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Introduction

In aeronautics, there is a need to reduce consumption and weight in order to save
money. Thus, all components are optimised to achieve maximum efficiency at a moderate
cost. Optimising the geometry of an aircraft, such as the wings or fuselage, is one of the
design objectives. In particular, there is a focus on the geometry of the entire engine body
of an aircraft to increase the overall efficiency of the aircraft. There are different types of
engines, but almost all of them can be divided into different parts: intake, compression
stage, combustion chamber, expansion stage and nozzle. The intake is the first part of the
engine. This part is built with the purpose of capturing the air in the best possible way,
in terms of speed and angle, to be sent to the internal part of the engine, the compressor.
An intake must:

• be light weight and low cost;

• be less invasive as possible regarding the overall vehicle drag;

• compress the air before the compressor with consequent diffusion and slowdown of
the flow;

• provide the engine with the adequate mass flow rate, Mach number and reduced
distortion;

• have oblique compression trains to reduce energy losses.

Different types of intakes are used nowadays for different purposes. There are extensive
studies of subsonic and transonic intakes, because they are more widely used in commercial
and military aeronautics. Relatively new is the field of very high speed flow called hy-
personic flow. This is typical of rockets, rarely of military aircraft and similar applications.

Only a few geometries are accepted for high flow because there are several phenomena
such as shock wake, boundary layer interaction and chemical interaction (these will be
discussed in later chapters). The shape of hypersonic inlets always has ramps to generate
oblique and normal shocks to have less pressure loss. Ramps are crucial in the design of
the inlet. The latter also has a cowl lip, the upper part of the body. This part is important
for the resistance generated by the whole intake. It also diverts the flow, and thus defines
the mass flow, in and out of the engine.

In this thesys, a basic geometry, known from experimental and computational studies,
is combined with an optimisation algorithm for the section of the cowl lip and for the
ramps in order to change shape and obtain a better resistance value, pressure ratio or
total pressure ratio.
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Chapter 1

General concepts of fluid dynamics

1.1 Introduction

Fluid dynamics is an branch of continuum mechanics that studies the behaviour of a
fluid, a state of the matter which is continuously deformed when subjected to tangential
forces of values even arbitrarily small, typical of gas and liquids.

This chapter aims to define the laws and the equations governing the fluid dynamics.
These are fundamental to fully describe the future implications written in this thesys.

1.2 Continuum mechanics

Fluid mechanics can be described with two different reference systems: Lagrangian
and Eulerian. In particular, the two views can be described as follows:

• Lagrangian: describes a zone, called material volume V (t), moving with the fluid
such that the same fluid particles are always in the same volume. Its shape changes
in time. The frame is integral with the particle;

• Eulerian: describes the values of the variables in the various points in the time
and in the space. The variation of the variables is described in zone, called control
volume V0, fixed in space. The frame is considered external to all the particles.

Figure 1.1: Eulerian and Lagrangian view of the same fluid zone

For better understanding, two example can be made: taking into account the pressure
of a fluid, it’s a field so it’s a scalar quantity changing from point to point and in time.
It is described in an Eulerian view. Differently, considering the velocity, it’s a vectorial
quantity depending from the point and the time considered. It considers a particle passing
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1.2. Continuum mechanics

a point in that moment. It is described in a Lagrangian view.

Before go any further, it is necessary to define some basic relations. Consider b =
b(x, y, z, t) a generic scalar or vectorial field, the material derivative respect to the time is
so defined:

Db

Dt
=
∂b

∂t
+

3
∑

i=1

∂b

∂xi

dxi
dt

=
∂b

∂t
+∇b · v (1.1)

here v indicates the field of velocity and the second part of the equation is given by the
definition of gradient. So, the material or total derivative is defined by sum of the partial
derivative respect to time and convective derivative given by the gradient. In another way,
the differential operator which calculates in an Eulerian way the derivative in the time of
any Lagrangian quantity is called material derived.

Now, for the future use, it necessary to give the definition of extensive and intensive
variable. The first is a quantity in a macroscopic system that is proportional to the size
of the system (e.g. the mass), the second is a quantity not proportional to the size of the
system (e.g pressure). In particular, there is a relation between these two variables:

B =

∫

V
ρbdV (1.2)

here B is the extensive variable, b is the corresponding intensive variable and ρ is the
density of the system.

Another theorem that will be utilized is the divergence theorem. It is defined as follows:

∫

∂V
G · n̂dS =

∫

V
∇ ·GdV (1.3)

here G is a variable at least order one, S is the external surface, ∂V is the boundary
of the volume or system and n̂ is the normal of the boundary of the volume.

Now, it’s time to define the Reynold Transport Theorem (RTT). Given an extensive
B and intensive variable b, V (t) as a material volume and a control volume V0, then a
material derivative can be so expressed:

dB

dt
=

d

dt

∫

V (t)
ρbdV (t) =

d

dt

∫

V0

ρbdV0 +

∫

∂V0

ρbv · n̂dS =

∫

V0

(d(ρb)

dt
+ ρb∇ · v

)

dV0

(1.4)

Here, the core of the RRT is the equality between the second and the third part of the
equation. The theorem defines that a variation of an extensive variable in time and space
- material derivative - is the sum of a variation of the same variable in the time and of
the flux of the same variable through the control volume. The last two parts describes the
theorem in a different way using the divergence theorem (equation (1.3)) and combining
in a compact way.
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Chapter 1. General concepts of fluid dynamics

1.3 Basic flow equations

Basic flow equations contains the fundamental physics of flows. They are noted as:
mass conservation, balance of the momentum quantity and conservation of energy princi-
ple. They are general and so they are applied to all the systems. These equations combined
with a constitutive fluid equation resolve the flow of a fluid. They can be expressed in an
integral or differential way.

1.3.1 Mass conservation

Starting with the mass conservation equation, given a mass M as extensive variable
and so 1 as its intensive value:

d

dt
M =

d

dt

∫

V (t)
ρdV (t) = 0 (1.5)

Applying RTT and the divergence theorem, the final equation is:

∫

V0

(∂ρ

∂t
+∇ · (ρv)

)

dV0 = 0 (1.6)

Previous equation is expressed in an integral form, however also a differential form can
be define:

∂ρ

∂t
+∇ · (ρv) = 0 (1.7)

The previous equation has a general validation, however we are interested in steady flow
and so another assumption can be made. If the flow is steady, given a generic variable
of the flow ψ, then ∂ψ/∂t = 0 and so the mass conservation equation for steady flows
becomes:

∇ · (ρv) = 0 (1.8)

1.3.2 Balance of the momentum quantity

For the second principle of dynamics - the second Newton’s law - the variation of the
momentum quantity over time in a system is equal to the sum of the external forces acting
on the same system:

dQ

dt
=

∑

F (1.9)

here Q =
∫

V (t) ρvdV (t) is the momentum quantity. Starting from this basic equation,
it is changed to properly fit the fluid dynamics. So, applying the RTT and defining all the
forces acting on the system, the equation becomes:

∂

∂t

∫

V0

ρvdV0 +

∫

∂V0

ρvv · n̂dS =

∫

V0

dFev +

∫

V0

dFes (1.10)

here, the forces are divided into two contributions:

• Fev: it’s the field of forces acting on the whole volume. For simplicity only the
gravitational is considered. They are expressed as Fev = ρgV (t). Here g is the
gravity acceleration vector.
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1.3. Basic flow equations

• Fes: it’s the field of forces acting on the external surfaces of the volume. They are
expressed as Fes = tdS. Here t is the stress vector.

The stress vector is define by the stress tensor which is a matrix. So

t = T⃗ · n̂←→ T⃗ =







σxx τxy τxz

τyx σyy τyz

τzx τzy σzz






(1.11)

Substituting the values in equation (1.10) applying the divergence theorem and elimi-
nating the dependence of the system -removing the integral-, the equation becomes:

∂ρv

∂t
+∇ · (ρvv) = ∇ · T⃗+ ρg (1.12)

that’s the balance of the momentum equation in differential form. The stress vector is
a field of forces including pressure and friction forces. Moreover, air is a Newtonian fluids
-more precisely a Stokes fluid - and so, introducing a constitutive bond, the stress tensor
can be define as follows:

T⃗ = −p⃗I+ 2µE⃗− 2

3
µ(∇ · v)⃗I E⃗ =

∇v+∇vT

2
(1.13)

here I⃗ is the identical matrix, µ is the dynamic viscosity and E⃗ is the strain tensor. So,
the stress tensor is made up by two terms: pressure and sum of different terms that can
be include all as viscous stresses Σ⃗. With these considerations, substituting in equation
(1.12) and using mass conservation, a conservative form of momentum balance is defined:

ρ
Dv

Dt
= −∇p+∇ · Σ⃗ + ρg (1.14)

This is the differential form of momentum balance. With this equation and the mass
conservation one, the fluid system is described by 4 equation (1 mass conservation and 3 of
momentum balance in the three direction) and 5 unknowns (density, three components of
velocity and pressure). The gas state equation p = ρRT is added but also a new variable
T - the temperature - is added in the system. Therefore, the principle of conservation of
energy must be used in the system.

1.3.3 Conservation of energy principle

Consider the first principle of thermodynamics:

dϵ̇ = δQ̇+ δẆ (1.15)

it expresses the variation in time of the internal extensive energy of the system dϵ̇ as
the sum of variation in time of heat δQ̇ and work δẆ . This equation is divided in two
parts:

1. The energy of a given system is defined with the sum of the intensive internal energy

and the intensive kinetic energy: ϵs =

∫

V0

ρ
(

e+
1

2
v2

)

dV0

2. the heat is given by the sum of that entered in the volume and transferred by surface
conduction: Q̇ = Q̇v + Q̇s

10



Chapter 1. General concepts of fluid dynamics

3. the work is given by the sum of volume forces and surface forces: Ẇ = Ẇv + Ẇs

Substituting the previous definition in equation (1.15) and using the RTT, a new
equation is given:

d

dt

∫

V0

ρ
(

e+
1

2
v2

)

+

∫

∂V0

ρ
(

e+
1

2
v2

)

v · n̂dS = Q̇v + Q̇s + Ẇv + Ẇs (1.16)

Now, consider only the right part of equation. All the component are defined by an
equation:

• dQ̇v = ρQdV

• dQ̇s = −q · n̂dS → [Fourier law] : q=K∇T

• dẆv = v · ρgdv

• dẆs = v · tdS = v · T⃗ · n̂dS

here q is the thermic flux and K is the thermal conductivity coefficient. Applying
the divergence theorem, substituting the variables and with some mathematical steps, the
equation of the energy conservation is:

ρ
D

Dt

(

e+
v2

2

)

= −∇ · (pv) +∇ · (v · Σ⃗) + ρQ−∇ · q+ v · ρg (1.17)

The previous equation is the last equation that complete the set of Navier-Stokes
equations. Evne if they are complete - 6 equations in 6 unknowns - they doesn’t admit
easy solutions both numerical and analytical. So, let’s introduce some hypothesis to
simplify the equation (1.17):

• adiabatic flux: Q = 0 and K∇T ≈ 0

• max forces are negligible: g ≈ 0

• outside the boundary layer 1 the viscous forces are negligible: ∇ · (v · Σ⃗) ≈ 0

• steady flow for pressure:
∂p

∂t
= 0

Defining enthalpy as h = e + p/ρ and h0 as total enthalpy, the energy conservation
equation becomes:

h+
v2

2
= 0 = h0 (1.18)

here the subscript indicates the total state of a variable which is the state at which the
variable is carried isoentropically with zero speed conditions.

1see §1.4
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1.4. Boundary layer

1.4 Boundary layer

The classical Navier-Stokes equations don’t have a solution, actually the existence of
the solution has not yet been demonstrated. So, these equations are reduced in a simpler
set of equations. As previous stated, we considered a Newtonian fluid, in particular a
Stokes fluid, and so the set of the new equations becomes simple and solvable.

All the fluxes are viscous and a viscous flux adheres to a wall with its first molecular
layers. On the wall, the velocity of the fluid and solid -the wall- coincides: this condition
is noted as adhesion condition. The importance of viscous terms in a flux is determined
by Reynolds number. It is expressed as:

ReL =
uL

υ
(1.19)

here υ = µ/ρ is the cinematic viscosity and u the velocity in a preferential direction.
Reynolds number is associated always to a characteristic length L which depends from the
body considered (i.e. in aerofoils is the chord). Moreover, the Reynolds number defines
the ratio between inertial and viscous forces. For values over Re = 105 ÷ 106, the motion
is turbulent. So, for high number Reynolds, the viscous terms are negligible but near the
wall the viscosity must be present to ensure the condition of adhesion. Two different zones
are present in a flux over a body: an external one where the viscosity is negligible and a
zone near the wall where the viscosity is important, the boundary layer.

Given the Navier-Stokes equations, they are described by non-dimensional variables
according to a characteristic dimension. The continuity equation, for a incompressible
fluid (ρ is a constant) and with gravitational terms negligible, becomes:

∇′ · v′ = 0 (1.20)

here ()′ indicates a non-dimensional variable respect to a characteristic length L. With
the same procedure, the equation (1.14) is defined as follows:

D′v′

Dt′
= −∇′p′ +

1

Re
(∇2′v′) (1.21)

Last equation represent the idea previously illustrated. So, the flux is divided in two
zones:

• bulk: is a region sufficiently far from the wall. Here Re → ∞ and the flux is
described as if it were inviscid. The only forces are those due to pressure. The set
of equations is called Eulero’s equations;

• near wall: is a region just over the wall where the viscous phenomena are important.

Figure 1.2: Velocity profile

Another important fact is that, due to the adhesion condi-
tion on the wall, the velocity decrease from the outer solution.
This zone is subjected of a rapidly decrease of momentum.
Moreover, this zones is very important for the drag of the ob-
ject and the flux in it can be laminar or turbulent. However,
the velocity showed in Figure 1.2 represents only a specific
case.
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Chapter 1. General concepts of fluid dynamics

Figure 1.3: Development of boundary layer on a smooth flat plate

Consider a fluid moving over a body as in Figure 1.4 and assume that there is an
increase of pressure from point 1 to point 3. As previous stated, the profile velocity near
the leading edge of the body takes a curved form with a null value on the surface and a
value equal to the external solution in the outer edge. Then, at point 2, the flow separates
from the wall because an increase in pressure corresponds to a decrease in velocity. The
point of separation occurs where ∂V/∂n = 0. Instead, at the point 3, the flow is reversed
and the zone is full of eddies. So, the rapidly increasing of the pressure, caused by the
geometry, creates a large wake of recirculating flow downstream of the surface. However,
the boundary layer can withstand a small adverse pressure gradient avoiding boundary
layer separation. This is achieved by suitable geometries that slowly slow down the flow
velocity.

Figure 1.4: Different velocity profiles for different point on the body

The deeply description of all the characteristic of the boundary layer -velocity, height
of the layer etc- are too many to be described in this thesis. However, a briefly description
is been made and the concepts will be used in the future chapter. More information are
presented in [1] and [17].
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Chapter 2

Shock waves and high velocity

flows dynamic

2.1 Introduction

This chapter provides a view of the high velocity fluxes, the shock waves and their
behaviour. These concepts are needed to understand future implications.

2.2 Concepts of thermodynamic

2.2.1 Perfect gas

Considering a perfect gas means a mass of particles where they are far enough to collide
between them and generate the intermolecular force. So, a gas with this characteristic is
governed by the equation of state:

p = ρRT (2.1)

here ρ is the density, p the pressure and R the specif gas constant. Then, the sum of
all energies of all the molecules is defined as internal energy e. It is related to a quantity
h called enthalpy by the next equation:

h = e+ pv (2.2)

Moreover, for a perfect gas only, internal energy and enthalpy depend on the tempera-
ture (in general they depend also on pressure). If their dependence is defined by constant
(valid for air for T < 1000K), then their relation are so described:

e = cpT

h = cvT
(2.3)

here cp is the specific heats at constant pressure while cv is the specif heats at constant
volume. Furthermore, the two specif heats are related by two equations:

cp − cv =R

γ =
cp
cv

(γ =1.4 for air)
(2.4)

With some basic calculations, two final equation can be defined:

cp =
γR

γ − 1
and cv =

R

γ − 1
(2.5)

15



2.2. Concepts of thermodynamic

2.2.2 Thermodynamic laws

Thermodynamic is governed by different principles. The first of these states that given
a fixed mass of gas, δq an incremental amount of heat added to the mass (also called
system) and δw the work done on the system, those cause a change of internal energy de
as follows:

δq + δw = de (2.6)

Three types of process can added heat and do work to the system:

• Adiabatic: δq = 0;

• Reversible: no dissipative phenomena occur (no viscosity, thermal conductivity and
mass diffusion)

δw|REV = −pd
(1

ρ

)

(2.7)

• Isentropic: both adiabatic and reversible process

The second principle states there is a proper direction of a process. Defining S(T, p)
as entropy, then

dS =
dq|REV

T
−→ S2 − S1 ≥

∫ 2

1

dq

T
(2.8)

Now, consider a reversible process, combining all the previous equation, it is obtained:

de = Tds− pd
(1

ρ

)

(2.9)

From the definition of enthalpy:

dh = de+ d
(p

ρ

)

−→ dh = Tds+
1

ρ
dp (2.10)

Extrapolating the entropy, remembering the equations for a perfect gas (2.3) and (2.1)
and integrating the remaining values, the final equation is so defined:

S2 − S1 = cpln
T2
T1
−Rlnp2

p1
= cvln

T2
T1
−Rlnρ2

ρ1
(2.11)

Given the previous equations, they can be applied to an isentropic process (dS = 0
from equation 2.8), obtaining, by changing position of addends and using the equations
(2.4) and (2.5), the following relationship:

p2
p1

=
(T2
T1

)
γ

γ−1

=
(ρ2
ρ1

)γ
(2.12)

Note that, for aerodynamics problems, isentropic flows are not present in boundary
layers and through shock waves. More in dept analysis will be done in future sections.
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Chapter 2. Shock waves and high velocity flows dynamic

2.3 High velocity fluxes

Considering a perfect gas, its speed of sound a is a function of temperature only:

a =

√

dp

dρ
= γRT (2.13)

Given the previous statement, all flow can be expressed and associated with a variable
M called Mach number. It defines if the compressibility effects of fluid can be negligible
or not. Second case happens only when the flow has velocity near the sound velocity.
Moreover, flows with M < 0.3 are defined as slow.

M =
v

a
(2.14)

Furthermore, the mach number is used to define different categories of flows. They
are:

Mach number Type of flow

< 1 subsonic
∼ 1 sonic
> 1 supersonic
≥ 5 hypersonic

Table 2.1: Types of flow depending on Mach number

All these mach number can be easily associated with different cases. A subsonic flow is
typical of glider and a supersonic one is reached by military jets. All these types of flows
are presents nowadays.

Given the importance of the Mach number, it is used to define the thermodynamic
characteristics. All the variable are expressed in their total state. Given an adiabatic,
not-viscous and with no gravitational forces flow in stationary motion of a perfect gas, its
total thermodynamic variable are so expressed:

T0 = T (1 +
γ − 1

2
M2)

p0 = p(1 +
γ − 1

2
M2)

γ
γ−1

ρ0 = ρ(1 +
γ − 1

2
M2)

1

γ−1

(2.15)

(2.16)

(2.17)

These are the basic equation used for high velocity flows.

2.4 Shock waves

Subsonic and supersonic flows present some difference regarding the fluid behaviour
around a body. In the first one, a disturbance travels upstream to alert the flow of an
upcoming object. Then the flow makes the necessary adjustment to overcome the obstacle
and so creates space for it in the fluid. In the second one, the flow creates a system of
compression and expansion waves to turn itself around the body. This occurs because a
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pressure signal travel in a fluid with a velocity equal to the sound velocity, so, in a super-
sonic flow, it will not be able to change its configuration by communicating upstream the
presence of the change.

The waves created by the presence of an object are called shock waves. They have a
thickness equal to the average free path of molecules and in this space they generate a
discontinuity of the flow variables. There can be different types of shock waves: normal
and oblique (compression and expansion). All of this types of waves will be discussed in
the later sections.

2.4.1 Normal shock

Normal shock waves are normal to the flow and causes a sudden deceleration; static
pressure, temperature, density, and entropy rise; Mach number and total pressure drop
across the wave. Considering a control volume near a normal shock and indicating as 1
and 2 the flow variables before and after the shock wave, the fundamental equation of fluid
dynamics are applied to the zones 1 and 2.

Figure 2.1: Control volume for a normal shock

The continuity equation of a steady flow through the control volume demands:

ρ1u1 = ρ2u2 (2.18)

The momentum equation in the direction n̂ normal to the shock is:

p1 + ρ1u
2
1 = p2 + ρ2u

2
2 (2.19)

This equation defines the conservation of impulse I = p+ρu2 across the shock. Finally,
the energy equation for an adiabatic flow with no work becomes:

h1 +
u21
2

= h2 +
u22
2

(2.20)

So a system of three equations is created in four unknowns -ρ2, u2, T2, p2. Two new
equations are added and so the final system becomes:







































ρ1u1 = ρ2u2

p1 + ρ1u
2
1 = p2 + ρ2u

2
2

h1 +
u21
2

= h2 +
u22
2

h2 = cpT2

ρ2 =
p2
RT2

(2.21)
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The problem expressed in (2.21) is resolvable and it defines the normal shock equations
which correlate the variables before and after the shock:

M2

M1
=

1

M1

√

√

√

√

1 + γ+1
2 M2

1

γM2
1 − γ−1

2

ρ2
ρ1

=
(γ + 1)M2

1

2 + (γ − 1)M2
1

p2
p1

= 1 +
2γ

γ + 1
(M2

1 − 1)

T2
T1

=

[

2γ

γ + 1
(M2

1 − 1)

]

2 + (γ − 1)M2
1

(γ + 1)M2
1

(2.22a)

(2.22b)

(2.22c)

(2.22d)

As the reader can view, all the relations are expressed in function of M1 and γ. So,
noted the variables before the shock - Mach number included1 - the variables after the
shock are easily obtained by equations (2.22). Others two notes can be done:

• Shock waves are presents only in supersonic flows: considering the second principle
of thermodynamics (S2−S1 > 0), the equation (2.11) and substituting the variables
with the ones obtained in equations (2.22), then it is obtained that M > 1;

• M2 < 1: This is easily verifiable using equation (2.22a). Moreover, the flow is sub-
sonic after the shock only for normal shock wave.

2.4.2 Oblique shock

Consider the oblique shock wave sketched in Figure 2.2: β is the wave angle, θ is the
flow turning angle, u is the normal velocity component and w is the tangential velocity
component. Moreover, all the variable are defined as 1 if they are in the zone before the
shock or 2 if they are present after the shock.

Figure 2.2: Oblique shock

As done before with normal shock, to obtain the variables after the shock is necessary
to resolve the continuity, momentum and energy equation. So, indicating with n̂ and t̂ the
normal and tangential direction, the system becomes:

1Note: for air γ = 1.4
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ρ1u1 = ρ2u2

p1 + ρ1u
2
1 = p2 + ρ2u

2
2 momentum in n̂ direction

w1 = w2 momentum in t̂ direction

h1 +
u21
2

= h2 +
u22
2

h2 = cpT2

ρ2 =
p2
RT2

(2.23)

The system is similar to that one of normal shock wave. The only difference is the
conservation of the momentum in the tangential direction. Moreover, the conservation
equations normal to the shock take on the exact form of the normal shock equations that
were solved earlier to arrive at the shock jump conditions, so an oblique shock can be
treated as a normal one using the normal component of the flow to the oblique wave:

M1n =M1sinβ (2.24)

So, the equations which defines the variables after the shock are:

M2
2n =

1 + γ+1
2 M2

1n

γM2
1n − γ−1

2

ρ2
ρ1

=
(γ + 1)M2

1n

2 + (γ − 1)M2
1n

p2
p1

= 1 +
2γ

γ + 1
(M2

1n − 1)

T2
T1

=

[

2γ

γ + 1
(M2

1n − 1)

]

2 + (γ − 1)M2
1n

(γ + 1)M2
1n

(2.25a)

(2.25b)

(2.25c)

(2.25d)

here the downstream Mach number is defined as:

M2 =
M2n

sin(β − θ) (2.26)

Also on the oblique shock equations can be done some considerations:

• unlike the normal shock ones, the oblique shock equations depend on M1n, β and γ;

• normal shock waves are a particular case of oblique shock where β = π/2

The variable θ is necessary to evaluate the Mach number after the shock wave, as seen
from equation (2.26). So a new relation, called θ − β −M , is introduced:

tan θ = 2 cotβ
M2

1 sin
2 β − 1

M2
1 (γ + cos(2β)) + 2

(2.27)

So, the equations (2.25) with equation (2.27) give the fluid characteristics after the shock
(i.e. temperature, density, pressure and Mach number).

The θ− β −M relation is resolved in a graphical way because the equation is implicit
and non-linear. So, the chart is presented in Figure 2.3.
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Figure 2.3: θ − β −M relation

From the Figure 2.3 some considerations can be made:

• The equation (2.27) has results if M1 > 1. From chart, the reader can view that
there aren’t curve for Mach number under the unity. This further affirms that oblique
shock only occurs under supersonic flow conditions;

• Consider the blue line. It is the locus of points where M2 = 1. Moreover, the
points under this line represent the flow with M2 > 1 and so after the shock there
is a supersonic flow, instead the points over the blue line represent the flow with
M2 < 1 and so after the shock there is a subsonic flow. The blue line is also called
weak-strong line;

• Consider the red line. It is the locus of points where θ = θmax. They are the only
points which, given M1 and θ, the solution of equation (2.27) is only one;

• Given θ, there are two possible cases:

Figure 2.4: Weak
and strong shocks

1. if θ < θmax then there can be two types of shocks: strong
and weak shock. Nature and experimental data have
proven that weak shocks are more likely to occur. So
the flow after the shock has an angle β2w < β2s ;

2. if θ > θmax there are no solutions. In this case, a locally
normal shock wave is formed detached from the point
of discontinuity of the geometry. The shock formed is a
strong one. An example view is given in Figure 2.5.
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Figure 2.5: Attached and detached shock

In order to summarise and give a methodology for the study, the steps for calculating
the characteristics of the fluid after oblique shock are then described:

1. Noted the variable befor the shock -T, ρ, p,M - and the geometric angle of the obstacle
θ, then the flow angle is evaluted with the equation (2.27). In particular, the chart
of Figure 2.3 is used;

2. Normal component M1n of the flow is evaluated with equation (2.24);

3. M2n is calculated with equation (2.25a) and other flow variables after the shock are
evaluated with equations (2.25);

4. Finally, M2 is derived by equation (2.26).

2.4.3 Expansion shock

Expansion shock waves occur when a supersonic flow is turned away from itself. Ex-
pansion Mach waves are capable of only turning and accelereting the flow incrementally.
They present a zone in which there is an expansion fan, a region where can be visual-
ized an infinite number of Mach waves. The fan is bounded in a region by forward and
rearward Mach lines. Moreover, it is formed by continuous succession of Mach wave, each
isentropic, so the whole expansion fan is considered isentropic. Similar to the oblique
shock waves, expansion ones are formed only in supersonic flows however an expansion
wave is isentropic while an oblique wave always experiences an entropy increase.

Figure 2.6: Expansion shock wave

To obtain the equation of this type of shock, it is necessary to consider the Figure 2.7.
The relation between turning angle and speed is:

V + dV

sin(π2 − µ)
=

V

sin(π2 − µ− dθ)
(2.28)
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Figure 2.7: Geometrical construction for the changes across a Mach wave

Let us simplify the sines, isolate the velocity terms, apply small angle approximation
to sin θ and cos θ and use Taylor expansion with truncation at the linear term (1/(1± ϵ) ≈
1∓ ϵ), such as:

1 +
dV

V
≈ 1 + dθ · tanµ (2.29)

Figure 2.8: Mach triangle

Consider the triangle in Figure 2.8:

tanµ =
1√

M2 − 1
(2.30)

Substituting the equation (2.30) in (2.29), it is obtained a relation between the turning
angle and the incremental acceleration:

dθ =
√

M2 − 1
dV

V
(2.31)

We want to express the previous relation in function only of the Mach number. So,
remembering that velocity is a function of Mach and temperature, then, the ratio of the
incremental velocity can be espessed as:

dV

V
=
dM

M
+

1

2

dT

T
(2.32)

Noted the equation (2.15) for temperature and considered T0, the total state, as a
constant across the supersonic waves, then the logarithmic derivative of temperature is:

dT

T
=
−(γ − 1)MdM

1 +
γ − 1

2
M2

(2.33)

Substituting equation (2.33) in (2.32) and all again in (2.31) and integrating, the final
equation for the turning angle of the flow becomes:

θ =

∫ M2

M1

√
M2 − 1

1 + γ−1
2 M2

dM

M
(2.34)
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This integral for an arbitrary Mach number is defined by the Prandtl-Meyer function
as follow:

ν(M) =

√

γ + 1

γ − 1
arctan

√

γ + 1

γ − 1
(M2 − 1)− arctan

√

M2 − 1 (2.35)

So, the deflection of the flow can be finally expressed as:

θ = ν(M2)− ν(M1) (2.36)

Some considerations can be made for the equation (2.35):

• for M = 1 then ν(M) = 0;

• for M → ∞ then ν =
π

2

√

γ + 1

γ − 1
− 1 ≈ 130.45° and so the flow has a maximum

expansion angle even if the geometry allows more space.

To summarise, as done for the compression waves, the calculation process for the
variables after expansion is also described here. Noted the variables of the flow before the
expansion wave, the procedure can be described as follows:

1. evaluation of ν(M1) from equation (2.35);

2. noted the deflection angle θ, evaluation of ν(M2) from equation (2.36);

3. calculation of M2 from equation (2.35);

4. since the expansion wave are isentropic, equations (2.15),(2.16) and (2.17) are used
to obtain the values of the variables after the shock.

To speed up the process, it is advisable to use tables in the literature (see [1]) which
provide known values for equation (2.35), thus avoiding analytical calculation.

2.4.4 Shock interactions and reflections

The analysis of shock waves, in particular the oblique ones, is made with interaction
between the supersonic flow with a geometric discontinuity which generates the oblique
shock. However, this situation is particular and not very present in nature because the
flow is channelled between more surfaces and so the oblique shock wave can not extend
indefinitely. It will impact with another surface or an additional shock wave. These
phenomena are important in the design and analysis of supersonic airplanes, missiles,
rocket engines, etc. So, a qualitative discussion of shock wave interactions and reflection
is made.

Figure 2.9: Reflection of a shock wave in a channel
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For the first case, consider a section of a channel as shown in Figure 2.9. Here, the
geometry discontinuity A creates the compression shock wave and the free stream flow is
deviated by an angle equal to θ. The oblique shock wave could travel to infinity but it
impinge at point B the upper surface of the channel. The flow in region 2 must be bent
downward with an angle equal to θ in order to maintain a flow tangent to the upper wall.
This happens with a second shock, called reflected shock. The properties of region 2 and
3 are determined by the equation used for the oblique shock relation.

Figure 2.10: Delta reflection of a shock wave in a channel

In nature, but also with the validation of computational fluid dynamics and with
experimental tests, the reflection of the shock as explained in Figure 2.9 is very rare.
A realistic view is shown in Figure 2.10. The oblique shock wave, generated by the
discontinuity, becomes curved near the upper wall condition. Here, locally a normal shock
wave is created. This happens to allow the flow after the shock to becomes parallel to the
wall behind the shock intersection. Moreover, a curved shock spreads from the intersection
and propagates downstream. This type of interaction of shock waves is called λ, due to
the shape similarity with the Greek letter.

Figure 2.11: Intersection of shock waves in a channel

Another case is the interaction between different oblique shocks generated by different
geometry discontinuity, as shown in Figure 2.11. The two oblique shocks are generated by
points A and B and the properties downstream, in region 2 and 3, are calculable with the
equation for oblique shock waves. Then, the two waves propagate in two different direction
until they intersect at the point E. Here, both are reflected and their path continue with
another wave: A becomes D and B becomes C. The properties in region 4 and 4′ are
not calculable with analytical equations but only with computational fluid dynamics or
experimental tests. However, the different properties of the two regions are divided by a
so called slip line. Across it, the pressure is constant (p4 = p4′) and the direction of the
velocity is the same (v̂4 = v̂4′). All other properties are different.
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Figure 2.12: Union of shock waves

An additional case is represented in Figure 2.12. Two oblique shock wave are gen-
erated by two different geometry discontinuity on the same wall. The properties of the
flow in the zones 2 and 3 are easily evaluated with the relation for oblique shock waves.
In this case, the intersection of the two shocks occurs at the point C. Here, they merge
and propagate with a new stronger shock represented by line CD and a weaker one de-
scribed by CE line. Last one is necessary to adjust the direction of the flow in order to
be tangential to θ2. Again, the downstream properties of zone 4 and 5 are different but
they are divide by the slip line with the same characteristic described for the previous case.

All of these cases are only some of the most commonly situations happening in nature
but with high frequency. Being only a qualitative explanation of the phenomena, the dis-
cussion stops here.

As discussed earlier, shock waves can interact with the boundary layer. This situation
frequently happens and it very complex. Consider a inviscid flow, the shock wave reflection
can be visualized as in Figure 2.9. There is discontinuous pressure increase at point B,
a combination of incident and reflected shock waves. So, in this point, there is a very
infinitely large adverse pressure gradient. As discussed in Chapter 1.4, if the fluid is
viscous, and so there is the boundary layer, then the adverse pressure gradient would
cause the boundary layer to detach.

Figure 2.13: Boundary layer interaction

Consider for example the scheme of Figure 2.13. The wall presents a growing boundary
layer where the flow is subsonic near the wall to reach the supersonic condition near the
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outer edge. An incident shock wave impacts on the boundary layer with an adverse
pressure gradient that acts on the boundary layer and generates detachment. Here, the
flow presents a recirculation bubble in which there are vortices structures. Last ones
generates a bump of the boundary layer. Moreover, the flow after the incident shock
wave is induced to turn into itself, due to the condition imposed by the new shape of
the downstream boundary layer. This bending of the flow induce a second shock wave,
identified as the induced separation shock wave. Later, the boundary layer turns to the
surface and reattaches itself on the latter. The external flow follows the turn of the
boundary layer turning away from itself and this generates expansion waves. Finally, in
the reattachment point, the external flow turns into itself causing the generation of the
final shock wave called reattachment shock wave.

2.5 Hypersonic flows

Hypersonic flows have some differences with the supersonic ones. Consider a flat plate
or a tapered body. Using the theory previously discussed, noted M∞ and θ, the angle
described by the shock wave is evaluated using the θ − β −M relation. It is noted that
the β ≈ θ, so, in an inviscid fluid, for very high Mach number, the oblique shock wave are
almost tangential to the geometry. In hypersonic flows, the viscous terms are important.
In nature, the boundary layer after the shock are very thin for two reasons:

• the boundary-layer thickness in slender body is approxximately proportional toM2
∞
;

• hypersonic vehicles generally fly at high altitudes where the density is low and so
the Reynolds number is also low.

Figure 2.14: Inviscid flow (left) and viscous flow (right)

As shown in Figure 2.14, the thick boundary layers create a bend of the shock wave
which becomes very strong in the leading edge of the flat plate.

Also high-temperature effects are very important in hypersonic flow. At high tem-
perature, the gas is not ideal but real, so the temperature cannot be calculated with the
usual shock wave theory. Moreover, the chemical dissociation reactions of oxygen and
nitrogen take part in the energy balance. So, kinetic energy is transformed into chemical
and thermal energy reducing the final temperature values after the shock.

The oblique shock relations previously discussed are the starting point to obtain ap-
proximate and simplified version for high Mach numbers. So, consider a classic oblique
shock wave, the equations (2.25) and substitute M1n = M1 sinβ. For hypersonic flows
M1 → ∞ and so M2

1 sin
2 β. Finally, the equations for hypersonic flow, with 1 and 2 the

zones before and after the shock, are so described:
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p2
p1

=
2γ

γ + 1
M2

1 sin
2 β →∞

ρ2
ρ1

=
(γ + 1)M2

1 sin
2β

(γ − 1)M2
1 sin

2 β + 2
≈ γ + 1

γ − 1
=

{

6 for γ = 1.4
∞ for γ → 1

T2
T1

=
2γ(γ − 1)M2

1 sin
2β

(γ + 1)2
=

{

∞ for γ > 1
1 for γ → 1

(2.37a)

(2.37b)

(2.37c)

From the θ − β −M relation in equation (2.27), in the hypersonic range, it becomes:

tan θ =
2

tanβ

[

sin2 β − 1

γ + cos 2β + 2

]

≈ 2

tanβ

sin2 β

γ + cos 2β
(2.38)

Consider a slender body, then θ, β << 1, so:

β =
γ + 1

2
θ =

{

1.2θ for γ = 1.4
θ for γ → 1

(2.39)

The previous equations are only used for theoretical analysis. The use of the exact
oblique shock equation are always recommended.
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Chapter 3

Hypersonic air intake

3.1 Introduction

Air intake is the first component of the engine aircraft in contact with air. The re-
quirements of the intakes depend on the mission of the aircraft, but in general they are
designed to follow some general requirements:

• provide spatially an temporally smooth flow in to the engine with minimum distor-
tion;

• compress the flow;

• minimize shock and viscous losses to improve the drag coefficient;

• light weight and low cost manufacture;

• independence of performances by operating at different incidences;

• tolerate back pressure caused by heat addition;

• provide particle separator;

• allow for engine thrust growth;

There are some conflicts in the requirements, so reaching an optimal compromise so-
lution is not an easy task.

Inlets are different in shape and behaviour depending on the operating conditions they
are working on. So, two categories are defined: subsonic and supersonic/hypersonic inlet.
This chapter aims to give a first and general description of intakes, in particular those
operating at high Mach number. Concerning the objectives of this thesis, an overview is
made for hypersonic intakes.

3.2 Hypersonic inlet characteristics

All supersonic and hypersonic inlets must slow down the flow to compatible veloci-
ties for the compressor or chamber of combustion for the ramjet. From the isoentropic
gasdynamics:

dA

A
= −dv

v
· (1−M2) (3.1)
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For a supersonic intake, the equation (3.1) gives a convergent–divergent (C–D) duct
capable of decelerating a supersonic flow to a subsonic one reversibly and adiabatically.

Figure 3.1: Convergent-divergent supersonic intake

From the theory, an area can be estimated to have a desirable Mach number at the
exit of the intake. However, this is not a reachable solution because supersonic intakes
have two major issues:

1. “unstarted” problem: the incapability to reach the design conditions;

2. buzz : a shock wave is alternately swallowed and regurgitated by the inlet generating
interaction with boundary layers and flow instability

This two phenomena and their resolution are briefly explain in the next sections.

3.2.1 “Unstarted” problem

The inlet flow starts at a very low speed, in the subsonic regime. Here, the area
capturing the air is larger than that of the throat and the velocity in the throat never
reaches the speed of sound. Subsequently, the speed increases, remaining in the subsonic
regime, and the throat has a unit Mach number. This is where the first bottleneck occurs.
As the velocity increases again, close to the transonic regime, the capture area is smaller
than the starting section of the inlet, an outflow occurs and therefore part of the mass
flow does not enter the inlet. In the supersonic regime, a shock wave is generated before
the inlet. This phenomenon also creates mass flow spillage and induces high pressure and
resistance losses. The process can be visualized in Figure 3.2.

Figure 3.2: Flow characteristics of an isentropic C–D inlet from low speed to supersonic conditions
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In order to work in the design condition, the shock wave needs to be swallowed by the
intake. Without explaining the whole procedure in detail, it is known that in converging
sections the shock wave is not stable and it is therefore swallowed up, whereas in diverging
sections the shock wave is positioned at a point in the section that depends on the value
of the backpressure. The latter will place the shock at the throat for a maximum total
pressure recovery.

The swallowing of the shock wave can be done in different way:

• Overspeed: the freestream reaches a Mach number greater than design one, so the
starting shock is at the inlet lip and the process of swallowing of the shock starts;

• Kantriowitz-Donaldson intake: a larger throat area is established with respect
to isentropic throat. The starting shock is formed in front of the intake and then it
is swallowed and backpressure adjusted;

• Variable throat: follow the same principle of K-D intake. Starting shock is gen-
erated at Mach design, the throat is opened and the shock reach the convergent
section.

Figure 3.3: A K–D inlet at design Mach number

3.2.2 Buzz

The second major problem of supersonic/hypersonic intakes is the buzz instability. It
is an unsteady cyclic phenomenon resulting from the interaction between shock waves and
boundary layer which generates separation of the flow. The shock wave has a back-and-
forth oscillatory motion that causes high resistance to spillage and distortion of the fluid
flow. The entire process can be schematized as in Figure 3.4.

Figure 3.4: A Buzz instability cycle

3.3 Mixed-Compression Inlets

For high speed flow, as in hypersonic range, the mixed-compression intakes are most
used. They are very complex but follow the rule that more ramps generate weaker shocks
and so a minor loss of pressure. Moreover, they allow internal shock reflection for better
performance reducing the curvature of the cowl lip. They can be operation up to Mach 5
with high total pressure recovery. However, they present several problems:

• the present of internal throat is source of starting problem. It is mitigated using
variable throat geometry;
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• external compression surfaces indicates possible buzz instability. Boundary layer
suction and throat bleed are built to overcome the instability;

• separation of boundary layer and distortion due to the interaction with shock waves;

• terminal shock position. It is regulated by the two pitot tube and the changes on
backpressure.

Figure 3.5: A mixed compression inlet with external and internal shocks

The design of the hypersonic inlet is related to a Mach number. Obviously, the intake
meets the flow also at different velocities. If the velocity is under the design value, the
shocks, produced by the presence of the ramps, converge before the cowl lip generating
spillage, high drag and low mass flow. Instead, a velocity over the design one pushes the
shocks in the inlet with possibilities of generating flow detachment and distortion.

Figure 3.6: Hypersonic intake desing and off-design conditions

Hypersonic intake are currently under studies to mitigate all the problems previously
discussed to improve the overall inlet performance. For example, NASA built an hyper-
sonic aircraft running a scramjet engine (Figure 3.7a) with an inlet similar to the one
previously discussed. Similar inlet will be discussed in this thesis with a view of improving
his performance.

(a) X-43 side view (b) Inlet scheme

Figure 3.7: X43-A hypersonic aircraft
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Chapter 4

Basic concepts of Computational

Fluid Dynamics

4.1 Introduction

The aim of this chapter is to provide to the reader the basic concepts of Computation
Fluid Dynamics. Here, it will explain how the theoretical formulas are applied to a modern
computer and how the latter computes the variables and parameters of the fluid flow.

4.2 Elements of computational fluid dynamics

4.2.1 Navier-Stokes equation

The Computational Fluid Dynamics (CFD) is that branch of fluid dynamics that aims
to solve problems related to fluid motion through the use of calculation tools. It is used
to perform the validation of the theoretical models or to avoid the use of wind gallery to
perform fluid analysis for a new experimental model. It reduces production cost of new
components of an aircraft through the use of calculation tools for various tests.

In particular, the CFD resolves numerically the set of differential Navier-Stokes’ equa-
tions. From equation (1.7), (1.14) and (1.17):







































∂ρ

∂t
+∇ · (ρv) = 0

ρ
Dv

Dt
= −∇p+∇ · Σ⃗ + ρg

ρ
D

Dt

(

e+
v2

2

)

= −∇ · (pv) +∇ · (v · Σ⃗) + ρQ−∇ · q+ v · ρg

(4.1)

This is a system of 5 equations in 7 unknown. It is closed by other two equations:
ρ = ρ(p, T ) as the constitutive fluid model (p/ρ = RT for ideal gas) and e = e(p, T ) as
internal energy model (e = cvT for ideal gas).

Navier-Stokes’ equation are a set of partial differential equations. This kind of equa-
tions needs the initial state of the system to be resolved. This initial condition is called
Cauchy condition. It is necessary but it is not enough to resolve the differential equations.
The conditions on the boundary of the spatial domain are also defined. Given ϕ = ϕ(x, t)

33



4.2. Elements of computational fluid dynamics

as a variable that can evolve in space and time, the spatial condition can be expressed in
three ways:

• Dirichlet’s condition: variable has an imposed value changing only in time

ϕ(xa, t) = ϕa(t) (4.2)

• Neumann’s condition: derivative on the boundary has a imposed value

∂ϕ(xa, t)

∂x
=
ϕa(t)

∂x
(4.3)

• Robin’s condition: linear combination of Dirichlet and Nuemann’s conditions

ϕ(xa, t) = αϕa(t) + β
∂ϕa(t)

∂x
α, β ∈ R (4.4)

Given the initial and the boundary conditions, the partial differential equations can
be solved.

4.2.2 Mesh

In order to evaluate the partial differential equation in the domain, it is necessary to
define a computational grid, called mesh. This grid is a set of points and elements that
describe in a discrete way the fluid domain.

The continue solution of the flow becomes a discrete solution because it is defined only
in the points of the grids. There is not only a spatial grid but the flow is also temporally
discretized. If the fluid changes is behavior over time, it is called unsteady. While the
fluid is static over time, it is called steady and the discretization of the time is not necessary.

The finite difference method defines a derivative of a function through incremental
ratios truncated to a certain order of magnitude. Defining a field variable ϕ(x, t) with
x ∈ [0;Lx] ∀t > t0, here Lx is the length of the domain and it is divided by a set of points
xi = (i− 1)Lx/nx = (i− 1)∆x where nx is the number of the points. Using nodal terms
of variable field ϕ(xi, t), the derivative in the i-th point can be written as follow:

ϕi+1 = ϕi +
dϕi
dx

∆x+
1

2

d2ϕi
dx2

∆x2 +
1

6

d3ϕi
dx3

∆x3 +O(∆x4) (4.5)

The derivative can be truncated to the first order and extrapolated from the previous
equation, it becomes:

ϕi+1 = ϕi +
dϕi
dx

∆x+O(∆x2)
dϕi
dx

=
ϕi+1 − ϕi

∆x
+O(∆x2)

(4.6)

The derivative in equation 4.6 is called downwind because it is obtained using i-th and
(i+1)-th points of the grids. Similarly, an upwind derivative can be expressed as follow:

ϕi−1 = ϕi −
dϕi
dx

∆x+
1

2

d2ϕi
dx2

∆x2 − 1

6

d3ϕi
dx3

∆x3 +O(∆x4) (4.7)

34



Chapter 4. Basic concepts of Computational Fluid Dynamics

ϕi−1 = ϕi −
dϕi
dx

∆x+O(∆x2)
dϕi
dx

=
ϕi − ϕi−1

∆x
+O(∆x2)

(4.8)

Another kind of derivative can be obtained by the sum of 4.6 and 4.7 and, with a
truncation of the third order, the expression becomes:

dϕi
dx

=
ϕi+1 − ϕi−1

2∆x
+O(∆x2) (4.9)

This derivative is called central because it used (i-1)-th and (i-1)-th points. These
derivatives can be visualized in Figure 4.1.

Figure 4.1: Different kind of derivatives of a function (blue)

With the same logic, also the second and third order derivative can be written and
their central,upwind and downwind derivatives can be obtained starting from the following
description with a process similar to the previous one.

ϕi+1 = ϕi +
dϕi
dx

∆x+
1

2

d2ϕi
dx2

∆x2 +O(∆x3)

ϕi+1 = ϕi +
dϕi
dx

∆x+
1

2

d2ϕi
dx2

∆x2 +
1

6

d3ϕi
dx3

∆x3 +O(∆x4)

(4.10)

(4.11)

The more the derivative order is higher, more higher is its accuracy. However, more
points need to be used and so the computational time can increase very rapidly. Usually,
the commercial software don’t go over third order.

4.2.3 Convergence and stability

The numerical solutions given by CFD software need to be validated. They can give
some results but way different from experimental and theoretical ones. In particular, there
are two problems that affect the results of the simulations: the error between the numer-
ical and correct solution and numerical error of the calculator.

Regarding the first one, given ϕn as the numerical solution and ϕ(tn) the right solution,
then a method has convergence if:

lim
∆t→0

ϕn = ϕ(tn) (4.12)
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or, in a better way:

lim
∆t→0

en = 0 (4.13)

here en = ϕn − ϕ(tn) is the numerical error at step n.

A method has convergence means that the process of discretization happened in the
right way and the passage between a continue domain to a discrete one is maintained.
Also, convergence is determined by residual: it measures the local imbalance of a con-
served variable in each control volume. Therefore, every cell in the model will have its
own residual value for each of the equations being solved [2].

Moreover, due to the fact that a calculator has a finite arithmetic (i.e. 10E-14 in
double precision), the calculator introduces an error of approximation. The stability rep-
resents the insensitivity of the method to this error. A method is stable if it produces an
infinitesimal succession of solution ϕn for n→∞, so:

lim
n→∞

ϕn = 0 (4.14)

So the method doesn’t produce divergence due to the accumulation of perturbation
errors of the finite representation of the numbers in the calculator.

4.2.4 Reynolds Average Navier-Stokes equations

Navier-Stokes equations governs any fluid motion, but their intrinsic non-linearity is
responsible for critical problems, e.g. turbulence, multiscale nature of turbulent flows.
The computational fluid dynamics (CFD) describes the fluid flow with different methods.
These methods describes in different way the turbulence, the main source of inaccuracy
for CFD codes. Three kinds of equations can be used:

• Direct Navier-Stokes (DNS): solves directly the governing equations of fluid
flows without the use of any modelling assumption. It requires to solve the extensive
range of temporal and spatial scales of a turbulent flow, from very large to very
small. Its computational time is very high (Re3);

• Large Eddy Simulation (LES): simulates the large scales of turbulence but mod-
els the smallest one. Less accuracy and computational time of DNS.

• Reynolds Averaged Navier-Stokes (RANS) evaluates the fluid flow taking into
account only the mean values. It has the minimum computational time.
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Figure 4.2: DNS (left), LES (middle) and RANS (right) predictions of a turbulent jet [14]

All fluid phenomena are governed by Navier-Stokes equations. Everything is deter-
ministic: given the initial conditions (ICs) and boundary conditions (BCs), the future
evolution of the system is prescribed. Yet, due to very small disturbances, even not
measurable, of ICs and BCs, the solutions are very different: this phenomenom is called
deterministic chaos.

A generic quantity of a flow can be divided in two terms with different characteristics:

1. instantaneous:

• with deterministic chaos, strongly depending on BCs and ICs;

• no symmetry in the system;

• high variation between high and low scale1;

• intensity of gradients increases with Reynolds.

2. medium:

• determinism;

• recover of the symmetry of the system;

• smooth variation on the scale of the object;

• similarity with laminar fluxes

So, a generic quantity, for example the velocity, can be described as:

u(x, t) = U(x, t) + u′(x, t) (4.15)

here u(x, t) is the instantaneous velocity, U(x, t) is the mean velocity and u′(x, t) are
the velocity fluctuations.

Moreover, the Reynolds average is an ensemble average operator that applies to dif-
ferent components of a flow:

U(x, t) =
〈

u(x, t)
〉

=
1

N

n
∑

h=1

uh(x, t) (4.16)

1Turbulent flows are multiscale phenomena: vortical structures (eddies) span for 6-8 order of magnitude
in size
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Equation (4.15) is called Reynolds decomposition. If the problem has steady bound-
ary condition (in mean), the Reynolds average velocity does not depend on time so the
Reynolds average coincides with time average (ergodicity).

Now, let’s consider the incompressible Navier-Stoke’s equation (density ρ = costant):







∇ · u = 0
∂u

∂t
+ u · ∇u = −∇p

ρ
+ ν∇2u

(4.17)

First, let’s introduce the Reynolds decomposition into the equations but remember
some rules:

• Being the Reynolds average a linear operator, it commutes with all the derivative
operators that are linear;

• The Reynolds average of a fluctuating quantity is zero: < x′ >= 0;

• The Reynolds average of an averaged quantity is: < X >= X

Then, apply the Reynolds average to the equations. Starting with continuity, expressed
in tensor notation:

〈∂(Ui + u′i)

∂xi

〉

=
〈∂Ui

∂xi

〉

+
〈∂u′i
xi

〉

=
∂
〈

Ui

〉

∂xi
+
∂
〈

u′i
〉

∂xi
=
∂Ui

∂xi
= 0 (4.18)

∂Ui

∂xi
= 0→ ∇ · U = 0 (4.19)

∂u′i
∂xi

= 0→ ∇ · u′ = 0 (4.20)

Equation (4.19) defines the mean velocity field is solenoidal while equation (4.20)
defines the fluctuating velocity field is solenoidal. Applying the same procedure to the
momentum equations, they become:

ρ
(∂Ui

∂t
+ Uj

∂Ui

∂xj

)

=
∂

∂xj

[

µ
(∂Ui

∂xj
+
∂Uj

∂xi

)

− Pδi,j − ρ < u′iu
′

j >

]

(4.21)

So a new system of equation is generated: 4 equations (3 given by the components of the
momentum and 1 given by the continuity) in 10 unknowns (P ,U, V,W and the Reynolds
stresses: < u′u′ > < u′v′ > < u′w′ > < v′v′ > < w′w′ > < v′w′ >). The Reynolds
stress can be thought as originated by an extra viscosity, the so-called turbulent viscosity
or eddy viscosity, that accounts for the effects of the fluctuating fields (unsolved) on the
mean fields. Cause the problem can’t be closed, due to these new variables, turbulence
models are needed. These models have a set of equations capable to resolve the turbulence.
There are different ones and some of them can be visualized in Table 4.1.
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n° equations Turbulence models

1 Spalart-Allmarass
2 k-ϵ
2 kω-SST
4 Transition-SST
7 Reynolds stress model

Table 4.1: Different turbulence models

In this thesys only three method will be used: Spalart-Allmaras (SA), kω-SST and
Transition-SST.

Starting from SA, it solves a modeled transport equation for the kinematic eddy (tur-
bulent) viscosity. Due to the fact it only use one equation, it has inability to rapidly
accommodate changes in length scale. The kω-SST is a hybrid model between k-ϵ and
standard k-ω. The first one is used is the zone full of turbulence while the second one
is used in near wall zones because it describes better the viscous strains. Last one, the
Transition-SST model is based on the coupling of the SST k−ω transport equations with
two other transport equations, one for the intermittency and one for the transition onset
criteria, in terms of momentum-thickness Reynolds number. For a detailed description of
the models, the reader is referred to Pope [17].

To describe appropriately the flow near the wall, the near wall Reynolds number is set
for every model as y+w ≤ 1. It is determined as:

y+w =
yw
δv

(4.22)

Here, the yw indicates the high of the first cell and δv is the wall local viscous length.
As noted from (4.22), the high of the first cell near the wall is fundamental to achieve the
correct y+w . So, it is obtained as follows:

δv =
µw
ρwuτ

(4.23)

here, ρw is the wall density, µw the wall viscosity and uτ is the friction velocity.
Moreover

uτ =

√

τw
ρw

(4.24)

here, τw is the wall shear stress. Furthermore,

τw =
1

2
Cfρv

2
∞

(4.25)

The skin friction coefficient, for a flat plane, is defined as:

Cf = 0.026Re
1/7
l (4.26)

where Rel is the Reynolds number based on a characteristic length l and it is described
as:

Rel =
ρv∞l

µ
(4.27)
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Noted that y+w ≃ 1 and noted the characteristic Reynold number, the high of the first
cell is determined from equation (4.22) and the quality of boundary layer resolution near
wall is guaranteed.
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Chapter 5

Computational setup and

numerical methodology

5.1 Introduction

This chapter describes the setup of the computational models, the differences between
each of them and the motivation of every change with respect to the experimental model
taken into account. While there are some geometry differences, these don’t change the
accuracy of the solutions but they have to be taken into account to reproduce the results
that can be compared to the experimental ones. Finally, it will be chosen a mesh refinement
to use during the model optimization.

5.2 Geometry and test description

The geometry is divided in two parts: a bottom one which defines the two ramps and
the bottom part of the inner channel; and an upper one which defines the external ramp
(cowl lip), the upper part of the inner channel and the external surface. The baseline
geometry presents a chord L0 = 150 mm and an angle of 10° for the first ramp and 22° for
the second ramp respect to the horizontal axis and a channel located at 21 mm height.

Figure 5.1: Baseline geometry. All the measures are taken in mm

It is noted that the geometry presents some differences in the cowl lip section respect
to the experimental one. Here, in order to obtain a normal shock wave, there is a 0.4 mm
segment between the upper part of the inner channel and the cowl lip. This segment is
connected by a arc of circle to the external ramp, as showed in Figure 5.2. Furthermore,
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the cowl lip section starts at the inlet (start of the channel) and its ramp has a 30° angle.
The height of this section is 44.459 mm.

Figure 5.2: Magnification of the cowl lip measured in mm

Despite the changes, the computational geometry can be easily associated the experi-
mental one. The really important factor is to provide a cowl lip ramp with 30° angle. The
presence of a finite ’vertex’ of the cowl lip provides acceptable variations with respect the
experimental results, as will be proven later.

Experimental tests were conducted in the High Supersonic Tunnel at the University
of Manchester. The experimental setup, provided by [3], was conducted with precise
values of fluid as showed in Table 5.1. The intake presents three pressure sensors to
capture unsteady static pressure. The air is stored in a tank and then a valve regulates
its pressure. The heaters are used to provide the correct Reynolds number.

Parameters Symbol

Freestream Mach M∞ 5
Total temperature T0 390 K

Freestream total pressure p0∞ 820 kPa
Freestream velocity v∞ 806 m · s−1

Reynolds number per unit length Rel 2.3× 106 m−1

Table 5.1: Freestream experimental parameters

5.3 Software environment

The software ANSYS© with its package FLUENT is used to analyze the fluid flow.
Ansys is a library of different software used for different kind of analyses, such as structural
one for example. Ansys provide a common space to be able to interact between different
software and to transfer data from different packages. Fluent is the software used for fluid
dynamics analysis. It is a well known software in the CFD community for its reliability
and so it is largely use. It resolves the fluid equation using the finite volume method [19].

The user has to define to the software the type of geometry (2D or 3D), the number
of cores to use in parallel and the working directory. Then, the program starts its GUI
(Graphical User Interface) which is divided in different section: in the left side is present
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the setting tree that is also present in a different form in the upper side of the software, in
the right side there is a graphical windows in which the user can plot different variables
and in the bottom side there is the command windows, a box in which the user, through
a specific language, can manipulate the simulation. The latter allows the user to work
in TUI (Tangible User Interface) with scripts without the need to open the software and
setup the simulation step by step manually.

Figure 5.3: Example screen of Fluent

SALOME is an open source platform providing different packages that can be used for
different analysis. This software presents two different package that will be use: geometry
and mesh. First one creates 2D and 3D geometry of different shape, second one generates
computational grids with a wide variety of settings (e.g. structured mesh, local sizes, quad
elements etc.).

It presents a graphical interface divided in different parts: a upper section that pro-
vides the different packages and the setting of the package in use, a left section where all
the changes of the users can be visualized (e.g. in geometry, points with its coordinates
are displayed), a middle section where the user can visualize all the graphical objects (e.g.
whole body or a section in geometry) and a bottom section in which the user can provide
to the software the settings in Python language.

Figure 5.4: Example screen of Salome
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MATLAB© is the least software used. It will be use to provide scripts to the previ-
ous software, to generate the optimisation process and to display graphically the results
obtained by Fluent.

5.4 Numerical settings

5.4.1 Computational fluid domain

Given the geometry of experimental intake, it is necessary to provide a computational
fluid domain in order to confine the simulation case. So, in the interest to evaluate the
results respect to the computational case given by [6], it is created a similar domain:
Lx × Ly = (157.5× 60) mm.

Figure 5.5: Computational fluid domain

The whole body is positioned 7.5 mm from the inlet of the domain to give room to the
fluid to evolve itself. The upper boundary is located at 60 mm to provide enough space
to the fluid to evolve over the external surface. The right boundary is divided in two
zones: an upper one over the intake external surface and one inside the channel; always
to compare the results with [6]. In addition, for future use, a surface is defined at the
beginning of the canal that joins the lower and upper surfaces of the canal (it is not a
material surface); it will be called inlet. The curves of the computational domain and
their name are written in Table 5.2.

Geometric element Coding

Freestream inlet FREE INLET
Upper boundary TOP
Bottom boundary BOTTOM

Inlet channel INLET
External outlet EX OUTLET
Inner outlet IN OUTLET

Table 5.2: Coding of computational domain

5.4.2 Mesh settings

Grids are very important to have a high accuracy in the results and a similarity with
the experimental ones. Grids or meshes are divided in two macro categories: structured
meshes with rectangular elements and unstructured meshes with triangular elements. First
one are the best way to define a grid because they are built following the fluid flow. How-
ever, they usually need a support topology to define a proper grid for complex geometry
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not having only straight curves.

While the geometry could be divided by rectangular elements, the mesh of the body is
defined by triangular ones with a view to using a similar grid in the optimization process
because triangular meshes are very flexible . Indeed, the future geometry are not known
at priori and so a structured mesh could generate errors with different geometry from the
baseline one.

The mesh is not build with equal triangles over the whole computational domain.
Through different local sizes, the triangles near the wall are more tiny than the ones far
from the walls. In this zone the cell density increase because there is a rapidly change
of variables in the flow. These variations can be captured by using more cells in those
locations. Furthermore, there is a presence of different inflation layers, increasing from
coarse to fine, to enhance resolution near the wall and to give an appropriate value of y+w .
The aim is to have y+w < 1 in all cases to ensure a proper resolution near wall also for all
the geometry during the optimization process.

All the simulations are calculate with a number of inflation layer n > 36, increasing
from coarsest mesh to finest one, and a total thickness of all layers imposes at 2.5e−03 mm.
With this settings, the recommend threshold for wall-resolved RANS simulation y+ < 1
is verified in almost every point of the geometry and so the high resolution near the wall is
well respected. This is not true for some points that generate the arc between the normal
edge of the cowl lip and the external ramp and for the bottom point of the normal wall
that define the cowl lip, as the reader can see in Figure 5.6. Due to the geometry, these
points are not so well describe by the grid. Although the mesh is not optimally described
in these zones, the y+ values are acceptable cause they are just above the unit.

(a) Corner (b) Arc

Figure 5.6: y+ values on normal wall and arc of the cowl lip section

Three different meshes are used to evaluate the mesh independence of the model. This
analysis aim to evaluate the most appropriate grid level with respect to computational
time, accuracy and independence of the solution. Three different levels of grid are used:
a refinement of the mesh is present due to the decrease of the values of local size and
maximum size from the coarse mesh to the finest one.
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Coarse Medium Fine

Max Size [m] 0.001 0.00068 0.00042
Growth Rate 0.0076 0.0046 0.0045
Ramp 1 [m] 0.0004 0.00015 0.00015
Ramp 2 [m] 0.00025 0.0001 0.0001

Channel Bottom [m] — 0.0004 —
Channel Upper [m] — 0.0004 —
External Ramp [m] — 0.0005 —
Viscous Layers 36 36 38

Table 5.3: Settings for different kind of mesh

5.4.3 Boundary conditions

Boundary conditions are necessary to execute a simulation. They (see Figure 5.7 for
a full view) are so defined:

• pressure far-field (Top and free inlet):

– M∞ = c∞/u∞ = 5 here the c∞ is the undisturbed speed of sound and u∞ is
the free-stream velocity;

– ptot∞ = 820 kPa so it is imposed a p∞ = 1549.83 Pa;

– Ttot∞ = 390 K so it is imposed a T∞ = 65 K.

• pressure outlet (Ex outlet):

– Backflow Direction Specification Method : From Neighboring Cell

– Backflow Pressure Specification: Static Pressure

– Backflow Total Temperature: 390 K

• pressure inlet (In outlet):

– Gauge Total Pressure: 308000 Pa

– Supersonic/Initial Gauge Pressure: 15400 Pa

– Total Temperature: 390 K

• symmetry (Bottom): the fluid is symmetric respect to horizontal axis, thus this
condition can be summarized as follow:

– zero normal velocity at a symmetry plane;

– zero normal gradients of all variables at a symmetry plane.
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Figure 5.7: Fluid domain and boundary conditions divided by colors: Pressure far field in red, all the
walls in black, symmetry in green, pressure inlet in cyan and pressure outlet in blue

Pressure inlet is the condition imposed in the inner outlet, the flow exit of the chan-
nel. A previous simulation with the canonical condition ‘pressure outlet’ was set but the
residuals didn’t converge under values of 1e-05. However, the results of the simulation are
used to define the gauge pressure for the pressure inlet condition. So, the flow is helped
in developing within the channel and the residues fall to acceptable values.

In the top boundary, the pressure far field condition is used. As there is little distance
between the external surface and the top boundary, a symmetry condition should be more
suitable. However, there is a production of shock waves reflected from the upper limit
which do not reflect the results of the experiment. So, a pressure far field condition is
chosen for this case.

Note that the inflow must have a free-stream Reynolds number set to ReL0 = 2.3 ·
106 m−1, where ReL0 = ρ∞u∞/µ∞, so the viscosity is equal to µ∞ = 4.37621E − 06.
It is imposed also a turbulence intensity of 1% at the inflow. This computational setup
replicates the experimental setup of [3].

5.4.4 Model setup

Numerical scheme coupled is used in the simulation: it works coupling the solution
of the equations of the model. Also, Least Squares Cell-Based approach is employed for
gradients’ reconstruction, that is the way in which the derivatives of the various quantities
are estimated. The series expansion of the various quantities are truncated to a certain
order of magnitude chosen by the user. In this case, the Navier-Stokes equations’ spatial
components are computed using 1st-order Upwind scheme.

Regarding the last point, the usual procedure is to start the simulation with a 1st-
order scheme, to reach a first solution with a good convergence and then to restart the
simulation with a 2nd-order scheme and the result of the previous analysis as a starting
point. This procedure allows more accuracy and more numerical stability. This is not
true for this case: the simulation doesn’t reach convergence and so the results are not
acceptable. In order to have a solution for a 2nd-order Upwind scheme, it’s necessary that
the whole geometry is immersed in the flow, thus it can be implemented only in different
kind of meshes, where there is enough space over, under and behind the whole body so
the residuals can go down and thus the solution can converge. So, the 1st-order scheme
was accepted even if its results are not optimal in computational term.
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Figure 5.8: Numerical scheme (left) and setup initialization (right) of fluent

As previous stated, the convergence is a important factor to evaluate the results ob-
tained from the simulation. Convergence is the difference between the (i+1)-th solution
and the previous one. When this difference is under a determineted value, the simulation
stops and the results are accepted. Usually, the convergence is set when residuals go down
under 1E-05 but, due to the fact that it is used a 1st-order scheme, the convergence is set
to 1E-08.

Before starting the simulation, it is necessary to initialize it by providing the first at-
tempt values. A hybrid initialization has been used for this calculation model. It solves
Laplace’s equation to determine the velocity and pressure fields. All other variables will
be automatically patched based on domain averaged values or a particular interpolation
recipe (more informations are provided in [2]).

The simulations run the compressible RANS system of equations and three models
are applied to the three different meshes. The one-equation Spalart-Allmaras (SA) model
is used as the fastest model available, also the two-equations k-ω Shear Stress Transport
(KWSST) model and the four-equations Transition SST (TSST) model are used for all
the meshes. The first one is used because it develops the flow faster than the other two
models, the third one is more precise than the others and the second one is a compromise
between accuracy and time.

5.5 Mesh sensitivity analysis

In this section the results for every mesh are displayed in order to analyze a possible
mesh sensitivity. All the data are so presented:

1. mesh visualization with magnification on the critical zones;

2. y+ values for the ramps and the upper and bottom surface of the channel;

3. CP and Cf on the ramps and the bottom surface of the channel;

4. local, medium and SET pressure and drag coefficient on the ramps.

The first and the second point are compared with those obtained from [6] and [5] to
verify the correctness of the simulation. Fourth point shows the values expected from the
SET (see chapter 2.4.3) and the values produced by the models.
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5.5.1 Coarse mesh

Figure 5.9: Overview of coarse mesh

(a) Ramps and bottom channel (b) Upper channel

Figure 5.10: y+ values with different turbulence models

(a) Skin friction coefficient (b) Pressure coefficient

Figure 5.11: Cf and CP values with different turbulence models on ramps and bottom channel
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(a) First ramp (b) Second ramp

Figure 5.12: Local, medium and SET pressure for different turbulence models

Turbulence models Ramps Fluent drag [N] Average fluent drag [N] SET drag [N] Fluent Cd Average Fluent Cd SET Cd

Spalart-Allmaras 1 45.992 45.861 43.858 0.011926 0.011281 0.010788
2 160.03 160.68 162.62 0.039364 0.039524 0.040001

kω-SST 1 45.549 45.5 43.858 0.011204 0.011192 0.010788
2 159.73 160.41 162.62 0.039291 0.039456 0.040001

Transition SST 1 44.95 44.881 43.858 0.011057 0.01104 0.010788
2 162.39 163.07 162.62 0.039944 0.040111 0.040001

Table 5.4: Local, medium and SET drag and drag coefficient for different turbulence models
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5.5.2 Medium mesh

Figure 5.13: Overview of medium mesh

(a) Ramps and bottom channel (b) Upper channel

Figure 5.14: y+ values with different turbulence models

(a) Skin friction coefficient (b) Pressure coefficient

Figure 5.15: Cf and CP values with different turbulence models on ramps and bottom channel
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(a) First ramp (b) Second ramp

Figure 5.16: Local, medium and SET pressure for different turbulence models

Turbulence models Ramps Fluent drag [N] Average fluent drag [N] SET drag [N] Fluent Cd Average Fluent Cd SET Cd

Spalart-Allmaras 1 45.956 45.861 43.858 0.011304 0.011281 0.010788
2 159.97 160.68 162.62 0.039348 0.039524 0.040001

kω-SST 1 45.852 45.5 43.858 0.011278 0.011192 0.010788
2 159.19 160.41 162.62 0.039158 0.039456 0.040001

Transition SST 1 44.936 44.881 43.858 0.011053 0.01104 0.010788
2 161.56 163.07 162.62 0.03974 0.040111 0.040001

Table 5.5: Local, medium and SET drag and drag coefficient for different turbulence models
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5.5.3 Fine mesh

Figure 5.17: Fine mesh in critical zone

(a) Ramps and bottom channel (b) Upper channel

Figure 5.18: y+ values with different turbulence models

(a) Skin friction coefficient (b) Pressure coefficient

Figure 5.19: Cf and CP values with different turbulence models on ramps and bottom channel
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(a) First ramp (b) Second ramp

Figure 5.20: Local, medium and SET pressure for different turbulence models

Turbulence models Ramps Fluent drag [N] Average fluent drag [N] SET drag [N] Fluent Cd Average Fluent Cd SET Cd

Spalart-Allmaras 1 46.042 45.968 43.858 0.011325 0.011307 0.010788
2 160.37 161.03 162.62 0.039447 0.03961 0.040001

kω-SST 1 45.945 45.862 43.858 0.011302 0.011281 0.010788
2 159.53 160.18 162.62 0.039242 0.039401 0.040001

Transition SST 1 45.028 44.973 43.858 0.011076 0.011062 0.010788
2 161.96 162.68 162.62 0.03984 0.040015 0.040001

Table 5.6: Local, medium and SET drag and drag coefficient for different turbulence models
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5.5.4 Model validation and baseline analysis

First of all, the drag coefficient CD = D/(q∞h) with q∞ = 0.5ρ∞v
2
∞

undisturbed
dynamic pressure and h the intake channel height, and the flow rate scaled to coarse mass
∗

G = ṁ/ṁcoarse with ṁ = ρuh are parameterized with respect to the turbulence model for
all the three grids.

Figure 5.21: Drag Coefficient and Mass flow for all turbulence models and for every grid refinement

As expected, Spalart-Allmaras model generated a different value of CD with respect
to the other two models. This is due to the use of a singular equation to describe the
entire fluid flow that causes a coarse description of the flow. There is not a clear mesh
dependency since the drag is constant in all the grids. Furthermore, it is noted that the
flow mass rate is well captured in all simulations since there aren’t differences in either
the turbulence models or the mesh refinement. Finally, from the results of all analysis
reported in Figure 5.21, there is not a clear mesh dependency.

The inflation layers are sufficient to describe well the flow near walls. All y+ are under
the requested value of 1 for all the meshes and the models. The trends are very similar
and independent through all the grids.

Spalart-Allmaras doesn’t display any recirculation bubble for any mesh: neither be-
tween the ramps or in the starting section of the channel the skin friction assumes negative
values as can be seen in the three Figure 5.11.a, 5.15.a and 5.19.a. The bubble between the
two ramps is very tiny in coarse mesh for KWSST and TSST turbulence models, while the
other bubble becomes larger with the increasing of the mesh refinement. Furthermore, its
shape is always bigger for the KWSST model. The trends is similar through all the meshes.

As the reader can see in Figure 5.11.b, the trends of the three models are overlapping
in the coarse grid. In the medium one, there are different values in opening section of
the channel (x = 0.11 ÷ 0.13 of Figure 5.15.b) only for the KWSST model while, in the
finest one in Figure 5.19.b, the Splarat-Allmaras model generates larger value respect to
the other two models. All the three figure present similar values but it is noted that the
coarse mesh presents equal values for all the models and so this is an index that the mesh
considered is not optimal but too sparse. Note that the bubble is difficult to represent
especially for flows described with RANS technique

The pressures are evaluated on first and second ramp because, due to their geometry
and to the fluid flow, they follow closely the SET theory. As stated in chapter 2.4.3, this
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theory provides angle of the shock, Mach number, pressure and temperature of the flow
after the shock while it is known the angle of the geometry generating the shock and the
input variables (temperature, pressure and Mach). The pressures of all the meshes and
all the models are used to calculate their average values to be compared with the value
from SET theory. TSST turbulence model present a large variation along the first ramp
respect to the others two models. It is noted that the SET theory provides, in all cases,
the minor value respect to the turbulence models. Regarding the second ramp, the situ-
ation is the opposite of the first ramp: TSST present the higher values while the SET’s
ones are higher than those of the turbulence models. For both ramps, there is not a large
variation of trends of all the models through the meshes. Noted the pressure values on
the two ramps, it is generated a script providing drag and its coefficient along the two
ramps. The values presented in Table 5.4,5.6 and 5.5 are evaluated using local and av-
erage values of the three turbulence models and they are compared with the theory values.

There is not a clear mesh dependency from the consideration made so far. A more
in-depth analysis of how the flow is acting is necessary to evaluate the appropriate grid in
terms of calculation time and solution accuracy. So, Mach field of the three grid with the
turbulence models are displayed. As the reader can view from Figure 5.22, the mach field
is different from the two sparsest mesh and the finest one. The latter presents the stream
lines similar to those tested by [3]: there is a normal shock in the start of the channel,
phenomenon that the other two grids cannot catch. Moreover, the finest mesh presents a
recirculation bubble thinner than the others two and the intersection of the normal shock
with the two shocks defined by the two ramps is well defined. So, it has been chosen the
mesh with 300k elements because provide variables fields similar to the experiment and
the computational time it is not high.

(a) Spalart-Allmarass coarse

(b) kω-SST coarse

Figure 5.22: Different models for different meshes
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(c) Transition-SST coarse

(d) Spalart-Allmarass medium

(e) kω-SST medium

(f) Transition-SST medium

(g) Spalart-Allmarass fine

Figure 5.22: Different models for different meshes (cont.)
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(h) kω-SST fine

(i) Transition-SST fine

Figure 5.22: Different models for different meshes (cont.)

Moreover, there are a sufficient number of points to resolve the thermal and velocity
gradients near the wall but it is chosen to use the finest grid because it’s not known how
many layers are required to have near the wall to have an high resolution and also the
optimization procedure could generate different wall conditions.

Despite some slight differences, all the models provide same trend and values confined
in a very narrow band. This shows a independence to the numerical models but a depen-
dency to RANS numerical technique.

Futhermore, mach and density analysis can be made. As show by the results in Figure
5.23, the flow between the three different models is almost similar: the major differences
are the position of the bubble, its shape and its magnitude. This bubble is located differ-
ently from the model of [6] and its magnitude is lower also in kω-SST model, the model
that have the largest one. This flow recirculation is generated by the fan at the entrance
of the channel and the interaction between the shocks, generated by the lower ramps and
the cowl lips, and the boundary layers. A second recirculation bubble is located between
the two ramps due to the interaction between shock and boundary layer. Its magnitude
and shape are very tiny so it can be only appreciate through numerical values in figure
5.19: in particular, it is noted that the bubble is located at x ≃ 0.06 where Cf assumes
negative values.

Regarding the model choice, despite the flow is well captured from all the turbulence
model, the kω−SST model predict better a sudden expansion at the channel inlet and so
well represent the recicurlation bubble in magnitude and shape respect to the experimental
flow [3]. Also, this model offers a good computational time due to the fact that it use only
2 equations.
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(a) Spalart-Allmaras density field (b) Spalart-Allmaras Mach field

(c) kω − SST density field (d) kω − SST Mach field

(e) Transition SST density field (f) Transition SST Mach field

Figure 5.23: Density and Mach fields for different turbulence models for 300k mesh

In conclusion, the optimisation process will define grids with setting similar to the
one that we previous called as fine and the flow will be calculated using the two-equation
model kω − SST .
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Chapter 6

Optimisation concept and

procedure of hypersonic intake

6.1 Introduction

Noted the baseline geometry and its flow characteristics, the cowl lip section is modified
to provide a better flow in terms of drag and pressures of the entire intake. A fluid dynamics
optimisation procedure is executed. This chapter provides elements of optimisation and
its application on the study case.

6.2 Concept of optimisation

6.2.1 Basic notions

Before explaining the definition of optimisation and its procedure, it is necessary to
define some basic elements of mathematical analysis:

• Maximum and minimum of a function: Let f : A ⊂ R
n −→ R be a function,

with A closed and limited set of Rn. X0 ∈ A is a maximum or a minimum for f if:

f(x0) > f(x) ∀x ∈ A and f(x0) = max{f(x)} (6.1)

f(x0) < f(x) ∀x ∈ A and f(x0) = min{f(x)} (6.2)

Futhermore:
max{f(x)} = min{−f(x)} (6.3)

• Optimisation problem: Let f be a function, then an optimisation problem defines
x0 values such that f(x0) is maximum or minimum in its definition set. Here, f is
called objective function, x is called vector of decision variables and x0 defines the
optimal variables. So, a optimisation algorithm is a sequence of different operations
necessary to solve an optimization problem.

• Constrained and unconstrained problems: if the optimisation problem resolves
the maximum or the minimum of the function in the whole closed and limited set
A, it’s called unconstrained problems. If the optimisation problem researches the
maximum or the minimum of the function in a region defined by a set of constrains
k described by the functions gi ≤ 0 for i = 1, k of the set A, it is called constrain
problem.
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• Mono and multi objective problem: if an optimisation problem regards only one
objective function f , it is called mono-objective problem; if an optimisation problem
regards more than one objective function f , it is called multi-objective problem.

The previous points express the basic notions necessary to understand the optimiza-
tion process used in this thesys. It is therefore understood that an optimization problem
is a series of operations used to derive the minimum or maximum of an objective func-
tion. However, in engineering applications, the values to be obtained are constrained in
a set defined by the physical models of the problem under consideration, hence we speak
of constrained problem. Moreover, the present case, as will be seen below, considers the
minimization of different functions, so we speak of multi-objective problem. Putting to-
gether the notions just listed, we can give the following definition:

Let F(x) = (f1(x), . . . , fm(x)) be the vector function that summarizes m scalar
objective functions of an optimization problem and let G(x) = (g1(x), . . . , gk(x))
be the vector function that summarizes k constrain conditions; the multi-objective
optimisation problem is so defined:

min =

{

F (x)

G(x) ≤ 0
(6.4)

However, for a multi-objective function there might be a case where an optimal solution
x1 for the function f1 is not optimal for the function f2. In ‘mathematical’ terms, the
problem cab be summarized as follow:

f1(x1) < f1(x2) while f2(x1) ≤ f2(x2) (6.5)

To avoid this problem, it is defined the Pareto’s set. It is the set of solution resulting
not-worst than the others in relation to objectives set. A more complete definition can
be given as follows: let x1 and x2 be two possible solutions for minimal conditions, x1
dominates x2 (x1 ⪯ x2) if, called f1, . . . , fm objective of the problem, ∀j = 1, . . . ,m

fj(x1) ≤ fj(x2) and ∃k ∈ {1, . . . ,m} such that fk(x1) < fk(x2) (6.6)

The image of the set of dominant solutions according to F is also known as Pareto’s
front.

6.2.2 Genetic algorithm

Genetic algorithms are some of the most commonly used algorithms for optimizations.
They allow you not to have to manipulate the objective functions and to obtain solutions
that can be compatible with the constraints imposed. In addition, they are able not only
to generate different solutions but classifying them into better and worse and discarding
the latter. On the surface such solutions may seem random but contain a search logic able
to make them efficient and little expensive in terms of computational time.

The genetic algorithm is a method for solving optimization problems that is based on
natural selection. For a initial set of solutions (or individuals) called initial population,
which are random generated, a new set of solutions is created and they are called genera-
tions. The latter are generated each step by the parents, the individuals randomly chosen
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by the previous generation. However, the numerical recombination aren’t totally random
but they follow the Darwin’s evolutionary theory: the best individuals survive while the
worst are discarded. In particular, The genetic algorithm uses three main types of rules
at each step to create the next generation from the current population: selection rules,
crossover rules and mutation rules.

Before setting out the three rules, it is necessary to define the initial population: it
is a set possible solution at the iteration zero, randomly generated and composed by m
individuals. So, it is created a matrix where the rows are the individuals and the columns
are the dimension of the problem. The matrix can be define as follows:

P0 =













x11 x12 . . . x1n
...

. . .
...

...
. . .

...
xm1 xm2

· · · xmn













0

(6.7)

The selection rule creates the couples from the initial population which will generate the
future new set of individuals or generations. This rule can use different method to provide
the couples, but the most famous one are the roulette method and the tournament method.
Both provide the calculation of objective functions for each individual: f(x1) . . . , f(xm)
called fitness values. Noted the fitness values, the two method use different ways to obtain
the couples.

1. Selection rules: select the individuals, called parents, that contribute to the popu-
lation at the next generation. Two method are used:

• Roulette method: to each fitness values is allocated a probability:

pi =
f(xi)

∑m
i=1 f(xi)

(6.8)

Each individual has an higher probability to be chosen by the algorithm if
it fitness value is better than others (e.g. if algorithm is searching for the
minimum, the fitness with the minimum value has the higher probability in the
set). The algorithm picks two individuals to generate a couple.

• Tournament method: it is chosen two random fitness values, they are com-
pared between them and it is chosen the better one that it will be the first
individual of the couple. The second one is chosen in a similar way.

2. Crossover rule: combine two parents to form children for the next generation. The
children are a combination of their parents. It is defined a breaking point: after it
the structure of the individual is changed and it is no longer similar to the structure
of first parent but it has the structure of the second one. The higher the breaking
points, the greater the algorithm’s ability to search for new solutions. The breaking
point is random but the numbers of breaking points used is usually from one to
three.

3. Mutation rule: apply random changes to individual parents to form children. This
random changes affect usually a small number of individuals (3%÷ 5%)

After the application of this three rules a new set of individuals are generated and their
fitness is calculated. Several simulations have led to affirm that the optimal conditions
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Figure 6.1: Children created bu the three methods

through these rules are reached after a hundred generations. For multi-objective prob-
lems, the solutions are ranked respect to the Pareto’s front and those which are in the
Pareto’s front have greater possibility of being chosen.

6.3 Optimisation of an intake

Based of what was discussed earlier, for the optimisation problem is necessary to de-
fine the independent set of variables or decision variables (x1, . . . , xn) and the objective
function (f1, . . . , fn).

Usually, in optimisation process regarding the fluid diynamics, the independent vari-
ables are geometric parameters. In this case, the geometry is an hypersonic intake and so
the geometric parameter are the length and the shape of the walls. The objective is to
find a geometry with better fluid flow, thus it develops a train of shock waves with minor
dissipation and minor detachment of the flow from walls. Moreover, the new intake must
have minor drag respect to the baseline geometry

The algorithm tries to minimize the objective function. The latter are evaluated in the
baseline geometry and in all new ones created by the algorithm. Their objective functions
are compared between themselves and finally a ultimate geometry is generated. This ge-
ometry will have the better performance across all objective functions.

To better understand, in the following sections, it will define the parametrisation of
the geometry, necessary to define the independent variables, and the definition of the op-
timisation objectives, necessary to define the objective functions.

6.3.1 Geometry parameters

The aeronautical intakes are often symmetric or axisymmetric respect to an axis. The
center of an engine in based on the axis and the whole body (compressor, turbine, nacelle
etc.) are built around it. So, for an initial study, their flow can be analyzed through a 2D
section. Usually, supersonic and hypersonic sections are divided in two parts: a bottom
one that generate the shock waves and a upper one that keeps the shock waves outside
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and reduce the drag of the nacelle.

Bezier splines are used to generate the geometry. It uses some points called control
points to define a curve. More control points are used, more complex spline can be
reconstructed. These points aren’t part of the spline, as a normal spline generated by
interpolation, but they control the curve at distance. Bezier spline are define with the
following equation:

x(t) =
n
∑

i=0

(

i
n

)

(1− t)n−itixi (6.9)

here x(t) = {x(t), y(t)}T denotes the spline coordinates, xni=1 = {xi, yi}ni=1 is the spline
control points set, t ∈ [0 : 1] is the curve parameter and n is the spline order. This spline
uses the start and ending points equal to the baseline geometry, while the control points
are defines through the previous equation. Better explanation are given in the following
sections.

6.3.2 Optimisation objectives

To define the objective function necessary to the algorithm, all the optimisation prob-
lems need to visualize the critical problems that the designer would like to improve. An
analysis to a general intake is done and then a more specific one for supersonic and hy-
personic intake is performed. Given a general view, then the designer can evaluate the
corresponding parameters to maximize or minimize.

Generally an intake must be light weight to cost less in terms of fuel consumption
and aerodynamic resistance. Also, an intake must provide the engine with adequate mass
flow rate, proper Mach number and uniform flow to generate less vortices. They cause
mechanical losses, rotating stall instability and high vibration of the pallets of the first
stage of the compressor causing high-cycle fatigue. The nacelle generates additional drag
due to the difference of pressure between the internal and external flow. They are not the
only aspects that could be aim of the design but they are the most important ones.

As previously stated, the supersonic intake also has starting phenomenon problem: the
normal shock instability inside a converging ducks. Moreover, there is a constant motion of
the shock causing a difference of performance over time. In the specific case of hypersonic
intake, concepts to optimize are so described:

• intake must be as less as invasive as possible regarding the overall vehicle drag;

• intake must produce an intense flow compression, with consequent diffusion and
slowdown of the stream to the compressor;

• intake with compression trains are preferred to reduce energy losses related to the
formation of the shocks.

These concepts are translated in the following objective functions to minimize:

f1 = Cd f2 =
p0
p1

f3 =
po0
po1

(6.10)

here f1 is the drag coefficient, f2 is the inverse of the Static Pressure Ratio (SPR), the
ratio between the area-weighted pressure in the start and in the exit of the channel, and
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f3 is the inverse of the Total Pressure Ratio (TPR), the ratio between the area-weighted
total pressure in the start and in the exit of the channel. In order to have only acceptable
physical solution, some constrains are used:

• f1 ≤ 10 · Cd|baseline
• f2 < 1

• residuals < 1E − 03

All solutions outside these ranges are marked with very high values (1000). This allows
the research to go to more promising geometry for future generations.

6.3.3 Optimisation loop

An optimisation loop is a set of rules, divided in blocks, that need to communicate
between themselves in an iterative way to optimise the geometric parameters for objective
functions. When loop terminates, due to the reach of the maximum number of iterations,
one or more optimized geometries are obtained. In this thesis, the loop presents com-
munication between various software. A schematic of the loop can be viewed in Figure
6.2.

Figure 6.2: Schematic of the optimisation loop

The procedure of optimisation consists of the following steps:

1. A baseline geometry is needed. It is given by experimental data and design process.
It is outside the loop because is unique and it represents the starting point.

2. Noted the baseline geometry, a Matlab script generates different points of the cowl
lip and the ramps, the parts to be optimized, in the way mentioned in section 6.3.1.
A second software, called Salome, creates the geometry and the mesh from the points
given by Matlab. This mesh is sent to Fluent. It applies the boundary conditions
and all the settings necessary to the CFD simulations.

3. At the end of the simulation, Fluent export the f1, f2 and f3 values to Matlab.
The latter compares the values with the constrains. Three case are possible: the
objective functions don’t respect the constrain (a values of 1000 is given to them),
the iteration is the last one and so the loop is terminated or the objective functions
respect the constrains.
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4. If the objective function are acceptable and the iteration is minor than the maximum
one imposed by the user, than the genetic algorithm generates different point to
simulate and the loop restart from point 2.

This is a conceptual scheme, to deepen in the subject is necessary to define new sections.

6.4 Optimisation of an experimental hypersonic intake

It is necessary to define the control points of the baseline geometry. The latter and its
point are generated in a script outside the loop. Noted the points defining the baseline
geometry, the script computes an optimisation procedure and it gives the control points
used in the loop. For a better explanation, look in the next section.

6.4.1 Baseline with spline reconstruction

As stated before, the control points of the Bezier curve describing the geometry are
needed to define the initial population of the main loop scripts. From linear algebra,
given a generic curve then it can be described by a linear combination of Bezier curves.
Moreover, it is define a unique Bezier curve with n control points and with a minimum
Euclidean distance from the generic curve.

So, the script searches for the set of control points which define the Bezier curve with
the minimum distance from the baseline geometry. The script is applied to two different
section of the intake: the cowl lip and the two ramps. This and the future codes are
splitted in different parts to explain better all the steps. The description of the code used
to apply the Bezier theorem to the cowl lip section is given below. The ramp section has
the same structure.

1 outnum = 30 ;
2 nVar = 6 ;
3 nInd = 200 ;
4 nGen = 200 ;
5 ch = 13 . 8 56 ;
6

7 f o l d e r = ’ b a s e l i n e ’ ;
8 G = importdata ( ’ CoordinateCowlLipBase l ine . txt ’ ) ;
9 COWLLIP = [G]

Code 6.1: Geometry parameters

Input parameter are defined. In particular: outnum are the number of points used
to describe the baseline geometry of the cowl lip; nV ar indicates the numbers of the
coordinates (x,y) of control points that the script will extrapolate; nInd and nGen are
the genetic input parameters; ch represents the chord of the cowl lip; from line 7 to 9 the
script receives the points coordinates from the baseline geometry. These lines give the
Figure 6.3.
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Figure 6.3: Cowl lip geometry

Noted the input parameters, the optimisation script need also the constrains definition
(as seen in Section 6.2.2). These are divided in lower (lb) and upper bound (ub), the
minimum and maximum values of the variable. The chord is divided in equal parts in
number equal to the control points and the boundary are so defined: along the x axis
equal segments are used and along the y axis the points can may vary from 34 to 46.

10 ver t=COWLLIP( : , 2 ) ;
11 o r i z z=COWLLIP( : , 1 ) ;
12 d i s c r e t=ch /( ( nVar/2)+1) ;
13

14 lbx=ze ro s (1 , nVar/2) ;
15 ubx=ze ro s (1 , nVar/2) ;
16

17 f o r k=1:nVar /2 ;
18 lbx (k )=o r i z z (1 , 1 ) +(0.5+(k−1) ) ∗ d i s c r e t ;
19 ubx (k )=o r i z z (1 , 1 ) +(1.5+(k−1) ) ∗ d i s c r e t ;
20 end
21

22 f o r k=1:nVar /2 ;
23 lby (k )=34;
24 end
25

26 f o r k=1:nVar /2 ;
27 uby (k )=46;
28 end
29

30 lb = [ lbx lby ]
31 ub = [ ubx uby ]

Code 6.2: Constrains definition

An initial population is initialized and generated with random components inside the
constrains. For the optimisation the multi-objective NSGA-II algorithm uses the function
called distance to obtain the control points and the spline with the minimal distance. Note
that the decvar is a auxiliary variable, so it stores the controls points. Finally, the points
are saved in matrix form and they are used to generate the new curve with the bezier
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function. It is noted that the first and the last points of the spline are the same of the
baseline geometry because they will be connect with the rest of the intake geometry.

32 in i tPop = ze ro s ( nInd , nVar ) ;
33 f o r k=1:nInd
34 in i tPop (k , : ) = rand (1 , nVar ) . ∗ ( ub−lb )+lb
35 end
36

37 opt ions = gaopt imset ( ’ I n i t i a l P opu l a t i o n ’ , in itPop , ’ Generat ions ’ ,nGen , ’
Popu lat ionS i ze ’ , nInd )

38 pcCL = ga (@( decvar ) d i s t anc e ( decvar , outnum ,COWLLIP) , nVar , [ ] , [ ] , [ ] , [ ] , lb
, ub , [ ] , opt i ons ) ;

39 pcCL = reshape (pcCL , [ nVar/2 2 ] ) ;
40 save ( ’ P r o f i l oBa s e l i n e \CLpoints . mat ’ ) ;
41 save ( ’pcCL .mat ’ , ’pcCL ’ ) ;
42 save ( ’COWLLIP.mat ’ , ’COWLLIP ’ ) ;
43

44 curveS = be z i e r ( [RAMP( 1 , : ) ; pcCL ;RAMP( end , : ) ] , outnum)

Code 6.3: Genetic component

In Figure 6.4 the reader can view the baseline curve, the Bezier curve overlapping
and the control points generating this last curve. The boundary are limited by the con-
strains. The control points near the center of each segment and the precise reconstruction
performed by the Bezier curve validate the procedure.

Figure 6.4: Baseline geometry and Bezier curve of cowl lip

A similar process in used to define the Bezier’s curve and the corresponding control
points describing the two ramps. Only variations are the coordinate points given to the
code, the boundary and the chord value (ch = 81.7). The results are given in Figure 6.14b.
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Figure 6.5: Baseline geometry and Bezier curve of ramps

6.4.2 Optimisation loop procedure

In this section will be described all the scripts present in the loop. Optimisation is
carried out first for the cowl lip only and then simultaneously for the two ramps. The prin-
ciple and method are the same but for a better understanding we continue by describing
the code for total optimisation of intake. The loop is made by different codes:

• OptimizationLoop: the main script ruling in the loop;

• fitness: this script allows to exchange data between Matlab, ANSYS Fluent and
SALOME. Moreover, it extrapolate the f1, f2 and f3 objective functions Fluent
data and save or discard them;

• journal salome: this script creates a journal with the commands (in Python lan-
guage) readable by SALOME, containing geometry and mesh parameters;

• journal fluent: this script creates a journal with the commands readable by ANSYS
Fluent, containing the settings for the fluid flow simulations.

Starting from the mail loop script, the results evaluated from the previous scripts are
loaded and defined as pcCL and pcR variables. As the previous code, it is necessary to
define the input parameters for the GA algorithm. Here, nVar opt indicates the number
of variable to be optimized, nInd opt indicates the number of individuals for generation
and nGen opt indicates the number of generations. Each individual occupies ∼ 10 ÷ 15
minutes of time to complete the entire loop, moreover, the number of loops that can be
run is given in principle by multiplying the number of individuals by the number of gen-
erations (350 in this case). The individuals and the generations number can be arbitrarily
define. Their values are defined in order to not have excessive computational time.

Two global variables are defined: datab and counter. Being global variables means
that they can be used not only in the main loop but also in the all scripts presented in the
optimisation process. Moreover, the counter variable is used to define the different saving
folders while the datab variable is a structural matrix containing decvar and f matrix.
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The first one includes the decision variables (the coordinates of the points), the latter one
includes the values of the objective functions.

1 c l e a r v a r i a b l e s ;
2 c l o s e a l l ;
3 c l c ;
4

5 load ( ’pcCL .mat ’ , ’pcCL ’ ) ;
6 load ( ’pcR .mat ’ , ’pcR ’ ) ;
7

8 nVar opt = numel (pcCL)+numel (pcR) ;
9 nInd opt = 5 ;

10 nGen opt = 70 ;
11

12 g l oba l counter datab
13 counter = 0 ;
14

15 datab . decvar=ze ro s (0 , nVar opt ) ;
16 datab . f=ze ro s (0 , 3 ) ;

Code 6.4: OptimizationLoop parameters

The constrains defines a zone where the control points can be evaluated and used by
the GA algorithm. The zone regarding the cowl lip section, can be visualized in Figure
6.7. The constrains of the new control points are defined by changing the ones obtained to
reconstruct the baseline geometry with a Bezier spline. The zone is slightly unbalanced:
the future geometry will have the cowl lip bigger and pointed towards the free-stream
inlet than the baseline one. This choice is due to the fact that, for some points, SALOME
generates a degenerate geometry: it creates two edges due to twisting of the Bezier curve
(in conflict with one edge necessary for Fluent as will be seen later. See Figure 6.6) or it
can’t generate any mesh.

Figure 6.6: Example of error in geometry reconstruction

The control points of the two ramps are also unbalanced. As for the variation along
the x-axis, it depends on the point considered. It is symmetrical: the first point has a
larger variation along the positive direction than the negative one. Conversely, the last
point has a larger variation along the negative side. This type of symmetrical variation
is done to obtain points that are not so close to the beginning or end of the ramps, to
avoid the generation of high inclinations in these areas and to ensure a smooth transition.
The y-coordinates change more in a positive direction to obtain positive bumps. An equal
change in height does not generate this type of curve but only a straight line or too small
bumps.
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The difference in height and length (chx and chy) between the start and the end of the
ramps are used to determinate the boundary of the control points.

17 ch x =81.7 ;
18 ch y=21;
19

20 %−−−Cowl Lip−−−%
21 f o r k=1:numel (pcCL ( : , 2 ) )
22 lbxCL (k )=pcCL(k , 1 ) ∗0 . 5 25 ;
23 lbyCL (k )=pcCL(k , 2 ) ∗0 . 7 4 ;
24 end
25

26 f o r k=1:numel (pcCL ( : , 2 ) )
27 ubxCL(k )=pcCL(k , 1 ) ∗0 . 9 5 ;
28 ubyCL(k )=pcCL(k , 2 ) ∗1 . 2 2 ;
29 end
30

31 %−−−Ramps−−−%
32 f o r k=1:numel (pcR ( : , 2 ) )
33 lbxR (k )=pcR(k , 1 )−ch x /6 ;
34 lbyR (k )=pcR(k , 2 )−(ch y /4) ;
35 end
36

37 f o r k=1:numel (pcR ( : , 2 ) )
38 ubxR(k )=pcR(k , 1 )+ch x /6 ;
39 ubyR(k )=pcR(k , 2 )+(ch y /2) ;
40 end

Code 6.5: OptimizationLoop constrains

Figure 6.7: Constrain zones for the cowl lip (left) and the two ramps (right)

An initial population of control points of five individuals is given by random generation
limited by the boundary previously defined. Then, the mean value of ordinates is taken
and then new coordinates near the mean value are chosen. This process permits to create
only streamlined geometries; the round ones do not allow compression between channel
input and output, as they are not considered by the optimisation process. Then the
ordinates are sorted and they are associated with the correspondents x-values1. Finally,

1lines from 67 to 71 are only some of the lines that are repeated with different indices
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optimisations starts with the GA algorithm. Here, the fitness function is the function to
be optimized.

42 %I n i t i a l i z a t i o n o f the Populat ion
43 pcR = reshape (pcR , [ numel (pcR) , 1 ] ) ;
44 pcCL = reshape (pcCL , [ numel (pcCL) , 1 ] ) ;
45 i n i tPop opt = ze ro s ( nInd opt , nVar opt ) ;
46 i n i tPop opt ( nInd opt −4 , : )=[pcR pcCL ] ;
47 f o r k=nInd opt −4: nInd opt
48 i n i tPop opt (k , : )=rand (1 , nVar opt ) . ∗ ( ub opt−l b op t )+lb op t ;
49 end
50

51 f o r i =1:5
52 media ( i )=( in i tPop opt ( i , 4 )+in i tPop opt ( i , 5 )+in i tPop opt ( i , 6 ) ) /3 ;
53 end
54

55 %Mean and so r t ed
56 f o r k=4:6
57 f o r i =1:5
58 i f abs ( in i tPop opt ( k )−media ( i ) )>1 && in i tPop opt ( i , k )>media ( i )
59 i n i tPop opt ( i , k )=media ( i )+1;
60 end
61 i f abs ( in i tPop opt ( i , k )−media ( i ) )>1 && in i tPop opt ( i , k )<media ( i

)
62 i n i tPop opt ( i , k )=media ( i )−1;
63 end
64 end
65 end
66

67 row1=in i tPop opt ( 1 , 1 : 3 ) ;
68 Row1=in i tPop opt ( 1 , 4 : 6 ) ;
69 [Row1 , so r t Idx ] = so r t (Row1) ;
70 row1=row1 ( so r t Idx ) ;
71 i n i tPop opt1=[row Row]
72 i n i tPop opt2=in i tPop opt ( 1 : 5 , 7 : 1 4 ) ;
73 i n i tPop opt=[ in i tPop opt1 , in i tPop opt2 ] ;
74

75 opt ions = gaopt imset ( ’ I n i t i a l P opu l a t i o n ’ , in i tPop opt , ’ Generat ions ’ ,
nGen opt , ’ Popu lat ionS i ze ’ , nInd opt ) ;

76 pc opt = gamult iob j ( @f i tnes s , nVar opt , [ ] , [ ] , [ ] , [ ] , lb opt , ub opt , opt i ons
) ;

Code 6.6: Optimisation setup

Stopping the description of the main script, now the fitness script is going to be
analyzed. This function uses the global variable decvar as an input, then it checks if there
are duplication and finally it generates a folder dynamically. It gives the path of the two
software used (SALOME and ANSYS Fluent), the path of the mesh that will be used by
Fluent for the simulation and the path of the journals. The latter are written by others
two scripts and they represents the commands that the two software will use during their
simulation. Finally, Salome starts and generates the geometry and the mesh. Then, it
closed and ANSYS Fluent starts, takes the mesh saved from SALOME and computes the
fluid flow analysis. Some reports, figures and data are saved in the folders previously
created.

1 f unc t i on f = f i t n e s s ( decvar )
2
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3 g l oba l counter datab ;
4 counter = counter +1;
5

6 datab . decvar ( counter , : )=decvar ;
7 id = f i nd ( ismember ( datab . decvar ( 1 : counter −1 , : ) , decvar , ’ rows ’ ) , 1 ) ;
8

9 i f isempty ( id )
10 counter s = s p r i n t f ( ’%d ’ , counter ) ;
11

12 i f ˜ e x i s t ( counters , ’ d i r ’ )
13 mkdir ( counter s ) ;
14 end
15

16 path salome = ’C:\SALOME−9.7 .0 ’ ;
17 pa th f l u en t = ’C:\Program F i l e s \ANSYS Inc \ANSYS Student\v212\ f l u e n t

\ntbin \win64 ’ ;
18 mesh = ’C:\ Users \ p i e t r \Desktop\Tesi \Ott imizzaz ione3\%s \Mesh−export .

unv ’ , counter ;
19

20 %Journal
21 journal salome MSPC ( counter , datab . decvar ) ;
22 journal f luent MSPC ( counter ) ;
23

24 %Star t Salome e Fluent
25 cd ( path salome ) ;
26 ! run salome . bat −g C:\ Users \ p i e t r \Desktop\Tesi \Ott imizzaz ione3 \

journal salome MSPC . py
27

28 pause (120)
29 ! k i l l s a l om e . bat
30

31 cd ( pa th f l u en t ) ;
32 ! f l u e n t . exe 2ddp −t4 −gu −d r i v e r nu l l − i C:\ Users \ p i e t r \Desktop\

Tesi \Ott imizzaz ione3 \ journal f luent MSPC . jou
33

34 ind=s p r i n t f ( ’C: / Users / p i e t r /Desktop/Tes i /Ott imizzaz ione3/%s/ ’ ,
counter s ) ;

35 cd ( ind ) ;

Code 6.7: fitness parameters

Given the data from ANSYS Fluent, they are read by the function and they are
allocated in the objective function called f(1), f(2) and f(3). Here the constrains of drag,
pressure ratio and residual are applied. Finally, the data are saved in the matrix f .

36 %Constra ins on f (1 ) , f ( 2 ) and f (3 )
37 f ( 1 ) = drag ;
38 f ( 2 ) = i p r a t i o ;
39 f ( 3 ) = i p t o t r a t i o ;
40

41 i f drag>0.2
42 f ( 1 ) = 1000 ;
43 f ( 2 ) = 1000 ;
44 f ( 3 ) = 1000 ;
45 end
46

47 i f p rat io<1
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48 f ( 1 ) = 1000 ;
49 f ( 2 ) = 1000 ;
50 f ( 3 ) = 1000 ;
51 end
52

53 i f r e s i dua l s >0.001
54 f ( 1 ) = 1000 ;
55 f ( 2 ) = 1000 ;
56 f ( 3 ) = 1000 ;
57 end
58

59 datab . f ( counter , : ) =[ f (1 ) f ( 2 ) f ( 3 ) ] ;
60

61 e l s e
62 f=datab . f ( id , : ) ;
63 end
64 cd ( ’C:\ Users \ p i e t r \Desktop\Tesi \Ott imizzaz ione3 ’ ) ;
65 end

Code 6.8: fitness objective functions

For better understanding, the fitness function can be summarized as follows:

1. dynamic creation of folders to save data;

2. opening of Salome, generation of geometry and corresponding mesh through reading
the journal;

3. opening of ANSYS Fluent, simulating fluid flow with the setting read in the journal,
evaluation and saving of interesting variables;

4. objective functions evaluation and saving.

Returning to the main loop, here the control points defining the different Bezier curves
and the corresponding objective functions are saved.

32 save ( ’ decvar . mat ’ , ’−s t r u c t ’ , ’ datab ’ , ’ decvar ’ ) ;
33 save ( ’ f i t n e s s . mat ’ , ’−s t r u c t ’ , ’ datab ’ , ’ f ’ ) ;

Code 6.9: Saving objective functions and control points
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6.5 Results

The present section reports the optimisation results and their discussion. They are
divide in two subsection: cowl lip optimisation and total optimisation.

6.5.1 Cowl lip optimisation

The Pareto front in showed in Figure 6.8. It reports the drag coefficient value, the
static pressure ratio and the total pressure ratio of all the geometries derived from the
optimisation analysis. These geometries are obtained by a set of Bezier control points
created each time by the optimisation process previously discussed. The Pareto front is a
three-dimensional surface generated by the optimised values. This shape proves that the
three designing goals are in conflict with each other, indeed if only one objective function
were a function of another, then the Pareto front would collapse into a curve; at one point
if all the objective functions were related to each other.

(a) (b)

Figure 6.8: Pareto surface with highlighted optimal solutions: Cd (⋆), SPR (⋆), TPR (⋆)

In Figure 6.8, the red, green and blue stars mark the points representing the three
optimal geometries for which the drag coefficient, SPR and TPR take on optimal values.
Table 6.1 shows the values for each geometry and compares them to the baseline by
representing the percentage change.

Case Cd SPR TPR
Cd−C∗

d

C∗

d

[%] SPR−SPR∗

SPR∗
[%] TPR−TPR∗

TPR∗
[%]

Baseline 0.096 1.32 0.37 −−− −−− −−−

Cd 0.064 1.33 0.45 - 33.3 + 0.76 + 21.6
SPR 0.078 1.40 0.41 - 18.7 + 6.06 + 10.8
TRP 0.070 1.00 0.60 - 27.1 - 24.2 + 62.2

Table 6.1: Baseline (·)∗ and optimised geometries parameters

The three optimised geometries are represented in Figure 6.9 with the baseline geom-
etry to get a better view of the changes in geometry. Concerning the first one (Fig. 6.9a),
it represent the geometry optimised for the drag coefficient. The cowl lip is pointed with a
very small radius of curvature at the tip of the point of maximum extension. The section
is not symmetrical, as in the lower part of the cowl lip, the profile takes on a slight curve
that accompanies the flow inside the canal

Concerning the geometry obtained by the SPR optimum design (Fig. 6.9b), the cowl
lip has an upward direction and the radius of curvature is wider than the previously dis-
cussed geometry, resulting in a more rounded tip. In addition, there is an inward swelling
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in the lower part of the cowl lip. The upper part is also humped, but this is less pro-
nounced than in the lower part.

For the geometry obtained for optimal TPR (Fig. 6.9c), the geometric variations are
similar to the case of optimal Cd. However, this geometry presents a slightly downward
biased direction, as can be more clearly seen in Figure 6.10. In addition, the profile is
more rounded than the geometry for optimal Cd.

(a) Cd optimum (b) SPR optimum

(c) TPR optimum (d) Baseline geometry

Figure 6.9: Optimal design geometries optimised for three different cases and the baseline geometry

Figure 6.10: Geometries optimised for different variables

Different geometries lead to different flow behaviours, so a comparison of Mach and
density fields for the optimal solutions is discussed. Before all, these fields are represented
is Figure 6.11.
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(a) Cd optimum Mach (b) Cd optimum density

(c) SPR optimum Mach (d) SPR optimum density

(e) TPR optimum Mach (f) TPR optimum density

Figure 6.11: Mach and density field for the optimal solutions

Starting from the Cd-minimum configuration, the normal shock wave at the starting
of the channel is missing due to the pointed geometry. The latter generates an oblique
shock meeting the others oblique shock generated by the two ramps in the triple point.
The latter is not well define as the baseline geometry, but it is highly mitigated. The
recirculation bubble in the lower surface is almost non-existent while the one in the upper
wall is reduced. The frontal wave system has been optimized to avoid detachment of the
flow. This behaviour is typical for the reduction of the drag coefficient. The rarefaction
of the density field in the portion of the lower wall is still visible. The compression of
the flow is still present but it is not right after the triple point. The expansion fan in the
channel is similar to the one in the baseline geometry. Regarding the external surface,
the flow is more homogeneous with the freestream flow while in the baseline the flow was
highly compressed.

Concerning the SPR geometry, the Mach and the density field well visualized the
triple point. Differently form the baseline geometry, the triple point is generated by the
intersection and union of the oblique shocks of the two ramps with the oblique shock of
the cowl lip. The cowl lip presents a curved lower wall with a precompression role of the
flow without destabilizing the boundary layer. All the shocks merged in one point and
the compression is not dispersed as the previous geometry. The compression is all present
in one zone, indeed the second bubble of compression is not present in the channel. The
detachment of the flow on the lower wall of the channel and the expansion fan are still
present. The latter has minor intensity respect to the baseline geometry. In the channel
the flow results more homogeneous. Regarding the external section, the flow suffers a
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slightly compression.

The TPR geometry is similar to the Cd one. Also, here the oblique shocks intersect
themselves in the triple point creating an initial compression. The latter is more intense
that the one presented in the Cd optimum geometry. Moreover, the recirculation bubble
in the upper wall of the channel is extensive and its shape goes well before the initial
section. Also, the lower recirculation bubble is slighty more intensive. In the channel,
the second high density zone disappears as in the SPR geometry. In addition, the flow
presents two expansion fans responsible of the two minor recirculation bubble in the lower
wall of the channel. Concerning the external section, the flow is compressed for a large
section, similarly to the Cd geometry. Then an expansion occurs when the surface becomes
flat.

6.5.2 Total optimisation

The optimisation process is applied to both the ramps and the upper lip at the same
time. The same consideration of the Pareto surface as in the previous section can also be
made for this case. Thus, three points corresponding to Cd, SPR and TPR are obtained.

(a) (b)

Figure 6.12: Pareto surface with highlighted optimal solutions: Cd (⋆), SPR (⋆), TPR (⋆)

The values of the optimised curves obtained with the Bezier formulation are presented
in Table 6.2. The new geometric configurations generate different values which are com-
pared with the basic ones.

Case Cd SPR TPR
Cd−C∗

d

C∗

d

[%] SPR−SPR∗

SPR∗
[%] TPR−TPR∗

TPR∗
[%]

Baseline 0.096 1.32 0.37 −−− −−− −−−

Cd 0.051 1.27 0.66 - 46.9 - 3.79 + 78.4
SPR 0.067 1.33 0.51 - 3.02 + 0.76 + 37.8
TPR 0.058 1.17 0.74 - 39.6 - 11.4 + 100

Table 6.2: Baseline (·)∗ and optimised geometries parameters

The three optimised geometries are represented in Figure 6.13. Considering the one op-
timised for the drag coefficient (Figure 6.13a), it has a pointed lip that is not symmetrical
but slightly upward facing. Regarding the two ramps: the first one has a rounded shape,
second one is starting before the analogue of the baseline. It has slightly minor inclination.

The optimised geometry of the static pressure ratio (figure 6.13b) has a rounded profile
with a high radius of curvature. While the upper surface of the cowl lip is connected to
the outer surface with a slightly inclined line, the inner surface is hollowed out internally
with a rounded wall to better compress the flow. The cowl lip is smaller than the previous
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one discussed. The two ramps are both slightly rounded. They are similar and have less
camber than the other two optimised geometries. Between the two ramps, a flat area is
generated. These details are more visible in the Figure 6.14b.

The TPR geometry is similar to the Cd one but with small changes. Regarding the
cowl lip, it has a more rounded tip and is more pointed upwards. The two ramps are al-
most identical with the ones of the Cd geometry, but the first one is slightly more rounded.

The particulars of the three geometries are more visible in the Figure 6.14a and 6.14b.

(a) Cd optimum (b) SPR optimum

(c) TPR optimum (d) Baseline geometry

Figure 6.13: Optimal design geometries optimised for three different cases and the baseline geometry

(a) Cowl Lip optimised (b) Ramps optimised

Figure 6.14: Cowl lip and ramps optimised for the different objective function

Mach and density field are visualized in Figure 6.15. The description of the flow
behaviour through the different geometries is discussed in the next section.
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(a) Cd optimum Mach (b) Cd optimum density

(c) SPR optimum Mach (d) SPR optimum density

(e) TPR optimum Mach (f) TPR optimum density

Figure 6.15: Mach and density field for the optimal solutions

For the optimal Mach field Cd, there is the presence of two shock waves that give com-
pression to the flow. These shock waves are generated initially by a bulge, which replaces
the first ramp, and by the second ramp. The shock waves do not converge at a single
point, but intersect with the shock wave generated by the cowl lip at two different points.
The reflections of the shock wave are visible in the upper surface of the channel. The Mach
field shows incipient separations in the lower surface of the channel due to the interaction
between the shock wave and the boundary layer. Although the recirculation bubble is
larger than in the other two cases, it occurs in a single area, unlike the other geometries
which present a continuous separation in both canal walls. The formation of the triple
point and the strong oblique shock resulting from the coalescence of several shock waves
are highly attenuated resulting in the displacement of the compression bubble deeper into
the channel. The frontal shock system induces maximum compression at the inner surface
of the roof.

With regard to the SPR optimum, the ramps are replaced by two different bulges: a
larger one for the first ramp and a smaller one for the second. The cowl lip is less massive
than in the other two optimised geometries, allowing the creation of the triple point at
the beginning of the channel which generates a recirculation zone on the upper surface of
the channel. The front shock system induces a strong oblique shock affecting the lower
surface of the canal. In addition, an expansion fan is generated by the expansion given by
the geometry of the second ramp and the channel entrance. The interaction between wave
and boundary layer generates a small recirculation bubble. With regard to the density
field, the triple point creates a small compression bubble. Flow reflections are more visible.

81



6.5. Results

The Mach field of TPR shows some similarity to that of Cd. The geometry of the ramps
and the cowl lip are very similar, however a change in direction of the cowl lip generates
different flow behaviours. Starting from the Mach field, the triple point is attenuated and
the two shock waves, created by the optimised ramp, intersect the one generated by the
cowl lip at two different points. Thus, the shock present at the beginning of the channel is
mitigated. There are three different recirculation bubbles, two in the upper surface of the
channel, caused by the interaction between the two shocks and the boundary layer, and
another generated by the same principle in the lower surface of the channel. The upper
bubbles are not present in the Cd geometry, while the lower channel bubble is less intense
than in the Cd case. There are not as many shock wave reflections. Regarding the density
field, the second part of the optimised ramp causes the flow to enter the channel at an
angle until it hits the upper surface of the channel. Here, several compression bubbles are
present. In addition, a second slight compression is present at the end of the channel due
to the impact of the flow with the bottom surface.

An analysis of the pressure and friction coefficient can be very helpful to evaluate the
different mechanism of the optimised geometry. A comparison between the coefficients
for the baseline and the optimised geometry is reported in Figure 6.16. While the pres-
sure coefficient provides a quantitative description of the flow compression, the friction
coefficient identifies the separation zones.

(a) Pressure coefficient (b) Friction coefficient

Figure 6.16: CP and Cf comparison between the baseline and the optimal design solutions

As far as the SPR geometry is concerned, it presents a decrease in pressure due to the
first bulge of the ramps, then a pressure peak caused by the flat area between the first and
second bulge and the shock train. Finally, there is a rapid decrease in pressure due to the
presence of the last bulge. The geometries TPR and Cd have a very similar trend. First,
a pressure decrease is present at the ramp bulge, then the flow experiences a compression
due to the second shock wave and a slight pressure decrease due to the presence of a small
bulge as the second ramp.

All geometries and baseline have an expansion shock at the beginning of the channel
with a subsequent sudden drop in pressure. The latter causes a recirculation bubble with
different shapes and intensities governed by the intensity of the previous shock. High-
pressure/density values govern the region immediately before the channel, causing the
flow separation. For all geometries, the friction coefficient does not reach the peak of that

82



Chapter 6. Optimisation concept and procedure of hypersonic intake

of the baseline. Furthermore, there is no bubble between the two ramps, as in the base
case, for all optimised geometries.

6.5.3 Comparison between the two optimisation

The results of the six geometry obtained by the optimisation process are reported in
table 6.3. While an optimisation of both the ramps and cowl lip gives better results for
drag coefficient and total pressure ratio, in the case of static pressure ratio the optimisation
of the only cowl lip is preferred. The changes on the ramps improve significantly the results
of the optimisation, especially in TPR case.

Optimisation Case
Cd−C∗

d

C∗

d

[%] SPR−SPR∗

SPR∗
[%] TPR−TPR∗

TPR∗
[%]

Only Cowl Lip - 33.3 + 6.06 + 62.2
Ramps and Cowl Lip - 46.9 + 0.76 + 100

Table 6.3: Parameters comparison between optimised geometries and baseline (·)∗

Regarding the optimised geometries, as visible in Figure 6.17, the TPR and Cd ob-
tained in the total optimisation provided a thinner cowl lip than the optimisation of the
cowl lip alone. The geometries of SPR are very similar, the shape is almost identical but
with differences in the area occupied. The similarity of all shapes also verifies the optimi-
sation process and the ability of all scripts to be flexible and therefore the possibility of
being used for different shapes and problems.

Figure 6.17: Comparison of different cowl lips optimised with ( ) and without ( ) the ramps
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Chapter 7

Conclusion

The present study provides a numerical optimisation strategy for automatic design of
the cowl lip and ramps of hypersonic inlets. A Reynolds-Averaged Navier-Stokes system
of equations is used to validate the model in terms of global an local quantities respect to
the experimental and literature results. Grid resolution and turbulence model sensitivity
is performed revealing the minimum mesh size of 300k and the k − ω SST was the best
settings for a good compromise between calculation time and accuracy. In particular, this
turbulence model well resolved the entire flow including the wall dynamics.

After the validation of the mesh and the model, the RANS equations are used to re-
solve different geometries generated with the Genetic Algorithm. The new inlet shapes
are determined with the usage of different goals: the minimisation of the drag coefficient
and the maximisation of static and total compression ratios. The first goal is obtained
with a shape with minor interference possible to the overall inlet, while the others two ob-
jectives are obtained with the disappearance of the normal shock in favour to the gradual
compression generated by different oblique shocks.

Future works could test the same geometry with a high fidelity CFD strategies as
LES and DNS, to well represent the flow of the inlet. Moreover, future test could use
the optimisation strategy presented in this thesis to generate new geometry with larger
boundary constrains. Finally, more works could study the behaviour of unsteady flow of
the shapes obtained in this optimisation process to analyze the buzz phenomenum never
discussed in this thesis.

85



86



Ringraziamenti

Vorrei partire ringraziando l’ingegnere De Vanna Francesco e relatore di tale tesi.
Nonostante i fitti impegni ha sempre dimostrato elevata disponibilità e professionalità.
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