

Università degli Studi di Padova

> Corso di Laurea in Ingegneria Meccatronica Dipartimento di Tecnica e Gestione dei sistemi industriali

SVILUPPO DI UN SISTEMA MPPT PER APPLICAZIONI FOTOVOLTAICHE MEDIANTE MICROCONTROLLORE

Relatore: prof Caldognetto Tommaso

Correlatore: prof Magnone Paolo

Laureandi: Dal Bianco Giacomo, Fiscato Manuel, Vigolo Elia, Visonà Matteo

Sommario

Introduzione

- Modello fotovoltaico
- •Curva I-V
- Effetto Temperatura

MPPT

Conductance Incremental Method

Caratteristiche dell'impianto e configurazione scelta

- •Scelta del pannello e relativi dati
- Scheda utilizzata

Parametrizzazione della curva I-V

- Relazione tra Isc e IL
- Dipendenza dalla temperatura
- Dipendenza dall'irraggiamento

Schema a blocchi e periferiche

- Modello convertitore
- Esempi e grafici
- Conclusioni
- Bibliografia

La cella solare deve sfruttare l'energia della luce per produrre sia tensione che corrente, per poter **generare potenza elettrica**.

Punti necessari al funzionamento di una cella solare:

- Generazione di portatori generati dalla luce (assorbimento di **fotoni**)
- raccolta dei portatori per generare la corrente
- Generazione di un elevata tensione ai capi della cella
- Dissipazione della potenza sul carico collegato

- Il generatore di corrente modella la corrente generata dalla luce
- Le resistenze R_S e R_{SH} sono legate alle **perdite** (resistenze delle regioni p-n, di contatto...)
- Il diodo simula il comportamento in condizioni di oscurità
- Il Modello convertitore **imposta il punto di lavoro**

Università

degli Studi di Padova

Curva IV

La curva IV della cella solare si ottiene sovrapponendo la curva **caratteristica** di un **diodo** con la corrente generata dalla luce, che sposta la curva nel **quarto quadrante.**

Per convenzione la curva viene **capovolta** nel primo quadrante.

Università degli Studi di Padova

Effetto della temperatura

Per celle in silicio:

- La tensione di circuito aperto (Voc) decresce di circa 2.2mV/°C
- La corrente di corto circuito (Isc) aumenta di circa 0,6 mA/°C.

Maximum Power Point Tracking

Per **massimizzare la potenza** prodotta dai pannelli fotovoltaici è necessario implementare degli algoritmi di **inseguimento** del punto di **massima potenza** (abbreviato in MPPT) al variare delle condizioni operative.

Università

Il metodo della conduttanza incrementale è basato sul fatto che la **pendenza** della curva di potenza è zero sull'MPP, positiva alla sua sinistra e negativa alla sua destra. Partendo dalla seguente equazione:

$$\frac{dP}{dV} = \frac{d(V \cdot I)}{dV} = \frac{I \cdot dV}{dV} + V \cdot \frac{dI}{dV} = I + V \cdot \frac{dI}{dV}$$

Unendo il risultato al fatto che dP/dV = 0 si ottiene:

•
$$\frac{\Delta I}{\Delta V} = -\frac{I}{V}$$
 in MPP

•
$$\frac{\Delta I}{\Delta V} > - \frac{I}{V}$$
 a sinistra di MPP

•
$$\frac{\Delta I}{\Delta V} < -\frac{I}{V}$$
 a destra di MPP

Università

degli Studi di Padova

Il flowchart schematizza l'algoritmo C.I. implementato sul microcontrollore, con:

- Vref: tensione di riferimento
- V(t) e I(t): tensione e corrente istantanee
- ΔV, ΔI: approssimazione delle derivate
- ΔI/ΔV: conduttanza incrementale
- I/V: conduttanza istantanea

Caratteristiche di progetto

Richieste

- Generare una tensione a vuoto dell'ordine delle centinaia di volt
- Potenza nominale nell'ordine dei kilowatt

Scelte

Array formato da N = 4 pannelli in serie:

- Tensione a vuoto \rightarrow N·Voc = 4·38.9 = **155.6 V**
- Potenza nominale \rightarrow N·VMPP·IMPP = 4·30.7·8.56 = **1051 W**

4 Pannelli Sunmodule Plus SW 260-280 mono

COMPORTAMENTO A 1000 W/M ² , AM 1.5, STC					
Potenza massima Pmax 260 Wr					
Tensione a vuoto	Voc	38,9 V			
Tensione a massima potenza	Vmpp	30,7V			
Corrente di cortocircuito	lcc	9,18 A			
Corrente a massima potenza	Impp	8,56 A			

COMPORTAMENTO A 800 W/M ² , NOCT, AM 1.5					
Potenza massima	Pmax	194,2 Wp			
Tensione a vuoto	Voc	35,6V			
Tensione a massima potenza	Vmpp	28,1V			
Corrente di cortocircuito	lcc	7,42 A			
Corrente a massima potenza	Impp	6,92 A			

DIMENSIONI	
lunghezza	1675mm
larghezza	1001mm
altezza	31mm
peso	21,2kg

CARATTERISTICHE TERMICHE			
NOCT	46°C		
TCI	0,040 %/K		
TCV	- 0,3%/K		
ТСР	- 0.41%/K		

MATERIALI IMPIEGATI	
celle per modulo	60
tipo di cella	monocristallino
dimensioni della cella	156x156mm
lato anteriore	4mm vetro temperato

CARATTERISTICHE TERMICHE	
Tensionne massima di sistema classe II	1000V
Capacità di carico di corrente inversa	16A
Sovraccarico/carico dinamico	5,4 / 2,4 kN/m3
Numero dei diodi di bypass	3
Temperatura di esercizio ammessa	- 40°C a +85°C

Sunmodule

Datasheet

Per implementare l'algoritmo è stato utilizzato il microcontrollore **STM32F103RBTx**.

Questo uC non mette a disposizione la periferica DAC. Al suo posto è stato utilizzato un PWM che comanda un convertitore per imporre la tensione al pannello.

Partendo dall'equazione della curva caratteristica bisogna trovare tutti i termini per essere in grado di simulare correttamente il funzionamento del sistema fotovoltaico.

$$I = I_L - I_0 \left[\exp\left(rac{qV}{nkT}
ight) - 1
ight]$$

40 I_L = corrente generata dalla luce 35 lo = corrente di saturazione **densità di corrente (mA/cm2)** 5 12 12 12 q = carica dell'elettrone n = fattore di idealità k = costante di Boltzmann T = temperatura (in gradi kelvin) 5 0 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.7

tensione (V)

Relazione tra Isc e IL

Per una **cella ideale** la corrente generata dalla luce IL e quella di cortocircuito ISC sono **equivalenti**.

Per Rs molto elevata (> 10 Ωcm²) Isc risulta minore di IL e scrivere l'equazione della cella solare con Isc non è corretto.

Il valore di Isc si trova nel datasheet dei pannelli.

Considerando la cella ideale, risulta semplice inserire questo numero nella formula al posto di IL.

Non conoscendo le caratteristiche del materiale non è possibile risalire direttamente al valore di I0, ma è possibile calcolare un **valore approssimato** conoscendo i valori di corrente e tensione nel MPP:

$$I_{mpp} = I_{sc} - I_0 \left[\exp\left(\frac{q \cdot V_{mpp}}{NkT}\right) - 1 \right]$$

E quindi si ricava Io

$$I_0 = \frac{\left(I_{sc} - I_{mpp}\right)}{\left[\exp\left(\frac{q \cdot V_{mpp}}{N \cdot kT}\right) - 1\right]} = 1,3944 \text{ nA}$$

La nuova Voc risulta:

$$Voc = \frac{nkT}{q} \ln\left(\frac{Isc}{I_0} + 1\right) = 34,855 V$$

Voc e Isc dipendono dalla temperatura. Per tenerne conto nella formula della caratteristica I-V, Io viene espressa nel seguente modo:

$$I_0(T) = \frac{I_{sc}(T)}{\left[\exp\left(\frac{q \cdot V_{oc}(T)}{N \cdot k \cdot T}\right) - 1\right]}$$

Da datasheet Isc aumenta dello 0.04%/K, Voc diminuisce dello 0,3%/K

$$V_{OC}(T) = V_{OC} \cdot (1 - 0,003 \cdot \Delta T)$$

$$I_{SC}(T) = I_{SC} \cdot (1 + 0,0004 \cdot \Delta T)$$

ΔT è la differenza tra la temperatura e la temperatura ambiente (25°C)

La dipendenza dall'irraggiamento viene **ipotizzata lineare**. Usando i punti forniti dal datasheet si trova l'equazione della retta.

$$\begin{cases} I_{sc}(1000; 25) = (a \cdot 1000 + b)(1 + 0,0004 \cdot 0) = 9,18 \, A \\ I_{sc}(800; 46) = (a \cdot 800 + b)(1 + 0,0004 \cdot 21) = 7,42 \, A \end{cases}$$

Si ricavano $a = 0,00911 \text{ Am}^2/\text{W} \text{ b} = 0,07 \text{ A}$

L'equazione della curva risulta:

$$I = (a \cdot G + b)(1 + 0,0004 \cdot \Delta T) - I_0(T)(e^{V \cdot Thermalvoltage} - 1)$$

Thermalvoltage è una variabile utilizzata nel codice, e corrisponde a:

$$Thermalvoltage = \frac{q}{kT \cdot 240}$$

Schema a blocchi e periferiche

Simulazione

Attraverso il programma STM32CubeMX sono state configurati un ADC e un Timer

Parameter Settings	🥝 User Constants	⊘ NVIC Settings	🥺 GPIO Settings
Configure the below param	neters :		
Q Search (Ctrl+F)	3 0		6
ADCs_Common_Setting	ngs		
Mode		Independent mode	
 ADC_Settings 			
Data Alignment	t	Right alignment	
Scan Conversion	on Mode	Enabled	
Continuous Con	nversion Mode	Disabled	
Discontinuous	Conversion Mode	Enabled	
Number Of Disc	continuous Convers	.1	
 ADC_Regular_Conversion 	sionMode		
Enable Regular	Conversions	Enable	
Number Of Con	iversion	2	
External Trigge	r Conversion Source	Regular Conversion lau	inched by software
Rank		1	
Channel		Channel 9	
Sampling	g Time	1.5 Cycles	
Rank		2	
Channel		Channel 8	
Sampling	j Time	1.5 Cycles	
V ADC_Injected_Conversion	sionMode		
Enable Injected	Conversions	Disable	
✓ WatchDog			
Enable Analog	WatchDog Mode		

Per **l'ADC**:

- Sono stati utilizzati 2 canali per poter acquisire sia corrente che tensione del pannello dalla stessa periferica
- Campionamento eseguito ad una frequenza di 5 Hz

Il timer è utilizzato per generare il segnale PWM di tipo **CENTER-ALIGNED.** Conteggio massimo pari a 4000, ottenuto da

$$f_{pwm} = \frac{f_{APB1}}{(2(counterperiod + 1) - 2) \cdot (prescaler + 1)}$$

Dove fAPB1 = 8 MHz, prescaler = 0 e fPWM = 1 kHz

NVIC Settings	🕑 DI	MA Settings	GPIO Settings
⊘ Parameter Set	ttings		🥝 User Constants
Configure the below parameters	:		
Q Search (Ctrl+F)	\odot		0
✓ Counter Settings			
Prescaler (PSC - 16	bits value)	0	
Counter Mode		Center Align	ed mode1
Counter Period (Auto	Reload Regi	s 4000	
Internal Clock Divisio	n (CKD)	No Division	
Repetition Counter (F	RCR - 8 bits	v 0	
auto-reload preload		Disable	
✓ Trigger Output (TRGO) Para	meters		
Master/Slave Mode (MSM bit)	Disable (Trig	ger input effect not delayed)
Trigger Event Selecti	on	Reset (UG b	it from TIMx_EGR)
> Break And Dead Time mana	igement - BR	ł	
> Break And Dead Time mana	igement - Ou	ıt	
V PWM Generation Channel 1			
Mode		PWM mode	1
Pulse (16 bits value)		0	
Output compare prel	oad	Enable	
Fast Mode		Disable	
CH Polarity		High	
CH Idle State		Reset	

Vengono attivati gli interrupt di update per entrare nella ISR del timer ogni volta che il conteggio raggiunge 0 o 4001.

⊘ NVIC Settings	📀 DMA Se	ttings		GPIO Settings			
Parameter Settings			🤇 Us	er Constants			
NVIC Interrupt Table				Preemption Pr	. S		
TIM1 break interrupt			0	0			
TIM1 update interrupt			\checkmark	0	0		
TIM1 trigger and comm	utation interrup	ots		0	0		
TIM1 capture compare	interrupt			0	0		

Il convertitore è simulato con un filtro passa basso del primo ordine che trasforma l'onda quadra del PWM in una tensione pressoché continua, i coefficienti del filtro vengono calcolati come segue:

$$\begin{cases} a = \frac{\tau}{\tau + T_S} \\ b = \frac{T_S}{\tau + T_S} \end{cases}$$
 da cui a = 0.9999922; b = 0.0000078;

$$Con \qquad \tau = \frac{1}{2\pi \cdot f_t} \ e \ f_t = 10 \ Hz \qquad T_S = 125 \ ns$$

Vin = ((PORTA & 0×0100) >> 8) Vout = (b · Vin) + (a · Vout)

Università degli Studi di Padova

Esempi e grafici

Datasheet

	Voc	lsc	Р
(0,8; 46)	129,1761	7,4198	711,4272
(0,8; 75) 116,9138		7,5052	682,2957
TC%	-0.3273	0.0397	-0.3984

$$TCX\% = \frac{X_2 - X_1}{29 \cdot X_1} \cdot 100$$

CARATTERISTICHE TERMICHE			
NOCT	46°C		
тсі	0,040 %/K		
TCV	- 0,3%/K		
ТСР	- 0.41%/K		

Università degli Studi di Padova

Esempi e grafici

G [Sun]	T [°C]	Vmpp [V]	Impp [I]	P [W]	Vmpp [V]	Impp [I]	P [W]	ΔV [V]
1	25	120,900	8,723	1054,621	120,768	8,734	1054,792	-0,132
1	-40	150,161	8,644	1298,018	149,881	8,662	1298,364	-0,279
1	85	95,292	8,678	827,043	94,877	8,719	827,281	-0,415
0,8	46	110,317	6,992	771,427	110,208	7,000	771,515	-0,108
0,8	75	97,409	7,004	682,295	97,628	6,989	682,385	0,218
0,9	46	110,857	7,874	872,888	110,938	7,870	873,100	-0,081
0,6	11	123,640	5,274	652,099	124,105	5,256	652,307	0,465
0,7	25	118,950	6,113	727,234	118,690	6,128	727,404	-0,259
0,4	0	126,628	3,527	446,708	126,935	3,622	459,86	0,306
0	40	81,389	0,067	5,474	84,450	0,0654	5,523	3,061

INIVERSIT/

degli Studi di Padova

Conclusioni

- A causa della parametrizzazione sul MPP si ottiene una Voc che si discosta dal valore indicato nel datasheet.
- Anche con match costante la corrente letta dall'ADC può variare a causa di errori dovuti alla sensibilità dell'ADC stesso (2,32 mA).
- Per aumenti di temperatura istantanei ed elevati, la corrente assume valori minori di 0. Il programma legge una corrente nulla che non vede più variare, e l'algoritmo non riesce a determinare il nuovo MPP.
- I risultati sperimentali si avvicinano molto a quelli teorici.

Possibili Sviluppi futuri:

- Tener conto di Rs e RsH per migliorare la curva di parametrizzazione.
- Decidere il valore per la variazione della tensione più adeguato.

Documenti:

- Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems (V. Salas, E. Olìas, A. Barrado, A. Làzaro)
- Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques (Trishan Esram, Student Member, IEEE, and Patrick L. Chapman, Senior Member, IEEE)

siti e datasheet:

- <u>https://www.pveducation.org</u>
- <u>http://www.keil.com/support/man/docs/uv4/uv4_df_signalfunctions.htm</u>
- <u>Pannelli fotovoltaici, datasheet e caratteristiche Nowatech impianti a energia solare</u>