
Università degli Studi di Padova

Department of Information Engineering

Master’s Degree in Automation Engineering

DEVELOPMENT OF PATH PLANNING

ALGORITHMS FOR AGVs IN THE

PRIMARY ALUMINIUM INDUSTRY

Supervisor Master’s candidate
Prof. Angelo Cenedese Matteo Boscarato

Co-supervisors
Eng. Mauro Schiavo
Dr. Nicola Lissandrini

Academic Year 2018/2019

ii

”Walking presupposes that
at every step the world changes in some of its aspects

and also that something changes in us.”

Italo Calvino

iv

Acknowledgments

I thankmy parents, who have offeredme support and encouragement in these long five years:
they have been fundamental for achieving this goal.

I thank my sister Valeria, her husband Teddy, their children Marta and Mattia for having
cheered up my life of university student.

I thank my friends: from those I no longer see because of different choices of life paths, to
those I continue to see and go out with on a daily basis. Your contribution was fundamental
because it allowed me not to feel alone in all these years as a student.

I thank my university fellow students with whom I compared the solutions of the exercises,
when I had doubts about them, or when I simply wanted to share university life with them.
In particular, I thank Marco and Nicola, with whom I shared this last part of my university
career: I wish you the best satisfactions in your career.

Finally, I thankProf. AngeloCenedese, for givingme this thesis opportunity and for his help
in the drafting phase, and the company Techmo Car, in particular the Eng. Mauro Schiavo
for having providedmewith the necessarymaterial to developmy thesis and for introducing
me to working life in the company.

v

vi

Abstract

Thiswork, entitledDEVELOPMENTOFPATHPLANNINGALGORITHMSFORAGVs
IN THE PRIMARY ALUMINIUM INDUSTRY, has been carried out thanks to the col-
laboration between Techmo Car S.p.a. and University of Padua.
The project aims to evaluate different algorithms in the field of path planning, to automate
the driving of a particular type of vehicle, fluoride feeder vehicle, in the aluminium industry
environment.
To achieve this goal, a preliminary study was carried out concerning the world of the alu-
minium industry and the path planning algorithms existing in the literature. From these
informations, an operational vehicle model and a scenario model have been created to be
used for the simulation of different algorithms.
In particular, this thesis offers two types of algorithms for path planning: graph-based and
sampling-based. The task of both is to provide a path that combines an arbitrary starting
position with an arbitrary finish position, given any 2D map. The graph-based algorithms
generate the path considering the map as a graph, while the sampling-based ones generate
it by sampling various areas of the map. It is also considered a bonus algorithm that gener-
ates a path using wave fronts, according to a philosophy that does not belong to any of these
categories. Performance evaluation is both qualitative and numerical. The quality of the al-
gorithms is verified through graphical results of the simulations developed in theMATLAB
environment while the overall length of the path, the execution time of the algorithm and
steps between the starting and ending positions are considered as numerical data.
Two types of maps are used for the comparison of performance, an ideal and a real one, with
the aim of demonstrating and verifying the feasibility and concreteness of the algorithms,
opening then the space for a real implementation scenario.

Keywords: path planning algorithms, automated guided vehicle (AGV), aluminium indus-
try, alumina feeder vehicle.

vii

viii

Contents

Acknowledgments v

Abstract vii

List of Figures xii

List of Tables xv

List of Terms xvii

List of Acronyms xxiii

1 Introduction 1
1.1 State of Art . 1
1.2 Problem Context . 3
1.3 Proposed Solutions . 4
1.4 Thesis Outline . 5

2 Context Analysis 7
2.1 Aluminium Production Process . 7
2.2 Primary Aluminium . 7

2.2.1 Mining Bauxite Ore . 9
2.2.2 Alumina Refining . 9
2.2.3 Aluminium Smelting . 10
2.2.4 Tapping and Pouring Processes 11
2.2.5 Aluminium Fabrication . 12
2.2.6 Semi-Fished Production . 12

2.3 Secondary Aluminium . 13
2.3.1 Recycling Aluminium . 13

2.4 Typical Layout of Processing Plant . 14
2.4.1 Potrooms . 14
2.4.2 Casthouse . 16

ix

x CONTENTS

2.4.3 Carbon Anode Plant . 17
2.4.4 Other Areas . 17

2.5 Techmo Car Introduction . 17
2.6 Operative Vehicles . 19

2.6.1 Potroom Vehicles . 19
2.6.2 Potroom-to-Casthouse Vehicles 23
2.6.3 Casthouse Vehicles . 24
2.6.4 Bonus Vehicle: Anode Transport Vehicle 25
2.6.5 Moveable Objects . 26
2.6.6 The Enemies of Vehicles . 28

3 Literature Review 31
3.1 Graph-Based Algorithms . 31

3.1.1 Dijkstra’s Algorithm . 32
3.1.2 A* . 34
3.1.3 D* . 37

3.2 Sampling-Based Algorithms . 44
3.2.1 RRT . 45
3.2.2 RRT* . 47
3.2.3 BIT* . 47

3.3 Bonus Algorithm: FMM . 48

4 Experimental Design 55
4.1 Operative Environment . 55

4.1.1 ROS . 55
4.1.2 Gazebo . 57
4.1.3 Maltab & Simulink . 57
4.1.4 Autodesk Inventor . 58
4.1.5 Blender . 58

4.2 Fluoride Feeder Vehicle . 59
4.2.1 Kinematic Model . 61
4.2.2 Dynamic Model . 63
4.2.3 SimulationModel . 67
4.2.4 The Viewing in Gazebo . 71
4.2.5 Lasers and Cameras . 75
4.2.6 ROSNodes and Topics . 77

4.3 Scenario EvaluationModel . 78
4.3.1 Potrooms . 79
4.3.2 AFSH . 82
4.3.3 Streets and External Environment 83

CONTENTS xi

5 Experimental Results 85
5.1 Simulations with an Ideal Scenario . 85
5.2 Simulations with a Real Scenario . 92

6 Conclusions and FutureWork 101
6.1 Conclusions . 101
6.2 Future Work . 102

Appendix A The Bayer Process 103

Appendix B TheHall-Héroult Process 107

Appendix C Ackermann Steering Geometry 113

Bibliography 119

xii CONTENTS

Listing of Figures

2.1 The life cycle of aluminium. 8
2.2 Typical bauxite mining process. 9
2.3 Alumina refining process. 10
2.4 Aluminium smelting process. 10
2.5 Modern electrolytic-cell for electrolysis of aluminium oxide. 11
2.6 Aluminium recycling process. 13
2.7 Example of aluminium plant layout. 15
2.8 Layouts of system cells. 16
2.9 Casthouse layout for primary aluminium smelter. 16
2.10 The Techmo Car company headquarters. 18
2.11 Vehicle for end-to-end layout potroom. 21
2.12 Vehicles for side-by-side layout potroom. 22
2.13 Operation of tilting pouring. 24
2.14 Tapping truck. 24
2.15 Casthouse vehicles. 25
2.16 Anode transport vehicle. 26
2.17 Example of anodes and anode pallets objects. 27
2.18 Example of ladle object. 27

3.1 An illustration of the informed search procedure used by BIT*. The start
and goal states are shown as green and red, respectively. The current solu-
tion is highlighted in magenta. The sub-problem that contains any better
solutions is shown as a black dashed line, while the progress of the current
batch is shown as a grey dashed line. 49

4.1 Brands. 59
4.2 Fluoride feeder vehicle. 60
4.3 Bicycle kinematic model. 61
4.4 Longitudinal dynamics. 63
4.5 Lateral dynamics. 65
4.6 Front and rear tire slip angles. 66

xiii

xiv LISTINGOF FIGURES

4.7 Real fluoride feeder vehicle vs simulative fluoride feeder vehicle. 68
4.8 Components of fluoride feeder model. 73
4.9 Fluoride feeder in Gazebo environment. 75
4.10 Lasers and cameras in the model. 76
4.11 Nodes and topic. 78
4.12 Sohar’s smelter at Sultanate of Oman (Arab Peninsula). 79
4.13 Potcell model. 80
4.14 Empty potroommodel. 80
4.15 Potroommodel with potline. 81
4.16 Double potroommodel. 82
4.17 AFSHmodel. 82
4.18 3D world map for Gazebo simulation. 83

5.1 Ideal scenario: 2D labyrinth. 86
5.2 Path planning in the ideal scenario, employing graph-based algorithms. . . 87
5.3 Path planning in the ideal scenario, employing sampling-based algorithms. . 89
5.4 Path planning in the ideal scenario, employing Fast MarchingMethod. . . . 90
5.5 Potroom plant scenario: from Gazebo world to 2Dmap. 92
5.6 Path planning in the real scenario, employing graph-based algorithms. . . . 95
5.7 Path planning in the real scenario, employing sampling-based algorithms. . 97
5.8 Path planning in the real scenario, employing Fast MarchingMethod. . . . 97
5.9 Zoom on FMM path for the real scenario. 98

A.1 Main steps of Bayer process. 106

B.1 Hall-Héroult process.[5] . 108
B.2 The primary anode technologies. 110

C.1 Typical nineteenth-century service carriage. 113
C.2 The turntable steering. 114
C.3 The simple steering. 115
C.4 Steering equipped with differential mechanism. 115
C.5 Parametric angles [deg] plot. 116
C.6 Ackermann steering mechanism. 117
C.7 Parametric angles plot with Ackermann steering trend. 118

Listing of Tables

4.1 Parameters of vehicle components: cartesian measures [m], weights [kg]
and moments of inertia [kgm2]. 74

5.1 Performances of graph-based algorithms, sampling-based algorithms and
the FMM algorithm in the ideal scenario: steps to arrive to the target po-
sition, distance [px] of path between start and target position and the com-
putational time [s] employed by the algorithm to produce the path. 91

5.2 Performances of graph-based algorithms, sampling-based algorithms and
the FMM algorithm in the real scenario: steps to arrive to the target po-
sition, distance [px] of path between start and target position and the com-
putational time [s] employed by the algorithm to produce the path. 99

xv

xvi LISTINGOF TABLES

List of Terms

.dae File 3D interchange file format used to exchange
digital resources between multiple graphics
programs as, for example, Blender and Inven-
tor

.dwg File databases of 2D or 3D drawings created with
AutoCAD, the professional CAD software
made available by Autodesk and used to cre-
ate two-dimensional and/or three-dimensional
drawings and projects

.urdf File XML file format used in ROS to describe the
components of the robot

Alumina ceramic oxide of aluminiumobtained from the
refining of bauxite, fundamental in the indus-
trial field due to its properties such as resistance
to acids, high thermal conductivity and low
electrical conductivity

Aluminium Fluoride an important additive for the production of
aluminium by electrolysis: together with cry-
olite, it lowers the melting point to below
1000°C and increases the conductivity of the
solution

Automated Guided Vehicle a portable robot that follows along marked
long lines or wires on the floor, or uses radio
waves, vision cameras, magnets, or lasers for
navigation. They are most often used in indus-
trial applications to transport heavy materials
around a large industrial building, such as a fac-
tory or warehouse

xvii

xviii List of Terms

Bauxite sedimentary rock with a relatively high alu-
minium content and world’s main source of
aluminium. It consists mostly of the alu-
minium minerals: Gibbsite, Böhmite and Di-
aspore

Best First Search type of search algorithm which explores a
graph by expanding the most promising node
chosen according to a specified rule

Big-ONotation mathematical notation that describes the limit-
ing behavior of a function when the argument
tends towards a particular value or infinity and
also used to classify algorithms according to
how their running time or space requirements
grow as the input size grows

Binary Heap tree data structure in which each node has at
most two children, which are referred to as the
left child and the right child

Bucket Sort Technique a sorting technique that sorts the elements by
first dividing the elements into several groups
called buckets. The elements inside each bucket
are sorted using any of the suitable sorting algo-
rithmsor recursively calling the same algorithm

Böhmite an aluminium oxide hydroxide mineral and
component of the aluminium ore bauxite

Campaign Plan small portion of the earth’s surface, taken as
a reference for the performance of certain spe-
cific functions, essentially topographical, agri-
cultural or related to the construction of build-
ings

Casthouse building containing furnaces to which the alu-
minium is carried after being extracted from
potcells

Caustic Soda inorganic compound widely used as reagent in
the chemical industry

List of Terms xix

Chlorofluorocarbons chemical compounds containing chlorine, flu-
orine and carbon. Characterized by high chem-
ical and thermal stability which increases with
the fluorine content, they are non-flammable
and not very toxic

Cryolite a fluoride of sodium and of aluminium: in the
molten state, it is the main component of the
electrolytic cells because it lowers the melting
temperature, making the reactivity of the sys-
tems faster

Deadlock computer term which indicates a situation in
which two or more processes or actions block
each other, waiting for one to perform a certain
action that serves the other and vice versa

Diaspore an aluminium oxide-hydroxide mineral and
component of the aluminium ore bauxite

Fibonacci Heap data structure for priority queue operations,
consisting of a collection of heap-ordered trees

Gazebo A 3D graphical visualization environment for
ROS

Gibbsite one of themineral forms of aluminiumhydrox-
ide and component of the aluminiumore baux-
ite

Gradient Descent Technique a first-order iterative optimization algorithm
that uses the negative of the gradient of the
function at the current point for finding the
minimum of a function

Incremental Search Algorithm algorithm which reuses information from
previous searches to speed up the current
search and solves search problems potentially
much faster than solving them repeatedly from
scratch

xx List of Terms

Informed Search Algorithm algorithm which solves the search problem: to
retrieve information stored within some data
structure or calculated in the search space of a
problem domain. The informed feature stands
for avaibility of heuristic information

Ladle container used to contain molten material.
Normally of 10-14t capacity, it is closed with
a lid and equipped with a tube

Polycyclic Aromatic Hydrocarbons . . . hydrocarbons (organic compounds containing
only carbon and hydrogen) that are composed
of multiple aromatic rings. In general, they
are pollutants that generate alert because some
compounds have been identified as carcino-
gens and mutagens

PolygonMesh collection of vertices, edges and faces that de-
fines the shape of a polyhedral object in 3D
computer graphics and solid modeling

Potcell rectangular steel shell lined with carbon where
electrolytic process transforms refined alumina
into aluminium

Potline a serie of connected cells where the cathode of
the previous cell is connected to the anode of
the next cell downstream

Potroom long building based on pillars, so raised from
Campaign Plan, in which floor potlines are dis-
posed

RandomGeometric Graph an undirected graph constructed by randomly
placing N nodes in some metric space (accord-
ing to a specified probability distribution) and
connecting two nodes by a link if and only if
their distance is in a given range

Self-Balancing Binary Search Tree node-based binary search tree that automati-
cally keeps small its height (maximal number
of levels below the root) in the face of arbitrary
item insertions and deletions

List of Terms xxi

Siphoning phenomenon in which a flow overruns up-
wards, passing over the upper surface of a vessel
by exploiting the potential gravitational energy
and the principle of communicating vessels

Venturi Ejector system that exploits the Venturi effect, i.e. the
pressure of a fluid current increases with de-
creasing speed, to aspirate a given fluid

WBKmethod method for finding approximate solutions to
linear differential equations with spatially vary-
ing coefficients

xxii List of Terms

List of Acronyms

α AlO(OH) Diaspore

Al(OH)3 Aluminium Trihydroxite

Al(OH)3 Gibbsite

AlF3 . Aluminium Fluoride

AlF3 . Flux

AlO(OH) Böhmite

Al2O3 Alumina

CF4 . Tetrafluoromethane

CO2 . Carbon Dioxide

CO . CarbonMonoxide

C2F6 . Hexafluoroethane

FeO . Iron Oxide

HF . Hydrogen Fluoride

NaF . Sodium Fluoride

NaOH Caustic Soda

Na3AlF6 Cryolite

SiO2 . Silica

TiO2 . TitaniumDioxide

AFSH Aluminium Fluoride Storage and Handling

xxiii

xxiv List of Acronyms

AGV Automated Guided Vehicle

Al . Aluminium

ATV . Anode Transport Vehicle

BF . Baking Furnace

BIT* . Batch Informed Tree

CFCs Chlorofluorocarbons

CTTV Crucibile Transport and Tilting Vehicle

CTV Crucibile Transport Vehicle

FMM Fast MarchingMethod

GAP . Green Anode Plant

GGR RandomGeometric Graph

Na . Sodium

OSRF Open Source Robotics Foundation

PAHs Polycyclic Aromatic Hydrocarbons

PTM Pot TendingMachine

R&D Research &Develpment

ROS . Robot Operative System

RRT . Rapidly-exploring Random Tree

RS . Rodding Shop

SAIL Sanford Artificial Intelligence Laboratory

WBK Wentzel–Kramers–Brillouin

1
Introduction

In this chapter a brief insight of the state of art of the fields related to path planning and
control is presented: in fact, a small introduction on this topic and the exposition of follow-
ing works and concepts are necessary for a better comprehension of the proposed work. It
continues by introducing the problem of path planning in a formal way, followed by the
proposed solutions. Finally, it ends with the outline of the thesis.

1.1 State of Art

Owing to their mobility characteristics, Automated Guided Vehicle (AGV) can operate in
a larger workspace and explore uncertain environments. In uncertain/cluttered operating
environments, the AGV has no prior information/knowledge about the workspace. As it
operates in uncertain/cluttered environments, it demands higher level of intelligence than
other mobile robots.
Some of the challenges facing autonomous path planning in cluttered environment are high-
lighted in the literature as:

• limited online replanning algorithm.

• kinematic and dynamic constraints.

• limited sensor data about the environment.

• high computational time.

• the incomplete information about the obstacles.

1

2 CHAPTER 1. INTRODUCTION

In the last few years, path planning for AGVs is one of the main focus in the field of au-
tonomous control environments. Since AGVs are widely used in many industrial and mili-
tary applications, several researchers have beenworking on differentmethods to enhance the
intelligence of the vehicle for different applications. Path planning has been considered as the
main challenge in the field of autonomousmobile system. The fundamental requirement for
the path planning is to plan the best possible collision free path from a start position to a goal
position. For successful and complete path planning in cluttered environment, theAGVhas
to replan its path quickly in such a way to avoid any obstacles if necessary, until it completes
the assigned task. There are several classes of algorithms that can solve this problem. Worthy
of note are the classes:

• Graph-based.

• Artificial Potential fields.

• Visibility Graph.

• Reward-based.

• Wave Fronts.

• Sampling-based.

At the first class belongs A*, a heuristic search algorithmwidely used for path-finding. It uses
heuristic knowledge to search and solve to find the goal much faster than the uninformed
search methods. A* is not optimised for path finding cases in dynamic environment and it
can be adapted to dynamic environment by restarting once a change in the environment is
encountered.
Incremental heuristic search algorithms reuse search trees fromprevious searches to speedup
the current search and thus often find cost-minimal paths for series of similar search prob-
lems faster than by solving each search problem from scratch, which is important in domains
that are only incompletely known or change dynamically. Some existing re-planning algo-
rithms, such as D*, D* Lite Focused D* and Lifelong Planning A* (LPA*) are A* variant.
LPA* is an improvement on A* that efficiently updates only the changed paths in a dynamic
environment while D* Lite is based heavily on the backward LPA*. Time and space complex-
ity are always considered with respect to some measure of the problem difficulty.
An algorithmwith a different approach for path planning, related to the penultimate class, is
the FMM. It is a numerical method for solving the Eikonal equation: from a practical point
of view, it produces wave fronts starting from an initial position of the scenario. Then, using
the gradient descent technique, it is possible to arrive at the origin from any existing position:
the final result is the path that unites the initial position with the final one.
Belonging to the last class, there are for example RRT, PRM and BIT* which have proved

1.2. PROBLEMCONTEXT 3

extremely advantageous for every type of robot. These algorithms are based on the stochas-
tic sampling of the simulation scenario, thus creating a network of nodes and arcs. All these
algorithms are fundamentally structured in two phases: the first phase consists in creating
a finite number of random nodes in the scenario and in the connection of them through
collision-free arcs according to logics that vary according to the particular algorithm. In the
second phase the algorithm calculates the optimal path starting from a start node and a goal
node. In some cases the goal node can be replaced by a goal region, or a portion of the space
within which the robot must reach the end of the path.
In general, mathematical path-planning techniques assume that an AGV is a point mass
which canmove in anydirection and is able toflawlessly reach a specified goal, withmost stud-
ies using a simplified kinematic constraint to plan a feasible path. However, for real-world
scenarios, these assumptionsmay not be valid. In order to develop an effective path-planning
technique, knowledge of the relevant AGV’s dynamics is very important. To model a real
AGV’s behaviour, the equations of motion of AGVs which rely mainly on physical charac-
teristics, such as the vehicle and actuator specifications, are considered. Normally, AGVs are
characterised by non-integrable kinematic constraints which can not be eliminated from the
model equations, while the kinematic model enables understanding of the manoeuvrability
properties and analysis of the behaviour of the vehicle. On the other hand, the dynamic
model accounts for the reaction forces and describes the relationship between the motions
and generalised forces acting on the vehicle.
Most of the researchers have been working on various techniques to represent or rebuild the
environment that has both static and dynamic obstacles. Generally it is a challenging and
difficult task to plan an optimal path in the environment that has unknown dynamic obsta-
cles.
In the recent past, the different image processing approaches have emerged in order to detect,
track and estimate the dynamic obstacles behaviour. Basically, a scene flow is the 3Dmotion
field of points in the world while an optical flow is the 2Dmotion field of points in an image.
In the computer vision community, differential optical flow methods can be classified as lo-
cal and global. The former involves optimisation of a local energy and the latter determines
the flow vector through minimisation of a global energy. Local methods offer robustness to
noise but lack the ability to produce dense optical flow fields while global techniques pro-
duce 100% dense flow fields but are much more sensitive to noise.

1.2 Problem Context

Thepurpose of the aluminium industry environment is to produce aluminium from rawore.
It has several areas, each of them dedicated to very specific tasks, and different equipment,
such as cranes, vehicles and machinery, which enable these tasks to be carried out.
Vehicles suitable for aluminium processing are supplied by third-party companies, such as
Techmo Car S.p.A., an Italian company specialized in the production of high-end mobile
and fixed equipment for the production of aluminium and metal.

4 CHAPTER 1. INTRODUCTION

One of Techmo’s new goals is to make any produced vehicle an AGV: newmarket demands
and the development of technology in the autonomous driving sector have led the company
to consider this new type of vehicle.
To achieve this goal, Techmo sought collaborationwith theUniversity of Padua, particularly
with the field of automation engineering.
From this collaboration, three theses are born with the task of studying and providing so-
lutions on this precise case of autonomous guidance: a thesis (this one) focused on path
planning, a second thesis focused on kinematic control and finally a third thesis focused on
camera and laser vision of the vehicle.
Among the various processing areas, these thesis cover a particular area called potroom, in
which aluminium is melted; while among the operating vehicles, they focus on the fluoride
feeder vehicle, one of the many vehicles supplied by Techmo, which is responsible for bring-
ing aluminium fluoride into the potroom. Therefore, all three theses share the same chapter
concerning the design of the vehicle model.

1.3 Proposed Solutions

The solution proposed by this thesis in order to start making an autonomous industrial vehi-
cle is to use graph-based or sampling-based algorithms for vehicle path planning. The basic
idea is to use a 2D plan, which includes potroom and external environment, and approxi-
mate the vehicle to a simple 2Dmaterial point. In this way, it is much easier to focus on the
problem of path planning.
In this context the effectiveness of different algorithms is evaluated: A*, Dijkstra’s, D* Lite,
Focused D* for the first category of algorithms, while RRT, RRT* and BIT* for the second
category. Also the bonus algorithm FMM is evaluated, belonging at the wave fronts cate-
gory.
These algorithms, following different approaches, provide an ideal path to the output, so
only viable from amaterial point, and/or a real path, which can therefore also be travelled by
a real vehicle.
The advantages of these algorithms are convenience, flexibility and robustness: the algo-
rithms have different potentialities and demonstrate excellent results in different scenarios.
Some algorithms, such as D*, allow path planning even in semi-known environments, i.e.
scenarios in which the plant is known but there are mobile obstacles. This is an usual case
in the aluminium industry (fixed scenario) where vehicles and workers move continuously
(mobile obstacles).
A further advantage derives from the fact that the algorithms can be interfaced with an exter-
nal vision system (cameras) and therefore they can improve their performance and become
more usable in different situations and environments.
Other further advantages will be presented in the continuation of the thesis.

1.4. THESIS OUTLINE 5

1.4 Thesis Outline

The thesis is organized as follows.
Chapter 2 is used to introduce the area of interest of the thesis on autonomous vehicle tech-
nology. In particular, the aluminium industry and the Techmo Car company are presented,
with particular attention to the processing areas and involved vehicles.
Chapter 3 focuses on the most theoretical aspects of this thesis, presenting a review of the
literature related to path planning algorithms.
In chapter 4, the software used to perform AGV simulations and the general procedure for
obtaining a simulation model of vehicle starting from a real vehicle are presented. In order
to make the simulation as coherent as possible, a testing scenario similar to the aluminium
industry is created.
Chapter 5 shows the results of the tests and the analysis of the algorithms performances,
considering different types of scenarios where the path planning takes place and various char-
acteristic parameters of the algorithms. Path length, time taken by the algorithm and path
shape are the features used to make a comparison.
In chapter 6 the final conclusions and possible future works are reported.

6 CHAPTER 1. INTRODUCTION

2
Context Analysis

This chapter provides an analysis of the primary aluminium industry, followed by Techmo
Car company presentation. The process of aluminium processing is presented, with par-
ticular attention to the processes used and the various processing areas. Subsequently, the
company Techmo Car is introduced, highlighting its role in the aluminium industry: the
interest is directed to designed vehicles, from which is obtained the AGV, the main theme
of this thesis.

2.1 Aluminium Production Process

Aluminium is the most abundant metallic element in the Earth’s crust. It occurs in many
minerals: its primary commercial source is Bauxite, a mixture of hydrated aluminium oxides
and compounds of other elements such as iron.
In literature, the type of production leads to distinguish the aluminium in primary or sec-
ondary: the primary one is produced starting from themineral bauxite, instead the secondary
one is produced from re-melting of the aluminium scrap.

2.2 Primary Aluminium

Primary production is the process through which new aluminium is made: it regards the
steps by which alumina is smelted to pure aluminiummetal.
In the following subsections, these steps are discussed in order to understand the production
cycle of aluminium.

7

8 CHAPTER 2. CONTEXT ANALYSIS

Figure 2.1: The life cycle of aluminium.

2.2. PRIMARY ALUMINIUM 9

2.2.1 Mining Bauxite Ore

Figure 2.2: Typical bauxite mining process.

The first step of aluminium production is the mining of bauxite. The bauxite is a very com-
mon mineral and comes in the form of granular or rocky clay of various colours (pink, red,
brown and grey). The name derives from Les Baux, a French town in the Pyrenees where it
was first identified.
More thanonehundredmillions tons of bauxite aremined each year. The largest deposits are
typically found in equatorial zones: Australia, Central and South America (Jamaica, Brazil,
Suriname,Venezuela,Guyana),Africa (Guinea),Asia (India andChina),Russia, Kazakhstan
and Europe (Greece).
The material is mainly extracted in open-cast mines, in the upper layer of the ground (from
4m to 6m) and transported to crushing or washing plants to remove the overburden of sev-
eral meters of rock and clay. Subsequently, it is moved to the alumina refineries.

2.2.2 Alumina Refining

Despite bauxite is crushed or washed to remove unwanted materials, it still contains inside
a large number of impurities that should be removed in the refining step, to avoid the con-
tamination of the metal during the smelting process. In refinery, from bauxite is extracted
Alumina: a white powder necessary to produce primary aluminium.
The most commonly used method for alumina refining is the Bayer process [Appendix A]
and it involves principally four steps: digestion, clarification, precipitation and calcination.
The ore is first ground and mixed with a hot solution of lime and caustic soda. The mixture
is then pumped into high-pressure containers and heated. Then, a separation process, that
dissolves the aluminium oxide by a caustic soda, results in a clarified dissolved alumina. This
alumina is pumped into precipitators and aluminium crystals are added to hasten the pro-
cess of crystal separation. The crystals attract other crystals and form agglomerates, which

10 CHAPTER 2. CONTEXT ANALYSIS

Figure 2.3: Alumina refining process.

are filtered, washed and calcined in rotary kilns or stationary fluidized-bed flash calciners at
high temperatures. A dry and fine white powder of pure alumina is the result.[5]

2.2.3 Aluminium Smelting

Figure 2.4: Aluminium smelting process.

Aluminium smelting is the process of extracting aluminium from alumina generally by the
Hall-Héroult process.
In a modern smelter, alumina is dissolved in electrolytic-cells, Potcells, that are filled with
a mixture of sodium, aluminium, and cryolite fluorine.[Figure 2.5] An aluminium smelter
usually consists of hundreds of potcells arranged in lines,Potlines, divided in turn into rooms,
Potrooms.
TheHall-Héroult smelting process [AppendixB] is themostwidely used approach for smelt-
ing alumina to produce aluminium. The process requires anodes and cathodes, which are
mostlymade of carbon. The container accommodating the bath, molten solution of cryolite
and alumina, is shaped as the cathode while the anode block is lowered into the bath from

2.2. PRIMARY ALUMINIUM 11

above. A direct current is passed through the bath and as the aluminium ions discharge their
electrical load at the cathode, the liquid metal collects at the bottom of the electrolytic-cell.

Figure 2.5: Modern electrolytic-cell for electrolysis of aluminium oxide.

Typically, the set of anodes in a cell is arranged such that only one anode must be reposi-
tioned daily. During the electrolytic process, the anode burns down to a residue providing
just enough carbon to cover pins and cast iron nippel. There should always be a minimum
percentage of the anode left on the bar from which it is suspended because otherwise the
aluminium bath can be contaminated with metal from the bar. The used anode can be used
in the construction of new anodes.
While anodes are consumed very fast, the cathodes are consumed slowly and need to be re-
plenished only on a long-term basis.

2.2.4 Tapping and Pouring Processes

The aluminium smelting process proceeds by periodically siphoning liquid aluminium from
the potcells into large crucibles bymeans of a vacuum vessel. The liquid substance is poured
into a crucible and transported to the Casthouse where it is further processed. The activities
from siphoning off the molten aluminium until placing the filled crucible in the main road
are comprised in the so-called tapping process. Instead, the activities from placing the filled
crucible in the main road until metal pouring into holding furnaces are comprised in the
so-called pouring process.

12 CHAPTER 2. CONTEXT ANALYSIS

2.2.5 Aluminium Fabrication

After being transported to the casthouse, themelt aluminium located inside the holding fur-
nace can be combinedwith other aluminium coming from themerger of waste. Thismerger
happens inmelting furnaces that, as a principle, are identical to holding ones and it is made
through the heat provided by the combustion of burners (particular gas). Subsequently, it is
passed through ametal treatment system,which removes impurities such as hydrogen,metal-
lic contaminations, andmechanical contaminations. The fluxed aluminium is then cast into
shapes as specified to specific wishes of customers.
After a cooling period, the aluminium products are transferred to storage or prepared for
shipment.

2.2.6 Semi-Fished Production

Depending on the desired product mix, further fabrication may include forging, casting,
rolling, drawing or extruding to create different semi-finished products. In detail, the tech-
niques for transformingmolten aluminium into products for commercial use are varied and
divided into:[2]

• Drawing: special type of cold rolling in which the starting piece is passed through a
mold that gives it its final shape. It is used to produce some small diameter wires and
tubes, called drawn tubes, used in applications ranging from aeronautics to kitchen
items.

• Continuous and semi-continuous casting: technique for transformingmolten aluminium
into wire rods and subsequently, through the drawing, are made wires, slabs, plates
or billets for further processing.

• Lamination: process of reducing the thickness of aluminium and can be “hot” or
“cold”. With “hot” rolling, a pre-heated ingot passes through the rollers, undergo-
ing a reduction in thickness and an increase in length at each step. “Cold” rolling
returns hardness and allows the desired thickness to be reached. Combined lamina-
tion processes can produce an aluminium sheet having a thickness of only 0.004mm.
Normally aluminium foils have a variable thickness ranging from 0.20 to 3mm. Alu-
minium foil is a widely used packaging due to its impermeability to air, light and hu-
midity, which allows the storage and transport of perishable goods.

• Extrusion: process in which a pre-heated aluminium billet passes through a steel ma-
trix transforming its original volume into that of a long profiles with a constant sec-
tion. Extrusion is used for the production of extruded shapes such as windows, doors,
coverings, pipes, structures for trailers, railway carriages, air planes and ships.

2.3. SECONDARY ALUMINIUM 13

• Casting of Fusion: the aluminium is melted in various forms and cast in special molds.
Sand mold casting is used for small series or very complicated pieces. The automo-
tive industry makes extensive use of cast aluminium parts such as pistons, manifolds,
pumps etc.

• Forging: the final shape is obtained by compressing a hotmetal tablet in a specialmold.
It is a technique to produce pieces with variable weight (from 50g to 100kg).

• Impact Extrusion: it is a combination of extrusion and forging. The most famous
product made with this technique is the flexible tube used to hold shaving cream,
toothpaste, cosmetics, etc.

2.3 Secondary Aluminium

Secondary production is the process through which aluminium is recycled from products
arrived at the end of their life cycle (old scrap) or from the remelting of scrap from the pro-
cessing of the same aluminium industry (new scrap).

2.3.1 Recycling Aluminium

Figure 2.6: Aluminium recycling process.

The production of secondary aluminium consists of the recycling of aluminium scrap or
processing waste, to obtain aluminium called secondary or second fusion.
Thanks to its total recyclability, almost a third of the aluminium used today is produced by
recycling scrap without losing its quality and with consequent economic and environmen-
tal advantages for both industry and consumers. In fact, secondary aluminium production
not only requires less energy (aluminium recycling requires only 5% of the energy used to
produce primary aluminium) but also reduces waste and greenhouse gas emissions.
After selection, the baled aluminium scrap is sent for recycling in the foundry. In general,

14 CHAPTER 2. CONTEXT ANALYSIS

the casthouse equipment used in primary smelters and secondary smelters. Here the mate-
rial is subjected to a de-slagging treatment: it is pre-treated at about 500°C in rotary kilns, for
being purged of paints or other adherent substances. Leaving the kiln after slagging, the hot
aluminium shreds are transported to recycling kilns where they are melted at 800 °C until
liquid aluminium is obtained, which is transformed into ingots or billets for the production
of semi-finished products or new products.[3]

2.4 Typical Layout of Processing Plant

The production of primary aluminium takes place in large production lines containing hun-
dreds of electrolytic-cells and a number of different areas, common in aluminium smelters.
The smelter includes the following areas: potrooms, casthouse, carbon anode shop and oth-
ers areas.[Figure 2.7]

2.4.1 Potrooms

The plant layout of a primary aluminium smelter is characterized by the typical extended
parallel buildings, accommodating the electrolytic-cells, called potcells. A cell comprises rect-
angular steel shells lined with carbon that are filled with a mixture of sodium, aluminium,
and cryolite fluorine. The cells may be lined up end-to-end [Figure 2.8a] or side-by-side [Fig-
ure 2.8b] in one or more parallel lines down the center of the potroom:

• End-to-end layout: it presents corridors to the two long sides of every rowof cells, used
for the transit of the vehicles in the miscellaneous operations. Then, for reason of
layout compaction, it switched to side-by-side layout in which there is only a corridor
on the short side of cells.

• Side-by-side layout: in this configuration, the use of ground machines was not ex-
pected because every operation had to occur through an equipped crane called Pot
TendingMachine (PTM).Nevertheless, the use of somemachines also spread for this
type of layout, due to high cost of cranes and their failure vulnerability (a small break-
age in the crane leads to whole replacement).

Each cell is reachable from twoopposite sides in both layout and contains a fixed number
of anode places on each side (usually, between 14 and 32 in total). A smelter roughly con-
tains around 300 to 700 potcells, covering a total length of approximately 1km. A different
number of anodes may be used per cell. An electric current is passed through the suspended
anodes and cathodes in the potcells. Cells are electrically connected in series (the cathode of
a cell is connected to the anode of the next cell downstream). A series of connected cells is
called potline. As the cells are lined up in series, a connection between two cells caused by for
instance a vehicle or a human, can lead to a short circuit (or even worse accidents). During
the facility design phase, the consequences of cell alignments should be taken into account:

2.4. TYPICAL LAYOUTOF PROCESSING PLANT 15

Fi
gu
re
2.
7:
Ex
am

pl
eo

fa
lu
m
in
iu
m
pl
an
tl
ay
ou

t.

16 CHAPTER 2. CONTEXT ANALYSIS

roughly, every five years a major overhaul of a potcell takes place. During this process, the
potcell will be emptied and cleaned. Usually, the potcell is completely removed from the
potroom and revised elsewhere.

(a) End-to-end layout. (b) Side-by-side layout.

Figure 2.8: Layouts of system cells.

2.4.2 Casthouse

The resultant aluminium of the electrolysis process is transported from the potrooms to the
casting area in crucibles. From thereon, alloys could be added, aluminium could be poured
into holding furnaces prior to casting or the aluminium could be directly cast into ingots.
Figure 2.9 sketches a typical casthouse in a primary aluminium smelter.[5]

Figure 2.9: Casthouse layout for primary aluminium smelter.

2.5. TECHMOCAR INTRODUCTION 17

2.4.3 Carbon Anode Plant

The carbon anode plant occupies a large area in the primary aluminium smelter and basi-
cally handles themanufacturing of anode blocks that go into the electrolytic-cells. Materials,
such as calcined petroleum coke and pitch, are passed through various production steps be-
fore they are finally baked to form the anode block. The carbon anode plant comprises the
zones: Green Anode Plant (GAP), Baking Furnace (BF), and Rodding Shop (RS).
In theGAP, the so-called green anodes aremanufactured: petrol coke is crushed and ground
into the required grain size distribution while used anodes are recycled by crushing andmak-
ing up a coarse fraction. All fractions are mixed, adding liquid coal tar pitch as a binder.
During the forming, the paste is shaped and compacted to the required size and density, af-
ter which the green anodes are obtained.
The green anodes are sent to the BF where they are calcined at a high temperature. The bak-
ing process consists of a pre-heating, heating, and cooling process. The time of baking differs
fromplant to plant and a baking cycle of 24 to 28 hours is required in the present production
process. After the cooling period has elapsed, the block is transported to the RS.
In the rodding area, ametal rod is applied to the baked anode. The rod allows both the anode
to be suspended in the potcell and the power may flow through it. Butts (consumed anodes)
arrive in the rodding shop after which the rods are stripped of the anode block. The metal
rod is prepared for re-use and the used anode is returned to the green carbon area for prepro-
cessing. Usually, the whole carbon anode plant is capable to process all anodes required for
the potlines. In large smelters, this could be more than a thousand per day.[5]

2.4.4 Other Areas

Besides the production facilities and dedicated areas as described previously, there are a num-
ber of other areas that could be identified in primary aluminium smelters. For instance, stor-
age areas for alumina, petrol coke, green andbakes anodes, baking furnace, and rodding shop.
Also, the aluminium produced and the final products are stored in dedicated areas. Finally,
there is parking places dedicated to backup AGVs. Another process going on in potrooms
is the filling of buckets with bath materials. After a certain amount of anode changes, this
bucket is full and need to be brought to a bath cooling conveyor where it is emptied. A
maintenance and administrative department complete the plant.

2.5 TechmoCar Introduction

The company Techmo Car or, simply, Techmo is a world leader in the engineering and pro-
duction of high-end “tailor made” mobile and stationary equipment for the aluminium in-
dustry. In particular, areas of expertise are the primary aluminium industry in which alu-
mina is smelted to pure aluminium metal, and the secondary aluminium industry in which
aluminium scrap is recycled into aluminium that can be used again. The special designed
custom-made vehicles are in operation all over the world at various kind of industries and

18 CHAPTER 2. CONTEXT ANALYSIS

Figure 2.10: The Techmo Car company headquarters.

the machines are designed to perform, for example, in hot smelter environments with high
magnetic fields and in the primary aluminium industry where space is often an issue.
The company was founded in 1961 by Dr. Franco Zannini and since the beginning was
focused on providing original and state of the art solutions to problems related to metal pro-
duction. Techmo was the first company in the world to conceive and fabricate specialized
vehicles for the aluminium electrolysis in the 60’s of the past century. Nowadays Techmo
products are appreciated by themost demanding aluminiumproducers, adopting every kind
of smelter reduction technologies, located in more than 40 countries. Each step of their
projects is carried out through a specific engineering analysis of the production requirements.
Techmo R&D programs focus on the following multiple objectives:[17]

• Improving all the environmental aspects: better comfort and saferworking conditions
for the operators, reduce carbon footprint of our equipment, increase recyclability of
our components.

• Bringing higher efficiency to the production process while reducing production costs,
running costs, and maintenance costs.

• Increasing durability in the years.

Techmo is currently investigating possibilities to strengthen their competitive position by
gaining access to the emerging technology of AGVs. This rising technology can complement
their current assets and capabilities and therefore lead to newmarket opportunities and addi-
tional after sales services. Techmo has already started some research to apply this technology
in the aluminium industry. To arrive at innovative and specific solutions for their area of de-
velopment, the company relied on the University of Padova: as will be seen in the following

2.6. OPERATIVE VEHICLES 19

chapters, the thesis will try to propose solutions to the problem of autonomous driving of
vehicles operating in the aluminium industry.

2.6 Operative Vehicles

In addition to human work, the production of aluminium works thanks to the use of spe-
cific vehicles, without which some activities could not be carried out or would require a
much longer operating time (unthinkable for the aluminium industry).
A number of vehicles and related substitutes can be identified in an aluminium smelter: de-
pending on the work area, they can be distinguished in potroom and casthouse vehicles.
In the following subsection, the two categories of vehicles will be analysed in their character-
istics and in the tasks they perform.

2.6.1 Potroom Vehicles

These vehicles concern the aluminium processing when the pure aluminium in the molten
state is deposited above the cathode (in the bottomof the cell) and it is extracted by aspirating
it into a ladle through an appropriate tube (tapping tube). In the ladle, the vacuum is created
through a vacuum line of the factory or through a Venturi Ejector. Aluminium, once the
ladle has been filled, is carried into the casthouse for next processing.

End-to-End Potroom Vehicles

• Anode Changers: provides for the replacement of the consumed anodes adjusting the
distance between anode and cathode and then replacing the anode.[Figure 2.11a]
According to the type of equipment, an anode changer can arrive to carry out the
following functions:

1. break the crust around the anode.
2. grab the anodic rod and open the locking mechanism of anode on bus-bar link.
3. remove the anode and pose it on pallet of exhausted anodes.
4. clean the anodic cavity bringing on board the waste through a bucket.
5. take a new anode from pallet of new anodes.
6. fix the new anode to the right height.

• Crustbreakers: break the crust, which is mainly formed on the long side of the cell,
to encourage the removal of the anode. They are equipped with a hydraulic hammer
that is positioned in a controlled way by the operator. It can also break the crust on
the short side of the cell or between anode-to-anode.[Figure 2.11b]

20 CHAPTER 2. CONTEXT ANALYSIS

• Alumina Feeders: the task of this vehicle is to fill the cell tanks of alumina. It is added
to the potcell at frequent intervals by point feeders to keep the alumina content at a
constant level while metal is separated.
These machines have a container of 7 or 9m3 which is filled to fall from a silo with a
bellows inlet. In the potroom, the operator pairs the final part of cochlea, of which
the vehicle is endowed, with the loading “mouth” of cell tank.
The feeders can be also equipped with an impact hammer required to break the crust
that forms on the surface of the bath before alumina is charged: in other words, it can
substitute the crustbreaker.[Figure 2.11c]

• Anode Covering Vehicles: are used to cover the part of the cell, that would be uncov-
ered after the breakage of the crust or the change of the anode, of milled bath (recy-
cling material from the grinding of anodic remains). The covering with milling bath
has mainly mechanical function: it thermally insulates the fused part from the atmo-
sphere and protects it from oxidation.[Figure 2.11d]

(a) Multipose anode changer. (b) Crustbreaking vehicle.

2.6. OPERATIVE VEHICLES 21

(c) Alumina feeder vehicle. (d) Anode covering vehicle.

Figure 2.11: Vehicle for end-to-end layout potroom.

Side-by-Side Potroom Vehicles

All these vehicles perform functions typically of PTM competence. For the reasons cited
previously in the introduction of side-by-side potroom, many smelters choose to remove
somePTMfunctions, leaving only the essential ones, i.e. the tasks that can not be performed
by such vehicles.

• Fluoride Feeders: are very similar for appearance and function to alumina feeders. The
mainly difference is that, in this case, aluminium fluoride is managed instead of alu-
mina.[Figure 2.12a]

• Taphole Breaking and Covering Vehicles: are used to open, through frontal hydraulic
hammer, a hole in the crust on short side of cell, to allow thewithdrawal of aluminium
or melted bath through tapping. The hole is then re-closed pouring some milled
bath.[Figure 2.12b]

• Bath Tapping Vehicles: withdraw the cryolite bath from a cell and reverse it in another,
similarly to molten metal that is taken by a vacuum ladle to be transferred to another
cell. This operation needs to balance the bath amount between cells in order to create
uniform conditions, encouraging the control of electrical conduction.[Figure 2.12c]

22 CHAPTER 2. CONTEXT ANALYSIS

(a) Fluoride feeder vehicle. (b) Taphole breaking and covering vehicle.

(c) Bath tapping vehicle.

Figure 2.12: Vehicles for side-by-side layout potroom.

2.6. OPERATIVE VEHICLES 23

2.6.2 Potroom-to-Casthouse Vehicles

This type of vehicles concerns the passage of the aluminium from potroom to casthouse. In
this subsection, reference will be made to the tapping operations (removal of metal from the
cell) andpouring operations (pouring ofmetal into the furnace): depending on the solutions
adopted, the ladle hanging on a PTM can get metal from the cell and later can be moved
through vehicle, or can be entirely managed by vehicle.

Withdrawal through Ladle from PTMor Crane

After being hung on the PTM [Figure 2.13a], the ladle tube is inserted in the potcell with
the beak at the height of the aluminiummolten and it is created the vacuum inside the ladle
thought a line of empty belonging to the factory or through a compressed air line that feeds
a Venturi Ejector placed on the ladle lid. The created vacuum taps the aluminium from the
inside of ladle and its quantity is controlled by load cells. When the ladle is full, tapping op-
eration is stopped.
Subsequently, the ladle is posed on a carriage driven by a tractor or posed on a stand in the
entrance hall of potroom and withdrawn by a Crucibile Transport Vehicle (CTV) (or Cru-
cibile Transport andTilting Vehicle (CTTV), in the case of equipment with ladle tilter) that
transfers it in the casthouse and empties it inside the holding furnace. This latter operation
can be done in different way:

• Ladle transportedbyCTVor carriage−→ emptying throughSiphoning [Figure 2.13b]
or pouring through a fixed position of tilting.

• Ladle transported by CTTV −→ emptying through pouring of ladle directly from
vehicle.[Figure 2.13c]

(a) Tapping operation by PTMwith hanging ladle.

24 CHAPTER 2. CONTEXT ANALYSIS

(b) Operation of shiphoning. (c) Operation of tilting pouring.

Figure 2.13: Operation of tilting pouring.

Withdrawal through Tapping Truck

In this case, the PTM is absent and the ladle is transported by appropriated vehicle, the Tap-
ping Truck [Figure 2.14], which deals with tapping, transferring and pouring: the machine
has often on board a compressor to provide the compressed air needed to tapping and, some-
times, also to pouring through specific pipes or channel called Launder.

Figure 2.14: Tapping truck.

2.6.3 Casthouse Vehicles

As the smelting process is continuous, additional materials need to be added to the potcell
periodically.

2.6. OPERATIVE VEHICLES 25

• Skimming Machines: are provided of a long telescope with a rake at the end and are
used to remove the superficial waste of the metal. They also stick the metal and clean
the bottom and the walls of furnace.[Figure 2.15a]

• Scarps Loaders: are used to load the furnaces with the waste aluminium. They can use
boxes, forks or other loading devices. Moreover, they can be used also as skimming
machines.[Figure 2.15b]

(a) Skimming vehicle. (b) Scarps loading vehicle.

Figure 2.15: Casthouse vehicles.

2.6.4 Bonus Vehicle: Anode Transport Vehicle

This type of vehicle does not belong properly to casthouse or potroom, therefore it is decided
to discuss in apart subsection.
The Anode Transport Vehicle (ATV) [Figure 2.16] is responsible for transporting anode
pallets. Anode pallets may be empty or contain a certain amount of either new or used an-
odes. Palletswith new anodes are transported from the rodding shop tonearby the cell, while
empty pallets or pallets with burned anodes are transported from nearby the cell to the rod-
ding shop.
The pickup of pallets should be done by executing a special backward driving maneuver be-
cause physical vehicle properties prohibit the ATV to pick-up pallets by forwards driving.

26 CHAPTER 2. CONTEXT ANALYSIS

(a) Front view. (b) Rear view.

Figure 2.16: Anode transport vehicle.

2.6.5 Moveable Objects

Moveable objects that are transported throughout the production facility include, for exam-
ple, anode pallets and crucibles. Below we discuss themmore detailed.

Anodes and Anode Pallets

The anode [Figure 2.17a] is formed by a block of carbon and an aluminium rod, both joined
by a steel stub. The block is immersed in the bath of the cell while the rod puts the block
in contact with the electrical system so that, with the passage of electric current, electrolysis
occurs.
The transfer of the new/old anodes occurs through the pallet [Figure 2.17b]: a container
suitable for posing and transporting of anode. The use of the pallet is necessary to speed
up the replacement of the anodes: its rapid consumption in the electrolytic cells requires
a continuous replacement cycle. To improve the replacement, it is dedicated a particular
vehicle previously discussed: the ATV.
During anode pallet transport, the pallet can be driven in according the required orientation
by letting the transporter drive forward/backward in a section. For safety reasons (to avoid
electrical short cut) and to enable drive through by other traffic, pallets can not be placed
anywhere, but in dedicated plant as anode carbon one.

Crucibles

A crucible, also known as ladle, [Figure 2.18] is a large metal bucket for transport of liquid
aluminium. Crucibles are transported by means of CTV or CTTV and could be empty,
filled or partly filled. A crucible is completely filled with metal after a certain amount of
tapped potcells. A lid is placed on the crucible before it is being transported.

2.6. OPERATIVE VEHICLES 27

(a) Fresh anode. (b) Anode pallet with fresh anodes.

Figure 2.17: Example of anodes and anode pallets objects.

Figure 2.18: Example of ladle object.

28 CHAPTER 2. CONTEXT ANALYSIS

2.6.6 The Enemies of Vehicles

The potroom and casthouse environments are particularly hostile for the vehicles which
must operate in difficult conditions. The enemies are:

• Temperature: depends on climate zone. In hot locations can be reached 50-60°Cwith
peaks of 80-90°C in proximity of the furnaces and cells, due to the thermal radiation
issued. In the casthouse, especially, the radiation is extremely intense that can fuse the
plastic parts of vehicle not sufficiently protected.

• Magnetic field [only in potroom]: is very intensive with peaks of 0.08T. Normally,
it is higher near the floor and near the upper end of potlines where converge all the
conductors. This phenomenon influences all the parts with ferromagnetic compo-
nents and can cause undesired actuations or locks with consequences also disastrous.
Therefore, some precautions are adopted:

– use as little as possible components with ferromagnetic materials.
– protect the ferromagnetic partswith steel plates of important thickness: although

they do not shield the field, they can deviate it.
– pose the sensible part in upper end of the vehicle so that the chassis works as

protection.
– avoid the entrance in potroom to the people with pacemaker.
– keep out all sensible materials to magnetic field (smartphones, credit cards and

clocks).

• Electric energy [only in potroom]: there exist some elements continuously under volt-
age. Although the potential difference between anode and cathode is about 4.5-5
V, the cells are linked connected in series. It can happen that a vehicle accidentally
touches two cells and generates a very high potential difference: the machines acts
like a resistor and becomes subjected to a very high Joule effect, leading to the fire the
machine with possible damages to the operator.
To avoid this situation, every vehicle has an electrical insulation consisting on plates
of insulatingmaterial that are interposed between chassis and the equipment parts en-
tering in the potcell. Insulations for chassis and cockpit can be added, too. However,
no vehicle is perfectly insulated due to many factors as humidity, breakages and poor
maintenance.

• Possible explosions [only in casthouse]: it may happen that the water, contained in
the scarps, dissociate in hydrogen and oxygenwhen the scarps are released in the liquid
mass at high temperature, causing explosion.

2.6. OPERATIVE VEHICLES 29

• Powders: the alumina and fluoride powders are very thin and hard and tend to pene-
trate in every aperture. So, all the air intakes of the machine are very critical parts. In
particular, the engine aspiration must be sealed and the seal leaked is the main cause
of engine destruction. Moreover, these powders settle onmechanical parts as cylinder
stems in phase of extraction, so the adoption of efficient seals or bellows is extremely
important.

• Gas: they are not a very important problem for the vehicles, except for fluorine gas
[only in potroom] that stick on glass machine. So the glass must be protected with
films or made with sheets of polycarbonate.

• Drivers: are one of the principal problems of vehicles. Since they directly manage the
vehicle, a bad utilization leads to serious damages. Fromhere, the need to designAGV.

30 CHAPTER 2. CONTEXT ANALYSIS

3
Literature Review

In this chapter, the literature review of the various algorithms used for AGV navigation is
presented. The navigation algorithms are divided into two types: graph-based and sampling-
based algorithms. In particular, we analyze the algorithms of Dijkstra, A* andD* for the first
type, instead RRT, RRT* and BIT* for the second type. In the end, it is presented a bonus
algorithm that is totally different from the two previous approaches. For each algorithm,
the pseudocode, time complexity and considerations on the advantages/disadvantages intro-
duced are presented.

3.1 Graph-Based Algorithms

Given a graph, an abstract data type composed by pairs of vertices/nodes V and edges E, the
operations performed can be categorised as elementary or high level operations.
Elementary operations of graphs add anddelete a vertex or an edge or find adjacent andneigh-
bours of a vertex. Instead, high level operations performed on graphs find degree of graph,
the connectivity between nodes using clustering coefficient algorithms or the shortest path
between nodes using the particular algorithms. The key passage, which makes these algo-
rithms popular in the path planning literature, is to consider a scenario as a graph, whose
equations indicate an obstacle or free path.
This section deals about this last type of algorithms, focusing on the shortest path between
start and target nodes.

31

32 CHAPTER 3. LITERATURE REVIEW

3.1.1 Dijkstra’s Algorithm

The Dijkstra’s algorithm is an algorithm for finding the shortest paths between nodes in a
graph, which may represent, for example, road networks. It was conceived by computer sci-
entist Edsger W. Dijkstra in 1956 and published three years later.
The algorithm exists in many variants: Dijkstra’s original algorithm finds the shortest path
between two given nodes, but a more common variant fixes a single node as the “source”
node and finds shortest paths from the source to all other nodes in the graph, producing a
shortest-path tree. Specifically, Dijkstra’s selects the path that minimizes the following quan-
tity:

f(n) = g(n) (3.1)

where n is the next node on the path and g(n) is the cost of the path from the start node to
n.
It can also be used for finding the shortest path from a single node to a single destination
node by stopping the algorithm once the shortest path to the destination node has been de-
termined. For example, if thenodes of the graph represent cities and edgepath costs represent
driving distances between pairs of cities connected by a direct road (for simplicity, ignoring
red lights, stop signs, toll roads and other obstructions), Dijkstra’s algorithm can be used to
find the shortest route between one city and all other cities.

Algorithm

Let the node from which we start be called the initial node. Let the distance of node y be
the distance from the initial node to y. Dijkstra’s algorithm will assign some initial distance
values and will try to improve them step by step:

1. Mark all nodes unvisited and create a set of all the unvisited nodes called the unvisited
set.

2. Assign to every node a tentative distance value: set it to zero for our initial node and
to infinity for all other nodes. Set the initial node as current.

3. For the current node, consider all of its unvisited neighbours and calculate their ten-
tative distances through the current node. Compare the newly calculated tentative
distance to the current assigned value and assign the smaller one.

4. When all the unvisited neighbours of the current node have been considered, mark
the current node as visited and remove it from the unvisited set. A visited node will
never be checked again.

5. If the destination node has been marked visited (when planning a route between two
specificnodes) or if the smallest tentative distance among thenodes in theunvisited set
is infinity (when planning a complete traversal: it occurs when there is no connection

3.1. GRAPH-BASED ALGORITHMS 33

between the initial node and remaining unvisited nodes), then stop. The algorithm
has finished.

6. Otherwise, select the unvisited node that is marked with the smallest tentative dis-
tance, set it as the new “current node”, and go back to step 3.

Algorithm 3.1Dijkstra’s Algorithm
1: procedureMAIN(Graph, source)
2: for ∀ node v in Graph ▷ Initialization
3: dist[v] =∞
4: previous[v] = undefined
5: dist[source] = 0 ▷Distance from source to source
6: Q= the set of all nodes in Graph
7: whileQ is not empty
8: u = node in Q with smallest dist[]
9: remove u fromQ
10: for ∀ neighbour v of u
11: alt = dist[u] + dist.between(u,v)
12: if alt < dist[v] ▷ relax (u,v)
13: dist[v] = alt
14: previous[v] = u
15: return dist[], previous[] ▷ distances/paths from source to all nodes

When planning a route, it is actually not necessary to wait until the destination node is “vis-
ited” as above: the algorithm can stop once the destination node has the smallest tentative
distance among all “unvisited” nodes (and thus could be selected as the next “current”). In
this case, the algorithm stops at the line 9 if u = destination and the shortest path between
source-destination is given by:

1: S = empty sequence
2: u = target
3: if prev[u] is defined or u = source
4: while u is defined
5: insert u at the beginning of S
6: u = prev[u]

34 CHAPTER 3. LITERATURE REVIEW

Time Complexity

Denoting the number of edges as |E| and the number of vertices as |V| and using Big-ONo-
tation, the time complexity of Dijkstra’s algorithm can be expressed as a function of edges
E and vertices V of the graph. For dense graph, i.e. |E|=O(|V|2), the simplest implementa-
tion of Dijkstra’s algorithm stores the vertex set Q as an ordinary linked list or array, and
extracting minimum is simply a linear search through all vertices in Q: in this case, the time
complexity is O(|E|+|V|2) = O(|V|2).
If the implementation stores the graph as an adjacency list, the time complexity isΘ(|E| log |V |)
= Θ(|V |2 log |V |). For sparse graph, i.e. |E|=O(|V|), Dijkstra’s algorithm can be imple-
mented more efficiently by storing the graph in the form of adjacency lists and using a Self-
Balancing Binary Search Tree, Binary Heap, or Fibonacci Heap as a priority queue to im-
plement extracting minimum efficiently. To perform the decrease of key steps in a binary
heap efficiently, it is necessary to use an auxiliary data structure that maps each vertex to its
position in the heap, and to keep this structure up to date as the priority queue Q changes.
With a self-balancing binary search tree or binary heap, the algorithm requires Θ((|E| +
|V |) log |V |) time in the worst case; instead, for connected graphs, this time bound can be
simplified toΘ(|E| log |V |).

3.1.2 A*

The A* algorithm is an algorithm published in 1968 by the computer scientists of Stanford
Research Institute: Peter Hart, Nils Nilsson and Bertram Raphael. It can be seen as an ex-
tension of Dijkstra’s algorithm because A* improves the performance by using heuristics to
guide its search. It is widely used in path finding and graph traversal, which is the process
of visiting each vertex of the graph. It enjoys widespread use due to its performance and
accuracy.

Algorithm

A* algorithm is an Informed Search Algorithm and a Best First Search, i.e. it is formulated
in terms of weighted graphs: starting from a specific starting node of a graph, it aims to find
a path to the given goal node having the smallest cost (least distance travelled, shortest time,
etc.). It does this by maintaining a tree of paths originating at the start node and extending
those paths one edge at a time until its termination criterion is satisfied.
At each iteration of its main loop, A* needs to determinewhich of its paths to extend. It does
so based on the cost of the path and an estimate of the cost required to extend the path all
the way to the goal. Specifically, A* selects the path that minimizes:

f(n) = g(n) + h(n) (3.2)

3.1. GRAPH-BASED ALGORITHMS 35

where n is the next node on the path, g(n) is the cost of the path from the start node to n,
and h(n) is a heuristic function that estimates the cost of the cheapest path from n to the
goal.
A* terminates when the path it chooses to extend is a path from start to goal or if there are
no paths eligible to be extended.
The heuristic function is specific of the problem: if the heuristic function is admissible, i.e.
it never overestimates the actual cost to get to the goal, A* is guaranteed to return a least-cost
path from start to goal.
Typical implementations of A* use a priority queue to perform the repeated selection of
minimum (estimated) cost nodes to expand. This priority queue is known as the open set or
fringe. At each step of the algorithm, the node with the lowest f(x) value is removed from
the queue, the f and g values of its neighbours are updated accordingly and these neighbours
are added to the queue. The algorithm continues until a goal node has a lower f value than
any node in the queue (or until the queue is empty). The f value of the goal is then the cost
of the shortest path, since h at the goal is zero in an admissible heuristic.
The algorithm described so far gives us only the length of the shortest path. To find the ac-
tual sequence of steps, the algorithm can be easily revised so that each node on the path keeps
track of its predecessor. After this algorithm is run, the ending node will point to its prede-
cessor, and so on, until some node’s predecessor is the start node.
As an example, when searching for the shortest route on a map, h(x) might represent the
straight-line distance to the goal, since that is physically the smallest possible distance be-
tween any two points.
If the heuristic h(x) satisfies the additional condition h(x) ≤ d(x, y)+h(y) for every edge
(x,y) of the graph (where d denotes the length of that edge), then h(x) is called monotone
or consistent. With a consistent heuristic, A* is guaranteed to find an optimal path without
processing any node more than once.
It is easy to note that A* is equivalent to Dijkstra’s algorithm when the h(x) = 0, i.e. the
heuristic function does not exist: in other words, Dijkstra’s algorithm is the default version
of A* algorithm.[28]
Definitely, the A* algorithm can be summarized in ten steps as follows:

1. Creation of Open list: consists on nodes that have been visited but not expanded
(meaning that successors have not been explored yet). This is the list of pending tasks.

2. Creation ofClosed list: consists on nodes that have been visited and expanded (succes-
sors have been explored already and included in the open list).

3. Insertion in the open list of the starting node with f(n) = h(n).

4. If the open list is empty, the algorithm returns that the solution can not be found.

5. Extraction of the best node to visit (lowest f(n)).

36 CHAPTER 3. LITERATURE REVIEW

6. If the extracted node is equal to destination node, the algorithm terminates: solution
found.

7. Examination of child nodes.

8. Transfer of child nodes already visited and suboptimal from open list to closed one.

9. Inserting the remaining nodes in the open list.

10. Return to step 4.

Algorithm 3.2 A* Algorithm
1: procedureMAIN(Graph, source, destination)
2: Open = new list ▷ visited nodes but with unexplored successors
3: Close = new list ▷ visited nodes and with explored successors
4: Open← source with f(start) = h(start) ▷ initialization
5: whileOpen is not empty
6: node←Open with the lowest: ▷ extract node fromOpen
7: f(current.node) = g(current.node) + h(current.node)
8: if current.node = destination
9: break
10: for ∀ successor of current.node
11: successor.cost = g(current.node) + w(current.node, successor) ▷w(x,y) =

weight of path between x and y
12: if successor∈Open
13: if g(current)≤ successor.cost
14: continue to line 24
15: else if successor∈Closed
16: if g(current)≤ successor.cost
17: continue to line 24
18: move successor from Closed to Open
19: else
20: successor→Open ▷move successor to Open
21: h(successor) = heuristic distance to destination
22: g(successor) = successor.cost
23: parent(successor) = current
24: current→Closed ▷move current node to Closed
25: if current ̸= destination
26: launch error

3.1. GRAPH-BASED ALGORITHMS 37

Time Complexity

The time complexity of A* depends on the heuristic.
The heuristic function has a major effect on the practical performance of A* search, since
a good heuristic allows A* to prune away many of the bd nodes that an uninformed search
would expand. Its quality can be expressed in terms of the effective branching factor b∗ (the
average number of successors per state), which can be determined empirically for a problem
instance bymeasuring the numberN of nodes expanded and the depth of the solution, then
solving:

N + 1 = 1 + b∗ + (b∗)2 + ...+ (b∗)d (3.3)

Good heuristics are those with low effective branching factor (the optimal being b* = 1).
In the worst case of an unbounded search space, the number of nodes expanded is exponen-
tial in the depth of the solution dwith a time complexity ofO(bd). This assumes that a goal
state exists and is reachable from the start state; if it were not so and the state space is infinite,
the algorithm would not terminate.
The time complexity is polynomial when the search space is a tree, there is a single goal state
and the heuristic function hmeets the following condition:

|h(x) + h∗(x)| = O(log h∗(x)) (3.4)

where h* is the optimal heuristic, the exact cost to get from x to the goal. In other words, the
error of hwill not grow faster than the logarithm of the perfect heuristic h* that returns the
true distance from x to the goal.[28]

3.1.3 D*

The D* algorithm was introduced by the researcher Anthony Stentz in 1994. The name D*
comes from the termDynamic A*, because the algorithm behaves like A* algorithm, except
that the arc costs can change as the algorithm runs. It is known as graph search algorithm
capable of fast replanning in changing environments: the D* algorithm finds the shortest
path in graphs inwhichweights change during the time, i.e. occupancy values becomehigher
or lower due to obstacles movement.

Overview

D* algorithm is a Incremental Search Algorithm and there exist three different versions in
literature:

• Original D*.

• Focused D*: combines ideas of A* and the original D* algorithms.

38 CHAPTER 3. LITERATURE REVIEW

• D* Lite: builds on LPA*, an incremental heuristic search algorithm that combines
ideas of A* and Dynamic SWSF-FP (an algorithm used in solving the grammar prob-
lem).

D* and its variants have been widely used for mobile robot and autonomous vehicle nav-
igation. When a AGV has to navigate to given goal coordinates in unknown terrain, the
algorithm makes assumptions about the unknown part of the terrain (for example that it
contains no obstacles) and finds a shortest path from its current coordinates to the goal coor-
dinates under these assumptions. The AGV then follows the path. When algorithm receives
new map informations (such as previously unknown obstacles), it adds the information to
its map and, if necessary, replans a new shortest path from its current coordinates to the
given goal coordinates. It repeats the process until AGV reaches the goal coordinates or de-
termines that the goal coordinates can not be reached. So, the execution of the D* algorithm
can be divided into initial planning and replanning phases. Initial planning is performed if
the AGV is standstill at the start position (R= start) and replanning is performed if the AGV
detects nodes with changed occupancy values during its motion.
Like A* algorithm, D* maintains a list of nodes to be evaluated, known as the Open list.
Nodes are marked as having one of several states:

• NEW : it has never been placed on the list.

• OPEN : it is currently on the list.

• CLOSED: it is no longer on the list.

• RAISE/LOWER: its cost is higher/lower than the last time it was on the list.

The algorithmworks by iteratively selecting a node from the OPEN list and evaluating it. It
then propagates the node’s changes to all of the neighbouring nodes and places them on the
OPEN list. This propagation process is termed expansion. In contrast to A*, which follows
the path from start to finish, D* begins by searching backwards from the goal node. Each
expanded node has a backpointer, which refers to the next node leading to the target, and
each node knows the exact cost to the target. When the start node is the next node to be ex-
panded, the algorithm is done and the path to the goal can be found by simply following the
backpointers. When an obstruction is detected along the intended path, all the points that
are affected are again placed on the OPEN list, this time marked RAISE. Before a RAISED
node increases in cost, however, the algorithm checks its neighbours and examines whether
it can reduce the node’s cost. If not, the RAISE state is propagated to all of the nodes’ de-
scendants, that is, nodes which have backpointers to it. These nodes are then evaluated, and
the RAISE state passed on, forming a wave. When a RAISED node can be reduced, its back-
pointer is updated, and passes the LOWER state to its neighbours. These waves of RAISE
and LOWER states are the heart of D*.

3.1. GRAPH-BASED ALGORITHMS 39

By this point, a whole series of other points are prevented from being touched by the waves.
The algorithm has therefore only worked on the points which are affected by change of cost.
This time, the Deadlock can not be bypassed so elegantly. None of the points can find a new
route via a neighbour to the destination. Therefore, they continue to propagate their cost
increase. Only outside of the channel points can be found, which can lead to destination
via a viable route. This is how two LOWER waves develop, which expand as unattainably
marked points with new route information.

Original D*

The Original D* algorithm consists primarily of two functions:

• PROCESS-STATE: used to compute optimal path-costs to the goal.

• MODIFY-COST : used to change the arc cost function c() and enter affected states
on the OPEN list.

that use the following variables:

• t(x): tag variable equal to NEW if x has never been on the OPEN list, OPEN if it is
currently on the OPEN list and CLOSED if it is no longer on the OPEN list.

• b(x): backpointer from state x to the next state y.

• c(x,y): the cost of traversing an arc from state y to state x. If its value is a positive
number, x and y are neighbours.

• h(x): path cost variable that represents an estimate of the sum of the arc cost from x
to the (G)oal.

• k(x): key variable classifies a state x on the OPEN list into RAISE state (information
about path cost increases) or LOWER state (information about path cost reductions).
kmin is equal to min(k(x)) instead kold is equal to kmin prior to the most recent removal
of a state from the OPEN list.

In function PROCESS-STATE, the state x with the lowest k() value is removed from the
OPEN list. If x is a LOWER state (k(x) = h(x)), its path cost is optimal since h(x) is equal
to the old kmin. In the lines 13-20, each neighbour y of x is examined to see if its path cost can
be lowered. Additionally, neighbour states that are NEW receive an initial path cost value,
and cost changes are propagated to each neighbour y that has a backpointer to x, regardless
of whether the new cost is greater than o less than the old. Since these states are descendants
of x, any change to the path cost of x affects their path costs as well. The backpointer of y is
redirected, if needed, so that the monotonic sequence y is constructed, All neighbours tha

40 CHAPTER 3. LITERATURE REVIEW

receive a new path cost are placed on the OPEN list, so that they propagate the cost changes
to their neighbours.
If x is a RAISE state, its path costmay not be optimal. Before x propagates cost changes to its
neighbours, its optimal neighbours are examined to see if h(x) can be reduced. At lines 22-
26, cost changes are propagated toNEW states and immediate descendants in the sameways
as for LOWER states. If x is able to lower the path cost of a state that is not an immediate
descendant, x is placed back on the OPEN list for future expansion. This action is required
to avoid creating a closed loop in backpointers. If the path cost of x is able to be reduced by
a suboptimal neighbour, the neighbour is placed back on the OPEN list. Thus, the update
is “postponed” until the neighbour has an optimal path cost.
In function MODIFY-COST, the arc cost function is updated with changed value. Since
the path cost for state y will change, x is placed on the OPEN list. When x is expanded via
PROCESS-STATE, it computes a new h(y) = h(x) + c(x, y) and places y to OPEN list.
Additional state expansions propagate the cost to the descendants of y.
The MAIN algorithm illustrates how to use PROCESS-STATE and MODIFY-COST to
move the AGV from the state S through the environment to G along an optimal traverse. It
starts setting t() equal to NEW for all states, h(G) is set to 0, and G is placed on the OPEN
list. PROCESS-STATE is called repeatedly (line 7) until either an initial path is computed
to the AGV’s states (t(S) = CLOSED) or it is determined that no path exists (val = NO-VAL
and t(S) = NEW). The AGV then proceeds to follow the backpointers in the sequence {R}
until it either reaches the goal or discovers a discrepancy between the sensor measurement of
an arc cost s() and the stored arc cost c() (e.g. due to a detected obstacle). This discrepancies
may occur anywhere, not just in the sequence {R}.
MODIFY-COST is called to correct c() andplaced affected states onheOPENlist. PROCESS-
STATE is then called repeatedly at line 15 until val ≥ h(R) to propagate costs and compute
a possibly new sequence {R} to the goal. The AGV continues to follow the backpointers in
the sequence towards the goal. The function returnsGOAL-REACHED if the goal is found
and NO-PATH if it is unreachable.
To underline the presence of two news sub-functions: LESS(a,b) that returns True if a < b
and False otherwise and COST(x) that returns h(x) for state x.
It should be noted that line 9 only detects the condition of not existence of sequence of arcs
from theAGV’s state to the goal (for example, if the graph is disconnected): it does not detect
the condition that all paths to the goal are obstructed by obstacles.[18]

Focused D*

The algorithm is an extension to D* that focuses the repairs to significantly reduce the total
time required for the initial path calculation and subsequent replanning operations. This
extension completes the development of the D* algorithm as a full generalization of A* for
dynamic environments, where arc costs can change during the traverse of the solution path.
The Focused D* algorithm can be configured to outperformOriginal D* in either total time

3.1. GRAPH-BASED ALGORITHMS 41

1: procedure PROCESS-STATE(())
2: x =MIN-STATE() ▷ return the OPEN state with minimum k()
3: if x = NULL
4: return NO-VAL
5: kold = k(x)
6: DELETE(x) ▷ delete x fromOPEN list and sets r(x) = CLOSED
7: if kold< h(x)
8: for ∀ neighbour y of x
9: if t(y) ̸=NEW and h(y)≤ kold and
10: h(x) > h(y) + c(y,x)
11: b(x) = y
12: h(x) = h(y) + c(y,x)
13: if kold = h(x)
14: for ∀ neighbour y of x
15: if t(y) = NEW or
16: (b(y) = x and h(y) ̸= h(x) + c(x,y)) or
17: (b(y) ̸= x and h(y) > h(x) + c(x,y))
18: b(y) = x
19: INSERT(y, h(x)+c(x,y)) ▷ change h(y) with the second given
20: input and inserts/repositions y on the OPEN list
21: else
22: for ∀ neighbour y of x
23: if t(y) = NEW or
24: (b(y) = x and h(y) ̸= h(x) + c(x,y))
25: b(y) = x
26: INSERT(y, h(x)+c(x,y))
27: else
28: if b(y) ̸=NEW and h(y) > h(x) + c(x,y) and
29: t(x) = CLOSED
30: INSERT(x, h(x))
31: else
32: if b(y) ̸=NEW and h(x) > h(y) + c(y,x) and
33: t(y) = CLOSED and h(y) > kold
34: INSERT(y, h(y))
35: returnMIN-VAL() ▷ returns kmin for the OPEN list
1: procedureMODIFY-COST(x, y, cval)
2: c(x,y) = cval
3: if t(x) = CLOSED
4: INSERT(x, h(x))
5: returnMIN-VAL() ▷ returns kmin for the OPEN list

42 CHAPTER 3. LITERATURE REVIEW

Algorithm 3.3Original D* Algorithm
1: procedureMAIN(S,G)
2: for ∀ state x in the graph
3: t(x) = NEW
4: INSERT(G,0)
5: val = 0
6: while t(S) ̸=CLOSED and val ̸=NO-VAL
7: val = PROCESS-STATE()
8: if t(S) = NEW
9: returnNO-PATH
10: R = S
11: whileR ̸=G
12: for ∀ (x,y) such that s(x,y) ̸= c(x,y)
13: val =MODIFY-COST(x, y, s(x,y))
14: while LESS(val ,COST(R)) and val ̸=NO-VAL
15: val = PROCESS-STATE()

R = b(R)
16: returnGOAL-REACHED

or the on-line portion of the operation, depending on the requirements of the task.
The algorithm uses a heuristic function similar to A* to both propagate cost increases and
focus cost reductions. A biasing function is used to compensate for AGV motion between
replanning operations.
It computes an initial path from the goal state to the start state and then efficiently modifies
this path during the traverse as arc costs change. The algorithmproduces an optimal traverse,
meaning that an optimal path to the goal is followed at every state in the traverse, assuming
all known information at each step is correct. The focused version of D* outperforms the
basic version: the addition of a heuristic focusing function to D* completes its development
as a generalization of A* to dynamic environments. In fact, A* can be seen as the special case
of D* where arc costs do not change during the traverse of the solution path.[19]
Let the focusing heuristic g(x,R) be the estimated path cost fromR the robot’s location to
x. Define a new function, the estimated robot path cost:

f(x,R) = g(x,R) + h(x) (3.5)

and sort all LOWER states on the OPEN list by increasing f() value. The function f(x,R)
is the estimatedpath cost from the stateR through x toG (goal node). Provided thatG(x,R)
satisfies themonotone restriction, then sinceh(x) is optimalwhenLOWERstate is removed
from the OPEN list, an optimal path will be computed to R. Most of the extensions of the

3.1. GRAPH-BASED ALGORITHMS 43

Original D* algorithm to FocusedD* one are confined to the functions for cost comparisons
and management of the OPEN list; therefore, the functions COST, LESS, INSERT, MIN-
STATE, andMIN-VAL are affected.

D* Lite

Building on LPA* algorithm, the D* Lite implements the same navigation strategy as D*
but is algorithmically different. D* Lite is substantially shorter than D*, uses only one tie-
breaking criterion when comparing priorities, which simplifies the maintenance of the pri-
orities, and does not need nested if-statements with complex conditions that occupy up to
three lines each, which simplifies the analysis of the program flow.
Lifelong Planning A* (LPA*) is an incremental version of A*. It applies to finite graph search
problems on known graphs whose edge costs increase or decrease over time (which can also
be used tomodel edges or vertices that are added or deleted). LPA* always determines a short-
est path from a given start vertex sstart ∈ S to a given goal vertex sgoal ∈ S, knowing both the
topology of the graph and the current edge costs. g*(s) denotes the start distance of vertex s
∈ S, that is, the length of a shortest path from sstart to s. Like A*, LPA* uses heuristic h(s,sgoal)
that approximate the goal distances of vertices s.
So, LPA* repeatedly determines shortest paths between the start vertex and the goal vertex as
the edge costs of a graph change.[15]
From LPA*, it is developed D* Lite, that repeatedly determines shortest paths between the
current vertex of the AGV and the goal vertex as the edge costs of a graph change while the
AGVmoves towards the goal vertex.
In particular, the D* Lite algorithm is based on the backward LPA*, an extensions of A* al-
gorithm, and searches from the goal to start locations while estimating distances from the
goal, whereas the LPA* searches from the start to goal locations while estimating distances
from the start. The D* Lite performs a search by first executing the Compute Shortest Path
functionwhich operates on a priority queue that initially contains only the goal node. Then,
overtime, the predecessors of each node in the priority queue are added until the algorithm
reaches the goal node.
Unlike LPA*, D* Lite uses the estimate g() value which denotes the distance of a node to the
goal (for example, g(s) indicates the distance from the node s to the goal sgoal) and the rhs
values are one-step look-ahead values based on the g() values.

rhs =

{
0 ifs = sstart

mins′∈Pred(s)(g(s
′) + c(s′, s)) otherwise

(3.6)

The rhs value of a node s with respect to its predecessor s’ is defined as the cost of moving
from s to s’ plus the distance from s to the goal. Once the rhs values have been defined and
are stable, the shortest path from the start to goal node can be found by moving from the
start node towards its successor with the lowest rhs value until the goal node is reached. A

44 CHAPTER 3. LITERATURE REVIEW

vertex is called consistent if its g-values equal its rhs-value, otherwise it is either over-consistent
(g(s) > rhs(s)) or under-consistent (g(s) < rhs(s)). As AGV moves, the current vertex
changes to its adjacent cells, the heuristic estimate needs to satisfy:

h(sstart, s) =

{
0 ifs = sstart

≤ c(s′, s)) + h(sstart, s
′) otherwise

(3.7)

for all the s∈ S and s’∈ Pred(s) vertices and sstart ∈ S.When the cost of the edge changes, the
algorithm must update the affected vertices and re-order the priority queue. The priority
queue holds exactly the inconsistent states and these states need to be updated and made
consistent. The priority or key value of a vertex s in the queue is:

k(s) = [k1(s), k2(s)]

k1(s) = min(g(s), rhs(s)) + h(sstart, s) (3.8)
k2(s) = min(g(s), rhs(s))

D* Lite expands vertices from the queue in increasing priority, updating their g-values and
their predecessors rhs-values, until there is no vertex in the queuewith a priority less than that
of the start vertex. When AGV moves every vertex, the heuristic value associated with each
inconsistent vertex needs to be updated. D* Lite is efficient because it uses an heuristic to
restrict attention to only the vertices that could possibly be relevant to repairing the current
solution path from a start sstart to the goal vertex sgoal.[13]

Time Complexity

Determining precisely the time complexity of the algorithm D * requires considerations, as-
sumptions andproofs that are beyond the scopeof this thesis. Formoredetailed information,
we can consult the related papers discussing the time complexity of these versions of the al-
gorithm. For our purpose, it needs to remember that he time complexity of D* depends on
the heuristic function and on the type of implementation used (Lite, Focused andOriginal).
About the heuristic, hold different considerations from A*, based on dynamic part of the al-
gorithm. To these, the computational complexity of the various different implementations
of the D* is added.

3.2 Sampling-Based Algorithms

The motion-planning problem can be solved also by first discretizing the continuous state
space with either a grid for graph-based searches or through random sampling for stochastic
incremental searches. Graph-based searches, such as the previous A* , are often resolution
complete and resolution optimal. They guarantee to find the optimal solution, if a solution
exists, and return failure otherwise (up to the resolution of the discretization). These graph-

3.2. SAMPLING-BASED ALGORITHMS 45

based algorithms donot scalewell with problem size (e.g. state dimension or problem range).
Stochastic searches, such asRapidly-exploringRandomTrees (RRTs), ProbabilisticRoadmaps
(PRMs), and Expansive Space Trees (ESTs) use sampling-based methods to avoid requiring
a discretization of the state space. This allows them to scale more effectively with problem
size and to consider directly kinodynamic constraints; however, the result is a less-strict com-
pleteness guarantee. RRTs are probabilistically complete, guaranteeing that the probability
of finding a solution, if one exists, approaches unity as the number of iterations approaches
infinity.
Since the time complexity of this type of algorithms extremely depends on the number of
samples, it is very difficult to determine exactly it and so it is neglected in this section.

3.2.1 RRT

The RRT, acronym diRapidly-exploring Random Tree, is algorithm designed for efficiently
searchingunknownenvironment andnonconvexhigh-dimensional spaces, basedon stochas-
tic search strategies. RRT is constructed incrementally in a way that quickly reduces the ex-
pected distance of a randomly-chosen point to the tree.
RRT is particularly suited for path planning problems that involve obstacles and differen-
tial constraints (nonholonomic or kinodynamic). RRT can be considered as a technique for
generating open-loop trajectories for nonlinear systemswith state constraints. Usually, RRT
alone is insufficient to solve a planning problem. Thus, it can be considered as a component
that can be incorporated into the development of a variety of different planning algorithms.
TheRRTapproach to path planning introduces a technique of determining a planning path
by selecting random points within a known environment andmoving towards that point an
incremental distance from the nearest node of an expanding tree. Themovement from exist-
ing traversed points to random points in the environment will make a path that looks like a
tree, and will cover most of the free space in the environment. A planned path will be found
when a branch in the tree comes close the goal positions. TheRRTalgorithmhas advantages
at exploring free space in large and unknown environments as well as parallelizable on unlike
many other path-finding algorithms.
However, the termination condition of tree formationmay be limited by the success in find-
ing goal. This condition may result in the tree containing many nodes in the order of hun-
dred. Due to these drawbacks, there are some strategies that can help the original RRT al-
gorithm to reduce the number of nodes. The number of node is an important factor in
computation to find an optimal path using the tree.
The basic RRT construction algorithm relies on a tree structure being built that contains
the start point as its root node, and eventually, the goal point as one of its leaves. The con-
struction of the tree revolves around picking random points in the environment, finding the
nearest point in the tree to this random point, thenmoving towards that point an incremen-
tal distance. If the incremental movement does not encounter an obstacle, insert the point
as a new node in the tree. Eventually, the newly inserted node will be close to the goal node.

46 CHAPTER 3. LITERATURE REVIEW

Once this occurs, a path from goal to start point can be made by traversing up the tree until
the root node is reached.[8]

Algorithm 3.4 RRTAlgorithm
1: procedure BUILD_RRT(xinit)
2: T.init(xinit
3: for ∀ k = 1:K ▷K = number of vertices
4: xrand←RANDOM_CONFIG()
5: EXTEND(T, xrand)
6: returnT
1: procedure EXTEND(T, x)
2: xnear←NEAREST_NEIGHBOUR(T, x)
3: if NEW_CONFIG(x, xnear, xnew)
4: T.add_vertex(xnew)
5: T.add_edge(xnear, xnew)
6: if xnew = x
7: returnReached
8: else
9: returnAdvanced
10: returnTrapped

The basic RRT construction algorithm is give by the Alg.3.4.
A simple iteration in performed in which each step attempts to extend the RRT by adding
a new vertex that is biased by a randomly-selected configuration. The EXTEND function
selects the nearest vertex already in the RRT to the given sample configuration x. The func-
tionNEW_CONFIGmakes amotion towards xwith some fixed incremental distance ρ and
tests for collision. This can be performed quickly using incremental distance computation
algorithms. There situations can occur:

• Reached: x is directly added to the RRT because it already contains a vertex within ρ
of x.

• Advanced: a new vertex xnew ̸= x is added to the RRT.

• Trapped: the proposed new vertex is rejected because it does not lie in Cfree (set of
configurations for which there is not collision with any static obstacles).

3.2. SAMPLING-BASED ALGORITHMS 47

3.2.2 RRT*

RRT* is an optimized version of RRT.
When the number of nodes approaches infinity, the RRT* algorithm will deliver the short-
est possible path to the goal. While realistically unfeasible, this statement suggests that the
algorithm does work to develop a shortest path. The basic principle of RRT* is the same as
RRT, but two key additions to the algorithm result in significantly different results.
First, RRT* records the distance each vertex has travelled relative to its parent vertex. This is
referred to as the cost() of the vertex. After the closest node is found in the graph, aneighbour-
hood of vertices in a fixed radius from the new node is examined. If a node with a cheaper
cost() than the proximal node is found, the cheaper node replaces the proximal node. The ef-
fect of this feature canbe seenwith the addition of fan shaped twigs in the tree structure. The
second difference RRT* adds is the rewiring of the tree. After a vertex has been connected to
the cheapest neighbour, the neighbours are again examined. Neighbours are checked if being
rewired to the newly added vertex will make their cost decrease. If the cost does decrease, the
neighbour is rewired to the newly added vertex. This feature makes the path more smooth.
RRT* creates incredibly straight paths. Additionally, its graphs are characteristically differ-
ent from those of RRT. For finding an optimal path, especially in a dense field of obstacles,
the structure of RRT* is incredibly useful. The graph vines around objects, finding shorter
paths in comparison to RRT. If the destination were to change, the original graph can still
be used as it represents the quickest path to most locations in the region. RRT* suffers from
a reduction in performance. Due to examining neighbouring nodes and rewiring the graph,
RRT* takesmore time to complete a single path on average than the default version. Thema-
jority of computing effort comes from obstacle avoidance: this condition must be checked
when a node is placed, when a node is connected to its neighbour and for each node that is
to be rewired. This is a considerable number of checks to make.[9]

3.2.3 BIT*

The BIT* algorithm, acronym of Batch Informed Tree, is a planning algorithm that balances
the benefits of graph-search and sampling-based techniques. It uses batches [Figure 3.1] of
samples to perform an ordered search on a continuous planning domain, maintaining any-
time performance. By processing samples in batches, its search can be ordered around the
minimum solution proposed by a heuristic, as in A*. By processing multiple batches of sam-
ples, it converges asymptotically towards the global optimumwith anytime resolution, as in
RRT*. This is done efficiently by using incremental search techniques to incorporate the
new samples into the existing search, as in LPA*.
Informally, BIT* works as follows. An initial Random Geometric Graph (RGG) with im-
plicit edges is defined by uniformly distributed random samples in the free space. The RGG
parameter (r or k) is chosen to reduce graph complexity, maintaining asymptotic optimality
requirements as a function of the number of samples. An explicit tree is then built outwards

48 CHAPTER 3. LITERATURE REVIEW

from the start towards the goal by a heuristic search. This tree includes only collision-free
edges and its construction stops when a solution is found or it can no longer be expanded.
This concludes a batch. To start a newbatch, a denser implicitRGG is constructedby adding
more samples and updating r (or k). If a solution has been found, these samples are limited
to the sub-problem that could contain a better solution (e.g. an ellipse for path length). The
tree is then updated using LPA*-style incremental search techniques that reuse existing infor-
mation. As before, the construction of the tree stops when the solution can not be improved
or when there are no more collision-free edges to traverse. The process continues with new
batches as time allows.[12]

3.3 Bonus Algorithm: FMM

[22]The FMM, acronym of Fast Marching Method, is an efficient computational numerical
algorithm for tracking andmodeling themotion of a physical wave interface (front)Γ, devel-
oped in the 1990’s by J.A. Sethian, a professor ofmathematics at theUniversity ofCalifornia.
This method has been applied to different research fields including computer graphics, med-
ical imaging, computational fluid dynamics, image processing, computation of trajectories,
etc.
The wave interface can be a flat curve in 2D, or a surface in 3D. The fast marching method
calculates the time T that a wave needs to reach every point of the space. The wave can be
originated frommore than one point, each source point originates one wave. Source points
have an associated time T = 0.
The Fast Marching Method is known in literature as a particular case of Level Set Methods:
while the first is designed for problems in which the speed function never changes sign, so
that the front is always moving forward or backward, the level set methods are designed for
problems in which the speed function can be positive in some places are negative in others,
so that the front can move forwards in some places and backwards in others.
The goal of FMM is to solve a discretised version of the Eikonal equation on a uniformly
sized spatial grid: it is a non-linear partial differential equation encountered in problems of
wave propagation, when the wave equation is approximated using the WKB method. It is
derivable fromMaxwell’s equations of electromagnetics, and provides a link between physi-
cal (wave) optics and geometric (ray) optics.
In detail, the Eikonal equation for the motion of the front at a given point is:

F (x)|∇T (x)| = 1 (3.9)

where x is the position, F (x) the expansion speed of the wave at that position and T (x) the
time that the wave interface requires to reach x. Themagnitude of the gradient of the arrival
function T (x) is inversely proportional to the velocity:

|∇T (x)| = 1

F (x)
(3.10)

3.3. BONUS ALGORITHM: FMM 49

(a) During each batch, the search
expands outwards around the minimum
solution using a heuristic.

(b) When a solution is found, the batch finishes and
the expansion stops.

(c) A new batch of samples is then
added and the search restarts.

(d) The process repeats indefinitely, restarting each
time an improved solution is found.

Figure 3.1: An illustration of the informed search procedure used by BIT*. The start and
goal states are shown as green and red, respectively. The current solution is highlighted in
magenta. The sub-problem that contains any better solutions is shown as a black dashed
line, while the progress of the current batch is shown as a grey dashed line.

50 CHAPTER 3. LITERATURE REVIEW

In this context, they are common assumptions that the front Γ evolves by motion in the
normal direction and speedF does not have to be the same everywhere, but it is always non-
negative (F > 0): they imply that the arrival time T is single valued.
Sethian proposed a discrete solution for the Eikonal Equation.
In 2D, the area is discretized using a gridmap: with i and j are denoted the row i and column
j of the gridmap, corresponding to a point p(xi; yj) in the real world.
The discretization of the gradient∇T drives to the following equation:{

max(D−x
ij T, 0)

2 +min(D+x
ij T, 0)

2

max(D−y
ij T, 0)

2 +min(D+y
ij T, 0)

2

}
=

1

F 2
ij

(3.11)

In Sethian proposes a simpler but less accurate solution for the above equation, expressed as
follows: {

max(D−x
ij T,−D+x

ij T, 0)
2

max(D−y
ij T,−D

+y
ij T, 0)

2

}
=

1

F 2
ij

(3.12)

where:
D−x

ij =
Ti,j − Ti−1,j

∆x

D+x
ij =

Ti+1,j − Ti,j
∆x

D−y
ij =

Ti,j − Ti,j−1

∆x

D+y
ij =

Ti,j+1 − Ti,j
∆x

(3.13)

and∆x and∆y are the grid spacing in the x and y directions.
Substituting (3.13) in (3.12) and making:

T = Tij

T1 = min(Ti−1,j, Ti+1,j)

T2 = min(Ti,j−1, Ti,j+1)

(3.14)

the Eikonal equation can be rewritten for a discrete 2D space as:

max

(
T − T1
∆x

, 0

)2

+max

(
T − T2
∆y

, 0

)2

=
1

F 2
ij

(3.15)

Assuming that the speed of the front is positive (F > 0) T must be greater than T1 and
T2 whenever the front wave has not already passed over the coordinates i, j. Consequently

3.3. BONUS ALGORITHM: FMM 51

(3.15) can be solved as the following quadratic:(
T − T1
∆x

)2

+

(
T − T2
∆y

)2

=
1

F 2
ij

(3.16)

whenever T > T1 and T > T2. If T < T1 and T < T2, (3.15) is reduced to:

max

(
T − T1
∆x

, 0

)
=

1

Fij

(3.17)

if T resulted to be smaller than T1 when solving (3.16), or:

max

(
T − T1
∆x

, 0

)
=

1

Fij

(3.18)

if T resulted to be smaller than T2 when solving (3.16).
In the end, it is important tohighlight aproperty of thewaves expansion. TheT (x) function,
originated by a wave that grows from one single point, presents only a global minima at the
source and no local minima. As F > 0 the wave only grows (expansion), and hence, points
farther from the source have greater T . A local minima would involve that a point has a T
value lesser than a neighbour point which is nearer to the source, which is impossible, as this
neighbour must have been reached by the wave before.

Algorithm

Now the FMM for solving the Eikonal Equation over a gridmap is presented in detail.
To solve iteratively 3.15 over a gridmapG of sizem×n, the cells of the mapmust be labeled
of one of the following types:

• Unknown: cells whose T value is not known yet (the wave front has not reached the
cell).

• Narrow Band: candidate cells to be part of the front wave in the next iteration. They
are assigned a T value that can still change in future iterations of the algorithm.

• Frozen: cells that have already been passed over by the wave and hence their T value is
fixed.

52 CHAPTER 3. LITERATURE REVIEW

Algorithm 3.5 FMMAlgorithm
1: procedureMAIN(G,Ori)
2: for ∀gij ∈Ori
3: gij .T← 0
4: gij .state← FROZEN
5: for ∀gkl ∈ gij .neighbours
6: if gkl = FROZEN
7: skip
8: else
9: gkl.T← solveEikonal(gkl)
10: if gkl.state = NARROWBAND
11: narrow_band.update_position(gkl)
12: if gkl.state = UNKNOWN
13: gkl←NARROWBAND
14: narrow_band.insert_in_position(gkl)
15: while narrow_band NOT EMPTY
16: gij← narrow_band.popfirst()
17: for ∀ gkl ∈ gij .neighbours
18: if gkl = FROZEN
19: skip
20: else
21: gkl.T← solveEikonal(gkl)
22: if gkl.state = NARROWBAND
23: narrow_band.update_position(gkl)
24: if gkl.state = UNKNOWN
25: gkl←NARROWBAND
26: narrow_band.insert_in_position(gkl)
27: returnG.T

3.3. BONUS ALGORITHM: FMM 53

The algorithm has three stages: initialization, main loop, and finalization. These stages are
described bellow.

1. Initialization: the algorithm starts by settingT=0 in the cell or cells that originate the
wave (Ori). These cells are labeled as frozen. Afterward it labels all their neighbours
as narrow band, computing T (3.15) for each of them.

2. Main Loop: in each iteration the algorithm will solve the Eikonal Equation (3.15)
for the neighbours (that are not yet frozen) of the narrow band cell with the lesser T
value. This cell is then labeled as frozen. The narrow band maintains an ordered list
of its cells. Cells are ordered by increasing T value (first cells have lesser T values).

3. Finalization: when all the cells are frozen (the narrow band is empty) the algorithm
finishes

If we want to compute the path between two points p0 and p1 we could expand a wave from
p1 until it reaches p0. Due to the wave expansion properties, the path that has followed the
wave interface from the target to the source point will be always the shortest trajectory in
time. As the wave expansion speed is constant, this trajectory is also the shortest solution in
distance. The wave is originated from the target point, hence, the computed T (x) field will
have only oneminima at the target point. Hence, following themaximumgradient direction
from the initial point we will reach the target point, obtaining the trajectory. This solution
is unique and complete.
The resulting gridmap stores at any pixel the time T required by the front wave to reach that
pixel. The isocurves join together all the points that have been passed through at the same
instant of time. These curves are the trace of the front wave. If we compute the maximum
gradient direction at anypoint of the gridmapweobtain the normal direction to the isocurve,
that is, the direction the curve has followed when expanding. The maximum gradient direc-
tion is computed applying the Sobel Operator over the gridmap, a differential operator which
calculates an approximate value of the gradient of a function that represents the brightness
of the image:

gradx =

−1 0 1
−2 0 2
−1 0 1

 ⋆ T
grady =

 1 2 1
0 0 0
−1 −2 −1

 ⋆ T
(3.19)

where ⋆ indicates the two-dimensional convolution operation.
For tracing the path between p0 and p1 we just need to follow the maximum gradient di-
rection starting at p0. The path is computed iteratively. gradix and gradiy are computed

54 CHAPTER 3. LITERATURE REVIEW

at every point pi. From pi is computed pi+1 and successively until arriving to p1. As p1 is
located at the global minima, it is always reached (whenever there is path).

modi =
√
grad2ix + grad2iy

alphai = arctan

(
gradiy
gradix

)
p(i+1)x = pix +modi · cos (alphai)
p(i+1)y = piy +modi · sin (alphai)

(3.20)

Time Complexity

The algorithm is closely related to Dijkstra’s single-source shortest path algorithm and com-
putes the grid solution, starting with the grid points adjacent to the boundary, by traversing
the computational domain along increasing values of T .
The total complexity of this method is O(n log(n)), where N denotes the number of grid
points. Here the factor log(n) comes from the administration of a priority queue.
John N. Tsitsiklis, a professor of Electrical Engineering at the Massachusetts Institute of
Technology, independently suggested a similar algorithm in the 1995. The discretization of
the Eikonal equation in Tsitsiklis was obtained in the framework of optimal control theory.
Moreover, Tsitsiklis showed that a bucket sort technique, together with a slightly different
discretization, may be used to compute an approximate solution to the Eikonal equation in
O(n) time.
Another approach has recently been suggested by Liron Yatziv, a researcher of Department
of Electrical and Computer Engineering of the University of Minnesota: using an untidy
priority queue in the FMM also reduces the complexity to optimalO(n). The idea is to use
a bucket sort technique together with a quantization that does not distinguish between val-
ues ofT within a small range. This way, while sorting the values ofT becomes less expensive,
an error is introduced, however, which should be of the same order as the local truncation
error of the discretization.[16]

4
Experimental Design

In this chapter, the experimental design of the AGV is presented. Initially, the softwares
used to get a robust and efficient simulation are described. Subsequently, the steps leading
to the creation of the AGVmodel and the simulation scenario are highlighted. It should be
emphasized that precision and accuracy have been two key parameters in the design of the
simulation.

4.1 Operative Environment

To carry out simulations fairly faithful to reality, it has been decided to use ROS as a devel-
opment framework and Gazebo as a graphic viewer of the computer code. With the help of
other environments as: MATLAB & Simulink to improve the dynamics of the simulation,
Autodesk Inventor to build 3D objects and Blender to manage the visualization of the 3D
objects in the Gazebo, the interaction between these systems makes it possible to design a
fluoride feeder model and to visualize its behaviour in a semi-real scenario, which in our case
is the potroom.

4.1.1 ROS

ROS, acronym of Robot Operative System, is an open source framework used to build ad-
vanced robot applications. It was originally developed in 2007 by the Sanford Artificial In-
telligence Laboratory (SAIL) and through the years it has become a de facto standard in the
research field. Its appeal is growing even in the industry, thanks to the ROS-Industrial con-
sortium. ROS is designed to be flexible, general-purpose and robust. It includes a constantly

55

56 CHAPTER 4. EXPERIMENTALDESIGN

increasing number of tools, libraries and interfaces that can be reused and improved by any-
one.
One of the key features of this framework is the possibility to use virtually any programming
language. At this moment the main supported languages are C++, Java and Python.[6]
The system is based on amodular concept, that consists in dividing a complex task in simpler
and reduced subtasks: they are encapsulated in executable files callednodes, which communi-
cate amongst each other to generate the final behaviour of the robot. Each node has a unique
name that distinguishes it from the rest of the existent nodes. The nodes can communicate
with one another through three different communication procedures: publishing or sub-
scribing it to a topic, providing or using one service, or using actions. One robot can have
many independent nodes working in a cooperative manner with the global goal to achieve a
complex behavior of the robot. With thismodularitywe obtain an important advantage that
is an easy error correction, due to the fact that we can localize and solve errors easily inside
small functions, reducing the complexity in comparison with the monolithic codes. Also,
ROS is used since it allows the sharing of information between all kind of nodes, and it is
possible to use previously developed processes and driver can easily be encapsulated in the
nodes. Furthermore, it offers powerful tools for debugging, which saves time and allows the
programmer to correct any error found.
There are three communication protocols that the nodes use to communicate in ROS:[11]

• Topics: these are data buses that are used by nodes to exchange messages among them.
The nodes can be of two different types:

– publishers: generate data of one topic, for example the nodes that corresponds
to the encapsulated drivers of the sensors are publishers that publish messages
that contain the sensed values.

– subscribers: nodes that are subscribed to the topics that publish another node.

All the nodes can be at the same time publishers and subscribers of different topics:
we can also havemultiple publishers and subscribers of the same topic. The nodes can
be subscribed or can published topics in anonymous form, therefore, the production
of information is independent of its use. In general, nodes do not know with whom
they are communicating. Theunit that performs communication andknowswhether
nodes are published or subscribed to a topic is the roscore.

• Services: These allows communication between nodes that have requests and answers.
One service is defined by two types of messages, one for the request and other for
the answers. In these situations one node takes up the role of the client: it sends the
request to obtain a service and it waits until the server node sends the answer.

• Actions: These are based on the same principle as the services: a request is sent and
a response is received. The difference is that the action adds the ability to cancel the

4.1. OPERATIVE ENVIRONMENT 57

service, and therefore the nodes do not need towait until it gets the answer. An action
is defined by three messages: goal, feedback and result. The first contains the reason
of the request, the second periodically provides the information of the state of the
system and the last is the result of the request.

To complete the ROS interface, they have been created the Rosbags: data files where the
publisher messages are stored. In these files we only save the information of the publisher
nodes that we need to replay the real robot experiment offline in the computer. This data
can be stored in topics of one node that performs a complex behaviour of the robot or can
be only nodes that encapsulate one driver of one sensor and return the sensed data. These
files allows us to recreate real situations offline and provide the option to verify or improve
our created algorithms. Therefore, the rosbags may be designated for two functions: use
our node in the environment Gazebo of our computer to finish the debug of some errors or
record the experiments on the robot to analyze them further.

4.1.2 Gazebo

Gazebo is an open-source 3D robotics simulator. Its development began in the fall of 2002 at
theUniversity of SouthernCalifornia byDr. AndrewHoward and his studentNate Koenig.
Thenamehas stuckdespite the fact thatmost users ofGazebo simulate indoor environments.
In 2009, it happens the integration of ROS into Gazebo, which has since become one the
primary tools used in the ROS community.
It offers the ability to accurately and efficiently simulate populations of robots in complex in-
door and outdoor environments and it can use multiple high-performance physics engines,
such as ODE, Bullet, etc. It provides realistic rendering of environments including high-
quality lighting, shadows and textures and it can model sensors that “see” the simulated
environment, such as laser range finders, cameras (including wide-angle) and Kinect style
sensors.[25]

4.1.3 Maltab & Simulink

Matlab, acronym ofMATrix LABoratory, is an environment for numerical calculation that
allows to manipulate matrices, view functions and data, implement algorithms, create user
interfaces, and interface with other programs. It was developed in the late 1970s by Cleve
Moler, the chairman of the computer science department at the University of NewMexico.
The MATLAB application uses a own programming language, very similar to Python pro-
gramming language. Common usage of the MATLAB application involves using the Com-
mandWindow, as an interactivemathematical shell, or Script, executing text files containing
MATLAB code: the involved variables are saved in theWorkspace window.
It can be interfacewithmany libraries: for example, the ones written in Perl, Java, ActiveX or
.NET can be directly called fromMATLAB. To interfaceMATLABwith Java is more com-
plicated, but can be done with a MATLAB toolbox which is sold separately byMathWorks,

58 CHAPTER 4. EXPERIMENTALDESIGN

or using an undocumented mechanism called JMI (Java-to-MATLAB Interface)
Simulink is an additional package ofMATLAB: it is a graphical programming environment
for modelling, simulating and analysingmulti-domain dynamical systems. Its primary inter-
face is a graphical block diagramming tool and a customizable set of block libraries. It offers
tight integrationwith the rest of theMATLAB environment and can either driveMATLAB
or be scripted from it. Simulink is widely used in automatic control and digital signal pro-
cessing for multi-domain simulation and model-based design.[26]

4.1.4 Autodesk Inventor

Autodesk Inventor is a 3Dmodeling software formechanical design, produced byAutodesk,
the software company that produces AutoCAD.
The 3D mechanical design software, or modeller, incorporates a module for creating parts,
a module for creating the assembly of the same and the module for putting on the table, or
the realization of a drawing with views and all the necessary quotas for the realization of the
piece.
Inventor gives the possibility to work in different specific environments for each prototyp-
ing sector; however, it is also possible to obtain other types of information, such as rendering,
interference analysis, exploded views, motion and resistance simulations ofmaterials and ob-
jects, wiring and 3Dpiping. Inventor is also equippedwith standard libraries that can be cus-
tomized with the parts created by the user himself, equipped with guided tools (also known
as wizards) for managing and inserting the pieces they contain and the static calculation of
the seal of most of them.[23]

4.1.5 Blender

Blender is a free and open-source 3D computer graphics software tool-set used for creating
animated films, visual effects, art, 3D printedmodels, motion graphics, interactive 3D appli-
cations, and computer games. The program was developed as an internal application by the
Dutch animation studio NeoGeo in 1998. The main author is considered TonRoosendaal.
The software is rich in features typical of advanced modelling systems. Among its potential,
it can remember:[24]

• support for awide variety of geometric primitives, including PolygonMeshs (3D com-
puter object in space, consisting of vertices, edges and faces).

• Python scripting to automate and/or control numerous aspects of the program and
the scene.

4.2. FLUORIDE FEEDERVEHICLE 59

(a) ROS and Gazebo. (b) Matlab & Simulink.

(c) Autodesk Inventor. (d) Blender.

Figure 4.1: Brands.

4.2 Fluoride Feeder Vehicle

Among the vehicles that work in the potroom, it has been decided to choose the fluoride
feeder as a possible simulation vehicle.[Figure 4.2]
As already mentioned in Section 2.6.1, the task of this vehicle is to fill its own tank of alu-
minium fluoride, reach the side of the potcell and transfer it into it. The purpose of alu-
minium fluoride is to lower the melting point of the compound found in the potcells to
make electrolysis occur at suitable temperatures.[Appendix B]
The fluoride transfer occurs through amechanical arm that goes to position itself on the top
of the potcell in a special hole [Figure 4.2e-4.2f]. Generally the mechanical arm can reach
about 6m in length and is equipped with a central joint to allow topping up at different
points on the cell surface.
On the other hand, the vehicle’s fluoride tank has a top hole to allow it to be filled cyclically
by a charging silo: the vehicle is positioned below it and, after having connected the hole to
the pipe, it receives the aluminium fluoride.
In the following subsections, the kinematics anddynamics of the vehiclemodel are described.
This is useful to the reader in order to understand in detail aspects that Gazebo deals with in
a transparent manner.

60 CHAPTER 4. EXPERIMENTALDESIGN

(a) Right side rear view. (b) Righ side view.

(c) Right side front view. (d) Left side front view.

(e) Mechanical arm. (f) Mechanical arm in action.

Figure 4.2: Fluoride feeder vehicle.

4.2. FLUORIDE FEEDERVEHICLE 61

(a) Body frame centered in the rear wheel. (b) Body frame centered in the CoM.

Figure 4.3: Bicycle kinematic model.

4.2.1 KinematicModel

The kinematic model derives from geometrical relations between different elements of the
vehicle. To obtain a simple model, it is useful to approximate the vehicle structure with the
bicycle kinematic model [Figure 4.3]:

ẋr(t) = v(t) cos(θ(t))

ẏr(t) = v(t) sin(θ(t))

ω(t) = θ̇(t) = v(t)
R

= v(t)
L
tg(δ(t))

using tg(δ(t)) =
L

R
(4.1)

in the case of origin of the body frame positioned at the rear wheel [Figure 4.3a], or:
ẋc(t) = v(t) cos(θ(t) + β(t))

ẏc(t) = v(t) sin(θ(t) + β(t))

ω(t) = θ̇(t) = v(t)
L
cos(β(t)) tg(δ(t))

(4.2)

in the case of origin of the body frame positioned at theCenter ofMass (CoM).[Figure 4.3b]
In these models compare different variables, including:

• xr(t) = [xr(t) yr(t)]
T : coordinates of the rearwheel center,w.r.t. theworld reference

frame.

• xc(t) = [xc(t) yc(t)]
T : coordinates of CoM, w.r.t. the world reference frame.

• R: the distance of the center of the rear wheel from the Instantaneous Center of Rota-
tion (ICR).

• θ(t): the angle between the world frame and body frame abscissa coordinates.

• δ(t): the angle defined by the direction of the front wheel w.r.t. the back one or,
equivalently, w.r.t. the body frame abscissa, the heading of the bicycle.

62 CHAPTER 4. EXPERIMENTALDESIGN

• v(t): the linear velocity amplitude, derived from the point of contact between the rear
wheel and the ground.

• β(t): the (side) slip angle, i.e. the angle between the velocity vector of the CoM (of
amplitude v(t)) and the body frame abscissa coordinate.

The last value, using the non slipping condition, can be computed as:

β(t) = arctg

(
lr
L
tg(δ(t))

)
(4.3)

where lr is the distance of the CoM from the rear wheel center.
In both cases, but for simplicity only the first one can be considered because in the second
one the position of the CoM could change due to variable fluoride load, the model can be
rewritten as a state space one: {

ẋ(t) = f(x(t), u(t))
y(t) = g(x(t), u(t))

(4.4)

where:

• x(t) = [xb(t) yb(t) θ(t)]
T : the state that represents the pose of the vehicle, w.r.t. the

world reference frame.

• u(t) = [v(t) δ(t)]T : the control input.

• y(t) = [xb(t) yb(t)]
T : the output defined as the position of the body frame, w.r.t. the

world one.

Alternatively, it is possible to consider δ(t) as part of the state and its derivative ψ(t) = δ̇(t)
together with v(t) as inputs.
To notice that in this model some uncertainties have been discarded, such as the slipping phe-
nomenon and other possibles external disturbances.
At this point, in order to obtain a good description for a car-like model as the one consid-
ered, it is necessary to define the relation between (4.4) and the variables that describe the so
called Ackermann steering [Appendix C] model. Such model best describes the behaviour
all the car-like vehicles, from the kinematic point of view. In particular, the steering angles
of the two front wheels can be retrieved from the one of the bicycle model using geometrical
relations: tg(δi(t)) =

L
Ri

= L
R−W

2

tg(δo(t)) =
L
Ro

= L
R+W

2

(4.5)

4.2. FLUORIDE FEEDERVEHICLE 63

whereW is the vehicle width and the subscripts i and o indicates respectively the quantities
related to the inner and outer steering wheels.
Similarly, from the fact that both the rearwheels circle around the ICRwith the same angular
velocity ω(t) but with different radiiRi andRo respectively, it follows that:

vi(t) = ω(t)Ri = v(t)Ri

R
= v(t)

R−W
2

R
= v(t)

(
1− W

2R

)
= v(t)

(
1− Wtg(δ(t))

2L

)
vo(t) = ω(t)Ro = v(t)Ro

R
= v(t)

R+W
2

R
= v(t)

(
1 + W

2R

)
= v(t)

(
1 + Wtg(δ(t))

2L

)
(4.6)

and, from this result, it holds that: {
ωi(t) =

vi(t)
r

ωo(t) =
vo(t)
r

(4.7)

where vi(t), vo(t), ωi(t), ωo(t) are respectively the linear and angular velocities of the inner
and outer rear wheels. To underline that ω(t) is not the angular velocity of the rear wheel of
the bicycle model but is the angular velocity of body frame w.r.t. the ICR.

4.2.2 DynamicModel

The dynamic model considers all the forces applied to the vehicle and can be divided into
two sub-models: longitudinal and lateral dynamics. For simplicity the subscript b has been
removed from the notation of the vehicle position w.r.t. the world frame, in order to match
with the images.

Longitudinal Dynamics

Longitudinal dynamics considers the balancing between all the forces acting in the vehicle
along the longitudinal direction.

Figure 4.4: Longitudinal dynamics.

64 CHAPTER 4. EXPERIMENTALDESIGN

In the case of the considered vehicle, it holds that:

mẍ(t) = Fx −Rx − Faero −mgsin(α) (4.8)

where:

• m: the mass of the vehicle.

• Fx = Fx,f + Fx,r: the total longitudinal force generated by the car engine.

• Rx = Rx,f +Rx,r: the rolling resistance of the wheels.

• mgsin(α): the gravitational contribution, assuming the road inclined of angle α.

• Faero: the aerodynamic drag force.

The displacement between these forces defines the acceleration ẍ(t) along the longitudinal
direction.
The Faero quantity can be modelled as:

Faero =
1

2
CaρAẋ(t)

2 = caẋ(t)
2 (4.9)

where A is the front area of the vehicle, ρ is the air density and Ca is the vehicle’s friction
coefficient. Instead theRx quantity can be approximated as:

Rx ≈ cr,1|ẋ(t)| (4.10)

with cr,1 the linear rolling resistance coefficient.
It is possible to verify that, during the acceleration and breaking phases, the longitudinal
velocity of the vehicle does not match the one expected using the pure rolling constraint
because of the sliding between the wheels and the road produced by the tires deformation.
This phenomenon can be represented using the slip ratio:

s =
ωw(t)re − v(t)

v(t)
(4.11)

in which ωw(t) is the wheel angular velocity, re is the effective radius of the wheel and v(t)
is the actual vehicle longitudinal velocity. In this context there are three cases:

• wheels are skidding (ωw(t)re < v(t)): this happens during the deceleration of the
vehicle, in normal breaking condition.

• wheels are spinning (ωw(t)re > v(t)): this happens during the acceleration of the
vehicle, especially in low friction condition.

4.2. FLUORIDE FEEDERVEHICLE 65

• wheels are locked (ωw(t)re = 0 and v(t) ̸= 0): this happens during heavy breaking,
when the vehicle loses its desired traction.

Lateral Dynamics

Lateral dynamics considers the effect of all the moments and lateral forces acting in the ve-
hicle. In particular it extends the bicycle model, seen in the kinematic case, relaxing the non
slipping condition. In order to simplify the analysis, the following assumptions have been
made:

• Constant longitudinal velocity, in order to decouple longitudinal and lateral dynam-
ics.

• Non linear effects such as the suspension movement, road inclination and aerody-
namic effects have been neglected.

• The body frame is attached to the center of mass in order to simplify the application
of the Newton’s second law.

Figure 4.5: Lateral dynamics.

The lateral dynamics can be written as:

mÿ(t) = Fyf + Fyr (4.12)

where the acceleration along the world y axis can be defined as the sum of the acceleration
along the body y axis and the centripetal acceleration, i.e.:

ÿ(t) = ÿb(t) + ω(t)2R = vβ̇(t) + vθ̇(t) (4.13)

66 CHAPTER 4. EXPERIMENTALDESIGN

from the derivative of β(t) and v = Rω(t) with ω(t) = θ̇(t). The Fyf and Fyr are respec-
tively the front and rear tire forces while v is the (constant) longitudinal velocity in this case.
Combining (4.12) with (4.13), it follows that:

mv(β̇(t) + θ̇(t)) = Fyf + Fyr (4.14)

In addition to this relation, also the rotational behaviour can be taken into account using the
Euler’s law:

Izω̇(t) = Iz θ̈(t) = lfFyf − lrFyf (4.15)

where Iz is the vehicle inertia about the z axis (directed upwards) while lf and lr represent
the distance of the CoM respectively from the front and rear wheels.
Even if in general the lateral tire forces are difficult to be estimated, they can be approximated
through a linear function, for small tire slip angles. So, let αf (t), αr(t) be the front and
rear tire slip angles defined similarly to the vehicle slip angle β(t) (i.e. angles between the
respective wheel direction and the velocity vector at the considered wheel center), it holds
that:

Figure 4.6: Front and rear tire slip angles.


Fyf = Cfαf (t) = Cf

(
δ(t)− β(t)− lf θ̇(t)

v

)
Fyr = Crαr(t) = Cr

(
− β(t) + lr θ̇(t)

v

) (4.16)

withCf , andCr front and rear wheel linearized cornering stiffness.
Substituting (4.16) in (4.14) and (4.15), rearranging the results, it is possible to obtain the
linear state space model:

ẋlat(t) = Alatxlat(t) +Blatδ(t) =

=


0 v v 0

0 −Cr+Cf

mv
0

Crlr−Cf lf
mv2

− 1
0 0 0 1

0
Crlr−Cf lf

Iz
0 −Crl2r−Cf l

2
f

Izv

xlat(t) +


0
Cf

mv

0
Cf lf
Iz

 δ(t) (4.17)

4.2. FLUORIDE FEEDERVEHICLE 67

where xlat(t) = [y(t) β(t) θ(t) θ̇(t)]T is the lateral state vector with:

• y(t): lateral position in the world frame.

• β(t): side slip angle.

• θ(t): yaw angle.

• θ̇(t): yaw rate.

4.2.3 SimulationModel

To obtain a high precision simulation model, it is good practice, first of all, to start from the
model closest to reality in terms of shape, size and descriptive parameters: it has been there-
fore decided to use the AutoCAD file in .dwg format of the initial project and extrapolate
a model that is easy to simulate and very similar to the real vehicle. The result can be seen
in the Figure 4.7: despite some details have been neglected or replaced with simple three-
dimensional geometric figures (comparing the Figure 4.7b and Figure 4.7d, we can see how
the engine is replaced by a gray box), the final result is robust and very adherent to reality.
To bring the AutoCAD model to ROS & Gazebo, generally, a .urdf file is defined that rep-
resents the vehicle model in the form of a code (XML) and, subsequently, in a transparent
manner to the user, the code is converted into a three-dimensional model identical to the
AutoCAD one, but movable in a Gazebo.
In the .urdf file particular constructs appear to define the various parts of the model and the
type of union between them: they take the name, respectively, of link and joint.

68 CHAPTER 4. EXPERIMENTALDESIGN

(a) Real right side. (b) Real left side.

(c) Virtual right side. (d) Virtual left side.

Figure 4.7: Real fluoride feeder vehicle vs simulative fluoride feeder vehicle.

4.2. FLUORIDE FEEDERVEHICLE 69

Link

The link element describes a rigid body with an inertia, visual features, and collision proper-
ties. Here is an example of a link element:

<link name="my_link">

<visual>
<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>
<mesh filename="package://name_package/name.dae"/>

</geometry>
</visual>

<collision>
<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>
<mesh filename="package://name_package/name.dae"/>

</geometry>
</collision>

<inertial>
<origin xyz="0 0 0.5" rpy="0 0 0"/>
<mass value="1"/>
<inertia ixx="100" ixy="0" ixz="0"
iyy="100" iyz="0" izz="100"/>

</inertial>

</link>
Listing 4.1: XML code for link element.

The link tag defines the name of the link and encases sub-tags as:[27]

• visual: specifies the shape of the object for visualization purposes with:

– origin: specifies the reference frame of the visual tag, relative to the reference
frame of the link, through X, Y and Z offsets and R(oll), P(itch) and Y(aw) an-
gles in radians.

– geometry: describes the shapeof the visual object,which canbe three-dimensional
geometric figure or amesh (tag that allows the import of PolygonMesh files .dae
or .stl).

70 CHAPTER 4. EXPERIMENTALDESIGN

• collision: gives consistency to the visual tag. It has the same sub-tags of visual tag.

• inertial: quantifies the consistency through:

– origin: same role of visual tag.

– mass.

– inertia matrix: represents the six above-diagonal elements of the symmetric ro-
tational inertia matrix.

Joint

The joint element describes the kinematics and dynamics between two links: it represent the
simplest way to merge two different links. Here is an example of a joint element:

<joint name="my_joint" type="...">

<origin xyz="0 0 1" rpy="0 0 3.1416"/>

<parent link="link1"/>
<child link="link2"/>

<limit effort="30" velocity="1.0" lower="-2.2" upper="0.7"/>

</joint>
Listing 4.2: XML code for joint element.

The joint tag defines the name of the link and it followed by the type tag. This latter specifies
the type of joint, where type can be one of the following:[27]

• fixed: the simplest joint because merge two links, blocking them together.

• revolute: a joint that rotates along a specified axis and has a limited range specified by
limit tag.

• continuous: similar to revolute, but without limit tag.

• prismatic: a sliding joint that slides along the axis with a limited range specified by the
upper and lower limits.

• floating: allows motion for all 6 degrees of freedom.

• planar: allows motion in a plane perpendicular to the axis.

4.2. FLUORIDE FEEDERVEHICLE 71

These two tags encase sub-tags as:

• origin: same role of link element.

• parent: the parent link in the joint.

• child: the child link in the joint.

• limit: contains the followings attributes:

– lower: specifies the lower joint limit (radians for revolute joints, meters for pris-
matic joints).

– upper. specifies the upper joint limit (radians for revolute joints, meters for pris-
matic joints).

– effort: enforces the maximum joint effort (|applied effort| < |effort|).

– velocity: enforces the maximum joint velocity.

The parent-child relation establishes a hierarchy between links and specifies, for example,
what should be taken as a reference (parent) during a particular type of movement (continu-
ous, prismatic, revolute, etc.) of a link (child).

4.2.4 The Viewing in Gazebo

After defining the concept of link and joint, to visualize the vehiclemodel inGazebo, it must
associate a link to the different parts of the vehicle and establish connection joint.
However, it is necessary to make a clarification before proceeding: the available file is of type
.dwg while the links can import, through the mesh sub-tag, only files of type .dae or .stl;
therefore, it is necessary to carry out a conversion between file formats.
The procedure that is adopted can be summarized in the following points:

1. separate the main components of the vehicle, each assigned to a suitable .dwg file.

2. convert through Blender graphics software the respective files to the .dae format.

3. associate a link to each component through amesh sub-tag.

4. establish connections between links through appropriate joints.

72 CHAPTER 4. EXPERIMENTALDESIGN

Taking as a reference Figure 4.8, it is possible to see the nine parts into which the vehicle has
been divided: to underline the approximation of the engine and the two radiators, respec-
tively, in big [Figure 4.8c] and small tanks [Figure 4.8d].
Each of these parts is assigned to a link with the appropriate name: the values of datasheet
shown in the Table 4.1 are assigned to the values in the inertial tag.
Another possible solution could be to separate themoving parts from the original vehicle, i.e.
wheels and steering, and to consider the rest as single fixed component: in this way, however,
the detailed characterization provided by the inertial tag for each component would have
been lost, since it would have been assigned a single link to the fixed component with a single
inertial tag.
Themerge between various links aremade by the joints: most are fixed, except forwheel/hub
and wheel/traction axle joints of continuous type, as the wheels must be free to rotate, and
the hub/steering axle joint of the revolute type, as it is necessary to limit the steering of the
wheel within a precise range of angles (lower = -45° and upper = 45°).

(a) Frame. (b) Cockpit.

(c) Big tank. (d) Small tank.

4.2. FLUORIDE FEEDERVEHICLE 73

(e) Rear traction axle. (f) Fluoride container.

(g) Front steering axle. (h) Wheels.

(i) Hubs.

Figure 4.8: Components of fluoride feeder model.

74 CHAPTER 4. EXPERIMENTALDESIGN

C
om

ponent
X

Y
Z

W
eight

Ixx
Iyy

Izz

Fram
e

2.2
6.1

0.72
3143.09

11307.587
1522.908

12542.738
C
abin

1.4
1.3

2.236
662.98

509.869
465.222

329.16
BigTank

0.86
1.8

1.075
1070

445.262
173.159

374.917
Sm

allTank
0.53

1.190
0.73

425.8
86

38.391
84.158

Traction
A
xle

0.747
0.36

1.5
429.78

17.736
87.943

79.785
(Em

pty)C
ontainer

2.2
5.028

2.83
3685.473

10410.335
409.827

9449.361
(Full)C

ontainer
2.2

5.028
2.83

14959.174
25648.297

9829.787
23811.725

SteeringA
xle

1.55
0.385

0.15
285.69

2.496
1.975

42.73
W
heel

0.72
0.228

0.72
91.05

3.376
5.984

3.376
H
ub

0.338
0.32

0.32
63

0.342
0.867

0.863

Table4.1:Param
etersofvehiclecom

ponents:cartesian
m
easures[m

],w
eights[kg]and

m
om

entsofinertia[kgm
2].

4.2. FLUORIDE FEEDERVEHICLE 75

Now, the vehicle is ready tobedisplayed in theGazebo: the roslaunch command, executed via
the terminal, indicates the .launch file containing the parameters to set and nodes to launch,
including the .urdf file of the fluoride feeder model. The transformation from code to simu-
lative vehicle is transparent to the user and it is beyond the scope of this thesis.

Figure 4.9: Fluoride feeder in Gazebo environment.

4.2.5 Lasers and Cameras

To the model of the vehicle previously described, in a second time, three cameras have been
addedon the cockpit roof and four lasers corresponding to the four sides of the vehicle.[Figure 4.10]
The purpose is to make the vehicle autonomous in driving: through the adoption of these
devices, it is able to perceive the presence of an obstacle, fixed or mobile. With appropriate
algorithmswhich use the information coming from these sensors, the vehicle is able to brake
or avoid the obstacle. In other words, the presence of these tools allows the vehicle to “see”
the surrounding world and subsequently, through appropriate electronics and algorithms,
to “reason” about the decision to bemade, all in complete autonomywithout the direct con-
trol of a worker.
In Gazebo, these sensors appear aesthetically like simple small cubes: the part of vision is
managed independently through appropriate plugins that deal with converting images in
the form of numerical data.

76 CHAPTER 4. EXPERIMENTALDESIGN

(a) Front laser. (b) Rear laser.

(c) Right laser. (d) Left laser.

(e) Cameras on the cockpit roof.

Figure 4.10: Lasers and cameras in the model.

4.2. FLUORIDE FEEDERVEHICLE 77

4.2.6 ROSNodes and Topics

To make the vehicle movable, a group of ROS nodes must be implemented, each one spe-
cialized in a specific task.
Taking as a reference Figure 4.11, the nodes are the elements with a circular shape while
the topics are the elements with a rectangular shape: the communication between nodes
happens through the topics. Nodes and topics are connected by arrows that allow us to un-
derstand who is communicating with what to whom. The network of connections is called
rosgraph.
In particular, the nodes that make up the graph are:

• /controller_spawner: isolated node, since it has no connection with the other nodes,
whose task is simply to generate the node /ackermann_controller.

• /gazebo: through the topics /joint_states, /link_states and /model_states the model pro-
vides information on its position in the plant, its general speed andwheels speed. This
node is the equivalent of an inertial platform equipped with a gyroscope, accelerome-
ter and magnetometer, tools that provide information on roll, pitch and yaw. More-
over it can also say that the inertial platformalso includes a hypotheticalGPSplatform,
since the position of the vehicle is available.

• /simple_path_planning: node that manages the route to follow for the vehicle. It re-
ceives the information from the node /gazebo and, after processing it, communicates
to the node /ackermann_controller an appropriate command to move.

• /vehicle_state_publisher: This node allows us to publish the state of the vehicle on the
topic /tf : it takes the joint angles of the vehicle as input and publishes the 3D poses
of the vehicle links, using a kinematic tree model of the vehicle.

• /ackermann_controller: node that manages the acceleration, speed and steering angle
of the vehicle by adopting Ackermann steering geometry [Appendix C]: it plays an
essential role inmodelling because it allows the vehicle to be very similar to the real one,
as it makes front wheel steering possible and the turning of the individual wheels. In
the other 4-wheelmodelling present in theROS&Gazebo environment, only a linear
or angular speed is provided to the vehicle to move it, assuming a three-dimensional
reference system in the center of mass.

78 CHAPTER 4. EXPERIMENTALDESIGN

Figure 4.11: Nodes and topic.

4.3 Scenario EvaluationModel

In order to performGazebo simulations, so that they are as realistic as possible, it is necessary
to define amodel for the 3Dworld. The latter represents the environment where the vehicle
can move and complete the tasks assigned to it. In particular, for the purpose of this project,
a simplified version of an aluminium production plant has been adopted. This choice does
not affect the reliability of the simulation and allows to reduce the computational burden
required by the latter.
Drawing inspiration from real aluminium smelters as in Figure 4.12, the 3D world can be
built using three main elements:

• Potroom: already introduced in Section 2.4.1, it is the building where the aluminium
production process is performed. Each of the potcells, contained within it, could rep-
resent the final point for the path that the vehicle has to follow.

• Aluminium Fluoride Storage andHandling (AFSH): it is the building where the vehi-
cle’s tank is filled with the aluminium fluoride, which will then have to be distributed
in the potcells. According to the given tasks’ schedule, the AFSHmay represents the
starting or an intermediate area through which the vehicle’s path has to pass.

• Streets: they define the areas that the vehicle can cover to move from one building to
an other. In general, the streets constitute the main parts of the vehicle’s path.

4.3. SCENARIO EVALUATIONMODEL 79

Figure 4.12: Sohar’s smelter at Sultanate of Oman (Arab Peninsula).

In the following subsections, a brief description of how these three elements have been im-
plemented is given.

4.3.1 Potrooms

As it has been written previously, in general a potroom can be described as a rectangular
building that contains a sequence of potcells, placed in series or parallel, and one or more
hallways that allows vehicles and human operators to easilymove from one point to an other
inside the room. Additionally a crane could be present to move heavy loads. Since for the
accomplishment of the objectives of this analysis such device is not influential, it has been
discarded in the potroommodelling phase. For the same reason also the design of the build-
ing’s roof has been neglected.
At this point, in order to obtain a 3Drepresentationof thepotroom, the 3Dcomputer graph-
ics software Blender [Section 4.1.5] has been adopted. The design procedure can be divided
in three phases:

• Potcell design: first, a model for a potcell need to be obtained. Therefore, a 3D render-
ing of the object, kindly provided by Techmo company, has been imported into the
aforementioned software. The potcell’s local reference frame has then beenmoved in
order to make the positioning of the object inside the building easier. Furthermore a
metal texture has been added in order to get amore realistic visualization of themodel.
The result of this step can be seen in Figure 4.13.

80 CHAPTER 4. EXPERIMENTALDESIGN

(a) Frontal view. (b) Lateral view.

Figure 4.13: Potcell model.

• Roomdesign: in this phase it is desired to get amodel for the building. To this aim it is
necessary to define thewalls and room: about the first ones, it has been obtained as the
union of parallelepipeds of different dimensions. A part of these is in contact with the
ground while another part is raised, in order to simulate the shape of the doors enter-
ing and leaving the room. In order to get a more realistic visual of the result, a texture
similar to the one of a concrete wall has been added to each defined element.
About the floor, it has been simply defined using a rectangular plane with the same
dimensions of the building plan. Then, an asphalt texture has been added to the floor
model in order to obtain a better visual result. The room obtained from this proce-
dure can be seen in Figure 4.14.

Figure 4.14: Empty potroommodel.

• Potroomsdesign: in this last phase the results of the twoprevious steps havebeen added
in order to obtain the final 3D model of the potroom. In particular 40 potcells have
been inserted in parallel in the room model, as depicted in Figure 4.15. This arrange-
ment allows to obtain an area that can serve as a large hallway.

4.3. SCENARIO EVALUATIONMODEL 81

Figure 4.15: Potroommodel with potline.

In order to get a more rich simulation, it has been decided to include in the world rep-
resentation a second potroom, identical and connected to the first one through two
long hallways. Both have been implemented using the same procedure used to define
the room during the second step. The final 3D model of the potrooms is visible in
Figure 4.16.

(a) Top view.

82 CHAPTER 4. EXPERIMENTALDESIGN

(b) Panoramic view.

Figure 4.16: Double potroommodel.

4.3.2 AFSH

TheAluminiumFluoride Storage andHandling is a rectangular building, smaller than a pot-
room, in which the stocks of aluminium fluoride, useful for the production of aluminium,
are stored. Such room presents a unique door that allows the entry and exit of vehicles. The
design of such structure has been performed in a way that is similar to the one used in the
second step of the potroom model definition, neglecting the representation of not funda-
mental elements such as the roof and the aluminium fluoride’s stocks. The result of this
phase is visible in Figure 4.17.

Figure 4.17: AFSHmodel.

4.3. SCENARIO EVALUATIONMODEL 83

4.3.3 Streets and External Environment

To increase the reality of the simulation and, in particular, to obtain amore suitable outdoor
environment, a 3D external map is created.
Firstly, in order to not overload the simulations, are defined only the roads which link the
AFSH to the potrooms and the no-street areaswhere the fluoride feeder vehicle can not pass
through; all the not influential elements such as buildings, trees and rivers are not taken into
account. An easy way to design the elements of the map is to define them as a concatenation
of rectangular planes: black for the roads and green for the no-street areas.
Finally, the previous buildings as potrooms and AFSH are added to obtain the final simula-
tion map. The addition of Wi-Fi transmitters complete the map and they allow to simulate
different processes as, for example, path planning, obstacle avoidance and localization [Fig-
ure 4.18].

(a) Frontal panoramic view. (b) Rear panoramic view.

Figure 4.18: 3D world map for Gazebo simulation.

84 CHAPTER 4. EXPERIMENTALDESIGN

5
Experimental Results

This chapter presents the experimental results on path planning obtained with the MAT-
LAB software. The attention is directed to the generation of the path: the AGV is approxi-
mated as a 2D material point, thus leaving out all the kinematic and dynamic aspects of the
vehicle, while importance is given to the algorithms as the graph-based ones (A*, Dijkstra’s,
D* Lite and Focused D*) and the sampling-based ones (RRT, RRT* and BIT*), plus the
bonus algorithm FMM. They are evaluated in terms of the time taken to provide the result
and type of route generated. The Original D*, presented in chapter 3, has not been used
for simulations because the other two versions are considered to be muchmore efficient and
easy to implement.
The scenario has a key role in path planning, therefore two totally opposite scenarios have
been chosen to evaluate the simulations: a purely ideal one (a simple maze) and an almost
real one (the potroom).

5.1 Simulations with an Ideal Scenario

Theworld of autonomous driving is complex and requires overcomingmany difficulties and
inconveniences, only to arrive at simple acceptable results. A valid approach to tackle this
problem, but more generally many other problems of various order and gender, is to divide
themain problem into sub-problems, which are easier to solve. To this, we often add a series
of assumptions that allow us to obtain quite satisfactory results.
Following the previous statements, one of the main sub-problems of the autonomous driv-
ing of a vehicle is the path, more or less rigid, to follow. In this case, the approximation of
the vehicle model to 2D material point, with the consequent elimination of its kinematics,

85

86 CHAPTER 5. EXPERIMENTAL RESULTS

allows to easily evaluate the various algorithms present in the literature and previously men-
tioned.
A first and simple test to evaluate the effectiveness of these algorithms in path planning is the
following: given a 2D scenario, find a path that connects an initial position with a collision-
free final position with possible obstacles.
The algorithms, to pass the test, receive in input any map in .pgm format and elaborate two
types of trajectories: an ideal and a real one, actually travelled by the vehicle. These two paths
differ in distance from obstacles: in the case of a fluoride feeder vehicle with a length of 6.1m
and awidth of 2.2m (frame dimension inTable 4.1), the routemust follow a certain distance
from the obstacle to avoid collisions.
The format name .pgm is an acronym derived from Portable Gray Map and represents a
grayscale graphic image: algorithms have been imposed to receive this type of file, in order
to easily identify the free zones and the occupied zones. Imagining a decimal gray scale that
goes from 0 to 1, it is easy to associate, for example, to 1 the black colour (an obstacle) and to
0 thewhite colour (free space). Therefore the conversion from anymap format to the format
in question is necessary for the correct interpretation of the scenario.
Going into the detail of the simulation, we initially considered an ideal scenario: a simple
labyrinth, presented in Figure 5.1 of 593×545px dimension. The choice is justified by the
fact that in this first approach we simply want to verify the performance of the algorithms,
without pretensions to the reality of the simulation.

Figure 5.1: Ideal scenario: 2D labyrinth.

Providing it as input to the graph-based algorithms, the results are obtained in Figure 5.2.
We initially noticed the two paths, ideal and real, mentioned above that have the X-Y coordi-
nates as start position [77, 60]px and as target position [445, 427]px.

5.1. SIMULATIONSWITHAN IDEAL SCENARIO 87

In this case, fixed positions are used to precisely compare the results of the algorithms: in
reality, each algorithm accepts any position on the map, as long as it does not coincide with
an obstacle.
Pixels have been chosen as units of measurement, coherently with the fact that images are
processed: in the case of using the path processed by the algorithms on a purely real scenario,
it can be assumed that 1px coincides with 1m. Therefore, by adopting this assumption, the
construction of the map assumes great importance: precisely measuring the scenario in me-
ters and subsequently building a map according to which 1px = 1m, the path can be used by
a real vehicle, adapting the kinematics to the sections in which it must go straight, steer or
brake.

(a) A* algorithm. (b) Dijkstra’s algorithm.

(c) D* Lite algorithm. (d) Focused D* algorithm.

Figure 5.2: Path planning in the ideal scenario, employing graph-based algorithms.

88 CHAPTER 5. EXPERIMENTAL RESULTS

Subsequently, gray areas can be seen in the figures that are referred to in the legend as visited
nodes: they represent the nodes of the hypothetical graph that are inspected by the algorithm
to determine the best path. These areas are quantitatively different from algorithm to algo-
rithm: starting from this difference, we can begin to qualitatively discuss the performance
of this type of algorithm.
At first glance, we can see the big difference between the number of nodes visited by Dijk-
stra’s algorithm and the other algorithms. The reason is simple: Dijkstra’s one does not have
the heuristic function h(n) of the cheapest path from any node to a target node. The lack of
this information leads to consider the almost total scenario, as long as it need visited nodes
does not coincide with the target node.
A second difference, less evident, is the arrangement of the visited nodes between A* and D*
(both versions): we can note how in the A* algorithm the gray zone is concentrated around
the start position while in D* it is concentrated around the target position. This difference
derives from the algorithm principles since the A* starts to process starting from the start
node instead the D* starts from the target node. The advantages and disadvantages of this
policy will be discussed later, considering also some given numbers.
A third difference concerns the real path of the two versions D*: while in the FocusedD* the
path follows the ideal one, in D* Lite the path is totally different. The hypothesis is that, tak-
ing into account the distance of the obstacles, D* Lite chooses a different real path because
the one similar to the ideal path is no longer the minimum path, according to the algorithm
policy. The Focused D* instead limits itself to elaborating a path similar to the ideal one be-
cause it uses a heuristic to focus the propagation of RAISE and LOWER states towards the
vehicle and not towards the path, in a similar way to the A*.
Instead supplying it in input to the sampling-based algorithms, the results in Figure 5.3 are
obtained. In this case it has only one path from the start position to the target position: the
choice is due to the fact that this type of algorithms is based on the sampling of the scenario
and can generate a different path from simulation to simulation. Consequently the hypo-
thetical real path travelled by the vehicle would be totally different from a hypothetical ideal
path, since the position of the samples changes from simulation to simulation.
As start position, the X-Y coordinates [77, 60]px are adopted while for the target it has been
decided to use a precision window (X-Y coordinates [445±5, 427±5]px), since, based on
samples, the algorithm does not took too many resources to arrive at the result.
In this case, instead of the visited nodes, we find a green tree. It is the result of the union of
the various samples taken from the scenario: meaning as a sample an X-Y coordinate point
in the map, the algorithm creates a tree that does not collide with obstacles, that is, the edges
do not cross obstacles. At first glance, it can be seen that the trees are quantitatively differ-
ent from algorithm to algorithm. Starting from this difference, we can begin to qualitatively
discuss the performance of this type of algorithm, as done for graph-based algorithms.
The firstmajor difference can be observed between theRRTand the others: the first expands
into spider webwhile the other trees expand into comb. This difference derives from the fact

5.1. SIMULATIONSWITHAN IDEAL SCENARIO 89

(a) RRT algorithm. (b) RRT* algorithm.

(c) BIT* algorithm.

Figure 5.3: Path planning in the ideal scenario, employing sampling-based algorithms.

90 CHAPTER 5. EXPERIMENTAL RESULTS

that RRT does not have a expansion radius in which to consider the samples with the short-
est distance: the union of the samples through the edges is random and takes into account
only the non-collision with the obstacles. The consequences are evident on the best path,
which is very irregular.
The other two trees, on the other hand, using a specific expansion radius of 50px in this spe-
cific simulation: if we look closely at Figure 5.3b-5.3c, we can see that the edges starting from
a node describe an arc.
A second difference can be seen from the comparison between the RRT* and BIT* tree: the
former is less dense, but produces a slightly less regular path than the latter. The cause is
due to the fact that the BIT* considers batches (ellipses in our case) that widen and shrink
depending on the distance between start and target position. This means a better focus on
the best route.

Figure 5.4: Path planning in the ideal scenario, employing Fast MarchingMethod.

Taking Figure 5.4 as a reference, we consider the FMM algorithm. The first thing we notice
is the grayscale that starts from the black area of the target position and arrives at an almost
white area of the start position: more precisely, we notice the concetrical circles that con-
verge on the target position. They are the wave fronts introduced in the chapter 3, during
the presentation of the algorithm.
In detail, the FMM calculates the normalize geodesic distances: distances obtained by re-
adjusting the timeT of arrival of thewave from the point of generation to any other point on
the map. From the legend of the figure, we can see how 1 represents the maximum distance,
while 0 indicates distance that coincides with the generation point: in our case, the latter is
the target position. A three-dimensional interpretation of the grayscale can be the following:
the wave fronts create a sort of “funnel” which has as its global point of minimum the target
position while as start position any other position. At this point, it is easy to understand the

5.1. SIMULATIONSWITHAN IDEAL SCENARIO 91

procedure of the gradient descent technique: by calculating the gradient at each point on
the map, are obtained the normal directions to the concentric curves, which point towards
the origin point. Specifically, a series of points are obtained which give the path from the
start position to the target position, being the lowest point existing. It can be said that the
approach is very similar to the graph-based algorithms: while on one side the visited nodes
expand, on the other the wave fronts expand.

Steps Distance Time

Path: Ideal Real Ideal Real Ideal Real

A* 548 567 625.7 648.4 1.390 1.395
Dijkstra’s algorithm 548 567 672.1 694.8 9.637 7.691
D* Lite 558 597 650.6 658.5 2.901 2.277
Focused D* 558 586 650.6 687.7 3.497 3.911
RRT 13 - 876.4 - 33.87 -
RRT* 17 - 629.0 - 416.7 -
BIT* 19 - 600.1 - 5413 -
FMM 500 572 726.1 762.5 0.128 0.103

Table 5.1: Performances of graph-based algorithms, sampling-based algorithms and the
FMM algorithm in the ideal scenario: steps to arrive to the target position, distance [px]
of path between start and target position and the computational time [s] employed by the
algorithm to produce the path.

Continuing the comparison between algorithms, we consider the data reported in the Ta-
ble 5.1, moving therefore on numerical type performances.
Analysing the steps field, one immediately notices the great disparity between the types of
algorithms: while the graph-based ones and FMM require a high number of nodes to reach
their destination, the sampling-based ones require few samples to build a more or less ac-
ceptable path. The cause of this trend derives from the different policies, underlying the
algorithms. The ideal path with fewer steps turns out to be that produced by the RRT, how-
ever from the qualitative point of view it is scarce because it is not regular; instead the real
path with fewer steps is produced on a par by A* and Dijkstra’s algorithms.
Analysing the distances field, we immediately notice the “path irregularity” characterizing
the RRT, as expressed above: it is the longest path to travel, despite having the least number
of steps, index of an algorithm that is easily found in path, but in rough ways. Instead, the
smaller distances are represented by the BIT* for the ideal route and by the A* for the real
route. We can note that, although A* and Dijkstra’s have the same number of steps, the first
produces a path a lower distance, due to the presence of the heuristic function h(n).
Finally, analysing the times field, we can see how graph-based are very quick to generate a
path, unlike sampling-based: even, BIT* can take an hour and a half. In reality, the fastest
algorithm to generate the path is FMM algorithm, even if in terms of distance and steps it

92 CHAPTER 5. EXPERIMENTAL RESULTS

does not excel, but the results are still good.
Although it can be said that A* represents the best trade-off for the performances, these con-
siderations remain unfortunately still not concrete, because they are the result of simulations
performed on an ideal scenario. To sum up definitively, we need to consider a scenario very
similar to the real one, as it is done in the following section.

5.2 Simulations with a Real Scenario

After obtaining the first information on the performance of the various algorithms in an
ideal scenario, it is now decided to use a real scenario, to obtain performances very similar to
reality.
The scenario is the plant of potrooms and its external environment [Figure 5.5a]. The pot-
rooms feature two parallel potlines with 40 potcells each: the latter are divided into groups
of 10 each, with a side-by-syde arrangement. Through a road link it connects to the areas of
the aluminium industry to allow its use: among them there is the AFSH, the fluoride feeder
vehicle reloading area, from which the vehicle starts to supply the potcells with fluoride.
Taking into account that the size of the map is 1873×808px, it is logical to choose ASFH
as start position and as target position any space adjacent to a potcell. In terms of coordi-
nates, they are respectively at [109, 154]px and [1564, 677]px: as far as the target position
is concerned, it has been allocated very far from the start position so that the resulting path
represents a worst case outcome of crossing the potroom.

(a) Gazebo 3D world. (b) 2Dmap.

Figure 5.5: Potroom plant scenario: from Gazebo world to 2Dmap.

Following the analysis procedure of the previous section, we begin to qualitatively evaluate
the results of the simulations in Figure 5.6, obtained from the graph-based algorithms.
A marked difference that is noted is the difference between in all four cases of a real path dif-
ferent from the ideal path: the motivation, already explained in the previous section, resides
in the fact that the vehicle can not pass through deterrents or move too close to obstacles,
as it would be with them. Therefore the true path, in this case, is quite different from the
ideal one: for example, it can not pass through the narrow passage between the wall of the

5.2. SIMULATIONSWITHAREAL SCENARIO 93

potroom and the potcells.
Regarding the nodes visited, the behaviour seen in the ideal scenario is confirmed: Dijkstra’s
algorithm remains the one that visits the most, while A* the one that visits the least. In this
case it is also known how the nodes visited by the A* are oriented by the path, while those
visited by D* (Lite and Focused), in this case, tend to be placed on a wider area. This derives
from the fact that D*, when generating the path, also considers alternative routes to the one
proposed, to be output only if new obstacles to the map are added.
As for the similarities, it should be emphasized that all four ideal paths have the same trend
and do not take different paths. Also the real path does not seem very different between the
four algorithms, except in the vertical section that crosses the two potlines, to the left of the
target position: while for the first two algorithms the path widens from the right side of the
road, in the other two it widens from the left side. The cause derives from the fact that the
latter two generate the path starting from the target while the first two starting from the start
position, as previously expressed.

(a) A* algorithm.

94 CHAPTER 5. EXPERIMENTAL RESULTS

(b) Dijkstra’s algorithm.

(c) D* Lite algorithm.

5.2. SIMULATIONSWITHAREAL SCENARIO 95

(d) Focused D* algorithm.

Figure 5.6: Path planning in the real scenario, employing graph-based algorithms.

Considering now the sampling-based algorithms, we obtain the results in Figure 5.7. This
time, for the target it has been decided to use a precision windowwith these X-Y coordinates
[1564±5, 677±5]px.
Starting to discuss qualitatively the performance of this type of algorithms, we can confirm
the first major difference, observed between the RRT and the other sampling-based algo-
rithms, in the ideal scenario: first tree expands into spider web, while the others expand into
comb.
Another difference that is confirmed is that between the RRT* and BIT*. The first is less
dense than the second, underlining the diversity of path planning at the base of the two algo-
rithms: in fact, the first is based on an expansion circumference while the second is based on
an expansion ellipse; the elongated shape of the ellipse allows us to explore narrower areas or
areas that can not be reached by a circumference.
In this case, however, with a scenario that presents more obstacles and complicated paths,
the path offered by these algorithms is much less linear than the ideal scenario. Even the
BIT* is very fragmented compared to the ideal case, a sign of the fact that the sampling-based
algorithms work well in large and low-obstacle scenarios.
Regarding the FMMalgorithm in a real scenario case [Figure 5.8], it is evident that the paths
generated are similar to those of graph-based algorithms. It will be interesting to see what
their performance is in numerical terms, compared to this type of algorithm.
Continuing the comparisonbetween algorithms,wemoveon tonumerical typeperformances,
considering the data reported in the Table 5.2.

96 CHAPTER 5. EXPERIMENTAL RESULTS

(a) RRT algorithm.

(b) RRT* algorithm.

5.2. SIMULATIONSWITHAREAL SCENARIO 97

(c) BIT* algorithm.

Figure 5.7: Path planning in the real scenario, employing sampling-based algorithms.

Figure 5.8: Path planning in the real scenario, employing Fast MarchingMethod.

98 CHAPTER 5. EXPERIMENTAL RESULTS

Starting from the field steps, we can confirm the great disparity between the types of algo-
rithms: about 2000 steps for graph-based, while about 30 steps for sampling-based. The
best algorithms with the fewest number of ideal steps remains the RRT, however at the ex-
pense of the shape of the path, which is very irregular; while for the real path they are all
equal (if we approximate the steps of the Focused D* to 2014), except the FMM algorithm
that has a greater number.
In fact, in the field distances, we immediately notice the “irregularity of the path” that char-
acterizes the RRT, as expressed above: it is the longest path to travel, despite having the least
number of passages. Instead, the smallest distances are represented by the Focused D* both
for the ideal path and for the real, an indication of the fact that this algorithm works well in
generating paths in tortuous areas and with many obstacles.
A separate discussion should be made for the field distances of the FMM algorithm: the
values are much higher than normal, both for the ideal field (2957.7) and for the real field
(3205.3), although the path is very similar to that of graphs-based algorithms. The cause can
be seen from the Figure 5.9: in the rectilinear sections there is no straight line but a zigzag
pattern. This implies a distance much higher than the norm. A possible explanation derives
from the fact that while in the ideal case we had relatively large spaces on which to expand
the wave front, in this case with narrow spaces, the wave front is not very regular and con-
sequently the normal direction produced by the gradient descent tends to vary many times
along the way.

Figure 5.9: Zoom on FMM path for the real scenario.

Finally, by analysing the field times, it is confirmed that FMM algorithm is very fast in gener-
ating a path, unlike sampling-based and graph-based.
Therefore, with respect to what has been said for the ideal one, in the real scenario it seems

5.2. SIMULATIONSWITHAREAL SCENARIO 99

to partially overturn what has been said previously: A* continues to be a good algorithm
while the Focused D* has highlighted important improvements if used on maps similar to
real plants. Instead the FMM algorithm undergoes a decrease in performance, especially in
the field distances, despite the fact that the path generation time is the best.

Steps Distance Time

Path: Ideal Real Ideal Real Ideal Real

A* 1845 2014 1984.8 2097.9 19.16 14.73
Dijkstra’s algorithm 1845 2014 1984.8 2097.9 48.52 29.29
D* Lite 1845 2014 1984.8 2092.1 48.28 40.50
Focused D* 1843 2013 1983.6 2091.5 82.42 49.09
RRT 26 - 2831.1 - 877.4 -
RRT* 27 - 2426.3 - 378.4 -
BIT* 28 - 2078.3 - 3012 -
FMM 1860 2023 2957.7 3205.3 0.270 0.196

Table 5.2: Performances of graph-based algorithms, sampling-based algorithms and the
FMM algorithm in the real scenario: steps to arrive to the target position, distance [px] of
path between start and target position and the computational time [s] employed by the algo-
rithm to produce the path.

100 CHAPTER 5. EXPERIMENTAL RESULTS

6
Conclusions and Future Work

In this final chapter, we present the obtained conclusions of the work: we evaluate the ful-
filled objectives of the project and present some possible future lines of work based on the
open issues identified during the project.

6.1 Conclusions

Real world vehicle navigations have significant challenges such as path planning, obstacle
avoidance, fault isolation, and system resiliance. AGV’s navigation is a collection of design
systems which is capable of handling all aspects of navigation requirement.
In this work, algorithms have been presented for the path planning of a vehicle in a known
scenario. Starting from the known informations on the aluminium industry and the respec-
tive operating vehicles, a model of fluoride feeder vehicle has been created, through the use
of various computer platforms as ROS or Autodesk Inventor. After having explained in de-
tail the different algorithms suitable for path planning in the literature, they have been tested
through the MATLAB environment to evaluate their efficiency and quality.
The results are very encouraging because in all cases the algorithms always manage to com-
plete their task, although with some differences. Among the proposed algorithms, the A*
and Focused D* performances emerge in the tests: both in ideal scenario and in real one,
they manage to produce a minimum path between the initial and final position in a rela-
tively short time. However it is preferable to use the second algorithm because it is valid also
in partially known environments, i.e. known scenarios but withmobile obstacles, whose po-
sition is unknown: when the vehicle discovers an obstacle in movement through a camera
or a laser, the Focused D* reschedules the path between the current position and the final

101

102 CHAPTER 6. CONCLUSIONS AND FUTUREWORK

position. A separate discussion must be made for the FMM algorithm: although it has an
interesting approach to the topic of path planning, its performance is not convincing in such
a way as to consider it for a real application. The zigzag trend, for example, is an aspect in
which the algorithmmust be improved.
Themain limitation of these simulations is the great distance from reality: in order to obtain
more expendable results in a real 3D scenario, it is appropriate to consider a future continu-
ation of what is stated in the thesis. Some development ideas are proposed in the following
section.

6.2 FutureWork

To improve the results obtained from the simulations of the algorithms, different tricks can
be followed in the future of this investigation project, including:

• use a map with real measurements of the aluminium industries, in order to obtain a
resulting path that can be easily implemented in the AGV.

• interface lasers and cameras with path planning algorithms, in order to increase the
efficiency and reliability of the AGV in unknown scenarios.

• develop an algorithm that manages the kinematics of the vehicle in relation to a path
to follow in input and test it in a real autonomous driving scenario.

A
The Bayer Process

TheBayer process was invented by theAustrian chemistCarl Josef Bayer in 1887whilework-
ing in Saint Petersburg (Russia) for developing a method to supply Alumina to the textile
industry. The process started gaining importance after the invention of Hall-Héroult alu-
minium process and till today it is unchanged and used to produce nearly all the world’s
alumina supply.
Since themain component (30%-60%) of bauxite is alumina (other components are mixture
of silica, iron oxide and titanium dioxide), the Bayer process is used to produce mainly alu-
mina from the refined bauxite.
In practise, alumina is obtained into following steps:[4]

1. Milling: bauxite is washed and crushed, reducing the particle size and increasing the
available surface area for the digestion stage. Lime and Spent Liquor (caustic soda re-
turned from the precipitation stage) are added at the mills to make a pumpable slurry.

2. Desilication: bauxite with high levels of silica goes through a process to remove this
impurity. In fact, silica can cause problems with scale formation and quality of the
final product.

3. Digestion: a hot caustic soda solution is used to dissolve the aluminium-bearing min-
erals (Gibbsite, Böhmite and Diaspore) in the bauxite to form a Pregnant Liquor
(sodium aluminate supersaturated solution).
The dissolution reaction of gibbsite is:

Al(OH)3 + Na+ + OH–→Al(OH) –4 + Na+ (A.1)

103

104 APPENDIX A. THE BAYER PROCESS

and the one of böhmite and diaspore is:

AlO(OH) + Na+ + OH– + H2O→Al(OH) –4 + Na+ (A.2)

Conditions (caustic concentration, temperature andpressure)within thedigester (huge
vessel where chemical or biological reactions are carried out) are set according to the
properties of the bauxite ore.
Ores with a high gibbsite content can be processed at 140°C, while böhmitic bauxites
require temperatures between 200°C and 280°C. The pressure is not important for
the process as such, but is defined by the steam saturation pressure of the process. At
240°C the pressure is approximately 3.5MPa.
The slurry is then cooled in a series of flash tanks to around 106°C at atmospheric pres-
sure and by flashing off steam. This steam is used to preheat Spent Liquor. In some
high temperature digestion refineries, higher quality bauxite is injected into the flash
train to boost production. This sweetening process also reduces the energy usage per
tonne of production.
Although higher temperatures are often theoretically advantageous, there are several
potential disadvantages, including the possibility of oxides other than alumina dissolv-
ing into the caustic liquor.

4. Clarification/Settling: the first stage of clarification is to separate the solids (bauxite
residue) from the Pregnant Liquor (sodium aluminate remains in solution) via sedi-
mentation. Chemical additives, as flocculants, are added to assist the sedimentation
process. The bauxite residue sinks to the bottom of the settling tanks, then is trans-
ferred to the washing tanks, where it undergoes a series of washing stages to recover
the caustic soda, which is reused in the digestion process.
Further separation of the pregnant liquor from the bauxite residue is performed uti-
lizing a series of security filters: the purpose of the filters is to ensure that the final
product is not contaminated with impurities present in the residue.
Depending on the requirements of the residue storage facility, further thickening, fil-
tration and/or neutralization stages are employed prior to be pumped to the bauxite
residue disposal area.

5. Precipitation: in this stage, the alumina is recovered by crystallization from the preg-
nant liquor, which is supersaturated in sodium aluminate. The crystallization process
is driven by progressive cooling of the pregnant liquor, resulting in the formation of
small crystals of aluminium trihydroxite, commonly known asHydrates, which then
grow and agglomerate to form larger crystals.
The precipitation reaction is the reverse of the gibbsite dissolution reaction in the di-
gestion stage. In fact:

Al(OH) –4 + Na+→Al(OH)3 + Na+ + OH– (A.3)

105

6. Evaporation: the spent liquor is heated through a series of heat exchangers and sub-
sequently cooled in a series of flash tanks. The condensate formed in the heaters is
re-used in the process, for instance as boiler feed water or for washing bauxite residue.
The remaining caustic soda is washed and recycled back into the digestion process.

7. Classification: The gibbsite crystals formed in precipitation are classified into size
ranges. This is normally done using cyclones or gravity classification tanks (a series of
thickeners utilizing the same principles as settlers/washers on the clarification stage).
The coarse size crystals are destined for calcination after being separated from spent
liquor utilizing vacuum filtration, where the solids are washed with hot water.
The fine crystals, after being washed to remove organic impurities, are returned to the
precipitation stage as fine seed to be agglomerated.

8. Calcination: The filter cake is fed into calcinerswhere they are roasted at temperatures
of up to 1100°C to drive off free moisture and chemically-connected water, produc-
ing alumina solids. There are different calcination technologies in use, including gas
suspension calciners, fluidised bed calciners and rotary kilns.
The following equation describes the calcination reaction:

2Al(OH)3 Al2O3 + 3H2O (A.4)

The final alumina, a white powder, is the product of this step and the final product of the
Bayer Process, ready for shipment to aluminium smelters or the chemical industry.

106 APPENDIX A. THE BAYER PROCESS

Figure A.1: Main steps of Bayer process.

B
The Hall-Héroult Process

The Hall–Héroult process was invented independently and almost simultaneously in 1886
by the American chemist Charles Martin Hall and by the Frenchman Paul Héroult, both
only 22 years old. In 1888, Hall opened the first large-scale aluminium production plant in
Pittsburgh. It later became the Alcoa corporation. In 1997 the Hall–Héroult process was
designated asNational Historic Chemical Landmark by the American Chemical Society in
recognition of the importance of the process in the commercialization of aluminium.
Nowadays, the process is the major industrial process for smelting aluminium. It involves
dissolving the Alumina in the molten Cryolite and electrolysing the molten salt bath, typi-
cally in a purpose-built cell. The process happens at 940–980°C and produces 99.5%–99.8%
pure aluminium.[7]

Problem and Possible Solutions

Elemental aluminium can not be produced by the electrolysis of an aqueous aluminium salt
because hydronium ions readily oxidize elemental aluminium. A possible solution is to use
a molten aluminium salt, however the aluminium oxide has a melting point of 2072 °C, so
electrolysis is impractical. A reasonable solution is theHall–Héroult process where alumina
is dissolved in molten synthetic cryolite to lower its melting point for easier electrolysis.

Background Theory

In the Hall–Héroult process the following simplified reactions take place at the carbon elec-
trodes [Figure B.1]:[20]

107

108 APPENDIX B. THEHALL-HÉROULT PROCESS

• cathode: Al3+ + 3 e– Al

• anode: O2– + C CO + 2 e–

• overall: Al2O3 + 3C 2Al + 3CO

In reality much more CO2 is formed at the anode than CO:

2Al2O3 + 3C 4Al + 3CO2 (B.1)

Pure cryolite has a melting point of 1009°C ± 272.15°C but, with a small percentage of alu-
mina dissolved in it, its melting point drops to about 1000°C. Besides having a relatively low
melting point, cryolite is used as an electrolyte because it also dissolves alumina well, con-
ducts electricity, dissociates electrolytically at higher voltage than alumina and has a lower
density than aluminium at the temperatures required by the electrolysis.
Aluminium Fluoride is usually added to the electrolyte. The ratio NaF/AlF3 is called Cryo-
lite Ratio and it is approximately equal to 3 in pure cryolite. In industrial production, alu-
miniumfluoride is added so that the cryolite ratio is approximately 2–3 to further reduce the
melting point so that the electrolysis can happen at temperatures between 940°C and 980°C.
The density of liquid aluminium is 2.3g/ml at temperatures between 950°C and 1000°C in-
stead the density of the electrolyte should be less than 2.1g/ml, so that themolten aluminium
separates from the electrolyte and settles properly to the bottom of the electrolysis cell. In
addition to aluminium fluoride, other additives like lithium fluoride may be added to alter
different properties (melting point, density, conductivity, etc.) of the electrolyte.

Figure B.1: Hall-Héroult process.[5]

109

Themixture is electrolysed by passing a low voltage (under 5V) direct current at 100–300kA
through it: this causes liquid aluminiummetal to be deposited at the cathode while the oxy-
gen from the alumina combines with carbon from the anode to producemostly carbon diox-
ide.

Cell Operation

Industrial cells are operated 24 hours a day so that themoltenmaterial does not solidify. Tem-
peraturewithin the cell ismaintained via electrical resistance. Oxidation of the carbon anode
increases the electrical efficiency at a cost of consuming the carbon electrodes and producing
carbon dioxide.
While solid cryolite is denser than solid aluminium at room temperature, liquid aluminium
is denser than molten cryolite at temperatures around 1000°C. The aluminium sinks to the
bottom of the electrolytic cell, where it is periodically collected. The liquid aluminium is
removed from the cell via a siphon every 1 to 3 days in order to avoid having to use extremely
high temperature valves and pumps. Alumina is added to the cells as the aluminium is re-
moved. Collected aluminium from different cells is finally melted together to ensure uni-
form product and made into e.g. metal sheets. The electrolytic mixture is sprinkled with
coke to prevent the anode’s oxidation by the oxygen evolved.
The cell produces gases at the anode. The exhaust is primarily CO2, produced from the
anode consumption, hydrogen fluoride from the cryolite, and flux. In modern facilities, flu-
orides are almost completely recycled to the cells and therefore used again in the electrolysis.
Escaped hydrogen fluoride can be neutralized to its sodium salt, sodium fluoride. Particu-
lates are captured using electrostatic or bag filters. The CO2 is usually vented into the atmo-
sphere.
Agitation of the molten material in the cell increases its production rate at the expense of an
increase in cryolite impurities in the product. Properly designed cells can leverage magneto-
hydrodynamic forces induced by the electrolysing current to agitate the electrolyte. In non-
agitating static pool cells the impurities either rise to the top of the metallic aluminium or
else sink to the bottom, leaving high-purity aluminium in the middle area.

Electrodes

Electrodes in cells are mostly coke which has been purified at high temperatures. The ma-
terials most often used in anodes, coke and pitch resin, are mainly residues from petroleum
industry and should be of high enough purity, so no impurities end up into the molten alu-
minium or the electrolyte.
What differentiate the two technologies is the way this carbon block is produced. There are
twoprimary anode technologies, which differentiate the productionway of carbonblock:[21]

• Prebake technology [Figure B.2a]: the petroleum coke is mixed with pitch, which acts
as a binder. Then, at this mixture, usually called green paste, it is given a parallelepiped

110 APPENDIX B. THEHALL-HÉROULT PROCESS

(a) Prebake technology (b) Soderberg technology

Figure B.2: The primary anode technologies.

shapewith either apress or a vibro-compactor. The formedcarbonblock is thenbaked
into furnaces inorder tobe transformed into a solid carbonblock. The electric current
arrives to the carbon block through a rod linked to it through nippels. A pre-bake
potcell contains several single anodes (usually 14÷ 40, mainly depending on the line
current), which stay on the potcells for a fixed amount of days (generally 26 to 30
days). Then, before being completely consumed, they are removed together with the
rod, and the remaining carbon reused to produce new anodes.

• Söderberg technology [Figure B.2b]: the basic idea is to eliminate the sub-plants which
form, bake and join the carbon block with the rod. A Soderberg cell has only one
big anode, housed in a steel container, which gives to the anode its shape. From the
upper part of this container it is introduced the green paste. During its movement
from the top to the bottom of the container the green paste is baked. Unfortunately,
the quality of the baked Soderberg anode is lower than the quality of the prebaked
one, hence the Soderberg cells are always characterized by a lower current efficiency
and a higher potcell voltage, needed also to produce the extra heat necessary for the
anode baking.

Presently all the new built smelters adopt the pre-bake technology, because of the higher
current efficiency, lower specific energy consumption and lower emission (especially PAHs).
However, a good number of Soderberg plants are still in operations, sometimes retrofitted
with additional technology aimed at increasing current efficiency and reduce emissions.

111

Another advantage of prebake technology cells is the absence ofAnode Effect that is, instead,
mainly a problem in Söderberg technology cells: it is a situation where too many gas bub-
bles form at the bottom of the anode and join together forming a layer and decreases the
energy-efficiency and the aluminium production of the cell. It also induces the formation
of TetraFluoromethane in significant quantities, increases formation of CO and to a lesser
extent also causes the formation of HexaFluoroethane. CF4 and C2F6 are not CFCs, and
although not detrimental to the ozone layer, are still potent greenhouse gases.

112 APPENDIX B. THEHALL-HÉROULT PROCESS

C
Ackermann Steering Geometry

Ackermann steering geometry is a geometric arrangement of linkages in the steering of a car
or other vehicle, designed to solve the problem of wheels on the inside and outside of a turn
needing to trace out circles of different radii.
It was invented by the German carriage builder Georg Lankensperger in Munich in 1817,
then patented by his agent in England, Rudolph Ackermann in 1818 for horse-drawn car-
riages. Erasmus Darwin may have a prior claim as the inventor dating from 1758.

TheHistory

Figure C.1: Typical nineteenth-century service carriage.

113

114 APPENDIX C. ACKERMANN STEERINGGEOMETRY

[10]Before cars, there exist only carriages with large open wheels, typically pulled by horses
[Figure C.1]. In particular, short wheelbase carriages had fixed wheels, relying on slippage
of the skinny wheels to compensate by skidding when pulled by the horses, but maneuver-
ability at slow speeds, and tighter corners, or longer wheelbases, was enabled by steering the
front axle.
This first kind of simple steering is often called Turntable Steering [Figure C.2]. There’s a
single pivot in the center of the front axle. Both the front and rear axles are solid. By rotating
the front axle, the geometry is adjusted so that both axles are pointing towards a common
point. Each wheel travels around in a circle with a common center (albeit it with different
radii), removing the need for side-slip or skidding. In a simple carriage, eachwheel is indepen-
dently free-wheeling, and the traction force is not provided by the wheels, so the differences
in the circumferences is compensated by each wheel having a slightly different rotation rate.
If the vehicle were travelling over a muddy field, we might see four circular arcs as it turned.
This is an elegant solution for maneuverability, but it has quite a few problems: the axle has
to swing through large arcs tomake turns, and this reduces the usable space inside the wheel-
base (or requires the occupied space to be high above both axles). Moreover, it has a single
stress point, making the addition of suspension challenging, and the long axle acts like a lever
amplifying small variations in road surface.

Figure C.2: The turntable steering.

The next solution is the Simple Steering [Figure C.3]: eachwheel is given its own pivot. This
solves some of the problems above, but we get the return of the side-slip issue.
It’s certainly better than a totally fixed front axle, which requires a lot of side-slip but, by
turning both wheels the same angle, we can see that each of the front wheels has a different
center of rotation.
With simple steering, at least one of the front wheels will be experience the problem of side-
slip: in an hypothetical vehicle with simple steering manoeuvring over a gravel driveway, on
every turn, irrespective of speed, the front wheels would plough through the gravel leaving

115

unsightly ruts, and require excess traction power to overcome this additional friction com-
pared to simply rolling along.

Figure C.3: The simple steering.

The ideal solution would be for each of the front wheels to be independently steerable: in
this way, each one could be set to the perfect angle tomake a tangent to the circular arcwith a
common center. With eachwheel running on a circular arc of the correct radius there should
be no side-slip. To deal with the issue that the different powered wheels running at different
rotational speeds, the drivetrain typically has a differential placed in the axle.

Figure C.4: Steering equipped with differential mechanism.

Taking as a reference Figure C.4, it can see that, when turning, the inside wheel turns with a
larger angle than the outside. Defining the following quantities:

• L: the wheelbase of the vehicle (distance between the two axles).

116 APPENDIX C. ACKERMANN STEERINGGEOMETRY

• T: the track (distance between center line of each tyre).

• R: the radius of the turn as experienced by the center line of the vehicle.

• αi: the angle of inside wheel from straight ahead.

• α0: the angle of outside wheel from straight ahead.

Assuming constant speed (no weight transfer or external forces), no body roll or suspension
effects, and only the front wheels steering, then the ideal angles for the wheels is given by the
simple trigonometry:

αi = tan−1

(
L

R− T
2

)
α0 = tan−1

(
L

R + T
2

)
(C.1)

In Figure C.5, using some constants for L and T, the internal wheel angle is plotted on the
x-axis while the external wheel angle, that corresponds to a range of possible curve radii, is
plotted on the y-axis.

Figure C.5: Parametric angles [deg] plot.

The red line shows the relationship between the two wheel angles for simple steering: here
both wheels turn in parallel so the result is a straight line with unity gradient. The blue line
shows the relationship between the two wheel angles for ideal steering. For all radii of turns,
the absolute value of the internal angle is always higher than that of the outside angle. The
tighter the turn, the higher the ratio of the internal to outside angle.
The relationship showed by the blue line is notmathematically simple: the challenge for how

117

to create amechanism to turn thewheels in this way is the problem solved by theAckermann
solution.

Ackermann Steerring

Figure C.6: Ackermann steering mechanism.

In Ackermann steering [Figure C.6], each wheel is given its own pivot (which is typically
close to the hub of the wheel). Tie rods create a trapezium shape with two additional pivots.
As the shape is a trapezium, as the inside wheel turns, the outside wheel turns at a different
rate. By adjusting the geometry (length of the tie rods and angle which they form with the
straight ahead), the relative rotations of thewheels can be configured. If the track rod joining
the two wheels is the same length as this distance between the two pivots, then the rectangle
they make deforms to a parallelogram as the wheels turn, and the configuration is the same
as simple steering, and the bothwheels turn at the same rate. As the track rod ismade shorter
(toe-out) than the axle, then the inside wheel turns at a higher rate as the trapezium deforms.
The equations for the value of the wheel angles based on the rod lengths and initial angles
are more complex calculations than first might appear: for this reason, they are not reported
here but in Figure C.7 it can see an example of how close the Ackermann steering geometry
conforms to ideal steering.
Ackermann steering solves most of the problems of turntable steering: the space required
(fore-and-aft travel) by each wheel and the moment arm transmitting back imperfections
in the road are significantly reduced. For small steering wheel inputs, the difference between
thewheel angles is small. As the radius of the required turn decreases, the difference in angles
increases.

118 APPENDIX C. ACKERMANN STEERINGGEOMETRY

Figure C.7: Parametric angles plot with Ackermann steering trend.

Final Considerations

All of the above calculations are applicable to slow speeds. However, when we need to con-
sider vehicle dynamics, things get more complex. When a vehicle is in motion or in a turn,
the tyre deforms and there a difference between the direction of travel and the direction the
tyre is pointing. This is called the slip angle.
Professional racers adjust the Ackermann configuration of their vehicles to balance needs.
There is a limit to the grip that any tyre can provide and, depending on the difference be-
tween the slip at the front or rear of the vehicle, understeer or oversteer can be created. Some
drivers even configure their vehicles with other similar architectures as neutral-Ackermann
or even anti-Ackermann geometry, to reduce heating and load in the their tyres.

Bibliography

[1] D.Adams.TheHitchhiker’sGuide to theGalaxy. SanVal, 1995. isbn: 9781417642595.
url: http://books.google.com/books?id=W-xMPgAACAAJ.

[2] Consorzio Imballaggi Alluminio. Il Processo di Produzione. 2019. url: http://www.
cial.it/il-processo-di-produzione/.

[3] Consorzio Imballaggi Alluminio. Il Riciclo dell’Alluminio. 2019. url: http://www.
cial.it/category/alluminio-e-riciclo/il-riciclo/.

[4] DataResearchAnalyst andWorldofchemicals.com.Manufacturing ofAlumina through
BayerProcess. 2019.url:https://www.worldofchemicals.com/591/chemistry-
articles/manufacturing-of-alumina-through-bayer-process.html.

[5] R.H. Bemthuis. “Development of a Planning and Control Strategy for AGVs in the
Primary Aluminium Industry”. Master’s Thesis. University of Twente, 2017.

[6] Marco Bergamin. “Indoor Localization Using Visual Information and Passive Land-
marks”. Master’s Thesis. University degli Studi di Padova, 2015.

[7] George J. Binczewski. The Point of aMonument: A History of the Aluminum Cap of
theWashingtonMonument. 1995.

[8] LiuChang-an et al.MobileRobotPathPlanningBased onan ImprovedRapidly-exploring
RandomTree inUnknownEnvironment*. Paper.NorthChinaElectric PowerUniver-
sity, 2008.

[9] Tim Chin. Robotic Path Planning: RRT and RRT*. 2019. url: https://medium.
com/@theclassytim/robotic-path-planning-rrt-and-rrt-212319121378.

[10] DataGenetics.Ackerman Steering. 2016. url: http://datagenetics.com/blog/
december12016/index.html.

[11] Marta Galvan. “Approaching Path Planning In Dynamic Environment”. Master’s
Thesis. University degli Studi di Padova, 2019.

[12] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot. Batch In-
formed Trees (BIT*): Sampling-based Optimal Planning via the Heuristically Guided
Search of Implicit Random Geometric Graphs. Paper. University of Toronto, 2015.

119

http://books.google.com/books?id=W-xMPgAACAAJ
http://www.cial.it/il-processo-di-produzione/
http://www.cial.it/il-processo-di-produzione/
http://www.cial.it/category/alluminio-e-riciclo/il-riciclo/
http://www.cial.it/category/alluminio-e-riciclo/il-riciclo/
https://www.worldofchemicals.com/591/chemistry-articles/manufacturing-of-alumina-through-bayer-process.html
https://www.worldofchemicals.com/591/chemistry-articles/manufacturing-of-alumina-through-bayer-process.html
https://medium.com/@theclassytim/robotic-path-planning-rrt-and-rrt-212319121378
https://medium.com/@theclassytim/robotic-path-planning-rrt-and-rrt-212319121378
http://datagenetics.com/blog/december12016/index.html
http://datagenetics.com/blog/december12016/index.html

120 BIBLIOGRAPHY

[13] Matt Garratt, S. G. Anavatti, and Jeifei Wang. “Real-Time Path Planning Algorithm
for Autonomous Vehicles in Unknown Environments”. In: International Journal of
Mechatronics and Automation (2017).

[14] Techmo Industry.LaProduzione di Alluminio: ProcessoHall-Heroult - Potlines - Cast-
House. 2015.

[15] Sven Koenig andMaxim Likhachev.D* Lite. Paper. Georgia Institute of Technology,
2002.

[16] Christian Rasch and Thomas Satzger. Remarks on the O(n) implementation of the
fast marching method. Paper. Technical University of Munich, 2008.

[17] Techmo Car SPA. Techmo History. 2019. url: https://www.techmo.com.
[18] Anthony Stentz.TheD*Algorithm for Real-Time Planning of Optimal Traverses. Pa-

per. Carnegie Mellon University, 1994.
[19] AnthonyStentz.TheFocusedD*AlgorithmforReal-TimeReplanning. Paper.Carnegie

Mellon University, 1995.
[20] Totten et al.Handbook of Aluminum:Alloy production andmaterialsmanufacturing.

2003.
[21] Unknown.PrebakeandSoderberg. 2009.url:http://bauxite.world-aluminium.

org/refining/process/#top.
[22] Alberto Valero-Gomez et al. FastMarchingMethods in Path Planning. Paper. Carlos

III University, 2013.
[23] Autodesk Inventor Website. About Autodesk. 2019. url: https://www.autodesk.

it/products/inventor/overview.
[24] Blender Website. About Blender. 2019. url: https://www.blender.org/.
[25] GazeboWebsite.Gazebo History. 2019. url: http://gazebosim.org/.
[26] Matlab&SimulinkWebsite.AboutMathWorks. 2019.url:https://it.mathworks.

com/products/matlab.html.
[27] RosWebsite.Documentation. 2019. url: http://wiki.ros.org/.
[28] Wikipedia.A* Search Algorithm. 2019. url: https://en.wikipedia.org/wiki/

A*_search_algorithm#cite_note-10.

https://www.techmo.com
http://bauxite.world-aluminium.org/refining/process/#top
http://bauxite.world-aluminium.org/refining/process/#top
https://www.autodesk.it/products/inventor/overview
https://www.autodesk.it/products/inventor/overview
https://www.blender.org/
http://gazebosim.org/
https://it.mathworks.com/products/matlab.html
https://it.mathworks.com/products/matlab.html
http://wiki.ros.org/
https://en.wikipedia.org/wiki/A*_search_algorithm#cite_note-10
https://en.wikipedia.org/wiki/A*_search_algorithm#cite_note-10

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Terms
	List of Acronyms
	Introduction
	State of Art
	Problem Context
	Proposed Solutions
	Thesis Outline

	Context Analysis
	Aluminium Production Process
	Primary Aluminium
	Mining Bauxite Ore
	Alumina Refining
	Aluminium Smelting
	Tapping and Pouring Processes
	Aluminium Fabrication
	Semi-Fished Production

	Secondary Aluminium
	Recycling Aluminium

	Typical Layout of Processing Plant
	Potrooms
	Casthouse
	Carbon Anode Plant
	Other Areas

	Techmo Car Introduction
	Operative Vehicles
	Potroom Vehicles
	Potroom-to-Casthouse Vehicles
	Casthouse Vehicles
	Bonus Vehicle: Anode Transport Vehicle
	Moveable Objects
	The Enemies of Vehicles

	Literature Review
	Graph-Based Algorithms
	Dijkstra's Algorithm
	A*
	D*

	Sampling-Based Algorithms
	RRT
	RRT*
	BIT*

	Bonus Algorithm: FMM

	Experimental Design
	Operative Environment
	ROS
	Gazebo
	Maltab & Simulink
	Autodesk Inventor
	Blender

	Fluoride Feeder Vehicle
	Kinematic Model
	Dynamic Model
	Simulation Model
	The Viewing in Gazebo
	Lasers and Cameras
	ROS Nodes and Topics

	Scenario Evaluation Model
	Potrooms
	AFSH
	Streets and External Environment

	Experimental Results
	Simulations with an Ideal Scenario
	Simulations with a Real Scenario

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix The Bayer Process
	Appendix The Hall-Héroult Process
	Appendix Ackermann Steering Geometry
	Bibliography

