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"Eclipse first, the rest nowhere"
ウマ娘





Abstract

In this thesis we study the Fermionic Weak Gravity conjecture in the context of gauged N =

2 supergravity in four dimensions. The rich geometrical structure of supergravity theories

provides a natural way to realize constraints coming from a consistent completion to quantum

gravity, and in this work we focus on a proposed inequality relating Yukawa couplings and the

scale of supersymmetry breaking. We explore the conjecture on Minkowski vacua with broken

supersymmetry, both in the general case and in explicit models. We find that some physically

relevant parametric limits partially realize the inequality, while other regimes remain out of

predictive reach. Explicit models also suggest that it might be crucial to fix the moduli, and we give

a few ways in which this work might be extended in the future.
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1
Introduction

A remarkable fact about nature is that phenomena occur over a wide range of length, energy and

time scales: over the last century alone, we have managed to stretch the scope of our investigations

from microscopic scales as small as one billionth of the size of an atom (104 GeV) to macroscopic

scales as large as the size of our observable universe (10−42 GeV). It is equally fascinating that

phenomena at very different scales seem to be, to a great extent, decoupled from one another, as

we need not to know the behaviour of quarks and electrons in order to describe the motion of

astronomical objects, and it is precisely by leveraging this hierarchy of scales that natural sciences

have been able to progress up to now.

Indeed, even in particle physics, this paradigm led to the incredibly successful theoretical

framework of Effective Field Theories (EFTs), which first historical example is the Fermi theory

describing weak interactions among electrons, neutrinos, protons and neutrons in β-decay. As

the name suggests, an EFT describes the behaviour of some chosen local degrees of freedom (in

this context, usually particles) up to a cutoff energy scale Λ, above which the theory cannot be

trusted and the effective description must be replaced with a more fundamental one. In order to

have a predictive framework, a certain number of free parameters must be fixed: this can be done

either by theoretical means, for example by leveraging the symmetries of nature, or experimentally.

As we increase the energy scale closer and closer to Λ, the value of these free parameters could

point to new degrees of freedom or interactions which might reveal a deeper structure to physical

phenomena. It is through this process that one can hope, one day, to achieve a fundamental theory

describing all interactions.

Unfortunately, although the study of the quantum behaviour of three out of the four funda-

mental forces has eventually lead to the formulation of the Standard Model (SM) of particle physics,

the gravitational interaction (as well as any physics beyond the SM) remains elusive to experiments.

As such, the dominant way to push the search for a theory of Quantum Gravity (QG) has been

through theoretical investigation. One very powerful tool, among the others, is self-consistency, i.e.

the absence of physical contradictions: a standard example is anomaly cancellation in the context

of Quantum Field Theories (QFTs), which has also been an important ingredient in the formulation

of Beyond the Standard Model (BSM) theories. It is striking that at higher energy scales, such as

those relevant to quantum gravity physics, it appears self-consistency may be strong enough to

almost uniquely fix the theory. This is exactly what happens in the best example we have of a
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theory of QG, string theory, where every possible constant parameter is uniquely fixed including,

remarkably, the dimension of space-time.

As we move toward the low energies, however, self-consistency becomes much less powerful,

as can be understood from the many possible BSM models which have been proposed. In string

theory this manifests as the existence, within our current understanding, of a huge number of

resulting low-energy effective theories. Indeed, although string theory itself is fixed, its vacuum

structure is not, and there are thus as many effective theories as the number of possible vacuum

geometries1, the so called String Landscape. It is remarkable, however, that the resulting set of

theories still picks out only a subset of all the possible apparently self-consistent EFTs. Here, we

used "apparently" to indicate that even though the low-energy description itself is not problematic,

an inconsistency would show up should we try to couple it to QG. For starters, when the theory

is coupled to gravity new anomalies will in general appear, but, interestingly, the absence of

gravitational anomalies in the EFT is not enough to guarantee the quantum consistency of the

theory. There are other constraints that one needs to satisfy, that simply seem to express the fact

that arriving at a unitary theory of quantum gravity is not so simple. Thus, the Swampland Program,

introduced in [1], aims to establish which constraints make up this set of consistency criteria,

usually stating them in the form of conjectures. We say that an EFT belongs to the Swampland when

it does not satisfy the Swampland constraints.

Some of the most important such proposed constraints (see for example [2] for a review) are

the Weak Gravity Conjecture (WGC) [3], which roughly tells us that gravity must always be the

weakest force at long distances, the No Global Symmetries Conjecture [4, 5], which tells us that in

quantum gravity global symmetries are forbidden, and the Swampland Distance Conjecture (SDC)

[6], which relates the cutoff of the effective theory with the behaviour of massless scalar fields. As

can be understood, these conjectures are rather weak and qualitative: however, in recent times, they

brought to interesting phenomenological consequences [7, 8] regarding the masses of neutrinos

and dark energy, which shows their relevance in answering open questions in particle physics.

Another, not very well explored conjecture is the Fermionic Weak Gravity Conjecture (FWGC),

first proposed by Palti in [9] and recently discussed also in [10, 11], which as a consequence suggests

that in effective theories where supersymmetry is spontaneously broken:

YMp > msusy, (1.1)

where Y is a suitable Yukawa coupling and msusy the supersymmetry breaking scale. This corollary

of the FWGC (which for the sake of convenience we will refer to as FWGC from now on) is what

will be explored in this thesis. In particular, since we deal with supersymmetric, gravitational

effective theories, it will be natural to work in a supergravitational EFT. We choose N = 2

1We talk about "vacuum geometries" here because vacua of string theory correspond to a certain choice of compactification
geometry for the extra dimensions.
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supergravity in four dimensions, since it is a balanced compromise between the fully controlled but

phenomenologically distant N = 8 supergravity and N = 1 supergravity, which is closer to reality

but much less constrained. The goal of this work will then be to support the above conjecture by

using the geometrical construction of the supergravity theory, e.g. as done in [12] in the case of the

Scalar Weak Gravity Conjecture, and in doing so provide a solid starting point where it is realized

rigorously. The thesis will be laid out in the following way:

• In chapter 2, we will give a quick review of the Swampland program and its phenomenological

implications, starting from the black hole argument for the WGC and ending with the FWGC.

• In chapter 3, a geometrical introduction to N = 2 supergravity in four dimensions will

be given. We will start by introducing the fundamental concept of electromagnetic duality,

which plays a major role in every N > 2 supergravity theory. Then, we will define the

Special and Quaternionic scalar manifolds, followed by a discussion on global symmetries,

isometries and the gauging procedure, which is the only way to introduce a potential in

theories with extended supersymmetry. Finally, we will present the relevant pieces of the

N = 2 Lagrangian, and give a basic example on how the geometrical structure of the theory

can help us to test and study Swampland conjectures, following [13].

• In chapter 4 we will test the FWGC by working in full generality. First, since the conjecture

deals with broken supersymmetry, it will be essential to cover the super-Higgs mechanism, the

supersymmetric counterpart to the Brout-Englert-Higgs mechanism for gauge symmetries,

which will be proven explicitly. This also allows us to discover the fermionic mass matrices

on the vacuum. Finally, after having better contextualized the various quantities involved in

the conjecture, we will check the FWGC.

• In chapter 5 we will instead test the FWGC by working with explicit examples. Since we

will be constructing most of the models from scratch, it is vital to give a general strategy to

compute vacua of gauged supergravities in the simplifying assumption of homogeneous

scalar manifolds, which will also be our working assumption. This will grant us the ability to

carry out the computation analitically. Then, we will explicitly calculate all the geometrical

quantities which define the sigma models of interest:

Mscal = EAdS4 ×
SU(1, 1)

U(1)
and Mscal =

SU(2, 1)
U(2)

× SU(1, 1)
U(1)

, (1.2)

and discuss the relevant gauging of their isometries. Finally, we will explicitly compute the

Yukawas, which definition has been given in the previous chapter, and check the conjecture.

• In chapter 6 we will discuss the results we obtained, future perspectives and extensions of

this work.
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Swampland and Weak Gravity

After more than five decades of research, string theory has emerged as the most promising quantum

theory of gravity. Although a plethora of string compactifications leading to four-dimensional

effective field theories have been found, not every seemingly consistent EFT (e.g. from the point of

view of anomaly cancellation) can be UV completed to a theory of quantum gravity. We call this

collection of "bad" theories Swampland, while "good" theories are found in the Landscape. The idea

of the Swampland program (introduced in [1], see [2, 14, 15] for reviews) is to try and give a set of

constraints, in the form of conjectures, in order to discriminate between the two. Although the

notion of the Swampland is in principle not restricted to string theory, Swampland conjectures are

often motivated by or checked in string theory setups. Indeed, string theory provides a perfect

framework to quantitatively and rigorously test the conjectures, improving our understanding of

the possible string theory compactifications on the way. Interestingly, many of these conjectures are

actually related, suggesting that they might simply be different facets of some more fundamental

quantum gravity principles yet to be uncovered.

These constraints also serve as a great tool to investigate beyond the Standard Model physics

or accessible phenomenology, cutting corners of parameter space and discarding large classes of

theories. For instance, in recent years there have been developments in understanding the role of

neutrinos and dark energy [7], or the "dark dimension" [16].

1 W E A K G R AV I T Y C O N J E C T U R E

One of the first conjectured conditions that EFTs have to satisfy in order to be consistently coupled

to a theory of quantum gravity, and the first one to have very strong evidence for its implications,

as discussed below, is the "Weak Gravity" Conjecture, or WGC for short [3, 17]. The conjecture

tries to formalize the notion that "any gauge force must be stronger than gravity", and is usually

introduced heuristically in the context of black hole physics, as we will now show.

Consider a charged Reissner-Nordström black hole of (electric) U(1) charge Q and mass M.

The black hole has an outer horizon r+, an inner horizon r− and a temperature given by

T =
r+ − r−

4πr2
+

, (2.1)
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F I G U R E 2 . 1 : The process of discharge of a black hole. Heuristically, pair production
due to the presence of an electric field on the black hole horizon leads to emission of

a charged particle and to the discharge of the black hole.

which is known to be associated to thermal radiation [18]. If suitable charged particles are present

in the theory, we expect this object to radiate them away too, leading to its discharge. Alternatively,

we can also understand the discharge process by considering pair production from the vacuum on

the black hole horizon. As seen in figure 2.1, the particle whose charge has the same sign as the

black hole is repelled, while the other one falls towards the singularity. More precisely, depending

on the masses of the emitted particles, we can identify two different regimes in which the discharge

takes place and which formalize the previous two intuitions:

1. If the temperature of the black hole is much larger than the mass of the particle T ≫ m, than

the discharge process is mainly thermal, since the electric field just outside the outer horizon

leads to a chemical potential term in the Boltzmann factor which discriminates between

charges ±q [19, 20]:

P ∼ e
1
T

(
m± g2qQ

r+

)
. (2.2)

We see that this contribution becomes relevant when m ∼ g2qQ/r+.

2. If the temperature is much lower than the mass of the particle T ≪ m, than we can understand

the discharge process as driven by Schwinger pair production in an (almost) constant electric

field, close to the horizon [20]. This is the dominant contribution when the black hole is

near-extremal.

Consider now the process of black hole discharge and assume that the emitted charged particles

have charges qi ̸= 0 and masses mi. For the evaporation to be possible we must have M > ∑i m
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and by charge conservation Q = ∑i qi, then:

M
Q

≥ 1
Q ∑

i
mi =

1
Q ∑

i

mi
qi

qi ≥
1
Q

(
m
q

)
min

∑
i

qi =

(
m
q

)
min

, (2.3)

where min refers to the minimum value of the ratio in parenthesis. We can pick the initial black

hole to saturate the extremality bound M = gQMp, where Mp is the four-dimensional Planck mass

and g the U(1) gauge coupling when the covariant derivative is normalized as Dµ = ∂µ + iqAµ

and the kinetic term as 4g−2F2. Substituting this bound back in (2.3), we obtain the Weak Gravity

Conjecture.

Weak Gravity Conjecture (WGC): consider a theory coupled to gravity with a U(1) gauge

field A and gauge coupling g:

S =
∫

d4x e

(
M2

p

2
R − 1

4g2 F2 + . . .

)
, (2.4)

then there must exist a particle in the spectrum with mass m and charge q (usually called

WGC particle) satisfying:

m ≤ gqMp. (2.5)

A few remarks are in order: first of all, it is clear that this heuristic argument lies on the

assumption that we expect charged black holes to discharge in order for the WGC particle to

exist. However, we could easily imagine an EFT without charged particles or with a spectrum

such that the charged black hole is electromagnetically stable. It is not clear as to whether the

discharge process is something that should be expected to be a Swampland constraint. Proving

that completely stable charged black holes carry an intrinsic inconsistency would therefore amount

to the proof of the electric Weak Gravity Conjecture. Secondly, notice that the argument works

and is to be trusted as long as the black hole is big enough to be captured by a (semiclassical)

gravitational EFT, as its discharge and evaporation processes can then be reliably studied by means

of quantum fields on a curved background.

Despite the shortcomings of this heuristic approach, the Weak Gravity Conjecture still is one

of the most tested conjectures of the Swampland program, as it can be constructed in the more

rigorous context of the AdS/CFT correspondence [21, 22], by studying black hole physics and

BPS states [9, 23], and is also found to be implied by unitarity and positivity bounds on scattering

amplitudes [3, 24–26]. Less definitive but nonetheless interesting tests have been done by looking

at higher derivative corrections to Einstein gravity [27]. Moreover, (2.5) is known to be realized in

all known explicit constructions in string theory [17]. All of this, together with the fact that the

conjecture nicely links with other ideas in the Swampland program, gives it a solid foundation,

suggesting it to point to some underlying quantum gravitational principle. As a last remark, the

name "weak gravity" is due to the fact that if we use (2.5) when considering the interaction between



8 Chapter 2. Swampland and Weak Gravity

two WGC particles

Fgrav ∼ m2

M2
pr2 , Felec ∼

(gq)2

r2 , (2.6)

we see that it is equivalent to the statement Felec ≥ Fgrav.

The WGC introduced up to now is usually referred to as "electric" Weak Gravity Conjecture,

for obvious reasons. We can try to apply the same argument for the dual "magnetic" gauge field

dAD = ⋆F, for which charged probes in four dimensions are given by monopoles. The mass of the

monopole is at least the energy stored in its magnetic field, which is linearly divergent and needs to

be cut off. In this context, we can define a semiclassical radius rs ∼ Λ−1 of the monopole which can

be though of as the size of the core and where its effective description as a particle breaks down. In

the absence of finely tuned cancellations between bare mass and field energy we then have

mmon ≳ Λg2
mag, (2.7)

where gmag is the charge of the monopole. The charge quantization condition reads gmagg ∈ Z, so

that by neglecting integer coefficients we get to

mmon ≳
Λ
g2 . (2.8)

Then, the WGC applied to these particles reads

mmon ≤ gmag Mp, (2.9)

and by using (2.8) we are led to the magnetic version of the Weak Gravity Conjecture.

Magnetic Weak Gravity Conjecture (MWGC): consider a theory coupled to gravity with a

U(1) gauge field A and gauge coupling g:

S =
∫

d4x e

(
M2

p

2
R − 1

4g2 F2 + . . .

)
, (2.10)

then the cutoff of the theory must be such that:

Λ ≲ gMp. (2.11)

This really is a statement about the fact that in quantum gravity global symmetries are

forbidden [4, 5], because sending g → 0 invalidates the effective description even at low energies

[28]. This conjecture also finds many different extensions, one of them giving a more precise

statement about the nature of the cutoff of the theory, tying it with another well-known Swampland

constraint, the Swampland Distance Conjecture [6, 8, 29]. In particular, the breakdown of the

effective description in the g → 0 limit is due to an infinite tower of massive states becoming light,
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F I G U R E 2 . 2 : Self-energy diagram involving the trilinear coupling g and scalar
fields running in the loop.

characterized by a mass scale m∞ such that:

m∞ ∼ gMp, (2.12)

where the state at a certain "level" n in the tower has mass m ∼ nαm∞, α ∈ N. This is for example

what happens in Kaluza-Klein (KK) compactifications of field theories or in more general string

compactifications.

2 F E R M I O N I C W E A K G R AV I T Y C O N J E C T U R E

We are now going to introduce the main focus of this thesis project, the Fermionic Weak Gravity

Conjecture. Indeed, in [30] it has been proposed that (2.12) could be extended not only to scalar

mediators [9], but also to spin 1/2 particles. As noted in the paper, (2.12) contains the trilinear

coupling g, which also appears in the self-energy diagram for the vector field of the kind found

in figure 2.2. As such, the conjecture can also then be interpreted in the context of the emergence

proposal [11, 31–33], where the claim is that condition (2.12) follows from imposing that the kinetic

terms for the vector fields are vanishing in the UV and that they become emergent in the IR by

receiving order one contributions. Looking at (2.10), this is equivalent to say that the theory is

strongly coupled in the UV and the gauge coupling g becomes weakly coupled from running in the

IR. This contribution is interpreted in terms of integrating out the massive tower of (this time

charged) states, which charge is proportional to the level n in the tower.

Following this qualitative reasoning, we could then apply it to fermions. This time the trilinear

coupling of interest is the Yukawa coupling Y, as it appears in diagram 2.2 by replacing external

photon lines with fermions lines. Then, this new Fermionic Weak Gravity Conjecture can be stated

as
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Fermionic Weak Gravity Conjecture (FWGC): consider a theory coupled to gravity

containing both fermion and scalar fields:

S =
∫

d4x e

(
M2

p

2
R − 1

2
∂µϕa∂µϕa + iψα /∂ψα + Yαβ

a ϕaψαψβ + . . .

)
(2.13)

then there is a massive tower of states satisfying:

m∞ ∼ YMp, (2.14)

where Y is the overall Yukawa coupling of a specific fermion with the tower.

A few considerations are in order: first of all, (2.14) can be given the same qualitative

interpretation as (2.11), since sending Y → 0 again invalidates the effective description. Secondly,

we implicitly introduced a massive tower of states where at each level there is a fermion and a

scalar: this is the first suggestion that the tower must be supersymmetric. The strength of the

Yukawa coupling is also assumed to increase as we go up the tower as Yn ∼ Ynα, α ∈ N. In

the case of gauge couplings (g) this can be related to the fact that the charge is quantized and it

increases with the level, while in the case of scalar fields couplings (µ) it is the mass of the state that

increases up the tower. In general, we do not expect this kind of behaviour from Yukawa couplings,

but if the tower is supersymmetric then the increasing Yukawa coupling is explained by the relation

to either a gauge or scalar superpartner, since we will have Y ∼ g or Y ∼ µ respectively. Another

important difference is that the Yukawa coupling Y is not in general normalized across all states of

the theory, while in the case of g, for example, it is impossible to make one state parametrically

weakly coupled without making all states weakly coupled (i.e. by sending g → 0) due to charge

quantization. In other words, a fermion having a certain weak coupling Ỹ with a state outside

of the tower does not imply that the coupling to the tower Y is small. This makes the conjecture

slightly less powerful than the magnetic WGC.

Taking everything into consideration, the most controlled setting in which to try and motivate

further this statement is in the context of supersymmetric theories of gravity, where towers of

states of the kind described above are naturally introduced. In particular, since these towers are

supersymmetric, we expect that if supersymmetry is broken at all it will be as such at lower scales

than m∞, bringing us to the claim of the paper [30], and the main study object of this thesis.

Corollary of Fermionic WGC: consider a supersymmetric theory coupled to gravity

containing both fermion and scalar fields, then if there is a vacuum which spontaneously

breaks supersymmetry at scale msusy, it will be such that

msusy < YMp. (2.15)
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That is to say, supersymmetry must be restored at the mass scale m∞ ∼ YMp if the tower

ought to be supersymmetric.

There are a few subtleties we have yet to address: in Lagrangian (2.13) we introduced many

Yukawa couplings Yαβ
a , but it is still not clear how to identify the presence of a tower of states,

and in particular how to extract the overall Yukawa scale Y in (2.15). As we will see later, we will

try to justify our choice by means of the structure of the supergravity theory and its geometrical

interpretation. Next, the scale of supersymmetry breaking should be defined as the one sensed by

the tower, so the mass splitting between fermions and bosons in the tower. In general, this might

be rather difficult to identify, but fortunately, in supergravity theories the scale of supersymmetry

breaking on a Minkowski vacuum is such that it can be simply identified with the masses of

the gravitini. Finally, here we only focused on renormalizable Yukawa couplings, since non-

renormalizable ones (like the one possessed by gravitini or goldstini) do not require the presence of

a tower of states in order to give order one one-loop contributions to the kinetic term [30].





3
Supergravity as a testbed

As mentioned in previous chapters, in this thesis we consider the Fermionic Weak Gravity

Conjecture (2.15) from the point of view of supergravity theories. In particular, we will focus on

4d N = 2 supergravity. Indeed, supergravity theories already provide a rich playground in which

to explore Swampland conjectures [10, 12, 13, 34–36], both when viewed as gravitational EFTs

without reference to any UV completion or as specific models coming from string compactifications.

In particular, it is clear in the literature how N = 2 supergravity models in 4d are linked to Type

I IA or I IB string theories compactified on Calabi-Yau three-folds (CY3) with possible fluxes turned

on (see [37] for a review of string compactifications) [38–44]. Another appealing feature of working

in N = 2 supergravity, as will be discussed more in depth later, is that the vacuum structure of

the theory is due to the gauging of global symmetries, making it ideal to study the WGC and the

web of Swampland conjectures related to it. At the same time, N = 1 models in string theory

are usually introduced as truncations of N = 2 constructions, which again justify their usage

from the point of view of UV completions to the EFT. We could also consider using other N > 2

supergravities, but their structure is very rigid, as for example they only admit homogeneous

spaces as scalar manifolds of the sigma model [45] while being very far from phenomenologically

realistic constructions.

We will first present some general features of N = 2 supergravity theories in the first section,

following the discussion and conventions of [46]. Meanwhile, the scalar geometry will be left to the

second section and will follow the same reference. Then, we will describe the gauging procedure

both from the point of view of isometries of the scalar geometry and through the embedding tensor

formalism, mainly taking after [12] and [45]. The latter is particularly interesting, since it makes

explicit one of the most important features of supergravity theories: duality covariance. Finally, we

will describe the full N = 2 action as found in [46], focusing on the interesting sectors which we

will use in later chapters. Throughout the rest of the thesis, we will work in Planck units, if not

otherwise specified.

1 N = 2 S U P E R G R AV I T Y I N 4 D

N = 2 supergravity displays a high degree of complexity in the construction of the Lagrangian and

the transformation rules of the fields, but its basic structure can be boiled down to a few intuitive
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geometrical principles, which then determine all of the couplings, mass matrices and vacuum

energy.

1. The choice of a Special Kähler manifold SM, which describes the self-interactions of the

vector multiplets through a sigma model.

2. The choice of a Quaternionic manifold QM, which describes the self-interactions of the

hypermultiplets through a sigma model.

3. The choice of a gauge group G, that in the general case must be a subgroup of the isometry

group of the scalar manifold Mscalar ≡ SM⊗HM, which can be identified with the group

of global symmetries of the non-gauge sector of the Lagrangian1, and which has an immersion

in the symplectic group of electric–magnetic duality rotations (when viewed as such, it’s

usually called U-duality subgroup).

We can now proceed to list the full field content of a generic N = 2 supergravity theory, while also

fixing some of the conventions.

• The gravitational multiplet, described by the veilbein 1-form Va, (a = 0, 1, 2, 3) transforming

in the vector representation of the structure group of the frame bundle on spacetime SO(1, 3),

the spin-connection 1-form ωab, the SU(2) doublet of gravitino 1-forms ψA, ψA (respectively,

left-chiral and right-chiral), and the graviphoton 1-form A0.

• nV vector multiplets, each containing a vector AI , (I = 1, . . . , nV), a doublet of 0-form

spinors (usually called gauginos) λiA, λi∗
A, transforming as vectors on SM and as SU(2)

doublets. where the upper or lower position of A denotes right and left chirality respectively

and a complex scalar field zi, (i = 1, . . . , nV). The scalar fields can be regarded as coordinates

on the special manifold SM which can be freely chosen, and

dimCSM = nV . (3.1)

• nH hypermultiplets, each containing a 2nH 0-form spinors (usually called hyperinos) ζα or

ζα (α = 1, . . . , 2nH), where again the upper or lower index denotes left and right chirality

respectively, and four real scalar fields qu, (u = 1, . . . , 4nH). The scalar fields can be regarded

as coordinates on the Quaternionic manifold QM which can be freely chosen, and

dimRQM = 4nH . (3.2)
1In some instances there may be additional global symmetries that act trivially on the scalar manifolds, or the theory

could be devoid of scalar fields altogheter, like pure N = 2 supergravity. In most of these cases, the additional factors come
from the non-trivial action of the R-symmetry group of the supersymmetry algebra on the fermion fields.
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As will be explained below, any Quaternionic manifold has a holonomy group:

Hol(QM) ⊂ SU(2)⊗ Sp(2nH , R), (3.3)

and the index α of the hyperinos transforms in the fundamental of Sp(2nH , R).

In the next section we are going to describe more thoroughly the scalar geometry and the gauging

procedure, starting with a brief review of electromagnetic duality.

2 S C A L A R G E O M E T R Y

2.1 Electromagnetic duality

Electromagnetic duality plays an important role in determining the geometry of the Special Kälher

manifold, since we expect that in a supersymmetric theory the action of the duality group must

extend to the entire supermultiplet (in our case, the vector multiplet) and so have some kind of

action on the scalar fields.

Consider the gauge sector of a generic 2-derivative theory containing n abelian vector fields

AΛ, which action is written in terms of their field strengths FΛ = dAΛ, and with arbitrary couplings

to other fields ϕi (which in the case of interest are fields described by a sigma model):

S =
∫ (1

4
IΛΣ(ϕ)FΛ ∧ ⋆FΣ +

1
4
RΛΣ(ϕ)FΛ ∧ FΣ +

1
2

OΛ(ϕ) ∧ ⋆FΛ
)
+ Srest(ϕ). (3.4)

Here, IΛΣ(ϕ) and RΛΣ(ϕ) are n × n matrices which might be field dependent, I being negative-

definite to ensure unitarity. OΛ is a field dependent two-form which contains at most one derivative

of the fields ϕ. The vector fields by definition satisfy the Bianchi identities:

dFΛ = 0, (3.5)

and obey the equations of motion:

∇µ ∂L
∂FµνΛ = 0. (3.6)

These equations take the form of Bianchi identities if we introduce the two form

˜GΛµν = 2
∂L

∂FΛµν
, (3.7)

where 2 ˜GΛµν = ϵµνρσGρσ
Λ . Now, equation (3.6) can be rewritten as:

dGΛ = 0. (3.8)
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With these definitions, the system of Bianchi identities and equations of motion seems invariant

under arbitrary constant GL(2n, R) transformations,

F′ = SF, F ≡

FΛ

GΛ

 , (3.9)

however, the rotations must also preserve the definitions of ˜GΛµν in equation (3.7). This can be

checked to restrict the allowed rotations to the symplectic group S ∈ Sp(2nv, R) [46, 47].

In order for these duality transformations to be consistent, the matrices I ,R and O should

also transform non-trivially. In particular, if we define a symmetric matrix NΛΣ, sometimes called

the period matrix, and the self-dual2 combination O+ as

NΛΣ = RΛΣ + iIΛΣ,

O+
Λ =

1
2
(OΛ − iÕΛ),

(3.10)

they must transform non-trivially as:

N ′ = (C + DN )(A + BN )−1,

O+′
= O+(A + BN )−1,

where S =

A B

C D

 ∈ Sp(2n, R)

(3.11)

Thus, while the duality group acts on the vector field strengths, in order for it to be realized

consistently we expect there to be also an action of the diffeomorphism group of the scalar manifold,

such that it realizes the following homomorphism:

iδ : Di f f (Mscal) −→ Sp(2n, R), (3.12)

and transforms the symplectic matrices as in equation (3.11). In particular, there should be a

suitable embedding of the isomorphism group into the symplectic group such that Bianchi identities

and all equations of motions are invariant. This subset of the full symplectic group is usually

called U-duality group, or duality symmetry group. Notice that the invariance here it’s not in the

Lagrangian, but in the equations of motion, as already stressed.

As a last remark, before introducing vector and hyper scalars geometries, notice that in a

generic N = 2 supergravity theory the total number of abelian gauge fields is n = nV + 1, where

the extra one is the graviphoton.

2Notice in fact that Õ+ = iO+
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2.2 Special Kähler manifolds

In the following, we will simply call "Special Kähler" a Special Kähler manifold of local type, which

is the one relevant in supergravity applications and which characterization was first given in [48].

First, notice that since the vector multiplet sigma model can be covered by patches of complex

coordinates and holomorphic transition functions between them, it defines a complex manifold

SM. Assume now the manifold is Kähler, so that we can globally define a closed two form K,

called fundamental form: this form can be expressed in terms of the hermitian metric gij∗ , which is

in turn expressed as exterior powers of a real function K called Kähler potential, as

g = ∂∂K. (3.13)

Here, ∂ and ∂ denote the holomorphic and anti-holomorphic exterior derivatives (with respect to

which we define the Dolbeault cohomology of the complex manifold).

Let’s then define a flat (i.e. with vanishing bundle curvature) holomorphic (in terms of

transition functions) vector bundle SV → SM with structure group Sp(2nV + 2, R) and a complex

U(1) line bundle L → SM. We say that the manifold is of Kähler-Hodge type if the first Chern

class of the line bundle is the cohomology class of the fundamental form. That is, given a U(1)

connection Q, we have:

dQ = K (3.14)

where the equality is modulo exact forms.

We call Special Kähler Manifold (of local type) a Kähler manifold SM equipped with a

tensor bundle H = SV ⊗ L → SM, such that SM is of Kähler-Hodge type with respect to

L and the Kähler potential can be written in terms of holomorphic sections of this tensor

bundle Ω ∈ Γ(H,SM) as:

ΩM =

XΛ

FΣ

 , K = − log i
(

XΛFΛ − XΛFΛ

)
≡ − log i

〈
Ω
∣∣Ω〉 , (3.15)

where we defined ⟨ | ⟩ as a symplectic invariant inner product. The transition functions

between patches i and j look like:

Ωj = e fij MijΩi (3.16)

where fij are holomorphic functions associated to Kähler transformations of K between

different patches

Kj = Ki + fij + f ij (3.17)
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and Mij is a constant Sp(2nV + 2, R) matrix (which acts on the index M = 1, . . . , 2nV + 2 of

Ω), both subject to the usual cocycle condition on triple overlaps.

We can also describe the tensor bundle H by introducing non-holomorphic symplectic sections

VM = eK/2ΩM =

 LΛ

MΣ

 (3.18)

so that equation (3.15) can be written as the normalization condition

1 = i
〈
V
∣∣V〉 . (3.19)

Moreover, we can see that these section, even though not holomorphic, are covariantly holomorphic

with respect to a Kähler covariant derivative with weight p = 1/2, which naturally appears when

trying to construct Lagrangians for supergravity theories [47]:

∇i∗V ≡
(

∂i∗ −
1
2

∂i∗K
)

V = 0 = ∇iV, (3.20)

as can be explicitly checked, while taking the other covariant derivative we can define:

Ui ≡ ∇iV ≡

 f Λ
i

hiΣ

 = (Ui∗)
∗. (3.21)

An alternative is to define the symplectic sections VM by solving the set of differential

equations:

∇iV = Ui, (3.22)

∇iUj = iCijkgkl∗Ul∗ , (3.23)

∇i∗Uj = gi∗ jV, (3.24)

∇i∗V = 0, (3.25)

which among other things can be checked to yield (3.19). Moreover, the second equation defines

a set of totally symmetric covariantly holomorphic sections of T M3 ⊗L2 (T denotes here the

tangent bundle), Cijk through which another definition of special geometry can be given [49].

This set of equations is actually what one gets from the N = 2 solution of Bianchi identities in

superspace [46]. The Cijk tensor also obeys the following identities:

∇[kCi]jl = ∇[k∗Ci∗ ]j∗ l∗ = ∇k∗Cijl = ∇kCi∗ j∗ l∗0, (3.26)

Ri∗ jl∗k = gl∗ jgki∗ + gl∗ l gji∗ − Ci∗ l∗s∗Ctkjgts∗ , (3.27)



2. Scalar geometry 19

where R is the Riemann curvature tensor on SM.

Finally, we can define the period matrix by the following relations:

MΛ = NΛΣLΛ, hiΣ = NΛΣ f Σ
i (3.28)

which can be solved by introducing the following (nV + 1)× (nV + 1) matrices

f Λ
I =

 f Λ
i

LΛ

 , hΛI =

 hiΛ

MΛ,

 (3.29)

and defining:

NΛΣ = hΛI · ( f−1)I
Σ, (3.30)

Following this definition, one finds that the period matrix transforms as it should under symplectic

duality transformations in equation (3.11). Indeed, this is why the structure of special geometry

was introduced: the existence of the symplectic bundle H −→ SM is required in order to be able

to pull-back the action of the diffeomorphism to a certain symplectic transformation of the fibres

and implement the homomorphism iδ. From the previous relations, it is straightforward to derive a

set of constraints that these symplectic sections must satisfy, for example in order to ensure the

symmetry of the period matrix. Among these relations we quote the following [50]:

ImNΛΣLΛLΣ
= −1

2
, (3.31)

⟨V|Ui⟩ = ⟨V|Ui∗⟩ =
〈
Ui
∣∣Uj
〉
= 0, (3.32)

UΛΣ ≡ f Λ
i f Σ

j∗ gij∗ = −1
2
(ImN )−1|ΛΣ − LΛLΣ, (3.33)

gij∗ = −i
〈
Ui
∣∣Uj∗

〉
= −2 f Λ

i ImNΛΣ f Σ
j∗ , (3.34)

Cijk =
〈
∇iUj

∣∣Uk
〉
= f Λ

i ∂jNΛΣ f Σ
k = (N − N)ΛΣ f Λ

i ∂j f Σ
k . (3.35)

Notice that the positivity of the Kähler metric also implies ImN < 0 which is required by unitarity,

and its symmetry is also implied by the second equation [47]. This equation also ensures the

presence of a prepotential F(X) (if nV > 1) in at least one symplectic frame, that is an homogenous,

degree two function of the sections XΛ such that:

FΛ =
∂F(X)

∂XΛ . (3.36)

Since, differently from the case of rigid supersymmetry, this prepotential is not always defined,

we will give a prepotential-free formulation of the action in the following section. As a last

remark, notice that in the prepotential formulation it is tempting to try and give the XΛ the role of

coordinates. In supergravity, however, they are one more than the actual coordinates zi of the

special manifold we are working with, and due to how these are patched together in (3.16), they
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can not be interpreted as regular coordinates, but as homogeneous projective coordinates, such that

we can define a frame where

zi = Xi/X0, X0 = const, (3.37)

which is usually called "special" frame. This is why the alternative name "projective" Special Kähler

geometry is also used.

2.3 Quaternionic manifolds

The geometry of the hypermultiplet sector is heavily influenced by their transformation properties

under the SU(2) ⊂ U(2) R-symmetry subgroup. To see this, we first look at their holonomies. In

particular, one simple way to derive the holonomy group of a scalar manifold in supersymmetric

theories is to consider which endomorphisms of the tangent space preserve the structure of the

supersymmetry transformation rules [47]. In this case, the holonomy group of the manifold QM

gets restricted to:

Hol(QM) = SU(2)× H, H ⊂ Sp(2nH , R), (3.38)

where the SU(2) factor comes, as anticipated, from R-symmetry.

We call a Quaternionic manifold QM a 4nH-dimensional smooth manifold admitting a

restricted holonomy group:

Hol(QM) = SU(2)× H, H ⊂ Sp(2nH , R), (3.39)

and where these structures define a principal SU(2) × USp(2nH) frame bundle, with

non-vanishing SU(2) curvature. As a consequence of the restricted holonomy, the manifold

admits a triplet of fundamental two forms Kx, called hyper-Kähler forms, such that they are

covariantly closed with respect to the SU(2) bundle SU −→ QM connection 1-form ωx:

∇Kx ≡ dKx + ϵxyzωy ∧ Kz = 0, (3.40)

and are proportional to its bundle curvature

Ωx = λKx. (3.41)

We see that this kind of geometrical construction generalizes the complex U(1) line bundle of

Kähler-Hodge manifolds to the non-abelian case of SU(2). Indeed, the triplet of fundamental two

forms is this time defined in terms of a triplet of complex structures Jx which obey the Quaternionic

algebra:

(Jx) : T (QM) → T (QM), Jx Jy = −δxy1 + ϵxyz Jz, (3.42)



2. Scalar geometry 21

with respect to which the metric is hermitian, and the metric huv of the Quaternionic manifold, as:

Kx
uv = huw(Jx)w

v , (3.43)

similarly to the previous section. Notice, however, that equation (3.40) implies that the manifold is

not Kähler, since dKx ̸= 03. This means that an N = 2 supergravity theory cannot be rewritten

simply in terms of N = 1 fields and couplings, but it must be non-trivially truncated [51, 52].

Introducing SU(2) indices A = 1, 2 and Sp(2nH) indices α = 1, . . . , 2nH that run in the

fundamental of both groups, we can introduce vielbein 1-forms:

UAα
u , huv = UAα

u UBβ
v CαβϵAB, (3.44)

where Cαβ = −Cβα and ϵAB = −ϵBA are respectively the Sp(2nH) and SU(2) flat metrics.

Conventions on raising and lowering indices using these metrics can be found in A. The veilbeins

respect the compatibility condition with the Levi-Civita connection on the manifold, and so

are covariantly closed with respect to the su(2) valued connection ωx and the sp(2nH) valued

connection ∆αβ = ∆βα:

∇UAα ≡ dUAα +
i
2

ωxσAB
x ∧ Uα

B + ∆αβ ∧ CβγUAγ = 0, (3.45)

where σAB
x = ϵAC(σx) B

C and (σx) B
C are the standard Pauli matrices. Furthermore UAα satisfies the

reality condition:

UAα ≡ (UAα)∗ = ϵABCαβUBβ, (3.46)

while the inverse veilbein is defined as UAα
u Uv

Aα = δv
u. We can use these quantites to flatten a pair

of indices of the Riemann tensor:

Ruv
st UAα

u UBβ
v = − i

2
Ωx

st(σx)
ABCαβ + R

αβ
st ϵAB, (3.47)

where R
αβ
st is the field strength of the Sp(2nH) connection and:

R
αβ
st = λϵABUαA

[s UβB
t] + ϵABUγA

s UδB
t CαρCβσΩγδρσ. (3.48)

The previous equations imply that Quaternionic manifolds are Einstein spaces such that the Ricci

tensor reads:

Ruv = λ(2 + nH)huv. (3.49)

Finally, we note the following interesting identities:

Ωx
uvUu

AαUv
Bβ = iλCαβ(σx)AB, (3.50)

3Confusingly, in some references, these manifolds are also referred to as Quaternionic Kähler, even though they are not
Kähler.
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i
2

Ωx(σx)AB = λUAα ∧ UB
α , (3.51)

hstΩx
usΩy

tw = −λ2δxyhuw + λϵxyzΩz
uw. (3.52)

3 G A U G I N G

As mentioned in the introduction to the chapter, the gauging procedure requires choosing a certain

number of generators among the isometries of the product manifold:

Mscal = SM×QM. (3.53)

Since the Special Kähler manifold is involved, we expect in general to have a non-trivial embedding

into the symplectic group, since our gauge group of choice resides in the U-duality group of the

theory, G ⊂ GU ⊂ Sp(2nV + 2) and moreover the number of its generators must be less than the

number of vectors, dimG ≤ nV + 1. We can break down the gauging procedure in three steps:

1. Choice of the gauge generators among the generators of GU , which determines the action of

the gauge group on the fields, their representation, and the structure constant, as well as its

embedding in the electromagnetic duality group.

2. Introduction of gauge curvatures and covariant derivatives: for example, the action of an

isometry on scalar fields defines a covariant derivative as

ϕi → ϕi + ϵIki
I , Dµϕi = ∂µϕi + AI

µki
I , (3.54)

while we must require that the usual Maxwell-type gauge transformations are replaced by:

δAI
µ = ∂µϵI + f I

JK AJ
µϵK, (3.55)

where f are the structure constant of the (possibly non-abelian) gauge group of choice.

3. Restoration of supersymmetry, which gets broken by the above modifications. This entails

introducing new O(ϵ) terms in the supersymmetry transformation rules of the fermions,

usually called "fermionic shifts". This, in turn, also enforces the introduction of Yukawa-like

terms (which will be particularly important in this thesis)

Lyuk ∼ O(ϵ), (3.56)

and potential terms

V(ϕ) ∼ O(ϵ2) (3.57)

in the supergravity Lagrangian.
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Before proceeding further, let us notice this important fact. When choosing the generators inside

GU , which is the symmetry group of the equations of motion and Bianchi identities, their symplectic

embedding might map them to transformations which are not part of the global symmetry group

of a given Lagrangian GL ⊂ GU (which is the way we usually perform gaugings). In this case we

talk about "magnetic" gaugings, because some of the gauge vector fields have GΛ as a field strength

instead of FΛ, as we will see later. We instead talk about "electric" gauging if G ⊂ GL ⊂ GU . One

non-trivial statement of great importance is the fact that given a certain gauge group, we can

always perform Sp(2nV + 2) transformations (which in general change the Lagrangian if S ̸∈ GU)

to find (at least one) electric realization. In the next sections, then, we will focus on this restricted

case while we will briefly discuss the fully general case when introducing the embedding tensor

formalism in 3.3.

3.1 Holomorphic momentum maps on Special Kähler manifolds

Consider the set of isometries of SK that leave the hermitian metric gij∗ invariant. Since the

manifold is complex, we expect these isometries to be holomorphic, i.e ki(z, z∗) = ki(z) (since they

must act on the coordinates without mixing z and z):

zi → zi + ϵΛki
Λ(z), (3.58)

and satisfy the Killing equations with respect to holomorphic indices:

∇ik j +∇jki = 0, ∇i∗k j +∇jki∗ = 0. (3.59)

Moreover, they are covariantly holomorphic with respect to the Levi-Civita connection:

∇ik j = 0. (3.60)

As already mentioned, in the case of Special Kähler manifolds the isometry group has a natural

embedding in the symplectic group, so that:

LΛV ≡ ki
Λ∂iV + ki∗

Λ∂i∗V = TΛV (3.61)

where LΛ denotes the Lie derivative with respect to kΛ, TΛ ∈ Sp(2nV + 2) and where we neglected

possible contributions of the kind fΛ(z)V, since they usually do not appear [46]. If the gauging is

to be electric, the action of TΛ must be block diagonal, and in particular must be such that the

sections transform in the adjoint representation of G, thus leading to:

(TΛ)
∆

Σ =

 f ∆
ΛΣ 0

0 − f ∆
ΛΣ

 . (3.62)
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Remembering that the Kähler potential is expressed as a symplectic invariant, we also have

LΛK = 0, which means that both the metric and the complex structure (because of holomorphicity)

is invariant. As such, also the Kähler two-form is invariant

LΛK = 0 = iΛdK + diΛK = diΛK, (3.63)

where we used the relation between L, d and the interior product i and the fact that dK = 0. Then,

locally, we can find a set of real functions P0
Λ such that:

iΛK = dP0
Λ, (3.64)

called Killing prepotentials or momentum maps. In holomorphic coordinates, the previous equation

can be rewritten as:

ki
Λ = igij∗∂j∗P0

Λ. (3.65)

If the Lie-algebra of the gauge group is semi-simple [53], we can write the following identity:

igij∗ki
[Λkj

Σ] = −1
2

f ∆
ΛΣP0

∆, (3.66)

which follows from the realization of the gauge algebra in terms of Poisson brackets of P0 [46]. We

can find other constraints that these Killing vectors and prepotentials must satisfy in order for the

gauging to be consistent. Among the others [53] we find:

ki
Λ f Σ

i = iP0
ΛLΣ − f Σ

Λ∆L∆, (3.67)

ki
ΛLΛ = ki∗

ΛLΛ
= P0

ΛLΛ = P0
ΛLΛ

= 0, (3.68)

f Σ
i ki

ΛLΛ
= −( f Σ

i ki
ΛLΛ

)∗. (3.69)

3.2 Triholomorphic momentum maps on Quaternionic manifolds

We now turn to the (this time real) isometries of the Quaternionic manifold QM. Since in N = 2

theories the scalar manifold factorizes, in order for the gauging to be consistent we must have an

action by triholomorphic isometries ku of the same gauge group G that acts on the Special Kähler

manifold SM. In other words, we must have that the vector

kΛ = ki
Λ∂i + ki∗

Λ∂i∗ + ku
Λ∂u (3.70)

is a Killing vector of the product metric on QM×SM:

ĝ =

gij∗ 0

0 huv

 . (3.71)
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Notice however that this time Lku
Λ

V = 0, which reflects the fact that these isometries have trivial

duality action. This fact is particularly important when discussing abelian gaugings of Quaternionic

isometries, since their action on the Special Kähler manifold as well as their symplectic embedding

is trivial. Triholomorphicity here means that the Killing vector fields leave the HyperKähler

structure invariant up to SU(2) rotations:

LΛKx = ϵxyzKyWz
Λ, (3.72)

where W is an SU(2) compensator, which cannot be removed in virtue of the non-triviality of

the SU -bundle. However, analogously to the previous case, we can define a triplet of 0-form

prepotential Px
Λ such that the derivative in equation (3.64) is replaced by a covariant derivative

with respect to the SU(2) connection ωx, and using (3.41):

iΛΩx = −∇Px
Λ, (3.73)

which in components reads:

2ku
ΛΩx

uv = −∇uPx
Λ. (3.74)

The Poissonian realization of the Lie Algebra this time leads to the equivariance condition:

λ−1Ωx
uvku

Λkv
Σ +

1
2

ϵxyzPy
ΛPz

Σ =
1
2

f ∆
ΛΣPx

∆ (3.75)

We also report here useful identities involving quaternionic prepotentials4:

Px
Λ = − 1

2nHλ
∇ukv

ΛΩx
uv, (3.76)

UA
αuUBα

v = − i
2λ

ΩAB
uv − 1

2
ϵABhuv, (3.77)

∇ukvΛ = − 1
2λ

Ωx
uvPx

Λ − 1
2

UαA
[u UβB

v] ϵAB Mαβ, (3.78)

where Mαβ is the mass matrix of the hyperinos and which will be introduced later.

3.3 Embedding tensor formalism

From all previous considerations, it is clear that the choice of a gauge algebra breaks the duality

covariance of the original (ungauged) theory. This can be seen from the fact that only some selected

vectors enter the gauging procedure, changing the equations of motion and breaking invariance

under the U-duality group. Indeed, the gauging procedure assigns specific charges to the field

content of our theory, and a symplectic rotation implies reassigning these charges. The most we can

do is to reinstate symplectic covariance by means of the embedding tensor Θα
M, a (2nV + 2)× dimgU

4Notice that the last equation has typos in [54], indeed the minus sign in front of the first term is required for consistency
with the other two equations, as can be checked by direct computation.



26 Chapter 3. Supergravity as a testbed

matrix which expresses the gauge algebra generators as a combination of the U-duality ones:

XM ≡ Θα
Mtα, (3.79)

and which gets treated as a spurion field. We immediately see that this implies dim(G) = rank(Θ),

which is clearly a highly redundant description, since we must have dim(G) < nV + 1. Nonetheless,

the advantage of this formalism is that it allows to recast all the consistency conditions on the

choice of the gauge group into GU-covariant (and thus independent of the symplectic frame)

constraints on Θ. These constraints are:

1. Gauge invariance. The embedding tensor should define an XM realizing the gauge algebra5,

that is:

[XM, XN ] = −XP
MN XP, (3.80)

where XP
[MN] ≡ (X[M) P

N] play the role of structure constants. The key difference is that the

implied constraint

XP
(MN)XP = 0 (3.81)

is usually non-trivial when magnetic gaugings are present. Notice that we expect that XP
MN ,

in the electric frame and for common gaugings, to reduce to the form (3.62).

2. Locality. Since at most nV + 1 vectors have a mutually local Lagrangian description, this must

always be true in any symplectic frame, independently of the gauging. This is expressed by:

Θα
MΘβ

NCMN = 0. (3.82)

This equation, since symplectic invariant, also tells us that there also should be a frame where

the gauging is realized purely electrically, since we can always choose Θα
M = (ΘΛα, 0), Λ =

1, . . . , nV + 1. This second constraint is dependent from the first one in N > 2 theories.

3. Supersymmetry. The following constraint is a linear one, coming from supersymmetry. It

restricts the allowed representations of Θ with a projection:

X(MNP) = XQ
(MNCP)Q = 0, (3.83)

which in general removes the heighest weight one.

In particular, this last constraint comes from requiring the cancellation of the O(ϵ) terms we

introduced in the modification of the supersymmetry rules due to minimal couplings. These

5We expect this realization to be faithful only when there are no inert matter fields under symplectic transformations.
This is the case for N > 2 supergravity, since they always sit in the same multiplet as the vector fields. As already
mentioned, however, in N = 2 supergravity we have Quaternionic isometries with trivial (and as such, unfaithfully
realized) duality action.
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minimal couplings can be introduced again as:

Dµ ≡ ∂µ − AM
µ Θα

Mtα = ∂µ − AΛ
µ Θα

Λtα − AΛµΘΛαtα, (3.84)

from which it is clear that the gauging is electric iff ΘΛα = 0 and the field strengths are the local

Lagrangian ones FΛ. As a last remark, let’s briefly motivate the introduction of tensor fields in

supergravity theories, which is of great importance when considering the derivation of these

models from string compactifications [37, 45]. When building the field strength of the vectors:

FM = dAM + XM
NP AN ∧ AP. (3.85)

It is suggestive to compute the covariant exterior derivative of this quantity to notice that DFM ∝

XM
(PQ)

̸= 0. It is not shocking, though, as the true field strengths are defined by F = FMXM, and

from (3.81) we get DFMXM = DF = 0. In order to fix this problem, the introduction of tensor

fields is required, and the gauge algebra is not realized as a Lie algebra but as a free differential

algebra [55]. These tensor fields are seen as dual to some of the original fields in the ungauged

formulation, and this is to be expected since the gauging procedure should not add new degrees of

freedom.

4 L A G R A N G I A N A N D S U P E R S Y M M E T R Y T R A N S F O R M AT I O N

R U L E S

Our next task is to write down the N = 2 supergravity Lagrangian, which full derivation can be

found in [46, 54]. Although it won’t be reported here, it is worth mentioning that the second step of

the gauging procedure, discussed in the previous chapter, can be performed more geometrically by

identifying all connections and curvatures on the sigma model manifolds and promoting them to

"gauged connections", i.e. adding a piece proportional to the prepotentials or killing vectors. This

allows to sistematically introduce all correct gauge covariant derivatives. Moreover, without loss of

generality, we will assume the gauging is done in the electric frame. We will then later relax this

assumption when searching for explicit models in Chapter 5.

Before proceeding further, we will specify how fermions are introduced on the sigma model as

sections of suitable bundles, which helps identifying the various covariant derivatives. Then, we

will be ready to write down both the Lagrangian sectors and the supersymmetric transformation

rules of interest.

1. The gravitino field ψA
µ transforms as a spinor valued 1-form on spacetime and as a section of

the L⊗ SU bundle.
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2. The gaugino field λiA transforms as a spinor valued 0-form on spacetime and as a section of

L⊗ T (SM)⊗ SU , where T denotes again the tangent bundle.

3. The hyperino field ζα transforms as a spinor valued 0-form on spacetime and as a section

of T (QM)⊗ SU−1 where this notation is used to define the bundle that one obtains from

T (QM) by deleting the SU(2) part of the structure group.

The N = 2 supergravity action is given schematically by:

S =
∫

d4x e
(
Lkin + L4 f + Lg

)
, (3.86)

where Lkin contains the kinetic terms of the fields as well as Pauli-like couplings involving

derivatives of scalar fields, L4 f contains four-fermions terms which we will not be interested about

and Lg contain O(g) and O(g2) terms introduced by the gauging. To keep track of these terms, we

will explicitly introduce g factors in the Lagrangian as book-keeping device. It will be useful later

to split this last contribution in fermionic mass matrices, gravitino mixing matrices and potential,

as Lg = Lmass + Lmix + V(q, z, z). Explicitly, we have:

Lkin ⊃− 1
2

R + gij∗∇µzi∇µzj∗ + huv∇µqu∇µqv +
ϵµνλσ

e

(
ψ

A
µ γσ∇νψλA − ψµAγσ∇νψA

λ

)
− i

2
gij∗

(
λ

iA
γµ∇µλ

j∗
A + λ

j∗
Aγµ∇µλiA

)
− i
(

ζαγµ∇µζα + ζ
α
γµ∇µζα

)
+ i
(
NΛΣF−Λ

µν F−Σµν −NΛΣF+Λ
µν F+Σµν

)
,

(3.87)

g−1Lmass ⊃ 2SABψ
A
µ γµνψB

ν + Mαβζαζβ + Mα
iBζαλiB + MiAlBλ

iA
λlB + h.c. (3.88)

g−1Lmix ⊃ 2iNA
α ζ

α
γµψ

µ
A + igij∗WiABλ

j∗
AγµψµB + Mα

iBζαλiB + h.c. (3.89)

g−2δA
B V(z, z, q) = gij∗WiACW j∗

BC + 2NA
α Nα

B − 12SACSBC

=
(

gij∗ki
Λkj∗

Σ + 4huvku
Λkv

Σ

)
LΛLΣ +

(
gij∗ f Λ

i f Σ
j∗ − 3LΛLΣ

)
Px

ΛPx
Σ,

(3.90)

where ∇ always denotes a suitable (gauge) covariant derivative with respect to the spin connection

and bundle connections [46]. Just to give an example, and because it will be used later, we report

the covariant derivative for the gravitino field:

∇ψA = dψA − 1
4

γabωab ∧ ψA +
i
2
Q̂ ∧ ψA + ω̂ B

A ∧ ψB, (3.91)

where Q̂ and ω̂ denote gauged 1-form L and SU connections:

Q̂ = Q + gAΛP0
Λ, (3.92)

ω̂ ≡ ω̂xσx = (ωx + gAΛPx
Λ)σx. (3.93)
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In the above Lagrangians we also introduced the fermionic mass matrices:

Mαβ = −U αA
u U βB

v ϵAB∇[ukv]
Λ LΛ; Mαβ ≡ (Mαβ)∗, (3.94)

Mα
iB = −4U α

Buku
Λ f Λ

i ; MB
i∗α ≡ −(Mα

iB)
∗, (3.95)

MiAlB ≡ M(1)
iAlB + M(2)

iAlB = ϵABk[i|Λ f Λ
l] +

i
2
(σx)

C
A ϵBC∇i f Λ

l Px
Λ, (3.96)

where MiAlB contains typos in [46], while the correct expression can be found in [54], and fermionic

"shift" matrices:

SAB = SBA =
i
2
(σx)

C
AϵBCPx

ΛLΛ; SAB ≡ (SAB)
∗, (3.97)

WiAB ≡ ϵABki
ΛLΛ

+ i(σx)
B

C ϵCAPx
Λgij∗ f Λ

j∗ ; W j∗
AB ≡ (WiAB)∗, (3.98)

NA
α = 2UA

uαku
ΛLΛ; Nα

A ≡ −(NA
α )∗. (3.99)

which are so called because they enter the O(g) susy transformation rules of the fermions:

δψAµ = ∇µϵA + igSABγµϵB + . . . (3.100)

δλiA = · · ·+ gWiABϵB + . . . (3.101)

δζα = · · ·+ gNA
α ϵA + . . . . (3.102)

It is also worth mentioning the supersymmetric transformation of the veilbeins:

δVa
µ = −iψAµγaϵA − iψA

µ γaϵA. (3.103)

In equation (3.87) the normalization of the kinetic term of the quaternions follows from the choice

λ = −1 in (3.41), which will be used from now on. In the same equation the kinetic terms of the

vectors have been written in terms of the self dual and anti self dual combinations:

F±
µν =

1
2

(
FΛ

µν ±
i
2

ϵµνρσFΛρσ

)
. (3.104)

Since they will be important when discussing Yukawa couplings, we also report here the gradient

flow equations, which express covariant derivatives of fermionic shifts in terms of mass matrices,

and which in [54] contain typos in the vector multiplet sector:

∇iSAB =
1
2

gij∗W j∗

(AB), (3.105)

∇i∗SAB = 0, (3.106)

∇i Nα
A =

1
2

Mα
iA, (3.107)

∇i∗ Nα
A = 0, (3.108)

∇iW jAB = 2SABδ
j
i + ϵABgjl∗ gim∗km∗

Λ f Λ
l∗ , (3.109)
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∇j∗WiAB = gim∗ (
2MAB

j∗m∗ + 2ϵABglm∗ f Λ
j∗ kl

Λ − ϵABgl j∗ f Λ
m∗kl

Λ

)
, (3.110)

∇uW j∗
AB = −1

2
gij∗ Mα

i(BUA)αu, (3.111)

∇uSAB = −1
2

Uαu(ANα
B), (3.112)

∇uNβ
A = −4UβB

u SAB − UuAα Mαβ. (3.113)

As a last remark, the expression for the potential (3.90) in terms of the fermionic shift matrices is

called supersymmetric Ward identity and its general form is valid in any supergravity theory.

5 A N E X A M P L E : D E S I T T E R A N D G R AV I T I N O M A S S

As a working example on how the geometric constraints on N = 2 supergravity can help us

attack and test Swampland conjectures, we review here recent work on the subject [13]. The paper

shows how charged gravitini cannot have a small or vanishing Lagrangian mass on a de Sitter

(dS) background while respecting the (magnetic) Weak Gravity Conjecture (2.11). In particular,

assuming without restrictions that the gauging is electric, from the construction of the previous

sections we will need three ingredients: the kinetic terms of the vectors, in order to identify the

gauge coupling, the gravitini-gauge vectors minimal couplings in order to identify the charge, and

the value of the vacuum energy when the gravitino mass is vanishing.

Rewriting the vector kinetic term in (3.87) in terms of the usual field strengths, instead of self

dual or anti self dual ones, we get:

Lkin ⊃ 1
4
IΛΣFΛ

µνFΣµν, IΛΣ = ImNΛΣ, (3.114)

where we recall I to be negative definite, scalar dependent and where FΛ
µν = 2∂[µ AΛ

ν] + f Λ
Σ∆ AΣ

µ A∆
ν .

Since −I is positive definite (and symmetric) we can define veilbeins of the kind:

−IΛΣ = δijEi
ΛEj

Σ, Ei
ΛEΛ

j = δi
j, (3.115)

and insert them in the kinetic term, getting to:

Lkin ⊃ −1
4

δijFi
µνFjµν, (3.116)

which are the kinetic terms for the "canonical" vectors vi = Ei
Λ AΛ. These vectors will include the

U(1) factor we are interested in exploring through the WGC.
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Next, we are interested in identifying the U(1) charge of the gravitini. To do so, we explicitly

rewrite the relevant terms in their covariant derivative (3.91) as:

−iL3/2
kin = −ψ

A
µ γµρσDρψAσ −

i
2

ψ
A
µ γµρσvi

ρ

(
P0

i δB
A + (σx)

B
A Px

i

)
ψBσ, (3.117)

where we defined P•
i = P•

ΛEΛ
i and we used the ϵ · γ duality property (A.13) to introduce γµνρ.

Notice that the kinetic term is canonically normalized. When choosing the veilbein, we can always

perform a rotation such that our U(1) gauge vector of interest uµ is along a particular direction,

say:

uµ ≡ vi=1
µ , (3.118)

so that its minimal coupling to the gravitino field can be rewritten simply as:

−iψA
µ γµρσuρQ B

A ψBσ, with 2Q B
A ≡ P0

1 δB
A + (σx)

B
A Px

1 ψBσ. (3.119)

Notice that the Q matrix is expressed as a linear combination of (1, σx) and as such is hermitian.

We can diagonalize it by a unitary transformation which we perform on the gravitini, such that in

this basis the minimal couplings read:

−iψ1
µγµρσuρq1ψ1σ − iψ2

µγµρσuρq2ψ2σ, (3.120)

where q1 and q2 are the physical charges (gauge coupling times integer charge) between gauge

bosons and gravitini. As such, (2.11) can be recasted simply as:

Λ < q1 and Λ < q2 (Planck units). (3.121)

Let’s now turn to the potential, which if the gravitini mass is vanishing can be written using

(3.33) as:

V = −1
2
I−1|ΛΣ

[
P0

ΛP0
Σ + Px

ΛPx
Σ

]
+ 4huvku

Λkv
ΣLΛLΣ, (3.122)

and in particular:

V ≥ 1
2

δij
[

P0
i P0

j + Px
i Px

j

]
. (3.123)

Now, realizing that:

δij
[

P0
i P0

j + Px
i Px

j

]
=

1
2

δij
(

P0
i δB

A + (σx)
B

A Px
i

) (
P0

j δA
B + (σy)

A
B Py

j

)
≥ 1

2
δij
(

P0
1 δB

A + (σx)
B

A Px
1

)2
= Tr[QQ] = Tr

[
U†QUU†QU

]
,

(3.124)

we can write the following inequality:

V ≥ q2
1 + q2

2 ⇒ V ≥ q2
1 and V ≥ q2

2 ⇒ V ≥ Λ2. (3.125)
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This in turn can be cast by considering the Hubble scale:

H ≥ Λ/
√

3, (3.126)

which means that the tree-level dS critical points will receive large quantum corrections and

cannot be trusted. This challenges the consistency of such dS vacua, and is a manifestation of

the Dine-Seiberg problem [56]. Moreover, this kind of reasoning can be extended to the case

of a parametrically small gravitini mass matrix (3.97). In this case the potential gets another

contribution of the form

Vgmass = −4LΛLΣPx
ΛPx

Σ. (3.127)

These masses are parametrically small when compared to the Hubble scale, which means that

LΛLΣPx
ΛPx

Σ ≪ H2 (3.128)

and the potential is still above the UV cutoff Λ, as before. Notice that if the gravitini are uncharged

the same conclusion cannot be reached, but at the same time the WGC cannot be applied and it is

not clear if the theory should fall in the Swampland or not. In the original paper, the authors also

provide a wide range of examples of how the above reasoning is realized explicitly, which however

won’t be discussed here, since we want to focus on the basic reasoning. We saw nonetheless how

the geometrical and constrained structure of N = 2 supergravity could be used to test Swampland

conjectures. In the next chapters we will try to apply a similar philosophy to the calculation of

Yukawa couplings.
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Testing the Fermionic WGC: general relations

On the line of [12, 13, 34, 35], we will first try and motivate (2.15) in the full general theory,

while the construction of explicit models will be addressed in Chapter 5. In particular, the main

objective of this chapter is to give a precise, geometrical meaning to the Yukawa Y and the scale

of supersymmetry breaking msusy appearing in the Fermionic Weak Gravity Conjecture, and to

express them in terms of relevant quantities of the bundle we have constructed on the scalar

manifold P −→ Mscal . The hope is to gain insight on how the conjecture could be realized in terms

of hierarchies of such quantities. Since this kind of construction is not present in the literature, in

the following we provide an original approach to the conjecture. En passant, we will also prove the

super-Higgs mechanism for N = 2 theories, which can be again regarded as original work.

Since we are talking about broken (local) supersymmetry, we will first have to introduce the

super-Higgs mechanism and correctly identify the physical, fermionic mass matrices. Then, from

this analysis, the computation of the Yukawa couplings, albeit involved, will be straightforward.

To keep the logic simple, we will focus on calculating these quantities on Minkowski backgrounds,

since in this case the Lagrangian masses are the physical (tree-level) masses and the scale of

supersymmetry breaking is easily identified. The next section will be devoted to this last, broad

topic of supersymmetry breaking, and will mainly follow [45].

1 VA C U A A N D S U P E R S Y M M E T R Y B R E A K I N G

A (Lorentz-preserving) vacuum of a supergravity theory is a solution of the equations of motion that

is maximally symmetric in the gravitational sector, and as such can be described by a cosmological

constant Λ. Due to maximal symmetry and Lorentz invariance, only scalar fields1 can take on take

on a certain (constant and possibly non vanishing) vacuum expectation value (vev):

⟨ϕs(x)⟩ = ϕs
0. (4.1)

1In general, we can also have fermionic bilinears
〈
ψψ
〉

with non-vanishing vevs, but since they won’t be relevant to the
discussion, we will neglect them in the following.
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This value describes a critical point of the scalar potential,

∂V(ϕ)

∂ϕs

∣∣∣∣
ϕs=ϕs

0

= 0, (4.2)

and the cosmological constant is given by

Λ = V(ϕ0). (4.3)

A vacuum ϕ0 can be supersymmetric, namely can preserve an amount of supersymmetry. In this

case there should exist a local supersymmetry parameter ϵA(x) along which the supersymmetry

variation, evaluated on the solution, of the fermionic fields vanish. This follows from the fact that if

ϵ̄Q |0⟩ ≡ ϵ̄AQA |0⟩ = 0 then

δϵ f = ⟨0| [ϵQ, f ] |0⟩ = 0, (4.4)

where Q are the supercharges generating the odd part of the supersymmetry algebra. When

appearing in the Lie bracket, f is meant as a field operator. Notice that we can restrict f to be

a fermionic field, since the supersymmetric variation of all scalar fields is trivially vanishing

on the vacuum. Indeed, by construction, in any supergravity theory we schematically have

δϵ(Bosons) = ϵ(Fermions), which vev vanishes.

Then, we can translate the above equation to explicit conditions for ψA
µ , λiA and ζα. That is,

evaluating (3.100),(3.101) and (3.102) on the vacuum:

δψAµ = DµϵA + igSABγµϵB = 0,

δλiA = gWiABϵB = 0,

δζα = gNA
α ϵA = 0,

(4.5)

where we neglected all contributions from vector or fermion fields and where the full covariant

derivative reduces to the Lorentz-covariant one, since the pullback on spacetime of the scalar

manifold bundle connections always involves expressions like ∂µϕi∇i(. . . ), and on the vacuum

we have ∂µ ⟨ϕ(x)⟩ = 0. Equation (4.5) is known as the Killing spinor equation and can have at

most N solutions ϵ̃a, a = 1, . . . , n ≤ N . In this case we say that the vacuum preserves n ≤ N

supersymmetries. In particular, in the case of N = 2 supergravity, the vacuum can preserve all

supersymmetries, no supersymmetries, or one supersymmetry, and we talk about N = 2, N = 0

or N = 1 vacua respectively. It will be useful to work out the integrability condition of the first of

(4.5), which reads

0 = D[µδψν]A = D[µDν]ϵA + igSABγ[νDµ]ϵ
B

=
1
8

γρσRµνρσϵA − g2γµνSABSBCϵC,
(4.6)
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and where we used the following commutator of covariant derivatives, also reported in (A.1):

[Dµ,Dν] =
1
4

γabRab
µν. (4.7)

N = 2 vacuum. Let’s assume first the vacuum preserves two supersymmetries: this implies

WiAB = 0, NA
α = 0, (4.8)

and from the integrability condition, using gamma contraction identities:

−12g2SABSBC =
1
8

RµνρσγµνγρσδC
A, (4.9)

where again all expressions are understood as evaluated on the vacuum. Then, using again gamma

identities, permutation properties of the Riemann tensor indices and the fact that Rµν|vac = −Λgµν,

the previous equation can be recast as:

ΛδC
B = −12g2SABSBC = −12g2(S†S) C

A ≡ −12g2(S2) C
A , (4.10)

which is indeed what we get by looking at the potential in (3.90) and using (4.8) in (4.3). For ease

of notation, in the previous expression we defined the matrix S2 = S†S. From this it is also clear

that since S2 is positive semidefinite, supersymmetric vacua can be only Minkowski (Λ = 0) or anti

de Sitter (AdS, Λ < 0). In the Minkowski case, we immediately see that S2 = 0, and hence gravitini

remain massless.

N = 0 vacuum. Let’s now consider a vacuum with no supersymmetry: in this case

WiAB ̸= 0, NA
α ̸= 0, (4.11)

which means that in general the cosmological constant will be a certain combination of fermionic

shifts:

ΛδA
B = gij∗WiACW j∗

BC + 2NA
α Nα

B − 12SACSBC. (4.12)

In the Minkowski case, we get the special condition:

gij∗WiACW j∗
BC + 2NA

α Nα
B − 12SACSBC = 0, (4.13)

and following (4.11) the gravitini mass matrix will be non-vanishing. In particular, since we must

have no solution to the Killing spinor equations, the matrices W2 and N2 appearing above need

not be degenerate. Thus, the S matrix will have two non-zero eigenvalues, which are the two

non-vanishing masses of the gravitini.
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N = 1 vacuum. Finally, we turn to the case of partial supersymmetry breaking. In this case, the

Killing spinor equations admit one solution, which without loss of generality we can rotate to be

along the first component ϵ1. Then, we have:

WiA1 = 0, N1
α = 0. (4.14)

Looking instead at the integrability condition, now we have:

Λδ1
A = −g212SABSB1, (4.15)

which is satisfied by:

g2S2 =

− 1
12 Λ 0

0 g2S2ASA2

 . (4.16)

Again, in the case of a Minkowski vacuum we can see that the form of the S matrix is simple and

we have one massive and one massless gravitino. Notice that since the two SU(2) doublet gravitini

are treated differently, this vacuum will inevitably need to (partially) break R-symmetry. This can

be achieved minimally by one hypermultiplet and one vector, and implies that a theory with only

vector multiplets can not display N = 1 vacua [43, 57, 58].

2 S U P E R - H I G G S M E C H A N I S M

It turns out there is a mechanism akin to the Brout-Englert-Higgs mechanism [59] for spontaneous

(local) supersymmetry breaking: as we have seen, when the background is of Minkowski type, the

masses of the gravitini can be taken to be associated to the scale of supersymmetry breaking

m4
susy = 12g2SABSAB, (4.17)

just as the masses of the vector fields are related to the gauge symmetry breaking scale in the Higgs

mechanism. This is not a coincidence: the gravitino can be taken to be the "gauge" fields of local

supersymmetry, as can be seen from the comparison of its transformation rule in pure supergravity

with the gauge transformation of an abelian vector field:

δψµA = ∂µϵA(x)

δAµ = ∂µλ(x).
(4.18)

As with massless vectors, counting the on-shell (real) degrees of freedom (dof) of the massless

gravitino leads to #do f = 2, while in the massive case we expect the on-shell dofs to be #do f = 4.

As such, the gravitino should acquire two new spin-1/2 polarizations from a "goldstino" through a

mechanism, suitably called super-Higgs mechanism. Proving this at the Lagrangian level on arbitrary

curved backgrounds is non-trivial and requires dealing with the various constraints coming from
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supersymmetry. There has been recent work in the context of N = 1 theories in [60], and in this

thesis we will provide an extension in N = 2 supergravity, assuming an N = 0 vacuum. As in the

paper, the main strategy is to properly get rid of gravitino-fermions mixings by redefining the

former with a supersymmetric transformation. A new Lagriangian will then follow which will

make explicit the decoupling of the goldstino (we will call this gauge the "unitary gauge", similarly

to the Higgs case). In the following, we will implicitly evaluate all expressions on the vacuum, and

all covariant derivatives can again be considered to be only the Lorentz-covariant ones. Moreover,

we will set g = 1 in the Lagrangian for ease of notation.

2.1 Gravitino redefinition

We start by identifying the terms responsible for gravitini-fermions mixing in equation (3.89). We

can define the combination of the spin-1/2 fermions

vA = igij∗WiBAλ
j∗
B + 2iNA

α ζα, (4.19)

vA = −igij∗W j∗
BAλBi − 2iNα

Aζα. (4.20)

Notice that the fermion vA, which in the following will be called goldstino, has the same chirality

as the gravitino, namely

γ5vA = −vA, γ5vA = vA. (4.21)

The first step is to decouple the goldstino vA from the gravitino, namely we want to have Lmix = 0.

To this purpose, we redefine the gravitino as

ψµA = ΨµA + iSABγµXB
DvD + XA

DDµvD, (4.22)

ψA
µ = ΨA

µ + iSABγµXB
DvD + XA

DDµvD, (4.23)

ψ̄µA = Ψ̄µA − iSABXB
DV̄Dγµ + XA

DDµv̄D, (4.24)

ψ̄A
µ = Ψ̄A

µ − iSABXB
D v̄Dγµ + XA

DDµv̄D, (4.25)

where ΨA
µ is the new gravitino and XA

B is to be determined by asking that Lmix = 0. Notice

that we used the charge conjugation rule (ψ̄AγµχB)
† = −ψ̄AγµχB, which is responsible for the

additional minus in the second term of the gravitino redefinition. We perform this substitution

everywhere in the Lagrangian, up to two fermions.
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1. Gravitino mass term. Inserting the gravitino redefinition into the gravitino mass term we get

2SABψ̄A
µ γµνψB

ν + h.c. = 2SABΨ̄A
µ γµνΨB

ν

+ 12iSABSBCXC
D(Ψ̄A

µ γµvD)

+ 4SABXB
E(Ψ̄A

µ γµνDνvE)

+ 24SABSAFSBCXF
DXC

E(v̄DvE)

− 12iSABSAFXF
DXB

E(v̄DγµDµvE)

− 2SABXA
DXB

E(v̄DγµνDµDνvE) + h.c.

(4.26)

2. Gravitino goldstino mixing term. Inserting the gravitino redefinition into the gravitino

goldstino mixing term we get

Lmix = v̄AγµψµA + h.c.

= v̄AγµΨ̄µA + 4iSABXB
D(v̄AvD) + XA

D(v̄AγµDµvD) + h.c.

= Ψ̄µAγµv̄A − 4iSABXB
D(v̄AvD)− XA

D(v̄AγµDµvD) + h.c.

(4.27)

3. Gravitino kinetic term. Inserting the gravitino redefinition into the gravitino kinetic term we

get

ϵµνλσψ̄A
µ γσDνψλA + h.c. = ϵµνλσΨ̄A

µ γσDνΨλA

− 4SABXB
E(Ψ̄A

µ γµνDνvE)

+ 2iXA
B(Ψ̄A

µ γµνλDνDλvB)

+ 6iSABSAFXF
DXB

E(v̄DγµDµvE)

+ 4SABXA
DXB

E(v̄DγµνDµDνvE)

− ϵµνλσXA
DXA

E(v̄DγσDµDνDλvE) + h.c.

(4.28)

In obtaining these expressions we have systematically integrated by parts, neglected higher-

order contributions due to torsion De and dropped terms in which the spacetime derivative

was acting on functions of the scalar fields, such as SAB and XB
A, since these are constant on

the vacuum.

When summing these three contributions, the third line of the gravitino mass term cancels against

the second line of the gravitino kinetic term, the fifth line of the gravitino mass term adds up to the

fourth line of the kinetic term, the last line of the gravitino mass term cancels again the fifth line of
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the gravitino kinetic term, but that contribution survives with a factor 2. We find:

ϵµνλσψ̄A
µ γσDνψλA + 2SABψ̄A

µ γµνψB
ν + v̄AγµψµA = ϵµνλσΨ̄A

µ γσDνΨλA + 2SABΨ̄A
µ γµνΨB

ν

+ 12iSABSBCXC
D(Ψ̄A

µ γµvD) + Ψ̄A
µ γµvA

− 6iSABSAFXF
DXB

E(v̄DγµDµvE)− XD
E(v̄DγµDµvE)

+ 24SABSAFSBCXF
DXC

E(v̄DvE)− 4iSABXB
D(v̄AvD)

+ 2iXA
B(Ψ̄A

µ γµνλDνDλvB)

+ 2SABXA
DXB

E(v̄DγµνDµDνvE)

− ϵµνλσXA
DXA

E(v̄DγσDµDνDλvE) + h.c..

(4.29)

Notice that we have two kinds of gravitino-goldstino mixing term, namely ψγµv and ψγµνDµDνv.

The latter is non-zero only on a curved background, since on flat space Dµ = ∂µ and flat derivatives

commute. To cancel this term, we need to perform a redefinition of the graviton. This will generate

another term of the kind ψγµv, multiplied by the scalar potential V, which will be cancelled by an

appropriate choice of XB
A.

2.2 Graviton redefinition and cancellation of mixing terms

First, let us recall the commutator of two spacetime covariant derivatives:

[Dµ,Dν]vA =
1
4

γabRab
µνvA. (4.30)

Then, contracting with gamma matrices, we find

γµνDµDνvA = −1
4

RvA, (4.31)

γµνρDνDρvA =
1
2

(
Rµνγν −

1
2

Rγµ

)
vA. (4.32)

Then, we redefine the graviton as

ea
µ = ẽa

µ −
(

iXA
BΨ̄A

µ γavB + h.c.
)

(4.33)

and thus, using δe = e eµ
a δea

µ and δ(eR) = −2e
(

Rµ
a − 1

2 Reµ
a

)
δea

µ (we call δea
µ ≡ ẽa

µ − ea
µ), we have

that the Einstein-Hilbert term and the potential term (which are the only ones giving a two-fermion
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contribution) change as:

−1
2

eR(e)− eV = −1
2

ẽR(ẽ)− ẽV + ẽ
(

Rµ
a −

1
2

Rẽµ
a

)
δea

µ − ẽ V ẽµ
a δea

µ

= −1
2

ẽR(ẽ)− ẽV + ẽ
(

Rµ
a −

1
2
(R + 2V)ẽµ

a

)
δea

µ

= −1
2

ẽR(ẽ)− ẽV − ẽ
(

iXA
BΨ̄A

µ

(
Rµνγν −

1
2

Rγµ

)
vB + h.c.

)
+ ẽ

(
iVXA

BΨ̄A
µ γµνvB + h.c.

)
(4.34)

One can check that the term before the last one above cancels against the fifth line of (4.29), which

reads

+2iXA
B(Ψ̄A

µ γµνλDνDλvB) + h.c. = iVXA
BΨ̄A

µ

(
Rµνγν −

1
2

Rγµ

)
vB + h.c. (4.35)

Then, the only gravitino-goldstino mixing terms remaining are of the type Ψ̄γv and read

12iSAMSMCXC
BΨ̄A

µ γµvB + Ψ̄A
µ γµvA + iXA

BΨ̄A
µ γµvB + h.c. ≡ 0. (4.36)

By asking that this vanishes, we find the matrix XA
B:

XA
B =

(
−iVδA

B − 12iSBCSCA
)−1

, (4.37)

XA
B =

(
iVδB

A + 12iSBCSCA

)−1
. (4.38)

Using equation (4.12), the expression for XA
B can be written as

XA
B =

(
−iVδA

B − 12iSBCSCA
)−1

=
(
−igij∗WiACW j∗

BC − 2iNA
α Nα

B

)−1
. (4.39)

This goes as the inverse of the supersymmetry breaking scale and as such is ill defined on a

supersymmetric vacuum, as expected. Turning the logic around, one could derive the scalar

potential and the Ward identity of any gauge supergravity in any dimension by asking that

gravitino-goldstino mixing terms cancel out as above. After all gravitino goldstino mixing terms

have cancelled, we are left with

ϵµνλσψ̄A
µ γσDνψλA + 2SABψ̄A

µ γµνψB
ν + v̄AγµψµA = ϵµνλσΨ̄A

µ γσDνΨλA + 2SABΨ̄A
µ γµνΨB

ν

− 6iSABSAFXF
DXB

E(v̄DγµDµvE)− XD
E(v̄DγµDµvE)

+ 24SABSAFSBCXF
DXC

E(v̄DvE)− 4iSABXB
D(v̄AvD)

+ 2SABXA
DXB

E(v̄DγµνDµDνvE)

− ϵµνλσXA
DXA

E(v̄DγσDµDνDλvE) + h.c.

(4.40)

This is almost the final result, but first we have to get rid of the higher derivatives terms in the last

two lines. To this purpose, we need to redefine the graviton once more.
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2.3 Second graviton redefinition and cancellation of higher derivative terms

First, let us rewrite the higher derivative terms in a more convenient form

Lhd = 2SABXA
DXB

E(v̄DγµνDµDνvE)− ϵµνλσXA
DXA

E(v̄DγσDµDνDλvE) + h.c.

= −R
2

SABXB
DXA

E(v̄DvE)− i
2

XA
EXA

Ev̄D
(

Rµνγν −
1
2

Rγµ

)
DµvE

(4.41)

To cancel them, we redefine the graviton as

ẽa
µ = Ea

µ +

(
1
2

SABXB
DXA

E(v̄DvE)ẽa
µ − i

2
XA

DXA
Ev̄DγaDµvE + h.c.

)
(4.42)

such that (δẽa
µ = Ea

µ − ẽa
µ):

−1
2

ẽR(ẽ)− ẽV = −1
2

ER(E)− EV +

(
Rµ

a −
1
2
(R + 2V)Eµ

a

)
δẽa

µ

= −1
2

ER(E)− EV

+ E
[

R
2

SABXB
DXA

E(v̄DvE) +
i
2

XA
DXA

Ev̄D
(

Rµνγν −
1
2

Rγµ

)
DµvE

+ VSABXB
DXA

E(v̄DvE)− i
2

VXA
DXA

Ev̄DγµDµvE + h.c.
]

.

(4.43)

The terms in the third line cancel the precisely against Lhd. The terms in the fourth line give new

contributions to the mass and to the kinetic term of the spin 1/2 fermions.

2.4 Final lagrangian after redefinitions

After all of these redefinitions and cancellations, the old Lagrangian L(e, ψ, v, mix) in terms of the

old variables becomes the same lagrangian in terms of the new variables but without gravitino

goldstino mixing term, L(E, Ψ, v, no mix) plus additional, new contributions to the mass and the

kinetic term of v. Schematically

L(e, ψ, v, mix) = L(E, Ψ, v, no mix) + Lnew(v), (4.44)

where

Lnew =

(
−6iSMCSMFXF

BXC
A + XA

B − i
2

VXC
AXC

B
)

v̄BγµDµvA+

+
(

24SABSAFSBCXF
DXC

E + 4iSDCXC
E + VSABXB

DXA
E

)
v̄DvE + h.c.

(4.45)

After some manipulations, using (4.37), this becomes

Lnew =
1
2

XA
Bv̄BγµDµvA − 2iXB

DSBEv̄DvE + h.c. (4.46)
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What is left to check is that this new Lagrangian makes the decoupling of the goldstino explicit, as

promised in the introduction.

2.5 Decoupling of the goldstino

Decoupling from the kinetic matrix. First, we want to check that the kinetic matrix for the spin

1/2 fermions has a zero eigenvector, namely the goldstino. After the redefinitions above, this

matrix reads

Lkin(v) = Lold + Lnew

= − i
2

gij∗ λ̄iAγµDµλ
j∗
A − iζ̄αγµDµζα +

1
2

XA
Bv̄BγµDµvA + h.c.

≡ MI J̄ θ̄
IγµDµθ J̄ ,

(4.47)

where we introduced

MI J̄ =

 − i
2 gij∗δA

B + gik∗ gl j∗Wk∗
BMW lAN XN

M gik∗XN
MWk∗

MBNN
α

gl j∗XN
MW lAN Nβ

M −iδβ
α + 2XN

M NN
α Nβ

M

 (4.48)

and also

θ I =

 λiA

ζα

 , θ J̄ =

 λ
j∗
A

ζα

 . (4.49)

We can check that the full kinetic matrix (4.48) admits the zero eigenvector

G J̄ =

 W j∗
AQηQ

Nα
QηQ

 , (4.50)

where ηQ is a constant spinor. Then, G J̄ is the goldstino. We have

MI J̄G J̄ =

 − i
2 gij∗W j∗

BQ + 1
2 gik∗ gl j∗Wk∗

BMW lMNW j∗
PQXN

M + gik∗Wk∗
BM NN

α Nα
QXN

M(
gl j∗XN

MW lAN Nβ
M

)
W j∗

AQ − i
(

δ
β
α + 2iXN

M NN
α Nβ

M

)
Nα

Q

 (4.51)

The first line vanishes since

− i
2

gij∗W j∗
BQ +

1
2

gik∗ gl j∗Wk∗
BMW lMNW j∗

PQXN
M + gik∗Wk∗

BM NN
α Nα

QXN
M

= − i
2

gij∗W j∗
BQ +

1
2

gik∗Wk∗
BM

(
gl j∗W lANW j∗

AQ + 2NN
α Nα

Q

)
︸ ︷︷ ︸

i(X−1)Q
N

XN
M

= − i
2

gij∗W j∗
BQ +

i
2

gik∗Wk∗
BQ = 0.

(4.52)
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The second line vanishes since(
gl j∗XN

MW lAN Nβ
M

)
W j∗

AQ − i
(

δ
β
α + 2iXN

M NN
α Nβ

M

)
Nα

Q

= gl j∗XN
MW lAN Nβ

MW j∗
AQ − Nα

Q + 2XN
M NN

α Nα
QNβ

M

= XN
M Nβ

M

(
gl j∗W lAN Nβ

M − i(XN
M)−1 + 2NN

α Nα
Q

)
= 0.

(4.53)

Decoupling from the mass matrix. Next, we want to check that also the mass matrix of the spin

1/2 fermions has the same zero eigenvector. After the redefinitions above, this matrix reads

Lmass(v) = Lmass,old + Lmass,new

= MiAlBλ̄iAλlB + Mαβ ζ̄αζβ + Mα
iB ζ̄αλiB − 2iXB

DSBEv̄DvE + h.c.

= MI J θ̄
I θ̄ J + h.c.

(4.54)

where θ I have been introduced before, while

MI J =

 MiMlN + 2iXB
DSBEgij∗W j∗

MDglk∗Wk∗
NE

1
2 Mβ

iM + 4iXB
DSBEgij∗W j∗

MD Nβ
E

1
2 Mα

iM + 4iXB
DSBEglk∗Wk∗

MENα
D Mαβ + 8iXB

DSBENα
D Nβ

E

 . (4.55)

Given the goldstino G I defined in (4.50), we want to check that

MI JG J ≡ 0, (4.56)

which in components explicitly reads:

M1JG J = MiMlNW lNQ + 2iXB
DSBEgij∗W j∗

MDglk∗Wk∗
NEW lNQ

+
1
2

Mβ
iN NQ

β + 4iXB
DSBEgij∗W j∗

MD Nβ
E NQ

β ≡ 0,
(4.57)

M2JG J =
1
2

Mα
iMW lMQ + 4iXB

DSBEglk∗Wk∗
MENα

DW lMQ

+ MαβNQ
β + 8iXB

DSBENα
D Nβ

E NQ
β ≡ 0.

(4.58)

Using (4.37) we can simplify this expression in such a way that all dependence from XA
B drops

and renaming some of the indices we are left with

MI JG J =

 MjCmDWmDE + 1
2 Mβ

jC NE
β − 2gij∗W j∗

CASEA

1
2 Mα

mDWmDE + MαβNE
β − 4SAENα

A

 . (4.59)

The vector above has to vanish identically. In what follows, we check that it does on the vacuum,

and in particular as a consequence of

∂kV(z, z, q)

∂uV(z, z, q)

 = 0. (4.60)
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Top component of 4.59
)

Let’s first decompose the top component of the vector of interest in

different contributions, by using the definitions of mass and shift matrices:

M(1)
jCmDWm[DE] = −1

2
δE

Ckm
Σ LΣk jΛ f Λ

m +
1
2

δE
Ckm

Σ LΣkmΛ f Λ
j , (4.61)

M(2)
jCmDWm(DE) =

1
2
(σxσy)

E
C gml∗ f Σ

l∗ Py
Σ∇j f Λ

m Px
Λ

=
1
2

δE
Cgml∗ f Σ

l∗ Px
Σ∇j f Λ

m Px
Λ +

i
2
(σz)

E
C ϵxyzgml∗ f Σ

l∗ Py
Σ∇j f Λ

m Px
Λ,

(4.62)

M(1)
jCmDWm(DE) = i(σx)

E
C k[j|Σ f Σ

m]g
ml∗ f Λ

l∗ Px
Λ, (4.63)

M(2)
jCmDWm[DE] =

i
2
(σx)

E
C ∇j f Λ

m Px
Λkm

Σ LΣ, (4.64)

2SAEgi∗ jWi∗
(CA) =gi∗ j(σyσx)

E
C Px

ΣLΣgi∗ l f Λ
l Py

Λ

=gi∗ jδ
E
CPx

ΣLΣgi∗ l f Λ
l Px

Λ + i(σz)
E

C gi∗ jϵ
yxzPx

ΣLΣgi∗ l f Λ
l Py

Λ,
(4.65)

2SAEgi∗ jWi∗
[CA] = igi∗ j(σx)

E
C Px

ΣLΣki∗
ΛLΛ, (4.66)

1
2

Mβ
jC NE

β = −4UE
vβUβ

uCkv
ΛLΛku

Σ f Σ
j

= δE
C2huvkv

ΛLΛku
Σ f Σ

j − 2i(σx)
E

C Ωx
vukv

ΛLΛku
Σ f Σ

j ,
(4.67)

where we used σxσy = δxyI + iϵxyzσz and (3.77). We see that we have terms proportional to δ and

terms proportional to σ. Let’s focus on the former:

δE
C
2

(
−km

Σ LΣk jΛ f Λ
m + gml∗km

Σ LΣkl∗
Λ f Λ

j + gml∗ f Σ
l∗ Px

Σ∇j f Λ
m Px

Λ

−2Px
ΣLΣ f Λ

j Px
Λ + 4huvkv

ΛLΛku
Σ f Σ

j

)
.

(4.68)

If now we compute the fully covariant derivative of the potential with respect to holomorphic

coordinates on SM, we get:

∇kV = gij∗ki
Λkj∗

Σ LΛ f Σ
k + 4huvku

Λkj∗
Σ LΛ f Σ

k + kkΛ f Λ
j∗ kj∗

Σ LΣ

+ gij∗∇k f Σ
j Px

ΛPx
Σ − 2 f Λ

k LΣPx
ΛPx

Σ = ∂kV,
(4.69)

where we used (3.68) so that through the killing equation we can write

∇kki
ΛLΛ

= gil∗∇kkl∗ΛLΛ
= −gil∗∇l∗kkΛLΛ

= −gil∗∇l∗(kkΛLΛ
) + gil∗kkΛ f Λ

l∗ = gil∗kkΛ f Λ
l∗ .

(4.70)

Then, if we use the Special property (3.69), we see terms proportional to δ are also proportional to

the covariant derivative of the potential, and hence vanish on the vacuum. Switching to the terms

proportional to σ, which are:

i(σz)
E

C

(
1
2

ϵxyzgml∗ f Σ
l∗ Py

Σ∇j f Λ
m Px

Λ + k[j|Σ f Σ
m]g

ml∗ f Λ
l∗ Pz

Λ +
1
2
∇j f Λ

m Pz
Λkm

Σ LΣ

−ϵyxzPx
ΣLΣ f Λ

j Py
Λ − gi∗ jPz

ΣLΣki∗
ΛLΛ − 2Ωz

vukv
ΛLΛku

Σ f Σ
j

)
,

(4.71)
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we can use the equivariance condition (3.75) and some of the geometric properties of these

quantities to rewrite them as

1. Using the definition of UΛΣ found in (3.33) and (3.24):

1
2

ϵxyzgml∗ f Σ
l∗ Py

Σ∇j f Λ
m Px

Λ =
1
2

ϵxyzPx
ΛPy

Σ

(
∇jU[ΛΣ] − gml∗∇j f [Σl∗ f Λ]

m

)
=

1
2

ϵxyzPx
ΛPy

Σ

(
−L[Λ f Σ]

j − L[Σ f Λ]
j

)
= 0.

(4.72)

2. Using the equivariance condition (3.75):

− ϵyxzPx
ΣLΣ f Λ

j Py
Λ − 2Ωz

vukv
ΛLΛku

Σ f Σ
j = f ∆

ΛΣPz
∆LΛ f Σ

j . (4.73)

3. Finally, using (3.67) and (3.68):

1
2
∇j f Λ

m Pz
Λkm

Σ LΣ
=

1
2
∇j( f Λ

m km
Σ LΣ

)Pz
Λ − 1

2
f Λ
m Pz

Λ∇jkm
Σ LΣ

= −1
2

f Λ
Σ∆ f ∆

j LΣPz
Λ − 1

2
f Λ
m Pz

Λgml∗ f Σ
l∗k jΣ.

(4.74)

We are then left with:

i(σz)
E

C

(
−1

2
kmΣ f Σ

j gml∗ f Λ
l∗ Pz

Λ +
1
2

f ∆
ΛΣPz

∆LΛ f Σ
j − Pz

Λgml∗ f [Σl∗ f Λ]
m k jΣ − gi∗ jPz

ΣLΣki∗
ΛLΛ

)
. (4.75)

If we use (3.67) and, since (3.68) holds:

PΣ f Σ
j = ∇j(PΣLΣ)− LΣ∇jPΣ = −iLΣk jΣ, (4.76)

we are finally left with:

i(σz)
E

C

(
−Pz

Λgml∗ f [Σl∗ f Λ]
m k jΣ − 1

2
k jΛPz

ΣLΣLΛ
)

= i(σz)
E

C Pz
Λk jΣ

(
−U[ΛΣ] − 1

2
LΛLΣ

)
= − i

2
(σz)

E
C Pz

Λk jΣLΣLΛ = 0,

(4.77)

due to (3.68). Thus, the first component completely vanishes on the vacuum.

Bottom component of 4.59
)

Let’s switch now to the second component and compute the derivative

of the potential with respect to the coordinates on HM:

∇sV = 4∇skΛuku
ΣLΛLΣ + 4kΛu∇sku

ΣLΛLΣ +
(

UΛΣ − 3LΛLΣ
)
(∇sPx

ΛPx
Σ + Px

Λ∇sPx
Σ)

= 4∇skΛuku
ΣLΛLΣ +

(
UΛΣ − 3LΛLΣ

)
∇sPx

ΛPx
Σ + h.c. = ∂sV

(4.78)
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If we now use (3.74) and (3.78) we get:

∇sV = 2ku
ΣΩx

suPx
ΛLΛLΣ − 2UαA[sUu]βBϵAB Mαβku

ΣLΣ +
(

UΛΣ − 3LΛLΣ
)
∇sPx

ΛPx
Σ + h.c.

= −MαβNA
β UαAs +

(
UΛΣ − 2LΛLΣ

)
∇sPx

ΛPx
Σ + h.c.

(4.79)

Let’s then compute the following quantities:

4UsαESAENα
A =− i

2
(σx)

AEUsαEUαAu ku
ΣLΣ

=− 4Ωx
suku

ΣPx
ΛLΛLΣ = −2∇sPx

ΣPx
ΛLΛLΣ,

(4.80)

1
2

UsαE Mα
mDWmDE = −2UsαEUα

uDkΛ f Λ
i

(
ϵDEki

ΣLΣ
+ i(σx)

DEPx
Σgij∗ f Σ

j∗
)

= −2husku
Λ f Λ

i ki
ΣLΣ − 2Ωx

suku
ΛPx

ΣUΛΣ

= −2husku
Λ f Λ

i ki
ΣLΣ − UΛΣ∇sPx

ΛPx
Σ,

(4.81)

where we used (3.74), (3.77), (3.78) and the fact that σ is traceless. Finally, if we also use the fact

that f Λ
i ki

ΣLΣ is imaginary due to (3.69), we see that

∇sV = −MαβNE
β UαEs + 4UsαESAENα

A − 1
2

UsαE Mα
mDWmDE + h.c. (4.82)

Hence, multiplying the expression by the inverse veilbein, we see that the bottom component of the

initial vector is proportional to UsEα∇sV and similarly to the top one vanishes on the vacuum. This

concludes the proof of the super-Higgs mechanism. Before moving on, it is worth noticing that the

above calculation easily extends to the case of N = 1 vacua displaying partial supersymmetry

breaking, as some of the components of the fermionic shifts simply vanish.

3 Y U K AWA C O U P L I N G S

From now on, we will assume to be working on a Minkowski vacuum, and still consider the case of full

supersymmetry breaking. This means that the fermionic mass matrix (4.48) in the unitary gauge

and for V = 0 reads:

MI J̄ =

MjCmD − 1
6 (S

−1)ABgi∗ jWi∗
CAgl∗mW l∗

DB
1
2 Mβ

jC − 1
3 (S

−1)ABgi∗ jWi∗
CANβ

B
1
2 Mα

mD − 1
3 (S

−1)ABgl∗mW l∗
DBNα

A Mαβ − 2
3 (S

−1)ABNα
ANβ

B

 . (4.83)

Renormalizable Yukawa couplings are defined by expanding this matrix around the vacuum and

taking the linear term, that is taking its partial derivative and evaluating it on the vacuum. Before

doing so, we must make sure that the manifold Mscal is parametrized with coordinates that yield

canonical kinetic terms for the scalars and fermions on the vacuum (zi
0, qu

0 ). That is, we must

choose:

ĥuv(q0) = δuv, ĝij∗(z0, z̄0) = δij∗ . (4.84)
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On the other hand, from a geometrical standpoint, we would like Y appearing in (2.15) to be a

scalar on Mscalar. To achieve this, the most sensible thing to do is to define the following quantity:

|Y|2s f1 f2
≡ |∇sM f1 f2 |

2|(q,z)=(q0,z0)
(4.85)

where M f1 f2 is the mass matrix term related to fermions f1 and f2 and ∇s is a suitable covariant

derivative with respect to the coordinate s on Mscal . It follows that the Yukawas we will explore

are the ones defined in Riemann normal coordinates on the vacuum. Indeed, in these coordinates

the previous scalar quantity reads:

|Ŷ|2s f1 f2
= |∂sM f1 f2 |

2|(q,z)=(q0,z0)
, (4.86)

which is respecting both (4.84) and the general definition of Yukawa coupling as partial derivatives

of fermionic mass matrices.

It is worth noticing that all bundle connections on QM vanish in Riemann normal coordinates,

as it happens with the spin connection on spacetime, since also in this case the vielbeins respect the

compatibility condition (3.45). In special geometry, however, the covariant derivative also includes

Kähler weights:

∇i =
(

∂i +
p
2

∂iK
)

, (4.87)

so the Yukawa couplings in the vector multiplet sector are not only the ones computed in Riemann

normal coordinates, but in a patch where the Kähler potential is redefined through a Kähler

transformation as:

K̂ = K+ h(z) + h(z), where ∂iK|z=z0 = −∂ih(z)|z=z0 , (4.88)

so that ∇̂i = ∂̂i on the vacuum.

Having made clear which are the Yukawas captured by the quantity (4.85), we are now ready

to compute them. The first step is to take covariant derivatives of the fermionic mass matrix and

using the gradient flow relations (3.105-3.113) to simplify the expressions. We first give an example

of an explicit computation, taking ∇sMαβ, while we then simply report the results for all the other

Yukawas. Start by considering the relevant component of MI J̄ :

Mαβ − 2
3
(S−1)ABNα

ANβ
B . (4.89)

Taking the covariant derivative with respect to qs we get:

Yαβ
s ≡ ∇s Mαβ +

2
3
(S−1)AX(S−1)BY∇sSXY Nα

ANβ
B − 4

3
(S−1)AB∇sNα

ANβ
B , (4.90)
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where, since this term in the Lagrangian is contracted with ζ̄αζβ, we also used its symmetry

properties to group some of the terms. Using now the gradient flow equations we have:

∇s Mαβ − 1
3
(S−1)AX(S−1)BYUsγ(X Nγ

Y)Nα
ANβ

B +
16
3

UαB
s Nβ

B +
4
3
(S−1)ABUsγA MαγNβ

B . (4.91)

Then, let’s explicitly compute the first term:

∇s Mαβ = −UαA
u UβB

v ϵAB∇s∇ukv
ΛLΛ = −ϵABUαA

u UβB
v Rvu

stk
t
ΛLΛ, (4.92)

where we used the identity relating second derivatives of killing vectors to the curvature of QM

[61]. We can now decompose the curvature in terms of the SU(2)× Sp(2nH) ones using (3.47) and

getting to:

∇s Mαβ = ϵAB

(
i
2

Ωx
st(σx)

BACβα − R
βα
st ϵBA

)
kt

ΛLΛ = 2R
βα
st kt

ΛLΛ. (4.93)

Finally:

Yαβ
s = 2R

βα
st kt

ΛLΛ − 1
3
(S−1)AX(S−1)BYUsγ(X Nγ

Y)Nα
ANβ

B

+
16
3

UαB
s Nβ

B +
4
3
(S−1)ABUsγA MαγNβ

B .
(4.94)

3.1 List of Yukawas

In a similar fashion, we can calculate all other Yukawa couplings, which we report together with

the one we already computed in the following equations:

Yαβ
s ≡ ∇sMαβ = 2R

βα
st kt

ΛLΛ − 1
3
(S−1)AX(S−1)BYUsγ(X Nγ

Y)Nα
ANβ

B

+
16
3

UαB
s Nβ

B +
4
3
(S−1)ABUsγA MαγNβ

B ,
(4.95)

Yα
s|mD ≡ ∇sMα

mD =
1
2
∇s Mα

mD − 1
6
(S−1)AX(S−1)BYUsγ(X Nγ

Y)gml∗W l∗
DBNα

A

+
1
6
(S−1)AB Mγ

m(DUB)γsNα
A +

4
3

gml∗W l∗
DFUαF

s +
1
3
(S−1)ABgml∗W l∗

DBUsAγ Mγα,
(4.96)

Yk|jCmD ≡ ∇kMjCmD = ∇k MjCmD +
1
12

(S−1)AX(S−1)BYgkj∗W j∗

(XY)gjl∗W l∗
CAgmi∗Wi∗

DB

− 2
3
(S−1)AB MkCjAgmn∗Wn∗

DB − 1
3
(S−1)AB

(
2ϵCA f Λ

k k jΛ − ϵCA f Λ
j kkΛ

)
gmn∗Wn∗

DB,
(4.97)

Yβ

k|jC ≡ ∇kM
β
jC =

1
2
∇k Mβ

jC − 1
6
(S−1)AX(S−1)BYgkj∗W j∗

(XY)gjl∗W l∗
CANβ

B

− 2
3
(S−1)AB MkCjANβ

B − 1
3
(S−1)AB

(
2ϵCA f Λ

k k jΛ − ϵCA f Λ
j kkΛ

)
Nβ

B ,
(4.98)

Yk∗ |jCmD ≡ ∇k∗MjCmD = ∇k∗ MjCmD − 1
3

gjk∗ gmi∗Wi∗
DC − 1

3
ϵCA(S−1)ABkk∗Λ f Λ

j gmi∗Wi∗
DB, (4.99)
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Yα
k∗ |mD ≡ ∇k∗Mα

mD =
2
3

Nα
Dgmk∗ −

1
3
(S−1)ABϵDBkk∗Λ f Λ

m Nα
A. (4.100)

where we either used or left implicit the following expressions:

∇s Mαβ = 2R
βα
st kt

ΛLΛ, (4.101)

∇s Mα
mD = −2Uuα

D Ωx
suPx

Λ f Λ
m − Uuα

D (Ωx
tsΩx

vu + huvhts)∇tkv
Λ f Λ

m , (4.102)

∇k MjCmD = iϵCDk[j|ΛCm]kl g
l∗ l f Λ

l∗ −
1
2
(σx)CDPx

Λ

(
∇kCjml gl∗ l f Λ

l∗ + Cjmk L̄Λ
)

, (4.103)

∇k Mβ
jC = −4iCkjl gll∗ f Λ

l∗ Uβ
uCku

Λ, (4.104)

∇k∗ Mα
mD = 2Nα

Dgk∗m, (4.105)

∇k∗ MjCmD = ϵCDk[j|Λgm]l∗ LΛ + ϵCD∇k∗k[j|Λ f Λ
m] −

i
2
(σx)CDCk∗z∗ l∗Cjml gll∗ gzz∗ f Λ

z Px
Λ, (4.106)

and where we used most of the geometrical constraints in Chapter 3. In the previous equations,

we recall that Cijk is the covariantly holomorphic section defined on SM, Ω the su(2)-valued

curvature on QM and R the sp(2nH)-valued curvature on QM.

3.2 Computation of squares

The next step is to calculate the squares of these quantities, and again use all available constraints

in order to try and construct (2.15), where we also recall that we defined:

m4
susy = 12SABSAB ≡ 12 Tr S2 (4.13)

= gij∗WiABW j∗
AB + 2Nα

ANA
α = 3Px

ΛPx
ΣLΛ L̄Σ. (4.107)

From the above expressions it is clear that we will not get inequality (2.15) directly, because, for

example, we expect that the squares will involve mixed products of shift and mass matrices with no

clear sign. Even in this case, we can still try to make sense of these quantities in specific parametric

limits, as will be shown below. Before moving on, notice that we have not calculated ∇sMjCmD

and ∇kMαβ. This is because if we hope to capture conjecture (2.15), then we need to look for

fermions which couple to supersymmetric partners through Y, which is not the case in the Yukawas

we have left out.

4.100. Let’s start by computing the square of the simplest equation, which involves the Yukawa

coupling between a hyperino and supersymmetric vector multiplets Yα
k∗ |mD. Computing the square,

schematically, we have

|Yα
k∗ |mD|

2 = (1st)2 + (2nd)2 + 1st × 2nd ≥ (1st)2 + 1st × 2nd (4.108)
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where we can neglect the second term squared since it involves terms of the kind UΛΣkΛKΣ which

do not interest us. Then, realizing that:

gmk∗kk∗Λ f Λ
m

(3.67)
= 0 (4.109)

we are left with:

|Yα
k∗ |mD|

2 ≥ 4
9

Nα
D ND

α nV , (4.110)

where we used gmk∗ gmk∗ = nV . We see that this indeed leads to the conjecture if we take the

parametric limit:

gij∗WiABW j∗
AB ≪ 2Nα

D ND
α , (4.111)

which will be informally written as W2 ≪ N2 in the following, leading to:

|Yα
k∗ |mD|

2 ≳
4
9

m4
susy. (4.112)

As to why we might recover the conjecture in this case, notice that the limit we employed corre-

sponds to giving the shift of the FWGC fermion (this time a hyperino) the dominant contribution

in breaking supersymmetry. We will use this line of thought to parse the other squares in the

following.

4.95. We now turn to the fully hypermultiplet sector of the Yukawas. This time, we can straight

out neglect positive terms involving the squares of the mass matrix Mαβ and curvature squares. We

have:

|Yαβ
s |2 ≥ (2nd)2 + (3rd)2 + mixed terms, (4.113)

where among the other terms, if we work in the same parametric limit as before W2 ≪ N2 we note

the following non-trivial results:

(2nd)2 ≈ 36 Tr S2, (4.114)

(3rd)2 ≈ 1024
3

nH Tr S2, (4.115)

(2nd × 3rd) ≈ 32
3

Tr S2, (4.116)

(1st × 3rd) ≈ 32(1 + 2nH)Tr S2, (4.117)

(3rd × 4th) = 0, (4.118)

(1st × 2nd) ≈ +
4
3

Cγ′γCαρCβσϵCX Nδ
C NY

γ′ NA
α NB

β (S
−1)AX(S−1)BYΩδγρσ

− 4ϵAXϵBYSYASXB

(4.119)
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where the ≈ has been used each time we neglected some parametrically small contribution.

Carrying out all calculations, we have:

|Yαβ
s |2 ≳

1
9
(304nH + 32)m4

susy −
[
4ϵAXϵBYSYASXB + M-mixed terms

−4
3

Cγ′γCαρCβσϵCX Nδ
C NY

γ′ NA
α NB

β (S
−1)AX(S−1)BYΩδγρσ + h.c.

]
,

(4.120)

where M-mixed terms contain all terms involving Mαβ and which do not further reduce upon using

all geometric identities. We see that this case is less clear: even though the scale of supersymmetry

breaking appears with a positive coefficient, there are still contributions with no clear sign. The

second term can be simplified by evaluating it in a basis where the gravitino mass matrix is made

diagonal trough an SU(2) rotation, which can always be done [45], and reduces to:

−Re[4ϵAXϵBYSYASXB] = 8 Re[s1s2], (4.121)

where s1 and s2 are the two eigenvalues of the S matrix. We see that this term vanishes only in the

case of partial supersymmetry breaking. The same is true for the third term, since S is invertible

only in the broken (1-d) subspace S22, assuming a diagonal matrix, ϵ is antisymmetric and (4.14)

holds. Thus, the conjecture is realized in this sector only in the very restricting case of partial susy

breaking, W ≪ N and when the masses of the hyperinos are parametrically smaller than the scale

of supersymmetry breaking, so that we can neglect mixed terms altogether. We will informally

write this condition as M ≪ msusy.

4.99. The next Yukawa we turn to is the one of the form z̄λ̄λ. Following the same logic as before,

we try to compute all quantities in the parametric limit W2 ≪ N2, which is the suitable one in this

sector. We can immediately neglect the first term squared and the third squared, and by explicit

calculation:

(2nd)2 ≈ 12
9

nV Tr S2, (4.122)

(1st × 2nd) =
1
3
(nV − 1)km|Λkm

Σ LΛ L̄Σ, (4.123)

(2nd × 3rd) = 0, (4.124)

(1st × 3rd) = −1
6
(S−1)DBWmDBkm|Σkj∗

Λ f Σ
j LΛ

− 1
6
(S−1)DBWmDB

(
∇k∗kj∗

Λ f Λ
m −∇k∗km|Λ f Λ

j gjj∗
)

f Σ
j∗kk∗

Σ

+
i
6
(σx)

A
D(S

−1)ABWmDBCjmlCk∗z∗ l∗ gll∗ gzz∗ gjj∗ f Λ
z f Σ

j∗kk∗
Σ Px

Λ,

(4.125)
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which, upon neglecting the non-negative real contribution (4.123) leads us to

|Yk∗ |jCmD|2 ≳
nV
9

m4
susy − 2 Re

[
1
6
(S−1)DBWmDBkm|Σkj∗

Λ f Σ
j LΛ

− 1
6
(S−1)DBWmDB

(
∇k∗kj∗

Λ f Λ
m −∇k∗km|Λ f Λ

j gjj∗
)

f Σ
j∗kk∗

Σ

+
i
6
(σx)

A
D(S

−1)ABWmDBCjmlCk∗z∗ l∗ gll∗ gzz∗ gjj∗ f Λ
z f Σ

j∗kk∗
Σ Px

Λ

]
.

(4.126)

Again, we see no clear inequality only involving terms similar to the first one, since there are also

terms with no fixed sign.

4.96. Now focusing on Yα
s|mD, we can employ the parametric limit N ≪ W, since this time the

FWGC fermion is a gaugino. Neglecting the first and last term squared and subleading contribution

proportional to N, we can compute

(4th)2 ≈ 128nH Tr S2, (4.127)

(1st × 4th) + h.c. = −4nH gmm∗Wm(DF)Wm∗
(DF)

≥ −4nH gmm∗WmDFWm∗
DF ≈ −48nH Tr S2,

(4.128)

(1st × 5th) = −1
6
(S−1)ABWmDBUuα

D UsAγ (Ωx
tsΩx

vu + huvhts)∇tkv
Λ f Λ

m Mγα, (4.129)

(4th × 5th) = 0, (4.130)

and get to

|Yα
s|mD|

2 ≳
20
3

nHm4
susy −

1
3

Re
[
(S−1)ABWmDBUuα

D UsAγ (Ωx
tsΩx

vu + huvhts)∇tkv
Λ f Λ

m Mγα

]
.

(4.131)

The last term can be further massaged, but no useful identities can be used to reduce it to a simpler

form. Nonetheless, the conjecture can be recovered if we assume that this term is negligible

on the vacuum. This happens if again M ≪ msusy since in this case we have, schematically,

S−1WM ≪ S−1Wmsusy
N2≪W2∼S2

≪ msusy and can be neglected with respect to the first term.

4.98, 4.99. Finally, we group together the Yukawas Yk|jCmD and Yα
k|jC since their squares involve

further difficulties, model-dependent quantities and mixed terms that cannot be further reduced.

We do not report the full expressions, but we comment on the nature of the problematic steps:

1. One of the most problematic terms is the one which we get when considering ∇k∇j f Λ
m ∼

∇kCjml gll∗ f Λ
l∗ . There are no geometric identities involving ∇kCjml (other than its symmetry

properties) and we ought to keep it until the end as a model-dependent quantity.

2. All mixed terms involving mass matrix MjCmD are not vanishing, and at most can be neglected

by following a similar reasoning as in the previous cases.
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3. Working in the usual parametric regime, we are still not able to recover the scale of su-

persymmetry breaking, as can be understood from (4.98), where neglecting contributions

proportional to W means killing off the second term. Then, as can be verified explicitly,

squares of other terms or mixed ones do not yield m4
susy as in previous cases. On the other

hand, if we try to work away from this regime, we ought to keep all shift matrices as is,

without being able to reconstruct Tr S2. Similarly, we encounter the same difficulties also in

(4.97): as an example, we can try to compute its second term squared, which just yields

(2nd)2 = UΛΣPΛPΣ, (4.132)

and no other term can be combined with it in order to give something proportional to W2.

3.3 Summary of results and comments

We have seen that given our geometrical interpretation of msusy and Y, we can’t seem to be able to

satisfactorily recover the fermionic WGC in full generality. However, this statement has a certain

degree of confidence depending on which Yukawa we focus on. In particular:

1. For the Yukawas involving an hyperino and (the matter sector of) vector multiplets, Yα
k∗ |mD,

the conjecture follows only by assuming that the process of supersymmetry breaking is

dominated by the hypermultiplets, that is:

|Yα
k∗ |mD|

2 ≳
4
9

m4
susy if W ≪ N. (4.133)

This might indicate that, qualitatively, (2.15) is realized when the tower belongs to a sector of

the theory which doesn’t break supersymmetry too much with respect to other sectors, or

when the FWGC fermions (in this case the hyperini) bring the dominant contribution to

supersymmetry breaking. We will see that this last suggestion is more suitable to cover the

purely vector or purely hypermultiplet Yukawas.

2. The same reasoning can be followed for the Yukawa coupling a gaugino to an hypermultiplet,

Yα
s|mD. In this case not only we have to implement the suitable limit N ≪ W , but also assume

that the hyperini original mass matrix Mαβ is such that M2 ≪ m2
susy. We then get to:

|Yα
s|mD|

2 ≳
20
3

nHm4
susy. (4.134)

This time, the new condition can be interpreted as the fact that in the unbroken phase the

hyperini need to be massless. Their mass is then generated predominantly by the super-Higgs

mechanism. This is reasonable if we notice that the original paper [30] only focuses on susy

breaking and is agnostic with respect to the initial (non-physical) masses of the fermions. We
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can thus give an emphasis to the role of supersymmetry breaking by neglecting the original

mass matrices.

3. For what concerns the Yukawa involving hypermultiplets only Yαβ
s , we can employ the same

working assumptions as the previous case, W ≪ N, getting to:

|Yαβ
s |2 ≳

1
9
(304nH + 32)m4

susy +
4
3
(NNNNS−1Ω − 3ϵϵSS + h.c.) (4.135)

where the non-vanishing terms have been reported only schematically. In this case, being the

sign of the extra terms not clear, it is not definitive whether the conjecture holds or not.

4. Focusing then on the coupling involving z̄λ̄λ, in the usual parametric limits, we get:

|Yk∗ |jCmD|2 ≳
nV
9

m4
susy − 2 Re

[
1
6
(S−1)DBWmDBkm|Σkj∗

Λ f Σ
j LΛ

− 1
6
(S−1)DBWmDB

(
∇k∗kj∗

Λ f Λ
m −∇k∗km|Λ f Λ

j gjj∗
)

f Σ
j∗kk∗

Σ

+
i
6
(σx)

A
D(S

−1)ABWmDBCjmlCk∗z∗ l∗ gll∗ gzz∗ gjj∗ f Λ
z f Σ

j∗kk∗
Σ Px

Λ

]
.

(4.136)

Even in this case, we can say nothing about the conjecture due to the extra terms.

5. For the couplings involving z, that is Yβ

k|jC and Yk|jCmD, the situation is even less clear, since

there are difficulties even in setting up an inequality involving the scale of supersymmetry

breaking.

Even if the general analysis remains unclear, there seems to be hints that the conjecture could

be realized, at least in certain parametric regimes. The next step will be to further investigate

explicit models in order to better understand this possibility. Another possibility, which however

will not be explored in this thesis, is that identifying which states make up the tower is key to

checking (2.15), and we encounter difficulties because we are simply summing over all Yukawas.

This cannot be checked by working entirely in the EFT, from the bottom-up, but requires making

reference to UV completions in string-theoretic models, as briefly done in [11, 30].
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In the previous chapter, we established that, in full generality, it remains unclear whether the

conjecture is realized or not. At most, we provided parametric limits in which some of the Yukawas

seem to respect inequality (2.15) and which have a clear, qualitative physical interpretation. In order

to explore the more general scenario, however, it is instructive to consider explicit supergravity

models: on the one hand, these models must be simple enough to allow analytical computations,

but on the other, they ought to be sufficiently general. In order to satisfy both requirements, we

stick to abelian gaugings of quaternionic isometries in two different scalar manifold geometries:

M(1)
scal =

SU(1, 1)
U(1)

× SO(4, 1)
SO(4)

, M(2)
scal =

SU(1, 1)
U(1)

× SU(2, 1)
SU(2)

, (5.1)

which all yield models with one hypermultiplet and one vector multiplet. The homogeneous

manifold SO(4, 1)/SO(4) is nothing but 4d hyperbolic space, and in the following we will simply

call it EAdS4, while SU(2, 1)/SU(2) is also called universal hypermultiplet since manifolds of this

kind appear in all Type IIA/B string theory compactifications on CY3 [62, 63]. We will also look at

one particular U(1)× U(1) gauging with scalar geometry SU(1, 1)/U(1)× EAdS4, realized by

Ferrara, Girardello and Porrati [57], which has the nice property of displaying both fully broken

and partially broken supersymmetry in a frame without prepotential, avoiding a notable no-go

theorem [64, 65].

The abelian gaugings we will look at will be mostly U(1) gaugings, which we will construct

using some of the properties of homogeneous manifolds, as will be shown in the next section, fol-

lowing [66–69]. Each U(1) model will be studied by means of two different symplectic embeddings,

given by two different prepotentials:

F(X)(1) = −iX0X1 and F(X)(2) =
(X1)3

X0 . (5.2)

The U(1)× U(1) model will be studied in a frame without prepotential and in a frame where a

prepotential of the kind

F(X) = − i
2
[(X0)2 − (X1)2] (5.3)

exists, as done in [52]. Finally, after dealing with the construction of the models and the analysis

of the vacua, we will select the Minkowski, supersymmetry breaking ones in order to check the
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conjecture by explicit computation.

1 VA C U A A N D C O S E T S

The scalar potential of supergravity theories is an arbitrarily complicated function of the (real)

scalar fields ϕi, which number depends on the number of supermultiplets and supersymmetries (in

the N = 2 case, we have i = 1, . . . , 4nH + 2nV). This means that finding its critical points involves

solving a system of coupled algebraic equations collectively expressed as

∂V(ϕ)

∂ϕi = 0. (5.4)

Finding solutions to such a complicated system of equations is challenging and one usually restricts

one’s attention to subsectors of the scalars, invariant under specific symmetry groups, in order to

simplify the task. Also in this case solutions can often be provided only numerically. If the manifold

is homogeneous, however, as it happens in every N > 2 supergravity theory or in specific N = 2

models, there is an alternative [66–69], which relies on the fact that homogeneous manifolds are

coset spaces, meaning they are realized as

Mscal =
G
H

. (5.5)

Here, G is the isometry group of the space and H < G is the subgroup of G leaving an arbitrary

point x fixed, and is called the isotropy subgroup of the manifold. By definition, there is a transitive

action of G on the space, and every point can be mapped to any other by a G transformation. The

idea is then to take condition (5.4) and map it to the origin (ϕ = 0), where all field dependence

drops and we are left with a system of second order equations in the gauging parameters, as will

be now shown in the N = 2 case.

Recall that the gauging parameters can be encoded in a duality covariant object by using of the

embedding tensor Θ α
M and transforming it like a spurion under duality and isometry actions. We

can moreover introduce it in the potential by re-expressing the killing vectors and momentum

maps as:

k•M = k•αΘ α
M ,

P•
Λ = P•

α Θ α
M ,

(5.6)

where we used the index M instead of Λ since we now allow our gaugings to be magnetic. We can

thus consider the potential as a function of the coordinates and the embedding tensor:

V = V(ϕ, Θ). (5.7)

In general, we expect a G transformation to have an embedding (even if trivial) in the duality
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subgroup acting on the symplectic sections: this means that when acting on the coordinates with a

G transformation, we should also act on Θ with the corresponding duality action as

Θ′ = UΘ, (5.8)

since if that is the case the combinations

Θ α
M VM, Θ α

M UM
i (5.9)

are duality invariant and the scalar potential remains unchanged in form. This means that, if we go

from ϕ′ to ϕ with a G transformation, we are allowed to write the equality:

V(ϕ′, Θ) = V(ϕ, Θ′). (5.10)

Furthermore we can see that, up to similarity transformations of the isometry generators (which of

course doesn’t affect the gauge group) tα → UtαU−1, the only action we really need to take into

account is the left action Θα
M → (Θ′)α

M = UN
MΘα

N . The same reasoning applies also to derivatives

of the scalar potential, and in particular to equation (5.4), which on the origin is simply a quadratic

function of the embedding tensor:
∂V
∂ϕi (0, Θ′) = 0, (5.11)

and can be solved together with the constraints (3.81),(3.82) defining a consistent gauging. In short,

rather than fixing the gauging and then performing a scan of all possible critical points of the scalar

potential and then scan among the possible gaugings, one can simply solve a set of quadratic

conditions on the embedding tensor and then read the resulting values of Θ which define at the

same time the original gauge group, the value of the cosmological constant and the masses at the

critical point. The procedure is shown graphically in the case of N = 8 supergravity in 5.1.

Since we are mainly interested in U(1) gaugings, the strategy of using the embedding tensor

is highly redundant, as our gauge group rank is one. In order to simplify the picture, we can

also trade the system of first and second order equations involving Θ with a system of (at most)

fourth order equations in fewer variables by using the rank factorization[45] of Θ. Given the rank

r = dim(Gg), we can indeed write:

Θα
M =

r

∑
I=1

ξ I
Mξα

I , (5.12)

and in the particularly simple case of U(1) gaugings Θ factorizes as:

Θα
M = ξMξα, (5.13)
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F I G U R E 5 . 1 : Stationary points of the N = 8 scalar potential found for ϕ = ϕ′ can
be translated to the origin of the scalar manifold by an isometry transformation

U ∈ E7(7) and by a redefinition of the embedding tensor Θ′ = UΘ.

and the closure and locality constraints, which can be cast as:

ξMCMNξN = 0, ξαξβ[kα, kβ] = 0 (5.14)

are naively satisfied. This is the strategy we will employ to find vacua of models involving U(1)

gaugings, while the U(1)× U(1) model will be taken from the literature. Before moving on, notice

that we can interpret the ξ I
M as our freedom in the choice of symplectic frame, and the ξα

I as the

freedom of choosing the gauge algebra among the isometry generators.

2 E A D S × S U ( 1 , 1 ) / U ( 1 ) A N D S U ( 2 , 1 ) / U ( 2 ) × S U ( 1 , 1 ) / U ( 1 )

M O D E L S

In this section, we will better characterize the Quaternionic and Special Kähler geometries we will

later use to search for compatible vacua among the various models and check the fermionic WGC.

2.1 EAdS4 geometry

Four dimensional hyperbolic space can be parametrized by a set of coordinates (z0, z1, z2, z3) in the

Poincarè half-space metric given by:

huv =
1

2(z0)2 δuv, z0 > 0. (5.15)
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It is straightforward to check that the SU(2)× Sp(2) vielbeins are given by:

UαA =
1

2z0 ϵαβ(dz0 − iσxdzx)A
β , (5.16)

and satisfy property (3.44). We also report the SU(2) bundle connection and curvature which were

calculated in [57]:

ωx
u =

1
z0 δx

u, Ωx
0u = − 1

2(z0)2 δx
u, Ωx

yz =
1

2(z0)2 ϵxyz. (5.17)

It is time to turn to the isometries and momentum maps of hyperbolic space, among which we

ought to choose which to gauge. We give here a comprehensive treatment. The (continuous,

connected) isometry group of the quaternionic manifold is the conformal group of EAdS4, SO(1, 4),

which generators are given by:

Pi , translations

Ji , rotations

D , dilatations

Si , special conformal transformations

(5.18)

where i = 1, 2, 3, giving in total 10 isometries. Since we chose the upper R4 parametrization, their

realizations as killing vectors is particularly simple:

Translations) By direct inspection of the metric, we notice these isometries to be realized as

proper translations on the three-dimensional constant z0 slices:

ku
ti
= δu

i , i = 1, 2, 3. (5.19)

Rotations) As above, they are simply realized as:

kr1 = z2∂z3 − z3∂z2 ,

kr2 = z3∂z1 − z1∂z3 ,

kr3 = z1∂z2 − z2∂z1 .

(5.20)

Dilatations) Dilatations are realized as:

ku
λ = zu (5.21)
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Special conformal transformations) Finally, these are less intuitive and are given by:

ku
si
= δuiδlmzlzm − 2zuzi , i = 1, 2, 3. (5.22)

We can indeed verify that the killing vectors satisfy the following Lie algebra:

[kri , krj ] = −ϵijkkrk ,

[kri , ktj ] = −ϵijkktk ,

[kri , ksj ] = −ϵijkksk ,

[kri , kλ] = 0,

[D, kti ] = −kti ,

[D, ksi ] = ksi ,

[kti , ksj ] = 2δijkλ − 2ϵijk Jk

(5.23)

which is the one of the conformal group with generators multiplied by −i. We are now ready to

calculate moment maps using (3.76):

Px =
1
2
∇[ukv](Ω

x)uv =
1
2

∂[ukv](Ω
x)uv, x = 1, 2, 3. (5.24)

Explicit computation yields:

Px
ti
=

1
z0 kx

ti
,

Px
ri
=

1
z0 kx

ri
+

1
2

∂lkri |mϵxlm

Px
si
=

1
z0 kx

si
+ 2ϵixkzk − 2z0δx

i

Px
λ =

1
z0 kx

λ.

(5.25)

It is also useful to identify the isotropy subalgebra of the isometry algebra, which is so(4). We can

notice that if we redefine the following generators:

k±ai
=

1
2
(ksi ± kt3) (5.26)

then we discover the following subalgebra:

[kri , krj ] = −ϵijkkrk ,

[kri , k±aj
] = −ϵijkkak ,

[k±ai
, k±aj

] = ±ϵijkkrk .

(5.27)

which is exactly the one of so(4) in the case of −, while of so(1, 3) in the case of +. Moreover, since

the Lie bracket of k+ai
and k−ai

closes on dilatations, we can identify kλ as the 4th boost of so(1, 4).
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2.2 Universal hypermultiplet geometry

We now switch to the case of SU(2, 1)/U(2). We can find the metric, killing vectors and prepo-

tentials by using the coset construction given in [70] and which we report here. Let us write the

generators of the su(2, 1) algebra as follows:

su(2, 1) = Span(Jx, J0, H0, Ta, T•), a = 1, 2, (5.28)

where Jx are the quaternionic SU(2) structure generators and J0 is the U(1) generator commuting

with them. The four remaining generators H0, Ta, T• generate the Borel subalgebra. The matrix

representation of the generators in the fundamental of SU(2, 1) is:

J1 =


0 0 0

0 0 −i

0 −i 0

 , J2 =


0 0 0

0 0 −1

0 1 0

 , J2 =


0 0 0

0 −i 0

0 0 i

 ,

J0 =


− 4i

3 0 0

0 2i
3 0

0 0 2i
3

 , H0 =


0 0 1

2

0 0 0
1
2 0 0

 , T• = − i
2


1 0 −1

0 0 0

1 0 −1

 ,

T1 =
1

2
√

2


0 −1 − i 0

−1 + i 0 1 − i

0 −1 − i 0

 , T2 =
1

2
√

2


0 1 − i 0

1 + i 0 −1 − i

0 1 − i 0

 ,

(5.29)

the invariant matrix defining the fundamental representation is diag(+1,−1,−1). The commuta-

tion relations among the generators of the Borel subalgebra are:

[H0, T•] = T•, [H0, TM] =
1
2

TM, [T1, T2] = T•. (5.30)

The parametrization of the manifold in terms of coordinates (u, χ, z1, z2) is defined by a coset

representative of the form:

L(q) = e−χT• e
√

2zMTM e2uH0 . (5.31)

The metric is thus given by:

ds2 = du2 +
e−4u

4
(dχ + ZTCdZ)2 +

e−2u

2
dZTdZ, (5.32)
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where C is the completely antisymmetric 2 × 2 matrix. In the following we will give the explicit

form of the killing vectors describing the 8 (continuous, connected) isometries of the manifold:

k J1 =
(z1 + z2)

2
∂u +

1
2
[Im(E)(z1 + z2)(Re(E) + 1)(z1 − z2)]∂χ

+
1
2
[1 − Im(E)− Re(E) + z1(z1 + z2) + z2(z1 − z2)]∂z1

+
1
2
[1 + Im(E)− Re(E) + z1(z2 − z1) + z2(z1 + z2)]∂z2 ,

k J2 =
(z2 − z1)

2
∂u +

1
2
[Im(E)(z2 − z1)(Re(E) + 1)(z1 + z2)]∂χ

+
1
2
[−1 − Im(E) + Re(E) + z1(z2 − z1) + z2(z1 + z2)]∂z1

+
1
2
[1 − Im(E)− Re(E)− z1(z1 + z2)− z2(z1 − z2)]∂z2 ,

k J3 = −χ

2
∂u +

1
2
[− Im(E)2 + Re(E)2 − 1]∂χ

+
1
2
[− Im(E)z1 + Re(E)z2 − 3z2]∂z1

+
1
2
[− Im(E)z2 − Re(E)z1 + 3z1]∂z2 ,

k J0 = −χ∂u + [− Im(E)2 + Re(E)2 − 1]∂χ

+ [− Im(E)z1 + Re(E)z2 + z2]∂z1 + [− Im(E)z2 − Re(E)z1 − z1]∂z2 ,

KT• = −∂χ, kTi = − 1√
2

ϵijzj∂χ +
1√
2

∂zi , kH0 =
1
2

∂u + χ∂χ +
1
2

zi∂zi ,

(5.33)

where we used the following complex quantities:

E = e2u + |Z|2 + iχ, Z =
z1 + iz2
√

2
. (5.34)

Finally, we can find all momentum maps simply by using the fact that in quaternionic homogeneous

manifolds the following definition holds:

Px
α =

1
2

Tr
[

JxL−1tαL
]
, (5.35)

where tα are the isometry generators in matrix form we defined above. Since their explicit form is

missing in [70], we compute them here:

PJ1 =
1
2

{
e−u

(
−1 − e2u +

1
2
(z1 − z2)2 − 2z1z2

)
, −e−u

(
χ − (z1)2 + (z2)2

)
,

1
4

e−2u
(

2z1 + 2χ(z1 + z2)− (z1)3 + e2u(z1 − z2)− 2z2 + z2(z1)2 − z1(z2)2 + (z2)3
)}

,

PJ2 =
1
2

{
e−u

(
χ − (z1)2 + (z2)2

)
, e−u

(
−1 − e2u +

1
2
(z1 + z2)2 + 2z1z2

)
,

3
2
(z1 + z2)− 1

4
e−2u

(
(z1)3 − 2(1 + χ)z2 + z2(z1)2 + (z2)3 + z1(−2 + 2χ + (z2)2

)}
,
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PJ3 =

{
1
8

e−u
(
(z1)3 − (z1)2z2 + z2(6 + 2χ + 2e2u − (z2)2) + z1(−6 + 2χ − 2e2u + (z2)2)

)
,

1
8

e−u
(
(z1)3 + (z1)2z2 + z1(−6 − 2χ − 2e2u + (z2)2) + z2(−6 + 2χ − 2e2u + (z2)2)

)
,

1
32

e−2u
(
−4 − 4χ2 − 4e4u + 12(z1)2 − (z1)4 + 12(z2)2 − 2(z1)2(z2)2 − (z2)4

+12e2u(−2 + (z1)2 + (z2)2)
) }

,

PJ0 =

{
1
4

e−u
(

z1
(

2χ − 2e2u + (z2)2 + 2
)
− z2

(
−2χ − 2e2u + (z2)2 + 2

)
+ (z1)3 − (z1)2z2

)
,

1
4

e−u
(

z1
(
−2χ − 2e2u + (z2)2 + 2

)
+ z2

(
2χ − 2e2u + (z2)2 + 2

)
+ (z1)3 + (z1)2z2

)
,

1
16

e−2u
(
−4χ2 + 4e2u

(
3(z1)2 + 3(z2)2 + 2

)
− 4e4u −

(
(z1)2 + (z2)2 + 2

)2
)}

,

PT1 =

{
− e−u

2
√

2
,

e−u

2
√

2
,− e−2uz2

2
√

2

}
, PT2 =

{
− e−u

2
√

2
,− e−u

2
√

2
,

e−2uz1

2
√

2

}
,

PT• =

{
0, 0,−1

4
e−2u

}
, PH0 =

{
−1

4
e−u(z1 + z2),

1
4

e−u(z1 − z2),
1
4

χe−2u
}

. (5.36)

2.3 Special SU(1,1)/U(1) geometry

Let’s finally turn to the Special Kähler manifold SU(1, 1)/U(1), parametrized by the complex

coordinate w. During our analysis, we will use a total of four different parametrizations and choices

of symplectic sections:

1. A symplectic section given X0 = 1, X1 = w and prepotential F(X) = −iX0X1,

2. A symplectic section given X0 = 1, X1 = w and prepotential F(X) = (X1)3/X0,

3. A symplectic section given X0 = 1, X1 = w and prepotential F(X) = − i
2 [(X0)2 − (X1)2],

4. A symplectic section given by e−K/2VM =
(
− 1

2 , i
2 , iw, w

)
without prepotential, which can

be obtained by a symplectic transformation of the first section.

As we will see, the choices 1,3 and 4 lead to the same homogeneous manifold, while 2 gives rise to

a different one, although equipped with the same coset structure [71]. We will use the first two

choices in the U(1) gaugings, while the last two will be reserved to the Ferrara model. When

a prepotential exists, the symplectic sections read e−K/2VM = {1, w, ∂X0 F(X), ∂X1 F(X)}. From

these, we can calculate the Kähler potential, the metric, the connection and the symmetric Cijk

sections following the identities given in Chapter 3. We get, respectively:

1. The full symplectic section and Kähler potential reads:

K(w, w∗) = − log [2(w + w∗)] , VM = eK/2 (1, w,−iw,−i) , Re(w) > 0. (5.37)
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The metric is thus given in the Poincarè half-space form and the connection follows as:

gzz∗ =
1

(w + w∗)2 , Γz
zz =

−2
(w + w∗)

, (5.38)

while:

UM
z = eK/2

{
−1

(w + w∗)
, 1 − w

(w + w∗)
,−i

(
1 − w

(w + w∗)

)
,

i
(w + w∗)

}
, (5.39)

and finally:

Czzz = 0, ∇zUM
z = 0. (5.40)

2. The full symplectic section and Kähler potential reads:

K(w, w∗) = − log
[
i(w − w∗)3

]
, VM = eK/2

(
1, w,−w3, 3w2

)
, Im(w) > 0. (5.41)

The metric is thus given in the Poincarè half-space form and the connection follows as:

gzz∗ = − 3
(w − w∗)2 , Γz

zz =
−2

(w − w∗)
, (5.42)

while:

UM
z = eK/2

{
−3

(w − w∗)
, 1 − 3w

(w − w∗)
,−3w2 − 3w3

(w − w∗)
, 6w − 9w2

(w − w∗)

}
, (5.43)

and finally:

Czzz =
6i

(w − w∗)3 ,

∇zCzzz =
18i

(w − w∗)4 ,

∇zUM
z = eK/2

{
− 6

(w − w∗)2 ,−2 (w∗ + 2w)

(w − w∗)2 ,
6w2w∗

(w − w∗)2 ,−6w (2w∗ + w)

(w − w∗)2

}
.

(5.44)

3. The full symplectic section and Kähler potential reads:

K(w, w∗) = − log
[
2(1 − |w|2)

]
, VM = eK/2 (1, w,−i, iw) |w| < 1. (5.45)

The metric is thus given in the Poincarè disk form and the connection follows as:

gzz∗ =
1

(1 − |w|2)2 , Γz
zz =

−2w∗

(1 − |w|2) , (5.46)
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while:

UM
z = eK/2

{
w∗

1 − |w|2 , 1 +
|w|2

1 − |w|2 ,− iw∗

1 − |w|2 , i
(

1 +
w∗

1 − |w|2

)}
, (5.47)

and finally:

Czzz = 0, ∇zUM
z = 0. (5.48)

4. The last symplectic section without prepotential defines a Kähler potential:

VM = eK/2
(
−1

2
,

i
2

, iw, w
)

, K = − log(w + w∗), (5.49)

with metric and connection defined as the first one. Moreover:

UM
z = eK/2

{
1

2 (w + w∗)
,− i

2 (w + w∗)
, i
(

1 − w
w + w∗

)
, 1 − w

w + w∗

}
, (5.50)

while all other relevant quantities vanish as in (5.40).

As remarked above, parametrizing the coset structure through a cubic prepotential leads to a

different manifold, as can be noticed from the fact that the Czzz sections are non-vanishing. As a

last remark, notice that the isometries of this space will not be needed, as the gauging will interest

the quaternionic isometries only.

2.4 Gaugings

As mentioned, we will need to construct all U(1) gaugings from scratch, while the Ferrara model

(in both symplectic embeddings) will be taken from the literature. In order to efficiently search for

vacua, we will first use the transitive property of homogeneous manifolds in order to translate

them to the origin, as illustrated in section 1. Let us then write the chosen U(1) killing vector and

the corresponding momentum map using the rank-decomposed embedding tensor:

ku
M = ξMξαku

α, Px
M = ξMξαPx

α , (5.51)

where the index α runs over the isometries of the manifolds. The potential then reads:

V = 4huvku
αkv

βξαξβξMξNVMV̄N + (gzz∗UM
z UN

z∗ − VMVN)ξαξβξMξN Px
α Px

β . (5.52)

We can now solve for the gauging parameters the following two conditions

V|q=0 = 0, ∂uV|q=0 = 0, (5.53)
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defining a Minkowski critical point on the origin of our manifolds, which for the EAdS4 and

universal model are respectively:

(z0, z1, z2, z3) = (1, 0, 0, 0) and (u, χ, z1, z2) = (0, 0, 0, 0). (5.54)

For the Special SU(1, 1)/U(1) with quadratic and cubic prepotentials we choose:

w = 1, w = i, and w = 0 (5.55)

respectively for F(X) = −iX0X1, F(X) = (X1)3/X0, and 2F(X) = i[(X0)2 − (X1)2], while the

section without prepotential used in the Ferrara model has again origin w = 1. Finally, we will need

to solve the fourth-order system of equations (5.53) in the gauging parameters, which will be done

using the Mathematica package Singular1. Singular is a computer algebra system for polynomial

computations, and the routine we will use is based on the technique called relinearization [72], which

has been used in a similar way in [73] to find vacua of maximal supergravity in five dimensions.

3 G A U G I N G S A N D VA C U A O F E A D S × S U ( 1 , 1 ) / U ( 1 )

3.1 Ferrara model

The Ferrara model [52, 57] is a no-scale supergravity model displaying partial or fully broken

supersymmetry. It can be constructed by gauging two of the three translation isometries of the

quaternionic manifold, which we choose to be:

kM = {gkt1 , g′kt2 , 0, 0}, Px
M =

1
z0 kx

MΛ. (5.56)

We will now compute this model in the two mentioned symplectic sections:

Symplectic section without prepotential) The explicit form of the shift matrices follows as:

Wz∗
AB = −i(w + w∗)1/2 1

z0 XAB,

Nα
A = −i(w + w∗)−1/2 1

z0 ϵαβXβA,

SAB = − i
2
(w + w∗)−1/2 1

z0 XAB,

(5.57)

where

XAB =
g
2
(σ1)AB − i

g′

2
(σ2)AB =

 g′−g
2 0

0 g′+g
2

 . (5.58)

1https://www.singular.uni-kl.de/

https://www.singular.uni-kl.de/
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We immediately see that if g = ±g′, then one gravitino is massless and supersymmetry is partially

broken. Otherwise it is fully broken. The potential can be checked to be identically vanishing, so

that we have sliding vevs for all scalar fields defining moduli spaces of N = 0 or N = 1 Minkowski

vacua. We can also explicitly compute mass matrices:

MzCzD = − i
b0 (w + w∗)−5/2XCD,

Mβ
zC =

2i
b0 (w + w∗)−3/2ϵαβXβA,

Mαβ = i(w + w∗)−1/2 1
b0 Xαβ.

(5.59)

where we used the fact that kz = 0 and we made use of the gradient flow equations to ease the

calculations.

Symplectic section with prepotential) For convenience, we take g = g′ as in [52], and we set it to

g = 1. Let’s again compute all shift matrices by applying their definitions:

SAB =
i

2
√

2
1
z0 (1 − |w|2)−1/2[(σ2)AB + w(σ3)AB

]
,

Wz∗
AB =

i√
2z0

(1 − |w|2)1/2[w∗(σ2)AB + (σ3)AB
]
,

Nα
A =

i√
2z0

(1 − |w|2)−1/2[(σ2)AB + w(σ3)AB
]
.

(5.60)

We can then compute mass matrices through the gradient flow equations or their definition:

MzCzD =− i√
2z0

w∗(1 − |w|2)−
5
2
[
w∗(σ2)AB + (σ3)AB

]
,

Mα
zA =

i
√

2
z0 (1 − |w|2)−

3
2 ϵαβ

[
w∗(σ2)βA + (σ3)βA

]
,

Mαβ =− 2i
z0 (1 − |w|2)−1/2[(σ2)

αβ + w(σ3)
αβ
]
.

(5.61)

As in the previous symplectic embeddings, all shift matrices squared cancel against each other and

the potential is identically vanishing, defining a no-scale model. Let’s then discuss the form of the

gravitino mass matrix:

SAB =
i

2
√

2
1
z0 (1 − |w|2)−1/2

 i w

w i

 , (5.62)

with eigenvalues λ = i ± w, which means that all vacua are non-supersymmetric since |w| < 1.

Notice that g would have appeared as an overall normalization. Considering two different g, g′

would have simply meant introducing partial supersymmetric vacua at z = ±g/g′. We neglect this

case since it has been already covered by the previous symplectic embedding.
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Vacuum Gauging parameters Type Scalar masses
{qu, Re(w), Im(w)}

s1 ξ i = 0, ξ5 = ±ξ4,
ξM = (ξ3ξ4/ξ2, ξ2, ξ3, ξ4)

N = 0 {0, 0, 0, 0, 0, 0}

s2 ξ i = (ξ4, 0, 0), ξ5 = 0 N = 2 {m2
s2

, m2
s2

, m2
s2

, m2
s2

, 0, 0}

TA B L E 5 . 1 : Gaugings and vacua of the EAdS4 × SU(1, 1)/U(1) model, with
symplectic embedding given by the prepotential F(X) = −iX0X1.

3.2 U(1) gaugings

Before solving (5.53) in the 14 total variables ξM, ξα, we can further reduce the number of gauging

parameters by again using the homogeneity of the quaternionic manifold. Indeed, since we are

interested in gauging a single U(1) vector, we can always act with the isotropy subgroup, in this

case SO(4), at the origin and on k ≡ kαξα in order to rotate it in a chosen non-compact direction,

which we choose to be kλ. Moreover, by looking at the isometries (5.19)-(5.22), (5.26) and the

commutation relations (5.23), (5.27) we see that we also have an SO(3) ⊂ SO(4) generated by kri

commuting with kλ, so that by leaving it fixed we can rotate the remaining 6 generators k−ai
, kri

(which clearly transform as SO(3) vectors) to eliminate two more parameters. We then choose:

k = ξ ikri + ξ4k−a1
+ ξ5kλ, (5.63)

and solve the system of equation (5.53) in 9 total parameters. We report in the tables all Minkowski

vacua we find by using the above parametrization.

Symplectic section with quadratic prepotential

Let’s start with the symplectic embedding defined by the prepotential F(X) = −iX0X1, which

vacua can be found in table 5.1 and where we defined:

m2
s2
= 2(ξ4)2

[
(ξ1 + ξ2)

2 + (ξ3 + ξ4)
2
]

. (5.64)

Let’s now describe the gaugings we obtained one by one.

s1: solution s1 of system (5.53) describes a fully-fledged no scale model with an identically

vanishing potential. The vacua it describes are, in general, non supersymmetric, since the

momentum map on the origin reads:

Px
α ξα = (±ξ5, 0, 0), (5.65)
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Vacuum Gauging parameters Type Scalar masses
{qu, Re(w), Im(w)}

sa
3 ξ5 = 0,

ξM = (ξ2
2/(9ξ4), ξ2,−ξ2

4/ξ2, ξ4)
N = 0

{
(m−

sa
3
)2, (m−

sa
3
)2, (m+

sa
3
)2,

(m+
sa

3
)2, 0, 0

}
sb

3 ξ5 = 0,
ξM = (ξ1, 0, 0, 0)

N = 0
{
(m−

sb
3
)2, (m−

sb
3
)2, (m+

sb
3
)2,

(m+
sb

3
)2, 0, 0

}
s4 ξ i = (ξ4, 0, 0), ξ5 = 0 N = 2 {m2

s4
, m2

s4
, m2

s4
, m2

s4
, 0, 0}

s5 ξ i = (ξ4, 0, 0),
ξM = (3ξ4,−ξ3, ξ3, ξ4)

N = 2 {m2
s5

, m2
s5

, m2
s5

, m2
s5

, m2
s5

, 0}

TA B L E 5 . 2 : Gaugings and vacua of the EAdS4 × SU(1, 1)/U(1) model, with
symplectic embedding given by the prepotential F(X) = (X1)3/X0.

and the gravitino mass matrix has two non-vanishing eigenvalues. One of the massless modes is a

would-be goldstone since the U(1) factor gets broken:

k = (±ξ5, 0, 0, 0). (5.66)

Being a no-scale model, these quantities depend on the scalar fields (z0, z1, z2, z3), but, at least in

this case, all points of moduli space belong to the same class of vacua described above.

s2: this solution parametrizes a class of models yielding supersymmetric vacua with fixed

quaternionic scalars and massive modes. There are two flat directions along the scalar fields

Re(w), Im(w). This means that the spectrum organizes as one massive short N = 2 hypermultiplet

and one massless N = 2 vector supermultiplet. As such, the U(1) factor in left unbroken on the

vacuum.

Symplectic section with cubic prepotential

Let’s now switch to the the symplectic section with prepotential F(X) = (X1)3/X0, which vacua

can be found in table 5.2 and where we defined:

(
m±

sa
3

)2
=

(ξ2
2 + 9ξ4)

3

81ξ2
2ξ2

4

∑
i
(ξ i)2 + (ξ4)2 ±

√√√√4(ξ1ξ4)2 +

(
∑

i
(ξ i)2 + (ξ4)2

)2
 ,

(
m±

sb
3

)2
= ξ2

1

∑
i
(ξ i)2 + (ξ4)2 ±

√√√√4(ξ1ξ4)2 +

(
∑

i
(ξ i)2 + (ξ4)2

)2
 ,

m2
s4
= 2ξ2

4

(
ξ2

1 + (ξ2 + ξ3)
2 − 6ξ1ξ4 + 9ξ2

4

)
,

m2
s5
=

16
3

ξ5
(

ξ2
3 + 9ξ2

4

)
.

(5.67)
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Again, let’s comment on the gaugings we found one by one.

sa
3 and sb

3 : these gaugings describe a class of non-supersymmetric models with all quaternionic

scalars fixed and flat directions along the Special scalars. For a choice of gauging parameters such

that m−
s3
= 0, these vacua develop new flat directions in the quaternionic sector (as can be checked

by noticing that some of the scalars disappear from the potential). The gravitino mass matrix is, in

general, non-vanishing since

Px
α ξα = (ξ1 − ξ4, ξ2, ξ3), (5.68)

and the U(1) factor is left unbroken as k = 0. For a particular choice of ξα, we can make the vacua

supersymmetric, as described by the next gauging.

s4: this gauging describes a class of supersymmetric vacua with fixed quaternionic scalars and flat

Special directions. Again, the spectrum reorganizes as one massive short hypermultiplet and one

massless vector supermultiplet. The quaternionic scalars can be made massless with a particular

choice of gauging, but they do not disappear from the potential, and as such remain fixed. Indeed,

it can be checked that positive quartic self-interactions between these scalars are present.

s5: this last gauging describes a class of supersymmetric vacua with fixed scalars and a would-be

goldstone coming from the higgsing of the U(1) factor:

k = (ξ5, 0, 0, 0). (5.69)

As such, this model displays a spectrum composed of one massive long vector N = 2 supermulti-

plet of mass ms5 . As in the previous case, we can make the scalars massless and un-higgs the U(1)

factor by choosing ξ5 = 0, but the model does not develop new flat directions in the quaternionic

sector since positive quartic interactions remain present.

4 G A U G I N G S A N D VA C U A O F S U ( 2 , 1 ) / U ( 2 ) × S U ( 1 , 1 ) / U ( 1 )

For this next choice of Mscal , we only cover U(1) gaugings, which will be systematically constructed

as in the previous case. Again, we can further reduce the number of gauging parameters by acting

with the isotropy algebra factor su(2) ⊂ u(2) in order to align k along one of the non-compact

directions, reducing the number of total variables from 12 to 9. We choose the following killing

vector for the gaugings:

k = ξ ik Ji + ξ4k J0 + ξ5kH0 , (5.70)

and solve (5.53) for 9 total parameters.
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Vacuum Gauging parameters Type Scalar masses
{qu, Re(w), Im(w)}

s1 ξ i = 0,
ξM = (−ξ2, ξ2,−ξ4, ξ4)

N = 2 {m2
s1

, m2
s1

, m2
s1

, m2
s1

, m2
s1

, 0}

s2 ξ i = 0, ξ5 = 0 N = 2 {m2
s2

, m2
s2

, m2
s2

, m2
s2

, 0, 0}

TA B L E 5 . 3 : Gaugings and vacua of the SU(2, 1)/U(2)× SU(1, 1)/U(1) model,
with symplectic embedding given by the prepotential F(X) = −iX0X1

Symplectic section with quadratic prepotential

As the previous section, let’s start with the symplectic embedding given by the quadratic prepoten-

tial F(X) = −iX0X1, which vacua can be found in table 5.3 where we defined:

m2
s1
= 2(ξ2

2 + ξ2
4)ξ

5,

m2
s2
= 8ξ4

(
(ξ1 + ξ2)

2 + (ξ3 + ξ4)
2
)

.
(5.71)

The classes of vacua we find are:

s1: this class of models defines supersymmetric vacua with fixed scalars and a would-be goldstone

mode that comes from the higgsing of the U(1) factor, which can also be checked by noticing that:

k = (
ξ5

2
, 0, 0, 0). (5.72)

As such, the spectrum reorganizes in one massive long vector supermultiplet.

s2: this gauging instead defines a class of supersymmetric vacua with one massive short hyper-

multiplet and a massless vector multiplet. The U(1) factor is indeed unbroken on the vacuum.

Notice that for the choice ξM = (−ξ2, ξ2,−ξ4, ξ4) this models reduces to the previous one with

ξ5 = 0 and all masses vanish. As pointed out for the previous scalar geometry, however, the model

does not display truly flat directions due to the presence of positive quartic self-interactions.
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Symplectic section with cubic prepotential

Finally, we cover the symplectic embedding of this model given by the cubic prepotential F(X) =

(X1)3/X0, which vacua can be found in table 5.4 and where we defined:

(
m±

sa
5

)2
=

(ξ2
2 + 9ξ4)

3

162ξ6
2ξ6

4

(∑
i
(ξ i)2 + 4(ξ4)2

)
ξ4

2ξ4
4 ± 4

√√√√ξ8
2ξ8

4(ξ
4)2

(
∑

i
(ξ i)2

) ,

(
m±

sb
5

)2
=

1
2

ξ2
3

∑
i
(ξ i)2 + 4(ξ4)2 ± 4

√√√√(ξ4)2

(
∑

i
(ξ i)2

) ,

m2
s3
= 2ξ2

4

(
ξ2

1 + (ξ2 + ξ3)
2 − 6ξ1ξ4 + 9ξ2

4

)
,

m2
s4
= 2

16
3

ξ5
(

ξ2
3 + 9ξ2

4

)
.

(5.73)

Vacuum Gauging parameters Type Scalar masses
{qu, Re(w), Im(w)}

s3 ξ i = 0,
ξM = (ξ1,−ξ3, ξ3, 0)

N = 2 {m2
s3

, m2
s3

, m2
s3

, m2
s3

, m2
s3

, 0}

s4 ξ i = 0, ξ5 = 0 N = 2 {m2
s4

, m2
s4

, m2
s4

, m2
s4

, 0, 0}

sa
5 ξ5 = 0,

ξM = (0, 0, ξ3, 0)
N = 0

{
(m−

sa
5
)2, (m−

sa
5
)2, (m+

sa
5
)2,

(m+
sa

5
)2, 0, 0

}
sb

5 ξ5 = 0,
ξM = (ξ2

2/(9ξ4), ξ2,−3ξ2
4/ξ2, ξ4)

N = 0
{
(m−

sb
5
)2, (m−

sb
5
)2, (m+

sb
5
)2,

(m+
sb

5
)2, 0, 0

}
TA B L E 5 . 4 : Gaugings and vacua of the SU(2, 1)/U(2)× SU(1, 1)/U(1) model,

with symplectic embedding given by the prepotential F(X) = (X1)3/X0

Notice that these vacua are qualitatively the same and quantitatively similar to the ones we found

in the EAdS model with cubic prepotential. We comment here on the main differences, if any.

s3: these vacua are a direct counterpart to the previous section’s s5.

s4: these vacua are a direct counterpart to the previous section’s s4.

sa
5 and sb

5 : These are a counterpart to sb
3 and sa

3 respectively. Here as well, the U(1) factor remains

unbroken while the non-vanishing momentum map reads:

Pαξα = (−2ξ1,−2ξ2,−2ξ3). (5.74)
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5 F E R M I O N I C W G C R E L AT I O N S

The previous sections were devoted to the construction and analysis of the various different models

we chose to study. In this section, we will focus on computing the Yukawas of the N = 0 vacua we

found using master formulas (4.95)-(4.100) and check if their square can be related to the scale of

supersymmetry breaking 12S2. To do so, we will make use of the characterization of the geometries

given in section 2 as well as the explicit gauging parameters of the following vacua:

EAdS4 × SU(1, 1)/U(1) SU(2, 1)/U(2)× SU(1, 1)/U(1)

s∗1 (sa
5)

∗

(sa
3)

∗

f1

f2

TA B L E 5 . 5 : Vacua chosen to check the Fermionic WGC.

where f1,2 refer to the Ferrara model with and without prepotential respectively, while the ∗ refers

to a specific choice of gauging parameters, in order to simplify the calculations. Notice that we

only picked one of the s3 and s5 vacua since we expect them to be qualitatively equivalent. Since

the computation is involved but straightforward, we only report the final results for |Y|2.

5.1 Ferrara models

Let’s consider the N = 0 (g ̸= ±g′) Ferrara models first. As we will later check, the conclusions

will be independent of this assumption.

No prepotential. We begin by listing the Yukawas in the case of the symplectic section without

prepotential. First, let’s compute the scale of supersymmetry breaking:

m4
susy ≡ 12 Tr S2 =

3(g2 + g′2)
4 Re(w)(z0)2 . (5.75)

Then, we find:

|Yαβ
s |2 =

422
27

m4
susy, (5.76)

|Yα
s|zD|

2 =
5258441

108
m4

susy, (5.77)

|Yβ

z|zC|
2 =

g2[4 + Re(w)]2 + g′2[4 − Re(w)]2

108(g2 + g′2)
m4

susy, (5.78)

|Yz|zCzD|2 =
1
27

m4
susy, (5.79)

|Yα
z∗ |zD|

2 =
4

27
m4

susy, (5.80)



74 Chapter 5. Testing the Fermionic WGC: explicit examples

|Yz∗ |zCzD|2 =
1

432
m4

susy. (5.81)

We see that there are no clear inequalities present between the Yukawas and the scale of supersym-

metry breaking, since some are bigger and some smaller. The main obstacle is that the dependence

on the moduli is, as in the case of (5.78), different, even among different Yukawas, meaning that the

conjecture becomes moduli space dependent and has to be checked at every point. This latter

problem can be fixed by looking for N = 0 vacua with completely fixed scalars, so that we have no

flat directions. Unfortunately, among the various gaugings, there are no vacua of this kind. As a

last remark, notice that the calculation also holds in the case of partial supersymmetry breaking,

g = ±g′.

With prepotential. Let’s now switch to the symplectic embedding with prepotential 2F(X) =

−i[(X0)2 − (X1)2], with g left as an overall gauge coupling in both translational isometries. Since

we established that the conjecture is moduli space dependent, let’s first evaluate it at the origin to

simplify calculations, and then extend it to the rest of the scalar manifold if deemed necessary. We

report the Yukawas in the following:

|Yαβ
s |2 =

422
27

m4
susy,

|Yα
s|zD|

2 =
585301

12
m4

susy,

|Yβ

z|zC|
2 =

73
432

m4
susy,

|Yz|zCzD|2 =
1
27

m4
susy,

|Yα
z∗ |zD|

2 =
4

27
m4

susy,

|Yz∗ |zCzD|2 =
1

27
m4

susy,

(5.82)

where the scale of supersymmetry breaking is :

m4
susy ≡ 12 Tr S2 = 3g2. (5.83)

We see that the strict inequality (2.15) is not obeyed, however, taking into account moduli depen-

dence, the scale of supersymmetry breaking and these Yukawas cannot be decoupled, in the sense

that Y → 0 always implies msusy → 0. A prototypical example of this is given by:

|Yz∗ |zCzD|2 =
1
9

1
(z0)2

1 + |w|2
1 − |w|2 g2,

12 Tr S2 =
3

(z0)2
1 + |w|2
1 − |w|2 g2,

(5.84)

in the limit z0 → ∞. This was true also in the previous symplectic embedding, but could be simply

due to the simplicity of the gaugings we are considering. If taken seriously, however, this could
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lead to a connection to the Gravitino Distance Conjecture [74, 75], as simililarly pointed out in [10] for

a simple N = 1 model.

5.2 U(1) gaugings

Let’s finally turn to the U(1) gaugings we chose in 5.5.

(s1)
∗ In this first gauging, the conjecture will be checked on a subset of solutions of s1:

ξα = (0, 0, 0, 1, 1), ξM = (0, 0, g, 0), (5.85)

such that all quaternionic scalars are massive and the only modulus is thus w. The Yukawas read:

|Yαβ
s |2 =

422
27

m4
susy,

|Yα
s|zD|

2 =
5258441

108
m4

susy,

|Yβ

z|zC|
2 =

1
108

m4
susy

[
(4 − 3 Re(w))2 Re(w)4

+2(9 Re(w)(Re(w) + 8) + 16)Re(w)2 Im(w)2 + (4 − 3 Re(w))2 Im(w)4
]

,

|Yz|zCzD|2 =
1

27
m4

susy,

|Yα
z∗ |zD|

2 =
4
27

m4
susy,

|Yz∗ |zCzD|2 =
1
27

m4
susy,

(5.86)

where the scale of supersymmetry breaking is :

m4
susy = 12 Tr S2 = 3

|w|2
Re(w)

g2. (5.87)

This is remarkably similar to the Yukawas of the Ferrara model with g ± g′ when evaluated on the

origin, the main difference being that the scalar field dependence here is way more intricate and

some of the coefficients differ.

(sa
3)

∗ We repeat the same procedure for the EAdS4 cubic model sa
3, by choosing:

ξα = (g, 0, 0, g/2, 0), ξM = (1, 0, 0, 0), (5.88)
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and noticing that, again, the only modulus is w. The Yukawas read:

|Yαβ
s |2 = 0

|Yα
s|zD|

2 =
26675893

1024
m4

susy,

|Yβ

z|zC|
2 = 0,

|Yz|zCzD|2 =
53
9

m4
susy,

|Yα
z∗ |zD|

2 = 0,

|Yz∗ |zCzD|2 =
5
9

m4
susy,

(5.89)

while the scale of supersymmetry breaking is :

m4
susy ≡ 12 Tr S2 =

3
16

g2

Im(w)3 . (5.90)

(sa
5)

∗ We repeat the procedure one last time, by restring the gauging to:

ξα = (g, 0, 0, g, 0), ξM = (0, 0, 1, 0) (5.91)

and again noticing that w is the only modulus. We get the following results:

|Yαβ
s |2 = 0

|Yα
s|zD|

2 =
26473361

32
m4

susy,

|Yβ

z|zC|
2 = 0,

|Yz|zCzD|2 =
1

12
53 Re(w) + 17 Im(w)

|w|2 m4
susy,

|Yα
z∗ |zD|

2 = 0,

|Yz∗ |zCzD|2 =
5
9

m4
susy,

(5.92)

where the scale of supersymmetry breaking is :

m4
susy ≡ 12 Tr S2 =

3
4

(
|w|2

Im(w)

)3

g2. (5.93)

5.3 Summary and comments

We managed to construct and analyze simple U(1) gaugings using two different scalar manifold

geometries: EAdS4 × SU(1, 1)/U(1) and SU(2, 1)/U(2)× SU(1, 1)/U(1), each with two different

symplectic embeddings given by a quadratic and a cubic prepotential. Adding to this, we have

taken from the literature two examples of the Ferrara model [52, 57]. We found a total of 5
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compatible classes of Minkowski vacua with fully broken supersymmetry, and checked conjecture

(2.15) on each one. The main obstacle we found was that, since flat directions were always present

in the potential, the conjecture is moduli depedent and could be violated in some regions of moduli

space. It would be interesting to construct a model where all scalars are stabilized, i.e. massive, and

compute the Yukawas there. We also saw that, at least in the Ferrara model, partial supersymmetry

breaking doesn’t seem to play a role. As for the general analysis and from the results of this section,

we can deduce that the geometrical structure of N = 2 supergravity EFTs doesn’t seem to realize

the fermionic WGC, at least as defined in this thesis, and some kind of UV completion needs to be

considered. For example, by identifying the true string theory moduli among the flat directions, we

could try to compute the infinite geodesic distance limit of the Yukawas in explicit models and tie

the conjecture to the Swampland Distance Conjecture.





6
Open problems and perspectives

We conclude with a brief summary and a review of possible further developments. Recall first

that the goal of this thesis was to construct and motivate a proposed low-energy consequence

(2.15) of the Fermionic Weak Gravity conjecture (2.14) by means of the geometrical structure of

supergravity theories, and in particular by employing N = 2 supergravity in four dimensions. The

main reason to attempt this follows from recent work [12, 34, 35] in the context of the Electric and

Scalar Weak Gravity conjectures, which follows a similar philosophy. Let’s then go through each

chapter, focusing on the results and some ways to extend them in future work.

• In chapter 2 we first introduced the notion of Swampland conjectures, discussing different

formulations of the "Weak Gravity" one and supporting it by simple black hole arguments. We

then introduced its magnetic version and formulated the Fermionic Weak Gravity conjecture

by qualitative arguments following [30].

• In chapter 3, after having reviewed the geometrical construction of the supergravity action,

we discussed the first simple example on how this can help us use and study Swampland

conjectures.

• In chapter 4 we proved the super-Higgs mechanism and identified the Yukawa appearing in

(2.15) schematically as:

|Y|2 = |∇M|2, (6.1)

where M are the fermionic Lagrangian mass matrices and ∇ the fully covariant derivative

on the scalar manifold. We computed Y explicitly (assuming a Minkowski background and

broken supersymmetry) to find that some parametric limits indeed realize the conjecture. For

example, by assuming that the hyperini bring the dominant contribution to supersymmetry

breaking:

|Yα
k∗ |mD|

2 ≳
4
9

m4
susy, by assuming W ≪ N on the vacuum. (6.2)

for the Yukawa involving hyperini, gaugini and vector multiplet scalars. This parametric

limit could indicate that the conjecture might be true when the tower of states of (2.14) doesn’t

break supersymmetry too much, or equivalently, when the FWGC fermion (the one which

couples to the supersymmetric tower, in the above case the hyperino) brings the dominant

contribution to supersymmetry breaking. This setup seems to work also on other Yukawas,
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but in general we find that the squares also involve model-dependent mixed products with

no clear sign, for example:

|Yk∗ |jCmD|2 ≳
nV
9

m4
susy − 2 Re

[
1
6
(S−1)DBWmDBkm|Σkj∗

Λ f Σ
j LΛ

− 1
6
(S−1)DBWmDB

(
∇k∗kj∗

Λ f Λ
m −∇k∗km|Λ f Λ

j gjj∗
)

f Σ
j∗kk∗

Σ

+
i
6
(σx)

A
D(S

−1)ABWmDBCjmlCk∗z∗ l∗ gll∗ gzz∗ gjj∗ f Λ
z f Σ

j∗kk∗
Σ Px

Λ

]
.

(6.3)

A possible extension of this analysis would be to compute these Yukawas in extended

supergravities with N > 2 to see if mixed terms vanish. In particular, it would be interesting

to start with the N = 8 case, which is the most constrained one. In doing so, we would first

have to provide a proof for the super-Higgs mechanism (at least in the case of Minkowski

vacua), which can be achieved by simply repeating the construction provided here. Extended

supergravities also provide a way to study the role of partially supersymmetric vacua with

more complex breaking patterns. Another approach that could be taken, although different

in spirit from the one presented here, is to consider explicit classes of Type IIA or IIB string

theory compactifications on CY3. This could lead to a rigorous justification of the parametric

limits we have identified in terms of the UV theory, and in general to further constraints on

the geometry of the scalar manifolds. One such example is the existence of the c-map, which

implies that the Special Kähler geometries we need to consider are only a restricted class

admitting an embedding into a Quaternionic manifold [45]. Since we have access to the UV

theory, doing this could hopefully also provide a way to identify which are the states that

make up the tower in (2.14).

• Finally, in chapter 5, we constructed some models from scratch and checked the ones present

in the literature in order to compute the Yukawas explicitly and better quantify the model-

depend terms. The hope was to gain insight on how the conjecture might be realized in very

simple settings. We used an interesting technique [66–69] to scan for vacua of homogeneous

manifolds and construct original models with Minkowski vacua and broken supersymmetry.

For what concerns the conjecture, as we remarked in the above, mixed products are present

and in general, we do not find (2.15). The main obstacle is that the models we checked

always had flat directions (i.e. moduli) and, as such, the conjecture depends on which point

of moduli space we consider. To avoid this, it is crucial to construct a model in which all

scalars are massive and moduli space is a single point, which however requires a great degree

of fine-tuning, and which we couldn’t do with the present set-up. This is one of the most

straightforward directions in which the work of chapter 5 could be extended. It would also

be interesting to check models with more complicated moduli dependence and possibly

non-abelian gaugings. In general however, as a promising first result, it seems that the

scale of supersymmetry breaking and the Yukawas cannot be decoupled, so that in every

model Y → 0 always implies msusy → 0. This could be in turn explored in a future work in
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relation to the Gravitino Distance Conjecture [74, 75], which states that sending the gravitino

mass (in our case proportional to the supersymmetry breaking scale) to zero is an infinite

distance limit lying in the Swampland. Indeed, sending Y → 0 should imply a breakdown

of the EFT through (2.14). Finally, as in chapter 4, we could also consider explicit string

compactifications, for example in order to identify which among the flat directions are true

moduli and try to tie (2.15) to the Swampland Distance Conjecture.





A
Notations and conventions

1 S PA C E T I M E A N D S P I N O R C O N V E N T I O N S

We follow the conventions of [46]. The Lorentz metric is ηµν = diag(+−−−), meaning that real

scalar fields are normalized with + 1
2 instead of − 1

2 . The Ricci tensor is defined as Rµν = Rµρσνηρν.

Covariant derivatives on fermions are Dψ =
(

d − 1
4 ωabγab

)
ψ. The Riemann tensor is defined as

Dωab = Rab = dωab − ωa
c ∧ ωcb ≡ − 1

2 Rab
µνdxµdxν. The Einstein-Hilbert term here is − 1

2 R, while

in [76] is + 1
2 R. We also used the identification

√−g = det ea
µ ≡ e. From the definition of Rab we

can derive the following commutator of covariant derivatives:

[Dµ,Dν] =
1
4

γabRab
µν. (A.1)

Spinor bilinears have the following exchange symmetry properties:

1 γµ γµν γµνρ

1 forms − + + −

0 forms + − − +

Useful gamma matrices identities are the following:

{γµ, γν} = 2ηµν, (A.2)

[γµ, γν] = 2γµν, (A.3)

γµγµ = 4, (A.4)

γµγµν = 3γν = γνµγµ, (A.5)

γµγµνγν = 12, (A.6)

γµγνγµ = −2γν, (A.7)

γµνρ = γµγνρ − γρηµν + γνηµρ, (A.8)

1
2
(γµνγρσ + γρσγµν) = γµνρσ + ηνρηµσ − ηνσηµρ. (A.9)

Introducing

γ5 = iγ0γ1γ2γ3, γ2
5 = 1, (A.10)
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(notice that this definition of γ5 differs by a minus sign from that of [76]; this propagates also in the

relations below), we have

γµ = +
i

3!
ϵµνρσγνρσγ5, (A.11)

γµν = − i
2!

ϵµνρσγρσγ5, (A.12)

γµνρ = −iϵµνρσγσγ5, (A.13)

γµνρσ = +iϵµνρσγ5. (A.14)

Spinors have the following elicities:

γ5


λiA

ζα

ψA

 =


λiA

ζα

ψA

 ,

γ5


λiA

ζα

ψA

 = −


λiA

ζα

ψA

 .

(A.15)

Charge conjugation only raises or lowers the position of SU(2) indices, e.g. (χ̄AχB)† = χ̄AχB,

but does not change the positions of the fermions inside fermion bilinears. However, due to the

hermicity properties of the gamma matrices chosen by [46], there is a minus sign whenever the

number of gamma matrices is odd, namely

(χAλB)† = χAλB, (A.16)

(χAγµλB)
† = −χAγµλB, (A.17)

(χAγµνλB)† = χAγµνλB. (A.18)

2 S C A L A R G E O M E T R Y C O N V E N T I O N S

We write down the formulas for the Levi-Civita connection 1-form and curvature 2-form on a

Kähler manifold:

Γi
j = Γi

kjdzk = gil∗(∂jgkl∗)dzk, (A.19)

Γi∗
j∗ = Γi∗

k∗ j∗dzk∗ = gi∗ l(∂j∗ gk∗ l)dzk∗ , (A.20)

Ri
j = Ri

jk∗ ldzk∗ ∧ dzl = ∂k∗Γi
jldzk∗ ∧ dzl , (A.21)

Ri∗
j∗ = Ri∗

j∗kl∗dzk ∧ dzl∗ = ∂kΓi∗
j∗ l∗dzk ∧ dzl∗ , (A.22)
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while we report the employed conventions for the Riemann and Ricci tensors of Quaternionic

manifolds:

Ru
v ≡ dΓu

v + Γu
w ∧ Γw

v = Ru
vrsdqr ∧ dqs, (A.23)

Rvs ≡ Ru
vus. (A.24)

Finally, the flat SU(2) metric ϵAB = −ϵBA, ϵ12 = 1 and the flat Sp(2nH , R) metric Cαβ = −Cβα,

where A, B = 1, 2 A, B = 1, 2 and α, β = 1, . . . , 2nH raise and lower indices with the following

conventions:

ϵABPB = PA, ϵABPB = −PA, (A.25)

CαβPβ = Pα, CαβPβ = −Pα, (A.26)

while the SU(2) sigma matrices (σx) B
A respect the following properties:

ϵBC(σx)
C

A = (σx)AB = (σx)BA = −((σx)
AB)∗. (A.27)
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