistency of the
dimensional truncation performed in the third chapter, i.e. we have to check if the equations of motion
(EoM) computed from the 4d action and the compactified are equal to the ones obtained directly from
the lower dimensional action [27]. The next point is to analyse the background solutions so that we
can understand what are the conditions to have a vacuum and which kind of vacuum it is. Eventually
we study the stability of such vacua perturbing the background.

4.1 S
1 case

As a warm-up let us begin with the equations of motion for the action compactified on the circle. Let
us compute them before the compactification. They can be split in two: the ones that include only
the non-cyclic dimensions and the one along the compactified dimension

R̂µν −
1

2
ĝµνR̂+ Λĝµν = 0

R̂zz −
1

2
ĝzzR̂+ Λĝzz = 0.

(4.1)

We do not consider the equation with indices µz because gµz = 0 and the vielbein choice we made is

E I
M =

(

eβφe i
µ 0

0 eαφ

)

, (4.2)

therefore we get that
R̂µz = E I

µ E J
z R̂IJ = E i

µ E
3

z R̂i3, (4.3)

but this component of the Ricci tensor is zero. This can be understood becasue

R̂j3 = Ri
ji3 = −ηikR 3

ki j , (4.4)

and, using eq.(3.17) we can read the value from eq.(3.14). Going back to the equations of motion note
that these are exactly the Einstein field equations reflecting the chosen parameterization of the metric.
The compactification needs now to be made explicit. We need then to compute the Ricci tensor

R̂ij = RK
iKj = Rk

ikj +R3
i3j . (4.5)

These two components of the Riemann tensor can be read again from eq.(3.14) using eq.(3.17)

Rk
ikj = Rl

ikjδ
k
l =e−2βφRij + 2e−2βφ

(

βδ
k
[i∂k]φ∂jφ− βηj[i∂k]∂

kφ+ β2ηj[i∂k]φ∂
kφ− β2δ

k
[i∂k]φ∂jφ

−β2δk[kηi]j∂
mφ∂mφ

)

− 2βe−2βφ
(

δ
k
[iω

l
k] j∂lφ+ ηj[iω

kl
k] ∂lφ

)

,

R3
i3j = −e−2βφ

(

α (α− 2β) ∂iφ∂jφ+ α∂i∂jφ+ αβηij∂kφ∂
kφ− αω k

j i∂kφ
)

.

(4.6)

31
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So that, after specifying that in 3 dimensions α = −1
2 and β = 1

2 , the Ricci tensor is

R̂ij = e−φ

(

Rij −
1

2
∂iφ∂jφ− 1

2
ηij�φ

)

. (4.7)

However in eq.(4.1) the Ricci tensor with spacetime indices appears. Since we chose as vielbeins (4.2)
then the Ricci tensor we were looking for is

R̂µν = E i
µ E

i
ν R̂ij = Rµν −

1

2
∂µφ∂νφ− 1

2
gµν�φ. (4.8)

From this we can easily get the Ricci scalar

R̂ = e−φ

(

R− 1

2
(∂φ)2 − 2�φ

)

. (4.9)

Then, knowing that ĝµν = eφgµν , the first equation of (4.1) becomes

Rµν −
1

2
Rgµν + eφΛgµν +

1

4
gµν (∂φ)

2 − 1

2
∂µφ∂νφ = 0. (4.10)

The same reasoning can be done for R̂zz, we start from the Ricci tensor with flat indices

R̂33 = RI
3I3 = Ri

3i3 = R3 i
i3 , (4.11)

where the last expression can be read directly from the second line of eq.(3.18) fixing α and β

R̂33 =
1

2
e−φ�φ. (4.12)

Then we have

R̂zz = E 3
z E

3
z R̂33 =

1

2
e−2φ�φ. (4.13)

Therefore, knowing that ĝzz = e−φ, the second equation of motion becomes

R− 2�φ− 1

2
(∂φ)2 − 2Λeφ = 0. (4.14)

This last equation can be further developed taking the trace of eq.(4.10)

R− 1

2
(∂φ)2 = 6Λeφ, (4.15)

and inserting it into eq.(4.14)
�φ = 2Λeφ. (4.16)

To check the consistency of the truncation we have make sure that both eq.(4.10) and eq.(4.16) are
exactly the same even after the compactification. Let us start from the action (3.23), if we vary the
metric we obtain

Rµν −
1

2
Rgµν−

1√−g
δ

δgµν
(√−gL

)

= 0

⇓

Rµν−
1

2
Rgµν + eφΛgµν +

1

4
gµν (∂φ)

2 − 1

2
∂µφ∂νφ = 0,

(4.17)

that is precisely what we wanted. The same happens for the dilaton φ

δL

δφ
− ∂µ

δL

δ∂µφ
= 0 =⇒ �φ = 2Λeφ. (4.18)

Thus in the circle case the truncation is consistent.
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4.2 T
2 case

Let us do the procedure again for the torus case. The equations of motion before the compactification
are

R̂MN − 1

2
ĝMN R̂+ ΛĝMN = 0. (4.19)

To make the compactification explicit we are going to need eqs.(3.55, 3.56, 3.57, 3.58) and the last
component of the Ricci tensor we previously neglected, namely

R32 = Ri
3i2 = −ηijR 2

j3 i. (4.20)

This component of the Ricci tensor can be read from eq.(3.41) using eq.(3.45), therefore

R32 = −�τ1
2τ2

+
∂iτ1∂

iτ2
τ22

− ∂iτ1∂
iA

2Aτ2
. (4.21)

To switch the vielbein indices with the spacetime ones let us remind the choice we made

E I
M =









e i
µ 02

02

√

A
τ2

0
√

A
τ2
τ1

1√
Aτ2









. (4.22)

Then we have

R̂µν = e i
µ e

j
ν R̂ij = Rµν −

∇ν∂µA

A
+
∂µA∂νA

2A2
− ∂µτ1∂ντ1

2τ22
− ∂µτ2∂ντ2

2τ22
, (4.23)

Ryy = E 2
y E

2
y R22 + E 3

y E
3

y R33 + 2E 3
y E

2
y = −�A

2τ2
+
A�τ2
2τ22

+
A

2τ32

(

(∂τ1)
2 − (∂τ2)

2
)

+
∇µA∇µτ2

2τ22
,

(4.24)

Ryz = E 2
y E

2
z R22 + E 2

y E
3

z R23 =
A

τ2
τ1

(

−�A

2A
+

�τ2
2τ2

− 1

2

(∂τ2)
2

τ22
+

1

2

(∂τ1)
2

τ22
+

∇µA∇µτ2
2Aτ2

)

+A

(∇µτ1∇µτ2
τ22

− �τ1
2τ2

− ∇µτ1∇µA

2Aτ2

)

,

(4.25)

Rzz = E 2
z E

2
z R22 + E 3

z E
3

z R33 + 2E 2
z E

3
z R32 = 2Aτ1

(∇µτ1∇µτ2
τ22

− �τ1
2τ2

− ∇µτ1∇µA

2Aτ2

)

. (4.26)

We have now all the terms we need. Let us expand eq.(4.19) in the different components

R̂µν −
1

2
ĝµνR̂+ Λĝµν = Rµν −

∇µ∂νA

A
+
∂µA∂νA

2A2
− 1

2τ22
(∂µτ1∂ντ1 + ∂µτ2∂ντ2)

− 1

2
gµν

(

R− 2�A

A
+

(∂A)2

2A2
− (∂τ1)

2

2τ22
− (∂τ2)

2

2τ22

)

+ Λgµν = 0,

(4.27)

Ryy −
1

2
gyyR̂+ Λgyy = R− �A

A
− �τ2

τ2
+

(∂A)2

2A2
− 3 (∂τ1)

2

2τ22
+

(∂τ2)
2

2τ22
− ∇µA∇µτ2

Aτ2
− 2Λ = 0, (4.28)

Ryz −
1

2
gyzR̂+ Λgyz =R− �A

A
− �τ2

τ2
+

�τ1
τ1

+
(∂τ2)

2

2τ22
− 3 (∂τ1)

2

2τ22
− ∇µA∇µτ2

Aτ2

− 2

τ1τ2
∇µτ1∇µτ2 +

∇µA∇µτ1
Aτ1

+
(∂A)2

2A2
− 2Λ = 0,

(4.29)



34 CHAPTER 4. APPLICATION TO THE SM

Rzz −
1

2
gzzR̂+ Λgzz =

A

2τ2
|τ |2

(

R− �A

A
− 2Λ +

(∂A)2

2A2

)

−
(

A

2
+
Aτ21
2τ22

)

�τ2 +
Aτ1
τ2

�τ1

+

(

Aτ21
4τ32

− 3A

4τ2

)

(∂τ2)
2 +

(

A

4τ2
− 3τ21

4τ32

)

(∂τ1)
2 +

τ1
τ2
gµν∂µA∂ντ1

+

(

1

2
− τ21

2τ22

)

gµν∂µA∂ντ2 −
2Aτ1
τ22

gµν∂µτ1∂ντ2 = 0.

(4.30)

We have then found the equations of motion before the compactification. Now they have to be
compared with the ones derived from the action (3.59). Let us vary the metric, we get [28]

δgµνS =
1

16πG

∫

d2x
√−g

[

A
(

Rµν +∇µ∇ν + gµν∇2
)

δgµν − 1

2
gµν

(

AR+
(∂A)2

2A

− A

2τ22

(

(∂τ1)
2 + (∂τ2)

2
)

− 2ΛA

)

δgµν +

(

∂µA∂νA

2A
− A

2τ22
(∂µτ1∂ντ1 + ∂µτ2∂ντ2)

)

δgµν
]

= 0.

(4.31)

Integrating by parts the first term and setting the boundary terms to zero we extract the equation of
motion

(Rµν +∇µ∇ν + gµν�)A− 1

2
gµν

(

AR+
(∂A)2

2A
− A

2τ22

(

(∂τ1)
2 + (∂τ2)

2
)

− 2ΛA

)

+
∂µA∂νA

2A
− A

2τ22
(∂µτ1∂ντ1 + ∂µτ2∂ντ2) = 0,

(4.32)

that is equal to eq.(4.27). Let us derive also the equations of motion for the other fields:

• varying τ1 we get

A�τ1 +∇µA∇µτ1 −
2A

τ2
∇µτ2∇µτ1 = 0, (4.33)

• varying τ2

A�τ2 +
A

τ2

(

(∂τ1)
2 − (∂τ2)

2
)

+∇µA∇ντ2 = 0, (4.34)

• varying A

R+
(∂A)2

2A2
− (∂τ2)

2

2τ22
− (∂τ1)

2

2τ21
− �A

A
− 2Λ = 0. (4.35)

These last three look very different from the previous ones but, actually, they are the same if combined
properly

(4.28) = (4.35)− 1

Aτ2
(4.34),

(4.29) = (4.35)− 1

Aτ2
(4.34) +

1

Aτ2
(4.33),

(4.30) =
A

2τ2
|τ |2 (4.35) +

(

1

2
− τ21

2τ22

)

(4.34) + τ1τ2(4.33).

(4.36)

The equations of motion before and after the compactification match and therefore the truncation
from 4 to 2 dimension on a torus is consistent.
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4.2.1 Vacuum conditions

We have found the equations of motion for the compactifications on a circle and on a torus. In order
to apply the conjectures we need to derive a set of conditions that allow us to identify the vacua and to
recognize their stability or instability. First of all the potential coming from the quantum corrections
has to be included in the action, therefore we make the substitution

M2
pΛ −→ V (A, τ1, τ2) , (4.37)

in eq.(3.59) for the T 2 case, where Mp = 1√
8πG

is the reduced Planck mass. The S1 is much simpler

since the potential depends only on the radius of the circle R, therefore it is theoretically easy to to
find the critical points: they are just the ones where the first derivative of the potential vanishes. Even
stability and instability are simply set by the second derivative. Then the nature of the vacua, i.e.
Minkowski, de Sitter or Anti de Sitter, is fixed by the value of the potential computed at the critical
points, respectively zero, positive or negative.

As far as the torus is concerned the situation gets more complicated, we have now a function depending
on three variables. Let us start looking at the equations of motion we derived. They can be further
simplified. Firstly note that the Einstein tensor in two dimensions vanishes identically [32]. Indeed
the Riemann tensor can be written as

Rαβγδ =
R

2
(gαδgβγ − gαγgβδ) , (4.38)

and therefore the Ricci tensor is

Rµν = Rγ
µγν =

1

2
gµνR. (4.39)

Such property sets the Einstein tensor to zero identically

Gµν ≡ Rµν −
1

2
gµνR = 0. (4.40)

This characteristic of two dimensional gravity and the substitution (4.37) we made lead to slightly
different equations of motion. For A we have

R+
(∂A)2

2A2
− �A

A
− (∂τ1)

2

2τ22
− (∂τ2)

2

2τ22
− 2

M2
p

(

V +A
∂V

∂A

)

= 0, (4.41)

for τ1

�τ1 +
∇µA∇µτ1

A
− 2∇µτ2∇µτ1

τ2
− 2τ22
M2

p

∂V

∂τ1
= 0, (4.42)

for τ2

�τ2 +
1

τ2

(

(∂τ1)
2 − (∂τ2)

2
)

+
∇µA∇µτ2

A
− 2τ22
M2

p

∂V

∂τ2
= 0, (4.43)

for the metric

gµν�A−∇µ∂νA− A

2
gµν

(

(∂A)2

2A2
− 1

2τ22

(

(∂τ1)
2 + (∂τ2)

2
)

− 2

M2
p

V

)

+
∂µA∂νA

2A

− A

2τ22
(∂µτ1∂ντ1 + ∂µτ2∂ντ2) = 0.

(4.44)

This last one can be simplified even further, let us take its trace

�A

A
= − 2

M2
p

V (A, τ1, τ2), (4.45)

and inserting it back into eq.(4.44) gives

A

2
gµν

(

− 2

M2
p

V − (∂A)2

2A2
+

1

2τ22

(

(∂τ1)
2 + (∂τ2)

2
)

)

−∇µ∂νA+
∂µA∂νA

2A
− A

2τ22
(∂µτ1∂ντ1 + ∂µτ2∂ντ2) = 0.

(4.46)
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These equations describe the evolution of four fields: A, τ1, τ3 and the metric. The latter is more
easily handled if we trade gµν with a conformal factor σ. In fact in two dimensions any Riemannian
manifold is conformally flat [33], namely it is always possible to write

gµν = e2σηµν , (4.47)

where η is the Minkowski flat metric (with (−,+) signature in our case). We need to write explicitly
the equations of motions in terms of σ, indeed both the Ricci scalar and the d’Alambert operator,
containing the metric, need to be written again. The Christoffel symbols become

Γρ
µν =

1

2
gµλ (∂µgνλ + ∂νgµλ − ∂λgµν) = δρν∂µσ + δρµ∂νσ − ηµνη

ρλ∂λσ, (4.48)

thus the Ricci tensor

Rµν = ∂ρΓ
ρ
µν − ∂µΓ

ρ
ρν − Γρ

µλΓ
λ
ρν + Γλ

λρΓ
ρ
µν = −ηµν�ησ, (4.49)

where �η is the d’Alambert operator intended with the flat metric. Eventually we get to the Ricci
scalar

R = gµνRµν = −2e−2σ�ησ. (4.50)

The expression �gf with the metric g and where f is a generic scalar function becomes

�gf = ∇µ∂µf = e−2σηµν
(

∂µ∂νf − Γρ
µν∂ρf

)

= e−2σ�ηf. (4.51)

From now on we will write for simplicity � = �η. Inserting these results into the equations of motion
gives

�σ − (∂A)2

4A2
+

(∂τ1)
2

4τ22
+

(∂τ2)
2

4τ22
+

A

M2
p

e2σ
∂V

∂A
= 0, (4.52)

�τ1 +
∇µA∇µτ1

A
− 2∇µτ2∇µτ1

τ2
− 2τ22
M2

p

e2σ
∂V

∂τ1
= 0, (4.53)

�τ2 +
1

τ2

(

(∂τ1)
2 − (∂τ2)

2
)

+
∇µA∇µτ2

A
− 2τ22
M2

p

e2σ
∂V

∂τ2
= 0, (4.54)

1

2
ηµν

(

− 2

M2
p

e2σV − (∂A)2

2A2
+

1

2τ22

(

(∂τ1)
2 + (∂τ2)

2
)

)

− 1

A
(∂µ∂νA− ∂µσ∂νA− ∂νσ∂µA+ ηµν∇ρσ∇ρA)

+
∂µA∂νA

2A2
− 1

2τ22
(∂µτ1∂ντ1 + ∂µτ2∂ντ2) = 0,

(4.55)

and in the trace (4.45) leads to
�A

A
= − 2

M2
p

e2σV. (4.56)

Since V depends on three variables A, τ1 and τ2 we need to understand what are the conditions on
V when those fields are constant, that is when they are at a critical point. Let us then define the
background solutions as A, τ1, τ2 = constant, then the equations of motion become

R =
2A

M2
p

∂V

∂A
=⇒ �σ = − A

M2
p

e2σ
∂V

∂A
, (4.57)

∂V

∂τ1
= 0, (4.58)

∂V

∂τ2
= 0, (4.59)

V = 0. (4.60)

Therefore, to have a vacuum solution the potential has to fulfill such conditions. From eq.(4.57) it
is possible to understand what is the type of space we are analyzing: 2A

M2
p

∂V
∂A is the curvature of the

background space, therefore
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• if ∂V
∂A = 0 the space is flat, namely Minkowski,

• if ∂V
∂A < 0 the curvature is negative, thus the space is Anti de Sitter,

• if ∂V
∂A > 0 the curvature is positive, thus the space is de Sitter.

The next step is to understand how the fields in the background evolve after a small perturbation
because the conjectures can be applied only to stable vacua. The three cases for the three different
spaces need to be studied separately.

Minkowski

In Minkowski space we have that gµν = ηµν , so, through eq.(4.47), we have

σ = 0. (4.61)

Let us perturb the constant background value of the fields with small fluctuations, i.e. σ = 0 + δσ,
τ1 = constant+ δτ1, τ2 = constant+ δτ2 and A = constant+ δA. From the equations of motions we
get

�δσ = − A

M2
p

(δA∂A∂AV + δτ1∂A∂τ1V + δτ2∂A∂τ2V ) , (4.62)

�δτ1 =
2

M2
p

τ22 (δA∂A∂τ1V + δτ1∂τ1∂τ1V + δτ2∂τ1∂τ2V ) , (4.63)

�δτ2 =
2

M2
p

τ22 (δA∂A∂τ2V + δτ1∂τ1∂τ2V + δτ2∂τ2∂τ2V ) , (4.64)

∂µ∂νδA = 0. (4.65)

The last one can be explicitly solved as

δA (x, t) = c1x+ c2t+ c3, (4.66)

where c1, c2 and c3 are three arbitrary constants. This type of equation is telling us that we can set
δA = 0 [4]. The solution that includes x is clearly non-normalizable and if, for example, we choose
the reference frame where x = t, then eq.(4.66) describes only non-normalizable solutions. To take
care of this we need to fix the values of c1 and c2 to zero and we get δA = c3. In the end we can just
redefine the background value of A to reabsorb c3 so that eventually δA = 0. With such result the
remaining three equations of motion become

�δσ = − A

M2
p

(δτ1∂A∂τ1V + δτ2∂A∂τ2V ) , (4.67)

�δτ1 =
2

M2
p

τ22 (δτ1∂τ1∂τ1V + δτ2∂τ1∂τ2V ) , (4.68)

�δτ2 =
2

M2
p

τ22 (δτ1∂τ1∂τ2V + δτ2∂τ2∂τ2V ) . (4.69)

The two dimensional one is a special case, in fact there are not degrees of freedom associated to the
metric as we have seen showing that the Einstein tensor vanishes identically. Then even δσ should
not be a real degree of freedom, but it should, instead, be possible to write it in terms of the other
fields δτ1 and δτ2. Then, let us solve firstly the eqs.(4.68, 4.69), they can be recast as

� ~δτ =
2τ22
M2

p

m2 ~δτ , (4.70)

where

~δτ =

(

δτ1
δτ2

)

and m2 =

(

∂τ1∂τ1V ∂τ1∂τ2V
∂τ1∂τ2V ∂τ2∂τ2V

)

=

(

m2
11 m2

12

m2
12 m2

22

)

. (4.71)
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To solve the equation we can use the mass eigenstates diagonalizing the matrix m2, therefore we need
its eigenvalues

λ1,2 =
m2

11 +m2
22 ±

√

(

m2
11 −m2

22

)2
+ 4m4

12

2
(4.72)

that we are going to call M2
11 and M2

22. From the relative eigenvectors

~v1 =

(

2m2
12

m2
22 −m2

11 +
√

(

m2
11 −m2

22

)2
+ 4m4

12

)

, (4.73)

~v2 =

(

2m2
12

m2
22 −m2

11 −
√

(

m2
11 −m2

22

)2
+ 4m4

12

)

(4.74)

we can define the diagonalizing matrix S = (~v1, ~v2). Applying everything to eq.(4.70) we get

� ~δτ =
2τ22
M2

p

SM2S−1 ~δτ , (4.75)

that becomes

� ~δτ± =
2τ22
M2

p

M2 ~δτ±, (4.76)

where we defined

M2 =

(

M2
11 0
0 M2

22

)

(4.77)

and

~δτ± =

(

δτ+

δτ−

)

= S−1 ~δτ =
1

detS





m2
22 −m2

11 −
√

(

m2
11 −m2

22

)2
+ 4m4

12 −2m2
12

m2
11 −m2

22 −
√

(

m2
11 −m2

22

)2
+ 4m4

12 2m2
12





(

δτ1

δτ2

)

. (4.78)

In order to insert the solutions for δτ1 and δτ2 we can invert the above relations, getting
{

δτ1 = 2m2
12 (δτ

+ + δτ−)

δτ2 = 2δτ+
(

M2
11 −m2

11

)

+ 2δτ−
(

M2
22 −m2

22

)

.
(4.79)

We can now write the solutions for eq.(4.76). Let us begin with the case M2 = 0. The equation is
more easily solved in the light cone coordinates

x+ =
t+ x√

2
, x− =

t− x√
2
, ds2 = −2dx+dx−. (4.80)

With these coordinates eq.(4.68) and eq.(4.69) become
{

�δτ1 = 0

�δτ2 = 0
=⇒

{

∂+∂−δτ1 = 0

∂+∂−δτ2 = 0
=⇒

{

δτ1 = f1 (x
+) + g1 (x

−)

δτ2 = f2 (x
+) + g2 (x

−) ,
(4.81)

where f1,2 and g1,2 are arbitrary functions of one variable. Now it is possible to put these results into
eq.(4.67) and integrate twice to get δσ

δσ =

∫

dx+dx−
∂

∂x+
∂

∂x−
δσ =

∂A∂τ1V

4

(

x−
∫

dx+f1
(

x+
)

+ x+
∫

dx−g1
(

x−
)

)

∂A∂τ2V

4

(

x−
∫

dx+f2
(

x+
)

+ x+
∫

dx−g2
(

x−
)

)

.

(4.82)

We clearly see that in two dimensions σ, i.e. gravity, is not a real degree of freedom, but it can be
written in terms of other degrees of freedom. Let us move on to the case M 6= 0, the solutions to
eq.(4.76) are of the type

δτ+ = eikx−iωt, (4.83)
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with the additional condition

ω2 = k2 +
2τ22
M2

p

M2
11, (4.84)

the same will be true for δτ− with M2
22. We proceed now as in the above, let us use the light cone

coordinates

δτ+ = e
i

√

2
[x+(k−ω)−x−(k+ω)], (4.85)

and inserting everything in eq.(4.67) gives

δσ =

∫

dx+dx−
[

m2
12

2
∂A∂τ1V

(

δτ+ + δτ−
)

+
δτ+

2

(

M2
11 −m2

11

)

∂A∂τ2V +
δτ−

2

(

M2
22 −m2

22

)

∂A∂τ2V

]

.

(4.86)
Even in this case it is clear that δσ is not a real degree of freedom. The perturbed equations of motion
are therefore reduced to two. The last point we need to evaluate concerns the stability of the vacua.
We can see it from the solutions (4.83), in fact we obtain a stable solution only ifM2

11 > 0 (orM2
22 > 0

in the case of δτ−).

de Sitter

A two dimensional de Sitter space can be built embedding a 2d hyperboloid with equation

−X2
0 +X2

1 +X2
2 = R2, (4.87)

where R is said de Sitter radius, in a 3d Minkowski space [34]. There can be many different set of
valid coordinates to describe the hyperboloid, in the following we are going to use

X0 =
1

2t

(

t2 − x2 −R2
)

, X1 =
1

2t

(

t2 − x2 +R2
)

, X2 =
Rx

t
, (4.88)

where t ∈ (0,∞). With this choice the squared line element is

ds2 = −dX2
0 + dX2

1 + dX2
2 =

R2

t2
(

−dt2 + dx2
)

. (4.89)

Comparing this with eq.(4.47) we see that

e2σ =
R2

t2
. (4.90)

Therefore eq.(4.57) gives

∂V

∂A
=

M2
p

AR2
> 0, (4.91)

as it should be because the curvature of de Sitter space is positive. Then we can perturb the equations
of motion just like in the Minkowski case

�δσ =
1

t2
− AR2

M2
p t

2
(δA∂A∂AV + δτ1∂A∂τ1V + δτ2∂A∂τ2V ) , (4.92)

�δτ1 =
2τ22R

2

M2
p t

2
(δA∂A∂τ1V + δτ1∂τ1∂τ1V + δτ2∂τ2∂τ1V ) , (4.93)

�δτ2 =
2τ22R

2

M2
p t

2
(δA∂A∂τ2V + δτ1∂τ1∂τ2V + δτ2∂τ2∂τ2V ) , (4.94)

ηµν
δA

t2
+ ∂µ∂νδA+

1

t
δ0µ∂νδA+

1

t
δ0ν∂µδA+ ηµν

∂0δA

t
= 0. (4.95)
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The last one can be expanded in its components










∂0∂1δA+ ∂1δA
t = 0

∂20δA+ ∂0δA
t − δA

t2
= 0

∂21δA+ ∂0δA
t + δA

t2
= 0.

(4.96)

The solution to this set of equations is

δA(x, t) = C1

(

t− x2

t

)

+
C2x

t
+
C3

t
. (4.97)

Similarly to the Minkowski case we can set δA = 0 [4]. In fact we can rewrite the solution in terms of
the embedding coordinates

δA(x, t) =

(

C1 −
C3

R2

)(

t

2
− x2

2t
− R2

2t

)

+

(

C1 +
C3

R2

)(

t

2
− x2

2t
+
R2

2t

)

+
C2

R

Rx

t

= AX0 +BX1 + CX2.

(4.98)

Using the symmetries of the embedding space, namely SO (1, 2), we can reabsorb the constant C
together with A or B, in any case what remains contains a factor x2 that is not normalizable, therefore
the remaining constant has to be put to zero ending in δA = 0. With such condition the equations of
motion become

�δσ =
1

t2

(

1− AR2

M2
p

(δτ1∂A∂τ1V + δτ2∂A∂τ2V )

)

, (4.99)

�δτ1 =
2τ22R

2

M2
p t

2

(

m2
11δτ1 +m2

12δτ2
)

, (4.100)

�δτ2 =
2τ22R

2

M2
p t

2

(

m2
12δτ1 +m2

22δτ2
)

, (4.101)

wheremij is defined likewise to the Minkowski case. Proceeding as before and with analogous notation
we can write the mass eigenstates

� ~δτ
±
=

2τ22R
2

M2
p t

2
M2 ~δτ

±
. (4.102)

Even for the de Sitter case we can show that σ is not a real degree of freedom, but it can be written
in terms of δτ1 and δτ2 up to an integration. Let us focus on δτ+ (the δτ− case is analogous). An
infinity of solutions for eq.(4.102) is found assuming the separation of variables, namely that there
exists a solution such that

δτ+ = φ(x)ϕ(t). (4.103)

Given that two expressions are equal between them only if they are equal to a common parameter z2,
we can write eq.(4.102) as

∂21φ(x)

φ(x)
=
∂20ϕ(t)

ϕ(t)
+

2τ22R
2

M2
p t

2
M2

11 = z2. (4.104)

We obtain then
{

∂21φ(x) = φ(x)z2

∂2t ϕ(t) =
(

z2 − 2τ2
2
R2

M2
p t

2 M
2
11

)

ϕ(t)
=⇒

{

φ(x) = ezx

ϕ(t) = c1
√
tIν(−izt) + c2

√
tKν(−izt),

(4.105)

where Iν and Kν are Bessel functions of the first and second order with ν = 1
2

√

1− 8τ2
2
R2

M2
p
M2

11. Every

linear combination of these particular solutions is still a solution, therefore a more general solution is

δτ+(x, t) =
√
t

∫

(f(z)ezxIν(−izt) + g(z)ezxKν(−izt)) dz. (4.106)

Now we can put this solution in the expression for δσ and integrate exactly in the same way we have
done before in the Minkowski case. Even for the de Sitter case, like in the Minkowski one, the stability
of the vacua is given by the mass squared in eq.(4.102): we have stability if M2 > 0 [4].
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Anti de Sitter

The two dimensional AdS space is built in built in a similar way to the dS space [35]. We can embed
a hyperboloid with equation

−X2
0 −X2

1 +X2
2 = R2, (4.107)

where R is the Anti de Sitter radius, in a flat space with signature (−,−,+). A viable set of coordinates
respecting eq.(4.107) is

X0 =
1

2x

(

x2 − t2 +R2
)

, X1 =
1

2x

(

x2 − t2 −R2
)

, X2 =
Rt

x
, (4.108)

where x ∈ (0,∞) [36]. The two dimensional case is a special one, in fact, comparing this choice of
coordinates with the dS one, we can see that they are the same up to the exchange of time and space.
Actually in 2d AdS and dS share the same symmetry group with time and space swapped, the former
being SO (2, 1) and the latter SO (1, 2). Therefore we expect all the solutions we are going to find to
be similar to the dS ones up to a symmetry transformation.

With the chosen coordinates the metric becomes

ds2 = −dX2
0 − dX2

1 + dX2
2 =

R2

x2
(

−dt2 + dx2
)

, (4.109)

and comparing with eq.(4.47) we see that

e2σ =
R2

x2
. (4.110)

Using this into eq.(4.57) gives

∂V

∂A
= −

M2
p

AR2
, (4.111)

which is negative as it should be since it is AdS. The perturbed equations of motion become

�δσ = − 1

x2
− AR2

M2
px

2
(δA∂A∂AV + δτ1∂A∂τ1V + δτ2∂A∂τ2V ) , (4.112)

�δτ1 =
2τ22R

2

M2
px

2
(δA∂A∂τ1V + δτ1∂τ1∂τ1V + δτ2∂τ2∂τ1V ) , (4.113)

�δτ2 =
2τ22R

2

M2
px

2
(δA∂A∂τ2V + δτ1∂τ1∂τ2V + δτ2∂τ2∂τ2V ) , (4.114)

ηµν
δA

x2
− ∂µ∂νδA− 1

x
δ1µ∂νδA− 1

x
δ1ν∂µδA+ ηµν

∂1δA

x
= 0. (4.115)

The last one can be expanded in its components











∂0∂1δA+ ∂0δA
x = 0

∂20δA+ ∂1δA
x + δA

x2 = 0

∂21δA+ ∂1δA
x − δA

x2 = 0,

(4.116)

and a solution to it is

δA(x, t) = C1

(

x− t2

x

)

+
C2t

x
+
C3

x
, (4.117)

where C1, C2 and C3 are the integration constants. Also in the AdS case we have to set δA = 0
[4], because all the terms in it are non-normalizable. With such condition the remaining equations of
motion get modified as

�δσ = − 1

x2

(

1 +
AR2

M2
p

(δτ1∂A∂τ1V + δτ2∂A∂τ2V )

)

, (4.118)
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�δτ1 =
2τ22R

2

M2
px

2

(

m2
11δτ1 +m2

12δτ2
)

, (4.119)

�δτ2 =
2τ22R

2

M2
px

2

(

m2
12δτ1 +m2

22δτ2
)

. (4.120)

The procedure is exactly the same as in the dS case: we shift to the mass eigenstates for eq.(4.119)
and eq.(4.120) and we find a possible solution. Then it is inserted into eq.(4.118) to prove that gravity
is not a real degree of freedom. So we have

� ~δτ
±
=

2τ22R
2

M2
px

2
M2 ~δτ

±
(4.121)

and

δτ+(x, t) =
√
x

∫

(

f(z)eztIν(−izx) + g(z)eztKν(−izx)
)

dz, (4.122)

with the same notation of the dS case.

The stability of the solutions in the AdS case is different from the others. For the AdS it is valid the
Breitenlöhner–Freedman bound [37] that states that a solution can be stable even if the mass of the
fields is negative, as long as it does not go below a certain fixed value. In our two dimensional case
[4] we have

m2 ≥ − 1

4R2
, (4.123)

where m2 is the mass of the field. Turning to our equation (4.121) we have

�AdS
~δτ

±
=

2τ22
M2

p

M2 ~δτ
±
, (4.124)

so the mass is
2τ2

2

M2
p
M2. We can also get R from the eq.(4.111) so that the final condition on the

eigenvalues of the mass matrix built from the second derivatives on the potential is

M2 ≥ A

8τ22

∂V

∂A
. (4.125)

The derivation of the bound focuses on positivity of energy of the system. The energy can be obtained
from the stress-energy tensor and then imposing its positivity gives the aforementioned bound due to
a reality constraint on the parameters of the theory. Being the energy positive forces the fluctuations
to vanish fast enough to spatial infinity so that other positive terms can dominate the energy [37].



Chapter 5

SM constraints from swampland

conjectures

In this section we are going to apply the AdS and dS conjectures to the standard model in order to find
some constraints on the neutrino masses, i.e. we are going to discard all the masses that generate an
AdS or a dS vacuum. In the previous chapters we collected all the elements we needed, in particular
we have the potentials obtained through the first order quantum corrections for the 3D and 2D cases
of chapter 3 and the conditions to have the vacua for Minkowski, de Sitter and Anti de Sitter. We
can then apply the conjectures as it was done in [2, 3, 4] for both analysed cases S1 and T 2.

For the complexity of the expressions for the potentials the analysis can be performed only numerically.
The formulas we are going to use are (3.70) and (3.72). Both of them contains modified Bessel functions
of the second kind [38] that in the large argument limit behave as

Kν (z) ∼
√

π

2z
e−z. (5.1)

In the 3D case the argument is 2πRM , therefore if R � 1/M , namely when the mass is large, the
contribution to the potential is exponentially suppressed. Likewise in the 2D case we have 2π

√
AM ,

hence when
√
A � 1/M the relative contribution gets exponentially suppressed. Thus as R and A

get small we need to consider heavier and heavier particle species. However, given the big difference
between the electron mass scale and the neutrino mass scale, if we obtain a vacuum in the infrared
and then we move on to the point in which the electron becomes relevant, the slope of the potential
has become at that point too steep to be lifted and the vacuum remains. [1]. In the following analysis
we will contemplate only the particles lighter than the electron: neutrinos, photon and graviton.

The numerical analysis is performed using Mathematica. The potentials are plotted as functions of
R in 3D or of A in 2D (after the determination of τ1 and τ2 as done in section 5.2). To identify the
values of the masses that generate a vacuum we can express the R or A value of the critical point as
function of mν and, when we are going to add an axion, also of the axion mass ma.

In the SM neutrinos are considered massless, but by now there is enough evidence to believe that
at least two of them have a tiny mass. They come in three different types: electron νe, muon νµ
and tauon ντ . The experiments of solar and atmospheric neutrinos give the mass-squared difference
∆mij = m2

i −m2
j between the three different species, see Figure 5.1.

Such differences can be understood in two ways by using two different hierarchies between the neutrino
masses: the normal one (NH) and the inverted one (IH). The former starts with ν1 which can be
arbitrarily light, then we have [40]

• ∆m2
21 ≈ 7, 37× 10−5eV 2

• ∆m2
31 ≈ 2, 53× 10−3eV 2,

43
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Dirac neutrinos - NH and IH

Let us begin with the Dirac neutrinos, that is they have a Dirac mass term and therefore four degrees
of freedom, with a normal hierarchy for the masses. The potential is shown in Figure 5.2 for different
values of the lightest neutrino mass ν1. The blue line presents no vacuum, while the beige one and
the green one have respectively a de Sitter and an Anti de Sitter vacuum because the potential at the
minimum is respectively positive and negative.

Figure 5.2: Potential as function of the circle radius. The colors indicate different values of the lightest neutrino
mass for the NH.

As the mass of the lightest neutrino increases the concavity of the AdS vacuum gets deeper and
deeper, therefore above the mass for which we have a Minkowski vacuum, namely when V = 0 at the
minimum, the potential presents always an AdS vacuum. On the other hand, when the mass decreases
the vacuum disappears until we reach the zero mass limit shown in Figure 5.3.

Figure 5.3: Potential as function of the circle radius in the zero mass limit for the lightest neutrino.

In order to have an AdS vacuum we need to have

mν1 & 0.0083 eV. (5.2)

Instead the mass interval to have a de Sitter vacuum is quite narrow, it is

0.0071 eV . mν1 . 0.0083 eV. (5.3)

Applying the AdS and the dS conjecture gives an upper limit to the Dirac lightest neutrino mass with
NH

mν1 . 0.0071 eV. (5.4)
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If, instead of the normal hierarchy, we used the inverted hierarchy for the neutrino masses, the situation
would be quite similar, but with some variations in the mass value of the lightest neutrino ν3, see
Figure 5.4. For the blue line we have no vacuum, while for the beige one there is a de Sitter vacuum
and an AdS vacuum for the green line.

Figure 5.4: Potential as function of the circle radius. The colors indicate different values of the lightest neutrino
mass for the IH.

With masses respecting
mν3 & 0.00285 eV, (5.5)

we have an AdS vacuum, while the interval for the existence of the dS vacuum becomes

0.0023 eV . mν3 . 0.00285 eV. (5.6)

Then the upper limit for the lightest neutrino mass is

mν3 . 0.0023 eV. (5.7)

Majorana neutrinos - NH and IH

If the neutrinos have Majorana mass terms, then they have 2 degrees of freedom. This prevents the
potential from avoiding an Anti de Sitter vacuum for both NH and IH. In fact, no matter what is the
mass value, we can always find an AdS minimum and therefore, for the AdS conjecture, the Majorana
neutrinos would be ruled out, see Figure 5.5.

Such result does not exclude completely the Majorana neutrinos, but only the case with the particle
content we considered. If we added some other species to the infrared spectrum of the standard model
the potential would be modified and the vacuum could be lifted so that we would not be able to apply
the conjectures.

5.1.2 Neutrinos + Axion

We investigate now what would happen to the potential if we added a light scalar particle to the SM
spectrum. It has just one degree of freedom and an unknown light mass ma.

Dirac neutrinos - NH and IH

Let us begin with the case of Dirac neutrinos. Here the differences between the NH and the IH are
more evident, see Figure 5.6 and 5.7.

In the normal hierarchy case for any mass value of the axion we can always find a neutrino mass to
avoid the dS or AdS vacuum. While for the inverted hierarchy, if ma . 30 eV then we find always
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Figure 5.5: Potential as function of the circle radius for Majorana neutrinos with normal hierarchy in the limit
of zero mass of the lightest neutrino ν1.

an AdS or dS vacuum, therefore that is the lower limit for the axion mass in order to have Dirac IH
masses.

Majorana neutrinos - NH and IH

For the Majorana neutrinos the situation does not change even with an additional axion. It is not
enough to lift the AdS minimum, therefore they are still ruled out.

5.2 2D case

Let us move to the torus case. Here the situation is slightly more complex. In order to have a minimum
the conditions obtained in chapter 4 need to be fulfilled. They are

V = 0,
∂V

∂τ1
= 0,

∂V

∂τ2
= 0. (5.8)

In fact we have 4 parameters: A,mν , τ1 and τ2, therefore we can express everything as a function of
the neutrino mass. Fortunately we can use a symmetry to simplify the problem, that is the modular
invariance of the torus explained in chapter 3. Looking at the fundamental domain in Figure 3.7 we
can see that there are two fixed points at (τ1, τ2) =

(

1/2,
√
3/2
)

and (0, 1). These points are extrema
of the potential [41]. The idea behind such statement is that if a smooth function f(x) is equal, for
example, to f(1/x) then it must have an extremum at x = 1. The last two conditions of (5.8) are
automatically satisfied by such choice of τ1 and τ2.

Even the determination of the type of vacuum and its stability is harder. The former is found by the
sign of ∂V

∂A , in particular if > 0 we have a dS vacuum, if < 0 an AdS one, while the latter depends on
the eigenvalues of the mass matrix for the τ1, τ2 perturbed equation of motion, particular attention
needs the AdS case because the Breitenlöhner–Freedman bound is involved.
The cases analyzed are the same of the 3D situation.

5.2.1 Only neutrinos

Dirac neutrinos - NH and IH

We need to check the potential for both extremal points, let us begin with
(

1/2,
√
3/2
)

. The potential
is such that when it presents a dS or an AdS vacuum it has also an AdS or dS one as it can be seen
in Figure 5.8 and 5.9.

The difference between normal and inverted hierarchy consists again in different mass values for the
lightest neutrino. In fact for NH there is a vacuum (i.e. the potential crosses the A-axis at least once)
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Figure 5.6: The graphic shows the mass values of the lightest neutrino with NH and the axion that can create
a dS and AdS vacuum or no vacuum.

only if
mν1 & 0.0045eV. (5.9)

While for IH we get that the the mass must be

mν3 & 0.00095eV. (5.10)

Now we have to check the stability of the vacua. Given that we use both the AdS and the dS conjecture
we need to analyze only one of the two vacua, because the masses excluded with one are the same of
the ones excluded with the other. We look then at the first one, namely the one on the left in the
graphics. It is an AdS vacuum because the first derivative of V with respect to A is clearly negative.
To decide upon the stability we have to apply eq.(4.123), the eigenvalues of the matrix M2 and the
other expression are plotted in Figure 5.10 for NH, the situation of IH is analogous.

As we can see the eigenvalues are always above and therefore the vacuum is stable. So it is possible to
set a constraint on the neutrino masses in order to avoid the appearance of the forbidden AdS vacuum

• mν1 . 0.0045 eV for NH,

• mν3 . 0.00095 eV for IH.

Let us analyze the other extremal point (τ1, τ2) = (0, 1). The form of the potential is analogous to the
other point, therefore if we take the first vacuum point and we plot something similar to Figure 5.10
to see the stability, we obtain Figure 5.11 in the NH case. Again the IH is analogous. We can observe
that one of the eigenvalues is under the Breitenlöhner–Freedman bound, thus we have a saddle point
and not a minimum and therefore the AdS conjecture can not be applied. Actually this point will
reveal itself to be a saddle point for any configuration we are going to investigate and therefore we
will not able to apply the AdS conjecture to it. On the other hand, the sharpened version of the dS
conjecture contains two parts, the first forbids stable dS vacua while the second allows unstable dS
vacua if the instability is strong enough. Therefore we have to look at the second intersection of the
potential with the abscissa axis.

The first of the two conditions of the dS conjecture, eq.(2.6), states that the first derivative of the
potential has to be bigger than the cosmological constant, clearly in our vacua we have that ∂τ1V =
∂τ2V = 0, thus it is not satisfied.
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Figure 5.9: The potential for different lightest neutrino masses for IH. The critical points are the ones with
V = 0.

Figure 5.10: Comparison between the mass squared eigenvalues, i.e. the eigenvalues of the symmetric ma-
trix built with the second derivative of the potential, and the Breitenlöhner–Freedman bound for (τ1, τ2) =
(

1/2,
√
3/2
)

with NH.

Majorana neutrinos - NH and IH

The case of Majorana neutrinos in 2D is very similar to the one in 3D. With the choice (τ1, τ2) =
(

1/2,
√
3/2
)

an AdS vacuum is always developed for both NH and IH, no matter what is the value of
the neutrino masses, see Figure 5.14. Since the conjectures would rule out all the mass values there is
no need to look at the other point (0, 1).

5.2.2 Neutrinos + Axion

The addition of a massive scalar degree of freedom makes, as in 3D, the numerical analysis a little
harder.

Dirac neutrinos - NH and IH

For Dirac neutrinos, as in the case without the axion, we find always an AdS vacuum or no vacuum,
in no cases we find a dS vacuum alone, in fact the form of the potential is the same as in the
others cases, so with two zeros or no zeros. We can make a graphic showing the mass values of the
axion and of the lightest neutrino that create or not an AdS vacuum for NH and IH with the choice
(τ1, τ2) =

(

1/2,
√
3/2
)

, see Figure 5.15 and 5.16. Computing the eigenvalues of the mass matrix
and the Breitenlöhner–Freedman bound we can check that these extrema are stable and the AdS
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Figure 5.11: Comparison between the mass squared eigenvalues, i.e. the eigenvalues of the symmetric matrix
built with the second derivative of the potential, and the Breitenlöhner–Freedman bound for (τ1, τ2) = (0, 1).

Figure 5.12: Eigenvalues of the squared mass and limit of the second condition of the dS conjecture for the NH
case at (τ1, τ2) = (0, 1).

conjecture is applicable. For NH any axion mass gives a bound on the neutrino mass, while for IH if
ma . 0.03 eV then no neutrino mass is allowed by the AdS conjecture.

With the other choice (τ1, τ2) = (0, 1) we would find again a saddle point and then the AdS conjecture
would be inapplicable. Turning to the second vacuum we could apply as before the dS conjecture.
However, the presence or absence of the vacua depends on the neutrino and axion masses in the same
way as at the other point

(

1/2,
√
3/2
)

, thus no new conditions can be produced.

5.2.3 Majorana neutrinos - NH and IH

The Majorana neutrinos case is not changed by the addition of an axion, for (τ1, τ2) =
(

1/2,
√
3/2
)

a
stable AdS vacuum is always developed and therefore they remain excluded.
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Figure 5.13: Eigenvalues of the squared mass and limit of the second condition of the dS conjecture for the IH
case at (τ1, τ2) = (0, 1).

Figure 5.14: Potential as a function of A for 2D NH Majorana neutrinos at (τ1, τ2) =
(

1/2,
√
3/2
)

in the zero
mass limit.

Figure 5.15: The graphic shows the mass values of the lightest neutrino with NH and the axion that can create
an AdS vacuum or no vacuum at (τ1, τ2) =

(

1/2,
√
3/2
)

.
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Figure 5.16: The graphic shows the mass values of the lightest neutrino with IH and the axion that can create
an AdS vacuum or no vacuum at (τ1, τ2) =

(

1/2,
√
3/2
)

.
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Chapter 6

Conclusions

The main goal of this thesis was to test the dS and AdS swampland conjectures by applying them to
an EFT. We chose it to be the Standard Model because it is a well known and experimentally tested
theory, the only parameters known with very little precision are the neutrino masses mν . In detail, we
refined the analysis of [3], where SM compactifications to three and two dimensions had been studied,
but only using the AdS conjecture.

The AdS and dS conjectures forbid respectively the AdS non-susy stable vacua and the dS stable
vacua (or even unstable if the instability is not too strong) and their existence reason has roots mainly
in black hole physics. The SM coupled to gravity admits a landscape of vacua when compactified to 3
dimensions on a circle or to 2 dimensions on a torus [1]. Such landscape is suitable for the application
of the chosen conjectures because stable AdS or dS vacua may appear.

The reduction is performed compactifying one or two space dimensions on a manifold parameterized
with suitable fields. From the Einstein–Hilbert action we got kinetic terms for those fields and from
the 1-loop quantum corrections of the other SM terms we obtained a potential. This translates into
the actions (3.23) and (3.59) and into the potentials (3.71) and (3.73).

In the circle case the vacuum conditions are simple because the potential depends only on one variable,
thus the vacua are just minima and their type depends on the sign of the potential at the minimum:
dS if positive and AdS if negative. For the 2D case the vacuum conditions are obtained by looking
at the background solutions of the equations of motion for the fields parameterizing the torus, we got
∂τ1V = 0, ∂τ2V = 0 and V = 0.

The first two conditions are satisfied by the two fixed points under the modular symmetry of the torus
fundamental domain (τ1, τ2) =

(

1/2,
√
3/2
)

and (0, 1). The latter revealed itself to be always a saddle
point and therefore the AdS conjecture can not be applicable to it.

Eventually a numerical analysis of the potential and of the possible vacua was performed. In the
expressions evaluated we used only the lightest degrees of freedom because they are the ones that
mostly influence the vacua of the potential. They are the photon, the graviton, the neutrinos and,
successively, an axion.

Neutrinos with Majorana mass terms, for any of the considered cases, create AdS vacua, no matter
the value of their mass or of the axion mass. For Dirac neutrinos we can instead get some bounds to
avoid the appearance of dangerous dS and AdS vacua. Without the axion we got

• 3D Normal Hierarchy: mν1 . 0.0071 eV,

• 3D Inverted Hierarchy: mν3 . 0.0023 eV,

• 2D Normal Hierarchy: mν1 . 0.0045 eV,

• 2D Inverted Hierarchy: mν1 . 0.00095 eV.
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These cases seem to agree with [3] up to, at most, 0.0006 eV, such discrepancy could be caused by the
approximation of the numerical analysis. Adding an axion the bounds on the masses get modified

• 3D Normal Hierarchy: a bound for the mass of ν1 can always be found, but it will depend on
the axion mass. Such bound will space between mν1 . 0.005 eV and mν1 . 0.007 eV.

• 3D Inverted Hierarchy: in this case it is not always possible to find a bound. If ma . 0.03 eV
then no neutrino mass is allowed. Otherwise we get that mν3 . 0.002 eV.

• 2D Normal Hierarchy: the situation is similar to the 3D case with the exception that there is
not a single vacuum for any mass value, but two, a dS one and a AdS one and therefore we can
choose to use the dS conjecture or the AdS conjecture with the same effect. The bound spaces
between mν1 . 0.0025 eV and mν1 . 0.0045 eV.

• 2D Inverted Hierarchy: if ma . 0.03 eV then we can always find a dS or AdS vacuum and
therefore the Dirac neutrinos would be ruled out. Otherwise we get mν3 . 0.001 eV.

Also in these cases we find small differences with [3] for both the neutrino and the axion masses,
again probably for the numerical approximation. The application of the dS conjecture to the point
(τ1, τ2) = (0, 1) does not seem to give any additional constrain.

However, all the bounds we found are much below the experimental upper limit of ∼ 1.1 eV [42]. The
results constrain mν and, when we add the axion, ma. If the results violated the experimental data
we would have a test of the swampland conjectures, instead we got a prediction of quantum gravity
on the low energy physics.
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