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Riassunto 

La necessità di trovare alternative economicamente valide ai carburanti di fonte fossile, ha 

avviato negli ultimi decenni un’intensa ricerca nell’ambito della produzione di biocarburanti 

derivanti da biomasse microalgali. Le microalghe presentano infatti, un’alta velocità di crescita 

rispetto alle piante superiori terrestri e sono in grado di contenere al loro interno grandi quantità 

di oli. La produzione di biomassa per via fotosintetica, ha dei notevoli vantaggi dal punto di 

vista ambientale. Contribuisce infatti alla diminuzione dell’immissione in atmosfera dei gas 

serra e all’eliminazione di sali di fosforo e di ammonio dalle acque di scarico. Inoltre possono 

essere utilizzate per l’assorbimento di CO2 atmosferica e per ottenere oltre ai biocarburanti, 

integratori alimentari, prodotti di interesse chimico e farmaceutico, mangimi per acquacoltura. 

Le microalghe, in aggiunta, possono essere coltivate in zone dedicate e marginali evitando così 

di sottrarre risorse alle coltivazioni terrestri per fini alimentari. Nonostante l’alto potenziale 

teorico, la produzione di biomassa algale su larga scala risulta attualmente non competitiva in 

termini economici. A tal fine lo studio riguardante i diversi parametri di crescita, nelle diverse 

condizioni ambientali, risulta essere un tema di particolare attualità. 

L’introduzione in campo scientifico di dispositivi microfluidici, rappresenta un’ottima 

alternativa ai classici metodi di ricerca, in quanto permettono di velocizzare la raccolta dei dati 

dando la possibilità di effettuare molti esperimenti in parallelo, riducendo così, tempi e costi. 

Questo si traduce, in questo campo specifico, nella possibilità di valutare l’influenza di diversi 

parametri sia fisici che chimici sulla crescita microalgale mantenendo un’alta affidabilità 

sperimentale e al tempo stesso un alto rendimento (high-throughput). 

Nella tesi viene descritta la progettazione di un efficiente sistema di fornitura di CO2 per la 

crescita microalgale in dispositivi microfluidici (microfotobioreattori). 

La prima parte del lavoro è dedicata allo studio dell’anidride carbonica come fattore limitante 

per lo sviluppo della biomassa, in seguito a questo, si è reso necessario uno studio 

sull’equilibrio carbonico dell’acqua, maggior costituente del medium di coltura. La necessità 

di valutare la capacità di assorbimento di CO2 da parte del medium di coltura in funzione della 

concentrazione di sali è stata espletata mediante una serie di simulazioni svolte con il 

simulatore di processo Aspen Plus®. Un nuovo microfotobioreattore è stato progettato al fine 

di ottenere risultati sperimentali apprezzabili. Sono state sperimentate inoltre diverse 

condizioni di crescita mediante l’utilizzo di diversi terreni di cultura, valutando infine 

l’interazione di questo fattore con l’intensità luminosa. 

I risultati ottenuti dalle prove sperimentali condotte sulla specie Scenedesmus obliquus hanno 

evidenziato che un medium di coltura arricchito con carbonato di sodio permette un 

assorbimento maggiore di anidride carbonica con conseguente aumento della crescita 



microalgale. In ultimo, la crescita della biomassa è stata misurata a diverse intensità di luce per 

verificare la risposta delle alghe nel microfotobioreattore in diverse condizioni operative. 



Abstract 

Microalgae processes emerged during the last decade as one of the most promising new 

technologies for providing innovative molecules for the cosmetics and pharmaceutical 

industry. At a large time horizon, microalgae will contribute for fossil carbon replacement with 

renewable carbon, especially for supply green chemistry and liquid biofuels in the transport 

sector. 

The optimization of the microalgae productivity still requires intense investigation, as well as 

numerous and time-consuming experiments. In this scenario, microscale technologies are 

emerging as a valuable tool to improve data production and, accordingly, to speed up the 

optimization process maintaining a high experimental reliability. 

The goal of the Thesis is the design of an efficient CO2 supply system for microalgae growth 

in microphotobioreactors (micro-PBR). 

In first place, the CO2 as a limiting factor for the microalgae growth has been studied in a 

microfluidic device. Once addressed this topic, the capacity of CO2 absorption by the culture 

medium has been assessed by means of a series of simulations carried out with the Aspen Plus® 

process simulator. Secondly, new micro-PBR has been used to evaluate the influence of 

different culture medium on the microalgae growth. A tentative to quantify the microalgae 

growth is accomplished thanks to chlorophyll fluorescence intensity.  Finally, a new 

experiment has been carried out to evaluate, in an early stage, the effect on the growth of 

different light intensities.
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Introduction 

Microalgae processes emerged during the last decade as one of the most promising new 

technologies for providing innovative molecules for cosmetic and pharmaceutical industry and 

as a source of proteins for animal and human nutrition (Mata et al., 2010). At a large time 

horizon, microalgae will contribute for fossil carbon replacement with renewable carbon, 

especially for supply green chemistry and liquid biofuel in the transport sector (Foley et al. 

2011). The great interest in this technology is not only related to the substantial higher 

productivity compared to the terrestrial plants (Chisti, 2007), but also to the possibility of 

coupling the microalgal production process to industrial CO2 mitigation and wastewater 

treatments to finally recycle carbon, phosphorous and nitrogen. Nevertheless, much research is 

still needed in order to make this potential new energy source a real feasible technology, since 

all the existing techno-economic assessments are limited by uncertainties regarding the 

biomass productivity that can actually be reached at full-scale. The optimization of their 

productivity by assessing the impact that several environmental factors have on microalgae 

growth still requires intense investigation, as well as numerous and time-consuming 

experiments. In this scenario, microscale technologies are emerging as a valuable tool to 

improve data production and accordingly to speed up the optimization process, while 

maintaining a high experimental reliability. 

The aim of this Thesis is the design of an efficient CO2 supply system for microalgae in a 

microphotobioreactors (micro-PBR). 

The work is developed in four Chapters, described below. 

Chapter 1 offers a general overview of the microalgae, giving an overall classification, the 

conditions of growth and the main cultivation technologies. Then follows a brief summary of 

industrial applications, finally, at the end of the chapter the Thesis objective will be illustrated. 

Chapter 2 introduces the concepts of microfluidic technology and microfluidic device, then are 

listed the materials and equipment that allowed the preparation of the experiments. This 

Chapter ends with the description of the monitoring methods used to quantify the microalgae 

growth, e.g. in vivo chlorophyll fluorescence measurements and the protocols used in the 

experimental phase. 

Chapter 3 describes the study on carbon dioxide as a limiting factor for microalgal growth, 

after which a survey on the carbon balance of water is considered. Through the use of the 

process simulator Aspen Plus®, the absorption capacity of CO2 by the culture medium is 

evaluated, which is considered mostly composed by water. The data obtained from the 

simulations have been elaborated in appropriate plots, with the aim to obtain an experimental 

protocol for the CO2 absorption. The final part of the Chapter shows the experimental 



validation of the protocol carried out at the laboratory and the development of the final 

prototype of the micro-PBR.  

Chapter 4 summarizes the experiments carried out and the data obtained, in this sense different 

growth conditions have been tested, with different culture medium and different light 

intensities in order to obtain the optimal growth condition. 

The work is concluded by drawing some final remarks and by suggesting potential direction 

for the future research. 



 

 

Chapter 1 

Context and motivation 
 

 

In this chapter, the reader will be introduced to the world of microalgae, giving a short glimpse 

of the numerous fields of application. The phenomenon of photosynthesis will be explained in 

detail, which will allows a clearer understanding of the whole elaborate. Last but not least the 

objectives of this work will be addressed, giving a general introduction to the main steps that 

have characterized this research activity. 

1.1 Introduction  

Microalgae (also called phytoplankton) are microscopic (1-50 μm), unicellular/multicellular, 

prokaryotic/eukaryotic photosynthetic organism that can produce biomass and oxygen by using 

sunlight as energy source, inorganic salts as nutrients and carbon dioxide as carbon source. 

Microalgae are present in all terrestrial ecosystems, both aquatic and terrestrial, representing a 

large variety of species able to live in very different systems. It is estimated that there are 

between 200 000 and 800 000 species, but only a few of these have been studied extensively. 

These organisms have the ability to grow in extreme environmental conditions, scarcity of 

nutrients and water. The growth rate and the maximum biomass production of microalgae 

cultures do not depend uniquely on light, since the microalgae culture is also affected by abiotic 

(salinity, oxygen, pH, salinity, nutrients, temperature and toxic chemicals), biotic (pathogens 

and competition by other algae), and operational (mixing, depth control) factors (Mata et al., 

2010). Depending on the species, microalgae are able to produce varying amounts of lipids, 

polyunsaturated fatty acid, natural dye, carotenoid, antioxidant, enzyme polymer, peptide, 

toxin and sterols (Medipally et al., 2015). For these reasons, microalgae have generated a lot 

of interest due to their undoubted potential for the production of biomass and lipids through 

photosynthesis. In the last two decades, the search for new bio-energy feedstocks create a boom 

in scientific research on microalgae cultivation, which has improved the state of art of the 

technology at a rapid pace. However, large scale production still faces significant bottlenecks, 

which increase manufacturing costs and prevent microalgae from becoming a feasible 

bioenergy source (Sano Coelho, 2017). Therefore, despite the instability of the petrol market 

and the need to tackle problems such as global warming, large-scale production remains 

scarcely economical at the moment. For this reason, many researches are oriented towards an 
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optimization of mass production, in order to obtain a new technology, less impacting at an 

environmental level and economically sustainable.  

1.1.1 Classification 

As previously mentioned, there are thousands of microalgal species, from a more general point 

of view algae are divided into two main groups. The first group is represented by macroalgae 

and comprehend the red and brown algae belong, the second group comprehend the microalgae 

to which the diatoms, the green, golden, yellow-green and blue algae belong. 

 

 Red algae (Rhodophyta, Figure 1.1a): are red because of the presence of the pigment 

phycoerythrin, this pigment reflects red light and absorb blue light. Blue light penetrates 

water to a greater depth than light of longer wavelengths, these pigments allow red 

algae to photosynthesize and live at somewhat greater depths than most other algae. 

Some rhodophytes have very little phycoerythrin and may appear green or bluish from 

the chlorophyll and other pigments present in them. In Asia this type of algae are 

important sources of food, such a nori. The high vitamin protein content of this food 

makes it attractive, as does the relative simplicity of cultivation, which began in Japan 

more than 300 years ago. In some Pacific atolls, red algae have contributed far more to 

reef structure than other organism, even more than corals These reef-building 

rhodophytes are called coralline algae, because they are secreted a hard shell of 

carbonate around themselves, in much the same way that corals do (UCMP, 2018a). 

 

 Brown algae (Phaeophyta, Figure 1.1b): the brown colour of these algae results from 

the dominance of the xanthophyll pigment fucoxanthin, which masks the other 

pigments, chlorophyll a and c, -carotene and other xanthophylls and count 

approximately 200 species. They are the most complex forms algae, commonly adapted 

in the marine environment. The length of brown algae can range from a microscopic 

length to several meters. The longest size measured is bout 30 meters. Food reserves 

are typically complex polysaccharides, sugar and higher alcohols. The principal 

carbohydrate reserve is laminarin and mannitol, and true starch is absent compare with 

the green algae. The walls are made of cellulose and alginic acid, a long-chained 

heteropolysaccharide. There are no known unicellular or colonial representatives; the 

simplest plant form is a branched, filamentous thallus. Most brown algae have an 

alternation of haploid a diploid generation. The brown Giant Kelp Macrocystis pyrifeta 

is harvested off the coasts of California for feeding abalone and it was used for alginate 

extraction (UCMP, 2018b). 
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 Diatom (Bacillariophyceae, Figure 1.2a): count approximately about 16 000 specie 

found in sediments or attached to solid substances in all the waters of Earth. Diatoms 

are among the most important and prolific microscopic sea organisms and serve directly 

or indirectly as food for many animals. They may be either unicellular or colonial. The 

silicified cell wall forms a pillbox-like shell (frustule) composed of overlapping halves 

(epitheca and hypotheca) perforated by intricate and delicate patterns. Food is stored as 

oil droplets, and the golden-brown pigment fucoxanthin masks the chlorophyll an 

carotenoid divided into two orders on the basis of symmetry and shape: the round 

nonmotile Centrales have radial markings and the elongated Pennales, which move 

with a gliding motion, have pinnate markings (Encyclopaedia Britannica, 2018a). 

 

 Green algae (Chlophyta, Figure 1.2b): is the most diverse group of algae, with more 

then 7 000 species growing in a variety of habitats. The green algae is a paraphyletic 

group because it excludes the plantae. Like the plants, the green algae contain two forms 

of chlorophyll, which they use to capture light energy to fuel the manufacture of sugar, 

but unlike plants they are primarily aquatic (Encyclopaedia Britannica, 2018b). 

 

 Golden algae (Chrysophyta, figure 1.2c): are common microscopic chromists in fresh 

water. Some species are colourless, but the vast majority are photosynthetic. As such, 

they are particularly important in lakes, where they may be the primary source of food 

for zooplankton. They are not considered truly autotrophic by some biologists because 

nearly all chrysophytes become facultatively heterotrophic in the absence of adequate 

light, or in the presence of plentiful dissolved food. When this occurs, the Chrysophytes 

atrophies and the algae ma turn predator, feeding on bacteria or diatoms. There are more 

than a thousand described species of golden algae, most of them free-swimming and 

unicellular, but there are filamentous and colonial forms. The colonies grow as 

branched or unbranched chains (Encyclopaedia Britannica, 2018c). 

 

 Yellow-green algae (Xanthophyta, Figure 1.2d): include more than 600 species. 

Members of this group are photosynthetic organisms which live primary in fresh water, 

though some are found in marine waters, in damp soil, or on tree trunks. They generally 

are not abundant when they are found at all, and many species have only been found 

once. Despite this, they are the dominant producers in some salt marshes, and some, 

like Tribonema, are cosmopolitan in their distribution. Unlike the other Chromista, the 

yellow-green algae completely lack the brown pigment fucoxanthin. Like these other 

chromists however they lack chlorophyll b and instead have chlorophyll c. This gives 

them a characteristic yellow-green colour, as opposed to the golden colour or their 

relatives, which my make them difficult to recognize as chromist. They are 
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distinguished by their food reserve (oil), the quantity of -carotene in their plastids, and 

motile cells with unequal flagella (Encyclopaedia Britannica, 2018d). 

 

 Blue-green algae (Figure 1.2e): are types of bacteria know as Cyanobacteria, which 

occur naturally in habitats such as rivers, lakes, damp soil, tree trunks. They are aquatic 

and photosynthetic, live in the water and can manufactures their own food. Because 

they are quite small and usually unicellular, though they often grow in colonies large 

enough to see. They are also important providers of nitrogen fertilizer in the cultivation 

of rice and beans. The Cyanobacteria have also been tremendously important in shaping 

the course of evolution and ecological change throughout earth’s history. The oxygen 

atmosphere that we depend on was generated by numerous cyanobacteria during the 

Archaean and Proterozoic Eras. The other great contribution is the origin of plants. The 

chloroplast with which plants make food for themselves is actually a cyanobacterium 

living within the plant’s cells. During the Proterozoic, or in the early Cambrian, 

Cyanobacteria began to take up residence with certain eukaryote cells, making food for 

the eukaryote host in return for a home. This event is known as endosymbiosis and is 

also the origin of the eukaryotic mitochondrion. Cyanobacteria produce a number of 

nuisance compounds, including those that are toxic or cause severe taste and odours 

problems in drinking water supplies. Blue-green algae are a common and natural 

component of the microscope plants (plankton) in lakes and they are one of the largest 

and most important groups of bacteria on earth. Cyanobacteria are very important 

organisms for the health and growth of many plants. They are one of very few groups 

of organisms that can convert inert atmospheric nitrogen into an organic form, such as 

nitrate or ammonia. Spirulina is blue-green algae, has long been valued as a food 

source; it is high in protein, and can be cultivated in pounds quite easily. In tropical 

countries, it may be a very important part of the diet and was eaten regularly by the 

Aztecs; it also served in several Oriental dishes (UCMP, 2018c). 

 

 

                 (a)                                                                               (b) 

Figure 1.1 (a) red algae (https://www.livestrong.com/article/), (b) brown algae 

(https://www.123rf.com/stock-photo/brown_algae). 
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1.1.2 Nutritional modes and nutrient requirements 

The possible nutritional routes for algae are show in Figure 1.3 Autotrophic organism obtain 

their energy through the absorption of light energy for the reduction of CO2 by the oxidation 

of substrates, mainly water, with the release of O2. Photoautotrophic organisms only require 

inorganic mineral ions and obligate photoautotrophs are those that cannot grow in the dark. By 

far, most algae belong to this category, although many require minimal quantities of organic 

compounds for growth, such as vitamins. Phototrophic cultivation is currently one of the most 

investigated and adopted for the large-scale microalgae biomass production; it means that the 

key fundamental process responsible of microalgae-based chemical energy generation is 

photosynthesis.  

Heterotrophic organisms obtain their material and energy needs from organic compounds 

produced by other organisms. Several algal species can be grown exclusively on organic 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

                                                                 (e) 

Figure 1.2 (a) Diatom (https://nualgiaquarium.com/nano-silica-diatoms/), 

(b) Green algae (http://www.nilesbio.com),  

(c) Golden algae (https://www.flickr.com/photos/micromundus),  

(d) Yellow-green algae (https://www.flickr.com/photos/micromundus), 

(e) Blue-green algae (https://gizmodo.com). 

 

https://nualgiaquarium.com/nano-silica-diatoms/
http://www.nilesbio.com/
https://www.flickr.com/photos/micromundus
https://www.flickr.com/photos/micromundus
https://nualgiaquarium.com/nano-silica-diatoms/
http://www.nilesbio.com/prod105.html
https://www.flickr.com/photos/micromundus
https://www.flickr.com/photos/micromundus
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substrates and this has become a viable option in conventional closed bioreactor production 

systems for biomass and biocompounds. Photoheterotrophic organisms require light as energy 

source to use organic compounds as nutrient and these organic compounds may also satisfy the 

energy requirements of the algae. Auxotrophy is where the algae require only small quantities 

of essential organic compounds such vitamins and amino acids. Mixotrophic growth is 

equivalent to autotrophy and heterotrophy, where both organic compounds and CO2 are 

necessary for growth. A definite switch between autotrophy and heterotrophy is not manifested 

and both processes are present, except in total darkness (Richmond, 2004). 

 

As previously mentioned many factors influence microalgae growth, these are divided into 

abiotic (light, temperature, concentration of nutrients, oxygen, carbon dioxide, pH, salinity and 

presence of toxic substance), biotic as competition with other species and presence of 

pathogens (bacteria, fungi) and operational factors of growth such as mixing.  

As regards the required nutrients, for high rates of autotrophic production, supply of CO2 and 

HCO3
-

 is most important. Contrary to land plants, atmospheric cannot satisfy the carbon 

requirements of high yielding autotrophic algal production system. The CO2-H2CO3-HCO3
-
-

CO3
2-

 system is the most important buffer generally present in freshwaters and it is the best 

means available to control and maintain specific pH levels that are optimal for mass-cultivated 

species. The bicarbonate-carbonate buffer system can provide CO2 for photosynthesis through 

the following reactions (Stephen, 1999): 

 

 

2HCO3
- ↔CO3

2-
+H2O+CO2  (1.1) 

Figure 1.3 Various trophic possibilities for algae, where autotrophic and 

heterotrophic growth are the most important ones. (Richmond, 2004) 
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HCO3
- ↔CO2+OH

-
 (1.2) 

 

CO3
2-

+H2O↔CO2+2OH
-
 (1.3) 

 

These reactions imply that during photosynthetic CO2 fixation, OH
-
 accumulates in the growth 

solutions leading to a graduate rise in pH. After carbon, nitrogen is the most important nutrient 

contributing to the biomass produced. The nitrogen content of biomass can range from 1% to 

more than 10%. A typical response due to a nitrogen limitation is discoloration of the cells (the 

chlorophyll decreases while the carotenoids increase) and accumulation of organic carbon 

compounds such as polysaccharides and oils (Becker, 1994). Nitrogen is mostly supplied in 

the culture medium as nitrate, but also as ammonia or urea. Ammonia nitrogen is often the 

preferred N-source for microalgae and the assimilation of either NO3
-
 or NH4

+ is related to the 

pH of the growth media. Using ammonia as the only source of nitrogen, the pH could drop 

significantly during the growth phase, due to a release of H+ions. Phosphorus is essential for 

growth and many cellular processes such as energy transfer, biosynthesis of nucleic acids and 

DNA. The preferred form in which it is supplied to algae is as orthophosphate (PO4
2-

)  and its 

uptake is energy dependent. Although algal biomass contains less than 1% phosphorus, in 

microalgae cultures it is often one of the major limiting factors of growth. This happens because 

it easily binds to other ions and precipitates with them, because of the precipitation the algae 

can no longer absorb it. Besides C, N, P, other fundamental elements for growth are S, K, Na, 

Fe, Mg, Ca and trace elements such as B, Cu, Mn, Zn, Mo, Co, V and Se. N, P and C are often 

limiting, and the oversupply is also no solution to the problem as this may lead to stress and 

reduced growth. Plotting the growth curve as function of time and nutrient concentration, 4 

zones can be identified (Figure 1.4): 

 

 A deficient zone (1) with low nutrient concentrations, growth increasing dramatically 

when nutrients are supplied; 

 A transition zone (2) where the critical concentration is found, and this zone growth is 

little affected by the addition of more nutrients; 

 An adequate zone (3) where no increase in growth is found with an increase in the 

supply of nutrients; 
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 A toxic zone (4) where an increase in the concentration of nutrients lead to reduce 

growth. 

 

For laboratory grown cultures the water used for making up the growth media is either single 

or double glass distilled water, membrane filtered water, or de-ionized water. The use of these 

treated waters is not possible for large-scale production purposed. In such cases either natural 

(surface or groundwater) or the available domestic waters are used. Residual chlorine may be 

present in domestic waters and this would necessitate an aging step before the water is used. 

Usually culture media are formulated such that nutrients are supplied in excess to ensure that 

they never become the rate-limiting, at least if this is the purpose of the research. 

The Table 1.1, on the next page, shows the composition of BG11 medium, widely used for 

microalgae growth of freshwater algae (Richmond, 2004). The BG11 medium, was used during 

this thesis work. 

 

 

 

 

 

Figure 1.4 Schematic growth curve in a batch culture. 1 lag phase, 2 exponential 

phase, 3 phase of linear growth, 4 stationary growth phase and 5 decline or death 

phase. (Richmond, 2004)  
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 Table 1.1 Recipes of BG11 growth medium used for growing algae. All 

concentrations are in g ∙  l-1, the quantities are for 1 litre of culture solution. 

(Richmond, 2004) 

Substance Nutrient solution (g/l) 

NaNO3 1.5 

K2HPO4·3H2O 0.04 

MgSO4·7H2O 0.075 

CaCl2·2H2O 0.036 

Citric acid 0.006 

Fe-Ammonium citrate 0.006 

EDTA, 2Na-Mg salt 0.001 

Na2CO3 0.02 

H3BO4 (g l-1) 2.86 

MnCl2·4H2O (g l-1) 1.81 

ZnSO4·7H2O (g l-1) 0.222 

NaMoO4·2H2O (g l-1) 0.391 

CuSO4·5H2O (g l-1) 0.079 

Co(NO3)2·6H2O (g l-1) 0.0494 

Adjust final pH 7.8 

 

1.1.3 Growth phases 

In unicellular microalgae, the cell size generally doubles and then the cell divides into two 

daughter cells, which will then increase in size. The cell cycle in eukaryotic microalgae is 

divided into two consecutive phases: interphase and mitosis. During the interphase, the cell 

grows, and its cellular components multiply in number, so that each daughter call can receive 

a complete set of replicated DNA molecule and a sufficient number of organelles and 

components. Then follows the mitosis during which the nuclear division takes place. As 

mentioned in the previous paragraph, growth is strongly influenced by various factors such as 

the accumulation of toxic metabolites or a law nutrients concentration. In fact, the development 

of secondary metabolites is often appreciable in the growth phases. Finally, when the energy 

is no longer sufficient for the maintenance of the vital function of the cell, we witness the 

decline and death of the same. This phase can be accompanied by the formation of spores that 

survive in critical and unfavorable conditions and then “reborn” in better conditions, in order 

to guarantee the survival of the specie (Richmond, 2004). Microalgae growth in a batch culture 

can be described through four phases (Figure 1.4): 

 

 Lag phase (1): this is a phase of latency where microalgae must acclimate to new 

conditions such as medium composition, light intensity, temperature, etc. This growth 

delay can also be caused by the presence of dead cells in the initial inoculum. This 
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period of physiological acclimatization is closely linked to the phases of growth of the 

pre-inoculum and to the new phases of growth of the inoculum. 

 

 Exponential phase (3): during this second phase, the cell density increases as a 

function of time according to a logarithmic function. The growth rate is always positive 

in the considered period of time and is dependent on the concentration of nutrients in 

the culture medium, the intensity of the light, pH and temperature. One factor to keep 

in mind is the shading (shadow caused by the increase in cell density within the growth 

space), which is minimal in the first part of the exponential phase. The time required to 

double the number of cells is defined doubling time (td), or generation time. It is the 

time necessary for microalgae to grow and produce a new generation of cells. The 

number of cells in an exponentially growing microbial culture could be mathematically 

described as follows: 

 

2
0
N0→2

1
N0→2

2
N0→2

3
N0→2

n
N0  (1.4) 

N0= Initial number of cells  

n = Number of doublings (generation) 

 

Number of doublings (n) at time interval t, is determined by the relation t/td. Thus, the 

number of cells (Nt) in an exponentially growing culture after being incubated for some 

time t, can be estimated: 

Nt=N02
n
=N02

t td⁄
 (1.5) 

Nt N0⁄ =2
t td⁄

 (1.6) 

ln(Nt N0⁄ )=(ln2) t td⁄  (1.7) 

During the exponential growth phase, the growth rate of the cells is proportional to the 

biomass of the cells. Since biomass generally can be measured more accurately than 

the number of cells, the basic microbial growth equations are often expressed in terms 

of mass. Hence, the Equation 1.7 can be modified, by assuming the biomass 

concentration at time 0 (initial) and time t as Xo and Xt, respectively: 

ln(Xt X0⁄ )/t =  0.693 td⁄  (1.8) 

d(ln X)/dt = 0.693/td (1.9) 

d(ln X)/dX∙ dX d t=⁄  0.693/td (1.10) 

1 X⁄ ∙ dX dt⁄  = 0.693/td (1.11) 

μ = 0.693/td (1.12)  
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Where μ represents the specific growth rate (d-1) of the culture. It defines the fraction 

of increase in biomass over a unit time, i.e. an increase of certain g-biomass from every 

g of existing biomass per day. Specific growth rate represents the average growth rate 

of all cells present in a culture, but not necessarily the maximum specific growth rate 

of the individual cells, as most microbial cultures divide asynchronously. 

 

 Stationary phase (4): The cell growth rate in this phase is very slow or even zero, 

usually corresponds to high cell concentration. Nourishing the nutrients in a balanced 

way, culture can be maintained at this stage. 

 

 Death phase (5): usually this phase manifests itself when culture reaches a high cell 

concentration, in this case the nutrients are limiting, and this entails the death of the 

cultivated species (Lee, 2016). 

1.1.4 Microalgae cultivation technologies 

Algal cultures in a controlled environmental have been considered of strategic importance for 

the production of biomasses of various uses. The most recent frontier of algae culture aims to 

obtain large quantities of vegetable raw material to extract oils and substances with high 

nutritional value. In order to maximize the yields of the industrial plants destined to algal 

cultures, great attention was paid to the management of the optimal growth parameters in 

cultivation. The most studied parameters were the photoperiod, the quality of the light 

radiation, the temperature, the contribution of micro and macronutrients that can more 

stimulate the production of oils. The cultivation of unicellular algae biomass in a controlled 

environmental is part of the aquaculture activities of aquatic organisms. The protocols for the 

production of algae biomass are numerous and different among themselves for the system used, 

for the size, for the chemical-physical parameters and for the composition of the culture 

medium. The algal biomass cultures are essentially divided into two categories: indoor and 

outdoor.  The indoor cultures are placed inside closed structures where it is possible to control 

all the growth parameters including the light radiation. This implies higher production costs 

but a higher yield thanks to the tighten internal control. Outdoor systems are logically cheaper 

thanks to the solar light intensity, but on the other side they are less controllable. The systems 

can also be divided into open or closed, the first use as environmental culture large tanks, 

canals, ponds or units with low water circulation, in the form of panels or circuits, made of 

polycarbonate pipes with forced circulation. The closed culture systems, also called 

photobioreactors, use large polyethylene bags or photobioreactors, cylindrical, helical annular 

and panel, to which radial energy is provided semi-continually or continually. Therefore, in the 

choice of the culture system we must consider various factors such as the physiological needs 
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of the algae, the quality of the products to be obtained and the economic aspect (Di Martino 

and Stancanelli, 2015). 

The most widespread microalgae cultivation technologies will now be briefly described: 

 

 Open Ponds (Figure 1.5). Open Ponds culture is cheaper than culture in closed 

photobioreactors and are the simplest cultivation systems used for large scale 

microalgae production, but it is limited to a relatively small number of algae species. 

Furthermore, commercial outdoor cultivation is generally restricted to tropical and 

subtropical zones in regions of low rainfall and low cloud cover. This type of system 

differs in shape, size, building materials and mixing equipment. Small ponds are more 

expensive to build per unit area than large ponds, the size affects water circulation, 

which in turn affects the design and operating costs. The final product destination 

affects pond choice: if the biomass is used for human consumption, the system must be 

capable of “cleaner” production on the contrary if the biomass is used for animal feed 

or energy a very high level of cleanliness is not required (Borowitzka, 2005).  

 

 

 

 Closed Photobioreactors (PBRs) (Figure 1.6). This type of systems is characterized 

by the regulation and control of nearly all biotechnologically important parameters as 

well as by the following fundamental benefits: a reduced contamination risk, no CO2 

losses, reproducible cultivation conditions, controllable hydrodynamics and 

temperature, and flexible technical design. Closed photobioreactors are currently tested 

for microalgae mass cultures in the following configurations: tubular system (bags, 

plastic, glass), flattened, plate-type system and ultrathin immobilized configurations. 

Thanks to the above-mentioned benefits, this type of reactors allows to obtain high 

production efficiency, but the maintenance of the entire production system proves to be 

Figure 1.5 Open Ponds. (http://www.algaedetective.com) 
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expansive. This problem still limits the cost-effective production of microalgae biomass 

on large scale.  

 

 

The high uncertainly on the practicability of the cultivation at large scale microalgae cultivation 

requires continuous technological improvements and constant research. On this front, many 

researchers are engaged in the optimization of production processes to make this type of 

cultivation economically more advantageous. 

1.2 Photosynthesis 

Photosynthesis depicts a unique process of sunlight energy conversion. In this process, 

inorganic compounds and light energy are converted to organic matter by photoautotrophs 

(microalgae belong to this group). Virtually, all form of life on Earth depend directly or 

indirectly on photosynthesis as a source of energy for their metabolism and growth. This 

photosynthetic apparatus is organised in special organelles (Figure 1.7), the chloroplasts, which 

contain alternating layers of lipoprotein membranes (the thylakoids) and aqueous phases (the 

stroma) (Staehelin and Arntzen, 1986). All the chlorophyll and the photosynthetic reactions are 

located and take place in the thylakoid membranes and in most algal strains, the thylakoids are 

organised in pairs or stacks of three. 

The thylakoid membrane contains five major complexes: light-harvesting antennae, 

photosystem II (PSII) and photosystem I (PSI) both containing a reaction centre, cytochrome 

b6/f and ATP synthase, which maintain photosynthetic electron transport and 

photophosphorylation. 

Carbon reduction reactions, which are catalysed by hydro soluble enzymes, take place in the 

stroma, the chloroplast region surrounding the thylakoids.  

 

 

Figure 1.6 Closed Photobioreactors PBRs. (http://www.variconaqua.com) 
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Photosynthesis can be expressed as a redox reaction driven by light energy, in which CO2 and 

water are converted to carbohydrates and oxygen. The conversion is traditionally divided into 

two stages, the so-called light reactions and dark reactions (Figure 1.8). In the light reactions, 

which are legate on photosynthetic membranes, the light energy is converted to chemical 

energy supplying a biochemical reductant NADPH2 and a high energy compound, ATP. In the 

other reactions, the dark reactions that take place in the stroma, NADPH2 and ATP are used in 

the sequential biochemical reduction of CO2 to carbohydrates (Masojìdek et al., 2004). The 

overall equation photosynthesis in vascular plants describes an oxidation-reduction reaction in 

which H2O donates electrons (as hydrogen) for the reduction of CO2 to carbohydrate (CH2O): 

 

CO2+H2O→O2+(CH2O) (1.13) 

 

The conversion of CO2 to carbohydrate or other compounds, takes place in four distinct phases, 

these phases are called Calvin-Benson cycle: 

 

1. Carboxylation: in this phase, CO2 is added to the 5-carbon sugar (Ribulose phosphate) 

and forms two molecules of phosphoglycerate (6-carbon). The Rubisco enzyme 

catalyses this phase. 

 

2. Reduction: the phosphoglycerate is convert in 3-carbon products in two steps, in first 

with the use of ATP and secondly with the use of NADPH2. 

 

Figure 1.7 Chloroplast, schematic diagram. (Nelson, 2006) 
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3. Regeneration: Ribulose phosphate is regenerated for subsequent CO2 fixation; this 

phase is completed by the action of the transketolase and aldolase enzymes. 

 

4. Production: the main end products are carbohydrates but there are also fatty acid, 

amino acids and organic acid. The variety of the formed products depends on different 

conditions such as light intensity, nutrition and CO2 and O2 concentrations (Nelson, 

2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.1 Mechanisms of regulation 

 

The mechanisms of regulation of the photosynthetic apparatus will now be introduced, thus 

offering a more general panoramic approach and anticipating the phenomenon of chlorophyll 

fluorescence, a fundamental part of this work thesis. 

The light energy is harvested by organic pigments that are contained in all photosynthetic 

organism, these pigments can be chlorophylls (Chl), carotenoids or phycobilins. All the 

pigment molecules in a photosystem can absorb light (Figure 1.9), but only few chlorophyll 

molecules associated with the photochemical reaction centre are specialized to transduce light 

into chemical energy. 

Figure 1.8 In the light reactions generate NADPH and ATP at the expense of solar 

energy, in the dark reactions, these products are used in the carbon-assimilation 

reactions, to reduce CO2 to form carbohydrate. (Nelson, 2006.) 
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Light is also a particle, which we call photon, and each photon contains an amount of energy 

that is called a quantum. The sunlight is like a rain of photons of different frequencies (ν) and 

the energy (E) of a photon depends on the frequency of the light according to Planck’s law: 

 E = h∙ ν        (1.14)                                       

       

where h is Planck’s constants (6.626×10
-34

Js).  

Chlorophyll appears green because it absorbs light mainly in the red and blue parts of spectrum, 

so only some of the light enriched in green wavelengths about 550 nm is reflected. The 

absorption of light is described by Equation: 

 Chl + hν → Chl
*
  (1.15) 

                   

 

Where, Chl represents chlorophyll at the lowest-energy state, ℎ ∙ 𝜈 represents a photon and Chl* 

is the chlorophyll at the higher-energy state, or excited state.      

Observing the Figure 1.10, we can see how the distribution of electrons in the excited molecule 

is somewhat different from the distribution in the ground-state molecule. Absorption of blue 

light excites the chlorophyll to a higher energy state than absorption of red light because the 

energy of photons is higher when their λ wavelength is shorter. Chlorophyll in the higher 

excited state is highly unstable and very rapidly gives up some of its energy to the surroundings 

as heat, and enters the lowest excited state, where it can be stable for a maximum of several 

nanoseconds (10-9 s), by reason of this strong instability any process that captures its energy 

must be extremely fast.  

               

Figure 1.9 Electromagnetic spectrum. Wavelength (λ) and frequency (ν) are 

inversely related. The visible region extends from about 400 nm (violet) to about 700 

nm (red). (Taiz and Zeiger, 2010) 
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In the lowest excited state, the excited chlorophyll has three alternative pathways for disposing 

of its available energy: 

 

1. Photochemical: the energy of excited state is transferred to the reaction centre, thus 

allowing the photochemical reactions. These reactions are among the faster chemical 

reactions, this speed is essential for the photochemical process to compete with the 

other possible reactions of the excited state. 

 

2. Heat: the chlorophyll can return to its basal state, converting the excitation energy in 

form of heat, without emitting photons. 

 

3. Fluorescence: the excited chlorophyll can emit a photon and return to its basal state; 

this process is called fluorescence. The wavelength of fluorescence is always longer 

than that of absorption at the same electronic state, since a part of the excitation energy 

is converted into heat before the photon is emitted. The chlorophylls are fluorescent in 

the red region of the spectrum, see Figure 1.11 (Taiz and Zeiger, 2010). 

 

 

 

Figure 1.10 Light absorption and emission by chlorophyll. (A) Energy level diagram. 

(B) Spectra of absorption and fluorescence. (Taiz and Zeiger, 2010) 
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In the paragraph §2.3.4 we will deepen the concept of chlorophyll fluorescence, process that is 

of fundamental importance for this entire study. We will talk about the process from a 

chemical-physical point of view and about the appropriate instrument used for its detection. 

1.3 Industrial applications of microalgae  

This section aims to provide the reader with a brief overview of the main applications of 

microalgae. Even if the application for energetic purposes is the best known and studied in 

reality there are other growing markets that utilize this raw material from high nutritional 

properties. In fact, it ranges from the production of biofuels to the pharmaceutical and cosmetic 

industries, from the production of food additives for human purposes to animal feed. 

We want to introduce some notes about the field of biofuels and its development. In these last 

years, ecologically and politically sustainable development models have been investigated due 

to the need to meet the high energy demand of an increasing word population, and also to 

reduce greenhouse gas emission and the effects of global warming at the same time. In 2013, 

world demand of diesel fuel reached nearly 26.1 thousand barrels per day and it is expected to 

be 36.1 thousand barrels per day in 2040 (OPEC, 2015). Recent studies have shown how the 

production of biodiesel from microalgae is a promising way to obtain both a high quality and 

environmentally-friendly diesel fuel. Microalgae can accumulate various types of high-energy 

compounds, such fatty acids and triacylglycerols, which are the principal components for 

biodiesel production (Leite et al., 2013).  

After a period of growth that allows the development of microalgae, the biomass is usually 

separated through centrifugation, filtration techniques or flotation. Once this raw material is 

obtained, different refining processes can be carried out, according to the final product to be 

Figure 1.11 False colour image shows the difference in FLUORESCENCE that specific 

cameras observe during the scans. (https://cahnrs.wsu.edu) 
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obtained. Through a process of extraction such as transesterification biodiesel can be obtained, 

or through the use of supercritical fluids such as CO2, high value compounds can be obtained. 

In addition, gasification, combustion and fermentation processes make it possible to obtain, 

bio-plastic, ethanol, bio-hydrogen and green energy (Patel et al., 2017). 

Precious co-products, such as proteins and pigments, can be obtained from microalgae through 

the modulation of biomass composition by modifying the nutritional requirements, growth 

conditions and process technologies (Bona et al., 2014) based on the use desired final use. As 

regard the nutraceutical sector, a few compounds synthesized by microalgae have indeed 

proven to possess anti-inflammatory, antiviral, antimicrobial, and antitumoral features; 

astaxanthin, a known antioxidant produces by Haematococcus pluvialis, is an illustrative 

example with important anti-inflammatory and antitumoral roles (Guendales et al., 2010). 

Hereafter in Table 1.2, some species of microalgae and their lipid content will be listed. 

 

 
                      Table 1.2 Lipid content and productivity of freshwater and marine species. (Mata et 

al., 2010) 

Marine and freshwater 

microalgae species  

Lipid content (% dry 

weight biomass) 

Lipid productivity 

(mg/l/day) 

Chlorella protothecoides  14.6-57.8 121.4 

Chlorella vulgaris 5.0-58.0 11.2-40.0 

Chlorella  18.0-57.0 18.7 

Dunaliella salina 6.0-25.0 116.0 

Dunaliella primolecta 23.1 - 

Euglena gracilis 14.0-20.0 - 

Haematococcus pluvialis 25.0 - 

Isochrysis galbana 7.0-40.0 - 

Monodus subterraneus 16.0 - 

Nannochloropsis oculate 22.7-29.7 84.0-142.0 

Nannochloropsis sp. 12.0-53.0 37.6-90.0 

Pavlova salina 30.9 49.4 

Scenedesmus obliquus 11.0-55.0 - 

Scenedesmus 

quadricauda  

1.9-18.4 35.1 

Spirulina platensis 4.0-16.6 - 

Tetraselmis suecica 8.5-23.0 43.4 
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Another microalgae now renowned for its nutritional properties is Spirulina (Figure 1.12), 

which has now become common in many food supplements. It contains phycocyanin a pigment 

with antihypertensive effect useful in lowering blood pressure, Spirulina benefits have also 

been shown to prevent atherosclerosis and reduce elevate blood cholesterol levels (Cheong and 

Kim, 2010). It can also curb hunger and overweight people seem to benefit the most, moreover, 

compared to placebo trials, this microalgae is effective in reducing itching, nasal discharge, 

nasal congestion and sneezing in case of allergenic rhinitis (Saying et al., 2013).  

 

 

The application of microalgae in cosmeceutical products have recently received more attention 

in the treatment of skin problems, such as aging, tanning and pigment disorders. The name 

“cosmeceutical” is derived from cosmetics and pharmaceutical, indicating that a specific 

product contains active ingredients. These active ingredients are -3 fatty acids, essential 

amino acids, vitamins A, B, C and E, sulphated polysaccharides, tyrosinase inhibitors and 

phlorotannins, now widely recognized for their antioxidant properties and skin protective 

effects (Noel Vinay and Se-Kwon 2013).  

Finally, it can be mentioned the possibility of coupling the microalgae production process to 

industrial CO2 mitigation and wastewater treatments to finally recycle carbon, nitrogen and 

phosphorous. Microalgae can sequester carbon dioxide thereby reducing greenhouse gases (Ho 

et al., 2011) and do not compete with food production or deplete soil nutrients.  

The fields of application (Figure 1.13) are therefore innumerable and multi-faceted, united by 

constant research and the continuous development of improvements. 

      Figure 1.12 Spirulina. (http://www.stylecraze.com) 
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1.4 Objective of this work 

Reading the previous paragraph, we can easily understand how microalgae represent a 

promising field for various industrial sectors, ranging from sustainable production of biofuels 

to the extraction of high value-added products. To make these microorganisms “attractive” to 

the industrial sectors, their growth process must be further optimized. Since the microalgae 

growth is directly dependent by huge numbers of variables (e.g. light intensity, nutrients 

concentration and temperature), numerous and time-consuming experiments are required to 

assess their impact on the growth. For this reason, microscale technologies are emerging as a 

valuable tool to improve data production and accordingly to speed up the optimization process, 

while maintaining a high experimental reliability (Perin et al., 2016). 

Since this kind of microfluidic devices does not allows an optimal carbon dioxide supply from 

the atmosphere, the first aim of this work consists on the design of an efficient CO2 supply 

system thus granting a non-limiting condition for the microalgae growth. In this study, 

microalga Scenedesmus obliquus is chosen as a reference species to assess the effectiveness of 

the proposed supply protocol. 

Figure 1.13 A conceptual microalgal system for combined biofuels production, CO2 

bio-mitigation, and N/P removal from wastewater. Inputs: carbon source, CO2, 

nitrogen and phosphorus sources, N/P rich wastewater; energy source, solar energy. 

(http://www.climatetechwiki.org) 
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The microalgae growth is evaluated in vivo by measuring the fluorescence emitted by the 

chlorophyll contained in the algae, the correlation between cell concentration and fluorescence 

was obtained through an appropriate calibration line. 

 

 



 

 

Chapter 2 

Materials and methods 

In this chapter, the general concepts concerning the microfluidics technology (science) and the 

micro-photobioreactor (micro-PBR) will be presented. Secondly, the equipment, the materials 

and the methods adopted to monitoring the microalgae growth will be described.  

2.1 Microfluidics 

Microfluidics is the science and engineering of system in which fluid behaviour differs from 

conventional flow theory primarily due to the small length scale of the system. 

 

Microfluidics is a recent research field that concerns the manipulation and the transport of small 

amounts of liquid (1pl – 1ml) in channels of micrometric dimension. Microfluidics can be 

considered both a science and a technology depending on whether it is a study of microfluidic 

behaviour or a study with a microfluidic device. The Figure 2.1 shows the volume scale and 

length scale of different microfluidic devices. 

 

 

 

Figure 2.1 Size characteristics of microfluidic devices. (Nguyen and Wereley, 2006) 
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Fluids behave very differently on the micrometric scale than they do in a macrometric scale: 

these unique features are the key for new scientific experiments and innovations.  

Microfluidics has the potential to influence many areas of interest, from chemical synthesis 

and biological analysis to optics and information technology. In any case, this science and 

technology is in continuous development. In each field of interest, it is necessary to identify 

the purpose of the research and find the most appropriate solution. Often various problems need 

to be addressed and features such as imagination and ingenuity are necessary. In any case, the 

advantages in using this technology are countless and some of them will be listed below 

(Whitesides, 2006): 

 

 ability of using small quantities of samples and reagents and carry out separations 

and detections with high resolution and sensitivity; 

 faster analyses due to the shorter reactions and/or separation times; 

 low cost and global cost reduction for analysis; 

 formats more compact and more versatile; 

 accurate measurement, microfluidics allowing to increase the measurement 

resolution in given applications; 

 enhanced temperature control; 

 easier automation and parallelization; 

 ability to obtain many data in a single experiment. 

 

The field of microfluidics derives from the microanalytical methods and has four parents: 

molecular analysis, biodefence, molecular biology and microelectronics. 

Thanks to the development of increasingly advances technologies in the manufacturing field, 

in recent decades we have witnessed a growing interest in the sector of microfluidic devices. 

Over the 80s, a new sort of devices called Micro Electro Mechanical System (MEMS) emerged, 

allowing industrial applications. In the 90s, researchers spent a lot of time investigating the 

applications of MEMS in biology, chemistry and biomedical fields in order to allow the control 

of liquids in microchannels, in the late 90s, the use of soft-lithography allowed the production 

of chip microfluidics devices by using moldings of polymer. In the early 2000s, technologies 

based on molding microchannels in polymers like PDMS encountered a great expansion and a 

large number of laboratories were able to conduct microfluidic research (ELVESYS R&D 

team, 2018a). 

2.1.1 Microfluidic device 

In order to consider a device microfluidic, at least one dimension of the channel must be in the 

range of micrometers. These devices are very adaptable and allow the integration of lab 
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routines in one single chip (lab-on-a-chip). Lab-on-a-chip is a term used to describe a device 

where multiple actions are carried out, comparable to those performed inside a laboratory 

(sampling, trapping and sorting, treatment and analysis). Although the concept of lab-on-a-chip 

has now become widespread, it must be noted that these chips have not yet invaded the market 

but are only used in research. The main reason for this delay lies in the nature of microfluidics: 

in fact, while the possibility to produce these chips is known, the accurate control of flows and 

volumes of liquids on micro-nano-metric scale is the major problem. Indeed, move or mix 

liquids in channels of a few microns diameter involves a series of physical parameters that 

escape our macroscopic vision. The flows in these conditions are usually laminar and due to 

the high ratio area/volume, the interfaces characteristic became relevant. In microfluidics 

systems, capillary forces are more important than gravitational force, this aspect has two 

different consequences: the first is that the channels characteristics must be controlled, but 

secondly it possible to have a greater manipulation of liquids. 

The microfluidics device consists of a single chip ranging from a few millimetres to a few 

square centimetres. A microfluidic chip is a pattern of microchannels, modelled or engraved. 

This network of microchannels incorporated into the microfluidic chip is linked to the macro-

environmental by several holes of different dimensions hollowed out through the chip, it is 

through these pathways that fluids are injected into and evacuated from the microfluidic chip.  

Microfluidic systems manipulated and control fluids that are geometrically constrained within 

environments having internal dimensions, or hydrodynamic diameters, on a scale of 

micrometres. To accurate manage fluids inside the microchannels, specific systems are 

required (pressure regulators, valves, syringe pumps).  

 

 

 

 

 

 

 

 

 

 

 

The use of diverse materials for microfluidics chips such as polymers (e.g. PDMS), ceramics 

(e.g. glass), semiconductors (e.g. silicon) and metal is currently possible because of the 

Figure 2.2 Microfluidic device in PDMS. (http://www.ntnu.edu/microfluidics) 
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development of specific processes: deposition and electro-deposition, etching, bonding, 

injection molding, embossing, soft-lithography and stereolithography (especially with PDMS). 

Access to these new materials has allowed the design of chips with new features like specific 

optical characteristics, biological or chemical compatibility, faster prototyping or lower 

production costs. The final choice depends on the application (ELVESYS R&D team, 2018b). 

Moreover, the possibility of automating the procedures related to the microfluidics chip 

control, is making this technology more and more interesting. The ability to automate the 

devices moves hand in hand with the development if increasingly sensitive and precise 

equipment. 

2.2 Material and equipment 

In this paragraph the methods and the main equipment necessary for the creation and operation 

of the microfluidic chip will be listed and described. First the poly-di-methyl-siloxane (PDMS) 

will be panned, giving a brief overview of the materials and its advantages. In the last part 

experimental setup will be explained. 

2.2.1  PDMS 

Poly-di-methyl-siloxane called PDMS or dimethicone is a polymer widely used for the 

fabrication and prototyping of microfluidic chips. It is a mineral inorganic polymer with a 

structure containing carbon and silicon, of the siloxane family. Apart from microfluidics, it is 

used as a food additive (E900), in shampoos, and as an antifoaming agent in beverages or in 

lubricating oils. 

The PDMS empirical formula is (C2H6OSi)n and its fragmented formula is 

CH3[Si(CH3)2O]nSi(CH3)3 (Figure 2.3), industrial synthesis can being from 

dimethyldichlorosilane and water. Depending on the size of monomers chain, the non-cross-

linked PDMS may be almost liquid (low n) or semi-solid (high n). The siloxane bonds (Si-O) 

result in a flexible polymer chain with a high level of viscoelasticity. 

  

 

 

 

 

 

 

Figure 2.3 PDMS structure formula. (ELVESYR R&D team, 2018c) 
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For the fabrication of microfluidic devices (replica molding), PDMS liquid at ambient 

temperature, mixed with a cross-linking agent is poured into a microstructured mold and heated 

to obtain an elastomeric replica of the mold (PDMS cross-linked). 

After polymerization and cross-linking, slid PDMS will present an external hydrophobic 

surface. Polar solvents, such as water, struggle to wet the PDMS and this leads to the adsorption 

of hydrophobic contaminants from water on PDMS surface (ELVESYS R&D team, 2018c). 

To overcome this specific problem, the chip is usually subject to plasma treatment which will 

be explained later in paragraph §2.2.4   

Finally, it is necessary highlight that PDMS is an excellent material for the fabrication of 

microchannels system for use with biological sample in aqueous solution for a number of 

reason: 

 

 feature on the micron scale can be reproduced with high fidelity in PDMS by replica 

molding; 

 it is optically transparent down 280 nm so it can be used for a number of detection 

schemes (e.g., UV/V is absorbance and fluorescence); 

 it cures at low temperatures; 

 it is nontoxic; and devices made from it can be implanted in vivo; 

 it can be deformed reversibly; 

 it can seal reversibly to itself and a range of other materials by making molecular 

(van der Waals) contact with the surface, or it can seal irreversibly after exposure 

to an air plasma by formation of covalent bonds; 

 its surface chemistry can be controlled by reasonably well-developed techniques; 

 it is elastomeric, it will conform to smooth, nonplanar surfaces, and it releases from 

delicate features of a mold without damaging them or itself (McDonald et al., 2000). 

 

For this series of advantages, the micro-PBR manufacture in PDMS turns out to be the optimum 

choice, the PDMS used is the Sylgard, 184 (Dow Corning, USA). 

2.2.2 Microchip production 

The fabrication of microfluidic devices adopted in this work is divided into several step, first 

the platform is designed with the aid of 3D CAD software then the mold (WATERSHED XC 

11122(by Proto Labs)) was produced via stereolithography (SL) rapid prototyping. This 

technique is an excellent choice for project designed that require the production of very 

accurate and finely detailed parts. Stereolithography uses an ultraviolet laser focused to small 

point to draw on the surface of liquid thermoset resin. Where it draws, the liquid turns solid. 

This is repeated in thousands of thin layers until a final part is formed (Proto Labs, 2018). 
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Finally, the final device was replica-molded in PDMS. The pre-polymer Sylgard 184 (Dow 

Corning, USA) is mixed with a cross-linking agent in a ratio of 10:1 (w/w) and then poured 

onto the mold and degassed in a desiccator to eliminate air bubbles. 

 

 

During the chip and layer (necessary to guarantee sterility and avoid evaporation) 

manufacturing phases, particular attention must be paid to the two reagents mixing, the pre-

polymer Sylgard 184 (Dow Corning, USA) and the cross-linking agent. The mixing must be 

perfect in order to allow a homogeneous polymerization and to guarantee that the final micro 

device complies with all structural and material standards. Another point on which to focus is 

the degassing procedure, in this phase it is necessary to ensure the total disappearance of air 

bubbles in the polymer before it is poured into the mold. The polymer degassing phase is a 

long procedure but must be carried out in a rigorous way. Once the PDMS is poured into the 

mold, it is better to make sure that no bubbles have been created, degassing it for a few minutes. 

After curing at 50° for 3 h, the micro-PBR and the layer in PDMS are ready for use. The layer 

is punched (diameter 1.5 mm) in correspondence with the flow channels. The flow channels  

and the micro-channels in hydrophobic PDMS are difficult to wet with aqueous solutions, are 

prone to the adsorption of other hydrophobic species, and easily nucleate bubbles. Exposure to 

plasma oxidation, however, renders the surface hydrophilic because of the presence of silanol 

groups. 

Plasma treatment of silicone surfaces is a useful way of increasing wettability and to improve 

adhesion. The plasma treatment includes physical bombardment by energetic particles and by 

Figure 2.4 Schematic illustration of the procedures for fabricating chip in PDMS. 

(Qin et al., 2010) 
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ultraviolet photons, and chemical reactions at or near the surface. The resulting four main 

effects, namely cleaning, ablation, crosslinking, and surface chemical modification, occur 

together in a complex synergy, which depends on many parameters controlled by the operator. 

In this thesis work it was decided to subject the chip to a short plasma treatment (30 s) before 

autoclaving, this allows the future removal of the layer from the micro-PBR and the possibility 

to take a sample (useful for analysis). 

2.2.3 Syringe pump 

As previously mentioned in §2.1.1, microfluidics devices need special equipment because the 

flow inside the channels must be precisely controlled. The conventional pumps can generate 

flow oscillation at low flow rates and long setting times. It is especially the case when there is 

an inadequate combination of syringe size and targeted flow rate, or when a low flow rate is 

used, the reason for this behavior is mechanical. The mechanical part of the device is 

responsible for these oscillations. In order to move the piston syringe, an electrical engine sets 

an endless screw in motion, on which the piston carriage is set. When the flow rate is low, it 

happens that the step-by-step operation of the electrical engine is perceptible because the 

syringe pump piston has to move very slowly to deliver the required flow rate (ELVESYS 

R&D team, 2018d). 

In this thesis work it was used a Harvard Apparatus PHD ULTRA™ syringe pump, it is an 

excellent example of a microfluidic syringe pump that does not generate visible flow 

oscillations, even at low flow rates down to the picoliter/min. The pump can reach a minimum 

flow rate of 1.5 pl/min when using a 0.5 μl syringe. The accuracy of the PHD ULTRA™ is 

0.25% with a reproducibility of +/- 0.005%. To achieve the performance required for 

microfluidic devices, this syringe pump uses a microprocessor-controlled small step angle 

stepper motor which drives a lead screw and pusher block. Advanced micro-stepping 

techniques are employed to further reduce the step angle to eliminate flow pulsation. The 

syringe pump produced 12 800 μsteps per one revolution of the pump lead screw and has a 

minimum pusher block travel rate of μm/min (ELVESYS R&D team, 2018e). The pump can 

be oriented vertically or horizontally for optimum experimental connectivity. The pump is 

equipped with an intuitive touch screen includes pre-programmed methods, for various fluidics 

applications. All programming is done on the pump interface, all without the use of a PC. The 

PHD ULTRA™ also has the possibility to be connected with a camera and a microscope. The 

feature is very useful as more microfluidic experiments require synchronization between 

several instrumentation. 
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To operate the PHD ULTRA™, the user defines all the required parameter for infusion or 

withdrawing liquids through a Pump Control Method. The syringe pump is available in three 

configurations designed for different operating environments and varying degrees of 

operational flexibility: 

 

 Infuse Only  

 Infuse/Withdraw 

 Infuse/Withdraw Programmable 

 

In our specific case, the choice was the Infuse/Withdraw configuration. This model supports 

infusion and withdraw operations at user-definable flow rates and with selectable target 

volumes or time values to control the total volume pumped for both the infusion and withdraw 

portions of procedure (Harvard Apparatus, 2018).  

When the flow rates are changed, the device requires a setting time ranging from a few second 

to hours, this depends mainly on the elasticity of the system and how small the flow is. In any 

case, when the syringe pump is loaded, it must be ensured that the syringes are free of air 

bubbles.  

2.3 Microalgae growth monitoring  

This section is dedicated to the description of microalgae growth monitoring methods, in the 

first part we would introduce the most classic methods such as Optical Density, cell counting 

through Bürker Chamber and Dry Weight. The last part is reserved for the explanation of the 

chlorophyll fluorescence phenomenon and to its detection method using the PAM-IMAGING 

Fluorometer. 

Figure 2.5 Harvard Apparatus PHD ULTRA™. (PHD ULTRA™ Syringe Pump 

Service User’s Guide)  
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2.3.1 Optical Density  

Estimation of the microalgal biomass concentration via optical density (OD) at 750 nm 

wavelength is a rapid and common approach. However, the accuracy of this method might be 

affected by wavelength, microorganism morphology and culture medium composition. Error 

between the actual value and the predicted value is always in accepted range for biomass 

measurement (Ding et al., 2015). However, attention must be paid to the microalgae growth 

phases because only during the logarithmic growth phase cells number is related to optical 

density. When the culture reaches the stationary phases, OD increase while the number of cells 

remains constant (Sforza, 2012). 

The instrumentation used to measure optical density is the double-beam spectrophotometer 

UV-500 UV- Visible (Spectronic Unicam) (Figure 2.6). 

The purpose of this tool is to determine the amount of light at a specific wavelength absorbed 

by an analyte in a sample, therefore the analytical wavelength is chosen based on the 

absorbance characteristic of the analyte. 

 

 

 

 

 

 

 

 

 

 

 

 

The spectrophotometer consists of two lamps, one that covers the visible spectrum (930-300 

nm) and one that emits a continuous spectrum below 400 nm (UV). 

For the microalgae optical density measurements, a wavelength of 750 nm is chosen, at this 

specific wavelength the chlorophyll contained in the algae does not absorb photons. This allows 

us to say that the absorbance detected is due only to the light diffraction caused by the cells 

and the solid particles contained in the sample. These measures are not actually absorption 

measurement but light scattering measures, scattering is a phenomenon of interaction between 

matter, in this specific case cells, and light. 

Figure 2.6 Spectrophotometer UV-500 UV-Visible (Spectronic Unicam). 

(www.Labequip.com) 
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To detect the absorbance, the sample must be diluted appropriately so that the measurement is 

between a value of 0 and 1, because outside this range the linearity of the absorbance with 

respect to the cells concentration is not maintained. Before making the actual measurement, it 

is necessary to make a measure with blank sample, this sample is composed by algal culture 

medium, this test is necessary because the background noise of the instrument must be 

removed. After that procedure, it is possible to make an OD measurement, the number that 

appears on the display will be multiplied by the dilution factor in order to obtain the final result. 

This type of measurement is very useful to have a quick estimate of the pre-inoculum, in the 

initial phase of the experiment. 

2.3.2 Bürker Chamber 

Bürker chamber is a counting chamber serve to determine the number of particles per volume 

unit of a liquid. The particles in this case are microalgae and they are visually counted under a 

microscope. The Bürker chamber showed in Figure 2.7a has a spring clips and is a glass support 

measuring 7.5×3.5 cm size and 4 mm thick. 

 

 

 

 

 

 

 

 

 

 

The chamber is made up of two cells 0.1 mm deep, on which 9 squares 1×1 mm are engraved, 

divided by three continuous lines (reticulum). Each of these 9 squares is divided into 16 small 

squares by a double line. The count occurs on the 3 squares diagonally, as show in the Figure 

2.7b, and the average is calculated. The cell count is carried out by taking a sample (2 ml) and 

diluting it by a factor between 5 and 50 depending on the estimated concentration. Each cell is 

loaded with 10 μl of the diluted sample it is now necessary to wait 5 minutes for the cells to 

settle on a single focal plane. Finally, we proceed with the count and the calculation of the cell 

concentration through the following formula: 

 

                                             
cells

ml⁄ = (
∑ counted cells

3
⁄ ) ∙dilution∙10

4 (2.1) 

 

(a)                                                     (b) 

Figure 2.7 Bürker chamber and the reticulum 
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The term 104 represents the volumetric factor which depends on the volume of the Bürker 

chamber (1/0.0001 ml). Also, in this case the measure also serves to identify the initial 

concentration of the pre-inoculum. 

2.3.3 Dry Weight  

The dry weight (DW) allows to determine the quantity of algae biomass per unit of volume. 

The procedure consists in taking 5 ml of sample which will be filtered through a Whatman NC 

20 Membrane filter (0.2 μm pore diameter) placed over a vacuum flask, fixed with a Buchner 

steel funnel. The filter must first be weighed with a precision balance Atilon Acculab Sartorius 

Group (with a display precision of 0.0001g), after being placed in the oven for 20 minutes in 

order to eliminate humidity. After filtering the sample, the filter should be placed in the oven 

for 2 h at 100 °C. The filter taken gently from the oven is weighed (gross weight), to this the 

weight of the filter is subtracted, in this way we obtain the weight of the microalgae biomass 

(net weight), from which it is possible to calculate the culture concentration (g/l) in terms of 

DW with the following formula 2.2: 

 

 

DW (g l⁄ )=
(gross weight-net weight)∙1000 

sample volume⁄  (2.2) 

 

2.3.4 Chlorophyll fluorescence and PAM-imaging Fluorometer  

In this thesis work, it was necessary to apply a simple and non-invasive method able to evaluate 

the microalgae growth that allows an on-site evaluation of the same without compromising the 

experiment. The use of classical techniques such as OD, DW and cell counts with Bürker 

chamber implies the collection of quantities not negligible with respect to the adopted 

microfluidic system. Each well of the microphotobioreactor contains a volume of 20 μl, it is 

therefore impossible to take samples of quantities useful for the analysis and furthermore the 

sampling would definitively compromise the progress of the experiment. In the photosynthesis 

researches a functional and advantageous techniques is the in vivo measurement of chlorophyll 

fluorescence. Through the use of an instrument called fluorometer it is possible to measure 

fluorescence, which is directly related to algal growth, an increase in fluorescence indicates an 

increase in cell concentration, because the chlorophyll fluorescence reflects the activity of PSII 

(Murchie and Lawson, 2013). By a suitable calibration line, it is possible to quantitatively 

define microalgae growth (Perin et al., 2016). After having previously introduced chlorophyll 

photosynthesis in section §1.2, chlorophyll fluorescence will now be introduced.  
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The possibility of quantifying the chlorophyll fluorescence directly reflects the performance of 

photochemical processes in PS II because the contribution of PS I emission in the total signal 

is usually neglected for practical purposes (we ignore emission from PSI largely because the 

signal does not make a significant contribution below 700 nm (Murchie and Lawson, 2013). 

The absorbed light energy can dissipate as heat (re-emitted) or can be used to excited 

chlorophyll molecules in PS II (drive photosynthesis) or alternatively re-emitted as 

fluorescence, in any case the amount of light energy absorbed is equal to the sum of the energy 

divided between these three different dissipation processes (see paragraph §1.2.1).  

Each variation in photochemical process or in heat generate a variation in fluorescence. This 

allow a direct knowledge of energy contents in the PS II. In the dark phase all the reaction 

centres are “open” and the fluorescence in this state is minimal and is defined as 𝐹0  or 

background fluorescence. Many instruments have the capacity to apply a weak far-red (FR) 

light to measure F0 (typically a few seconds) (Murchie and Lawson, 2013). When the PS II are 

exposed to strong light pulses, the reaction centres undergo a charge separation and the electron 

is moved to the first electron acceptor Q
A

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once Q
A is reduced, the reaction centres are defined as “closed” and the photochemistry is 

temporally blocked. Since the photochemistry is zero, the dissipation (heat) and fluorescence 

increase proportionally, and the maximum fluorescence value is defined as Fm. If a sufficiently 

strong actinic light is now applied, the yield of fluorescence increases proportionally with the 

Figure 2.8 A stylized fluorescence trace of a typical experimental using dark-adapted 

leaf material to measure photochemical and non-photochemical parameters. The 

Kautsky effect represent the complex fluorescence emission dynamics of chlorophyll 

and the photochemical yields of plants during the transition from a state adapted to 

darkness to a light adapted state. (Murchie and Lawson, 2013). 
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level of closure of PS II, in this sense the reaction centre acts as a fluorescence quencher. This 

phenomenon is called photochemical quenching qP and can be calculated as (Fm-Ft)/(Fm-F0), 

where Ft is a steady-state yield of fluorescence. The value of q
P
 range from 0 to1 reflecting the 

relative level of Q
A

 oxidation. The difference between the maximum fluorescence Fm (all Q
A

 

reduced) and minimum fluorescence F0  (all Q
A

 oxidiser) is denoted as the variable 

fluorescence Fv. The ratio between variable fluorescence and maximum fluorescence Fv Fm⁄  

varies between 0.65 and 0.80 in green algae adapted to the dark. When the photosynthetic 

apparatus is exposed to light, a decrease in Fm is usually observed (lowered fluorescence in 

light phase Fm
L ). This phenomenon is called non-photochemical quenching and represents an 

increase heat dissipation of excitation. The non-photochemical quenching is inversely related 

to photochemistry and it’s a sort of safety valve protecting PS II reaction centres from damage 

by excess irradiance (Masojìdek et al., 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fluorescence parameters described above, and the relative calculations are shown in the 

Table 2.1. 

 

 

Figure 2.9 Schematic representation of absorbed light energy distribution in the PS 

II complex between photochemistry ΦP, fluorescence ΦF and non-radiative 

dissipation ΦD; the latter ΦD can occur in the antennae as well as in the reaction 

centre. ΦP, ΦF, ΦD represent the yield of photochemistry, fluorescence and non-

radiative dissipation, respectively. (Masojìdek et al., 2004) 
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Table 2.1 Parameters calculated from the chlorophyll fluorescence measurements; 

where 𝐹0 , 𝐹𝑣  and  𝐹𝑚  are respectively the background, variable and maximum 

fluorescence in the dark phase; while 𝐹0
𝐿 , 𝐹𝑡  and 𝐹𝑚

𝐿  represent the background, 

steady-state and maximum fluorescence in the light phase. (Masojìdek et al., 2004) 

Parameters  -  

Photochemical maximum 

yield PS II 
𝐹𝑣 𝐹𝑚⁄  

𝐹𝑣 𝐹𝑚⁄ =
𝐹𝑚 − 𝐹0

𝐹𝑚

 

Photochemical effective 

yield PS II 
𝛷𝑃𝑆𝐼𝐼 

𝛷𝑃𝑆𝐼𝐼 =
𝐹𝑚

𝐿 − 𝐹𝑡

𝐹𝑚
𝐿

 

Non-photochemical 

quenching 
𝑞𝑁  

𝑞𝑁 = 1 −
𝐹𝑚

𝐿 − 𝐹0
𝐿

𝐹𝑚 − 𝐹0

 

Photochemical 

quenching 
𝑞𝑃  

𝑞𝑃 =
𝐹𝑚

𝐿 − 𝐹𝑡

𝐹𝑚
𝐿 − 𝐹0

𝐿 

Stern-Volmer coefficient 

of non-photochemical 

quenching 

𝑁𝑃𝑄 
𝑁𝑃𝑄 =

𝐹𝑚 − 𝐹𝑚
𝐿

𝐹𝑚
𝐿

 

 

 

The instrument used for the analysis of fluorescence images is the Open FluorCam FC 800-O 

(Photon Systems Instruments), shown in the Figure 2.10. It is an instrument with flexible 

geometry enabling work with samples of various sizes. The Open FluorCam FC 800-O consists 

of a CCD camera (charge-coupled device) with a particular sensor for image capture, four fixed 

LED panels to which they can be applied 7 different emission filters. The four LED panels can 

be arranged at various angles and distance from the sample. The position of the camera may 

also be adjusted with respect to the sample height. One pair of LED panels provides Measuring 

Light ML and Actinic Light Act1 (red-orange 617 nm). Other two panels provide Actinic Light 

2 Act2 and Saturating Pulse (cool white light, 6500 K). The instrument constructs the image in 

four phases: 

 

1. capture of the image; 

2. image segmentation; 

3. analysis; 

4. visualization. 

 

The timing and amplitude of actinic irradiance are determined by user defined protocols. The 

instrument also includes a high-performance PC and comprehensive software package 

comprising full system control, data acquisition and image processing.The LED can in some 

cases be a source of error the measurement, despite the high performance (response interval 

below the second, light intensity twice as far as the sun), inasmuch the signal can hit the sample 
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in a non-homogeneous way. It is therefore necessary to make sure that the sample is correctly 

housed under the light source. 

Once the signal has been sent to the sample under analysis, the CCD camera collects the 

fluorescence image after its passage in a filter that allows the passage of a light in red and in 

far red (λ > 690 nm). The dynamic images captured are digitalized via a digital convertor, in 

12 or 14 bit data and transferred to the PC where they are stored. Finally, through the use of a 

specific software the data are processed to determine the photochemical parameters and 

generate images of fluorescence signal at any moment of the experiment and present them 

using a false color scale. 

Depending on the sample to be analyzed and the data to be obtained a specific protocol must 

be set, that is the specifications concerning the shutter, Act1, Act2 and saturating pulse to be 

supplied to the program. The phase of choice of the measurements protocol plays a very 

important role since all the data obtained will depend on it, it must ensure that the data are 

consistent and that the noise of the instrument and of the sample do not interfere too strongly. 

 

2.3.5 Fluorescence measurement protocol 

Each measurement is preceded by a period of adaption in the dark, in this phase the sample is 

placed in a dark room. The adaption in the dark of a photosynthetic sample, has the purpose to 

obtain the complete oxidation of the plastochinone and therefore to open the reaction centers. 

This operation is necessary in order to measure the photosynthetic performance, in this specific 

case the background fluorescence (F0) (Figure 2.8). 

The need to carry out various measurements throughout the day has led us to evaluate the 

influence of the period of dark adaptation on the measure. Starting from a dark period of 20 

minutes (Perin et al., 2016) we went down to 15 and finally to 5 minutes, the different measure 

of F0 were compared and there was not a large variation between the measures conduced after 

Figure 2.10 Open FluorCam FC 800-O (System Instrumentation). 

(http://www.psi.cz/products/fluorcams/open-fc-800-o-1010) 
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20 or 5 minutes. We therefore chose to adopt a dark adaptation period of 5 minutes, in this way 

the in vivo fluorescence measurement is closer to on-line measurement. 

After a period of 5 minutes, a low intensity measurement light (ML) is activated which is not 

able to activate the photochemical process in which qP=1 and qN=0. 

Under these conditions it is possible to measure F0 . In this work the values of F0  were 

measured, as direct index of the chlorophyll content. Unlike Fm the background fluorescence 

values are less, because of this reason and of the background noise of the instrument 

(considered significant), the initial concentration of the inoculum (cells×106/ml) must be high 

enough to give a good response in F0 (F0 higher than the background noise of the instrument). 

Below are the values for the camera and light setting used in the analyses at the FluorCam 

software: 

 

Shutter = 2; 

Sensitivity = 5; 

Act1 = 100; 

Act2 = 20; 

Super = 20; 

 

The Shutter determines the duration of interval during which the electronic shutter is open 

(during the measurements). A Shutter equal to 2 means an aperture of 33 μs. The sensitivity 

of detection is defined by the Sensitivity = 5. The sensitivity scale is linear (0-100%), a 

low Sensitivity has been chosen to overcome the over-pixel problems of the instrument 

analysis. 

2.4 Correlation of cell concentration - F0 

The correlation between cell concentration and fluorescence intensity was verified by 

inoculating the micro-PBR with 6 different concentrations each in quadruple copy (see Figure 

2.11). Maintenance of the pre-cultured in the flasks is guaranteed by periodic refilling (every 

3 or 5 days) of medium BG11, this allows to keep algae in the exponential phase. 

The steps that precede the inoculum can be summarized as follows: 

 

1. The pre-inoculum is taken from the flask (in the middle of the exponential phase) and 

the following analyses are performed: OD, DW and cell count with Bürker chamber, in 

order to assess the starting concentration. 

 

2. Once the initial concentration of the pre-inoculum has been calculated, 2 or 4 eppendorf 

containing the pre-inoculum are then centrifuged (at 4 g for 2 min), the exhausted BG11 
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medium is removed and the microalgae are resuspended with a new pre-inoculum (this 

technique allows to quickly reach high cell concentrations), thus allowing explore a 

wide concentration range. The need to inoculate high cell concentrations is reported in 

section §2.3.4. 

 

3. Obtained the desired cell concentration (120-150 cells×106/ml), proceed to serial 

dilution (with BG11) in order to obtain 12 different concentration (6 concentrations per 

microphotobioreactor in quadruple copy. Subsequentely the micro-PBR is inoculated 

by filling each well with 20 μl with a micropipette. Figure 2.11 shows 12 concentrations 

to be submitted to fluorescence measurement and the relative image obtained from the 

Open FluorCam FC 800-O. 

 

4. The micro-PBR is closed with a layer in PDMS, sealed inside the closing unit, and 

placed under irradiation 50 μmol photons/(m2 s). 

 

5. After 30 minutes (time required by Scenedesmus obliquus to settle in the well), the 

micro-PBR is adapted to the dark for 5 minutes after which the fluorescence 

measurement is performed. 

 

6. The fluorescence images are processed thanks to the FluorCam7 software (Photon 

System Instruments), obtaining F0 for each well, easily visualized in a plot showing F0 

vs cells concentration (cells×106/ml) (Figure 2.12). Through the plot, it is possible to 

obtain the correlation that will allow to indirectly calculating the microalgae 

concentration during on the conduct of the experiments. The correlation is calculated 

through the knowledge of the inoculated concentrations and the corresponding 

measured F0 values (Table 2.2). F0 is expressed as average of 4 biological replicates. 

Data were fitted with a least square regression, obtaining a relationship in the form of 

y = ax + b. 
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Table 2.2 Cells concentration and F0 values used to build up the growth monitoring 

method. The cell concentration values used to inoculate the micro-PBR are here 

reported (cell concentration). F0 is expressed as average of 4 biological replicates. 

SD comes from data collected from wells inoculated in quadruple copy. 

Cell Concentration 

×103 cell/ml 

F0 SDF0 

103 191.3 9.69 

89.3 167.3 7.52 

77.4 145.4 4.45 

67.1 118.0 7.42 

58.1 98.5 6.12 

50.4 96.4 3.25 

43.7 94.1 2.38 

31.5 71.1 1.81 

27.3 65.6 3.48 

20 57.6 7.10 

13.3 56.5 3.79 

7.1 44.0 2.22 

 

Figure 2.11 Micro-PBR used to obtain the correlation between cell concentration 

and fluorescence intensity and relative images obtained from Open FluorCam FC 

800-O. 
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The correlation was obtained through three different calibrations carried out with microalgae 

acclimatized to different conditions, for this reason this is a preliminary correlation (F0 – cells 

concentration) for this reason, it must be investigated in the future. However, for the purpose 

of this work, it has been decided to use it for the estimation of the microalgae growth. 

2.5 Cell growth protocol 

The cell growth protocol remains unchanged with respect to the correlation of cell 

concentration and fluorescence intensity up to point 2, from which we proceed as follows: 

 

1. Obtained the desired cell concentration (10-20 cells×106/ml), proceed to inoculation, 

each well is loaded with 20 μl. The micro-channels and the flow channels are now filled 

with BG11 medium at three different carbonate concentrations (see section §3.2.2). 

 

2. The micro-PBR is closed with a layer in PDMS, sealed inside the closing unit (during 

this procedure it is essential to avoid the formation of air bubbles inside the chip), and 

placed under irradiation. 

 

3. The three syringes as prepared as described in section §3.2.2 and are installed on the 

syringe pump: three syringes in infusion (50 ml) and two syringes in withdraw (50 ml). 

Figure 2.12 The plot represents the correlation F0 – cell concentration 

(cells × 106/ml). Data are expressed as average of 4 biological replicates. The 

correlation are linear and data were fitting with a linear function (y = ax + b), 

represented by the solid line. 
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The syringes that work in withdraw are partially filled with water (~10 ml) to facilitate 

the balancing of the pressure inside the micro-PBR. 

 

4. The syringes are connected to the micro-PBR through the use of Tygon® tubes 

(diameter 1.5 mm), the positioning of the tubes is a delicate procedure to which great 

attention must be paid. Three tubes connect the syringes in infusion with the 

alimentation holes of the chip, two tubes connect the syringes in withdraw with the 

outlet holes and one tube will be connected to an outlet hole and will work by 

capillarity. This workaround is necessary since the available rack in the pump allows 

only the positioning of two withdraw syringes. 

 

5. A pump flow of 8 μl/min is set, this allows not to disturb the microalgae inside the 

micro-PBR and to prolong the experiments for several days (3-4 days). 8 μl/min 

corresponds to ~11 ml per day, loading a total of 50 ml (per syringe), the experiment 

can be prolonged for several days. 

 

6. The micro-PBR will be subject to 4 daily fluorescence analyses, the images obtained 

will be processed to obtain the microalgae growth profile (Figure 2.13). 

 

 

Figure 2.13 Experimental set-up 



 

 

 

Chapter 3 

Design of the culture system 
 

 

In this chapter, we will explain in details all the technical and design progresses that allowed 

to develop, from an experimental point of view, a final version of an efficient CO2 supply 

system for microalgae growth in microphotobioreactors (chip). 

3.1 Analysis of CO2 limitation in previous chip configuration 

The initial phase of this work was characterized by a period of investigation. The purpose of 

this preliminary investigation was first to assess the contribution of carbon dioxide, through 

the nutrient flow, to the microalgae with a qualitative and quantitative approach.  The 

experimental setup consists in a microphotobioreactor (Figure 3.1a) in PDMS closed by the 

overlap of a layer made of the same material (Baseotto, 2016) and a closing unit (Figure 3.1b). 

The main purpose of the closing unit is to keep the system sealed and prevent leaks, since the 

system is designed to work with a flow regime. In fact, this type of system was designed to 

guarantee a continuous feed of nutrients and a stable diffusion gradient thus ensuring a precise 

control of the nutrients concentration using two flows, one rich in the nutrients and other 

without them. 

 

 

                    (a)                                                                                     (b)                            

                 Figure 3.1 Microphotobioreactor and closing unit (Baseotto, 2016). 
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The aim of this system was to establish a concentration gradient of the chemical species 

(NO3
-
 and micronutrients) whose growth effect was to be evaluated. The dimensions of the 

microphotobioreactors were 96×75×5.25 mm (L×W×H), the wells had a diameter of D = 4 

mm and depth H = 3.25 mm, while the microchannels had a square cross-section equal to 1x1 

mm. 60 wells were present one chip with a volume of 40 µl each. 

Experiments carried out with colorants gave unsatisfactory results since the main difficulty was 

to guarantee a homogeneous seal with consequent lack of formation of the diffusion gradient. 

For this reason, the geometry of the micro-PBR was completely re-designed, avoiding the 

creation of diffusion gradients in the first place, but using instead different inlets where the 

nutrients concentrations can be specifically controlled. 

In this work thesis, another issue has been tackled, regarding carbon dioxide concentration 

inside the well. As previously denoted, CO2 is one of the main nutrient for photosynthesis and 

it directly impacts on the microalgae growth, it is therefore of primary importance to establish 

whether the operating conditions are limiting or not for the biomass growth. Taking as 

reference the first well in the geometry used in the work by Baseotto (sketched Figure 3.2), 

preliminary study on CO2 limitation was conducted. 

 

 

 

 

 

 

 

 

 

 

 

The aim of this section is therefore to evaluate the CO2 concentration that should be supplied 

in the main channel (feed channel) through the medium. 

Two balances were applied, one concerning the microchannel that connects the well to the feed 

channel and one based on the well. 

 

 Mass balance in the microchannel 

𝐴𝑐𝑐 = 𝐼𝑛 − 𝑂𝑢𝑡 + 𝐺𝑒𝑛                                   𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡      (3.1) 

𝑉
𝑑𝐶𝐶𝑂2

𝑑𝑡
= �̇�𝐶𝑂2 − 𝑟𝐶𝑂2𝑉 = �̇�𝐶𝑂2 𝐴𝑚.𝑐ℎ𝑎𝑛𝑛𝑒𝑙 − 𝑟𝐶𝑂2𝑉 = (3.2) 

The Equation 3.1 represents a generic balance. Considering a cross-section of the microchannel 

we can write the Equation 3.2, the accumulation term (Acc) is considered as zero, since the 

Figure 3.2 Schematic representation of microchannel and well. (Baseotto, 2016) 
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study has been sized in the limit condition, e.g. in the condition in which all carbon dioxide 

supplied is consumed by microalgae. The term related to the flow (In and Out) is described by 

diffusion (Fick’s law) only since in the microfluidic devices, it is a dominant phenomenon 

respect to the convection. Then rewriting the last equation, the following one can be obtained: 

−𝐷𝐶𝑂2/𝑤𝑎𝑡𝑒𝑟
𝑑𝐶𝐶𝑂2

𝑑𝑥
𝐴𝑚𝑖𝑐𝑟𝑜𝑐ℎ𝑎𝑛𝑛𝑒𝑙  − 𝑟𝐶𝑂2𝑉 (3.3) 

−𝐷𝐶𝑂2/𝑤𝑎𝑡𝑒𝑟
(𝐶𝐶𝑂2,𝑐ℎ𝑎𝑛𝑛𝑒𝑙−𝐶𝐶𝑂2

𝑤𝑒𝑙𝑙)

𝑙
𝐴𝑚.𝑐ℎ𝑎𝑛𝑛𝑒𝑙 − 𝑟𝐶𝑂2𝑉          [𝑚𝑜𝑙

𝑠⁄ ] (3.4) 

In Equation 3.4 the generation/consumption term is set equal to the consumption rate of carbon 

dioxide (CO2 required for microalgal growth in the well) multiplied by the volume. The 

CCO2, channel represents the concentration of CO2 in the feeding channel and consequently in the 

microchannel. Balance related to the well are reported: 

 

 Well balance 

𝐴𝑐𝑐 = 𝐼𝑛 − 𝑂𝑢𝑡 + 𝐺𝑒𝑛                                    𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (3.5) 

𝑉
𝑑𝑐𝑋

𝑑𝑡
= 𝑟𝑋𝑉𝑤𝑒𝑙𝑙 = 𝑅𝑋 = [𝑚𝑜𝑙

𝑠⁄ ] (3.6) 

To describe Equation 3.6, it is necessary to introduce the Monod kinetics, one of the earliest 

and most often used equations for describing the relationship between substrate concentration, 

in this case the CO2 and biomass growth rate. The auto-catalytic nature of cell growth leads to 

a sigmoid curve (Figure 1.4) in a batch bioreactor. Therefore, the growth kinetic of microalgae 

biomass is formulated as a function of cell and substrates concentrations: 

 

𝑟𝑋 =
µ∙𝐶𝑠∙𝐶𝑋

𝐾𝑀+𝐶𝑠
= [

𝑚𝑜𝑙

𝑑∙𝐿
] (3.7) 

  

 

where µ is the maximum growth rate for the considered specie and Cs and CX are the 

concentration of substrate (CCO2
well

) and biomass, respectively. The maximum growth rate and 

the saturation constant KM are two constants parameters.  

If the concentration of substrate in the bioreactor or microphotobioreactor Cs is much greater 

than the saturation constant, then the biomass specific growth rate equals the maximum specific 

growth rate and therefore the substrate is not rate limiting. On the other hand, if the substrate 

concentration is less than the saturation constant, then the specific growth rate drops below the 

maximum and the substrate becomes rate limiting. Therefore, the constant KM is defined as the 

concentration of substrate at which the growth rate is half of the maximum value and it accounts 

for the decrease of the growth rate due to the lack of substrate. For the solution of two balances, 

the rate of consumption of the carbon dioxide (rCO2) is set equal to the production rate of 
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biomass (rX), divided by a yield coefficient (YX/CO2). The volumes are equal placed and the rate 

of consumption in Equation 3.8 is negative with respect to the production rate. 

We assume that the CO2 supplied is sufficient and not limiting for the microalgae growth. 

 

𝑟𝐶𝑂2 𝑉 = −
1

𝑌𝑋 𝐶𝑂2⁄
 𝑟𝑋 𝑉𝑤𝑒𝑙𝑙             𝑉 = 𝑉𝑤𝑒𝑙𝑙   (3.8) 

We can now write:  

𝑟𝐶𝑂2 𝑉𝑤𝑒𝑙𝑙 = −
1

𝑌𝑋/𝐶𝑂2
𝐶𝑂2

 
𝜇𝑚𝑎𝑥 𝑔𝑟𝑜𝑤𝑡ℎ𝐶𝑋𝐶𝐶𝑂2

𝑤𝑒𝑙𝑙

𝐾𝑀+𝐶𝐶𝑂2
𝑤𝑒𝑙𝑙   𝑉𝑤𝑒𝑙𝑙 (3.9) 

  

Which, of the substitution in Equation 3.4, leads to: 

0 = −𝐷𝐶𝑂2/𝑤𝑎𝑡𝑒𝑟  
(𝐶𝐶𝑂2,𝑐ℎ𝑎𝑛𝑛𝑒𝑙−𝐶𝐶𝑂2

𝑤𝑒𝑙𝑙)

𝑙
 𝐴𝑚.𝑐ℎ𝑎𝑛𝑛𝑒𝑙 − 𝑟𝐶𝑂2𝑉𝑤𝑒𝑙𝑙 (3.10) 

We obtain: 

 

1

𝑌𝑋/𝐶𝑂2
 
𝜇𝑚𝑎𝑥 𝑔𝑟𝑜𝑤𝑡ℎ𝐶𝑋𝐶𝐶𝑂2

𝑤𝑒𝑙𝑙

𝐾𝑀+𝐶𝐶𝑂2
𝑤𝑒𝑙𝑙 𝑉𝑤𝑒𝑙𝑙 = 𝐷𝐶𝑂2/𝑤𝑎𝑡𝑒𝑟

(𝐶𝐶𝑂2,𝑐ℎ𝑎𝑛𝑛𝑒𝑙−𝐶𝐶𝑂2
𝑤𝑒𝑙𝑙)

𝑙
𝐴𝑚.𝑐ℎ𝑎𝑛𝑛𝑒𝑙

 (3.11) 

   

   

 

Where YX/CO2  represents the yield of CO2 in biomass, in Equation 3.11 there are three 

unknowns variables:  CX , CCO2
well

 and CCO2
channel

. To simplify the balance resolution, it was 

necessary to look for values that could concretely represent the concentrations within the 

microphotobioreactor. It was of primary importance to understand which range of biomass 

concentrations (CX) adopt, since the fluorescence phenomenon is directly related to the amount 

Figura 3.3 Growth curves of Nannochloropsis gaditana cells at three chosen light 

intensities. LL (low light – 6 µmol photons/(m2s)), ML (medium light - 60 µmol 

photons/(m2s)) and HL (high light - 360 µmol photons/(m2s)). (Perin et al., 2016) 
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of microalgae, through the correlation calculated in Chapter 2. Considering a previous work 

and looking at Figure 3.3, although it is based on a different microalgae specie, we can roughly 

estimate the maximum concentration achieved during a typical growth curve experiment, 

which is inside the linearity range (Perin et al., 2016). 

The cell concentration assumed is 30× 103 cell/µl (blue line-high light). By assuming a 

weight per cell equal to 12 pg cells-1 (Lavens and Sorgeloos, 1996), a list of the parameters and 

values risulted: 

 

 CX = 360 𝑔 𝑚3⁄  

 KM = 4.75 𝑔 𝑚3⁄  (Concas et al., 2012) 

 μ
max growth 

=0.7 
1

d
= 8.1 10

-6 1

s
  (McCormick et al., 1996) 

 𝑌𝑋/𝐶𝑂2 =
1

1.83

𝑘𝑔𝑋

𝑘𝑔𝐶𝑂2
= 0.56

𝑘𝑔𝑋

𝑘𝑔𝐶𝑂2
  

 

By setting now the values of concentration of CO2 (CCO2
well

) in the well, it has been possible to 

solve the Equation 3.12 and the results is shown in Figure 3.4, which describes the growth rate 

as a function of the CO2 concentration in the well. 

 

𝑟𝐶𝑂2 = −
1

𝑌𝑋/𝐶𝑂2

𝜇𝑚𝑎𝑥 𝑔𝑟𝑜𝑤𝑡ℎ𝐶𝑋𝐶𝐶𝑂2
𝑤𝑒𝑙𝑙

𝐾𝑀+𝐶𝐶𝑂2
𝑤𝑒𝑙𝑙    (3.12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Evolution of microalgae growth rate as a function of CO2 concentration 

in the well. 
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The increase in rCO2 is negligible once CO2 concentration in the well reaches 20 g/m3, thus 

deducing that in this condition carbon dioxide concentration is not limiting microalgae growth 

(Figure 3.4). 

It was possible to calculate, through the Equation 3.13, the CO2 concentration required in the 

channel to meet the demand for carbon dioxide in the wall. 

 

𝐶𝐶𝑂2,𝑐ℎ𝑎𝑛𝑛𝑒𝑙 =
1

𝑌𝑋/𝑐𝑜2
𝐶𝑂2

𝜇𝑚𝑎𝑥 𝑔𝑟𝑜𝑤𝑡ℎ𝐶𝑋𝐶𝐶𝑂2
𝑤𝑒𝑙𝑙

𝐾𝑀+𝐶𝐶𝑂2
𝑤𝑒𝑙𝑙 𝑉𝑤𝑒𝑙𝑙  

𝑙

𝐴𝑚.𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝐷𝐶𝑂2/𝑤𝑎𝑡𝑒𝑟
+ 𝐶𝐶𝑂2

𝑤𝑒𝑙𝑙 = 

  

= 282.996
𝑔

𝑚3 ≅ 0.3
𝑔

𝑙
 (3.13) 

 

 𝐴𝑚.𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 1 × 10−6𝑚2 

 𝑉𝑤𝑒𝑙𝑙 = 40𝜇𝑙 = 4 × 10−8𝑚3 

 𝐷𝐶𝑂2/𝑤𝑎𝑡𝑒𝑟 = 1.92 ×  10−5 𝑐𝑚2

𝑠
= 1.92 10−9 𝑚2

𝑠
 (Cussler, 1997) 

 𝑙 ≅ 0.003 𝑚  channel length  

Knowing the concentration of carbon dioxide inside the channel (required for the microalgae 

growth) it is now necessary to calculate how much carbon dioxide is normally dissolved in a 

liquid under standard condition (ambient temperature and pressure). 

The volume percent of CO2 in dry air is 0.032%, leading to a partial pressure of 3×10-4 (10-3.5) 

atm. Carbon dioxide is slightly soluble in pure water, as with all gases, the solubility decrease 

with temperature. At pressure up to about 5 atm, the solubility follows Henry’s law (Lower, 

1999): 

[CO2]=KH∙PCO2=0.032PCO2 (3.14) 

Once it is has dissolved, a small portion of the CO2 reacts with water to form carbonic acid: 

[CO2(aq)]=650[H2CO3] (3.15) 

Thus, what we usually refer to as “dissolved CO2” consists mostly of the hydrated oxide 

CO2(aq) together with a small amount of carbonic acid (a period of a few tenths of second is 

typically required for this equilibrium to be established). Water exposed to the atmosphere with 

PCO2 = 10-3.5 atm will take up carbon dioxide until, from Equation 3.14: 

[H2CO3]=10
-1.5

× 10
-3.5

=10
-5

 M (3.16) 

with a molecular weight of 44 g/mol we obtain a CO2 concentration equal to 4.4×10-4 g/l.  This 

concentration is far lower than that required in the channel to operate in non-limiting CO2 

conditions (Equation 3.13). It was therefore necessary to evaluate a method for storing more 

CO2 inside the BG11 medium.  
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3.2 Setup of a CO2 absorption protocol 

The following paragraphs discuss the CO2 absorption by solutions composed of water and salts 

at different molarity. The CO2 absorption capacity varies with the CO2 partial pressure and 

with the salts concentration, to quantify in a rigorous manner the CO2 amount in the liquid a 

software able to study the equilibria was used. 

In order to quantitatively establish the CO2 concentration in the culture medium, a sensitivity 

analysis was necessary. The simulations have been carried out with the use of Aspen Plus ® 

process simulator. At the beginning, process scheme has been created (Figure 3.5), the process 

of liquid saturation with CO2 has been idealized as a tank with two separate inlet streams. The 

tank stands for the bottles where the medium is uploaded to allow the saturation with CO2, and 

the two inlets represent respectively, one the air/CO2 flow and the other one the medium flow. 

During the simulations, the medium has been represented as water with different concentrations 

of different salts. 

 

At first, the liquid behaviour has been studied by varying the ratio air/CO2 in the inlet flow, 

examining the results (Figure 3.6) it has been decided to opt for a 100% CO2 flow, this choice 

allows to obtain a higher concentration of CO2 in the liquid and require only one CO2 tank and 

only one pressure reducer. 

 

 

 

 

 

Figure 3.5 Process representation. 
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The equilibrium of CO2 in water is expressed as follow: 

 

CO2(g)+H2O↔H2CO3(aq) (3.17) 

 

H2CO3(aq)↔HCO3
-
(aq)+H+(aq) (3.18)

 

HCO3
-
(aq)↔CO3

2-
(aq)+H+(aq) (3.19)  

Figura 3.7 Bjerrum plot, pH vs. the mole fraction of carbonate species (Shim et 

al., 2016). 

Figure 3.6 The plot describes the variation of the CO2 concentration in fresh water 

when the CO2 partial pressure changes. 
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Carbon dioxide is a typical acid gas. First, gaseous CO2 is dissolved in water (Figure 3.7), and 

it forms carbonic acid (H2CO3). The carbonic acid donates a proton (hydrogen ion, H+) and 

forms a bicarbonate ion (HCO3
-
). The bicarbonate ion donates a proton and generates a 

carbonate ion (CO3
2-

). If we introduce the pseudo-steady state condition, (in this condition, 

Ctotal=[H2CO3]+[HCO3
- ]+[CO3

2-]=constant), the mole fraction of each carbonate species could 

be expressed as a function of pH. The mole fraction of carbonate species is plotted in Figure 

3.7, which is called Bjerrum plot (Shim et al., 2016). 

Therefore, observing the Equation 3.19 it follows that, with the increase of the CO2 dissolved 

in water, the carbonic acid increases with a consequent decrease in the pH. For overcome this 

problem the solution was buffered with the use of carbonate and bicarbonate, compatibles with 

microalgae growth and able to normalize the pH. 

Different types of salt have been tested at different concentrations in the water inlet flow. It has 

been hypothesized to have a water inlet flow equal to 100 kg/hr and a CO2 flow equal to 50 

kg/hr, this quantity proved to be sufficient for the liquid saturation. First, the effect of sodium 

bicarbonate has been tested, changing the molarity until 0.4M and keeping the CO2 flow 

constant, and later the sodium carbonate has been tested in the same way. Taking into account 

the use in future experimentation of microalgae that require a saline medium, the tests have 

been carried out also for seawater this has been simulated by adding 30 g/L of NaCl. The 

operating conditions at which the tests have been carried out, respect the standard conditions, 

that are 1 atm and 25°C and also the conditions under which the experiments have been 

performed. 

Below will be briefly described the steps followed during the simulations in Aspen Plus®. 

The Properties Specifications Global sheet is used to enter the thermodynamic methods used 

to calculate the properties used in the simulation. The Electrolyte-NRTL activity coefficient 

model (ELECNRTL), is the recommended option set for simulations with electrolytes. 

ELECNRTL, calculates liquid phase properties from the Electrolyte-NRTL activity coefficient 

model. It is advisable to use the Electrolytes Wizard, to define the ionic species and salts that 

can be generated from the base components entered on the Components Specifications 

Selection sheet, and to generate the reactions that occur among these components in the liquid 

phase.  

An electrolyte system is defined as one in which some of the molecular species dissociate 

partially or completely into ions in a liquid solvent, and/or some of the molecular species 

precipitate as salts. These dissociation and precipitation reactions occur fast enough that the 

reactions can be considered to be at chemical equilibrium. The liquid phase equilibrium 

reactions that describe this behaviour are referred to as the solution chemistry. In Aspen Plus®, 

solution chemistry is often referred to simply as chemistry. Solution chemistry has a major 

impact on the simulation of electrolyte systems. In Aspen Plus®, all unit operation models can 
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handle electrolyte reactions. Solution chemistry also impacts physical property calculations 

and phase equilibrium calculations. 

When using the true component approach, Aspen Plus® solves the equations describing solution 

chemistry simultaneously with the unit operation equations. The unit operations deal directly 

with the ions and salts sheeted by solution chemistry. In addition, the true component approach 

defines how the process simulator reports the simulation results. Results are reported in terms 

of the ions, salts, and molecular components that are actually present, not in terms of the 

original base components. 

3.2.1 Results of simulation  

After the different simulations, the data have been collected in an Excel file for the analysis. 

The results have been based on both molar and massive flows in outlet of the tank and plots 

have been drawn. The first two plots represent the simulations performed with NaHCO3. 

In the first case, the plot represents the solution with fresh water while in the second case with 

seawater. 

 

 

 

 

Figure 3.8 Fresh water with NaHCO3 at different molarity with a 100% CO2  
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The plots that follow represent the simulation with Na2CO3 and as before in the first case the 

plot represent the solution with fresh water while in the second case with seawater.  
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Figure 3.10 Fresh water with Na2CO3 at different molarity with a 100% CO2 flow. 
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Figure 3.9 Seawater with NaHCO3 at different molarity with a 100% CO2 flow 
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The plots reported in a y-axis the ionic concentration as a logarithmic scale (H+, HCO3
-
, CO3

--
, 

CO2-LIQ) and in the y-axis on the right section the CO2 absorbed in terms of concentration (g/l). 

The CO2 liquid concentration in logarithmic scale has a constant trend regardless the molarity 

but its value changes according to the kind of salt and the type of water. It can be noted how 

the use of sodium carbonate allows to have a greater concentration of C in the liquid, with pH 

values compatible with the microalgae optimal growth conditions. In fact, it is shown that 

alkaline aqueous solutions resulting from the dissolution of salt such Na2CO3, provides an 

excellent gas-liquid interface for CO2 capture, leading to significantly enhanced CO2 sorption 

capacity and kinetics (Cai et al., 2018). 

By adding this type of carbonates to the BG11 medium the equilibria is shifted and the overall 

results is an increase amount of carbon in the medium. 

3.2.2 Experimental validation  

The validation in the laboratory consists in the preparation of different solutions at different 

molarity of sodium carbonate and water. The different solutions are then loaded with a bubbling 

of CO2 (100% CO2 flow). Through the use of a pH meter and plots shown in the section §3.2.1, 

it was possible to validate the data obtained through the simulations in Aspen Plus. 

Operating conditions: 

 T = 298.15 K 
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Figure 3.11 Seawater with Na2CO3 at different molarity with a 100% CO2 flow 
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 P = 1 atm 

The salt is first dehumidified and then added to the deionized water (100 ml). Obtained a 

homogeneous solution, a flow of CO2 is bubbled and at constant intervals of time the pH is 

measured until equilibrium is reached. The data relating to laboratory experimental validation 

are show in the Table 3.1. 

 
Table 3.1 The table shows the molarity values and the relative grams per litre of 

Na2CO3. In the third and fourth columns the initial and final measured pH values of 

the solutions are reported, the fifth column shows the pH data obtained through the 

simulation in Aspen Plus ®, the last column represents the relative error 

(relative=(Final pH - Expected pH)/ Expected pH × 100). 

   M 

(mol/l) 

Na2CO3 

(g) 

Initial 

pH 

Final 

pH 

Expected 

pH 

Time 

(h) 

relative 

0.05 0.5 11.11 6.71 6.62 1 1.36% 

0.15 1.6 11.16 7.13 7.00 1.5 1.85% 

~0.25 2.6 11.20 7.29 7.00 2.5 1.53% 

~0.35 3.7 11.28 7.41 7.29 2.5 1.65% 

 

It can be noted how, as the concentration of Na2CO3 increased, the time achieving equilibrium 

increased. It is therefore recommended to use stirring bars inside the loading bottle to allow a 

more affective break of CO2 bubbles and thus maximize the mass transfer. The plots obtained 

through the simulations have been validated from an experimental point of view and then used 

as a measuring instrument in the preparation of the culture medium.  

For the experiments, three different medium have been prepared at three different Na2CO3 

concentrations: 

 BG11  

Figure 3.12 CO2 loading system. 
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 BG11 2.5 g/l Na2CO3 

 BG11 10 g/l Na2CO3 

 

The medium have been loaded with CO2 (Figure 3.12), checking the initial pH and the final pH 

(procedure described in section §2.5 point 3). 

3.3 Final micro-PBR prototype 

Finally, it has been necessary designed a new micro-PBR (Figure 3.13) that allowed to 

investigate the efficiency of a medium with higher CO2 concentrations on microalgae growth.  

The final prototype has been designed that would respect the following specifications: 

 

 Develop a non-limiting nutrient flow (CO2) inside the micro-PBR. 

 Each well has been made independent of the others, in this way the influence of the 

other wells is avoided. 

 Three independent alimentation channels that allow to carrying out three independent 

experiments, each channel feeds eight wells (three experiment with eight replicates 

each). 

 Reduce micro-PBR size, to improve pressure control (to avoid preferential pathways). 

 The feed channel has been widened at the entrance to allow the stabilization of the 

nutrient flow.  

 The alimentation well and the outlet well have been made larger so as to favour the 

positioning of the Tygon® tubes (diameter 1.5 mm). 

 Since the CO2 will be provided directly through the medium and not from the 

atmosphere, the closed unit has been redesigned with fully-closed upper part. 

 

 
Table 3.2 Dimensions comparison between “Baseotto” prototype and final 

prototype. 

 

 

Previous  

prototype 

Final 

prototype 

W (mm) 75 50 

L(mm) 96 71.55 
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On the new chip layout several fluid dynamic simulation have been performed. Practically a 

Tygon micro bore tubing represents the inlet (and the outlet). The simulation involved the 

behaviour is steady state of water flowing inside a chip made by polysilicon. The results, in 

terms of velocity inside the microfluidic device, are encouraging. In fact, the velocity is 

uniform (Figure 3.14), in the full range of velocity considered (5 μl/min). The difference 

between the inlet and the outlet in the figure is due to the walls effect: while in the inlet the 

specification on the velocity is a normal velocity, in the outlet the flow assumes a pattern typical 

of a flow inside a pipe. 

 

Figure 3.13 Final prototype (Castaldello, 2018). 

Figura 3.14 Representation of the velocity field in the microfluidic device at steady-

state, at different depths (z coordinates). (Castaldello, 2018) 
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In Figure 3.15(a) the range of velocity has been reduced, in order to enhance the fluid behaviour 

after the inlet. In Figure 3.15(b), the velocity at each microwell entrance is shown, and it 

appears clear that each microwell is affected by the same channel condition. (Castaldello, 2018) 

The development of this new prototype allowed to carry out three different experiments at the 

same time, with eight biological replicates for each one. 

 

(a) 

(b) 

Figure 3.15 Representation of the velocity with a reduced range, in different panels 

of the device: one panel to the fluid flow, and four perpendicular to it and placed at 

each microwell entrance. (Castaldello, 2018) 



 

 

Chapter 4 

 Experimental results and discussion 
 

In this chapter, results obtained from the experimental tests will be reported. In order to assess 

the influence of carbon dioxide on the microalgae growth objectively, two experiments have 

been performed, with and without the addition of CO2 bubbling in the culture medium (BG11). 

Based on the results obtained, different plots have been reported with the aim of comparing the 

different conditions of growth. Finally, the influence of light intensity on the best growth 

conditions found in the previous experiments has been evaluated. 

4.1 Experiment results BG11 with Na2CO3  

The objective of the first experiment concerned the evaluation of microalgae growth conditions 

in the presence of three different mediums. With the aim of uniquely characterizing the CO2 

effect on the next experiments, the culture medium of this test has been prepared with sodium 

carbonate. The medium have been prepared at three different concentrations: standard BG11, 

BG11 with 2.5 g/l and with 10 g/l of Na2CO3. Growth has been studied by inoculating the 

micro-PBR with a single starting cellular concentration (see section §2.5), cells pre-cultured in 

flaks at 50 μmol photons / (m2 s) have been chosen. The design of final prototype allowed to 

obtain three different sections fed by different culture medium; every single section includes 

eight biological replicates for the same condition (Figure 4.1).  

 

 

The chip has been exposed to an incident light intensity of 50 μmol photons / (m2 s) and growth 

has been monitored four times a day by measuring the fluorescence intensity F0 to estimate the 

Figure 4.1 Schematic representation of the three different sections fed by three 

different culture medium, BG11, BG11 with 2.5 g/l Na2CO3 and BG11 with 10 g/l 

Na2CO3. 
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Chl content. The F0 measures obtained for each region are the average of eight biological 

replicates.  

The results obtained from this experiment, as previously mentioned, provided information 

about the ability of microalgae to grow in the presence of different sodium carbonate 

concentrations. The results obtained are shown in the plots of Figure 4.2, which represent the 

fluorescence intensity over time (a), the cells concentration over time (b), and the natural 

logarithm of the latter (c).  

 

 

The Chl fluorescence depends on the Chl microalgae content in the wells and therefore can be 

used as an indirect measure of cellular concentration. In order to obtain a quantitative 

description, a preliminary correlation of cell concentration and fluorescence intensity has been 

found (see section §2.4). 

This correlation represent a rough tentative to quantify microalgae and it must be further 

verified and validated to ascertain possible variation of fluorescence in cells adapted to 

different light intensities. However, this is beyond the scope of this thesis work. In this case, it 

was used to preliminary estimate concentration in such microsystem. The correlation between 

fluorescence intensity and cells concentrations allowed to calculate the specific growth rate, 

and to compare different growth conditions. Through the fitting, the specific growth rates have 

been calculated as a logarithmic fit of the exponential growth phase (in this phase the growth 

rate is proportional to the number of cells present). The data obtained are sufficient for a 
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Figure 4.2(a) Comparison of growth curves of Scenedesmus obliquus obtained using 

different concentration of sodium carbonate (0, 2.5, 10 g/l, represented respectively 

as triangles, squares, and circles). Plot showing the chlorophyll F0 values as a 

function of time. 
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comparison between the various experiments carried out in this thesis work, but particular 

attention will have to be paid in comparing them with other data obtained from other cell 

concentration-fluorescence intensity correlation. The plot reported in Figure 4.2(a) represents the 

variation of the fluorescence intensity over time. 

In Figure 4.2(b) the cell concentration (cell/ml (× 106) over time provided is reported through the 

correlation. Finally, in Figure 4.2(c) different specific growth rates have been comparted. 

Figure 4.2 Comparison of growth curves of Scenedesmus obliquus obtained using 

different concentration of sodium carbonate (0, 2.5, 10 g/l, represented respectively 

as triangles, squares, and circles). (b) The plot showing the cellular concentration 

(cell/ml (× 106)) as a function of time and (c) the plot showing the logarithmic fit of 

cellular concentration (cell/ml (× 106)) as a function of time. 
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Based on results plotted in Figure 4.2, it is possible to affirm that with such carbonate 

concentration, the pH rapidly increase and the algal growth was strongly inhibited, with a very 

low specific growth rate. 

In fact, the culture medium BG11, containing sodium carbonate presents a high pH value 

(Table 4.1), outside the optimum pH range of viability of algae cells. In addition, pH tends to 

increase during algae growth as a result of photosynthetic metabolism. 

 

 

Table 4.1 Represents the pH value of three different culture medium with three 

different sodium carbonate concentrations. The addition of carbonate caused a rapid 

increase of pH up to values close to 10-11. 

Na2CO3 (g/l) in the 

culture medium 

pH 

 

0 7.76 

2.5 9.98 

10 10.93 

 

The inhibition of growth by sodium carbonate might also be explained by a specific inhibition 

due to the sodium ion (Gris et al., 2014). In fact, it is demonstrated that osmotic effect and ionic 

effects are both involved in the induced inactivation of the photosynthetic machinery in the 

microalgae (Allakhverdiev et al., 2000). 

At lower concentration and at higher concentration of sodium carbonate (2.5 g/l of Na2CO3, 10 

g/l of Na2CO3), specific growth rates of 0.150 d-1 and 0.05 d-1 have been measured, thus 

suggesting that Scenedesmus obliquus is not able to efficiently exploit carbonate as the carbon 

source as already reported in the literature (Gris et al., 2014). The best response in this 

experiment has been given by the microalgae fed by BG11 without carbonate, with a specific 

growth rate of 0.23 d-1. 

4.2 Experiment results BG11 with Na2CO3 and CO2  

The objective of the second experiment concerns the evaluation of microalgae growth 

conditions in the presence of three different culture medium at three different molarity of 

sodium carbonate, loaded with a bubbling of CO2 (100% CO2 flow). 

As for the previous experiment the micro-PBR has been divided into three sections, the first 

has been fed with BG11 + CO2, the second with BG11 + 2.5 g/l of Na2CO3 + CO2 and the third 

with BG11 + 10 g/l of Na2CO3 + CO2. 

Growth has been studied by inoculating the micro-PBR with a single starting cellular 

concentration, cells pre-cultured in flaks at 50 μmol photons / (m2 s) have been chosen. The 
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chip has been exposed to a light intensity of 50 μmol photons / (m2 s) and growth has been 

monitored in the same way of the previous experiment. In Table 4.2 the pH value of the 

solutions before and after CO2 bubbling are reported. The procedure regarding the CO2 

absorption protocol is detailed in the section §3.2.2, through the plot reported in Figure 3.10 

the medium have been loaded and the CO2 concentrations are known. 

 

Table 4.2 Represents the pH value of three different culture medium with three different 

sodium carbonate concentrations before and after the CO2 bubbling. 

Na2CO3 (g/l) in the 

culture medium 

Initial pH 

 

Final pH 

0 7.76 6.69 

2.5 9.98 6.78 

10 10.93 7.19 

 

The plot reported in Figure 4.3(a) represents the variation of the fluorescence intensity over 

time. 

 

The plot reported in Figure 4.3(a) represents the variation of the fluorescence intensity over 

time. Scenedesmus obliquus was able to utilize the CO2 supplied in the medium by the bubbling 

system, which is also responsible for the lower pH data observed in Table 4.2.  

Furthermore, it can be observed that a medium containing 2.5 g/l of Na2CO3 and loaded with 

CO2 up to 6.78 pH, allowed the best microalgae growth in the exponential phase, it suggesting 
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Figure 4.3(a) Comparison of growth curves of Scenedesmus obliquus obtained using 

different concentration of sodium carbonate with CO2 bubbling (0, 2.5, 10 g/l, 

represented respectively as triangles, squares, and circles). Plot showing the 

chlorophyll F0 values as a function of time. 
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that in these condition more CO2 is absorbed and efficiently exploited by the biomass. The 

fluorescence intensity values have been elaborated in order to provide the growth curves in 

terms of cellular concentration (cell/ml (× 106)) and the logarithmic fit of cellular concentration 

as a function of time (days). 
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Figure 4.3 Comparison of growth curves of Scenedesmus obliquus obtained using 

different concentration of sodium carbonate with CO2 bubbling (0, 2.5, 10 g/l, 

represented respectively as triangles, squares, and circles). ). (b) The plot showing 

the cellular concentration (cell/ml (× 106)) as a function of time and (c) the plot 

showing the logarithmic fit of cellular concentration (cell/ml (× 106)) as a function 

of time. 
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The specific growth rates (Figure 4.3c) resulting are 0.32 d-1 for the BG11 with 10 g/l of 

Na2CO3, 0.56 for the BG11 and 0.68 for the BG11 with 2.5 g/l of Na2CO3. This suggest that 

increasing the concentration of CO2 molecules in the medium, it can be directly exploited by 

microalgae as the carbon source (Gris et al., 2014). 

4.3 Experiment results BG11 2.5 g/l Na2Co3 with different light                                                  

intensity 

In order to evaluate the combined effect of several operating variables, microalgae growth with 

a culture medium with 2.5 g/l Na2CO3 and CO2 at different light intensity was measured. The 

experiment was setup as for the previous tests, but the microalgae have been fed with the same 

culture medium (2.5 g/l Na2CO3 with CO2 bubbling). It has been chosen to use the culture 

medium BG11 with 2.5 g/l of Na2CO3 and loaded with CO2, because in the previously 

experiment had given the best response in terms of microalgal growth. To this aim specific 

photo-filters (ND) were overlaid to the micro-PBR in order to decrease the light intensity for 

specific micro-PBR sections. The photo-filers were properly chosen to cut between 30 and 50% 

of the light intensity. This allow controlling the irradiance reaching different wells on the same 

device simultaneously. This design allowed obtaining three sections of the chip with 40 (low 

light), 75 (medium light) and 145 (high light) μmol photons/(m2 s) intensities, respectively, by 

using a single fluorescent white light source with eight biological replicates for each condition. 

Growth was monitored over time according to the method described in section §2.4. 

Figure 4.4(a) Comparison of growth curves of Scenedesmus obliquus obtained 

using different light intensity at the same culture medium 2.5 g/l Na2CO3 with CO2 

(45, 75, 145 μmol photons/(m2 s), represented respectively as triangles, circles, 

and squares). Plot showing the chlorophyll F0 values as a function of time. 
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The data (Figure 4.4) showed that light intensity has a huge impact on growth. By enhancing 

the light intensity, cultures grew proportionally faster. Since they show increasing growth 

according to the light intensity increase, this confirms that cultures in the micro-PBR are not 

limited by the CO2. 

(b) 
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Figure 4.4 Comparison of growth curves of Scenedesmus obliquus obtained using 

different light intensity at the same culture medium 2.5 g/l Na2CO3 with CO2 (45, 75, 

145 μmol photons/(m2 s), represented respectively as triangles, circles, and squares). 

(b) The plot showing the cellular concentration (cell/ml (× 106)) as a function of time 

and (c) the plot showing the logarithmic fit of cellular concentration (cell/ml (× 106)) 

as a function of time. 
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The plots in Figure 4.4 indicate that, microalgae cells exposed to high light condition (145 

μmol photons/(m2 s)) showed a slight but a significant increase in the specific growth rate 

(Figure 4.4c). This was expected, considering that the influence of light on microalgae growth 

is extremely important and also the values obtained is similar than data reported in literature 

(Perin et al., 2016). 

 



 

 

 

 

 

 

 

 

 

 

 



 

 

Conclusions 

This Thesis was aimed at designing an efficient CO2 supply system for microalgae growth in 

a microphotobioreactors. 

The first part of this work was characterized by some preliminary analysis of the microPBR 

configuration. The purpose was to firstly assess the contribution of carbon dioxide, through the 

nutrient flow, to the microalgae with a qualitative and quantitative approach. Taking as 

reference the micro-PBR used in the previous work by Baseotto (Figure 3.1), preliminary study 

on CO2 limitation was carried out. Two balances were applied, one concerning the 

microchannel that connects the well to the feed channel and one based on the well. Based on 

the known concentration of carbon dioxide inside the channel, CO2 normally dissolved in a 

liquid under standard condition (ambient temperature and pressure) was calculated. A CO2 

concentration equal to 4.4×10-4 g/l, which is that one in equilibrium with air, resulted far lower 

than that required in the channel (0.3 g/l) to operate in non-limiting CO2 conditions. 

It was therefore necessary to evaluate a method for absorbing a sufficient amount CO2 inside 

the BG11 culture medium.  

In order to quantitatively establish the gas CO2 concentration needed to obtain such a 

concentration in the culture medium, a sensitivity analysis was carried out. To quantify with 

reliable methods the CO2 amount in the liquid, a software able to study the liquid-gas equilibria 

was used. The liquid concentration and equilibria have been studied by varying the ratio 

air/CO2 in the inlet flow. A 100% CO2 flow was chosen as the best value. 

With the increase of the CO2 dissolved in water, the carbonic acid increases with a consequent 

decrease in the pH that may affect algae growth. To overcome this problem, the solution was 

buffered with carbonate and bicarbonate, compatibles with microalgae growth. First, the effect 

of both sodium bicarbonate and carbonate has been evaluated, changing the concentration up 

to 0.4M and keeping the CO2 flow constant. Taking into account the use in future 

experimentation of microalgae that require a saline medium, the tests have been carried out 

also for seawater this has been simulated by adding 30 g/L of NaCl.  

Sodium carbonate has been then for experiments used, as it allows a greater absorption of C in 

the liquid (17 g/l), with pH values (pH = 7) compatible with the microalgae optimal growth 

conditions. By adding carbonates to the BG11 medium the equilibria is shifted and the overall 

results is an increase amount of carbon in the medium. 

Finally, a new micro-PBR that allowed to investigate the efficiency of a medium with higher 

CO2 concentrations on microalgae growth has been designed and characterized. 
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In order to assess the influence of carbon dioxide on the microalgae growth objectively, two 

experiments have been performed, with and without addition of CO2 in the culture medium 

(BG11). 

The microalgae growth has been measured through in vivo chlorophyll fluorescence 

measurements, and a preliminary correlation between cell concentration and fluorescence 

intensity has been found. 

Experiments demonstrated that Secenedesmus obliquus is not able to use carbonate ions itself 

with high efficiency, probably due to the increase pH of the medium, which inhibits the growth. 

However, a significant growth was achieved by loading CO2 in the culture medium buffered 

with sodium carbonate; this allowed controlling the pH of the culture system, and thus shifting 

the carbonate equilibria in favour of free CO2 efficiently exploited by Scenedesmus obliquus.  

In summary, in this growth system Scenedesmus obliquus is not limited by the CO2 availability, 

therefore confirming the full compatibility of the micro-PBR with the microalgae growth. 

In accordance with the results, microalgae growth with a culture medium with 2.5 g/l Na2CO3 

and CO2 at different light intensity was measured. Light availability has a huge impact on 

photosynthetic growth, and therefore the monitoring of the photosynthetic performances when 

cells are exposed to different light regimes is a valuable source of information to optimize their 

culture system. The results indicate that, microalgae cells exposed to high light condition (145 

μmol photons/(m2 s)) showed  a significant increase in the specific growth rate.  

The simultaneous growth monitoring in three different light regimes and with three different 

culture medium was used to demonstrate the method applicability for high-throughput studies. 

In fact, where compared to traditional methodologies, the data generation capability of such a 

micro-PBR is extremely increased. Algae showed fast growth rates, this allowing less time-

consuming experiments, in addition, the micro-PBR has the capability of simultaneously 

testing multiple variables (light intensity and salt concentration). Reproducing the same 

experiments, using traditional techniques would dramatically lengthen the timespan. Another 

advantage is that nutrients and chemicals consumption is strongly reduced. 

The possible future implications concern the possibility to study the microalgae growth of a 

saline species (Nannochloropsis gaditana) in non-limiting CO2 conditions. Furthermore, the 

correlation (F0 – cells concentration) used in this work has been obtained through three different 

calibrations carried out with microalgae acclimatized to different conditions, for this reason 

this is a preliminary correlation and will have to be investigated in the future.  

Finally, given the advantages of the designed micro-PBR, in the near future it will be possible 

optimize the design, redesigning the closing unit in order to guarantee a homogeneous flow 

and avoid possible losses of medium. 
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