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Twenty years from now you will look back more
regretfully upon the things you didn’t do than
those you did. So set free the bowlines, sail away
from safe harbor. Dream. Explore. Discover.

Mark Twain
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Abstract

Following the emergence of low-cost, high quality cameras and projectors,
3D scanners are becoming more and more affordable, making way for a
number of different industries ranging from clothing to mechanical and film.
Advancements in 3D human body scanning offer even greater potential for
healthcare applications by transforming our ability to accurately measure a
person’s body size, shape, and skin-surface area, in order to track any changes
and foresee the development of disease or ailment. This thesis describes our
approach in building a structured light 3D scanner to help dermatologists
track the evolution of moles and psoriasis of their patients.
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Chapter 1

Introduction

The last decade has seen a major technological improvement in diagnostic
studies. In the present climate, it is possible to reveal detailed information
about the body’s internal structure using X-rays, magnetic resonance imaging
(MRI), computed tomography (CT scan), and ultrasound. These technologies
are very helpful to medical professionals in the study of physiology and
anatomy in vivo as well as in the diagnosis and monitoring of a myriad of
disease states.

For these ends, external measurements can be as useful as internal scanning.
Doctors widely use information about the patient’s body size and shape to
assess nutritional status and developmental normality, as well as to calculate
the requirements of drug, radiotherapy, and chemotherapy dosages and the
production of prostheses. Medical research and practice can harness the power
of 3D scanners to make a large impact on the epidemiological study of many
diseases, surpassing the current confidence in the body mass index (BMI),
which is used to quantify many traits without accurately quantifying any.
Finally, the ability to obtain such information could considerably improve
physiological research by contributing to comprehensive regional indices of
people’s size, as required by such research, as well as guide clinical practice
in hospitals and community clinics.
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1. INTRODUCTION

Figure 1.1: Progression of an atypical mole to radial melanoma.

The potential of 3D human body scanners relies on their capability to
capture accurate 3D point clouds in a matter of minutes. Afterwards, a
computer automatically extracts surface details and maps high resolution
textures. It is then possible to extract hundreds of measurements from the
3D model while eliminating manual measurement and transcription errors,
providing a comparison for future measurements of the patient, and greatly
reducing the cost of anthropometric surveys.

It is greatly important to note that a 3D human body scanner does not
pose any health risk to the patient, as it is built using only a camera and
projector.

Generally, a person has his or her moles examined only once a year, if not
less. A fair percentage of the population has never had their moles examined
in a lifetime; however, nodular melanomas can spread internally in as little
as three months, and most radial melanomas can spread internally within 6
to 18 months from the first noticeable change of a pre-existing mole or the
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1.0

Figure 1.2: Four different nodular melanomas.

Figure 1.3: Psoriasis on the back.

appearance of a new mole (Figure 1.1) [Mel][NSM+94]. Once the melanoma
spreads internally, curability is only about 50 percent and decreases quickly
as the thickness of the mole further increases. The capacity to understand
the growth rate of lesions caused by psoriasis is also an extremely important
aid to finding the right cure for the patient.

The primary goal of our project is to create a 3D human body scanner
to help dermatologists track the evolution of moles and psoriasis on their
patients, as shown in Figure 1.2 and Figure 1.3.

The outline of the thesis is the following. Chapter 2 is devoted to introduce
an overview on our project’s goals. Moreover, it covers the state-of-the-art
about 3D scanning technologies. Chapter 3 describes the basic mathematical
background for 3D scanners, with particular regard to the camera and projec-
tor mathematical models. Chapter 4 lists the hardware and software we have
used to build the 3D scanner. Chapter 5 and 6 are the crucial part of the
thesis and they explore in great detail our human body scanner application.

3



1. INTRODUCTION

Afterwards, Chapter 7 discusses the results and compares our human body
scanner with a professional one. Finally, Chapter 8 and 9 talk about some
promising directions for future research and they draw the conclusion of our
work.
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Chapter 2

3D Scanning Technology: an

Overview

Understanding the great impact that a human body scanner could have on
medical research, and in collaboration with the Dermatology Unit at the
Department of Medical and Surgical Specialties of the University of Padova
and the Department of Information Engineering the University of Padova, we
have designed a human body scanner to fulfill the following goals:

Accuracy The scanner must be very precise, because moles can be smaller
than a few millimeters. Furthermore, we should be able to scan close to 100%
of the patient’s skin surface in order to properly analyze all possible moles
and the psoriasis growths.

Efficiency The time needed for a complete scan should be as minimal as
possible. Ideally, people should be scanned more than once a year to check
on their status; therefore, our scanner should take at most 5 minutes to build
the entire human model.

5



2. 3D SCANNING TECHNOLOGY: AN OVERVIEW

Costs Today, the cost of 3D scanners capable of capturing an entire human
body ranges from 50K to 300K+ dollars. We want to build an affordable
scanner that costs less than $10,000.

Our final mission is to provide hospitals with this scanner, in order to check
patients at least once every two months with an automated scan. Only in
the instance of an identified abnormality will a doctor step in to personally
examine the patient. Once a year, the patient will have the usual face-to-face
meeting and examination with a dermatologist.

Finally, it is necessary to emphasize that our human body scanner does not
replace the role of a dermatologist. Instead, it enhances medical possibilities
by tracking the evolution of the patient’s skin, more frequently than the
general practice of yearly checks.

In order to build a great human body scanner, we had to study the
state-of-the-art technologies available nowadays. There are many different
technologies that can be used to build a 3D scanner, each with specific
benefits and drawbacks. This Chapter describes the most important 3D
scanner typologies that are in use today to explain the choice we have made
in building our human body scanner.

Figure 2.1 shows a detailed taxonomy about 3D scanners. The first
distinction is between contact and non-contact scanners. Contact scanners
probe the surface of the object and are therefore able to reconstruct its
shape. One example is a Coordinate Measuring Machine (CMM), which
is used primarily in manufacturing and can be very accurate; however, the
biggest disadvantage of a CMM, and generally of any contact scanner, is that
the probe of the scanner may ultimately modify durable objects and even
destroy very fragile ones. Finally, contact 3D scanners require a very precise
mechanism to move the probing arm and are unable to scan objects that
cannot remain completely still, like human beings.

6
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Rocchini, Cignoni, Montani, Pingi and Scopigno / A low cost 3D scanner

Figure 2: A taxonomy of the systems for the auto-
matic or semi-automatic acquisition of the shape of
real 3D objects, according to 10.

Figure 3:A scheme of a typical optical scanner, where
the 3D positions of the sampled points are computed
by triangulation given the sampled point projection
P (a) on the sensor plane and the known relative posi-
tion/orientation of the emitter and the sensor.

ject surface); the detection of its constituent features
(e.g. points or lines) from the reflected image should
be easy and accurate; the reconstruction of the in-
dexing of the features contained in the pattern (e.g.
re-indexing the reflected stripes with respect to the

original order in a stripe-based pattern produced by
the emitter) should also be easy and accurate.

If we know exactly the position of the emitter w.r.t.
the sensor (or viceversa), pairing the sampled cam-
era pixels with the corresponding location on the light
pattern is sufficient to reconstruct the spatial location
of the corresponding point on the object surface. The
reconstruction method is in general directly related
with the characteristics of the pattern adopted. The
simplest solution is to shoot in each instant of time a
single light plane (e.g. the solution adopted by most
laser-based devices), which draws a single profile on
the scanned surface. Other solutions tend to acceler-
ate the ranging process by projecting multiple beams
or planes of light (e.g. series of stripes). However, the
reconstruction of a multiple feature pattern is slightly
more complex than the reconstruction of a single fea-
ture pattern. The sequence in which these features are
reflected is not necessarily the same as that projected,
because it depends on the local scanned surface topol-
ogy and curvature. Therefore, a possible ambiguity
arises in the identification of complex patterns, e.g.
multi-stripes patterns. Some methods work only un-
der the strong assumption of spatial coherence of the
object surface. In the case of methods based on the
projection of a single B/W multi-stripe pattern 20,
a correct reconstruction of the stripe order from the
reflected image is possible only if the observed sur-
face section does not contain self-occlusions or discon-
nected components. This is due to the different inci-
dent angle of the emitter and the sensor: some of the
reflected stripes can be occluded and are missing in
the acquired CCD image. In this case the disappeared
stripes can originate a wrong stripe re-indexing. This
problem is often prevented by the use of either color-
encoded stripes 4, 7 or set of different patterns pro-
jected sequentially on a static object 16, 20; the latter
approach is called spatio-temporal modulation of the
illumination, and an example of a possible solution is
presented in Figure 4. Several methods have been pro-
posed in literature, and a few of them are discussed in
the following Section 3.1.

3. A low cost 3D scanning tool

In the design of our low-cost scanner, we chose to im-
plement the emitter unit by using a standard video
projector. The reason was the flexibility of this device
(which allows to experiment any type of light pat-
tern) and its wide availability. A similar choice was
also done in 6. The sensor can be either a custom de-
vice, a standard digital still camera or a video camera.
In our project the requirements of the sensor device
are:

• it must support high quality color capture (i.e. ac-

c© The Eurographics Association and Blackwell Publishers 2001.

Figure 2.1: A taxonomy of different 3D scanning technologies.

The branch of non-contact scanners has many subclasses, but we will be
focusing on one based on the adoption of optical techniques to observe and
analyze an object. The subclass of optical scanners.

The category of optical scanners can be further divided into active and

(a) Dea One CMM (b) Probe

Figure 2.2: A Coordinate Measuring Machine and a zoom on its probe.
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2. 3D SCANNING TECHNOLOGY: AN OVERVIEW

(a) Stereo Vision (b) Shape from Silhouette

Figure 2.3: Two of the most common ways to realize a passive optical 3D scanner.

passive. The following Sections will describe these two very similar techniques,
which have become mainstream technologies for building cheap and high
quality scanners.

2.1 State-Of-The-Art Optical Scanners

Passive Optical Scanners Passive scanners do not require any additional
light source. The most widely used passive scanners are stereoscopic scanners
and shape from silhouette scanners. The first ones require the use of two
calibrated cameras to take pictures of the same object from two different
angles. First the 2D projection of a given point is identified in both pictures,
and then a simple triangulation algorithm recovers the depth of that point
(Figure 2.3(a)). The idea is powerful, simple and mirrors the human visual
system, however it contains some major drawbacks concerning surfaces that
pose difficulty for the correspondence of the same point in different pictures.
For example, human skin cannot be modeled using a stereoscopic scanner
because it is generally flat and prevents robust matching. For this reason,
multi-view stereoscopic scanners are not able to produce accurate and reliable
3D measurement of a naked person.

8



2.1 STATE-OF-THE-ART OPTICAL SCANNERS

(a) Laser Scanner (b) Structured Light Scanner

Figure 2.4: Two of the most common ways to realize an active optical 3D scanner.

The final passive technology we will mention is the shape from silhouette
[Lau94] [Lau95]. It relies on the ease of separating an object from its back-
ground, and thus through the use of many calibrated cameras surrounding the
object (or alternatively one camera and a turntable), it is possible to create
a visual hull of the object, i.e: the union of the generalized viewing cones
defined by each camera’s center of projection and the detected silhouette
boundaries, as evident in Figure 2.3(b). The drawback of this technique is
the need for either a large quantity of cameras or a very precise turntable to
reconstruct a 3D model. Moreover, it is impossible to detect convex surfaces
like the belly button or the area between a woman’s breasts with this method
alone.

Active Optical Scanners Active scanners use an external light source
to overcome the problem of detecting point correspondence in two separate
pictures. The external light source produces a structured illumination on
the object to be scanned, and the sensor, which is typically a CCD camera,
acquires the images of the distorted pattern reflected by the object’s surface.
In most cases, the depth information is reconstructed by triangulation, given
the known relative positions of the light source and camera.

9



2. 3D SCANNING TECHNOLOGY: AN OVERVIEW

The two most common external light sources are a coherent light (e.g. a
laser-beam) or an incoherent light (e.g. a projector). When laser scanners first
became popular, the usual way to create a 3D model was to move a laser point
across the object surface and reconstruct it point-by-point. This method,
however, was painstakingly slow. Following the development of low-cost,
high-quality CCD arrays, slit scanners emerged as a powerful alternative. In
this design, a laser projector creates a single planar sheet of light. This "slit"
is then mechanically-swept across the surface, and the registered deflection of
the laser source defines a 3D plane. The depth is recovered by the intersection
of this plane with the set of lines passing through the 3D stripe on the object’s
surface and the camera’s center of projection (Figure 2.4(a)).

Currently, a digital structured light projector can be used to eliminate the
mechanical motion required to translate the laser strip across the surface. To
take full advantage of the projector’s power, which is capable of displaying
arbitrary color images, structured lighting sequences have been developed
in order to assign the projector-camera correspondences in relatively few
frames. In general, the identity of each plane can be encoded spatially (i.e.,
within a single frame, like color patterns) or temporally (i.e., across multiple
frames, like the gray codes in Figure 2.4(b)) or phase shifting codes), or with
a combination of both spatial and temporal encodings. There are benefits and
drawbacks to each strategy. For instance, purely spatial encodings allow the
use of a single static pattern for reconstruction, thus enabling dynamic scenes
to be captured. Alternatively, purely temporal encodings are more likely
to benefit from redundancy, reducing reconstruction artifacts. We refer the
reader to a comprehensive assessment of such codes by Salvi et al. [SPB04].

10



2.3 PROJECT REQUIREMENTS

2.2 Project Requirements

In the design of our affordable, efficient and accurate human body scanner,
we have to respect some requirements. For example, we should avoid touching
the patient, but must assure that the patient remains standing or lying still.
Moreover, we still need to respect the goals that we described at the beginning
of this Chapter: accuracy, efficiency, and economy. The first requirement
listed here requires the exclusion of contact scanner technology; thus, the
remaining choice was between a passive or active optical scanner. Because
passive scanners are not robust with flat skin surfaces or concavities, we had
to decide whether to use a laser or a projector to implement our active optical
scanner.

Finally, we chose to build a structured light 3D scanner with a projector
for the following reasons:

Accuracy While not as precise as a laser scanner, a projector still allows
for the detection of body changes < 1 mm.

Efficiency This type of scanner is much faster than a laser scanner, thanks
to its multiple projected patterns. In Chapter 7, we will compare the speed
of a professional laser scanner with the one of a our structured light scanner.

Costs A projector is much cheaper than a laser, because it does not require
an expensive and precise mechanical turntable.

Health Risk It is much more dangerous to project a laser onto a face or
eyes than it is to simply use a light source; nonetheless, covering the patient’s
eyes will still be fundamental to ensure enough safety.

11



2. 3D SCANNING TECHNOLOGY: AN OVERVIEW

2.3 Project Development Steps

This project will be divided into four steps:

• reconstruction of the 3D model for a patient’s body’s part;

• mapping the texture on the surface of the model;

• merging all the models together to generate a complete human body
model for the patient;

• registration of each different model taken at a different time;

• development of algorithms to analyze the models and detect suspicious
changes on the patient’s skin.

This thesis covers the first two steps.
Beginning in the following Chapter, we will delve into the theoretical and

practical aspects of our structured light - human body scanner.

12



Chapter 3

Camera and Projector

Mathematical Models

The goal of our project is to build a 3D model of a body in the most efficient
way possible. Our method involves projecting a known pattern onto the body
and capturing the resulting illuminated image with a camera. In order to do
this, we need to use a mathematical model of a camera and projector that
allows for the reconstruction of a 3D shape by geometric triangulation.

First, it is necessary to understand the image formation process and how
to implement triangulation using only the pattern projected on the subject’s
surface and a picture taken from a camera. Then, we will use basic algebra
in order to create a complete mathematical model that describes our world.

3.1 Geometry

Notation

Throughout this thesis we will use the following mathematical notation:

• vectors are taken as real vectors with real value coordinates v ∈ R3×1

and their length is a scalar ‖v‖ ∈ R;

13



3. CAMERA AND PROJECTOR MATHEMATICAL MODELS

• vt ∈ R1×3 is a row vector resulting from transposing the column vector
v;

• matrix multiplication is used to compute the inner product v1
tv2 ∈ R

of two vectors v1 and v2. The result corresponds to a scalar, whose
value is ‖v1‖‖v2‖ cos(α). Here α denotes the angle formed by the two
vectors (0 ≤ α ≤ 180);

• the vector product v1 × v2 ∈ R3 is a vector perpendicular to both v1

and v2 of length ‖v1×v2‖ = ‖v1‖‖v2‖ sin(α) and direction determined
by the right hand rule. It is worthwhile to point out that the vector
product of two linearly dependent vectors is equal to zero.

Points and Vectors

While points simply describe a location in our 3D world, vectors have no fixed
position in space and have both magnitude and direction.

We utilize an affine space to understand our mathematical model; this
space is made up of a set of points P and a vector space V. The vector space
V implies that vectors can be added to each other and multiplied by any
scalar. Points and vectors of this space are related in a fixed, but simple
manner by the following axioms:

1. a point plus a vector is another point:

p+ v = q

2. the difference between two points is a vector:

p− q = v

3. if p is a point, v is a vector and λ is a scalar then p+ λv = q is another
point;

14



3.1 GEOMETRY

4. an affine combination of N point λ1p1+· · ·+λNpN , with λ1+· · ·+λN = 1,
is well defined:

λ1p1 + λ2p2 + · · ·+ λNpN = λ2(p2 − p1) + · · ·+ λN(pN − p1)

Lines and Rays

In the previous Section we saw that adding a vector multiplied by a scalar to
a point generates another point: p + λv = q. We immediately see that by
changing the value of λ, we are able to generate an infinite number of points
that all lie in the same line L, defined as:

L = {p = q + λv : λ ∈ R}

In this definition λ can be positive or negative. We therefore see that the
starting point q can be replaced by any other point laying in the same line L.
If we force λ to assume only positive values then we no longer have a line but
instead, a ray:

R = {p = q + λv : λ ∈ R, λ ≥ 0}

In a ray, q is of utmost importance because it defines the origin of the ray
and cannot change without altering the entire structure of the ray.

Planes

In the same way that we mathematically describe a line, we are also able
to represent a plane P. We need only to know a point p and two linearly
independent vectors v1 and v2 lying on the plane. In the following two
paragraphs we are going to demonstrate two different ways to mathematically
describe a plane; both of these will be very useful in our program for the
reconstruction of our 3D model of a body.

15



3. CAMERA AND PROJECTOR MATHEMATICAL MODELS

Parametric Form The simplest and most intuitive way to describe a plane
is the following:

P = {p = q + λ1v1 + λ2v2 : λ1, λ2 ∈ R}

This representation is not unique because we can replace the point p with
any other point lying on the plane. In the same way, we can substitute the
two vectors with two new vectors, as long as they are still linearly independent
and also lie on the plane P.

Implicit Form We will later see that a more useful way to describe a plane
P is by using an implicit form, therefore describing the plane as the set of
zeros of a linear equation in three variables. Geometrically, a point p belongs
to plane P if and only if the vector p− q and a vector n normal to the plane
are orthogonal:

P =
{
p : nt(p− q) = 0

}
As usual, this representation is not unique and we are able to replace both

the point q and the normal vector n.
Finally, the conversion from a parametric representation of a plane P to

an implicit one is straightforward. To convert from parametric to implicit
form we need only compute n = v1×v2; alternately, to convert from implicit
to parametric form, we have to find a vector v1 orthogonal to n. We can
then find v2 by computing v2 = n× v1.

Implicit Representation of Lines

As with planes, lines may also be described using implicit form. More
specifically, they can be described as the intersection of two planes that are
not parallel:

16



3.2 LINE-PLANE TRIANGULATION

projector

camera

object being scanned

intersection of light plane
with object

Figure 3.1: Line-Plane Triangulation.

L =
{
p : n1

t(p− q) = n2
t(p− q) = 0 : n1 × n2 6= 0

}
The only condition that must be met is that n1 × n2 6= 0. This implies

that vectors n1 and n2 should be linearly independent. This guarantees that
the two planes will indeed intersect.

3.2 Line-Plane Triangulation

So far we have covered the basis of understanding how to express points,
vectors, lines, rays and planes. Using only this knowledge, it is at least ideally
possible to reconstruct our 3D model. In fact, as we will see in the following
Chapters, it is very common for the triangulation process to project a highly
identifiable pattern on the world, as well as to use pictures of the illuminated
subject taken with the camera to reconstruct its shape (Figure 3.1). This is
possible because the intersection of a ray of light from the projector with the
subject is seen as a single illuminated point, whereas the intersection of a
plane of light with the subject is seen as multiple curved segments, each of
which is composed by many illuminated points.

At this point we assume that we know the position of the camera and the
projector with respect to the global coordinate system (Chapter 5 will explain

17



3. CAMERA AND PROJECTOR MATHEMATICAL MODELS

how we calculate this). Under this assumption we are able to reconstruct
the depth of a single illuminated point by intersecting the plane of light
emanating from the projector with the ray of light hitting the camera sensor.

The math behind the triangulation process is rather simple. First we
represent a line using its parametric form

L = {p = qL + λv : λ ∈ R}

and the plane using its implicit form

P =
{
p : nt(p− qP ) = 0

}
Initially, we need to confirm that the line is not parallel to the plane,

otherwise there would be no intersection between the two. This is done by
verifying beforehand that ntv 6= 0. Moreover, we know that the intersection
point p between the line and the plane is definitely part of the line and can
therefore be expressed as:

p = qL + λSOLv

It is now necessary to find the correct value of λSOL. This is done by
intersecting the line L with the plane P, thus solving the equation:

nt(p− qP ) = nt(qL + λSOLv− qP ) = 0

By solving this equation for λSOL we know that:

λSOL = nt(qP − qL)
ntv

This expression is well defined because we verify beforehand that ntv 6= 0.
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3.3 THE PINHOLE MODEL

3.3 The Pinhole Model

Up until this Section, we present a mathematical model that works perfectly
well in a coordinate-free description of triangulation. In practice, however,
the ray of light that hits the camera sensor is saved in a discrete unit called
pixel. Furthermore, other factors like focal length, non-square pixel and tilted
image plane need to be considered in our real mathematical model in order
for it to work in the reconstruction of the 3D model.

A general, simple and popular model for a camera is the pinhole model. In
the pinhole model, the camera is described with a point o, called the center
of projection, and an image plane P = {p = q + u1v1 + u2v2 : u1, u2 ∈ R},
where the point q and the vectors v1 and v2 define a local coordinate sys-
tem. Every 3D point p, excluding the center of projection, has coordinates
(p1, p2, p3)t and determines a unique line passing through the center of projec-
tion: p = o+ λv. If the line is not parallel to the image plane, then it must
intersect it in a single image point that has coordinates u1 and u2, which can
be written as a 3D vector u = (u1, u2, 1). Using this notation a point p can
be expressed as:


p1

p2

p3

 = [v1|v2|q]


u1

u2

1



The mathematical term for this mapping from 3D points to 2D points is
called perspective projection. The geometry of a projector can be described
with the same pinhole model we use to describe a camera; the only difference
is that for a projector the light travels from the center of projection through
the image plane into the world rather than vice versa (Figure 3.2).
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light direction
for a camera

light direction 
for a projector

image plane

image point

3D point

center of projection

Figure 3.2: Perspective projection under the pinhole model.

3.3.1 The Ideal Pinhole Camera

In the ideal pinhole model the center of projection o is located at the origin
of the world coordinate system (0, 0, 0)t and the point q and the vectors v1

and v2 are defined as:

[v1|v2|q] =


1 0 0
0 1 0
0 0 1


There exists a set of 3D points that do not project onto the image plane.

All these points have coordinates (p1, p2, 0)t, i.e. p3 = 0; if p3 6= 0 then the
point is part of the image plane with coordinates:


u1

u2

1

 =


p1/p3

p2/p3

1


This relation between a 3D point and its 2D projection can be expressed

by saying that a 3D point can project itself onto the image plane if and only
if there exists a scalar λ = p3 such that:

λ


u1

u2

1

 =


p1

p2

p3

 (3.1)
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Figure 3.3: Representation of the general pinhole camera.

3.3.2 The General Pinhole Camera

Thus far we have assumed that our camera will have an ideal location at the
origin of the of the world coordinate system; however, this is not a realistic
assumption in practice. While it is true that every camera has a coordinate
system attached to it, this almost always differs from the world coordinate
system (Figure 3.3). Therefore, we must also consider this when building
our mathematical model. A 3D point p can be described by both world
coordinates pw = (p1

w, p
2
w, p

3
w)t and camera coordinates pc = (p1

c , p
2
c , p

3
c)t and

usually pw 6≡ pc. These two vectors are related by a rigid body transformation,
specified by a translation vector T ∈ R3 and a rotation matrix R ∈ R3×3,
such that

pc = Rpw + T (3.2)

The parameters R and T are called the extrinsic parameters of the camera.
These values change every time the camera or projector is moved and therefore
we need to re-calibrate them, as we will see more clearly in Chapter 5.

Using equation 3.1 and 3.2 we can describe every 3D point in relation to
its 2D camera coordinates on the image plane:

λu = Rpw + T (3.3)

The remaining problems we must take into account in building our math-
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3. CAMERA AND PROJECTOR MATHEMATICAL MODELS

ematical model are the following: the unit of measurement of lengths on the
image plane (pixels) is not the same as that for world coordinates (meters),
the distance from the center of projection to the image plane may be arbitrary,
the origin of the image coordinates is usually in the upper left corner, the
image plane may be tilted, the lens can distort the image, and the pixel may
not be a perfect square.

These parameters for which we must compensate are called intrinsic
parameters and we use a matrix K ∈ R3×3 to describe them. Our final
equation is the following:

λu = K (Rpw + T) (3.4)

and the matrix K has the following form:

K = λ


fs1 fsθ o1

0 fs2 o2

0 0 1



where f is the focal length, s1 and s2 are used to compensate for non-square
pixels, sθ fixes the problem of tilted image planes and finally, o1 and o2 are the
image coordinates of the intersection of the vertical line in camera coordinates
with the image plane. It is very important to note that all the parameters
of K are independent of the camera position. These can be calculated only
once through calibration, because they describe physical properties related to
the mechanical and optical design of the camera.

The following two Sections are very important. The first describes how to
extract the parameters of every ray that extends from the center of projection
through each pixel; the second one demonstrates how to recover the parameters
of a projected plane that extends from the center of projection through each
projected line.
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3.3 THE PINHOLE MODEL

Camera: Lines From Image Points

Each image point with coordinates u = (u1, u2, 1)t defines a unique line
L = {pw = q + λv : λ ∈ R} containing this point and the center of projection.
It is rather straightforward to obtain the parameters that describe the line L,
because we know from equation 3.3 that λu = Rpw + T, where pw is a world
point that is projected onto the image plane. Since R is a rotation matrix,
we have R−1 = Rt. By rewriting the projection equation as

pw = (−RtT) + λ(Rtu)

we have just extracted all the parameters we need to describe our line L

L =
{
pw = q + λv = (−RtT) + λ(Rtu) : λ ∈ R

}
where −RtT is the center of projection.

Projector: Planes From Projected Lines

As previously shown, we can express the line in parametric and implicit form.
The latter is very useful at this point:

L =
{
u : ltu = l1u1 + l2u2 + l3 = 0

}
where l = (l1, l2, l3)t with l1 6= 0 or l2 6= 0. As we will later see our projected
pattern contains either horizontal or vertical lines. Therefore, the implicit
equation of a vertical and horizontal line is

LV =
{
u : ltu = u1 − ν = 0, l = (1, 0,−ν)t

}

LH =
{
u : ltu = u2 − ν = 0, l = (0, 1,−ν)t

}
where ν is the first coordinate of a point on the line for LV and the second
coordinate of a point on the line for LH .
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There is a unique plane P that contains L and the center of projection.
Again, from equation 3.3 we can extract the parameters to describe this plane
P; we have

0 = λltu = lt(Rpw + T) = (Rtl)t(pw − (−RtT))

On this basis, we understand that we can represent the plane P using its
implicit form

P =
{
pw : nt(pw − q) = 0

}
where n = Rtl and q = −RtT.
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Chapter 4

Human Body Scanner Setup

In this Chapter we will describe the setup we used to create our structured
light 3D Scanner; recall that our main goal is to strive for simplicity and
economy while maintaining the highest possible quality. Section 4.1 discusses
how the different types of hardware can influence the quality of our scanner;
Section 4.2 lists the software and libraries we have used in our project.

4.1 Hardware

We first had to choose what camera and projector would be the most suitable
for our goals; indeed, there are many options each with its own advantages
and disadvantages. After highlighting how the choice of camera and projector
can affect the quality of the 3D reconstruction process, we will motivate the
choices for the hardware chosen for the project.

4.1.1 Camera

This component is without a doubt the most fundamental part of the setup.
A high quality camera grants a better analysis of the projected pattern, thus
allowing for a better reconstruction of the 3D shape. Additionally, a good
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4. HUMAN BODY SCANNER SETUP

camera is capable of detecting skin texture, which is essential in our project.
However, a sophisticated piece of equipment can be very expensive; further it
is important to balance the quality of the camera with that of the projector
in order to avoid compatibility problems in the setup.

Summing up, the advantages that a high quality camera could add to the
3D scanner are the following:

• better texture quality

• better pattern reconstruction

Instead, the disadvantages are:

• higher resolution implies greater amount of time needed to send the
image from camera to computer using only a USB connection

• higher resolution implies more computation and memory space needed
to build the model

• can be very expensive

4.1.2 Projector

For our purpose, only two specifications for a projector are of importance.
These are the brightness and the resolution.

The brightness factor is relevant for scans taken in a well-lit environment.
If the projector’s brightness is very low and the surrounding light very bright,
the pattern projected onto a surface will be very difficult to detect. The
brightness is determined by the number of lumens present, or the measure of
the total amount of visible light emitted by a source.

The resolution factor is very important in building a highly detailed 3D
model, because it allows for the detection of even the slightest changes in the
scanned object.
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4.1.3 Selected Hardware

It remains very important to obtain a high quality texture in the 3D model.
That being said, in order to respect the goal of economy we will assume that
the object will be scanned in a room that is very dark. This allows for the
use of a projector with not so many lumens, i.e. a mid-range priced piece of
equipment. This decision allowed us to use the best quality camera within
the budget in order to detect even the smallest moles on the skin.

We chose to try two different projectors in conjunction with the camera.
The first one is cheaper and with lower quality, the second one is a little more
expensive but has more lumens and a higher resolution. The difference in
using the former or the latter shown in Chapter 7.
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Nikon D5000

(a) Front view (b) Side view (c) Top view

Figure 4.1: Nikon D5000

We chose to use the Nikon D5000 camera. Some important specifications
are shown in Table 4.1:

Effective pixels 12.3 million
Image sensor CMOS sensor, 23.6 x 15.8 mm
Image size (pixels) 4,288 x 2,848 [L], 3,216 x 2,136 [M], 2,144 x

1,424 [S]
Sensitivity ISO 200 to 3200 in steps of 1/3 EV.
Exposure modes Auto modes (auto, auto [flash off]), advanced

scene modes (P), shutter-priority auto (S),
aperture-priority auto (A), manual (M)

Interface Hi-Speed USB
Dimensions (W x H x D) Approx. 127 x 104 x 80 mm
Weight Approx. 560g without battery, memory card

Table 4.1: Nikon D5000 specifications.
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PicoPix 1430

(a) Front view (b) Side view

Figure 4.2: PicoPix 1430

The first projector is the PicoPix 1430, which is very compact and offers
decent resolution. The specifications are shown in Table 4.2:

Display technology VueG8* LCoS

Light source RGB LED

LED light source lasts over 20,000 hours

Brightness up to 30 lumens

Native resolution 800 x 600 pixels

Supported computer resolution VGA (640x480, 60 Hz), SVGA (800x600, 60 Hz),

XGA (1.024x768, 60 Hz), WXGA (1.280x768, 60

Hz)

Contrast ratio 500:1

Screen size (diagonal) 13.2 cm–205.7 cm

Screen distance 0.2 m–3.0 m

Focus manual

Table 4.2: PicoPix 1430 specifications.
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Philips cClear XG1 Brilliance

Figure 4.3: Philips cClear XG1 Brilliance

The second projector is the Philips cClear XG1 Brilliance, which has a
higher resolution and much more lumens. The specifications are shown in
Table 4.3:

Display technology 0.79" Polysilicon LCD x 3

Light source RGB LED

LED light source lasts over 20,000 hours

Brightness 2600 ANSI Lumens (Normal)

Native resolution 1024 x 768 pixels

Supported computer resolution XGA (1024 x 768), SXGA (1280 x 1024)

Contrast ratio 400:1

Screen size (diagonal) 76.2 cm - 769.62 cm

Focus manual

Table 4.3: Philips cClear XG1 Brilliance specifications.

:
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Finally, it is important to note that, given our choices, the scanner is
compatible with any camera that can be controlled as a webcam or by the
libgphoto2 library (Section 4.2.3), as well as with any projector that has
a vga/hdmi connection. Therefore, it is possible to improve the quality of
scans with updated hardware without difficulty, particularly considering the
large volume of new cameras and projectors that come out every year with
improved features and lower prices.
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4.2 Software

In addition to substantial decisions made for the camera and projector, we
made choices pertaining to which programming language we would use, what
operating system would run our application, and therefore which IDE we
would need to use to develop it. The following Sections will describe our
choices.

4.2.1 Programming Language

The decision of which programming language to use to program the scanner
was discussed at length. It was decided that portability would not be an
important issue, whereas performance in both speed and memory would be
paramount. On this basis, we chose C/C++ in order to take advantage of
exhaustive libraries, as well as GPU processing using Nvidia CUDA or AMD
FireStream for better image processing algorithms.

4.2.2 Development Environment

With regards to the operating system, the main choice was between Windows
and a Linux distribution. We opted to use Ubuntu 10.04 LTS because it is
free and does not require the purchase of a license to use it. Moreover, there
are excellent libraries exclusive to Linux distributions, such as the libgphoto2
(Section 4.2.3), which allow us to efficiently control the scanner’s camera. For
programming on Ubuntu we decided to use Eclipse CDT as the main IDE.
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4.2.3 Additional Libraries

Some notable external libraries we used to build our application are the
following.

libgphoto2 2.4.12

The libgphoto2 library [gPh] allows access to many digital cam-
eras, through a C/C++ interface and a powerful API. With this
capability it is possible to control the Nikon D5000 to take photos,
which are then downloaded directly onto the computer’s hard disk.

OpenCV 2.3.1

OpenCV (Open Source Computer Vision) [Opea] is a library writ-
ten in C, with wrappers for C++, C# and Python. It provides
programming functions for real time computer vision, it is cross-
platform (Windows, Mac OS, and Linux) and it is free for use
under the open source BSD license. It also has a C/C++ interface
and more than 2500 optimized algorithms. We use it extensively for all the
image computation necessary to build our 3D model.

OpenGL

OpenGL (for "Open Graphics Library") [Opeb] is a software in-
terface to graphics hardware. The interface consists of a set of
several hundred procedures and functions that allow a programmer
to produce 2D and 3D computer graphics. The interface consists of over 250
different function calls which can be used to draw complex three-dimensional
scenes from simple primitives. OpenGL is used to write the application that
renders our 3D model and that allows to it to rotate and transform.
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Chapter 5

Hardware Calibration

In Chapter 3 we explored the problem of understanding the mathematics
needed to reconstruct our 3D human model. Although the concept of trian-
gulation may sound deceptively easy, in practice we must pay great attention
to all the matrices and vectors needed to solve the right equations.

In this Chapter, we will face one of the most important steps: the cali-
bration of our camera and projector. In order for triangulation to work, we
need to calculate the values of λ, K, R, T of equation 3.4. This formula can
be applied to both the camera and the projector. The only distinction being
the direction in which light travels: for the camera, light travels from the
world towards its image plane, whereas the projector works as a sort of an
inverse camera, wherein the light is generated from the center of projection
and radiates onto the world. Therefore, we discuss in Section 5.1 two slightly
different calibration procedures, which take this difference into account, by
calibrating both the camera and the projector separately. Finally, Section 5.2
shows the calibration results for the hardware shown in Chapter 4.

35



5. HARDWARE CALIBRATION

Figure 5.1: The chessboard pattern used in our calibration procedure.

5.1 Camera and Projector Calibration

We present a very simple calibration procedure using a printed black and
white chessboard pattern based on the established method of Zhang [Zha99]
[Zha00]. Using his method, the parameters of the general pinhole camera
model will be recovered.

Today, camera calibration tools are very common, well documented and
freely available; however, tools for projector calibration are not so easy to find.
We present here our approach based on the excellent work of [LT09]. We
begin by describing the technique proposed by Zhang. We finally discuss our
own implementation and provide step-by-step directions on how to calibrate
the camera and projector using the software we developed.

5.1.1 Calibration Methods

There are many different possibilities when estimating the parameters of the
general pinhole model. Some are connected with particular camera models
that are used and work well in conjunction, while others are more general and
more easily adaptable to our goals. Regardless, the main goal of all calibration
procedures is ultimately to evaluate the intrinsic parameters (focal length,
principal point and scale factor) and the extrinsic parameters (rotation matrix
and translation vector) of the camera. For a better understanding of camera
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models and calibration methods see [FCWC08] and [HZ04].
The general way to overcome the burden of calibration is by taking pictures

of a sequence of calibration objects with clearly distinguishable features. The
correspondences of these unique features in the various images provide a set
of 2D to 3D points, which are then used to evaluate the camera and projector
parameters. As previously mentioned, many different techniques may be
used; in most community-developed tools, the most widely adopted method is
that originally proposed by Zhang. This method requires the use of a planar
chessboard pattern (Figure 5.1) observed in at least two different positions;
indeed, more positions provide a more accurate evaluation of the parameters.
From this sequence of pictures, the intrinsic parameters can be extracted
using a factorized approach. From this point on, the extrinsic parameters
can be calculated by taking only one picture. This is of great importance
considering that the camera and projector we use in our project have been
moved around a lot in order to test different scenarios and improve the quality
of our scanner. Therefore, a method that allows us to quickly and efficiently
recompute the extrinsic parameters is fundamental. Last but not least, the
Zhang method is so commonly used because it requires only a printed pattern,
rather than a particular calibration object, to calibrate the camera.

5.1.2 Calibration Software

A variety of software can be found and used, sometimes for free, to calibrate
the camera. The most powerful and reliable is without a doubt MATLAB
[Mat], which has an Image Acquisition Toolbox [IAT] that supports products
from a variety of vendors, as well as any DCAM-compatible FireWire camera
or webcam with a Window Driver Model (WDM) or Video For Windows
(VFW) driver. Despite this widespread availability, we require the inclusion of
a calibration procedure within our program to avoid the need to rely on any
additional software. We have therefore chosen OpenCV, instead of MATLAB.
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OpenCV (see Section 4.2.3) provides all the necessary functions to build our
optimized calibration procedure, and much more.

5.1.3 Calibration Procedure

Our goal for the calibration procedure was to maintain the highest possible
level of simplicity. As previously mentioned, the Zhang method requires
us to take pictures of a printed chessboard pattern in multiple positions.
Then, the corners of the printed chessboard pattern are detected in all the
images and linked to the same corners in the previous pictures. Finally, an
equations system is solved and the parameters are known. This procedure
is the standard for camera calibration; however, for projector calibration we
have to use a different approach: instead of analyzing a printed chessboard,
we must analyze a chessboard pattern that is projected on top of a printed
one. The printed and projected patterns must have the same structure (i.e.
same number of rows and columns). This modification is very minimal and it
allows us to reuse much of the camera calibration code, as well as to calibrate
the camera and projector together by taking an initial picture of the printed
pattern and then a second immediately afterwards of the same printed pattern
beneath a projected one.

In order to achieve a timely calibration procedure, it becomes immediately
clear that we must solve three problems automatically: detect the corners of
the printed pattern, link them together (top left corner in picture 1 should be
associated to top left corner in picture 2, 3, etc.), and extract the parameters
from the equations.

We will explain how we solve these issues step-by-step, but first we go
back to step 1: taking the pictures of the printed pattern.

This is the easiest problem; using libgphoto2 (Section 4.2.3) we are able to
take any picture we desire and save it directly onto our hard disk. Therefore,
in step 1 we have to hold our printed pattern in front of the camera and

38



5.1 CAMERA AND PROJECTOR CALIBRATION

Figure 5.2: Calibration sequence containing multiple views of a printed chessboard

pattern on the first row, and a printed chessboard pattern plus the

projected pattern on the second row.

the projector simultaneously. We begin by taking a picture of the printed
pattern and then, a few milliseconds later, of the projected pattern on top
of the printed one. Next, we start to analyze these two initial pictures, thus
providing the user time to slightly move and tilt the printed pattern. We then
take two more pictures, and continue this way until we have enough pictures
to extract the intrinsic and extrinsic parameters of camera and projector. The
printed pattern must be presented in at least two different positions, requiring
a total of four pictures; however, the more positions in which we can analyze
the printed pattern the more accurate and robust our calibration will be.
We found that between six to ten different positions allow for an acceptable
compromise of time vs. accuracy. See figure 5.2 as an example of pictures
taken of the printed and projected pattern in a variety of orientations.

After every two pictures taken, that is, a printed pattern picture followed
by a printed pattern plus projected pattern picture, we perform an analysis
in order to automatically detect the corners of the pattern in each image.
Luckily, OpenCV gives us two useful built-in algorithms to solve this problem.
The first one is called cvFindChessboardCorners and returns a pointer to the
structs of the 2D points in each image, corresponding to a detected corner.
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The second is called cvFindCornerSubPix and from the previous array of
structs finds a subpixel approximation of the corners by performing a local
search around each of them. This guarantees a better quality of calibration
results; see figure 5.3 for an example.

Figure 5.3: Example of subpixel accuracy on corners. The orange square is the

detected corner from cvFindChessboardCorners, the green point is the

refined 2D coordinates found by cvFindCornerSubPix.

At this point, we need to determine whether we are able to detect all the
internal corners of the pattern or not. If we are, then we can move on to the
last step, otherwise we need to take more pictures of the pattern.

The final step is to use the information we have gathered thus far about
corner location to extract the camera and projector parameters. This is done
by solving the Zhang equations. For camera calibration, it is sufficient to
leverage the power of OpenCV again. Calling cvCalibrateCamera2 on the
array storing the corner locations, we get in return a pointer to the intrinsic
camera parameters matrix. For calibrating the projector, however, we require
some additional steps. Firstly, we must evaluate the undistorted image pixels
for both the camera and the projector chessboard corners. Then we estimate
the homography (an invertible transformation from a projective space to itself
that maps straight lines to straight lines) that maps the undistorted image
pixels to their positions on the chessboard. Next, we map the undistorted
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Figure 5.4: Detected corners on the calibration sequence with projected patterns.

projector image corners to the undistorted chessboard corners. Finally, we are
able to define a few object points that express the relationship between the
projector chessboard corners and the corresponding plain chessboard pattern
corner. Now, we use cvCalibrateCamera2 with the object points we have just
created to extract the intrinsic projector parameters.

Last but not least, we can use the function cvFindExtrinsicCameraParams2
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and the first calibration image to extract the extrinsic parameters that define
the position of the camera and projector in relation to world coordinates.

5.2 Calibration Results

We will discuss in this Section the effectiveness of our calibration procedure
in terms of time, accuracy and effort.

Time We divide the time needed to calibrate the camera and projector into
two parts: time needed to acquire the images and time needed to analyze
images and recover the intrinsic and extrinsic parameters.

The first is a very aleatory value that depends on the simple fact that
we sometimes need to retake two pictures, as in the instance that we were
not able to detect the right amount of corners in the initial images. We
repeat this process until all the corners are detected. Occasionally, the
environment light combined with the tilting of the checkerboard pattern
is problematic and interferes with the software’s detection of the corners.
Generally, however, the user is able to facilitate the recognition of the pattern
straight away, particularly after gaining some manual experience with the
calibration procedure. The time needed to take two pictures is about one
second.

The last parameter that may influence the time needed to calibrate our
setup is the processing time. We found that the only function that really
takes a significant amount of time is cvFindChessboardCorners , which can
take anywhere from less than one to up to thirty seconds to detect all the
corners. This is primarily due to the fact that the pictures have a resolution
of 4288 × 2848 and the function iterates over every pixel, thus spending a
decent amount of time on each of them. All other processing work can be
completed very quickly.
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Generally, the time required to calibrate the camera and the projector with
seven different positions of the pattern is around three minutes. Afterward,
the extrinsic calibration of our setup can be done by taking just one picture
in less than fifteen seconds.

Accuracy While time elapsed can be an interesting way to measure the
quality of our calibration procedure, the most important factor by far is
accuracy. The best way to test the precision of our extracted parameters is
to reproject the corners on top of the previous images and determine how
much they differ from the original. We do not implement this part of the
process in our program; however, by using MATLAB [Mat] and its Image
Acquisition Toolbox [IAT] we are able to do so seamlessly, as we see in figure
5.5. The results are exceptionally favorable and guarantee that our calibration
procedure is robust and efficient.

(a) Reprojected Corner (b) Reprojected Errors Plot

Figure 5.5: (a) Reprojected corner (circle) and original one (+). (b) a plot with

all the errors in pixel.
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Effort The final factor worth mention in our calibration results is the
level of difficulty for a user who goes through the process and calibrates the
setup. We have seen that after an initial adjustment with the calibration
procedure, anyone can easily calibrate the camera and projector, even without
the knowledge of the inner workings of our program.
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Chapter 6

3D Surface Modeling

In this Chapter we describe how our structured light scanner works. In
particular, we focus on: the choice of pattern to be projected (Section 6.1), the
capture of the images of the patient with the superimposed pattern (Section
6.2), the analysis of said images (Section 6.3) and, finally, the reconstruction
of the 3D model by triangulation (Section 6.4). Section 6.6 of this Chapter
explains how we use OpenGL to build a program that generates the 3D model.
From this point onwards, we assume that both the camera and the projector
are calibrated and we know the intrinsic and extrinsic parameters for each of
them.

6.1 Projected Pattern

For future references, we assume that our projector works with a resolution
of 1024 × 768. Different projectors may have different resolutions and our
program adapts easily to this change, but here we will use the aforementioned
values for the projector’s resolution to simplify the explanation of our program.

The primary benefit of using a projector rather than a laser-beam is to
remove the mechanical movement of the latter, required to sweep the beam
of light across the real-world surface to be reconstructed. Additionally, a
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projector is capable of displaying any arbitrary color image and, therefore,
provides a new and interesting challenge in relation to our scanner: which
pattern is best to project onto our patient in order to reconstruct a body in
the most accurate way?

The simplest method would be to use the projector as a laser-beam by
projecting a single column/row of white pixels translating against a black
background. Thus, we would need to capture exactly 1024/768 pictures.
Afterwards, the model point cloud is reconstructed using familiar ray-plane
triangulation, explained in Chapter 3. In doing so, we immediately see that
we are not utilizing the full power of the projector by ignoring its capability to
display arbitrary color images. We would like to use less frames for the model
reconstruction, making the scanning process much faster while maintaining
the necessary accuracy. The only way to improve the speed of the scanner
is to display a more complex pattern than a single column/row of white
pixels. This is done in two different ways: encoding the projected planes
spatially (i.e., within a single frame) or temporally (i.e., across multiple frames:
the simpler projected pattern idea discussed above can be understood as a
very inefficient temporally encoded pattern). There are both benefits and
drawbacks to either strategy. For instance, purely spatial encodings allow
for the use of a single pattern, enabling fast reconstruction of even dynamic
scenes. Alternatively, purely temporal encodings are more likely to benefit
from redundancy, consequently reducing reconstruction artifacts. Finally, a
combination of spatial and temporal encodings may be used. For an overview
of the most common techniques used today, complete with an accurate analysis
on the quality of each, we suggest the reader review [SPB04].

Following an in-depth analysis of possible patterns we might use, we
decided to focus on a temporally encoded pattern. We see that with the
pattern to be be discussed next we are able to reconstruct a very good 3D
model using ∼20 pictures; however, we remain interested in how well our
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6.1 PROJECTED PATTERNStructured Lighting Data Capture

Figure 5.2: Structured light illumination sequences. (Top row, left to right)
The first four bit planes of a binary encoding of the projector columns, or-
dered from most to least significant bit. (Bottom row, left to right) The first
four bit planes of a Gray code sequence encoding the projector columns.

robust to the known properties of the channel noise process? At a basic
level, we are concerned with assigning an accurate projector column/row
to camera pixel correspondence, otherwise triangulation artifacts will lead
to large reconstruction errors. Gray codes were first proposed as one al-
ternative to the simple binary encoding by Inokuchi et al. [ISM84] in 1984.
The reflected binary code was introduced by Frank Gray in 1947 [Wik]. As
shown in Figure 5.3, the Gray code can be obtained by reflecting, in a spe-
cific manner, the individual bit-planes of the binary encoding. Pseudocode
for converting between binary and Gray codes is provided in Table 5.1. For
example, column 546 in our in our implementation has a Gray code repre-
sentation of 1100110011, as given by BIN2GRAY. The key property of the
Gray code is that two neighboring code words (e.g., neighboring columns
in the projected sequence) only differ by one bit (i.e., adjacent codes have
a Hamming distance of one). As a result, the Gray code structured light
sequence tends to be more robust to decoding errors than a simple binary
encoding.

In the provided MATLAB code, the m-file bincode can be used to gen-
erate a binary structured light sequence. The inputs to this function are the
width w and height h of the projected image. The output is a sequence of
2dlog2we + 2dlog2 he + 2 uncompressed images. The first two images con-
sist of an all-white and an all-black image, respectively. The next 2dlog2we
images contain the bit planes of the binary sequence encoding the projec-
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Figure 6.1: Structured light illumination sequences.

(Top row, left to right) The first four bit planes of a binary encoding of

the projector columns, ordered from most to least significant bit.

(Bottom row, left to right) The first four bit planes of a gray code

sequence encoding the projector columns [LT09].

scanner performs using only one spatially encoded pattern. We refer to
Chapter 8 for more information about this.

A very simple, yet powerful, temporally encoded pattern is a binary
structured light sequence. Our projected pattern is a gray code structured
light sequence and is an improvement on a binary structured light sequence.
First, we will describe the binary codes theory in order to better understand
its potentiality, and consequently the even greater effectiveness of gray codes.
The simple binary structured light sequence was first introduced in [PA82].
As shown in figure 6.1, the projection consists of a sequence of frames that are
divided into white or black columns1. Each projected column defines a single
bit in the binary representation for the column. For example, column 115
has a binary representation of 1110011, which implies that in the first three
frames it will project a white column, in the 4th and 5th frames it will project

1For the sake of explanation, we also assume that we are projecting a column of white
or black pixels. If we had to project rows, the same concept still applies.
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6. 3D SURFACE MODELING

a dark column and in the last two frames it will project a white column. In
this way, by analyzing the captured images and applying a threshold to them,
it is possible to decide whether each pixel is white or black, thus associating
the projected plane with each pixel. The ray-plane triangulation can finally
reconstruct the 3D model.

We quickly see the power of a binary structured light sequence. Using
this sequence, it is possible to simplify the portion of the program that is
concerned with image analysis. In fact, using a single threshold for each
captured picture, it is possible to immediately reconstruct the 3D model.
Why do we need to improve our binary codes and opt for using gray codes
instead? It has been proven that binary codes are not robust with channel
noise; therefore, errors in the assignment of a pixel value (black or white)
can lead to large reconstruction errors. Gray codes were first proposed as an
alternative to simple binary encoding in [ISM84], and have since been proven
to be a stronger alternative to binary codes, as in the detailed analysis in
[SPB04].

A gray code structured light sequence can be created from a binary
sequence, and vice versa (Figure 6.2). The key property of gray codes is that
two neighboring code words (for example column 15 and 16) only differ by
one bit. As a result, an error in the assignment of a pixel value will merely
lead to the intersection of the ray going through that pixel with a plane that
is off by just one column. The error in the 3D model will be very minimal.

The last element worthy of mention is the number of pictures we must
capture using a gray code structured light sequence. This number depends
on the resolution of the projector. Assuming the projector has a resolution
of 1024 × 768 and we are projecting column gray code patterns, then we
need to capture 2dlog2 1024e + 2 different pictures. The total number of
projected patterns is dlog2 1024e , and for each of them we need to project the
inverse pattern to simplify the reconstruction process later on (see Section
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6.2 IMAGE CAPTUREStructured Lighting Image Processing

(a) binary structured light sequence

(b) Gray code structured light sequence

Figure 5.3: Comparison of binary (top) and Gray code (bottom) struc-
tured light sequences. Each image represents the sequence of bit planes
displayed during data acquisition. Image rows correspond to the bit
planes encoding the projector columns, assuming a projector resolution of
1024×768, ordered from most to least significant bit (from top to bottom).

tor columns, interleaved with the binary inverse of each bit plane (to assist
in decoding). The last 2dlog2 he images contain a similar encoding for the
projector rows. A similar m-file named graycode is provided to generate
Gray code structured light sequences.

5.2 Image Processing

The algorithms used to decode the structured light sequences described
in the previous section are relatively straightforward. For each camera, it
must be determined whether a given pixel is directly illuminated by the
projector in each displayed image. If it is illuminated in any given frame,
then the corresponding code bit is set high, otherwise it is set low. The dec-
imal integer index of the corresponding projector column (and/or row) can
then be recovered by decoding the received bit sequences for each camera
pixel. A user-selected intensity threshold is used to determine whether a
given pixel is illuminated. For instance, dlog2we+ 2 images could be used
to encode the projector columns, with the additional two images consist-
ing of all-white and all-black frames. The average intensity of the all-white
and all-black frames could be used to assign a per-pixel threshold; the in-
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(a) binary structured light sequence

(b) Gray code structured light sequence
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displayed during data acquisition. Image rows correspond to the bit
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1024×768, ordered from most to least significant bit (from top to bottom).

tor columns, interleaved with the binary inverse of each bit plane (to assist
in decoding). The last 2dlog2 he images contain a similar encoding for the
projector rows. A similar m-file named graycode is provided to generate
Gray code structured light sequences.

5.2 Image Processing

The algorithms used to decode the structured light sequences described
in the previous section are relatively straightforward. For each camera, it
must be determined whether a given pixel is directly illuminated by the
projector in each displayed image. If it is illuminated in any given frame,
then the corresponding code bit is set high, otherwise it is set low. The dec-
imal integer index of the corresponding projector column (and/or row) can
then be recovered by decoding the received bit sequences for each camera
pixel. A user-selected intensity threshold is used to determine whether a
given pixel is illuminated. For instance, dlog2we+ 2 images could be used
to encode the projector columns, with the additional two images consist-
ing of all-white and all-black frames. The average intensity of the all-white
and all-black frames could be used to assign a per-pixel threshold; the in-
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(b) Gray code structured light sequence

Figure 6.2: Comparison of binary (top) and gray code (bottom) structured light

sequences. Each image represents the sequence of bit planes displayed

during data acquisition. Image rows correspond to the bit planes encod-

ing the projector columns ordered from the most to the least significant

bit (from top to bottom) [LT09].

6.3). Moreover, we need to acquire a picture of the patient by projecting a
completely white image and another by projecting a completely black image.
The former is used to recover information about the texture; the latter is
XORed with the first. The resulting image is used as a mask for what we
should or should not consider in the following images.

6.2 Image Capture

Temporally encoded patterns, like our gray code structured light sequence,
require the subject to remain completely still to allow for better reconstruction
of the model. We continue to study the best way to photograph our patient to
recover the 3D model; an insight into this aspect of our research can be read
in Chapter 8. At this step in our process to recover the model of the patient,
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6. 3D SURFACE MODELING

we are primarily concerned with reconstructing single parts of the body and
attaching texture information to their 3D models. To better demonstrate the
reconstruction procedure, we will use an elucidative example: we will attempt
a reconstruction of the shape of two hands.

The way we capture the pictures is very straightforward: we place the
subject in front of the camera and projector and then take a picture every
time the projected pattern changes. The devices are synchronized by our
program and the acquisition time of 22 pictures is about 20 seconds. Some of
the captured frames are shown in Figure 6.3, where a gray code horizontal
pattern is projected.

6.3 Image Analysis

After the calibration procedure, image analysis is the most delicate, yet
important part of our program. The quality of our 3D model greatly depends
on the quality of our analysis. In fact, the analysis of each captured image
decodes the structured light sequence and assigns a projected plane to each
pixel. The process is actually very straightforward, and will be described
using pictures to clarify a few steps. In general, we must determine whether
the projector directly illuminates each pixel in each displayed image. If it
does, then the corresponding code bit of that pixel in that frame is set to 1;
otherwise, it is set to 0. Knowing these values for each frame allows us to
understand which code belongs to the plane projected on top of that pixel.
For example, if we are analyzing a pixel at coordinates (100, 100) and we
know that it is directly illuminated by the projector in only the first and last
frame, then we know that it is illuminated by plane 1000000001 alias plane
513 in decimal.

We need to find a robust way to determine whether or not a pixel is
illuminated by the projector. It has been proven that applying a single fixed
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6.3 IMAGE ANALYSIS

Figure 6.3: Some frames of the captured sequence. The first column shows the result

of projecting an all white image plus the original gray code pattern,

whereas the second column displays the results obtained by projecting

the inverse pattern. It is then used for an easier recovery of the 3D

model, as explained in Section 6.3.
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6. 3D SURFACE MODELING

threshold to the image results in decoding artifacts. For instance, certain
points on the surface may only receive indirect illumination from directly
illuminated points. This may cause a bit error, in which an unilluminated
point appears illuminated due to scattered light. Such bit errors may produce
significant reconstruction errors. One proposed solution is to project an inverse
pattern in addition to the original pattern. While we need approximately
double the amount of captured images, the decoding process is less sensitive
to scattered light because a variable per-pixel threshold may be used. A
pixel is now determined to be illuminated or not, depending on whether the
projected pattern or its inverse is brighter. Figure 6.4 shows the subject
illuminated by an all-white image, the decoded row indices and the decoded
depth map for each pixel. The decoded row indices are colored from green
(row index number 767) to blue (row index 0); in quite the same way, the
depth map is colored from green (closer points to the camera) to blue (points
which are farther away from the camera).

(a) All-white image (b) Decoded rows (c) Depth map

Figure 6.4: Decoding the gray code structured light sequence. Note the shadow on

the fingers of the right hand, prohibiting the reconstruction of parts of

the fingers.

Now, we will look at one pair of frames and analyze the steps taken to
decode the row indices for each pixel. The results are illustrated in Figure
6.5 and Figure 6.6.
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6.3 IMAGE ANALYSIS

(a) Original pattern (b) Inverse pattern

(c) Grayscale image of (a) (d) Grayscale image of (b)

(e) cvAbsDiff(src1, src2, dst) (f) cvCmpS(src, threshold, dst, ≥)

Figure 6.5: (a), (b) captured images of the 5th projected pattern. (c), (d) per-

pixel threshold to convert image (a) and (b) to grayscale. (e) absolute

difference between image (c) and (d) such that e(i) = |c(i)− d(i)| ∀i ∈

pixel. (f) fixed threshold to (e).
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6. 3D SURFACE MODELING

(a) cvOr(src1, src2, dst) (b) cvCmp(src1, src2, dst, ≥)

(c) B&W decoded row indices (d) Colored decoded row indices

Figure 6.6: (a) OR with the masks calculated in all the previous frames. (b)

assignment of a high or low bit to each pixel, depending on whether the

pixel is brighter in picture 6.5(c) or 6.5(d). (c) adding the decoded row

indices of (b) to the previous calculated one. (d) colored version of (c)

to better display the decoded row indices; the colors range from green

(row index number 767) to blue (row index 0).
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6.3 IMAGE ANALYSIS

Figure 6.7: Sequence of the decoded row indices. The last bigger picture is the final

step.

We now understand how to process each pair of images in order to decode
the row indices. We end this Section by showing how much precision we add
in every step to decode the row indices, as in Figure 6.7 . For this purpose,
we show the colored decoded row indices for each pair of images, where the
improvements after each step become immediately apparent.
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6.4 Image Triangulation

Once we know the correspondence of the decoded row indices to the cam-
era pixels, the reconstruction of a 3D colored point cloud is made rather
straightforward by ray-plane triangulation. Ultimately, a simple per-point
RGB value can be assigned to each 3D point by sampling the color of the
all-white picture (see Figure 6.4(a)).

6.5 3D Model

At this point, the majority of the task is complete; however, we have only a
3D colored point cloud of our subject. The next Sections will describe how
we convert this point cloud into a surface, as well as the best way to save
these results to a file, storing all this information.

6.5.1 Surfaces from Point Clouds

The creation of watertight surfaces is fundamental in the construction of a 3D
model. This allows a model with a surface to be rendered with higher quality,
allowing for a more accurate analysis of the model itself. In general, there are
two main surfaces that can be fitted using our point cloud: discrete surfaces
and isosurfaces. An isosurface is a mesh that approximates a smooth implicit
surface S = (x : f(x) = 0); it is a powerful way to describe our model, but
its calculation requires complex algorithms that we will not consider in this
project. We have chosen to create a simple discrete surface that still fulfills
all our requirements.

The general task of using a 3D point cloud to compute a discrete surface
consisting of many connected triangular meshes can be greatly simplified here,
since we are able to exploit preexisting ordering constraints of the regular pixel
grid. Each reconstructed 3D point belongs to one of the 768 projected planes;
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6.6 3D MODEL

we can order every 3D point according to the projected plane it belongs to
and, finally, connect every point with the point to the right and the point
belonging to the line below. One must take care when ordering points in
each triangular mesh to be sure that all the meshes have their normal vectors
pointing into the same direction (see Figure 6.8).

in Ppattern and their horizontal distances are uniformly dis-
tributed due to the column-wise correspondence analysis.

Care has to be taken in the order the points are fused to
triangles so that all their normal vectors point into the same
direction (see figure 6)

Fig. 6. Creation of wire frame model

In order to eliminate border errors as well as errors, which
can occur at light absorption areas (hair and eyes) a triangle
area filter is applied. This filter evaluates the triangle areas
and removes triangles, which does not fit to the defined spec-
ifications, e.g. size.

The covering of the 3D wire grid with the texture is quite
easy. ThePcolored coordinates of the points are interpreted in
Pclean. From there the texture information is taken.

6. EXPERIMENTAL RESULTS

Many experiments have been performed with the 3D face
scanner. Figure 7 shows the results of a typical scenario. Two
pictures are taken, one with regular white light and one with
the structured light pattern shown in figure 2. After selecting
the interesting region, the system calculates the 3D model and
optionally presents the wire frame model, the surface or the
textured 3D face. Note that the system performs well even
in non-labor environments, as it is visible in figure 4, taken
during the CeBIT 2006 in Hanover, Germany.

Fig. 7. Resultant 3D models as wire frame model, surface and
textured surface

On a typical PC with a 3 GHz Pentium 4 processor the
process takes up to a minute.

7. CONCLUSION AND FUTURE WORK

We have presented a system for high resolution 3D face scan-
ning with low computational complexity. Experiments have
shown that the system accuracy still remains acceptable even
under perturbing ambient light conditions.

The simple setup and its easy usage make the presented
system ideal suited for various 3D model creation scenarios,
e.g. virtual environments like 3D games or human machine
interfaces.

Improvements of the framework could be an enhancement
of the color estimation, presented in section 5.1.4, or the stripe
matching algorithm in section 5.2, e.g. by the introductionof
2D knowledge in the DP algorithm.

8. ACKNOWLEDGEMENT

The work presented in this paper has been developed with the
support of the European Network of Excellence VISNET II
(Contract IST-1-038398).

9. REFERENCES

[1] D. Scharstein and R. Szeliski, “A taxonomy and eval-
uation of dense two-frame stereo correspondence algo-
rithms,” IJCV 47(1/2/3), pp. 7–42, April-June 2002.

[2] Song Zhang and Peisen Huang, “High-resolution, real-
time 3D shape acquisition,” inConference on Computer
Vision and Pattern Recognition Workshop (CVPRW’04)
Volume 3, June 2004, p. 28, Washington, DC.

[3] D. Scharstein and R. Szeliski, “High-accuracy stereo
depth maps using structured light,” inIEEE Com-
puter Society Conference on Computer Vision and Pat-
tern Recognition (CVPR 2003), June 2003, vol. 1, pp.
195–202, Madison, WI.

[4] Li Zhang, Brian Curless, and Steven M. Seitz, “Rapid
shape acquisition using color structured light and multi-
pass dynamic programming,” inThe 1st IEEE Interna-
tional Symposium on 3D Data Processing, Visualization,
and Transmission, June 2002, pp. 24–36, Padova, Italy.

[5] H. Fredricksen, “The lexicographically least debruijncy-
cle,” Journal of Combinatorial Theory, vol. 9, pp. 509–
510, 1970.

[6] David B. Wagner, “Dynamic programming,”The Mathe-
matica Journal, 1995.

[7] Mikhail Mozerov, “An effective stereo matching algo-
rithm with optimal path cost aggregation,” inDAGM-
Symposium, September 2006, pp. 617–626, Berlin, Ger-
many.

[8] Peter Eisert, “Model-based camera calibration using
analysis by synthesis techniques,” inProc. 7th Inter-
national Workshop MODELING, AND VISUALIZATION
2002, November 2002, pp. 307–314, Erlangen, Germany.

[9] Ron Goldman,Intersection of Two Lines in Three Space,
p. 304, Academic Press, 1990.

Figure 6.8: Creation of a watertight wireframe model [FER07].

The last step in building the watertight wireframe model is a cleanup
process. Many existing meshes are wrong because of border errors, as well
as other errors, which occur at light absorption areas (such as hair and eyes)
or on very shiny areas; therefore, we apply a triangle area filter. This filter
evaluates the triangle areas and removes those triangles that do not meet the
defined specifications, e.g. size. Finally, we recover the texture information
from the all-white image of Figure 6.4(a) and assign it to that mesh.

6.5.2 Saving the Model as a VRML File

Storing and retrieving our 3D model is fundamental, and saving it in either
ASCII format or binary format is a valid solution to the problem. We have
chosen to use the Virtual Reality Modeling Language (VRML) to store our
model [VRM]. VRML is an ISO standard published in 1997 that describes
in ASCII format a scene graph comprising of different nodes. The geometry
node that we use is called IndexedFaceSet. It is designed to store point clouds
with their 3D coordinates, colors and meshes. A simple VRML file looks like
that in Figure 6.9.
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#VRML V2.0 utf8

Shape {

geometry IndexedFaceSet {

coord Coordinate {

point [ -162.507828 189.541809 1034.713379

-162.244995 189.527145 1034.636719

-163.760605 189.297012 1034.709229

-163.234772 189.267746 1034.555786

]

}

coordIndex [ 0 1 2 -1,

1 3 2 -1,

3 2 1 -1

]

color Color {

color [ 0.152941 0.145098 0.149020

0.164706 0.156863 0.160784

0.094118 0.086275 0.090196

0.145098 0.137255 0.141176

]

}}}

Figure 6.9: Example of a VRML file.

6.6 Visualization with OpenGL

A well-established technique to render point clouds and triangular meshes uses
OpenGL. OpenGL simplifies the display of points and associated polygons,
such as triangles or quads. Moreover, its powerful API takes advantage of
CPUs and GPUs, making the rendering of the 3D model fast and smooth.
We developed a program that reads the 3D model VRML file and displays it
on a screen, and has also been optimized to display up to 10 million points
fluidly. Some shortcuts have been added to easily switch among a point cloud,
a wireframe and a texture visualization. In addition, it is possible to move the
model simply by using the mouse buttons and the keyboard WASD keys. The
Figures 6.10 and 6.11 show snapshots of the rendering program displaying
the reconstructed hands and arm.
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(a) Left side view (b) Front view (c) Right side view

Figure 6.10: Visualization of the 3D colored point cloud. It is possible to see some

dark dots in the hand that corresponds to pixel that have not been

reconstructed (the causes can be many and are better discussed in the

following Chapter).

(a) Point cloud of the arm (b) Wireframe of the arm

(c) Point cloud (d) Wireframe (e) Meshes

Figure 6.11: A zoom on the arm. Subfigures (a) and (b) display a general view of

the arm. (c), (d) and (e) show the detailed difference among a point

cloud, wireframe and meshes visualization.

59



6. 3D SURFACE MODELING

60



Chapter 7

Performance

This Chapter discusses the quality of the 3D models we create with our human
body scanner. In the following Sections, we compare results obtained using
two different projectors and realize the great importance a projector has in
determining the quality of a model. Finally, in the last Section we compare
our scanner with a professional laser scanner. We recall that our goals are:
accuracy, efficiency and costs.

7.1 Accuracy

The scanner must be very precise and able to detect body changes of less
than one millimeter. To study how well our scanner performs, we have built
the test object shown in Figure 7.1. The test object is made up of four

Figure 7.1: Test cubes used to measure the accuracy of our system; note the different

heights of the four parallelepipeds.

61



7. PERFORMANCE

parallelepipeds with four different heights: 10 cm, 10.1 cm, 10.3 cm, and 10.6
cm. When they are placed close together, they resemble a staircase. Scanning
this object allows us to better understand if we are able to detect even the
slightest changes on the surface. Our test goal is to detect the smallest step,
a difference of 1 millimeter.

In the following paragraphs we discuss the accuracy of our system using a
PicoPix 1430 versus a Philips cClear XG1 Brilliance.

PicoPix 1430 This projector was chosen for its compact size and decent
resolution of 800× 600; however, it is severely lacking in brightness, with only
50 lumens at its disposal. Figure 7.2 shows the 3D model of the test cubes
that we created using the PicoPix projector. Even a projector with very few

(a) Left side (b) Front side (c) Right side

Figure 7.2: The 3D model of the test subject, reconstructed using the PicoPix 1430.

lumens is able to reconstruct a good 3D model. In fact, we see in Figure 7.3
that our scanner is able to detect even the 1 millimeter change on the surface
of the test cubes.
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Figure 7.3: Zoom on the 3D model to prove that we are able to detect even the 1

mm change on the surface of the test cubes.

Philips cClear XG1 Brilliance The Philips cClear XG1 Brilliance is
a more powerful projector compared to the PicoPix 1430. It has a higher
resolution of 1024 × 768and 2600 lumens to use. On the other hand, it is
much bigger, noisier and costs a little more.

(a) Left side (b) Front side (c) Right side

Figure 7.4: The 3D model of the test subject, reconstructed using the Philips cClear

XG1 Brilliance.
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Figure 7.5: Zoom on the 3D model to prove that we are able to detect even the 1

mm change on the surface of the test cubes.

For this projector, we see in Figures 7.4 and 7.5 the 3D model we built
and a detailed close-up image. As expected, we are able to detect changes of
less than 1 millimeter using the Philips cClear XG1 Brilliance as well.

7.2 Efficiency

The time needed for a complete scan should be as minimal as possible. Ideally,
we must spend less than 5 minutes building the entire human model; therefore,
the time needed to reconstruct a single body part of the patient will be much
less.

We have thoroughly analyzed and optimized our application to reduce the
time needed to build the 3D model. As a result, it takes around 20 seconds
to capture the pictures of the subject with each of the 22 gray-code projected
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patterns, and it takes about 40 seconds to reconstruct the 3D model using
those 22 pictures.

In the image capture portion, the time needed can be described with the
following formula:

time = (shutter speed + time to change pattern)× projected patterns

The shutter speed depends on how long we want the exposure time to be.
For example, the PicoPix 1430 projector has a RGB color wheel in front of
the lens that turns very fast to create the illusion of a "white" color; however,
it does not turn fast enough. If the shutter speed is on a fast setting, we are
able to capture only one color of the color wheel rather than the overlapping
effect of the RGB colors. The result is shown in Figure 7.6. To solve this

Figure 7.6: Problem arising if setting a fast shutter speed on the camera when using

the PicoPix 1430.

problem, the only solution is to decrease the shutter speed to 1/25 of a second
and increase the ISO sensitivity of the camera. The effect is that the total
time needed to capture all 22 pictures increases by 2-3 seconds. The Philips
projector does not suffer from this problem, so its shutter speed can be as
fast as 1/125 of a second.

Finally, the second important parameter in the previous formula is time
to change pattern. After every picture is taken, we send the projector a signal
to switch patterns and simultaneously put the camera on hold in order to
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give the projector enough time to complete its task. If the value of time to
change pattern is too low, the captured image can be wrong, displaying a
combination of the previous pattern with the current one. A good value for
time to change pattern is 150 milliseconds.

In conclusion, we demonstrated that our scanner takes about 60 seconds
to reconstruct a 3D model of a portion of the subject by completing the
following tasks: capturing the images, analyzing them to reconstruct the 3D
model, creating a wireframe and mesh model from the point cloud and finally,
mapping the color information on top of the model. We predict that we will
be able to reconstruct the whole human body model in less than 5 minutes by
scanning different parts of the patient at the same time and reconstructing
them in parallel.

7.3 Costs

Today, the cost of 3D scanners capable of capturing an entire human body
ranges from 50K to 300K+ dollars. We want to build an affordable scanner
that costs less than $10,000. So far, we are using a computer, a camera and a
projector. The cost of the Nikon D5000 is around $400, and the cost of any
of the suggested projectors is around $350. With a medium range computer
we can build a system with a total cost of around $1200. Using this setup,
we capture just one part of the whole subject very well; however, in order to
build a complete 3D model of a human being in less than 5 minutes, we need
to use more cameras and projectors that can reconstruct different parts of the
subject in parallel. After some research (see Section 8.2 for a better insight
on the problem), we think we should be able to have a complete 3D model of
a person in less than 5 minutes by using a mere 7 cameras, 5 projectors and
1 computer. Therefore, the final cost of the complete setup will be around
$5,000 - $6,000.
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7.4 Projectors Comparison

So far, we have shown that our human body scanner meets our project
requirements, by using either one or the other of the suggested projectors.
We discuss in this Section the differences in using those projectors, and
we conclude by proving the complete superiority of the Philips cClear XG1
Brilliance over the PicoPix 1430.

Although both projectors meet our requirements, there are two crucial
differences described in the two paragraphs that follow.

Color Fidelity By projecting an all-white image on the subject and cap-
turing a picture, we can map the texture on the 3D model. Because our
scanning requirements necessitate a very dark room, the light of the projector
is the only source of illumination on the subject. If the projector’s lamp and
color wheel are not very good, the resulting picture will have altered colors
that cause the final 3D model to be textured with an inexact color surface.
This problem is seen by comparing Figure 7.1 (correct colors), Figure 7.2
and Figure 7.4. The PicoPix 1430 tends to generate colder pictures than the
Philips cClear XG1 Brilliance, which has greater color fidelity.

This problem can still be fixed with some post-processing filters on the
images; however, it is very important for our scanner to acquire the best
color faithful pictures possible, because all the algorithms for skin diseases
detection heavily rely on the correctness and accuracy of color information.

Decoding Errors and Artifacts In general, every scanner generates de-
coding errors when building a 3D model, the origins of which greatly change
and range from scattered light problems to subject’s movement, picture com-
pression, etc. Because of this, every scanner applies some post-processing
algorithm to reduce the amount of errors in its attempt to generate the best
3D model possible; nevertheless, a heavy presence of errors can result in
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huge problems, because the application may not be able to remove them
all and the final model can be incomplete or worse, completely wrong. We
can divide the decoding errors into two subsets: in the first, we include all
pixels for which we are not able to assign an intersecting projected plane; in
the second, we include all the pixels for which we have assigned an incorrect
intersecting plane. We will call the former decoding errors and the latter
decoding artifacts.

To a certain degree, we would prefer decoding errors to decoding artifacts;
the ground truth is that when there are a lot of errors, there are also a lot of
artifacts.

As we mentioned, this is the biggest difference we find when using one
projector or the other. The reason is that the PicoPix 1430 has too few lumens.
In fact, its lamp is not powerful enough even to adequately illuminate the
subject, and therefore it is extremely hard to analyze the pictures afterwards.
We can better understand this problem in Figure 7.7. Both pictures represent
a subject with a projected pattern on top, which has many lines with widths of
just 1px. We magnified each picture to the same degree, and so each contains

(a) PicoPix (b) Philips

Figure 7.7: Zoom on two pictures having projected pattern with lines-width of just

1px.
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(a) PicoPix (b) Philips

Figure 7.8: Decoding errors on picture (a) taken with the PicoPix 1430. Here the

lines are not evenly spaced as in (b) taken with the Philips projector.

the same number of horizontal lines; however, in the picture taken using
the PicoPix it is very hard to understand which pixels should be considered
black and which ones should be considered white. This is a much easier task
using the Philips projector. The end result is that some of the lines in the
reconstructed model when using the PicoPix are skipped, as evident in Figure
7.8 where we see that the reconstructed model is missing some lines (they are
not evenly spaced).

Finally, the PicoPix generates many more decoding artifacts than the
Philips projector. The difference is that when the algorithm cannot definitively
conclude whether a pixel is white or black, it skips that pixel and does not
reconstruct it, thus generating decoding errors. Sometimes, however, the
algorithm determines that a pixel is white when it is actually black, or vice
versa, and thus generates decoding artifacts. Figure 7.9 effectively displays
how many more artifacts are generated when we are using the PicoPix.

We conclude by saying that there are no advantages in using the PicoPix
1430 instead of the Philips cClear XG1 Brilliance other than compactness
and marginal monetary savings.
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(a) PicoPix (b) Philips

Figure 7.9: Decoding artifacts in both models; note that the PicoPix one has many

more artifacts.

7.5 Comparison with a Professional Laser

Scanner

In this final Section of the Chapter we introduce a professional laser scanner:
the NextEngine [Nex]. The NextEngine 3D Scanner captures objects in
full color with multi-laser precision. The basic version costs $2,995 and
has everything necessary to digitize 3D models, including ScanStudio HD
software. It exports to STL, OBJ, VRML, XYZ and other formats. The
advanced versions can output 3D scan models to popular design software
(like SolidWorks, 3ds Max, and more) and print models on Dimension, 3D
Systems, zCorp, Objet, and other 3D printers.

We tested the basic version and have tried to create a model for our test
cubes and hand. The results are shown in Figure 7.10. At first glance the
results are impressive, but there are some major points worth notice:

• the scan process takes about 4 minutes to scan a very small object,
which cannot be further than 43 cm away [GRMB10a];
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(a) Test cubes (b) Hands

Figure 7.10: 3D models of the test cubes and hands, both generated with the Nex-

tEngine.

• the laser beam is extremely dangerous when creating the model of a
face. Even with the eyelids closed it can still damage the eye’s retina;

• it has an accuracy of 0.38 millimeters [GRMB10a], but the subject must
remain completely still;

• most of the refinement is done in post-processing; in other words, the
3D point cloud is refined using efficient algorithms to remove decoding
errors and artifacts, close the wireframe holes, etc.

After experimenting with the NextEngine Scanner, we have come to the
conclusion that it is indeed an impressive tool, the most exceptional aspect
being a software that does all the post-processing work, allowing for an easier
reconstruction of a 3D model by automatically merging the point clouds
and texturing them. If we remove this layer of the NextEngine and merely
consider the functions that are implemented in both the NextEngine and
our scanner alike (we have not implemented any post-processing refinement
algorithms applied to our models, yet), we see that our scanner has much
greater potential:
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• it can scan much larger surfaces;

• it takes a fraction of the time to scan a subject;

• it is better at compensating for a moving subject;

• it collects more detailed texture information about the model, thanks
to our high-resolution camera;

• it can be upgraded with better hardware very easily;

• while not as precise as the NextEngine (<0.38 mm), it is still sufficiently
so (<1 mm);

• finally, it costs less than one-third of the price.

We therefore believe that our human body scanner is a strong, well-built
tool to use and develop further.
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Future Work

As mentioned in the introduction, the project of building a human body
scanner is divided into 4 steps:

• reconstruction of the model of a patient’s body part;

• mapping the texture on top of the model;

• merging all models together to generate a complete human body model
of the patient;

• registration of the different models taken at different times;

• development of algorithms on top of the models to detect suspicious
changes on the patient’s skin.

This thesis covers the first two fundamental points, creating a solid base on
top of which other developers can build the next steps.

In this Chapter we discuss some promising directions for future research
and work. Some of these future paths have already been partially investigated,
and we present the results we have come up with so far.

73



8. FUTURE WORK

8.1 Dropping Down to 1 Projected Pattern

In this thesis, we have discussed our use of a gray code structured light
sequence. The benefits of using this approach are many, such as robustness,
easier implementation of the decoding algorithm and higher quality of the
reconstructed 3D model. Moreover, it only takes us ∼2 minutes to reconstruct
the model of a particular subject.

We have been curious, however, about the difference a spatially encoded
pattern will make compared to a temporally encoded pattern, like the one we
are using. Of course, we are expecting a decrease in the quality of the model,
but we would like to better understand if the shorter image-capturing time
can compensate for the decreased robustness of this new method [FER07]
and [KVG06].

The 1 pattern technique takes full advantage of the potential for any
projector to display arbitrary colored images. Here, we need only project a
stripe pattern with horizontal lines in fully saturated colors, reducing the
search for corresponding pixels to a 1D search along the corresponding scan
lines. The projected colors are: red, green, blue, black, cyan, magenta, and
yellow. Ideally, to ease the unique assignment of detected stripes to projected
ones, we choose a series of stripe colors with a big period by using de Bruijn
sequences; however, in our prototype of this 1 pattern technique, we have
decided to skip this last step.

Decoding of Colored Stripes The decoding of the colored stripes is
done after a preprocessing step. Because a higher contrast leads to better
reconstruction results, we apply a vertical sharpening filter to the image.
After the preprocessing step, we extract the color of the stripes by applying
the procedure shown in Figure 8.1.

In the last step of Figure 8.1, we decode the colored stripes. Ideally, this
should be done using a Dynamic Programming (DP) algorithm that will find
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8.1 DROPPING DOWN TO 1 PROJECTED PATTERN

(a) Original image (b) Sharpened image

(c) Grayscale image of (b) (d) B&W image of (c)

(e) Image to decode = (b) mask (d) (f) Decoded colored stripes

Figure 8.1: Process to decode a 1 colored pattern.
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the correct match, given that in a de Bruijn sequence of (k, n) a subsequence
of length n is present only one time in the whole sequence. If we set n = 2
we know the color of a stripe simply by looking at its preceding and following
stripe. However, we did not use a de Bruijn sequence, but rather a simple
repeating colored sequence. Therefore, in the last step of Figure 8.1 we have
only applied a greedy algorithm to choose the color of every pixel based on
a simple strategy: to estimate the color of a pixel, the ratios between the
channels are examined, i.e. the ratios: r

b
, r
g
, b
r
, b
g
, g
r
, g
b
. In this way, the choice

of color assignment is independent of brightness. The sorted ratios will help
to decide the resulting color of the pixel by considering larger values first.

We see that our decoded colored stripes image has some errors. In
particular, the green stripe is often considered a yellow stripe. This problem
can be easily solved using a DP algorithm, as with the one briefly discussed
above and in [FER07]. We are very confident that a 1 colored pattern
technique is a very promising direction for future research and should be
made a priority.

8.2 Full Human Body Scanner

So far, we are only able to reconstruct parts of the patient’s body. Our goal
it to reconstruct nearly 100% of the skin surface. In order to do so, it is
essential to solve the following subproblems.

Patient’s Position for Image Capturing We have studied at length
different resting positions for the patient in order to determine which produces
the best possible scanned results. We concluded that laying the patient on a
flat dark surface will help the reconstruction process for two reasons: the dark
surface will reduce problems of scattered light and lying down will reduce
reconstruction errors, because the patient will remain more still than when
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standing up.

Merging Different Surfaces In order to have a complete model of the
patient, we need to scan more body parts and then merge them together.
The idea is to use multiple cameras and projectors to scan different parts
of the front of the patient at the same time, then to turn the patient over
onto his or her stomach and scan the back. Finally, we will merge all these
parts together. Merging different 3D point clouds can generally be tricky,
but knowing the exact location of all the cameras and projectors plus the
rough position of the patient allows us to use algorithms, such as the Iterative
Closest Point (ICP) algorithm [BM92], to compute a rigid body matching
transformation with relatively little effort [LIB].

Simplifying Surfaces The reconstruction of hands and arms, which we
use to illustrate our program in this thesis, generates about 800K points,
300K meshes and a ∼ 80MB file. It is unfeasible to create a complete 3D
model of the patient with such a high definition: the file containing the model
would be larger than one gigabyte and the rendering of such a model would
become slow and unpleasant. Our only option to solve this problem is to
reduce the reconstructed points. This can be done either by deciding not
to reconstruct the 3D position of every pixel in the captured images or by
applying a post-processing algorithm to simplify the reconstructed surface.
Both approaches need to be carefully studied and tested.

8.3 Texture Analysis for Skin Disease

Detection

The last step to conquer, which we can approach in parallel with the previous
solutions, is the invention and implementation of algorithms to analyze the
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patient’s skin and detect anomalies in moles or track the evolution of psoriasis.
Some research has already been done in our research group; we describe some
ideas and techniques in [FPSZ11], [SPM+09] and [FPS11].
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Conclusion

With the rise in awareness of the importance of dermatological examinations,
more people have begun to have their skin checked regularly. It is fundamental
to provide medical professionals with an adequate healthcare application for
tracking at high frequency the evolution of moles and psoriasis on their
patients.

In this thesis, we provided a strong foundation for building a powerful
human body scanner that is low cost, yet remarkably efficient and accurate
in generating a 3D model of any patient. Our human body scanner has the
potential to increase the number of dermatological examinations a person has
every year, without raising either the costs for health services or the burden
on the dermatologists.

In the future, we expect doctors to incorporate our tools and software
into their examination routines, to the point where human body scanning
becomes a normal procedure for every patient.

79



80



Bibliography

[BM92] Paul J. Besl and Neil D. McKay. A method for registration of 3-d
shapes. IEEE Trans. Pattern Anal. Mach. Intell., 14(2):239–256,
February 1992.

[FCWC08] Xiuxia Feng, Maoyong Cao, Haixia Wang, and Michael Col-
lier. The comparison of camera calibration methods based on
structured-light measurement. Image and Signal Processing,
Congress on, 2:155–160, 2008.

[FER07] Philipp Fechteler, Peter Eisert, and Jürgen Rurainsky. Fast and
High Resolution 3D Face Scanning. In Proceedings of the 14th
International Conference on Image Processing (ICIP2007)), San
Antonio, Texas, USA, 16-19th September 2007. ICIP 2007.

[FPS11] M. Fiorese, E. Peserico, and A. Silletti. Virtualshave: Automated
hair removal from digital dermatoscopic images. IEEE EMBC,
2011.

[FPSZ11] A. Belloni Fortina, E. Peserico, A. Silletti, and E. Zattra.
Where’s the naevus? inter-operator variability in the localization
of melanocytic lesion border. Skin Res. and Tech., 2011.

[GAVN11] M. Gupta, A. Agrawal, A. Veeraraghavan, and S. G. Narasimhan.
Structured light 3d scanning in the presence of global illumina-

81



9.BIBLIOGRAPHY

tion. Computer Vision and Pattern Recognition, IEEE Computer
Society Conference on, 0:713–720, 2011.

[gPh] gPhoto - gPhoto Home. http://www.gphoto.org/.

[GRMB10a] Gabriele Guidi, Michele Russo, Grazia Magrassi, and Monica
Bordegoni. Performance evaluation of triangulation based range
sensors. Sensors, 10(8):7192–7215, 2010.

[GRMB10b] Gabriele Guidi, Michele Russo, Grazia Magrassi, and Monica
Bordegoni. Performance evaluation of triangulation based range
sensors. Sensors, 10(8):7192–7215, 2010.

[HZ04] R. I. Hartley and A. Zisserman. Multiple View Geometry in Com-
puter Vision. Cambridge University Press, ISBN: 0521540518,
second edition, 2004.

[IAT] Image Acquisition Toolbox - MATLAB. http://www.

mathworks.it/products/imaq/.

[ISM84] S. Inokuchi, K. Sato, and F. Matsuda. Range imaging system
for 3-d object recognition. pages 806–808, 1984.

[KVG06] Thomas P. Koninckx and Luc Van Gool. Real-time range acqui-
sition by adaptive structured light. IEEE Trans. Pattern Anal.
Mach. Intell., 28(3):432–445, March 2006.

[Lau94] A. Laurentini. The visual hull concept for silhouette-based
image understanding. IEEE Trans. Pattern Anal. Mach. Intell.,
16(2):150–162, February 1994.

[Lau95] Aldo Laurentini. How far 3d shapes can be understood from 2d
silhouettes. IEEE Trans. Pattern Anal. Mach. Intell., 17(2):188–
195, February 1995.

82

http://www.gphoto.org/
http://www.mathworks.it/products/imaq/
http://www.mathworks.it/products/imaq/


9.0BIBLIOGRAPHY

[LIB] Libicp: Library for iterative closest point fitting. http://www.

cvlibs.net/software/libicp.html.

[LT09] Douglas Lanman and Gabriel Taubin. Build your own 3d scan-
ner: 3d photograhy for beginners. In SIGGRAPH ’09: ACM
SIGGRAPH 2009 courses, pages 1–87, New York, NY, USA,
2009. ACM.

[Mat] MATLAB - The Language of Technical Computing. http://

www.mathworks.it/products/matlab/.

[Mel] Melanoma education foundation. http://www.skincheck.

org/.

[Nex] Nextengine 3d laser scanner. http://www.nextengine.com/.

[NSM+94] F Nachbar, W Stolz, T Merkle, A B Cognetta, T Vogt,
M Landthaler, P Bilek, O Braun-Falco, and G Plewig. The
abcd rule of dermatoscopy. high prospective value in the diagno-
sis of doubtful melanocytic skin lesions. Journal of the American
Academy of Dermatology, 30(4):551–559, 1994.

[Opea] OpenCV Wiki. http://opencv.willowgarage.com/.

[Opeb] OpenGL - The Industry Standard for High Performance Graph-
ics. http://www.opengl.org/.

[PA82] J L Posdamer and M D Altschuler. Surface measurement by
space-encoded projected beam systems. Computer Graphics and
Image Processing, 18(1):1–17, 1982.

[RCM+01] C. Rocchini, P. Cignoni, C. Montani, P. Pingi, and R. Scopigno.
A low cost 3d scanner based on structured light, 2001.

83

http://www.cvlibs.net/software/libicp.html
http://www.cvlibs.net/software/libicp.html
http://www.mathworks.it/products/matlab/
http://www.mathworks.it/products/matlab/
http://www.skincheck.org/
http://www.skincheck.org/
http://www.nextengine.com/
http://opencv.willowgarage.com/
http://www.opengl.org/


9.BIBLIOGRAPHY

[SOY+09] Ryusuke Sagawa, Yuya Ohta, Yasushi Yagi, Ryo Furukawa,
Naoki Asada, and Hiroshi Kawasaki. Dense 3d reconstruction
method using a single pattern for fast moving object. In Proc.
2009 IEEE 12th International Conference on Computer Vision,
pages 1779–1786, Kyoto, Sep. 2009.

[SPB04] Joaquim Salvi, Jordi Pagès, and Joan Batlle. Pattern codification
strategies in structured light systems. PATTERN RECOGNI-
TION, 37:827–849, 2004.

[SPM+09] A. Silletti, E. Peserico, A. Mantovan, E. Zattra, A. Peserico,
and A. Belloni Fortina. Variability in human and automatic
segmentation of melanocytic lesions. IEEE EMBC, 2009.

[TW07] Philip Treleaven and Jonathan Wells. 3d body scanning and
healthcare applications. Computer, 40:28–34, 2007.

[VRM] Vrml97 and related specifications. http://www.web3d.org/

x3d/specifications/vrml/.

[Zha99] Zhengyou Zhang. Flexible camera calibration by viewing a
plane from unknown orientations. Computer Vision, IEEE
International Conference on, 1:666, 1999.

[Zha00] Zhengyou Zhang. A flexible new technique for camera cali-
bration. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22:1330–1334, 2000.

84

http://www.web3d.org/x3d/specifications/vrml/
http://www.web3d.org/x3d/specifications/vrml/


List of Figures

1.1 Progression of an atypical mole to radial melanoma. . . . . . . 2

1.2 Four different nodular melanomas. . . . . . . . . . . . . . . . . 3

1.3 Psoriasis on the back. . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 A taxonomy of different 3D scanning technologies. . . . . . . . 7

2.2 A Coordinate Measuring Machine and a zoom on its probe. . . 7

2.3 Two of the most common ways to realize a passive optical 3D
scanner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Two of the most common ways to realize an active optical 3D
scanner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Line-Plane Triangulation. . . . . . . . . . . . . . . . . . . . . 17

3.2 Perspective projection under the pinhole model. . . . . . . . . 20

3.3 Representation of the general pinhole camera. . . . . . . . . . 21

4.1 Nikon D5000 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 PicoPix 1430 . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Philips cClear XG1 Brilliance . . . . . . . . . . . . . . . . . . 30

5.1 The chessboard pattern used in our calibration procedure. . . 36

5.2 Calibration sequence containing multiple views of a printed
chessboard pattern on the first row, and a printed chessboard
pattern plus the projected pattern on the second row. . . . . . 39

85



9.LIST OF FIGURES

5.3 Example of subpixel accuracy on corners. The orange square is
the detected corner from cvFindChessboardCorners, the green
point is the refined 2D coordinates found by cvFindCornerSubPix. 40

5.4 Detected corners on the calibration sequence with projected
patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 (a) Reprojected corner (circle) and original one (+). (b) a plot
with all the errors in pixel. . . . . . . . . . . . . . . . . . . . . 43

6.1 Structured light illumination sequences. (Top row, left to right)
The first four bit planes of a binary encoding of the projector
columns, ordered from most to least significant bit. (Bottom
row, left to right) The first four bit planes of a gray code
sequence encoding the projector columns [LT09]. . . . . . . . 47

6.2 Comparison of binary (top) and gray code (bottom) structured
light sequences. Each image represents the sequence of bit
planes displayed during data acquisition. Image rows corre-
spond to the bit planes encoding the projector columns ordered
from the most to the least significant bit (from top to bottom)
[LT09]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3 Some frames of the captured sequence. The first column shows
the result of projecting an all white image plus the original
gray code pattern, whereas the second column displays the
results obtained by projecting the inverse pattern. It is then
used for an easier recovery of the 3D model, as explained in
Section 6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4 Decoding the gray code structured light sequence. Note the
shadow on the fingers of the right hand, prohibiting the recon-
struction of parts of the fingers. . . . . . . . . . . . . . . . . . 52

86



9.0LIST OF FIGURES

6.5 (a), (b) captured images of the 5th projected pattern. (c), (d)
per-pixel threshold to convert image (a) and (b) to grayscale.
(e) absolute difference between image (c) and (d) such that
e(i) = |c(i)− d(i)| ∀i ∈ pixel. (f) fixed threshold to (e). . . . 53

6.6 (a) OR with the masks calculated in all the previous frames.
(b) assignment of a high or low bit to each pixel, depending
on whether the pixel is brighter in picture 6.5(c) or 6.5(d). (c)
adding the decoded row indices of (b) to the previous calculated
one. (d) colored version of (c) to better display the decoded
row indices; the colors range from green (row index number
767) to blue (row index 0). . . . . . . . . . . . . . . . . . . . . 54

6.7 Sequence of the decoded row indices. The last bigger picture
is the final step. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.8 Creation of a watertight wireframe model [FER07]. . . . . . . 57

6.9 Example of a VRML file. . . . . . . . . . . . . . . . . . . . . . 58

6.10 Visualization of the 3D colored point cloud. It is possible to
see some dark dots in the hand that corresponds to pixel that
have not been reconstructed (the causes can be many and are
better discussed in the following Chapter). . . . . . . . . . . . 59

6.11 A zoom on the arm. Subfigures (a) and (b) display a general
view of the arm. (c), (d) and (e) show the detailed difference
among a point cloud, wireframe and meshes visualization. . . . 59

7.1 Test cubes used to measure the accuracy of our system; note
the different heights of the four parallelepipeds. . . . . . . . . 61

7.2 The 3D model of the test subject, reconstructed using the
PicoPix 1430. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.3 Zoom on the 3D model to prove that we are able to detect
even the 1 mm change on the surface of the test cubes. . . . . 63

87



9.LIST OF FIGURES

7.4 The 3D model of the test subject, reconstructed using the
Philips cClear XG1 Brilliance. . . . . . . . . . . . . . . . . . . 63

7.5 Zoom on the 3D model to prove that we are able to detect
even the 1 mm change on the surface of the test cubes. . . . . 64

7.6 Problem arising if setting a fast shutter speed on the camera
when using the PicoPix 1430. . . . . . . . . . . . . . . . . . . 65

7.7 Zoom on two pictures having projected pattern with lines-width
of just 1px. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.8 Decoding errors on picture (a) taken with the PicoPix 1430.
Here the lines are not evenly spaced as in (b) taken with the
Philips projector. . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.9 Decoding artifacts in both models; note that the PicoPix one
has many more artifacts. . . . . . . . . . . . . . . . . . . . . . 70

7.10 3D models of the test cubes and hands, both generated with
the NextEngine. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.1 Process to decode a 1 colored pattern. . . . . . . . . . . . . . 75

88



List of Tables

4.1 Nikon D5000 specifications. . . . . . . . . . . . . . . . . . . . 28
4.2 PicoPix 1430 specifications. . . . . . . . . . . . . . . . . . . . 29
4.3 Philips cClear XG1 Brilliance specifications. . . . . . . . . . . 30

89








	Abstract
	Acknowledgements
	Introduction
	3D Scanning Technology: an Overview
	State-Of-The-Art Optical Scanners
	Project Requirements
	Project Development Steps

	Camera and Projector Mathematical Models
	Geometry
	Line-Plane Triangulation
	The Pinhole Model
	The Ideal Pinhole Camera
	The General Pinhole Camera


	Human Body Scanner Setup
	Hardware
	Camera
	Projector
	Selected Hardware

	Software
	Programming Language
	Development Environment
	Additional Libraries


	Hardware Calibration
	Camera and Projector Calibration
	Calibration Methods
	Calibration Software
	Calibration Procedure

	Calibration Results

	3D Surface Modeling
	Projected Pattern
	Image Capture
	Image Analysis
	Image Triangulation
	3D Model
	Surfaces from Point Clouds
	Saving the Model as a VRML File

	Visualization with OpenGL

	Performance
	Accuracy
	Efficiency
	Costs
	Projectors Comparison
	Comparison with a Professional Laser Scanner

	Future Work
	Dropping Down to 1 Projected Pattern
	Full Human Body Scanner
	Texture Analysis for Skin Disease Detection

	Conclusion
	Bibliography
	List of Figures
	List of Tables

