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Abstract

In the last years quantitative approaches have gained increasing importance in genomics re-
search due to their ability of interpreting and characterizing the vast amount of genetic data
that the new sequencing technologies have made available. Statistical tools in particular seem
to play a central role in gaining information on the human DNA mutation variability. Such
mutations may lead to tumor insurgence and progression, thus there is the exigency to de-
velop analytical methods that could quantify the genetic heterogeneity of a tumor, whose
knowledge may be crucial to design the best therapeutic setting. Within this framework, the
present thesis aims to inference the statistical description of a genetic region taking as input
few samples only. To this end, we present an ecological-inspired method to predict the number
of mutations in a DNA sequence or in a whole tumor (global scale) from presence/absence
information collected in a portion of the region (local scale). For our model, we have as-
sumed to work under the neutral hypothesis of mutation demographic equivalence and within
the parametric framework of a global RSA, i.e. frequency of mutations at given occurrence
abundance, distributed according to a Negative Binomial. This latter choice has been justified
by both the derivation of the Negative Binomial as steady state solution of a biological birth
and death process and by the functional versatility Negative Binomial has in well accommod-
ating different empirical RSA shapes (power law, Log-Series, unimodal). Under the hypothesis
of demographic equivalence of mutations, it can be proved that the Negative Binomial is form
invariant, i.e. a random subsample can still be described via a Negative Binomial distribu-
tion. In other words, the local scale RSA is a Negative Binomial if the global scale RSA is
a Negative Binomial. It has followed a computable formula bridging the parameters of the
RSA at the local scale to those at the global scale, which we have exploited to end up with
an unbiased and consistent estimator of the number of global mutations in the genetic region
of interest. Simulations on both DNA single-nucleotide polymorphism and synthetic spatial
tumor growth datasets have been performed at last to test our framework. The promising
results they have given back would confirm the stability and the reliability of the proposed
method in genetic field.
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Sommario

Negli ultimi anni l’utilizzo di approcci quantitativi in genomica è stato cruciale per interpretare
e caratterizzare la vasta gamma di dati genetici resi disponibili dalle nuove tecniche di sequen-
ziamento del DNA. In particolare, alcuni strumenti di indagine statistica si sono dimostrati
indispensabili per ottenere un insight sulla variabilità genetica del DNA umano. Le mutazioni
genetiche sono implicate nell’insorgenza e nella progressione dei tumori, da qui l’esigenza di
sviluppare metodi analitici per quantificare l’eterogeneità genetica di un tumore, la cui con-
oscenza potrebbe avere valenza informativa nel design di terapie più efficaci. All’interno di
questo framework, il presente lavoro di tesi si propone di inferire una completa descrizione stat-
istica di una regione genetica, basandosi su pochi campionamenti della stessa. A tale scopo
presentiamo un metodo di ispirazione ecologica per predire il numero di mutazioni presenti
in un’intera sequenza di DNA o in un tumore (scala globale) partendo esclusivamente da
informazioni di presenza/assenza sulle mutazioni in una porzione della regione scelta (scala
locale). Per il nostro modello abbiamo assunto un framework parametrico in cui la RSA a
scala globale, ovvero la frequenza delle mutazioni aventi una data occorrenza quantitativa, è
distribuita secondo una Binomiale Negativa e in cui l’ipotesi neutrale di equivalenza demo-
grafica tra le mutazioni è soddisfatte. La scelta della Binomiale Negativa come famiglia di
distribuzioni per il nostro metodo è giustificata dalla derivazione di tale distributione come
soluzione all’equilibrio di un processo biologico stocastico di nascita e morte e dalla sua versal-
ità nell’accomodare RSAs empiriche aventi forme diverse (power law, Log-Series, unimodali).
Le ipotesi di lavoro sulla neutralità hanno permesso di provare l’invarianza in forma della Bi-
nomiale Negativa, ossia la proprietà per cui, data una Binomiale Negativa a scala globale, un
suo campionamento è ancora descritto mediante una tale distribuzione. Da questa proprietà
è seguita una formula computabile, collegante i parametri della RSA locale a quelli della RSA
globale, che abbiamo utilizzato per derivare analiticamente l’espressione di uno stimatore cor-
retto e consistente per il numero di mutazioni presenti a scala globale. Testato su datasets
riguardanti polimorfismi del DNA e simulazioni spaziali della crescita tumorale, il metodo
proposto ha restituito risultati promettenti che ne hanno certificano la bontà e la stabilità.
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Introduction

During the last couple of decades, the development of new DNA sequencing technologies has
provided researchers with a huge amount of genetic data and patterns. Thus, an increas-
ing importance has been given in genomics field to computational and mathematical models,
capable of interpreting such data and revealing unknown and counterintuitive biological prin-
ciples overlooked by classical qualitative approaches (Byrne, 2010). Within this framework,
we present a statistical method to infer the number of unseen variants in genomics region
from local quantitative information. That is, assuming to know mutation occurrences in a
portion of a genetic region - DNA sequence, tumor - representing the local scale, we aim at
extrapolating statistical information on the number of mutations and their distribution in the
whole region sample, i.e. at global scale.

Such a statistical tool to predict the number of unseen variants and their abundances is
particularly informative in cancer research where the complete description of genetic profile
of a tumor could lead to relevant clinical implications. Indeed, most effective therapies are
those targeting at the most common genome alterations shared by cancer cells. Thus, the
information on the statistics of tumor mutations from single-patient biopsies may be crucial
to design therapies or to evaluate the clinical course following surgery. Nowadays, for ethical
and economical reasons, diagnoses and treatment decisions are mainly based on results from
few biopsy samples only and these are often unlikely to accurately capture the complete and
precise mutational profile of the tumor. Therefore, we hope that being able to infer hetero-
geneity properties from such small tumor fraction, as our method does, could represent an
useful tool in cancer research.

In order to tackle this challenge, in the present thesis we have adapted to genomics, and more
specifically to oncology, a statistical method previously developed for biodiversity estimation
(Tovo et al., 2017). Indeed, the ecology of cancer has recently emerged as a promising approach
in capturing genetic statistical features. In particular, researchers have started to look at
cancer from an ecological perspective as an evolutionary process in which new species adopting
different surviving strategies try to invade new habitat (tissue) (Kareva, 2011). Following such
an ecological new trend, in our approach we have supposed the problem of inferring the full
extent of genetic mutations in a DNA sequence or in a tumor to be closely related to the
‘unseen species problem’, having its roots in ecology. Such a problem was proposed in the
early 1940s by the British naturalist Corbet who listed species and number of individuals per
species for all butterflies he had trapped during a journey in Malaysia and wondered how many
new butterflies he would have seen if he had come back there. First tackled by Fisher, such
a problem has arisen the interest of many other scientists throughout the years, leading to a
myriad of estimators with applications in different fields, from bioscience to linguistics and in
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the present thesis to genomics. As a consequence of its ecological background, many tools and
patterns coming from ecology field - e.g. species-abundance distribution (SAD), telling how
commonness and rarity are distributed among the species of an ecosystem, species-area curve
(SAC), looking at how biodiversity changes with the sampled area, relative-species abundance
(RSA), measuring the species frequency at given abundance - have been extensively used in
our framework.

Due to the interdisciplinary nature of this thesis, Chapter 1 provides some basic biological
knowledge that the reader will need in the following. In the first part an overview of DNA
structure and cancer hallmarks is taken, whereas in the second some mathematical models and
techniques looking at the tumor dynamics from an ecological perspective are presented. Within
this last section, the attention will be paid in particular to the neutral theory. Fuelled by the
empirical observation of similar macro-patterns arising from different ecological systems, the
neutral theory has been developed to derive such universal traits at macro level from simple
key rules of the microscopic dynamics. Its main finding is the explanation of the emergence
of regular patterns by mean of simple models driven by stochasticities, disregarding species
own identities and detailed biological features of the dynamics.

Chapter 2 is the mathematical core of the thesis, presenting the ecological-inspired framework
we have adapted to upscale mutation richness in a genetic region. Within our framework, we
have assumed the RSA at the global scale, i.e. the probability for a mutation to be observed
n times, to be a Negative Binomial (NB) of parameters r and 0 < ξ < 1 with normalization
to (at least) one:

P (n) =


1

1−(1−ξ)r
(
n+r−1
n

)
ξn(1− ξ)r if r > 0, n ≥ 1

1
1−(1−ξ)r·

∑m−1
j=0 (j+r−1

j )ξj
(
n+r−1
n

)
ξn(1− ξ)r if r ∈ (−m,−m+ 1), m ∈ N+, n ≥ m

(1)
Observe that the value of r affects the support of the distribution in terms of the well-posedness
of the binomial. Both stochastic and statistical reasons have driven us to select Negative
Binomial as family of statistical distributions for our method:

• Negative Binomial arises naturally as steady-state distribution of a system modeled
through a birth-death dynamics, with birth rate accounting weakly for intraspecific
interactions;

• Negative Binomial is a versatile distribution, capable of well accommodating different
functional shapes that may arise empirically: Log-Series for r → 0, unimodal mode for
r > 1, power law for r < 0 and bimodal mode with convex combinations;

• Negative Binomial is proved to satisfy the form invariance property under the neutral
hypothesis on mutation equivalence. Such a property means that a sample of any size of
a Negative Binomial with parameters (r, ξ) can still be described by a Negative Binomial
having computable, new parameters.
In particular, whereas ξ parameter scales according to the computable formula

ξ =
ξ̂p

p+ (1− p)ξ̂p
= f

(
ξ̂p, p

)
, (2)

r keeps invariant as scale varies, i.e. r = r̂p.
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A maximum likelihood method has been used to estimate the Negative Binomial parameters of
the RSA at the local scale, whereas for the global parameter we have exploited Eq.(2). Finally,
the formalism guaranteed by the assumptions on neutrality and on Negative Binomially RSAs
has led us to the analytical derivation of our estimator for the number of mutations at global
scale S. Such an estimator has been found to be

Ŝ =


Sp · 1−(1−ξ)r

1−(1−ξ̂p)r
when r > 0

Sp ·
1−(1−ξ)r·

∑m−1
j=0 (j+r−1

j )ξj

1−(1−ξ̂p)r·
∑m−1

j=0 (j+r−1
j )ξ̂jp

when r ∈ (−m,−m+ 1),m ∈ N \ {0}
(3)

where Sp is the number of seen mutations at the local scale, ξ̂p and r are the fitted local
parameters and ξ = f(ξ̂p, p) is a global parameter. Since the estimator we proposed has been
proved to be unbiased and consistent, it could be profitably used for inferences.

Chapter 3 is focused on the application of our method to DNA single-nucleotide polymorph-
isms. In particular, it has been tested on three different datasets concerning observed variants
in three independent regions of the X chromosome of 46 British males. We have considered
a sample of p̄ < 46 people, counted the different mutations they carried and, on the basis of
such local quantitative information, we have predicted the number of mutations in the whole
ensemble of 46 individuals. The results of our estimates are here presented both numerically
and graphically. They look promising, with an average error on prediction less than 10% and
a predictable asymptotic behaviour.

In Chapter 4 our framework is applied to cancer heterogeneity. For ethical reasons, datasets on
real tumors normally consist on presence/absence information for at most 10 human biopsies,
which is a too small size to test our method with profit. Thus, our tests have been conducted
on synthetic tumor growth datasets whose size we could control. The spatial stochastic model
for tumor growth we have used to collect data is presented at first, then simulations on the
model output data are performed. Again, a portion of the simulated tumor cells has been se-
lected and a quantitative characterization of the mutations at that local scale has been done.
Then, using our upscaling framework, estimates of the number of variants present in the whole
tumor cells have been computed and corresponding results exposed. Even in this context, the
results are good with relative error and estimate dispersion decreasing as the sampled tumor
portion increases.
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Chapter 1

Overview on cancer ecology and
modeling

Highlighted the biological intents of the present thesis, we have decided to start our discussion
with an overview on the main genetic and biological features that the reader will cross in the
following. In particular, the first section of the chapter is a quick path across DNA strands,
genes and mutations, whereas the second, dealing with the cancer hallmarks, proposes itself
as a review of the some quantitative cancer models.

1.1 DNA structure and mutations

The cornerstone of genetics, the field of biology studying hereditary traits, is represented by
DNA molecules which store all genetic information for a cell and an organism. Each human
cell, with the exception of red blood cells, contains an entire copy of the genome, i.e. the genetic
profile carried by DNA strands, which is passed to the daughter cells during the cell repro-
duction. These information are stored in the nucleus of the cells in the form of chromosomes,
which are compact and highly spiral tangles of genetic material whose number and morpho-
logy depend on the species considered. DNA molecules display a double helix shape with two
complementary twisted chains and are compound of different functional unities called genes.
These latter are particular sections of DNA coding for the biochemical synthesis of specific
aminoacid macromolecules - the proteins - whose tasks include cell signaling, immunological
responses and cell cycle. More technically, a DNA chain is a linear sequence of four nucleotides
- adenine (A), thymine (T), cytosine (C), guanine (G) - with

A −−− T by mean of 2 hydrogen bonds,

C −−− G by mean of 3 hydrogen bonds.

The A-T bond is weaker than the C - G one, thus it separates more easily (Durrett, 2010).

Some bases could be affected by alterations that could lead to a change in DNA basis sequence
and basis pairing. These alterations affect the genotype of the individual, but may not produce
discernible changes in the observable characteristics (phenotype). Moreover, their occurrences
in somatic cells result in mutation transmission to daughter cells, while, more dramatically,
occurrences in germinal cells, i.e. the gametes, are inherited by the individual’s offspring.
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6 Chapter 1

Figure 1.1: Different typologies of alterations in nucleic sequences

Different typologies of mutations are listed according to the nature of changes occurred in the
nucleic sequence. They are:

• insertion mutations, which are due to the adding of one or more extra nucleotides into
the DNA sequence (small-scale) or of chromosome sections into another chromosome
(large-scale);

• deletion mutations, which consist in the removal of one or more nucleotides from the
DNA sequence (small-scale) or in the drop of a portion of chromosome (large-scale);

• substitution mutations or traslocations, which are due to an exchange of a single nuc-
leotide, like the transition C ⇔ T,A ⇔ G, (small-scale) or of different chromosome
sections (large-scale).

All these mutation typologies can be driven by different factors, such as

• errors during the DNA replication with DNA polymerase, i.e. the enzyme synthesizing
DNA molecules from deoxyribonucleotides, adding sometimes wrong nucleotide in the
new DNA strand;

• errors during the DNA repairing with the introduction of alterations in the end rejoin
process that follows the removal of wrong nucleotides;

• chemical endogenous agents and spontaneous events, like oxidative damages to the DNA
strands or base alteration due to hydrogen shift;

• chemical and physical mutagens (X, Gamma and UV rays for example), that can cause
base damages, insertions and deletions.

Our organism has a self-mechanism to repair mutations, that operates in two different manners:
through the direct reversal of the chemical process generating the damage and through the
replacement of damaged nucleotide bases. The majority of the alterations undergo such a
mechanism, but others do not. Depending on where these latter occur and whether they alter
the function of essential proteins, mutations could have various and serious effects on health,
leading to genetic diseases in worst cases.
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1.2 Genetic of cancer

One of the most common genetic disease is cancer, which is the consequence of random accu-
mulation of mutations at molecular level (La Porta and Zapperi, 2017). Cancer develops from
a single mutated cell and is fuelled by such a cell expansion process, during which daughter
cells inherited the altered genetic heritage and may undergo other variations and selection
events. However, not all the mutations in cell nuclei feed directly the development of cancer
(Beerenwinkel et al., 2007). Some of them, the passengers, are neutral having no functional
consequences, whereas others, the drivers, have a deleterious effect on growth advantages
conferred to mutated clones and thus on these latter’s spread. Cancer main features are the
lack of growth control from the cell cycle regulatory mechanism due to gene alterations and
the consequent abnormal cell expansion that may invade tissues, causing metastasis. Indeed,
mutations fuelling tumor primarily alter (La Porta and Zapperi, 2017):

• proto-oncogenes, which shift from helping cell growth in normal conditions to promoting
abnormal cell proliferation when they are over-present or hit by alterations;

• oncosuppressors, which stop to protect cell genome when mutated, by repressing cell
cycle regulation and DNA repair system.

1.2.1 The hallmarks of cancer

To deep the insight, some sets of molecular, chemical and biological traits shared by the
majority of cancers, called cancer hallmarks, have been identified. In Hanahan and Weinberg
(2000) such essential features are listed to be:

• Sustain of proliferative signaling: the oncogenes simulate the effect of growth signals,
which normally stimulate mitosis. This leads to an unregulated cancer cell proliferation
due to self-sustained mechanisms (not to exogenous stimulation);

• Insensibility to growth suppressor control: cancer cells can deactivate growth-inhibitory
signals, that normally block proliferation in order to guarantee a correct tissue homoeo-
stasis;

• Tissue invasion and metastasis: angiogenic switch, whose task is regulating the process
of blood vessels growth (angiogenesis, remains on, once activated, causing a continuous
sprout of new vessels. Cancer cells then use these blood vessels (and the lymphatic
ones) to flow towards new tissues, both adjacent and distant, causing tissue invasion
and secondary neoplasms, which are responsible for 90% of cancer deaths;

• Immortalization: human cells have a self-regulated mechanism to limit the multiplication
of cell clones, that induces the senescence, i.e. cell division ceasing. Cancer cells, not
only disrupt cell-to cell proliferative signals, but also deactive the above surveillance
mechanism, leading to an unlimited number of successive cell divisions;

• Resistance to cell death: cancer cells get more resistant to apoptosis, a self-programmed
program which drives cells to death.

Recent studies (Hanahan and Weinberg, 2011) have improved the above list with the adding
of two emerging hallmarks:
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Figure 1.2: List of cancer hallmarks and characteristics.

• Obstacle to immune destruction: cancer cell succeed in limiting the detective action of
immune system, which works to recognize and delete tumor formation;

• Deregulation of cellular energy: cancer cells can alter their energy acquisition in order to
better fuel and feed tumor progression, by limiting the glucose metabolism to glycolysis.

and two enabling characteristics, which are essential conditions for theabove mentioned hall-
marks:

• Genome instability and mutation: DNA stability, normally ensured by an efficient gen-
ome maintenance system, is altered by a succession of random genetic mutations having
selective advantages in growth process;

• Promotion of inflammation: inflammatory response associated to cancer can fuel tumor
evolution by increasing hallmarks capabilities through the supply of growth/survival/pro-
angiogenic factors.

1.3 Ecological perspective in cancer dynamics

In the last few years, the ecology of cancer has emerged as a promising approach in cancer
modeling (Altrock et al., 2015). In particular, it has been so far recognized the utility of re-
garding cancer as an evolutionary and ecological process that may be profitable described by
tools coming from mathematical ecology (Durrett and Levin, 1994). This latter field, which
borrows most of its approach from mechanical statistics (Azaele et al., 2016), represents a
natural framework when one attempts to model the dynamics of large families of interacting
units. Tumorgenensis, indeed, may be regarded as the result of a Darwinian struggle between
interacting species (healthy and mutated cells) of an ecosystem, involved in exploitative inter-
actions. Thus, the coexistence of several cell types, whose dynamics is driven by mutualistic
ecological interactions and stochasticities, suggests that approaches from ecology, population
dynamics and evolutionary game theory should be accounted for a reliable and highly detailed
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cancer modeling.
However, even dropping such a high grade of magnitude from the dynamics description, in-
teresting conclusions can be drawn by mean of these ecological approaches. Indeed, empirical
observations and census data have revealed the outstanding emergence of regular and univer-
sal statistical features in ecosystems, despite of the contrasting biological conditions affecting
them. By suitably simplifying above models disregarding biological details and stochasticities,
a theoretical explanation for the arising of such common, global traits from few key features
follows. Scientists refer to this theoretical idea as neutral theory. We will see that it will
represent a fundamental hypothesis for the derivation of our statistical framework.

In what follows, we will present in details same quantitative models of ecological inspiration
used in cancer dynamics at first, then our focus will be shifted to the neutral theory and its
claiming.

1.3.1 Simple population models for cancer dynamics

Tumors are not homogeneous, but are composed by many genetically different cells whose own
level of variability and fitness affect the evolution of the system and lead to cell competitions
for space and resources. From an ecological point of view, such an evolutionary process can
be look as an attempt of new species (cancer cells), having specific metabolic and proliferative
strategies and rates, to overcome the resident species (somatic cells) and invade new habitat
(tissue) (Kareva, 2011). Thus, competition approaches, mutuated from population dynamics
and dealing with the architecture and the magnitude of the interaction networks, seem to
mathematically well-suit such a dynamics.

Historically, the first models to treat species interaction in terms of interspecific competition
are those of Lotka and Volterra. They are entirely based on Gause law, stating that two
species, asking for the same limiting resources in a close environment not affected by external
perturbations, can not coexist for a long time. If we named N1(t) the population size of specie
1 (which can be healty cells or cancer cells) at time t and N2(t) the one of species 2, then the
simplest Lotka-Volterra dynamics is described by the equationsṄ1(t) = s1N1

(
1− N1

K1
− b1,2

K1
N2

)
Ṅ2(t) = s2N2

(
1− N2

K2
− b2,1

K2
N1

) (1.1)

For i, j ∈ {1, 2}, siNi describes the intrinsic population size growth with si meaning the
available resources in the area inhabited by the species i, N2

i
Ki

, with Ki carrying capacity,
accounts for the self-competition between the individuals of the same species and consequently
avoids the population size to diverge, −si bi,jKi

NiNj models how species i interacts with species
j according to the sign and the magnitude of the interaction effect constant bi,j . Depending
on the sign of this latter three scenarios are plausible: cancer cells overcome the normal ones
giving rise to a tumor mass, cancer cells are stopped in their progression (tumor mass is still
present but it does not expand), cancer cells are reduced and driven to death. In the last
two cases, we guess that interaction terms should account for drug benefits, which lead to the
modification of the system interaction constants.
Mathematically speaking, by performing the following change of coordinates

x =
N1

K1
, y =

N2

K2
, τ = s1t, ρ =

s2
s1
, α1,2 = b1,2

K2

K1
, α2,1 = b2,1

K1

K2
(1.2)
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we find that the biological meaningful steady states of the system are:

• A = (1, 0), which is stable and attractive for α2,1 > 1 and occurs when only species 1
survives,

• B = (0, 1), which is stable and attractive for α1,2 > 1 and occurs when only species 2
survives,

• C =
(

1−α1,2

1−α1,2α2,1
,

1−α2,1

1−α2,1α1,2

)
, which is stable for (α1,2 < 1, α1,2 < 1) and arises when the

two species coexist.

A more current approach to the modeling of the struggle among different strategies is provided
by the evolutionary game theory. Such a theory deals with the understanding of the long-
term proliferation of well-mixed and infinite cells in the context of a game. In cancer biology,
such a game can be formulated as a table that ascribes fitness values (pay-offs) to every
pairwise interaction between cell phenotypes (strategies) (Altrock et al., 2015): cells with best
strategies will spread in the population. Indeed, under normal conditions, cells in healthy
tissue move toward an evolutionarily stable strategy (ESS). However, if one of the present
cell types escapes its biological constraints and rates, the balance may be destroyed and one
species may overcome the others. For a mathematical translation of the above evolutionary
process, let us consider two population of cells with initial conditions on the abundance. Let
A be the population of healthy cells, having an initial population equal to NA(0) and α as
growth rate, and B be the population of tumor cells, with an initial cardinality of NB(0) and a
growth rate equal to β. Under the assumption that the resource availability needs a constant
population size, the dynamics of the two populations are respectively

ṄA(t) = NA(t)(α− ω), (1.3)

and
ṄB(t) = NB(t)(β − ω), (1.4)

where ω is the average growth rate. Observe that if α or β is greater than the average rate,
then the corresponding population will overgrow the other one. The constant-size for the
whole population (NA(t) +NB(t) = NT = constant ∀t > 0) leads to

NTω = NA(t)α+NB(t)β, (1.5)

which enables us to rewrite the system of Eq.(1.3) and Eq.(1.4) into an unique dynamical
equation:

ṄA(t) = NA(t)(NT −NA(t))(α− β). (1.6)

If population size is � 1, we can convert the latter equation into another one concerning
frequency x; that is the replicator equation

ẋ(t) = x(t)(1− x(t))(α− β). (1.7)

Observe that, now, the growth rates α and β can be thought as a measure for fitness. Within
this framework, an improvement of the description can be performed by accounting for the
dependence of fitness from reproduction rates and population frequencies. Then, making the
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substitutions α → φA(x) and β → φB(x) to explicate the fitness-frequency dependence, we
obtain the following mean-field inspired equation

ẋ(t) = x(t)(1− x(t))(φA(x)− φB(x)). (1.8)

After the computation of the pay-off matrix for NA ↔ NB game,
[
pAA pAB
pBA pBB

]
, where pi,j ,

i, j ∈ {A,B} is the output for a i cell type individual after its interaction with one of population
j, we end up with the average fitness

φA(x) = xpAA + (1− x)pAB, (1.9)

φA(x) = xpBA + (1− x)pBB, (1.10)

that we can substitute in Eq.(1.8) to solve it.

Thus, if tumor cells adopt the best strategy in terms of resources exploitation and prolifera-
tion, then they will win the competition, leading to a successful invasion of tissue and to the
formation of a primary tumor mass.
Once a tumor insurgence occurs other quantitative models help us to analyze and monitor
the probabilistic growth of its size. In this context, the models providing the more realistic
evolution are those capable of accounting for both demographic (population size) and envir-
onmental (drug effects) stochasticities that cancers undergo. Indeed, whereas the effect of
demographic stochasticity decreases with population size, the effect of environmental factors
does not, thus they should be included in the dynamical description (Haccou et al., 2005).
Within this stochastic framework, the branching processes are among the most spread probab-
ilistic tools to track the tumor growth. A branching process is a Markov process (see Chapter
2, Subsection 2.2.2 for details) characterized by the assumption that each cell events occur
at given rates, independently of the population size or composition, or of the time. After
a time equal to ∆t, each cell is supposed to have generated a random number of offspring
and, as mutations accumulate in tumor cells, each new cell typology has acquired new event
rates (Altrock et al., 2015). Named n1 the number of cells harbouring one mutation and n2
the number of those harbouring two mutations, such properties can be translated into the
following transition probabilities:

P (n1(t+ ∆t) = a+ 1, n2(t+ ∆t) = b|n1(t) = a, n2(t) = b) ≈ λ1(1− u)a∆t

P (n1(t+ ∆t) = a− 1, n2(t+ ∆t) = b|n1(t) = a, n2(t) = b) ≈ µ1a∆t

P (n1(t+ ∆t) = a, n2(t+ ∆t) = b+ 1|n1(t) = a, n2(t) = b) ≈ (λ2 + λ1u) b∆t

P (n1(t+ ∆t) = a, n2(t+ ∆t) = b− 1|n1(t) = a, n2(t) = b) ≈ µ2b∆t

(1.11)

where λi and µi, i ∈ {1, 2} are the birth and death rates for the two cell types respectively,
while u is the mutation rate from the first cell type to the second.
Among branching processes, a particular interest has been paid to Moran process, which
allows to incorporate a mutational fitness distribution in a constant-size population, instead
of a fixed fitness value . Let us suppose that there are n species, i ∈ {1, 2, ..., n}, having
abundance N1, N2, ..., Nn, with N1 +N2 +Nn = N constant and be f1, f2, ..., fn their fitness
values, respectively. Then, at each time step, a Moran process works by choosing a cell of type
i for a single reproduction with a probability proportional to its fitness fi and by removing
randomly an individual-type, say j, from the population in order to keep the population size
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constant. Thus, the transition probability for the individual-type i to increase and for the
individual-type j to decrease is

P (Ni = Ni + 1, Nj = Nj − 1) =
Nifi

Nifi +Njfj

Nj

N
. (1.12)

1.3.2 Macroscopic and universal traits in ecological dynamics: the neutral
theory

All the above models provide us with a reliable and detailed description of the evolution of
stochastic populations affected by species interactions. Both evolutionary game theory and
competitor approaches in cancer modeling strongly account for the architecture of cells inter-
action network. This latter naturally insert into the system description a sort of identification
for the mutations: each of them need to be somehow labelled in order to assign the corres-
ponding interaction rates and to model the interplay dynamics by mean of the effect that the
presence of mutation i has on the behaviour of mutation j, for instance. Such a high grade of
details is useful to track the evolutionary trajectory of the system, but is not treatable enough
to explain the emergence of common traits that has been empirically observed. (Azaele et al.,
2016). Indeed, from data collected in various ecosystems, the observation of similar macro-
patterns despite of the particularities of the systems has occurred. Thus, there has been the
exigency for many researchers to understand this counterintuitive tendency. They have found
that if one looks at the system dynamics backward, dropping both the stochastical differences
occurring among mutations and the mutation indexing in favour of a demographic equival-
ence for all the mutations, then a justification of such a universal, statistical behaviour can be
obtained. This is the framework of the neutral theory, an individual-based stochastic theory
claiming at describing the population dynamics as based on random drift, with individuals
in the community carrying the same per capita probabilities of giving birth, dying and spe-
ciating and having the derivation of several macro-ecological patterns from few fundamental
mechanisms as major strength. (Azaele et al., 2016).

A pioneering attempt to explain the emergence of universal ecological traits was made by
MacArthur and Wilson in (MacArthur and Wilson, 1967). They have observed the population
dynamics at two different scales:

• local scale → specie community : a group of similar species competing for the same
resources in a local area,

• global scale → metacommunity : a group of similar species living in a set of local com-
munities,

and proposed a model in which species richness at local community scale is the result of
both immigration of new species from the metacommunity and the extinction phenomena
that the species may undergone. Moreover, they have described a dynamics not noticeably
affected by competition: species with survival advantages are still present but are determined
by random dispersal and stochastic local extinction. The role of the stochasticity in the
dynamics, the balance between immigration and extinction in determining species abundance
and the demographic equivalence of the species have represented a crucial departure from the
previous competitive theories (Azaele et al., 2016).

The neutral theory has found its maximum formalization in The Unified Neutral Theory of



Chapter 1. Overview on cancer ecology and modeling 13

Biodiversity and Biogeography of Stephen Hubbell (Hubbell, 2001). Here, under the hypothesis
of:

• stochasticity: species dynamics is driven by random events that lead to a birth and death
process;

• independence: no interspecific interactions affect species relations;

• neutrality: no demographic differences occur among species individuals,

Hubbell has derived various macroscopic patterns, like the functional shape of the empirical
global RSA (a static measure to describe the heterogeneity and richness of an ecosystem, i.e.
the frequency of species at given abundance).
For instance, adding the assumptions of species independence and random spatial distribution
for species to those of neutrality and setting the density of individuals in a ecological region
equal to ρ, we have that the probability for a species to have abundance n in an area of size a
is ∼ Poisson(ρa). To model metacommunity dynamics and derive a reliable RSA distribution,
Hubbell has exploited Markovian modeling approaches, which generally enable to both insert
and control the stochasticities and their effects.

Definition 1.1. A stochastic process {X(t)}t∈R+ having support in ε is a continuous-time
Markov chain if ∀ x0, x1, ..., xn, xn+1 ∈ ε, ∀ 0 < t1 < t2 < ... < tn < tn+1 ∈ R+ the following
identity (sometimes called "memorylessness") holds

P (X(tn+1) = xn+1|X(tn) = xn, ..., X(t0) = x0) = P (X(tn+1) = xn+1|X(tn) = xn) (1.13)

Thus, let Pn,s(t) be the probability for the species labeled with s, s ∈ {1, ..., S}, to have
exactly n individuals at time t in the metacommunity. Then, such a state probability follows
a birth and death dynamics governed by the following Kolmogorov forward equation{

∂
∂tPn,s(t) = Pn−1,s(t) bn−1,s + Pn+1,s(t) dn+1,s − Pn,s(t) bn,s − Pn,s (t)dn,s n ≥ 1
∂
∂tP0,s(t) = −P0,s b0,s + P1,s d1,s n = 0

(1.14)

where bn,s and dn,s are birth and death rates for species s occurred n times, respectively.
Observe that n=0 case is equivalent to set b−1,s = d0,s = 0, meaning that no births could
occur if initial population is equal to −1 and no deaths are possible with null population.
Since the RSA is a static tool, we need to study the above system at the equilibrium. It
becomes {

Pn,s (bn,s + dn,s) = Pn−1,s bn−1,s + Pn+1,s dn+1,s n ≥ 1

P0,s b0,s = P1,s d1,s n = 0
(1.15)

Then, the steady-state probability is given by

Pn,s = P0,s

n−1∏
i=0

bi,s
di+1,s

, (1.16)

where P0,s must be selected equal to
(∑∞

n=1

∏n−1
i=0

bi,s
di+1,s

)−1
to normalize.

Indeed, from the initial condition of the Kolmogorov system follows that
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• P1,s =
b0,s
d1,s

P0,s.

Substituting this expression into the differential equation for n = 1, we end up with

• P2,s =
P1,s(b1,s+d1,s)−P0,s b0,s

d2,s
=

P1,s(b1,s+d1,s)−P1,s d1,s
d2,s

=
b1,s
d2,s

P1,s =
b0,s b1,s
d1,s d2,s

P0,s.

This suggests that we might have Pn =
bn−1,s

dn,s
Pn−1 for n ≥ 1. Assuming this, we have then

Pn+1 =
(bn,s + dn,s)Pn,s − bn−1,sPn−1,s

dn+1,s
=

(bn,s + dn,s)Pn,s − dn,sPn,s
dn+1,s

=
bn,s
dn+1,s

Pn,s. (1.17)

Therefore, substituting recursively Eq.(1.16) arises. as wanted.
At this point, observe that the demographic equivalence for species, driven by the assumption
of the neutral theory, allows us to drop the s index in Eq.(1.16). In other word, we can focus
on the probability that a given species - do not care which, they are supposed to be identical -
has abundance n. Now, depending on the functional form of bn,s and dn,s, various distribution
for Pn,s(t) at metacommunity scale can be worked out. In his work, Hubbell has made the
ecologically meaningful selection of:

bMn,s = bs n+ δn,0ν as the birth rate, (1.18)

dMn,s = ds n as the death rate (1.19)

with the additional boundary condition term δ0,s = ν, which ensures to work with a community
of size at least one. Such a choice, for which the system is governed by ecological drift and
random speciation, leads to an empirically reliable Log-Fisher distribution for RSA.
Indeed, by naming xs = bs

ds
∈ (0, 1) and substituting the rates into Eq.(1.16), the steady-state

solution is
Pn,s = P0,s

ν

bs

xns
n
. (1.20)

The P0,s constant can be actually be determined by imposing

1 =
∞∑
n=1

Pn,s = P0,s
ν

bs

∞∑
n1

xns
n

= P0,s
ν

bs
[− log(1− xs)], (1.21)

where special series
∑∞

i=1
xi

i = 1
log(1−x) with |x| ≥ 1, x 6= 1 has been used in the last equality.

Thus, it results that Pn = P (n) ∼ 1−normalized Log-Series distribution with probability mass
function given by

P (n) = − 1

log(1− x)

xn

n
. (1.22)

In the next chapter, which concerns the mathematical core of the thesis, we will derive the
statistical distribution chosen for our method in the same manner of above using suitable and
ecological-driven birth and death rates.

To complete the description of the macro-patterns resulting from the unified neutral theory,
Hubbell has treated the ecological dynamics at the local scale, i.e. local communities, as well.
Under the following assumptions:

• the timescale is faster at the local scale than at the global one;
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• migration and random drift only govern the dynamics;

he has described the dynamics as based on the following rules:

• Initialization. Have a local species community dipped in a metacommunity represent-
ing an infinite pool of species.

• Two different pathways are now possible.
RULE 1

– Step 1 → Birth and death events: with a probability of 1 −m, select randomly
two individuals from local community: if they belong to the same species go back
to initialization, otherwise go to step 2.

– Step 2 → with a probability of 1
2 , remove one individual between the two selected

and replace it with an immediately-mature individual of the other species.

RULE 2

– Step 1 → Death and migration events: with a probability of m, pick randomly an
individual and go to step 2.

– Step 2→ with a probability of 1
2 , remove the individual and substitute it with one

belonging to a species present in the metacommunity randomly chosen according
to a probability proportional to its abundance at global scale.

Volvok has been managed to translate such rules into the following analytical birth and death
rates for the k species (Volkov et al., 2013):

bLn,k = (1−m)
n

SL
SL − n
SL − 1

+m
nMk
SM

(
1− n

SL

)
, (1.23)

dLn,k = (1−m)
n

SL
SL − n
SL − 1

+M

(
1−

nMk
SM

)
n

SL
, (1.24)

where nMk is the abundance of k species at metacommunity scale, SL is the number of species
in the local community, whereas SM is the one in the metacommunity. Observe that the first
terms of both Eq.(1.23) and Eq.(1.24) account for the first rule with a k-species birth related
to a different-species death, while the second ones regard second rules with an increasing of
k-species due to migration events from metacommunity. Substituting Eq.(1.23) and Eq.(1.24)
into Eq.(1.16) we end up with the expression for RSA at local community scale:

Pn,k =
SL!

n!(J − n)!
· Γ(n+ λk)

Γ(k)
· Γ(θk − n)

Γ(θk − SL)
· Γ(λk + θk − SL)

Γ(λk + θk)
(1.25)

with

λk =
m

1−m
(SL − 1)

nMk
SM

, (1.26)

θk = SL +
m

1−m
(SL − 1)

(
1−

nMk
SM

)
. (1.27)
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Neutral theory in genomics

For the genetic purposes of the present thesis we need to check if neutral theory holds in
genomics field as well. Indeed, the ecological-inspired statistical framework we aim at adapting
is heavily based on neutrality. Thus, to guarantee the same mathematical formalism and
exploit a similar ensemble approach, neutral assumptions of demographic equivalence and
stochastic effects must be satisfied. From actual observations and experiments, the biologist
M. Kimura (Kimura, 1986) has confirmed these hypothesis hold even at DNA level, stating
that

• almost all mutations occurring at DNA molecular level depend on random fixation
and neutral mutant selectivity and not on Darwinian species selection acting on best-
competitor-mutants;

• natural selection still affects genetic evolution, but only a small percentage of DNA
changes is adaptive in nature;

• most of intraspecific variability present at molecular level is neutral. Thus, DNA poly-
morphic alleles are kept in the species by some form of balancing selection involving
mutational input and random extinction.

Thus, the neutral theory properties in genomics are empirically satisfied and consequently we
can be legitimated to assume them as basic hypothesis for our framework.



Chapter 2

Statistical inference of unseen variants

In this chapter we present in details the upscaling method we will develop on, providing in-
formation on the statistical distribution used as well. We have adapted a statistical framework
firstly implemented for the estimation of the species richness in the Amazonian forests (Tovo
et al., 2017). Tested on both simulated and real forests, such a method gave back the best
results among those given by various other ecological estimators, thus we have selected it for
our piece of work.

To describe and visualize the heterogeneity and the spread of mutations over desired unities
(tumor cells, tumor biopsies or individuals’ sequenced sections of DNA), Species-Abundance
Distribution (SAD) pattern may be profitably used in genomics. Such a curve provides
quantitative information on the number of mutations occurring in exactly n unities, with
n ∈ {1, 2, 3, ...}, i.e. it lists the observable mutations within a tumour region along with the
number of occurrences for mutations.
Unfortunately, in clinical applications the medical ethics and the high costs of sequencing im-
pose for this curve to be measured locally only (for example taking into account biopsies that
cover just a fraction of the whole tumor or sequencing only few people). Therefore, one only
has information on mutation occurrences in a small region. An upscaling method consists on
inferring the SAC and estimating the total number of occurred mutations, S, at the global
scale. An object of interest for our statistical approach, strongly connected to the SAD, is the
ecologically-borrowed Relative Species Abundance distribution (RSA), which is the probability
for a mutation to occur exactly n times.

Hereafter the RSA at global scale is postulated to be distributed according to

• a Negative Binomial (NB) of parameters r > 0 and 0 < ξ < 1, whose probability mass
function is

P (n|1) =
1

1− (1− ξ)r︸ ︷︷ ︸
:=c(r,ξ)

(
n+ r − 1

n

)
ξn(1− ξ)r︸ ︷︷ ︸

:=P(n|r,ξ)

n ≥ 1

or

17
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• an extended Negative Binomial of parameters r ∈ (−m,−m+ 1) with m ∈ N \ {0} and
0 < ξ < 1, whose probability mass function is

P (n|1) =
1

1− (1− ξ)r ·
∑m−1

j=0

(
j+r−1
j

)
ξj︸ ︷︷ ︸

:=c̃(r,ξ)

(
n+r−1
n

)
ξn(1− ξ)r n ≥ m

depending on the r parameter value.
Notice that in the first case the support is set to start from one because only mutations with
abundance at least one can be seen and counted, whereas in the second case the support needs
to start from m to have the well-posedness of both binomial coefficients.
Moreover, given that binomials can be written in terms of Gamma functions, as(

n+ r − 1

n

)
=

Γ(n+ r)

Γ(r)Γ(n+ 1)
, (2.1)

it follows that we need to split the negative domain for r into (−m,−m + 1) open intervals
because the Gamma function, having singularities in 0 and in Z−, is not defined in the whole
negative real line. For the extended Negative Binomial, we have developed the general theory
for r parameter lying in any negative intervals (−m,−m+ 1), even if in the datasets analyzed
in Chapter 3 and Chapter 4 only the m = 1 formula has emerged. It can be proved that such
a formula coincides with the analytical expression of the 1-normalized Negative Binomial with
r > 0.

Remark 1. To streamline the notations, in the whole dissertation we have preferred to write
the probability mass functions using binomials instead of Gamma functions. Moreover, for the
same purpose, we will refer to the extended Negative Binomial of parameters r ∈ (−m,−m+1)
and ξ as Negative Binomial with r ∈ (−m,−m+ 1) or as m-extended Negative Binomial.

The choice of the statistical framework {(r, ξ, S), r ∈ R \ {0}, 0 < ξ < 1, S ∈ N} for our model
has been driven by both biological and mathematical reasons that are explained in the next
section, which closely follows Tovo et al. (2017) in the model derivation and justifications.

2.1 Negative Binomial as steady-state distribution of a birth
and death dynamics

To start off, it can be proved that the Negative Binomial arises naturally as the steady-state
distribution of system undergoing a birth and death dynamics having specific event rates that
weakly account for interspecific interactions. As first approximation, cancer cells evolution - as
any population growth - can be profitably modeled by such a dynamics due to its proliferative
mechanism.

Definition 2.1. Let be X(t) a birth and death process, i.e. the variable describing the tem-
poral evolution of the process, having birth and death rates equal to λn and µn, respectively.
Then, X(t) is a continuous-time Markov chain with support in N if it satisfies the following
properties:
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• P (X(t+ h)−X(t) = 1|X(t) = n) = λnh+ o(h)

• P (X(t+ h)−X(t) = −1|X(t) = n) = µnh+ o(h)

• P (|X(t+ h)−X(t)| ≥ 2|X(t) = n) = o(h)

In other words, a birth and death process is a particular Markov process in which jumps
between neighboring states only are allowed. For our genetic purposes, it means that the
population size can only increase by one or decrease by one at each step. The probability
of transition from state n to state n + 1 is given by λn∆t + o(∆t), while the probability of
moving from state n to state n− 1 is given by λn∆t+ o(∆t) in an infinitesimal time.

Assumed that our mutational spectrum is composed by S independent mutations, let us name
Pn,s(t) the probability for the mutation s, s ∈ {1, 2, ..., S}, to have abundance n, i.e. it occurs
in n samples, at time t. Then, within an evolutionary ecological perspective one may assume
that the probability function follows the same dynamics of Chapter 1, Subsection 1.3.2.
Thus, the master equation for Pn,s is

∂

∂t
Pn,s(t) = Pn−1,s(t) bn−1,s + Pn+1,s(t) dn+1,s − Pn,s(t) bn,s − Pn,s (t)dn,s (2.2)

where bn,s and dn,s are the birth and death rate for mutation s occurred n times, respectively.
The formula at the equilibrium is

Pn,s = P0,s

n−1∏
i=0

bi,s
di+1,s

(2.3)

again, with P0,s normalization constant. In order to deal with a Negative Binomial distribution
we need to set the following biological inspired birth and death rates:

• bn,s = bs(n+ rs),

• dn,s = ds n,

where bs and ds are density independent per-capita birth and death rates, while rs is a clus-
tering parameter that accounts for intraspecfic interactions or migrations. By substituting
relations above into Eq.(2.3) and setting ξs = bs

ds
we end up with

Pn,s = P0,s

n−1∏
i=0

bn,s
dn,s

= ξns

[
rs ·

1 + rs
2
· 2 + rs

3
· ... · n− 1 + rs

n

]
=

(rs + n− 1)!

(rs − 1)!n!
ξns =

(
n+ rs − 1

n

)
ξns ,

(2.4)

where the definition of rising factorial is used to prove the third equality.
The constant P0,s can be determined through the following non-zero abundance normalization

1 =
∞∑
n=1

Pn,s = P0,s

∞∑
n=1

(
n+ rs − 1

n

)
ξns = P0,s

1− (1− ξs)rs

(1− ξs)rs
. (2.5)



20 Chapter 2

Therefore, at the equilibrium, the probability for the th mutation to have n occurrences, i.e.
the RSA, is given by a Negative Binomial of parameters (rs > 0, 0 < ξs < 1) and normalization
to one:

Pn,s =
1

1− (1− ξs)rs︸ ︷︷ ︸
:=c(rs,ξs)

(
n+ rs − 1

n

)
ξns (1− ξs)rs︸ ︷︷ ︸

:=P (n|rs,ξs)

. (2.6)

Within the neutral hypothesis, all mutations have the same probability of proliferating, dying
and speciating, so that s index can be neglected from the Eq.(2.6).

In particular, observe that the birth rate giving a Negative Binomial distribution and the one
giving a Log-Fisher (see Eq.(1.18) and Eq.(1.19)) differ only for the presence of the cluster
parameter rs. Thus, as we will analytically prove, Log-Fisher can be thought as a special case
of a Negative Binomial distribution having parameter r going to 0.

Finally, corresponding SAD can be found through

SAD(n) = E[S1(n)] =

∞∑
n=1

Pn,s = S · Pn, (2.7)

where S1(n) is the number of mutations occurring n times at the global scale p = 1 and where
s label has been removed. One then ends with the functional shapes for the SAD given by:

SAD(n) = S · c(r, ξ)
(
n+ r − 1

n

)
ξn(1− ξ)r with n ≥ 1

if the RSA ∼ 1-normalized Negative Binomial of parameters r > 0 and ξ,

SAD(n) = S · α(x)
xn

n
with n ≥ m

if the RSA ∼ 1-normalized Log Series of parameter α.

2.2 Form flexibility of Negative Binomial

It can be showed that the Negative Binomial, both with r > 0 and r ∈ (−m,−m + 1),
displays different functional shapes according to the values assumed by the parameters. Such
a flexibility is resulted to well accommodate our genetic-inspired RSAs and SADs. Indeed,
we guess these latter may have bumps if a set of mutations is common at the considered
scale or may have an initial boost followed by a noticeable decreasing if hyper-rare mutations
are dominant. Then, we need a distribution versatile enough to cover all these possibilities,
i.e. showing at least modal and power law behaviours that would well capture the described
frameworks.

2.2.1 Functional shapes accommodated by a single Negative Binomial

Proposition 2.2.1. The tail of a Negative Binomial of parameter r and ξ goes like a power
law xδ of exponent δ = −1 + r with an exponential cut-off weighted by ξ.
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Proof. From the probability mass function of the Negative Binomial, we deduce that its beha-
vior depends on the binomial coefficient, which can be written in term of the Gamma function
(see Eq.(2.1)). An asymptotic approximation (Flajolet and Robert Sedgewick, 2009) for the
Gamma function is

lim
n→∞

Γ(n+ c)

Γ(n)nc
= 1 ∀c ∈ C. (2.8)

Then, when n� 1 binomial coefficient becomes(
n+ r − 1

n

)
=

Γ(n+ r)

Γ(n+ 1)Γ(r)
=

Γ(n+ r)

nΓ(n)Γ(r)
∼ 1

Γ(r)
n−1+r. (2.9)

Therefore, asymptotically, a Negative Binomial behaves like

k · n−1+ren ln(ξ), (2.10)

where k is a constant depending on r and ξ parameters.

The proposition can be analytically proved for n� 1 only. By graphically observing that
a Negative Binomial of parameters (r, ξ) and a power law of exponent −1 + r match from
small n, one concludes that the relationship holds for all n > 0.

It follows that different shapes for Negative Binomial SADs are displayed according to the r
domain.

• Case: r > 1. When r parameter runs in (1,∞), the 1-normalized Negative Binomial
distribution we would deal with shows an unimodal mode. Its peak acquires the char-
acteristic shape and gets more noticeable as r � 1.

• Case: r < 0. When r < 0, the m-extended Negative Binomial we would have display a
power law behaviour, with lower exponent as r gets more negative.

• Case: r → 0. When r → 0, a special case of 1-normalized Negative Binomial, that is
the 1-normalized Log-Series, arises;

To justify this latter affirmation we have the following:

Proposition 2.2.2. In the limit r → 0, a 1-normalized Negative Binomial of parameters
r > 0 and ξ becomes a 1-normalized Log-Series distribution of parameter α with α =

1
log(1−ξ) , ξ = b(n+r)

dn .

Proof. When r ≈ 0 we have(
n+ r − 1

r

)
=

Γ(n+ r)

Γ(n+ 1)Γ(r)

=
(n+ r − 1)(n+ r − 2) · · · r

n!

=
r

n

n+ r − 1

n− 1

n+ r − 2

n− 2
· · · r + 1

1
.

(2.11)
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Figure 2.1: Single Negative Binomial SADs with different r > 0 and fixed ξ = 0.9.

Figure 2.2: 1-, 2-, 3-extended Negative Binomial SADs with different r < 0 and fixed ξ = 0.9.

By substituting into the limit we end up with

lim
r→0

c(r, ξ)

(
n+ r − 1

r

)
ξn(1− ξ)r = lim

r→0

(1− ξ)r

1− (1− ξ)n

(
n+ r − 1

n

)
ξn

= lim
r→0
−

1−ξ)r
r

(1−ξ)r−1
r

r

n

n+ r − 1

n− 1

n+ r − 2

n− 2
· · · r + 1

1

= − 1

log(1− ξ)︸ ︷︷ ︸
:=α

ξn

n
.

(2.12)

which is the form of a 1-normalized Log-Series distribution of parameter α.
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2.3 Definition of form invariance property

In what follows, we give the definition of form invariance and we prove that Negative Binomial
distribution arising both when r > 0 and r ∈ (−m,−m+1) satisfies it. The turning idea of our
method consists on exploiting such a property of the Negative Binomial distribution to link
local information to global one and deduce the unknown parameters from such a relationship.

For us, form invariance means that if we binomially subsampling a Negative Binomial, new
data are still described via a Negative Binomial. That is, the RSA at any local scale is a
Negative Binomial if the RSA at global scale is a Negative Binomial.
More technically, if we have a binomially distributed conditional probability P (k|n, p) for a
mutation to occur k times in a sample of size p, given that it occurs n times at global scale,
then the formalism to derive the emergence of a Negative Binomial distribution even at local
scale is guaranteed. To achieve such a binomially conditional probability we need to work
under the mean-field hypothesis. This latter deals with the absence of spatial correlation due
to both interspecific and intraspecific interactions in the sampling and with the demographic
equivalence of species. Observe that from the lack of anisotropies and inhomogeneties in the
region of interest follows that the probability for a mutation to occur in a region sampling of
area a = pA, where A is the total area, is exactly p, i.e. the probability is proportional to
the sampling size. Moreover, the demographic equivalence of mutations, resulting from the
setting of similar event rates, allows to have the above probability equal for each mutations.
To visualize more clearly the mean field hypothesis suppose to partition the whole genetic
region of interest into several units having the same area and to throw the similar supposed
mutations in the region according to a Poisson process, in the same way we would throw
balanced marbles. Then, each "balanced" mutation has the same chance to lie in a specific
unit which is proportional to the size of the unit itself. Under these assumptions, the sampling
is binomial, i.e. the conditional probability P (k|n, p) is binomially distributed with parameters
(n, p)

Pbinom(k|n, p) =

{(
n
k

)
pk(1− p)n−k n ≥ k

0 n < k
(2.13)

and the form invariance property for Negative Binomial can be derived. In our genetic frame-
work, the drop of mutation identities and stochastic differences follows from the neutral theory
which we have already proved to be reliable in genomics. To achieve the hypothesis on spatial
uncorrelation as well, we need to check the level of homogeneity characterizing the genetic re-
gion analyzed. We guess that in our datasets such a level guarantees a sufficient uncorrelation
magnitude to satisfy the assumption. Observe that in case of inhomogeneties, a larger number
of located samples is needed to cover all possible thickenings and to work with a statistical
reliable sampling.

Before providing an analytical proof of the form invariance property of the Negative Binomial
resulting from binomial sampling of data, we make an important observation.
Remark 2. In statistics, a widely mentioned property for distributions is the scale invariance
property. Reader should pay attention to not confuse the two properties, the form invariance
one and the scale invariance one, since they have different statistical meanings.
Indeed, a distribution f is said to be scale invariant if it satisfies

f(λx) = g(λ)f(x). (2.14)
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In this respect, it holds:

Proposition 2.3.1. A distribution is scale invariant if and only if it is a power law.

Proof. (⇐) Be f(x) = C · x−α a power law. Then, it follows

f(λx) = C(λx)−α = λ−α · C · x−α = λ−αf(x). (2.15)

(⇒) Be f(x) such that f(λx) = g(λ)f(x). Computing the previous formula in x = 1 gives
g(λ) = f(λ)

f(1) . By substituting the multiplicative constant into main expression we deal with

f(λx) =
f(λ)

f(1)
f(x), (2.16)

whose derivative with respect to λ is

xf
′
(λx) =

f
′
(λ)

f(1)
f(x) (2.17)

If we compute this latter in λ = 1, we end with the differential equation

f(x) = f(1)x
f(1)

f
′
(1) (2.18)

whose only solution is a power-law distribution.

2.3.1 Proof of form invariance property for 1-normalized Negative Bino-
mial with r > 0

Lemma 2.3.2. Named P (n|1) the probability for a mutation to occur n ≥ 1 times at the
global scale, i.e. the global RSA, and P (k|n, p), with p ∈ (0, 1), the conditional probability that
a variant appears in k samples at the local scale p, given that it occurs in n at the global scale,
let us assume that

• P (n|1) ∼ 1-normalized Negative Binomial (r > 0, ξ ∈ (0, 1)),

• P (k|n, p) ∼ Binomial (n, p ∈ (0, 1)).

Then, the RSA at the local scale p, Psub(k|p), is a 1-normalized Negative Binomial for k ≥ 1
as well, with parameters (r̂p, ξ̂p) given by

{
ξ̂p = pξ

1−ξ(1−p)
r̂p = r

(2.19)
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Proof. First, let k ≥ 1.

PNBsub (k|p) =
∑
n≥k

P (k|n, p) · P (n|1)

=
∑
n≥k

(
n

k

)
pk(1− p)(n−k) · 1

1− (1− ξ)r︸ ︷︷ ︸
c(r,ξ)

(
n+ r − 1

n

)
ξn(1− ξ)r

= (ξp)k(1− ξ)rc(r, ξ)
∑
n≥k

(
n

k

)(
n+ r − 1

n

)
(ξ(1− p))n−k

= (ξp)k(1− ξ)rc(r, ξ)
∑
n≥k

r · · · (r + k − 1)

k!︸ ︷︷ ︸
(k+r−1

k )

·(r + k) · · · (r + n− 1)

(n− k)!
· (ξ(1− p))n−k

= (ξp)k(1− ξ)rc(r, ξ)
(
k + r − 1

k

)∑
l≥0

(ξ(1− p))l

l!
(r + k) · · · (r + l + k − 1)

= (ξp)k(1− ξ)rc(r, ξ)
(
k + r − 1

k

)∑
l≥0

(ξ(1− p))l
(
r + l + k − 1

l

)

= c(r, ξ)

(
k + r − 1

k

)(
pξ

1− ξ(1− p)

)k
︸ ︷︷ ︸

:=(ξ̂p)
k

(
1− ξ

1− ξ(1− p)

)r
︸ ︷︷ ︸

:=(1−ξ̂p)r

(2.20)

where the special series
∑∞

i=0

(
i+m
i

)
xi = 1

(1−x)m+1 has been used in the last equality.
Now let k = 0. By taking the complementary, we have

PNBsub (0|p) = 1−
∑
k≥1

PNBsub (k|p)

= 1− c(r, ξ) ·
∞∑
k=1

(
k + r − 1

k

)
ξ̂kp (1− ξ̂p)r︸ ︷︷ ︸

PNB(k|r,ξ̂p)

= 1− c(r, ξ)

c(r, ξ̂p)

(2.21)

where the normalization
∑∞

k=1 c(r, ξ̂p) · P (k|r̂p = r, ξ̂p) = 1 has been exploited.
The local RSA is then

P (k|p) =
PNBsub (k|p)∑∞

k′=1 P
NB
sub (k′|p)

=
c(r, ξ) · PNB(k|r, ξ̂p)∑∞

k′=1 c(r, ξ) · PNB(k′|r, ξ̂p)
= c(r, ξ̂p) · PNB(k|r, ξ̂p)

(2.22)
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To stretch out the result: starting with a global RSA distributed according to a Negative
Binomial distribution, a binomially sampling of any size can still be statistically described via
a Negative Binomial having coefficients depending on the global scale parameters and on the
sampling area through an explicit formula.

2.3.2 Proof of form invariance property for m-extended Negative Binomial
with r ∈ (−m,−m+ 1)

Lemma 2.3.3. Let P (n|1) be the probability for a mutation to occur n ≥ m times at the
global scale, i.e. the global RSA, and P (k|n, p), with p ∈ (0, 1), the conditional probability that
a variant appears in k ≥ m samples at the local scale p, given that it occurs in n at the global
scale. Let us now assume that

• P (n|1) ∼ m-normalized Negative Binomial (−m < r < −m+ 1 withm ∈ N \ 0, ξ ∈ (0, 1)),

• P (k|n, p) ∼ Binomial (n, p ∈ (0, 1)).

Then, the RSA at the local scale p, Psub(k|p), is a m-normalized Negative Binomial for k ≥ m
as well, with parameters (r̂p, ξ̂p) given by{

ξ̂p = pξ
1−ξ(1−p)

r̂p = r.
(2.23)

Proof. The probability mass function of Negative Binomial when r > 0 and when r ∈
(−m,−m + 1) differs only for the normalization constant. For the m-extended Negative
Binomial arising when r ∈ (−m,−m+ 1) such a constant is

c̃(r, ξ) =
1

1− (1− ξ)r ·
∑m−1

j=0

(
j+r−1
j

)
pj
. (2.24)

When k ≥ m computations follow closely those of the proof of Lemma 2.3.2. We have:

Pm−NBsub (k|p) =
∑

m≤k≤n
P (k|n, p) · P (n|1)

= c̃(r, ξ)

(
k + r − 1

k

)(
pξ

1− ξ(1− p)

)k
︸ ︷︷ ︸

(ξ̂p)k

(
1− ξ

1− ξ(1− p)

)r
︸ ︷︷ ︸

(1−ξ̂p)r

(2.25)

and

Pm−NBsub (0|p) + Pm−NBsub (1|p) + ...+ Pm−NBsub (m− 1|p) = 1−
∑
k≥m

Pm−NBsub (k|p)

= 1−
∑
k≥m

c̃(r, ξ)

(
k + r − 1

k

)
(ξ̂p)

k(1− ξ̂p)r︸ ︷︷ ︸
Pm−NB(k|r,ξ̂p)

= 1− c̃(r, ξ)

c̃(r, ξ̂p)
.

(2.26)
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Finally, the local RSA at scale p is

k ≥ m : P (k|p) =
Pm−NBsub (k|p)∑∞

k′=m P
m−NB
sub (k′|p)

=
c̃(r, ξ) · Pm−NB(k|r, ξ̂p)∑∞

k′=m c̃(r, ξ) · Pm−NB(k′|r, ξ̂p)
= c̃(r, ξ̂p) · Pm−NB(k|r, ξ̂p).

(2.27)

2.3.3 Proof of the form invariance property for 1-normalized Log-Series
with parameter α

Lemma 2.3.4. Let P (n|1) be the probability for a mutation to occur n ≥ 1 times at the global
scale, i.e. the global RSA, and P (k|n, p), with p ∈ (0, 1), the conditional probability that a
variant appears in k samples at the local scale p, given that it occurs in n at the global scale,
again. Suppose that

• P (n|1) ∼ 1-normalized Log-Series (α(x)),

• P (k|n, p) ∼ Binomial (n, p ∈ (0, 1)).

Then, the RSA at the local scale p, Psub(k|p), is a 1-normalized Log-Series for k ≥ 1 as well,
with parameter

α(x̂p) =
1

log(1− x̂p)
where x̂p =

px

1− x(1− p)
. (2.28)

Proof. First, be k ≥ 1.

PLSsub(k|p) =
∑
n≥k

P (k|n, p) · P (n|1)

=
∑
n≥k

(
n

k

)
pk(1− p)n−k · α(x)

xn

n

= α(x)(px)k
∑
n≥k

(
n

k

)
1

n
· (x(1− p))n−k

= α(x)(px)k
∑
n≥k

(n− 1) · · · (n− k + 1)

k(k − 1) · · · 1
· (x(1− p))n−k

= α(x)(px)k
∑
l≥0

(l + k + 1) · · · (l + 1)

k · (k − 1) · · · 1
(x(1− p))l

= α(x)(px)k
∑
l≥0

1

k

(
l + k + 1

l

)
(x(1− p))l

= α(x)

(
px

1− x(1− p)

)k
︸ ︷︷ ︸

:=(x̂p)
k

1

k
,

(2.29)
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where the special series
∑∞

i=0

(
i+m
i

)
xi = 1

(1−x)m+1 has been used in the last equality again.
Now be k = 0. Passing to the complementary, we obtain

PLSsub(0|p) = 1−
∑
k≥1

PLSsub(k|p)

= 1− α(x) ·
∞∑
k=1

x̂p
k︸︷︷︸

PLS(k|x̂p)

= 1− α(x)

α(x̂p)
,

(2.30)

where the normalization equality
∑∞

k=1 α(x̂p) · x̂pk = 1 has been used.
It follows that the RSA at the local scale p is

P (k|p) =
PLSsub(k|p)∑∞

k′=1 P
LS
sub(k

′|p)

=
α(x) · PLS(k|x̂p)∑∞

k′=1 α(x) · PLS(k′|x̂p)
= α(x̂p) · PLS(k|x̂p).

(2.31)

2.4 A statistical model for mutation inference

2.4.1 Statistical framework and working hypothesis

Up to now the technical tools needed to derive our upscaling method have been introduced.
As already highlighted, the key result for us is the form invariance property Negative Binomial
satisfies, which allows to derive an explicit formula for the global mutation number in the three
cases in which the local RSA is distributed according to a 1-normalized Negative Binomial
with r > 0, a m-extended Negative Binomial with r ∈ (−m,−m+ 1) and a Log-Series.
In the previous section we have seen that such a form invariance property is verified if a
binomial sampling can be performed. Thus, we need to assume as working hypothesis for
our method those conditions which enable us to have a binomial sampling. In Chapter 2,
these latter are listed to be the lack of spatial correlations and the demographic equivalence
of mutations, which we have already said to be plausible in genomics. Thus, Lemmas 2.3.2,
2.3.3, 2.3.4 and their claiming hold and can be used in our upscaling procedure.

2.4.2 Estimator of the number of global mutations for 1-normalized Neg-
ative Binomial method with r > 0

We have showed that sampling a fraction p of data distributed according to a Negative Bi-
nomial of parameters r > 0 and ξ results in another Negative Binomial having same cluster
parameter r and a rescaled parameter ξ̂p given by Eq.(2.19). By inverting this latter equa-
tion, we can write global parameter ξ as function of the local parameter ξ̂p and the sampling
fraction p

ξ =
ξ̂p

p+ ξ̂p(1− p)
. (2.32)
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Observe that above formula can be generalized to a computable expression linking parameters
at any two different scales p and p∗

ξ̂p∗ =
p∗ξ̂p

p+ ξ̂p(p∗ − p)
= U(p∗|p, ξ̂p). (2.33)

For p∗ = 1 we obviously restore Eq.(2.32).

Recall that our scope is inferring the global number of mutations, S, from the available
information at the local scale p ∈ (0, 1) only. Named Sp the number of observed mutations
at scale p and Sp(k) the number of mutations having exactly k occurrences locally, we can
estimate

PNBsub (k|p) ' Sp(k)

S
, k ≥ 1. (2.34)

Indeed, under the assumption of neutral hypothesis claiming at the nullification of mutation
identities and at their equivalent probability to occur in a sample of size p, PNBsub (k|p) can be ap-
proximately computed by mean of the heuristic method "favourable events over total events".
Then, the complementary is

PNBsub (k = 0|p) = 1−
∑
k≥1

PNBsub (k|p) ' 1− Sp
S

(2.35)

where the same heuristic reasoning has been made for the last approximation. Substituting
Eq.(2.35) into Eq.(2.21), we end up with our estimator

Ŝ =
Sp

1− PNBsub (0|p)

= Sp ·
1− (1− ξ)r

1− (1− ξ̂p)r
,

(2.36)

where ξ is given by Eq.(2.32).

Generalization to mixture of Negative Binomials

When data distribution displays unusual behaviour with different bumps, a mixture of l ∈ N
Negative Binomials having same ξ but different ri, i ∈ {1, ..., l} may very well accommodate
the empirical RSA. Indeed, the form versatility of a mixture of Negative Binomials, displaying
mode bumps and hybrid behaviours (see Fig.2.3), is particularly useful when dealing with
data that a single Negative Binomial can not describe properly (see Fig.2.4 taken from Tovo
et al. (2017)). Our method works even if we start from a global RSA accommodated by a
mixture of l ∈ N Negative Binomials. In this case, the estimator is

Ŝ = Sp

∑l
i=1 λi[1− (1− ξ)ri ]∑l
i=1 λi[1− (1− ξ̂rip ]

, (2.37)

where λi ∈ (0, 1),
∑m

i=1 λi = 1 are the mixture coefficients.
In Eq.(2.37), ξ is obtained from Eq.(2.32) as well, while both ξ̂p, ri with i ∈ {1, ...,m} are
computed through the best fit of the empirical RSA using the theoretical mixture

m∑
i=1

λi · c(ri, ξ̂p)P (k|ri, ξ̂p). (2.38)
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Figure 2.3: SADs produced by a mixture of two Negative Binomials.

Figure 2.4: Fit with two Negative Binomials.

For our tests in genomics we have assumed global RSA to be a single Negative Binomial since
mixtures would not have led to a noticeable improvement in data shape capturing.

2.4.3 Estimator of the number of global mutations for m-extended Negat-
ive Binomial method with r ∈ (−m,−m+ 1)

The derivation of the estimator when starting from a m-extended Negative Binomial RSA
follows the same steps as above. Indeed, the same relation holds between the local parameter
ξ̂p and the global parameter ξ. Using the same notations of the previous section, the probability
that a mutation occurs k times at the scale p is given by

Pm−NBsub (k|p) =
Sp(k)

S
, k ≥ m. (2.39)

The complementary is now

Pm−NBsub (k = 0) + · · ·+ Pm−NBsub (k = m− 1|k) = 1−
∑
k≥m

P (k|p) = 1− Sp
S
. (2.40)
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Combining with the Eq.(2.26), we have

Ŝ = Sp ·
c̃(r, ξ̂p)

c̃(r, ξ)

= Sp ·
1− (1− ξ)r ·

∑m−1
j=0

(
j+r−1
j

)
ξj

1− (1− ξ̂p)r ·
∑m−1

j=0

(
j+r−1
j

)
ξ̂jp
,

(2.41)

where ξ is obtained through Eq.(2.32) again.

2.4.4 Estimator of the number of global mutations for 1-normalized Log-
Series

The only parameter needed to describe a Log-Series results in two equivalent ways to infer
the global number of mutations S when RSA is distributed according to a 1-normalized Log-
Series.

The first, easiest, one follows the steps performed for the Negative Binomial (Tovo, 2018). We
have

Ŝ =
Sp

1− PLSsub(k = 0|p)

= Sp ·
log(1− x)

log(1− x̂p)
,

(2.42)

where the global parameter x is linked to the local one through the formula

x =
x̂p

p+ x̂p(1− p)
(2.43)

derived from the scale invariance property.

The second method requires an estimation for the total abundance N to be applied and it thus
results less flexible than the first one. Named Np the abundance counted at scale p ∈ (0, 1],
we have the following relations:

• Sp =
∑

k≥1 Sp(k) =
∑

k≥1 S · PLSsub(k|p) = Sα(x)︸ ︷︷ ︸
α̃

·
∑

k≥1
(x̂p)k

k = −α̃ log(1− x̂p),

• Np =
∑

k≥1 kSp(k) = Sα(x)
∑

k≥1 x̂p = α̃
x̂p

1−x̂p ,

where the special series
∑∞

i=1
yi

i = log
(

1
1−y

)
and

∑∞
i=0 y

i = 1
1−y have been used, respectively.

Manipulating the latter equations, we deal with the following relationship

Np − α̃
(

exp

(
Sp
α̃

)
− 1

)
= 0, (2.44)

from which, it is possible, from the available data, to get the parameter α̃. Indeed, observe
that such a parameter is p-independent so that the above relationship, holding for p ∈ (0, 1],
can be used to infer the number of mutations at the global scale. However, we first need an
estimation for the unknown parameter Np=1 in order to deduce Sp=1 from Eq.(2.44). From
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the scale invariance of a Log-Series distributed RSA, it follows that the mean total abundance
E(Np) scales linearly with the area p. Indeed,

E(Np) =
∑
k≥1

kSp(k) =
∑
k≥1

kα̃
(x̂p)

k

k
= α̃

x̂p
1− x̂p

= α̃
px

1− x
= p · E(Np=1). (2.45)

Setting Sp=1 = S and Np=1 = N , it holds consequently that N =
Np

p . Substituting such a N
into Eq.(2.44), we end with the estimator

Ŝ = α̃ log

(
1 +

N

α̃

)
, α̃ = Sα(x). (2.46)

2.4.5 Properties of Negative Binomial estimator

In mathematical parlance, an estimator is a statistics used to infer from data the value of an
unknown parameter, either finite-dimensional or infinite-dimensional, in a statistical model.
Supposed θ the parameter to estimate, an estimator for θ, normally named θ̂n, where n is the
size of the statistical sample, is any function that maps the sample space to a set of sample
estimates (Georgii, 2012). Observe that the definition places no restrictions on which statistics
can be called estimators. Thus, the attractiveness of different estimators is judged according
to their properties, such as unbiasedness, consistency, etc.

Definition 2.2. Let set the bias of θ̂n as B(θ̂n) = E(θ̂n) − θ, i.e. the distance between the
average of the estimates over all possible datasets and the true value of parameter. We say
that the estimator θ̂n is unbiased for θ if B(θ̂n) = 0.

Definition 2.3. We say that the estimator θ̂n is consistent for θ if the sequence of estimates
converges in probability to θ as the number of data points rises to +∞.

Having derived an explicit formula for our estimator of the number of mutations at global
scale, we can now check whether above properties are satisfied.

Remark 3. The estimator obtained from a global RSA distributed according to a 1-normalized
Negative Binomial of parameters r > 0 and ξ,

Ŝ = Sp ·
1− (1− ξ)r

1− (1− ξ̂p)r
, (2.47)

is unbiased.

In this respect, we have to show the validity of the following equality

E

[
Sp ·

1− (1− ξ)r

1− (1− ξ̂p)r

]
= S. (2.48)

Observe that if the Negative Binomial would have an infinite tail, then the errors in computing
the parameters, both at local and global scale, would decrease to 0, allowing us to treat
1−(1−ξ)r

1−(1−ξ̂p)r
as a constant. In our application to genomics, the Negative Binomial has not an

infinite support (the global size of DNA datasets is 46, whereas a 100×100 grid represents the
space for the tumor growth in the tumor synthetic datasets). However, in the data analysis
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performed, the computational errors are small enough to handle the parameters and the above
term as constants.
Then it holds

E

[
Sp ·

1− (1− ξ)r

1− (1− ξ̂p)r

]
' 1− (1− ξ)r

1− (1− ξ̂p)r
· E[Sp] =

c(r, ξ̂p)

c(r, ξ)

∞∑
k=1

kP(Sp = k). (2.49)

Now, since the probability for a mutation to be observed, i.e. to have occurrence ≥ 1, is

1− PNBsub (k = 0|p) = 1−

(
1− c(r, ξ)

c(r, ξ̂p)

)
=

c(r, ξ)

c(r, ξ̂p)
, (2.50)

we have that P(Sp = k), i.e. the probability that exactly k mutations occur at least once at
scale p, is given by

P(Sp = k) =

(
S

k

)
·

(
c(r, ξ)

c(r, ξ̂p)

)k
·

(
1− c(r, ξ)

c(r, ξ̂p)

)S−k
(2.51)

It follows that Sp ∼ Bin
(
S, c(r,ξ)

c(r,ξ̂p)

)
. Since the mean of a random variable distributed according

to a Binomial of parameters (u, v) is uv, we end with

E

[
Sp ·

1− (1− ξ)r

1− (1− ξ̂p)r

]
' c(r, ξ̂p)

c(r, ξ)
· E

[
Bin

(
S,

c(r, ξ)

c(r, ξ̂p)

)]

=
c(r, ξ̂p)

c(r, ξ)
· S c(r, ξ)

c(r, x̂ip)
= S.

(2.52)

Remark 4. Performing similar steps we can prove that both the estimator obtained from
a global RSA distributed according to a m-extended Negative Binomial of parameters r ∈
(−m,−m+ 1) and ξ,

Ŝ = Sp ·
1− (1− ξ)r ·

∑m−1
j=0

(
j+r−1
j

)
ξj

1− (1− ξ̂p)r ·
∑m−1

j=0

(
j+r−1
j

)
ξ̂jp
, (2.53)

and the one obtained from a global RSA distributed according to a 1-normalized Log-Series
of parameter α,

Sp ·
log(1− x)

log(1− x̂p)
, (2.54)

are unbiased as well.

Remark 5. The estimator obtained from a global RSA distributed according to a 1-normalized
Negative Binomial of parameters r > 0 and ξ,

Ŝ = Sp ·
1− (1− ξ)r

1− (1− ξ̂p)r
, (2.55)

has the property
lim
p→1

V ar
(
Ŝ
)

= 0 (2.56)



34 Chapter 2

In this respect, following Remark 3, we can assume that 1−(1−ξ)r

1−(1−ξ̂p)r
is a constant as well due

to the small error size computed on the parameters ξ, ξ̂p and r. Moreover, we have already
showed (see Remark 3) that Sp ∼ Bin

(
S, c(r,ξ)

c(r,ξ̂p)

)
, so that its variance is S · c(r,ξ)

c(r,ξ̂p)
·
(

1− c(r,ξ)

c(r,ξ̂p)

)
.

Thus, it holds

V AR

(
Sp ·

1− (1− ξ)r

1− (1− ξ̂p)r

)
=

(
c(r, ξ̂p)

c(r, ξ)

)2

V AR (Sp) = S · c(r, ξ̂p)− c(r, ξ)
c(r, ξ)

(2.57)

Then, when p → 1 we have ξ̂p → ξ and, by continuity, c(r, ξ̂p) → c(r, ξ). Our thesis follows
directly from the last limit.
Remark 6. Similar steps allow us to prove that both the estimator obtained from a global RSA
distributed according to a m-extended Negative Binomial of parameters r ∈ (−m,−m + 1)
and ξ,

Ŝ = Sp ·
1− (1− ξ)r ·

∑m−1
j=0

(
j+r−1
j

)
ξj

1− (1− ξ̂p)r ·
∑m−1

j=0

(
j+r−1
j

)
ξ̂jp
, (2.58)

and the one obtained from a global RSA distributed according to a 1-normalized Log-Series
of parameter α,

Sp ·
log(1− x)

log(1− x̂p)
, (2.59)

satisfy Eq.(2.56) as well.

2.5 Implementation of test procedure

The analytical method previously exposed has been derived taking into account information
on abundances. However, in genomics, data are often available in the form of binary matrices
built from presence/absence information and abundances are not readable at first glance.
Thus, as stated in Tovo et al. (2019), we need to adapt our computational framework to
such a presence/absence context. Hereafter the computational recipe for the inference of
the global number of mutations from presence/absence information using the 1-normalized
Negative Binomial with r > 0 method only is exposed.

• Initialization. Let us suppose to have a local scale binary matrix, representing a
fraction p ∈ (0, 1) of the global scale matrix, so composed:

– matrix rows are all loci s ∈ {1, ..., Sp} in which mutations may be observed at local
scale,

– matrix columns ci with i ∈ {1, ...,Mp},Mp ≥ 2 are cells of equal size a representing
different samples (sequenced individuals, biopsies,...).

Such a matrix is obtained by associating to each cell ci a Sp dimensional vector Ω(ci) =
{xi1, ..., xiSp

}, with xis ∈ {0, 1}, s ∈ {1, ..., Sp}, i ∈ {1, ...,Mp}, whose entries give inform-
ation on the presence or absence of mutation s in cell ci, and by joining those vectors
into a Sp ×Mp matrix. In other word, xis is set equal to 1 if mutation s occurred in cell
ci, to 0 otherwise.
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Figure 2.5: Schematic representation of the statistical framework.

• First step. Compute the empirical Species-Accumulation Curve in the following way.
Under the hypothesis that the global scale has been divided into cells of equal size a and
that Mp local cells correspond to a fraction p of the A global ones, compute the average
number of observed mutations at sub-sampling scale pk = ka

A , k ∈ {1, ...,Mp}, as

Semp(pk) =
1(Mp

k

) ∑
I⊆1,...,Mp/|I|=k

Sp∑
s=1

1

(∑
i∈I

xis ≥ 1

)
(2.60)

where 1(ε) is the indicator function of event ε defined as

1(E) =

{
1 if E ∈ ε
0 if E /∈ ε

(2.61)

Virtually one has to compute the empirical average of the number of occurred mutations
in all subsets of cardinality k with k ∈ {1, ...,Mp}. Such a calculus is computational
expansive for big size local datasets, thus, in the following simulations, the number of
concerned subsets (randomly chosen) is cut to 100.

• Second step. Fit the empirical curve with the theoretical one, given by

Stheo(pk) = Sp
1− (1− UNB(pk|1, ξ̂p)r)

1− (1− ξ̂p)r
(2.62)

with

UNB(pk|1, ξ̂p) =
ξ̂p

pk + ξ̂p(1− pk)
, (2.63)

and get parameters (r, ξp) that best match the local empirical SAC.
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• Third step. Use the formula

ξ =
ξ̂p

p+ ξ̂p(1− p)
. (2.64)

to obtain the global parameter ξ from the local ones and insert ξ, ξ̂p and r into the
expression of the estimator obtained from a global 1-normalized Negative Binomial RSA,

Ŝ = Sp ·
1− (1− ξ)r

1− (1− ξ̂p)r
, (2.65)

to infer the number of mutations at the global scale.

Remark 7. The inference using the m-extended Negative Binomial method or the Log-Series
method follows the same steps. In those cases, the theoretical curves to fit the empirical ones
are

Sp
1− (1− Um−NB(pk|1, ξ̂p))r ·

∑m−1
j=0

(
j+r−1
j

)
Um−NB(pk|1, ξ̂p)j

1− (1− ξ̂p)r ·
∑m−1

j=0

(
j+r−1
j

)
ξ̂jp

(2.66)

with

Um−NB(pk|1, ξ̂p) =
ξ̂p

pk + ξ̂p(1− pk)
(2.67)

and

Sp
log(1− ULS(pk|1, x̂p))

log(1− x̂p)
(2.68)

with
ULS(pk|1, x̂p) =

x̂p
pk + x̂p(1− pk)

, (2.69)

respectively.

In the following chapters, we will follow this recipe to computationally test our method on two
typologies of datasets: one concerning the DNA polymorphisms occurring in the X chromo-
some of a group of British males and the other regarding mutations occurring in a spatially
constrained simulated tumor.
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Inference of unseen variants in DNA
single-nucleotide polymorphism
datasets

In this chapter we apply the theoretical method we have developed so far to infer the number of
unseen variants in real DNA single-nucleotide polymorphisms. These are specific substitutions,
affecting one or at most very few nucleotides, that are present to a > 1% degree within a
population. Notice that in these particular datasets the number of variants is indeed known
at each scale. Thus, the analysis conducted in this chapter will serve also to test our method.
Below, the structure of the datasets and the results obtained from their analysis are presented.

3.1 DNA single-nucleotide polymorphism datasets

DNA polymorphysm simulations have been run on three single-nucleotide variant datasets
regarding X chromosome: they do provide global information about mutations’ occurrences
in three independent regions of X chromosome for 46 British male individuals. Hereafter the
three datasets are called data 1, data 2 and data 3 respectively to fast the notations. Datasets
information are available in the form of VCF tables, which are binary matrices having all the
observed mutated loci of the DNA region as rows and the 46 sampled individuals as columns.
When a mutation affects a particular genetic locus of a precise individual, the corresponding
matrix cell is filled with 1, otherwise with 0. The VCF tables carry qualitative information
on the type of mutation occurred and on the allele frequency as well.

Theoretically one expects that the distribution of the mutations frequencies is approximately
given by a power law of exponent δ = −1 (Williams et al., 2018) and, apart from some compu-
tational fluctuations, our datasets display such a tendency (see Fig.3.1). However, from (a),
(c) and (e) panels of Fig.3.1, we can observe that mutations occurring in the whole ensemble
of sequenced individuals have a different behaviour, not properly following the above power
law curve: histograms clearly display a final peak, which is a common behaviour highlighted
in Williams et al. (2018) as well. Indeed, those mutations (a bit improperly called clonal
hereafter) are present from the real beginning in the system, representing somehow a initial
condition, whereas we are interested in observing the dynamics from a certain time t forward.
Thus, our analysis will not accounted for clonal mutations: corresponding rows will be deleted

37
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10
46

15
46

20
46

25
46

30
46

35
46

40
46

data1 r ∈ (−1, 0) -1.28·10−7 -0.00025 -0.0013 -0.005 -0.024 -0.047 -0.071

r > 0 0.194 0.103 0.053 0.014 0.0008 0.0004 0.008

data2 r ∈ (−1, 0) -0.01 -0.004 -0.004 -0.002 -0.009 -0.041 -0.081

r > 0 0.285 0.277 0.128 0.078 0.027 0.0019 0.0002

data3 r ∈ (−1, 0) -0.0002 -0.001 -0.117 -0.038 -0.077 -0.105 -0.132

r > 0 0.211 0.1 0.025 0.003 1.44·10−7 1.92·10−7 1.02·10−7

Table 3.1: Best fitting values for r parameter with Negative Binomial method in
the domains r>0 and -1<r<0. The table shows best fitting values for r when 1-normalized
Negative Binomial with r > 0 and its extension to −1 < r < 0 method are used. Observe that
for each dataset such values shrink to 0 from both sides as one may expect from the theory,
claiming at a mutational distribution that follows a power law of exponent δ = −1 (Williams
et al., 2018).

from VCF tables before the start of the computational procedure and our aim will be to infer
the number of subclonal mutations (not clonal ones) occurring at the global scale starting
from their abundances at many local scales.

Our upscaling method has been tested for increasing local scales p = {1046 ,
15
46 ,

20
46 ,

25
46 ,

30
46 ,

35
46 ,

40
46}

using 1-normalized Negative Binomial method with r > 0, m-extended Negative Binomial
method with −1 < r < 0 and Log-Series method with r → 0. Due to the form of the available
data, samples have been selected by randomly choosing p columns, i.e. individuals, from the
global matrix.
We expect the Log-Series method works more efficiently in this context since relationship
−1 + r = δ (see Prop.2.2.1.) with δ ≈ −1 (this is the case) is satisfied for r ≈ 0.

3.1.1 Results

In order to check the stability of the analytical framework for each global dataset of size 46
and at each local scale p = {1046 ,

15
46 ,

20
46 ,

25
46 ,

30
46 ,

35
46 ,

40
46} the upscaling method has been tested on

100 training sets randomly chosen. In particular, simulations have been performed separately
for r in the three domains: r ∈ (0,∞), r ∈ (−1, 0), r ≈ 0.

For less than 8% of initial training sets fitting with Negative Binomial with r > 0 and with its
extension to −1 < r < 0 do not perform at all due to the computational limits affecting the
algorithm, while no computational problems have occurred with the Log-Series. The only few
initial training sets (the number depends on the handled dataset) displaying different behavior
have been characterized. They do not represent a good sampling in the sense that they do not
reflect the global behavior, since many individuals carrying values consistently far from the
average have been selected during random extraction. This unreliable outcome tendency for
some samplings gets more noticeable with local scales smaller than 10

46 where the few available
points for the fitting represent a further obstacle to the stability of the method.
However, at each local scale and for the 95%-99% of the training sets for which the fitting
with Negative Binomial (both with r > 0 and −1 < r < 0) works, outputs are consistent with
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(a) Plot for data 1 (b) Log-log plot for data 1

(c) Plot for data 2 (d) Log-log plot for data 2

(e) Plot for data 3 (f) Log-log plot for data 3

Figure 3.1: Plot and log-log plot of RSAs at global scale for the three DNA single-
nucleotide polymorphism datasets. Panels on the left hand side show the global RSAs
for the three datasets together with the best computational fitting power law having exponent
equal to δ = −1.18, δ = −1.34 and δ = −1.33, respectively. Panels on the right hand side
display the same information using log-log plots.
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(a) Relative errors for data 1
(b) Estimates histograms at different scales for
data 1

(c) Relative errors for data 2
(d) Estimates histograms at different scales for
data 2

(e) Relative errors for data 3
(f) Estimates histograms at different scales for
data 3

Figure 3.2: Average estimates and errors for the three DNA single-nucleotide poly-
morphism datasets. Panels on the left hand side show the average relative error (red line)
and the average maximum error (blue line) as local scale increases, while those on the right
display how estimates are distributed at different local scales - 15

46 (lightblue curve), 25
46 (orange

curve), 35
46 (green curve) - for all three datasets. Note that for local scales greater than 15

46 , an
asymptotic and predictable behavior arises with both errors decreasing constantly and smooth
histograms narrowing the correct number to predict (black vertical line).
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10
46

15
46

20
46

25
46

30
46

data1 S=16139 Spred 15279.6 15229.1 15354 15518.3 15685.4

err% -5.32 -5.63 -4.86 -3.84 -2.81

data2 S=21826 Spred 21200.6 20916.2 20968.9 20995.5 21158.9

err% -2.86 -4.16 -3.92 -3.8 -3.05

data3 S=73447 Spred 71400.4 71060.6 71315.6 71758.9 72107.2

err% -2.78 -3.24 -2.9 -2.29 -1.82

Table 3.2: Average Log-Series estimates and errors at different local scales for DNA
polymorphism datasets. The table shows the average estimates of the global number of
mutations, S, and the relative errors at increasing local scales, obtained with the application
of the Log-Series method to the three DNA single-nucleotide polymorphism datasets.

expectation. Indeed, r parameter that best fits empirical curve to the theoretical one shrinks
to 0 from both sides. When r > 0 the best fitting parameter fluctuates closing to 0+ for
each training sets and at each local scale, whereas when the domain for r is (−1, 0) the best
r parameter narrows 0−, not monotonically as well (see Tab.3.1). The Log-Series estimator

works well with an average relative error below 5% for all datasets and a maximum relative
error that lies between 7%− 15% at smaller scale. Asymptotically, it holds that

• the average relative errors decrease,

• the estimation biases decrease

in all tests as Fig.3.2 shows. In particular the estimates dispersion reduces as the local scale
increases: the shape of the histogram produced by the 100 training sets estimates gets sharper
and thinner and narrows the correct number to estimate, meaning that the probability of
randomly selecting a training set that gives back a good final estimate becomes higher with
the local scale size.
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Inference of unseen variants in
synthetic tumor datasets

The major interest for us is to test the validity of our analytical framework in inferring the
global number of variants in a tumor from local information. However, in cancer field one
generally works with really few biopsies that rarely reach the number of ten per tumor/patient,
a too small size to test our framework with profit. Indeed, to check the legitimacy of our
method we need to have information on mutation occurrences at several local scales and at
the global one, so that we can compute the final error and test the reliability of the method.
Thus the ten available biopsies, i.e. the maximum information we have, should be regarded as
the global scale and the upscaling method would start from a sub-sampling of these biopsies.
It follows that the sample, i.e. the local scale, would be compounded by a integer� 10 number
of biopsies that would lead to an empirical SAC composed by too few points for a reliable
fitting. Consequently, to not tackle these computational problems, we have been forced to
work with synthetic datasets, whose size we could control. We have produced the artificial
data for our tests by exploiting a spatially constrained stochastic model for tumor growth
(Chkhaidze et al., 2019). Such a model simulates both the spatial evolution of a single cell
tumor and the multi-region sequencing data derived from spatial sampling of a neoplasm. In
what follows, we will introduce at first the stochastic model used to generate the data following
what reported in Chkhaidze et al. (2019), then our focus will shift to the presentation of the
results obtained from the simulations on those synthetic datasets.

4.1 A spatially constraint tumor growth model

4.1.1 Stochastic framework and computational steps

To produce data we have exploited a stochastic spatial cellular automaton model for tumour
growth which incorporates cell division, cell death, clonal selection and random mutations
into the dynamics (Chkhaidze et al., 2019). Here, the spatial progression of the tumor from a
single initial cancer cell on a lattice is monitored, tracking the evolutionary trajectory for each
cell of the tumor. For a realistic scenario, different spatial constrains are accounted in the
simulations, in particular a boundary-driven growth can be parameterized. This latter wants
cells close to tumor periphery only to be allowed to proliferate; those in the tumor centre are
supposed to be unable to divide because of the lack of empty space around them. The size

42
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effect of such a constrain is controlled by mean of the parameter a ∈ (0, 1), which represents
the fraction of the growing tumor radius where cells can proliferate. That is, a→ 0+ creates
a tumor periphery of a small width with external cells only allowed to divide, giving rise to
a polynomial progression. When a→ 1− the periphery width is close to 100%, meaning that
every cell is able to create its own space for proliferation, so that an exponential growth arises.

In the simulations, the spatial tumorgenesis, accounting for all events that may occur, is
modelled according to a Gillespie algorithm. This latter is a classical probabilistic tool used
in stochastic simulations to obtain at each run a statistically correct trajectory, i.e. a possible
probability mass function solution, of a stochastic master equation. In the case of our interest,
the algorithm works as follows.

• Initialization.

– Fix the dimension of a 2D lattice which defines all possible spatial directions for
the tumor growth and place a single cancer cell, having b and d as birth and death
rates respectively, in one of lattice central spots.

– Define a set of times at which driver mutations carrying proliferative advantages
will occur.

Algorithm for tumor expansion will work by generating new daughter cells along with new
passenger and driven mutations affecting them and suitably positioning the cells in the lattice,
once per spot, until a pre-fixed desire simulation time T is reached.

• First event. The first event that will occur, which can be the division or the death
of the unique cell present in the lattice at the beginning, is the one with the smallest
clock value between those of the two plausible events. To compute these values, for each
event we draw an exponential random variable with mean equal to the event rate and
we sample it. Then, we compare the cell birth time, tb1, and the cell death time, td1, in
order to determine the winning event.

– If td1 < tb1 , first-cell death occurs and the cell position in the lattice is freed. In
such a case, the current simulation ends since the only one cell present in the lattice
is driven to death, i.e. remove, and a new simulation can start.

– If tb1 < td1 , first-cell division occurs, giving birth to two daughter cells that have
to settle on the grid. One replaces its parent cell in the grid spot, while the second
is positioned in one of the eight empty von Neumann neighbouring spots of the
parent cell (see Fig.4.1).

Once the two daughter cells have been placed in the lattice, new passenger muta-
tions can be added to both of them. The quantity of such mutations is determine
by drawing a Poisson variable of mean µ.

Finally driver mutations, whose occurring times have been fixed from the begin-
ning, need to be accounted. If one of those scheduled times is minor than tb1 ,
i.e. a driver mutation occurs before the end of the first-cell division event, then a
daughter cell is provided with a proliferative advantage (higher birth rate or lower
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death rate) quantified through the s parameter. In particular, s is such that

1 + s =
birthmutant − deathmutant
birthnormal − deathnormal

To end the first event step, the simulation time, which starts from 0, is increased by the
winning event clock value.

Same computational steps have to be performed until the end of the simulation. A bit more
attention needs to be paid as simulation clock runs and more cells are present in the lattice.
Indeed, while at first event step all the eight von Neumann neighbouring spots of the divided
cell are empty because only one cell inhabits the lattice, at n event step all those spots may
be occupied and a heuristic method has to be found to place the second daughter cell in a
suitable position of the lattice.
To be clear, let us describe in details what the nth event may be. Suppose that after the
(n− 1)th event the simulation clock signs the time T̂ < T and that there are N cells currently
in the lattice. Each of them has its own birth and death rate depending on the number of
driver mutations that the corresponding parent cell has transmitted.

• N th event. To determine the nth event compute the time of each plausible event
(division or death) for each cell in the lattice by drawing an exponential variable having
the cell event transition probability as mean and compare the obtained times. Select the
smallest time, T̄ , among those computed: the cell dealing with that time will undergone
the winning event.

– If such a time regards a death event, then nth event is a cell death with the cell
corresponding to the winning time remove from the lattice.

– If T̄ concerns a division event, then nth event will be the division of the cell whose
birth event time has won. For the first daughter cell no obstacles arise in its placing
on the lattice since it will occupy the spot of the parent cell. For the second daughter
no free von Neumann spots may be available if the lattice is already high inhabited.
In such a case, a direction among the eight defined by the von Neumann spots is
randomly selected and all cells along that direction are pushed further to create
an empty spot. If along the chosen direction the spots are all inhabited until the
grid boundary so that the push can not happen, another direction is selected (see
Chkhaidze et al. (2019) for details). After new cells positioning, both passenger
and driver mutations are accounted in the same manner of above. In particular, a
driver mutation may affect a daughter cell only if a scheduled time for drivers lies
in the temporal interval (T̂ , T̂ + T̄ ).

4.1.2 Parameters calibration

Once the values of all the parameters - b, d, a, s, µ - have been fixed, we have seen that
Gillespie algorithm works simulating how a tumor may spatially evolve. However, there is no
theoretical hint on which values the parameters should be set equal to in the model: their
joint distribution p(φ) must be computed a posteriori. In order to obtain such a distribution,
we have to repeat the following steps for a sufficient number of times.

• From a priori distributions, select a parameters set φ.
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• Insert such a set into the model and run it in order to generate the corresponding output.

• Evaluate the distance between the Gillespie output and the output of a target model,
i.e. a predefined set of summary statistic firstly evaluated empirically. If the distance is
less than a fixed threshold, then parameters set φ can be accepted, otherwise it must be
get rid of.

• Rank the acceptable parameter sets and select the joint distribution from those sets for
future reliable simulations.

(a) Von Neumann neighborhood (dark gray squares) for
the yellow spot in a 2d square grid

(b) Cell division event with parent cell
giving born to two identical daughter
cells (orange-bounded yellow squares)
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(c) Placing of the daughter cells in suitable spots of the grid depending on the occupancy
(red-crossed light gray squares) of parent cell’s von Neumann spots

Figure 4.1: Schematic representation of the stochastic model algorithm for cell
division events. In the top panel the eight 2d von Neumann spots (dark gray ones) for the
yellow cell (x0, y0) are represented. When a cell division event occurs, two daughter cells,
carrying the same genetic heritage of the parent cell, are generated (b). No difficulties in
placing them on the grid arise when at least one von Neumann spot of the parent cell is free
(first figure of (c)): a daughter cell replaces the parent cell and the other occupies one of the
parent cell’s von Neumann free spots. If none of these latter are empty, the cells in the grid
are pushed in a randomly chosen direction until a free spot for the second daughter cell is
found (second figure of (c)).

4.2 Tests on synthetic data

Once a good set of parameters φ has been selected and the model has run until the desired
simulation time T , the output contains enough information to test our method. Indeed, al-
gorithm steps provide with the exact position on the grid of each cell (x-y coordinates) and
the mutations they carry. Thus, mutation abundances are available.

We have tested our upscaling framework on four datasets, provided us by the Institute of
Cancer Research- Bioinformatics Section, simulating both exponential (simulation 1 and sim-
ulation 2) and polynomial (simulation 3 and simulation 4) tumour growth. Due to the form of
available data, we have opted to define local scales by sampling among occurrences. Tests at
increasing local scales p ∈ { 1

100 ,
10
100 ,

20
100 ,

30
100 ,

40
100 ,

50
100 ,

60
100 ,

70
100 ,

80
100 ,

90
100} have been conducted.

It has been proved that assuming a well-mixed population and an exponential neutral growth
results in a variant allele frequency distribution, i.e. the distribution of the mutation fre-
quencies, that goes like a power-law of exponent 2. If parameters for a polynomial neutral
growth are set, a power-law with an exponent > 2 arises. From −1 + r = δ relationship, it
follows that the best r to capture data behaviour is negative. Thus, we need to verify which
interval (−m,−m+ 1) it belongs to in order to use the correct m-extended Negative Binomial
method in our tests. Due to the r scale invariance, we can deduce suitable m ∈ N \ {0} by
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computing the δ exponent occurring at the global scale. Neglecting perturbations that may
affect distribution at small n and noise effect, it results m = 1 for each dataset.

(a) Spatial evolution for simulation 1 (b) Log-log plot for simulation 1

(c) Spatial evolution for simulation 2 (d) Log-log plot for simulation 2

Figure 4.2: Tumor growth representation and log-log plot of global RSA for expo-
nential growth datasets. Panels on the left hand side represent the spatial tumor evolution
on 100 × 100 grid at the end of the simulations with the mutational burden for each cell.
For an exponential tumor growth such a burden is homogeneous, with no peaks in some re-
gions because each cell has the same probability of proliferating and thus of acquiring new
mutations. Corresponding panels on the right show the global distribution of the mutation
occurrences and the best fitting power-law in a log-log plot. The best exponents δ for the
central section of distribution are ≈ -1.66 in both cases.

4.2.1 Results

We have tested our 1-extended Negative Binomial method on the four datasets mentioned
- simulation 1, simulation 2, simulation 3 and simulation 4 -, considering local scales p ∈
{ 1
100 ,

10
100 ,

20
100 ,

30
100 ,

40
100 ,

50
100 ,

60
100 ,

70
100 ,

80
100 ,

90
100} and running 100 simulations each time in order
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(a) Spatial evolution for simulation 3 (b) Log-log plot for simulation 3

(c) Spatial evolution for simulation 4 (d) Log-log plot for simulation 4

Figure 4.3: Tumor growth representation and log-log plot of global RSA for poly-
nomial growth datasets. Panels on the left hand side represent the spatial tumor evolution
on 100 × 100 grid at the end of the simulations with the mutational burden for each cell. For
a polynomial growth mutations are accumulated along the directions in which the cells are
allowed to proliferate, giving rise to thicker regions (dark blue) near the growing tumor edge.
Corresponding panels on the right show the global distribution of the mutation occurrences
and the best fitting power-law in a log-log plot. Moving top-down, the best exponents δ for
the central section of distribution are ≈ -1.78 and ≈ -1.67, respectively.
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5
100

10
100

20
100

30
100

40
100

50
100

simulation2 S=26569 Spred 27094 27866.3 28580.1 28532.3 28330.5 28035.2

err% 1.97 4.88 7.56 7.38 6.63 5.51

simulation4 S=30485 Spred 31640.4 32961.4 33183.3 32991.6 32633.3 32270

err% 3.78 8.12 8.85 8.22 7.04 5.85

Table 4.1: Average Negative Binomial estimates for -1<r<0 and relative errors at
different local scales for simulated tumor datasets with exponential growth. The
table shows the average estimates of the global number of mutations, S, with the Negative
Binomial method having −1 < r < 0 and the relative errors at smaller local scales for each
synthetic tumor datasets displaying an exponential growth.

30
100

40
100

50
100

60
100

70
100

80
100

simulation1 S=136284 Spred 143206 146847 147228 144725 141934 139727

err% 5.07 7.75 8.03 6.19 4.14 2.52

simulation3 S=101138 Spred 102967 106803 107504 106934 105703 103946

err% 1.8 5.6 6.29 5.73 4.51 2.77

Table 4.2: Average Negative Binomial estimates for -1<r<0 and relative errors at
different local scales for simulated tumor datasets with polynomial growth. The
table shows the average estimates of the global number of mutations, S, with the Negative
Binomial method having −1 < r < 0 and the relative errors at different local scales for each
synthetic tumor datasets displaying an exponential growth.

to check the stability of the method.

Due to the best fitting power-law exponent values, we would expected r ≈ −0.78 for simulation
1, ≈ −0.66 for simulation 2, ≈ −0.67 for simulation 3 and ≈ −0.66 for simulation 4 in order
to satisfy −1+r = δ. Instead, best fitting of Semp(pk) to Stheo(pk) gives back r → 0− for each
dataset. We suggest this computational discrepancy with theory is due to a misreading of the
cut off effect, i.e. of ξ̂p size. Indeed, we aim to fit an empirical curve based on a power law to
a theoretical one based on a Negative Binomial which we have proved, at least asymptotically,
to be a power law with an exponential cut off. Fitting output would match our analytical
framework if cut off effect was null, i.e. ξ̂p ≈ 1. However, the adopted fitting algorithm works
balancing r and ξ̂p size effects and this results in an overestimation of ξ̂p effect. Despite of

such a computational misreading, estimates are good. Comments on estimate goodness are
split up according to the growth typology that datasets display.

• For exponential growth datasets - simulation 1 and simulation 2 - average error on es-
timates is < 9% at each scale. Asymptotically, the error curves have the decreasing
shapes one would expect from the theory. Indeed, as initial knowledge increases, errors
and estimate dispersion decrease with estimate histograms getting sharper and narrow-
ing the correct number to predict. Again, it means that as p increases, the probability



to randomly pick an initial training set that estimates well gets higher. Smaller scales
display a counterintuitive tendency with an average error smaller than the one occurring
at subsequent larger scales. Such a behaviour is due to the higher grade of bias (notice-
able maximum error and flatter estimate histogram) that the estimates at these scales
undergo. It follows that the effect of the overestimating training sets are balanced by
that of the underestimating ones and this leads to a small error in average but also to a
small probability of randomly picking a good training set.

• For polynomial growth datasets - simulation 3 and simulation 4 - outputs are slightly
more unstable. When starting local scales belong to { 50

100 ,
60
100 ,

70
100 ,

80
100 ,

90
100 we recognize

a decreasing and promising behaviour with both average and maximum errors less than
10%. Method results to be not reliable at smallest scales when an error of ≈ 50%
may occur for each dataset. We guess such a worst output could be due to the m-
interval we have chosen for the extended Negative Binomial. Indeed, the complete
polynomial growth datasets displayed a ≈ 4-exponent power law behaviour that we
have read as ≈ 1.78-exponent one by neglecting the noise and the initial perturbation.
This could have led to an incorrect distribution normalization. Moreover, observe that
here underestimates and overestimates are both present up to p = 50

100 , meaning that at
those scales the method is a bit unstable. It needs a higher level of initial knowledge to
perform well.

50



(a) Average errors for simulation 1
(b) Estimates histograms at different scales for
simulation 1

(c) Average errors for simulation 2
(d) Estimates histograms at different scales for
simulation 2

Figure 4.4: Errors and estimates for simulated tumor exponential growth datasets.
Panels on the left hand side show average relative error (red line) and average maximum
error (blue line) as local sampling increases while those on the right provide a graphical
representation of estimates distribution at different local scales - 10

100 (lightblue curve), 30
100

(orange curve), 70
100 (green curve). Asymptotically both errors decrease constantly and smooth

histograms narrow the correct number to predict (black vertical line).



(a) Average errors for simulation 3
(b) Estimates histograms at different scales for
simulation 3

(c) Average errors for simulation 4
(d) Estimates histograms at different scales for
simulation 4

Figure 4.5: Errors and estimates for simulated tumor polynomial growth datasets.
Panels on the left hand side show the average relative error (red line) and the average maximum
error (blue line) at different local scales. Panels on the right display the estimates distribution
at p = 10

100 (lightblue curve), 30
100 (orange curve), 70

100 (green curve). At larger scales
(
≥ 50

100

)
an expected decreasing behaviour arises, while for smaller scales an unstable tendency with
both underestimates and overestimates characterizes our results.



Conclusions

To summarize, in this thesis we have adapted a statistical framework, firstly developed for
ecological purposes, to genomics to infer global information on mutation occurrences and
distribution from a limited number of local samples. Based on Negative Binomial distribution
and its properties, our method can count on two strengths:

• Flexibility → depending on distribution parameter values, Negative Binomial, together
with its Log-Series special case and its extended version, can reproduce many SADs
shapes. Internal modes, power-laws with exponential cut off and their mixtures are
among SAD behaviours that can be easily accommodated;

• Scale-invariance → Negative Binomial, Log-Series, m-extended Negative Binomial and
their mixtures are all self-similar under binomial sampling with parameters at two dif-
ferent scales linked each other through a computable formula.

Moreover, our analytical framework ends with an estimator carrying all the attracting proper-
ties it should: consistency and unbiasedness. Thus, it can be profitably used for predictions.
Performed tests on both DNA polymorphisms and simulated spatial tumor growth datasets
have given back promising outputs with relative errors on estimates less than 10% at each
scale. Asymptotically, as the sample size increases, our method estimates tend to be concen-
trated around the correct number to predict and both average and maximum relative errors
decrease constantly.

The statistical method we have proposed in the present thesis could be theoretically stretched
out and other simulations could be conducted to address interlinked questions.
The identification of clonal mutations is crucial in medicine because therapies have as main
target the most spread genetic alterations within a tumor, i.e. the clonal ones. Thus, we would
be interested in being able of quantify the chance for a mutation to be present in almost all
cancer cells starting from its local occurrence to provide a probabilistic framework for those
targeting settings.

Another future perspective of our method could be the characterization of the local scale size
needed to obtain a desired final error on the estimate of the number of global mutations.
Fixed an initial threshold, we would like to understand a priori which size of the local scale
gives back an error minor than the threshold. We guess that such an aim could be pursued
by performing a sufficient high number of tests at different local scales and deducing an
empirical categorization from them. Moreover, the computational tests on spatial tumor
growth datasets have revealed that final relative errors are below 10% in most cases, but
also that errors display a fluctuating behaviour with both overestimates and underestimates
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before a predictable asymptotic trend. Thus, another interesting issue to tackle could be the
definition of a confidence interval for our estimator, capable of signaling us if underestimation
or overestimation will result at defined local scales. This statistical problem could be very
difficult to solve theoretically, computational tests may help us in providing a plausible interval.

Moreover, the promising results on both the analyzed typologies of datasets have legitimated
the usage of our method in oncology. However, its application to real tumor datasets is a bit
more delicate because of the small size of those datasets and of the not neglectable correlation
factor among mutations. In Chapter 5 we have justified the computational impossibility
to regard the available datasets on human biopsies as global scales to test our upscaling
method within a comfort framework in which we do have quantitative knowledge at any
scales. However, the legitimacy that our tests have provided to our method allows to use
those available biopsies as local scale in order to predict the mutation occurrences at the
whole tumor scale (whose quantitative information are unknown). In this case, great attention
must be paid to the correlation degree that the initial, available biopsies have. Indeed, if a
training set contains two or more biopsies highly correlated, then the initial quantitative
knowledge decreases, i.e. those biopsies do no provide new information, and method would
work with an actually smaller scale leading to an higher error on estimates in general. Thus, a
characterization of training sets is needed to make sub-sampling capable of capturing the real
mutation profile of the tumor. We guess that studying cancer phylogenetic trees may provide
this characterization: if some biopsies belong to the same tree branch, then they are affected
by a not negligible correlation and not reliable estimates may be given back by training sets
containing them.



Appendix

Below the R and Mathematica codes used for our tests are reported.

• R code for empirical SAC when DNA single-nucleotide polymorphism data-
sets are analyzed. Remind that here sub-sampling consists on randomly selecting
columns and that the number of analyzed sub-sampling combinations to obtain an av-
erage behaviour is cut to 100.

# Import the VCF tab l e and drop the q u a l i t a t i v e in fo rmat ion to obta in the
binary matrix on presence / absence in fo rmat ion on mutations at g l oba l
s c a l e .

import_datase t = read . t ab l e ( " datase t name . vc f " )
g l oba l_binarymatr ix = import_datase t [ , 1 0 : 5 5 ]

# Compute the number o f c l o n a l mutations by summing by rows and comparing
the abundance o f each mutation with the number o f columns . Subtract the
c l o n a l s from the g l oba l number o f mutations , i . e . the row length o f

the g l oba l matrix , to get the number o f mutations to p r ed i c t .
g l oba l_occur r ence s_summation = rowSums( g l oba l_binarymatr ix )
number_o f_c l o n a l s = 0
f o r ( i in 1 : l ength ( g l oba l_occur r ence s_summation ) )
{ i f ( g l oba l_occur r ence s_summation [ i ]==nco l ( g l oba l_binarymatr ix )

{number_o f_c l o n a l s = number_o f_c l o n a l s +1}}
number_to_est imate = length ( g l oba l_occur r ence s_summation )−number_o f_

c l o n a l s

# Chose the s i z e o f the l o c a l s c a l e $ (\ f r a c {k}{46}$ and i n i t i a l i z e the
t e s t matrix ( emp i r i c a l_SAC_k) . I t i s a 100x2k matrix that would be
f i l l e d by i n s e r t i n g the k emp i r i c a l SAC po in t s obta ined from each
s imu la t i on and the k random columns composing the l o c a l s c a l e at
subsequent matrix rows .

k = sampling s i z e
emp i r i c a l_SAC_k = matrix (0 , nrow=100 , nco l=2∗k )

# For each s imulat ion , i . e . f o r each o f the 100 l o c a l s c a l e cons idered ,
randomly sample k columns from the 46 av a i l a b l e and ex t r a c t the
corre spond ing l o c a l s c a l e .

f o r ( a in 1 : 100 )
{columns_s e l e c t i o n = sample ( 1 : nco l ( g l oba l_binarymatr ix ) , k )
l o c a lmat r i x_with_c l o n a l s = g l oba l_binarymatr ix [ , columns_s e l e c t i o n ]

# Compute the c l o na l mutations at l o c a l s c a l e by summing by rows and
comparing each abundance t o t a l with the k s i z e o f the l o c a l s c a l e .
De lete from the l o c a l matrix the rows cor respond ing to c l o n a l mutations
.

l o c a l c l o n a l_mutations = c ( )
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l o c a l c l o n a l s_sum = rowSums( l o ca lmat r i x_with_c l o n a l s )
f o r ( s in 1 : nrow ( g l oba l_binarymatr ix ) )
{ i f ( l o c a l c l o n a l s_sum [ s]==k)
{ l o c a l c l o n a l_mutations = c ( l o c a l c l o n a l_mutations , s ) }}
l o c_binarymatr ix = lo ca lmat r i x_with_c l o n a l s [− l o c a l c l o n a l_mutations , ]

# Compute the emp i r i c a l SAC by sub−sampling the l o c a l s c a l e at any
intermedium column s i z e s c a l e {1 , 2 , . . . , k } . For each o f t h i s l a t t e r
s ca l e , e x t r a c t a l l the p o s s i b l e subse t s having c a r d i n a l i t y equal to the
cur rent sub−sampling column number i f they are <100 ( sub−sampling o f

s i z e 1 , k−1, k ) , o the rw i s e ( sub−sampling o f s i z e 2 , . . . , k−2) ex t r a c t
100 subse t s o f the s u i t a b l e c a r d i n a l i t y by randomly sampling the
columns from the l o c a l matrix . For each subset o f any sub−samples
compute the number o f mutations pre sent in the subset by summing by
subset rows ( rowSums) and account only f o r non zero t o t a l s with l ength
( . . . [ . . . !=0 ] ) command . F i l l the ( cur rent s imu la t i on number row , sub−
sampling column s i z e column ) c e l l o f the emp i r i c a l_SAC_k with the
average o f the number o f mutations pre sent in the 100 subse t s having
the same c a r d i n a l i t y .

f i r s t_SAC_point = rep (0 , k )
f o r (b in 1 : k )
{ f i r s t_SAC_point [ b ] = sum( l o c_binarymatr ix [ , b ] ) }
emp i r i c a l_SAC_k [ a ,1 ]= sum( f i r s t_SAC_point ) /k
interna lSACpoints = rep (0 ,100)
f o r ( j in 2 : ( k−2) )
{ f o r ( z in 1 : 100 )
{random_subsampling = sample ( 1 : k , j )
subsamplingdata = l o c_binarymatr ix [ , random_subsampling ]
subsampling_occur r ence s = rowSums( subsamplingdata )
i n t e r n a l_SACpoints [ z ] = length ( subsampling_occur r ence s [ subsampling_

occur r ence s !=0 ] )
}

emp i r i c a l_SAC_k [ a , j ] = sum( i n t e r n a l_SACpoints ) /100
}
penult imate_SACpoint = rep (0 , k )
f o r ( c in 1 : k )
{ cur rent_subsampling = l o c_binarymatr ix [ ,− c ]
mutation_occur r ence s = rowSums( cur rent_subsampling )
penult imate_SACpoint [ c ] = length ( mutation_occur r ence s [ mutation_occur r ence s

!=0 ] )
}
emp i r i c a l_SAC_k [ a , ( k−1) ] = sum( penult imate_SACpoint ) /k
l o c s c a l e_occur r ence s = rowSums( l o c_binarymatr ix )
l a s t_SACpoint = length ( l o c s c a l e_occur r ence s [ l o c s c a l e_occur r ence s !=0 ] ) ∗1
emp i r i c a l_SAC_k [ a , k ] = l a s t_SACpoint

# For each s imu la t i on track the k column randomly ex t r a c t from the g l oba l
matrix to compound the i n i t i a l l o c a l matrix by f i l l i n g the l a s t k
columns o f the emp i r i c a l_SAC_k with the indexes o f the ext rac t ed
columns .

f o r (d in 1 : k )
{ emp i r i c a l_SAC_k [ a , k+d ] = columns_s e l e c t i o n [ d ] }
}



• Mathematica code for empirical SAC when spatial constrained tumor growth
datasets are analyzed.
Here local scale is defined by randomly sampling among mutation occurrences. Note
that simulations with increasing local scales p = k

100 , k ∈ {1, 10, 20, ..., 80, 90} have been
conducted separately to lighten the computational load. Moreover, for a better visual-
ization of computational steps at each local scale sub-samplings are treated separately
as well.

(∗ Import the mutation f r e qu en c i e s oc cu r r ing in the whole tumor c e l l s
s p a t i a l s imu la t i on and compute the number o f mutations to p r ed i c t . ∗)

muta t i ong l oba l f r equenc i e s=Import [ "mutation f r e qu en c i e s f i l e . txt path" , "
L i s t " ] ;

numbertopredict=Length [ muta t i ong l oba l f r equenc i e s ] ;

(∗Create the vec to r o f g l oba l abundances ( sampl ingvector ) by numer i ca l ly
l a b e l l i n g a l l the mutation pre sent at g l oba l s c a l e and repea t ing the
corre spond ing mutation index f o r a number o f t imes equal to the
mutation abundance . ∗)

sampl ingvector=Flat ten [ Table [
Table [ i , {y , 1 , muta t i ong l oba l f r equenc i e s [ [ i ] ] } ] , { i , 1 ,
Length [ muta t i ong l oba l f r equenc i e s ] } ] ] ;

(∗ I n i t i a l i z e the sub−sampling t ab l e s cor re spond ing to an i n i t i a l knowledge
o f 1%, 10%, 20%, 30%, . . . , 100% of the g l oba l in fo rmat ion and the

emp i r i c a l SAC tab l e s f o r each o f the 100 s imu la t i on s to 0 . ∗)
1 pe rcentpo in t = Table [ 0 , { i , 1 , 1 0 0 } ] ;
10 pe rcentpo in t = Table [ 0 , { i , 1 , 1 0 0 } ] ;
20 pe rcentpo in t = Table [ 0 , { i , 1 , 1 0 0 } ] ;
30 pe rcentpo in t = Table [ 0 , { i , 1 , 1 0 0 } ] ;
40 pe rcentpo in t = Table [ 0 , { i , 1 , 1 0 0 } ] ;
50 pe rcentpo in t = Table [ 0 , { i , 1 , 1 0 0 } ] ;
60 pe rcentpo in t = Table [ 0 , { i , 1 , 1 0 0 } ] ;
70 pe rcentpo in t = Table [ 0 , { i , 1 , 1 0 0 } ] ;
80 pe rcentpo in t = Table [ 0 , { i , 1 , 1 0 0 } ] ;
90 pe rcentpo in t = Table [ 0 , { i , 1 , 1 0 0 } ] ;
100 percentpo in t = Table [ 0 , { i , 1 , 1 0 0 } ] ;

1 percentSACpoints = Table [ 0 , { i , 1 , 1 0 0 } ] ;
10 percentSACpoints = Table [ 0 , { i , 1 , 1 0 0 } ] ;
20 percentSACpoints = Table [ 0 , { i , 1 , 1 0 0 } ] ;
30 percentSACpoints = Table [ 0 , { i , 1 , 1 0 0 } ] ;
40 percentSACpoints = Table [ 0 , { i , 1 , 1 0 0 } ] ;
50 percentSACpoints = Table [ 0 , { i , 1 , 1 0 0 } ] ;
60 percentSACpoints = Table [ 0 , { i , 1 , 1 0 0 } ] ;
70 percentSACpoints = Table [ 0 , { i , 1 , 1 0 0 } ] ;
80 percentSACpoints = Table [ 0 , { i , 1 , 1 0 0 } ] ;
90 percentSACpoints = Table [ 0 , { i , 1 , 1 0 0 } ] ;
100 percentSACpoints = Table [ 0 , { i , 1 , 1 0 0 } ] ;

(∗For each o f the 100 s imulat ion , randomly ex t r a c t the k% of the vec to r o f
g l oba l abundances ( sampl ingvector ) to get the l o c a l s c a l e (

k s i z e sampl ing ) cor re spond ing to a k% of i n i t i a l knowledge . ∗)
For [ j = 0 , j < 100 , j++;

ks i z e sampl ing =
RandomSample [ sampl ingvector , Round [ k∗Length [ sampl ingvector ] / 1 0 0 ] ] ;



(∗For each sub−sampling cor re spond ing to a por t i on equal to the 1%, 10%,
20%, . . . 100% of the l o c a l s ca l e , randomly ex t r a c t f o r 100 t imes a % of

ks i z e sampl ing equal to the cur rent sub−sampling s c a l e and d e l e t e from
such a sub−vec to r the mutations pre sent <= 1 times ( mutations whose
index i s repeated l e s s than 2 t imes ) us ing DeleteCases . Count with
BinCounts a l l the d i f f e r e n t mutation indexes pre sent in the l o c a l
abundances vec to r and f i l l the cor re spond ing %percentdata vec to r at the
po s i t i o n given by the cur rent ex t r a c t i on number with that number . F i l l
the cor re spond ing %percentSACpoint with the average o f %percentadata (

having l ength equal to the number o f e x t r a c t i on = 100) at each
s imu la t i on po s i t i o n . ∗)

For [ i = 0 , i < 100 , i++;
subsampling1 =
RandomSample [ ks i zesampl ing , Round [1∗ Length [ k s i z e sampl ing ] / 1 0 0 ] ] ;

1 p e r c e n t i n i t i a l d a t a =
BinCounts [
subsampling1 , {−0.5 , Length [ muta t i ong l oba l f r equenc i e s ] + 0 . 5 , 1 } ] ;

d e l e t e 1 = DeleteCases [ 1 percentdata , 0 ] ;
1 percentdata =
BinCounts [ de l e t e1 , {0 . 5 , Max[ 1 p e r c e n t i n i t i a l d a t a ] + 0 . 5 , 1 } ] ;

1 pe rcentpo in t [ [ i ] ] = Total [ 1 percentdata ] ] ;
1 percentSACpoints [ [ j ] ] = Mean [ 1 pe rcentpo in t ] ;

For [ i = 0 , i < 100 , i++;
subsampling10 =
RandomSample [ ks i zesampl ing , Round [10∗ Length [ k s i z e sampl ing ] / 1 0 0 ] ] ;

10 p e r c e n t i n i t i a l d a t a =
BinCounts [
subsampling10 , {−0.5 , Length [ muta t i ong l oba l f r equenc i e s ] + 0 . 5 , 1 } ] ;

d e l e t e 10 = DeleteCases [ 10 percentdata , 0 ] ;
10 percentdata =
BinCounts [ de l e te10 , {0 . 5 , Max[10 p e r c e n t i n i t i a l d a t a ] + 0 . 5 , 1 } ] ;

10 pe rcentpo in t [ [ i ] ] = Total [ 10 percentdata ] ] ;
10 percentSACpoints [ [ j ] ] = Mean [10 percentpo in t ] ;

For [ i = 0 , i < 100 , i++;
subsampling20 =
RandomSample [ ks i zesampl ing , Round [20∗ Length [ k s i z e sampl ing ] / 1 0 0 ] ] ; 20

p e r c e n t i n i t i a l d a t a =
BinCounts [
subsampling20 , {−0.5 , Length [ muta t i ong l oba l f r equenc i e s ] + 0 . 5 , 1 } ] ;

d e l e t e 20 = DeleteCases [ 20 percentdata , 0 ] ;
20 percentdata =
BinCounts [ de l e te20 , {0 . 5 , Max[20 p e r c e n t i n i t i a l d a t a ] + 0 . 5 , 1 } ] ;

20 pe rcentpo in t [ [ i ] ] = Total [ 20 percentdata ] ] ;
20 percentSACpoints [ [ j ] ] = Mean [20 percentpo in t ] ;

For [ i = 0 , i < 100 , i++;
subsampling30 =
RandomSample [ ks i zesampl ing , Round [30∗ Length [ k s i z e sampl ing ] / 1 0 0 ] ] ;

30 p e r c e n t i n i t i a l d a t a =
BinCounts [
subsampling30 , {−0.5 , Length [ muta t i ong l oba l f r equenc i e s ] + 0 . 5 , 1 } ] ;

d e l e t e 30 = DeleteCases [ 30 percentdata , 0 ] ;
30 percentdata =
BinCounts [ de l e te30 , {0 . 5 , Max[30 p e r c e n t i n i t i a l d a t a ] + 0 . 5 , 1 } ] ;

30 pe rcentpo in t [ [ i ] ] = Total [ 30 percentdata ] ] ;



30 percentSACpoints [ [ j ] ] = Mean [30 percentpo in t ] ;

For [ i = 0 , i < 100 , i++;
subsampling40 =
RandomSample [ ks i zesampl ing , Round [40∗ Length [ k s i z e sampl ing ] / 1 0 0 ] ] ;

40 p e r c e n t i n i t i a l d a t a =
BinCounts [
subsampling40 , {−0.5 , Length [ muta t i ong l oba l f r equenc i e s ] + 0 . 5 , 1 } ] ;

d e l e t e 40 = DeleteCases [ 40 percentdata , 0 ] ;
40 percentdata =
BinCounts [ de l e te40 , {0 . 5 , Max[40 p e r c e n t i n i t i a l d a t a ] + 0 . 5 , 1 } ] ;

40 pe rcentpo in t [ [ i ] ] = Total [ 40 percentdata ] ] ;
40 percentSACpoints [ [ j ] ] = Mean [40 percentpo in t ] ;

For [ i = 0 , i < 100 , i++;
subsampling50 =
RandomSample [ ks i zesampl ing , Round [50∗ Length [ k s i z e sampl ing ] / 1 0 0 ] ] ;

50 p e r c e n t i n i t i a l d a t a =
BinCounts [
subsampling50 , {−0.5 , Length [ muta t i ong l oba l f r equenc i e s ] + 0 . 5 , 1 } ] ;

d e l e t e 50 = DeleteCases [ 50 percentdata , 0 ] ;
50 percentdata =
BinCounts [ de l e te50 , {0 . 5 , Max[50 p e r c e n t i n i t i a l d a t a ] + 0 . 5 , 1 } ] ;

50 pe rcentpo in t [ [ i ] ] = Total [ 50 percentdata ] ] ;
50 percentSACpoints [ [ j ] ] = Mean [50 percentpo in t ] ;

For [ i = 0 , i < 100 , i++;
subsampling60 =
RandomSample [ ks i zesampl ing , Round [60∗ Length [ k s i z e sampl ing ] / 1 0 0 ] ] ;

60 p e r c e n t i n i t i a l d a t a =
BinCounts [
subsampling60 , {−0.5 , Length [ muta t i ong l oba l f r equenc i e s ] + 0 . 5 , 1 } ] ;

d e l e t e 60 = DeleteCases [ 60 percentdata , 0 ] ;
60 percentdata =
BinCounts [ de l e te60 , {0 . 5 , Max[60 p e r c e n t i n i t i a l d a t a ] + 0 . 5 , 1 } ] ;

60 pe rcentpo in t [ [ i ] ] = Total [ 60 percentdata ] ] ;
60 percentSACpoints [ [ j ] ] = Mean [60 percentpo in t ] ;

For [ i = 0 , i < 100 , i++;
subsampling70 =
RandomSample [ ks i zesampl ing , Round [70∗ Length [ k s i z e sampl ing ] / 1 0 0 ] ] ;

70 p e r c e n t i n i t i a l d a t a =
BinCounts [
subsampling70 , {−0.5 , Length [ muta t i ong l oba l f r equenc i e s ] + 0 . 5 , 1 } ] ;

d e l e t e 70 = DeleteCases [ 70 percentdata , 0 ] ;
70 percentdata =
BinCounts [ de l e te70 , {0 . 5 , Max[70 p e r c e n t i n i t i a l d a t a ] + 0 . 5 , 1 } ] ;

70 pe rcentpo in t [ [ i ] ] = Total [ 70 percentdata ] ] ;
70 percentSACpoints [ [ j ] ] = Mean [70 percentpo in t ] ;

For [ i = 0 , i < 100 , i++;
subsampling80 =
RandomSample [ ks i zesampl ing , Round [80∗ Length [ k s i z e sampl ing ] / 1 0 0 ] ] ;

80 p e r c e n t i n i t i a l d a t a =
BinCounts [
subsampling80 , {−0.5 , Length [ muta t i ong l oba l f r equenc i e s ] + 0 . 5 , 1 } ] ;

d e l e t e 80 = DeleteCases [ 80 percentdata , 0 ] ;



80 percentdata =
BinCounts [ de l e te80 , {0 . 5 , Max[80 p e r c e n t i n i t i a l d a t a ] + 0 . 5 , 1 } ] ;

80 pe rcentpo in t [ [ i ] ] = Total [ 80 percentdata ] ] ;
80 percentSACpoints [ [ j ] ] = Mean [80 percentpo in t ] ;

For [ i = 0 , i < 100 , i++;
subsampling90 =
RandomSample [ ks i zesampl ing , Round [90∗ Length [ k s i z e sampl ing ] / 1 0 0 ] ] ;

90 p e r c e n t i n i t i a l d a t a =
BinCounts [
subsampling90 , {−0.5 , Length [ muta t i ong l oba l f r equenc i e s ] + 0 . 5 , 1 } ] ;

d e l e t e 90 = DeleteCases [ 90 percentdata , 0 ] ;
90 percentdata =
BinCounts [ de l e te90 , {0 . 5 , Max[90 p e r c e n t i n i t i a l d a t a ] + 0 . 5 , 1 } ] ;

90 pe rcentpo in t [ [ i ] ] = Total [ 90 percentdata ] ] ;
90 percentSACpoints [ [ j ] ] = Mean [90 percentpo in t ] ;

For [ i = 0 , i < 100 , i++;
subsampling100 =
RandomSample [ ks i zesampl ing , Round [100∗ Length [ k s i z e sampl ing ] / 1 0 0 ] ] ;

100 p e r c e n t i n i t i a l d a t a =
BinCounts [
subsampling100 , {−0.5 , Length [ muta t i ong l oba l f r equenc i e s ] + 0 . 5 , 1 } ] ;

d e l e t e100 = DeleteCases [100 percentdata , 0 ] ;
100 percentdata =
BinCounts [ de l e te100 , {0 . 5 , Max[100 p e r c e n t i n i t i a l d a t a ] + 0 . 5 , 1 } ] ;

100 percentpo in t [ [ i ] ] = Total [ 100 percentdata ] ] ;
100 percentSACpoints [ [ j ] ] = Mean[100 percentpo in t ] ;

]

(∗Create a matrix by j o i n i n g the s imu la t i on ouput %percentSACpoints and
transpose i t in order to have a f i n a l empir i ca lksca leSACs matrix o f
dimension 100x11 having as rows the mutation occur r ence s at the sub−
sampling 1%, 10%, 20%, . . . , 100% of the i n i t i a l l o c a l abundance matrix
f o r 100 d i f f e r e n t l o c a l matr i ce s randomly determined . ∗)

empir i ca lksca leSACs=Transpose [ 1 percentSACpoints , 10 percentSACpoints , 20
percentSACpoints , 30 percentSACpoints , 40 percentSACpoints , 50
percentSACpoints , 60 percentSACpoints , 70 percentSACpoints , 80
percentSACpoints , 90 percentSACpoints , 100 percentSACpoints ]



• Mathematica code for fitting and estimates. Set empiricalSACk = empiricalSACk
= empiricalkscaleSACs of above codes, we have

(∗ Def ine the f unc t i on s f o r the computable formula br idg ing the RSA l o c a l
parameters to those at g l oba l s ca l e , f o r the t h e o r e t i c a l SAC and f o r
the 1−Negative Binomial e s t imator . ∗)

\ [ Xi ] p [ samplep_ , \ [ Xi ]_] := ( samplep ∗\ [ Xi ] ) /(1 − \ [ Xi ]∗ ( 1 − samplep ) )
SACtheorical [ samplep_ , r_ , \ [ Xi ]_, S_] :=
S∗(1 − (1 − \ [ Xi ] p [ samplep , \ [ Xi ] ] ) ^r ) /(1 − (1 − \ [ Xi ] ) ^r )

\ [ Xi ] g l oba l [ \ [ Xi ]_, p_] := \ [ Xi ] / ( p + \ [ Xi ]∗ ( 1 − p) )
Spred i c ted [ r_ , \ [ Xi ]_, p_, Sp_] :=
Sp∗(1 − (1 − \ [ Xi ] g l oba l [ \ [ Xi ] , p ] ) ^r ) /(1 − (1 − \ [ Xi ] ) ^r )

(∗ I n i t i a l i z e the t ab l e s f o r the best parameters f i t t i n g and the one f o r
the e s t imate s to 0 . ∗)

Rk = Table [ 0 , { i , 1 , 1 0 0 } ] ;
CSIk = Table [ 0 , { i , 1 , 1 0 0 } ] ;
SPREDk = Table [ 0 , { i , 1 , 1 0 0 } ] ;

(∗ Fit the emp i r i c a l SAC curve ( po in t s curve in b id imens iona l plane having
sub−sampling s i z e as x ax i s and average number o f occurred mutations ,
i . e . empriricalSACk , as y ax i s ) to the t h e o r e t i c a l one us ing

Nonl inearModelFit t o o l to get the best l o c a l parameters . Observe that
such a command r e qu i r e s the exp r e s s i on f o r both t h e o r e t i c a l and
emp i r i c a l SACs , the parameters domain and some i n i t i a l parameter va lue s
to s t a r t the search . ∗)

Monitor [ For [ i = 0 , i < 100 , i++;
subsetS = empiricalSACk [ [ i ] ] ;
s c a l eS = Range [ 1 , Length [ empiricalSACk [ [ 1 ] ] ] ] / 1 1 // N;
dataS = Table [ { s c a l eS [ [ j ] ] , subsetS [ [ j ] ] } , { j , 1 , 11} ] ;
FittingSAC =
Nonl inearModelFit [
dataS , { SACtheorical [ samplep , r , \ [ Xi ] ,

empiricalSACk [ [ i , −1 ] ] ] , −1 < r < 0 &&
0 < \ [ Xi ] < 1} , {{ r , i n i t i a l v a l u e f o rR } , {\ [ Xi ] , i n i t i a l v a l u e f o rCS I

}} , samplep ] ;

(∗The outputs o f NonlinearModelFit , i . e . bes t f i t t i n g r and \ [ Xi ]
parameters , are i n s e r t i n to the cor re spond ing parameter t ab l e s at the
cur rent s imu la t i on po s i t i o n and used as input by the e s t imator func t i on
. This l a t t e r r e qu i r e s the two l o c a l parameters , the s i z e o f the l o c a l
s c a l e and the number o f mutation occur r ing at l o c a l s c a l e ( l a s t row
po in t s o f empriricalSACk which correspond to a sub−sampling o f 100% of
the l o c a l s c a l e ) to g ive back the p r e d i c t i o n s . ∗)

Rk [ [ i ] ] = FittingSAC [ "ParameterTableEntr ies " ] [ [ 1 , 1 ] ] ;
CSIk [ [ i ] ] = FittingSAC [ "ParameterTableEntr ies " ] [ [ 2 , 1 ] ] ;
SPREDk [ [ i ] ] = Spred i c ted [Rk [ [ i ] ] , CSIk [ [ i ] ] , k /100 , subsetS [ [ − 1 ] ] ] ;
] , i ]
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