
DEPARTMENT OF INFORMATION ENGINEERING

MASTER DEGREE IN
ICT FOR INTERNET AND MULTIMEDIA

TECHNOLOGICAL MIGRATION FOR
INTERACTIVE MULTIMEDIA ARTWORK

CASE STUDY: REACTIVATION OF “IL CAOS
DELLE SFERE” BY CARLO DE PIRRO

Supervisor: Prof. Sergio Canazza

Co-supervisor: Dott. Alessandro Fiordelmondo

Candidate: Luca Zecchinato

ACADEMIC YEAR 2021-2022
DATE 28/11/2022

Abstract

Preservation of Interactive Multimedia Artworks has become a particularly
active research area over the last years. Starting from the end of the last cen-
tury, the role played by multimediality within the performing arts has become
more and more important, thanks to the adoption of increasingly more sophis-
ticated technologies. Such analogical and digital artworks rely on underlying
working computer systems; however, since technology advances with a rele-
vant pace, hardware and software involved in the installations eventually be-
come obsolete. There is therefore the need for preserving the experience and
more importantly the interactions and the artistic thinking via digital tools and
preservation methods. While dealing with the preservation of standard docu-
ment formats is well established, very few detailed approaches about preserv-
ing multimedia objects and pieces of electronic art have been defined. In this
context, this work presents a multilevel preservation approach developed in
the Centro di Sonologia Computazionale (CSC) group of the Department of In-
formation Engineering at the University of Padova. The application of such
system is considered for the reactivation of the ”Il Caos delle Sfere”, a 1999 in-
stallation by Carlo De Pirro. Furthermore, since an accurate documentation of
the original artwork’s setup was missing, it has been produced during the re-
activation. On top of the methodological multilevel analysis, a corresponding
technological migration for the ”Il Caos delle Sfere” has been completed at the
CSC laboratories: the experimental results of the operations carried out and
all the hardware and software migrations are also reported. From the point of
view of the preservation, the overall migration process has aimed at preserv-
ing more the identity behind the artwork rather than a simpler replication of
the original performance, also due to the lack of documentation for it. This is
also why, in this work, several future additional improvements required in the
proposed technological reactivation are finally analysed.

I

Contents

Abstract I

Introduction 1

I Preserving Interactive Multimedia Artworks 5

1 The multilevel preservation approach of the CSC research group 6
1.1 Interactive multimedia artworks and preservation 7
1.2 The challenge of preserving and reactivating 9
1.3 The multilevel preservation model 10
1.4 Application of the model to The time consumes by Michele Sambin 13

II A case study: Il Caos delle Sfere by Carlo De Pirro 17

2 The original setup 18
2.1 Technical description: the nodes characterizing the artwork . . . 19

2.1.1 Interaction node . 20
2.1.2 Communication node . 23
2.1.3 Playback node . 26

2.2 Nodes’ interfaces . 27
2.2.1 DB25 Parallel Port interface 28
2.2.2 Nibble Mode overview . 30
2.2.3 MIDI interface . 33

3 The algorithm and the C code for the original installation 39
3.1 The algorithm . 43

3.1.1 Evolution over the levels 50
3.2 Transmission of MIDI messages 56

III

4 Preservation of the human-machine interaction: Technological mi-
gration 58
4.1 Il Caos delle Sfere DPO records . 58

4.1.1 DPO records organization 62
4.2 Reactivation of the Il Caos delle Sfere 65

4.2.1 The Arduino Mega board 67
4.2.2 The replication of the pinball data acquisition 69
4.2.3 The hardware of the proposed reactivation 70
4.2.4 Multithreading requirement in MIDI sequences generation 73
4.2.5 The algorithm and the Arduino sketch 77

4.3 Possible future improvements for the technological migration . 97

Conclusion 100

IV

List of Figures

1.1 Graphical representation of the multilevel preservation model. . 12
1.2 Approximate chronological representation of The time consumes

through the multilevel preservation model. 15

2.1 The installation Il Caos delle Sfere during its realization at Carlo
De Pirro’s home in 1999. 19

2.2 Schematic representation of the nodes composing Il Caos delle
Sfere. 20

2.3 Creature from the Black Lagoon pinball 21
2.4 The acquisition board . 22
2.5 The Parallel Port and the sound card of the original computer

machine. 24
2.6 Conceptual template of a typical MidiShare routine as presented

in the original documentation [1]. 26
2.7 Representation of a Parallel Port’s 25-pin female D-sub connector. 28
2.8 Pin Assignments of the D-Type 25 pin Parallel Port Connector. . 29
2.9 Multiplexer representation of the Nibble Mode functionality [20]. 31
2.10 Pinball signals and their function. 33
2.11 5 pin DIN connectors for MIDI ports 35
2.12 Status and Data bytes’ structure. 36

3.1 The algorithm routine . 44

4.1 Il Caos delle Sfere during the Rassegna Finestre sul Novecento at the
Civic museum in Treviso. 59

4.2 Il Caos delle Sfere installation and Mattia Pizzato during the Sci-
ence4All scientific dissemination. 61

4.3 Approximate chronological representation of Il Caos delle Sfere
through the multilevel preservation model. 63

4.4 Organization for Il Caos delle Sfere DPO’s items. 64
4.5 Modified Dublin Core scheme examples 66
4.6 Arduino Mega 2560 . 68

V

4.7 Arduino Mega 2560 pinout. 70
4.8 Schematic representation of the hardware composing the instal-

lation. 71
4.9 The modified algorithm routine 90

VI

Introduction

With the development of new technologies over the last century, society went
through a process of radical change. Everyday life started to be more and
more altered in its fundamental activities. The way people lived within it, the
way their behaviour was impacted by the advent of new tools and media af-
fected also the artistic production. It gave raise to the possibility of having
an interaction between the public and an artwork or an installation, opening
up to a greater involvement in the artistic thinking. In this context, Interactive
Multimedia Artworks became a crucial factor: they are artworks composed by
a heterogeneous set of media and in which human interaction is a key point.
The role played by multimediality within the performing arts increased over
the years also thanks to a fast technological development. Due to the relevant
pace, progress caused the hardware and software involved in the installations
to eventually become obsolete. In this framework, preservation and reacti-
vation of interactive multimedia artworks are fundamental practices to take
care of artworks but above all to allow the transmission of past and nowadays
forms of art to future societies. The topic of preservation and reactivation of
interactive multimedia artworks has gained therefore a particularly active role
in research. However, it is still far from a standardization and shared method-
ology to deal with. This work outlines a model for preservation of interac-
tive multimedia artworks developed recently at the Centro di Sonologia Com-
putazionale (CSC). It’s a multilevel preservation model, i.e. it establishes a way
to organize the various components of artworks (both hardware and software)
adopting a structured pattern. The model essence is to aim at identifying the
authenticity of an artwork, reinterpreting it and by consequence updating the
technological settings. The model considers interactive multimedia artworks
through their process of transformation, which is what makes them different
from traditional artistic manifestation. It also provides a scheme to be used to
overcome the problem of fast obsolescence and negligence affecting the less re-
cent interactive artworks in the preservation field. In particular, it sets out the
so called Digital Preservation Objects (DPOs), the fundamental digital units that
represent the evolution of the artwork and enable a complete digitalization for

1

2 Introduction

it. The multilevel preservation model is the result of the CSC experience in
the context of preservation of multimedia artworks. The model proposed was
modified over the years: the version reported was recently applied for The time
consumes reactivation, a videoloop artwork by Michele Sambin. This work pro-
poses the application also for the reactivation of Il Caos delle Sfere: Become a
Pianist with 500 Italian Lire artwork (1999). The installation was one of the var-
ious artistic expressions of the composer Carlo De Pirro in collaboration with
technical partners Nicola Orio and Paolo Cogo, at that time members of CSC.
The concept of the artwork is to use an electronic pinball, a common gam-
ing machine, to control an automatic performance played over a Disklavier.
Up to the 2004 (and with some later exhibition in 2012 and 2014), the artwork
was constantly presented in different festivals and scientific disseminations.
However, its hardware and software components went through a very rapid
process obsolescence over the years. Therefore, a reactivation for that had to
be executed in order to preserve one of the most important artistic produc-
tion developed in collaboration with the CSC group by the composer Carlo
De Pirro, which unfortunately died in 2008. The occasion of a technological
migration occurred for the Science4All dissemination of 2022 in Padua. The
reactivation, technological migration and the DPOs organization was carried
out by Alessandro Fiordelmondo, Mattia Pizzato and the author of this work
at the CSC laboratory. Starting from the multilevel preservation model, the re-
search team developed the hardware, software and documentation that made
it possible to present again to the public the artwork. The path followed was
to preserve more the identity rather than the technological assets.

The thesis has the objective to describe in detail not only the Il Caos delle
Sfere artwork as a whole but also to provide a documentation of its main fea-
tures that was never developed before. In this framework, apart from the tech-
nological migration, the way the preservation model was applied to the art-
work represents also a possible improvement in the organization of DPOs for
future case studies. The approach consists on digitalizing records composed
by items which are documented by using a modified version of the Dublin Core
scheme, a metadata schema designed to enable descriptions of any resource.
The research of the best way to create such DPOs is still in progress, modi-
fications will be introduced to make the metadata scheme more suitable for
the preservation and reactivation of interactive multimedia artworks. The ap-
plication of the metadata scheme as well as the implementation of the tech-
nological migration were carried out by the author of this work during the
internship at the CSC laboratory. The main focus in the reactivation was more
on the engineering part, on testing how the connection with a Parallel Port or
a MIDI port could be handled with modern microcontroller and constructing

Introduction 3

new hardware. The work aimed at reactivating the artwork rather than mak-
ing it efficient. At the end of the activities, however, the result was satisfying.
Il Caos delle Sfere collected a large attention on the public during the Science4All
dissemination, making this artistic production of Carlo De Pirro living again
after years.

The exposition is organized as follows. Part I introduces the key aspect of
the multilevel preservation approach developed at the CSC with a deep insight
on the definition of interactive multimedia artworks and how preservation and
reactivation should be performed for them. Part II instead is about the appli-
cation of the model to the Il Caos delle Sfere and it is composed of three chapter.
Chapter 2 introduces all the features of the original installation: the hardware
involved, the pinball, the Disklavier and the acquisition board are treated in
detail. A focus is also provided on the interfaces connecting the hardware,
the Parallel Port and the MIDI port. Chapter 3 concerns the algorithm and the
source code that were developed to make the installation work. A brief dis-
cussion regarding how the code was written together with the description of
the algorithm route are also examined. Chapter 4 describes the majority of the
results that were obtained during the reactivation process. Firstly, the DPOs
development and the digitalization approach are introduced in relation to the
evolution of Il Caos delle Sfere over the exhibitions. Secondly, a discussion about
what technological migration was followed for the reactivation is unfolded. Fi-
nally, the modified and updated code developed for Science4All dissemination
together with a look for future improvements is considered.

Part I

Preserving Interactive Multimedia
Artworks

5

Chapter 1

The multilevel preservation
approach of the CSC research group

The topic of preservation and reactivation of interactive multimedia artworks,
despite being well-known by many institutional entities and characterized by
many projects around the world, is still far from a standardization and shared
methodology to deal with. In this context, this chapter presents the Centro
di Sonologia Computazionale (CSC) multilevel preservation model, which de-
fines a way to organize the heterogeneous components of artwork (its con-
stituent elements, its description and its appearance) into a set of so called
Digital Preservation Objects (DPOs). The rationale of this approach is to define
artworks through a process of transformation rather than the identification of
a unique and fixed manifestation of authenticity. In addition to that, the digital
migration of technologies and the problems and advantages of this approach
are presented. Although it cannot represent a solution suitable for any art
form, digital migration can be an effective option to reactivate and preserve
artworks. It leads to the identification of the authenticity of an artwork and
therefore allows to reinterpret it and update technological settings, overcom-
ing the problem of fast obsolescence increasing with years. In the technolog-
ical migration the collaboration with the original authors (artist, technicians,
performers) who are responsible for the identity of the artwork is also funda-
mental. In addition to that, digital migration opens up the possibility for other
important perspectives. It can simplify the remote transmission of digitized
artworks, which can be supplemented with virtualization for more complex
works.

6

Chapter 1. The multilevel preservation approach of the CSC research group 7

1.1 Interactive multimedia artworks and preserva-
tion

Starting from the second half of the 20th century, forms of art were charac-
terized by a radical transformation process as a result of the western social
changes after the war. Artists started to focus on the material prospects of
social and political events making the public and participation in artistic pro-
duction more important [24]. The interaction acquired a central role in the
artistic works, both in the performance (performer interaction) and in the in-
stallation (audience interaction). Human-art interaction was no longer consid-
ered as a specific ability of a skilled performer. In addition to this, early forms
of technology started to enter everyday life radically altering society and, by
consequence, gaining also a central role in artistic productions. Such evolution
of the art production gave a very deep focus on the society, revealing its iden-
tity, how people live within it and how they think and interact with technolo-
gies and media. Such aspect become a significant component of the cultural
heritage available nowadays. The interaction affecting the artistic production
became a crucial factor in the so called Interactive Multimedia Artworks, which
can be defined as artworks composed by a heterogeneous set of media and in
which human interaction is central. Both interactive installations and perfor-
mances fall under this definition. In this context, preservation and reactivation
of interactive multimedia artworks are fundamental practices. They enable the
study and the transmission of past and nowadays forms of art through con-
temporary and future societies. However, interactive multimedia artworks
are characterized by preservation and restoration practices different from the
traditional ones. The motivation is the rooted interconnection with technol-
ogy, very relevant in terms of the fast obsolescence of hardware and software,
which may soon become an irreversible loss. These artworks are completely
different from analogue fixed ones, such as paintings, sculptures or architec-
ture, which remain rather durably over years [5]. In fact, features including
variability, reproduction, performance, interaction are incorporated in many
works. Media art is not a static, unique and solid object, but often a set of
components, hardware, and software which create a process- and time- based
experience [26]. In addition to that, multimedia artworks are often the result
of the collaboration and participation of multiple artists, technicians, curators,
performers, and audiences (as in the case of interactive installations) and with
a strong relationship with the original surrounding environment.

On top of the cultural field, even technological development and the econ-
omy take advantage of preservation and reactivation strategies. In the creation
of multimedia artworks, artists keep driving technological development with

8 1.1. Interactive multimedia artworks and preservation

their ideas and request new tools to make the current solution more advanced.
The art industry represent a valuable role in technological development and
therefore it is important to have it supported. Creativity is in fact gaining more
and more significance in industrial contexts. Especially today, with the forecast
of a new industrial form, this quality acquires a central role in the productiv-
ity. In particular with Industry 5.01, the human workers will come back to be
the factory floor and, together with machines and smart systems, participate
in productivity with their creativity and brainpower [18]. In this framework,
interactive multimedia art is an ideal case of human-machine coexistence in
which humans dominate machines through their own creativity. Apart from
the technological aspect, the preservation of these new forms of art can be seen
as a concrete practice to build the future. Besides being material knowledge,
available for all societies, the preserved art provides an exemplary model for
a society increasingly involved in a technological landscape. This is especially
important for interactive multimedia installations, which offers original sys-
tems of human-based creativity for the technological development. The loss
of contemporary and recent-past artworks would translate into slowing down
the maturation of the central and creative role of the human in the future so-
ciety. Therefore preservation is necessary as new artworks have a generally
short life expectancy and there is an high risk of losing important expressions
of society. Finally, artistic reactivations can bring an economic benefit. Re-
activating artworks would result in more exhibitions, more audience, more
cultural dissemination with direct and indirect economic income and positive
impact on the art.

Nowadays, there are many preservation strategies and examples of reacti-
vated multimedia artworks. The same characterizes archives which are grow-
ing by collecting contemporary artworks through original and different ap-
proaches. From the 2000s onward, the archival community, as well as univer-
sities, museums, and artists and cultural ministries have become more aware
of the problem of multimedia art preservation. Institutional entities are aware
of the benefits derived by the circulation and enhancement of reactivated artis-
tic works, therefore they are increasingly supporting innovative preservation
projects. In Europe, for example, there are many projects involved in the
preservation of new multimedia artworks. An Italian example is the Protocollo
per l’Autenticità, la Cura e la Tutela dell’Arte contemporanea (PACTA - protocol for
authenticity, care and protection of contemporary art) of the cultural ministry

1Industry 5.0 is a vision of industry that aims beyond efficiency and productivity as the
unique goals, and reinforces the role and the contribution of industry to society
www.research-and-innovation.ec.europa.eu/research-area/
industrial-research-and-innovation/industry-50_en (accessed 29 October
2022)

www.research-and-innovation.ec.europa.eu/research-area/industrial-research-and-innovation/industry-50_en
www.research-and-innovation.ec.europa.eu/research-area/industrial-research-and-innovation/industry-50_en

Chapter 1. The multilevel preservation approach of the CSC research group 9

of Italy (Ministero per i Beni e le Attività Culturali e per il Turismo - MiBACT),
developed in 2017. It is a document assessing a set of guidelines and prin-
ciples for the protection and valorization of artist archives. It is particularly
focused on installation and multimedia artworks. Despite many experiences
in this field, it is still difficult to establish shared and standardized practices
of preservation and reactivation of such art forms. That is because traditional
preservation strategies are not suitable for contemporary art, so there is the
need to develop new preservation paradigms. The issue is that the study of
these practices is still too related to traditional ones and therefore it has yet to
develop properly. In this framework, a contradiction often emerges: on the
one hand multimedia artworks are considered as time- and process-based ob-
jects, on the other, new preservation practices still aim to capture the artwork
as a fixed object with a unique and unaltered authenticity.

A specific preservation and reactivation strategy has been developed by the
CSC at the University of Padua, it is called the Multilevel Preservation model.
It has undergone further development from the original definition defined in
[7] and in [8], based on the results obtained from the case studies in which
it has been applied. This model aims to record different reproduction phases
of the artwork and to define it as a process rather than a fixed object. The
layers that make up the model are such that it is possible to move from the
detailed characteristics of a single exhibition (performance or installation) to
the relationships of all exhibitions of the artwork. With such a stratification it
is possible to record the dynamic authenticity of the artwork.

1.2 The challenge of preserving and reactivating

As described in the previous section, preservation is fundamental to slow
down the process of degradation and obsolescence and then to ensure the per-
manent availability of the artistic heritage [13]. Preservation can be considered
as the sum total of the steps necessary to ensure the permanent accessibility,
forever, of documentary heritage [8]. To transmit the artwork to future soci-
eties as faithfully as possible, the act of preservation must consider the con-
cept of authenticity. This feature can reveal the fundamental properties which
are necessary to restore the identity of an artwork. Generally authenticity is
closely linked to the concept of physical integrity of the artwork. However, art
preservation cannot be granted by a simple maintaining of physical integrity
due to the increasing use of ephemeral and heterogeneous material. Interac-
tive multimedia artworks are made up of multiple instances, such as events,
assemblages and experiences, which must be remixed with new or partially
new material, equipment and human interaction [10]. But since each artwork

10 1.3. The multilevel preservation model

has completely different and unique properties, it is difficult to standardize a
definitive methodology. The solution is to determine a research approach that
must be applied individually for a single artwork and an administrative model
with which all the parts that determine the work should be organized. In this
aim authors, technicians and performers should be involved in the preserva-
tion and reactivation processes, through technical collaborations, interviews
and case studies. With them, the fundamental properties of an artwork can
be established as well as the authenticity principles of it. Another fundamen-
tal aspect to consider is the evolution of the work over time, from exhibition
to exhibition to evaluate authenticity. Art preservation strategies should not
only consider the initial exhibition but rather all the exhibitions because they
represent the development of the work over time. However, since interac-
tive multimedia artworks have a dynamic nature, the act of reinterpretation
should be also considered. In fact, every reactivation of an artwork should
be considered as a new reinterpretation (whether or not it is reactivated by
the authors). It’s important to notice that in preservation of artworks, the re-
placement of abstract or concrete components is to be taken into account. In
turn, the replacement of such parts always introduces a reinterpretation of the
work’s essential system. Reinterpretation may seem like a dangerous act at
first glance but it is a powerful operation to assess and to spot the fundamen-
tal properties of authenticity and then identity. Finally, to ensure the integrity
of every component involved in the artwork (rather than a simple physical
integrity), a documentation of all the preservation and reactivation processes
must be compiled [23].

1.3 The multilevel preservation model

The model described in this section was developed as a part of the preservation
operations of a selection of interactive multimedia installations by the com-
poser Carlo De Pirro. Subsequently, it was applied for Medea, an opera-video
by Adriano Guarnieri, which was then reactivated as a multimedia installa-
tion by Alvise Vidolin and recently for The time consumes, a videoloop artwork
by Michele Sambin. The model belongs to the solid experience of the CSC in
the computing preservation field.

The multilevel preservation model aims to preserve multimedia interactive
artworks with a focus on their various exhibitions and thus as a process or a
dynamic object rather than a fixed one. This model was developed as an ex-
pansion of the methodology for the preservation of audio documents defined
in [6]. Behind the preservation method there is a main concept which is the
preservation copy. For any audiovisual document, the preservation copy can be

Chapter 1. The multilevel preservation approach of the CSC research group 11

described as the artefact designed to be stored and maintained as the preser-
vation master [17]. It consists of an organized dataset collecting all the infor-
mation represented by the original document, accompanied by the metadata,
i.e. a set of data that describes and gives information about other data, and by
the documentation about the preservation process. In the proposed multilevel
preservation model establishes this results into the concept of Digital Preserva-
tion Object (DPO). The artwork’s DPO is a digital file that encapsulates a set
of digital and analogue inter-related and inter-connected items, coordinated
according to a logical architecture with the aim to represent a single exhibition
of an artwork (the first exhibition or any reactivation characterizing the instal-
lation). Therefore, the goal of the multilevel model is to group and connect all
the DPOs of a single artwork to represent it as a process rather than a single
fixed work.

The overall architecture of the model is based on the General Instruction
Standard for Archival Description ISAD(G) [14], an international framework to
register archival documents produced by corporations, persons and families
and providing guidelines for creating descriptions of archival materials. The
proposed multilevel approach model defines three levels arranged in a hierar-
chical order to obtain a representation of the artwork from the general to the
specific. The highest level of the model represents the artwork and internally
it groups all the exhibitions or reactivations the artwork went through. Given
the ISAD(G) scheme, the artwork can be represented via the series, i.e. doc-
uments arranged in accordance with a filing system or maintained as a unit
because they result from the same accumulation, filing process or the same ac-
tivity [14]. Each exhibition is a presentation of the artwork’s identity, which
in turn constitutes the unity of the series. The intermediate level instead rep-
resents the single exhibition represented as a DPO. The DPO is a container in
which all the items of an artwork’s exhibition can be collected. Finally, the
lowest level represents the single items of an individual artwork’s exhibition.
The items are all the analogue and digital elements that compose the artwork,
its distinct features and any other kind of documentation that describes the
experience of an exhibition. This level is defined as the item level, which in the
ISAD(G) terminology is the ”smallest intellectually indivisible archival unit”
[14]. However, in the proposed model, three different kinds of items with dis-
tinct functions for the artwork and thus different roles are considered. They
are classified as bit, data and experience:

• Bit: it consists on all those parts of an artwork that can be directly pre-
served, both analogue and digital items (for example hardware and soft-
ware, performative objects, fixed-media files like video or audio used in
the exhibition, etc.). It concerns the data that are kept in the original for-

12 1.3. The multilevel preservation model

Figure 1.1: Graphical representation of the multilevel preservation model.

mat for the artwork (the problem of their interpretation is a matter aside),
and the risk of introducing alterations for them must be avoided. In or-
der to digitally store all the useful information about each object with
an organized set of metadata and eventual further documentation pro-
duced in the digitalization processes a DPO is provided. Each digital ob-
ject will be accompanied by its representation information, preservation
description information (i.e. reference, context, provenance and fixity)
and descriptive information;

• Data: this type refers to all that useful information about the realiza-
tion of the artwork. Data can be represented by operating instructions,
score (in the case of music), scripts, technical notes and comments about
the artwork and high-level descriptions of algorithms and computational
models adopted. No special attention is paid to presentation and con-
text. This type of items is affected by a dynamic form of preservation, as
it could be necessary to use new design languages, possibly developed
on purpose for the installation [8];

• Experience: it represents any document that gives witness to some as-
pect of the installation. In this type interviews, audio/video recordings,
usability tests of the original system, information about people (artists,
performers, technicians) involved in the artwork and their roles are con-
sidered. The experience document type includes also any documenta-
tion about reactivation and preservation processes (description of ap-
proaches, used methodologies, used software etc.). The type refers more
to a museum-like approach, that aims at keeping track of the history of
the artwork.

In previous versions of the model, there was an additional kind of item defined
as record. It was about any element that was modified or updated in respect of

Chapter 1. The multilevel preservation approach of the CSC research group 13

original installation, including reinterpretation of the patches and information
about the context [8]. This concept has been merged in the definition of the
DPO for every artwork exhibition which implicitly underlines every modifica-
tion made in the evolution process.

Starting from the multilevel model presented, a graphical representation
of it can be defined as in figure 1.1. It can be noticed that bit and data type
items can belong to multiple DPOs. Furthermore, if some parts (or even all of
them) of the original or previous exhibition are reused in an ongoing reacti-
vation, those will also be registered as elements of the new DPO. The multiple
belongingness of items is an important feature of the presented multilevel ap-
proach, which diverges from the general structure of the ISAD(G) in which
each archival unit (named item) only belongs to a single file. However, the
multiple belongingness can be applied only to bit or data type items due to the
fact that experience-type ones are designed to document the ongoing exhibi-
tion and therefore must characterize only a unique exhibition or reactivation’s
DPO. This property allows the artwork to be represented not only as a group
of delimited entities but rather as a dynamic evolving object. From the graph-
ical representation, it can be noted that the order of DPOs is not given (e.g.,
chronological order). Although it presents a well-defined vertical structure,
the model doesn’t establish any kind of association between DPOs in order to
avoid pre-determined discursive formulation and interpretation. For instance,
the physical integrity and/or the definition of a fixed object is not denied by
this model. From the evolution of a process, if multiple exhibitions are char-
acterized by the same physical properties, the physical persistence of artwork
can be deduced. The model aims to promote a high degree of freedom in the
examination and arrangement of information.

1.4 Application of the model to The time consumes
by Michele Sambin

A case study that as allowed the improvement of the model while maintain-
ing the fundamental properties is on the The time consumes by Michele Sam-
bin, a recent experience of the CSC laboratory in archiving and reactivation
of an audio-video performance of the Seventies. Similar to other artworks
invented by Sambin, The time consumes is an example of application of the vide-
oloop technique, a circular system created by two video recorders in which a
closed ring tape passes. The closed ring tape is created by the conjunction of
both the tape extremities and it dragged by the video recorders’ engines and so
it spins. The first video recorder works as a recorder, while the second works

14 1.4. Application of the model to The time consumes by Michele Sambin

as a player. The camera placed in front of the monitor is attached to the first
video recorder, and the second video recorder is attached to the monitor. The
preservation and reactivation processes for the artwork took place between
May 2021 and May 2022. The first step was to assemble the DPOs of the first
two performances (in 1979 and in 1980) by collecting bits, data and experience
documents according to the preservation model presented in the previous sec-
tion. In this case, DPO’s set of bits remain partially incomplete because the
original technological tools involved (analogue video recorders, cameras, etc.)
are missing since they were not owned by the artist. For what concerns the
DPOs data items, they are the documentation of Sambin’s works consisting on
sketches and scores (sometimes even three-dimensional paper models) with
appropriate comments and instructions the has always drafted carefully. The
artist also produced audio/video recordings and photos of the performance
that report both the original appearance, the actions that occurred during the
performance, the setting for the tools and the use of them. All these docu-
ments are considered DPO’s experience items. The process of reactivation was
conducted by the authors together with the artist.

For what concerns the reactivation, due to the impossibility to recover the
original obsolete technologies, e.g. the video recorder, tape and analogue cam-
era, researchers at CSC decide to transfer the entire performative system into
the digital domain by implementing a migration approach. The hardware
composing the original system has been substituted by modern devices: the
cathode-ray tube screen has been replaced by a ultra HD LED screen; the old
camera based on the cathode-ray tube has been replaced by a modern portable
4K camera; the audio system of the original performance – camera’s built-in
microphone and monitor’s speakers – has been replaced by a pair of dedi-
cated speakers and a single cardioid condenser microphone; the whole system
formed by the video-recorder and tape has been replaced by a computer with
sound and graphic cards. The videoloop technique has been reactivated thanks
to the development of original software. All the new hardware and software
items represent the bits of a new DPO record. With them, it’s possible to con-
struct a collection of data (relationship between hardware and software, ele-
ments role, operating instructions, etc.) and experience (audio/video record-
ings of performance in the digital domain, new interviews, etc.) documents.
In the case of bit-type items, it was not possible to apply the multiple belong-
ingness property because the artwork underwent a migration approach. Al-
though some parts of the data (e.g., general structure and system usage) had
to be replaced, the multiple belongingness property can be appled to almost
all performance actions, which are always of data type.

The digital reactivation has been performed three times in 2022: at the Cas-

Chapter 1. The multilevel preservation approach of the CSC research group 15

Figure 1.2: Approximate chronological representation of The time consumes through
the multilevel preservation model.

tromediano museum of Lecce on the 19th of February, during the 800th an-
niversary of the University of Padua at the Sala Dei Giganti and during Sci-
ence4All, a scientific dissemination festival of the University of Padua held
on the 30th of September. In the latest reactivation, the videoloop has been
presented as interactive installation, with some technological changes. All
the preservation and reactivation works can be described via an approximate
chronological representation through the presented multilevel preservation
model, as can be seen in figure 1.2.

Part II

A case study: Il Caos delle Sfere by
Carlo De Pirro

17

Chapter 2

The original setup

The model proposed for the preservation of interactive multimedia artworks
presented in part I finds a direct application on the reactivation of an interac-
tive music installation, Il Caos delle Sfere: Become a Pianist with 500 Italian Lire.
The main scientific and technical partners developing the artwork were Nicola
Orio and Paolo Cogo, at that time members of CSC, while Carlo De Pirro was
the involved artist. It was presented for the first time at the Giovani Artisti di
Europa e del Mediterraneo (Biennal of the Young Artists of Europe and Mediterraneo)
in Rome in 1999. Afterwards the exhibition toured in other artistic manifesta-
tions until year 2004. Although it didn’t have scientific aims, it has been based
on the results of a joint research work on music interaction called “Controlled
Refractions” [19] on the interaction between a pianist and a computer through
a music performance.

The concept of the artwork is to use an electronic pinball, a common gam-
ing machine, to control an automatic performance played on an automatic
motorized piano named Disklavier, represented in figure 2.1. The main fea-
ture of it is that the performance and the generated sounds are related to the
type of interaction involved in the gameplay experience. Users generally have
only a loose control on the ball and the corresponding game’s degree of un-
predictability is very high. However, despite that normally all the electronic
pinballs give auditory feedback to the player, the basic idea of the composer
was to avoid a simple one-to-one mapping between the objects hit by the ball
and the generated sound. According to the amount of player-pinball interac-
tion in the evolution of the game, different note sequences are played by the
Disklavier. The game starts with some pre-written sequences; when the player
completes more and more in-game tasks, some automatically generated se-
quences start to play but the user partially controls them depending on the
kind of targets he is hitting. For every new objective fulfilled by the player the
style of automatic sequences changes, so it does the way the user can control

18

Chapter 2. The original setup 19

Figure 2.1: The installation Il Caos delle Sfere during its realization at Carlo De
Pirro’s home in 1999. From left to right: Veniero Rizzardi, composer Carlo De Pirro,
the scientific partners from CSC, Paolo Cogo and Nicola Orio. The Disklavier can be
observed on the left, next to the monitor of the computer, and to the pinball machine.

them [8]. The artistic idea behind the installation was to make a player able to
govern the chaos, i.e. the fact that a pinball game can be very random, so that
it can reach a state where the game is more controlled and predictable: this is
reflected in the way the musical performance evolves.

In this chapter the technical description of the original setup is presented,
in particular it’s possible to identify three nodes making up the artwork.

2.1 Technical description: the nodes characterizing
the artwork

In order to provide an overview of the elements composing the multimedia
installation, it’s better to divide them into nodes, i.e. subsystems where two
or more elements contribute, cooperate and interact to perform a given task.
For what concerns the considered case study, three main nodes are involved
as depicted in the scheme of figure 2.2. They are:

• Interaction node: it’s the node where in-game data signals are generated
for the selection of the sequences that are going to be reproduced;

• Communication node: it’s the node in which starting from the data pro-
duced in Interaction node, the sequences to be played are selected (or

20 2.1. Technical description: the nodes characterizing the artwork

Figure 2.2: Schematic representation of the nodes composing Il Caos delle Sfere.

created in real-time) and corresponding events, named MIDI events, are
generated;

• Playback node: it’s the node where MIDI events generated in the Com-
munication node are used to move Disklavier’s keys.

The way the nodes interact between each other is done through two interfaces:
the DB25 Parallel Port interface where Interaction node’s data are injected and
made available for the Communication node; and the MIDI interface in which
the MIDI events generated in the Communication node arrive at the Playback
node.

2.1.1 Interaction node

As its name says, the Interaction node is the part of the artwork where a user
can be involved and interact with the system in order to determine the final
reproduced melody. This node is centred around the Creature from the Black
Lagoon pinball machine over which a user can play and indirectly generate the
useful data to be elaborated in the Communication node. All data are acquired
by an ad hoc designed acquisition board which in turns makes them available
to the Communication node through the DB25 Parallel Port interface.

2.1.1.1 Creature from the Black Lagoon pinball

The main role in the Interaction node is played by a popular electronic pinball
machine named The Creature from the Black Lagoon (figure 2.3). Based on the
movie of the same name, it was released in December 1992 by Midway Games
Inc [16].

Chapter 2. The original setup 21

Figure 2.3: Creature from the Black Lagoon pinball

This game machine was one of the first pinballs to introduce in a game the
idea of a story and different levels that the player can achieve by progressively
fulfilling a certain number of goals. This is a key feature which in fact was
what influenced the technical and artistic choice of the installation [8].

From the gameplay point of view, the way the artwork generates the per-
formance is strictly related to the main objective of a game which is to activate
four letters ”F-I-L-M”. The activation of them is associated with combinations
of targets hit by the ball and it’s necessary for the player to progress with the
story. In fact, once the letters are all on, the game can enter the Extra-Ball (EX)
mode in which multiple balls are in play. It’s also worth to mention three in-
game actions during the multiball mode that impact the final performance of
the artwork. The player has to Search (CS) the Creature in one of three posi-
tions, after that it has to Rescue (RE) the girl and finally he can score a Jackpot
(JK) by finding the correct scoop in the table where the Creature hides the girl
[16].

All the aforementioned events contribute to create an high level of unpre-
dictability which reflects on the final obtained musical execution. The way
the gameplay evolves allows also to reward good players: the more goals are
hit, the more complex and interesting is the generated performance on the
Disklavier.

22 2.1. Technical description: the nodes characterizing the artwork

Figure 2.4: The acquisition board

2.1.1.2 The ad hoc designed acquisition board

The main technical issue the developing team had to face was how to moni-
tor the game minimizing the need to interface with the pre-existing electronic
inside the pinball [8]. To do so, it has been chosen to split the signal coming
from the pinball switches to track the targets hit by the ball and the lights as-
sociated with the letters F I L M and with events EX CS RE JK as described
in the previous subsection. It can be noted that in this way it is only possible
to estimate the level of the in-game story and that some of the features (i.e.
the actual number of points gained) have been neglected so that they are not
useful for the final result. The acquisition was made through an electronic cir-
cuit (figure 2.4), designed ad hoc by Paolo Cogo, which is contained inside the
pinball machine.

With reference to the figure, it’s possible to see the presence of several mul-
tiplexers, among which there is a Quad 2 line to 1 line multiplexer like the
74LS157. However, due to the lack of documentation for the original project,
a schematic representation of the ad hoc designed circuit was not found so a
more detailed components’ description cannot be provided. Despite that, by
inspecting the way the pinball communicates with the Communication node,
the routine through which data are made available for the latter can be esti-

Chapter 2. The original setup 23

mated. Firstly, it consists on the processing of the voltage signals (character-
ized by TTL logic levels) of the lights associated with the letters (or events)
which are then passed to the input of one of the multiplexers. In addition to
that, the assessment of the signal identifying the switch corresponding to the
last hit target is performed thanks to the presence of 8 lines of TTL logic levels
voltages. Each of these 8 lines defines a bit and the overall byte can be used
to produce a mapping between an active switch and a byte value, as what can
be found in the original pinball data-sheet. Such a value is written in the lines
and it is taken from the output of a switch matrix circuit contained within the
pinball circuit board: a microprocessor constantly strobes to determine what
switch is on by doing a row by column type of check [16]. All the data acquired
and passed to the board’s multiplexers are finally ready to be sent to the Com-
munication node via the DB25 Parallel Port interface. The way the data transfer
is done over it will be described later.

2.1.2 Communication node

The role of processing the data coming from the pinball machine in order to
generate a sequence of sounds to be then reproduced for the users is given to
the Communication node. It can be also seen as that part of the artwork which
makes the pinball machine (the interface through which a user can interact
with the artwork) and the Disklavier (the instrument which reproduces the
sounds generated over the gameplay evolution) communicate. This subsys-
tem of the artwork is entirely represented by the original computer machine
where the project developers created several executables, among which there
is the one in charge of testing the communication with the pinball machine,
the one in charge of testing the communication with the Disklavier and, more
importantly, the main software dedicated to process, generate, and modify
melodic sequences according to the indication provided by the composer. In
particular, the latter rely on the MidiShare environment to generate the MIDI
messages and events. The data acquired from the pinball machine is accessed
via the Parallel Port while the sounds generated are sent to the Disklavier in
the form of MIDI events via the MIDI port.

2.1.2.1 The original computer machine

The original computer machine over which the software required to make the
artwork perform runs is a Windows 95 machine, in use at the CSC group also
for several other projects and artworks in the early 2000s. In order to imple-
ment the communication with the ad hoc designed board inside the pinball
machine, they developed also a dedicated board with a male DB25 connector

24 2.1. Technical description: the nodes characterizing the artwork

Figure 2.5: The Parallel Port (highlighted in the red rectangle) and the sound card
(highlighted in the blue rectangle) of the original computer machine.

for the Parallel Port interface (with reference to figure 2.5, it’s indicated by the
red rectangle). The motivation for that is the absence of such type of connector
in most of the old PC machines, where only the female version of it is present.
The developers also equipped the machine with a sound card (with reference
to figure 2.5, it’s indicated by the blue rectangle) in order to provide a MIDI
port for the transfer of MIDI events to the Disklavier.

The PC also contains several versions of the aforementioned software and
the corresponding source codes that were progressively modified for the dif-
ferent exhibitions the artwork went through. On top of this, the PC provides
also a set of *.wri (Microsoft Write Documents) files over which many sequence
of MIDI events are listed. They were generated starting from the melodic se-
quences composed by Carlo De Pirro just for the artwork and exported in WRI
format by using the Finale program (not included in the PC). The files are then
inputted in the software in order to generate the MIDI events to be sent to the
Disklavier.

2.1.2.2 MidiShare usage for the reproduction of MIDI events

As previously mentioned, all the pre-written sequences that are then used in
the software are contained in *.wri files. Each of the files contains a set of MIDI
events (whose structure will be described in the subsection 2.2.3.3) that are
what needs to be passed to the Disklavier in order to generate sounds in the
very end. The process by which such MIDI events are sent is handled by the

Chapter 2. The original setup 25

MidiShare environment which enables the communication via MIDI interface
and MIDI port.

MidiShare is an open-source software developed by Grame in 1989 in order
to provide a development kit to build real-time music software. It is a real-
time multitasks music operating system specially devised for the developing
of musical applications. The main features it provides are [1]:

• High level musical events handling: it’s a fully structured and time
stamped with a millisecond resolution MIDI events manager;

• Efficient scheduling: it’s in charge of delivering events at their falling
dates through a scheduling algorithm which ensures a very low and con-
stant time overhead per event;

• Enabling inter-applications communication: it’s equipped with a com-
munication manager which routes the events to the client applications,
according to the connection set between them;

• Real-time tasks managing: it provides the control the real-time behavior
of an application, in particular for user-defined function calls that can be
scheduled for future need.

The conceptual template of a typical MidiShare routine can be found in the
figure 2.6.

The reason why the development team decided to rely on the MidiShare en-
vironment is because, as presented in the features, it results to be very precise
when dealing with MIDI events that are highly time-sensitive as will be later
described. Most of the functions developed for the algorithm, in particular the
ones to output pre-written or newly generated sequences, are in fact called and
scheduled via the libraries’ functions that MidiShare provides. This features
suits exactly with the requirement of the algorithm to schedule MIDI events at
given future time instants, one after the other, to generate a continuous flow
of notes. For what concerns the MidiShare functions’ calls, they require three
parameters mainly: the date at which a call is scheduled for, the address of the
function to be called and the reference number of the MidiShare instance set at
the beginning of the process. Given this, it can be understood why MidiShare
is a fundamental tool to enable the transmission of MIDI events via the MIDI
port contained in the ad-hoc audio board designed for the original PC.

Starting from the MidiShare’s library, a custom made function was coded for
the events transmission task: a copy of the MIDI event is sent to the MidiShare
instance’s destination according to a date which specifies when the destination
will actually receive the event. The MidiShare instance then transmits the event

26 2.1. Technical description: the nodes characterizing the artwork

Figure 2.6: Conceptual template of a typical MidiShare routine as presented in the
original documentation [1].

to the MIDI port using the correct MIDI port number in the operating system
provided by the user. In addition to that, the environment comes up with the
possibility also to flush and eliminate all waiting function calls in the MidiShare
instance list. This feature is fundamental in order to stop the current play
sequence of MIDI events when, for example, a new task is completed during
the gameplay performance.

2.1.3 Playback node

The final node composing the Il Caos delle Sfere artwork is the Playback node.
It’s the subsystem dedicated to the reproduction of the musical performance
as it was programmed by the algorithm and the gameplay evolution. Here
the MIDI events coming from the Communication node via the MIDI port are
translated into audible sounds to let the gamer hear the result of its game ex-
perience. The Playback node is the only sound source of the artwork and it
consists on either a grand or a upright piano depending on the place of the in-
stallation. For the exhibitions in which the artwork was exposed the Disklavier
piano is the reproducing machine they choose.

Chapter 2. The original setup 27

2.1.3.1 Disklavier

As previously defined, the playback machine associated with the installation
is the Disklavier, a type of acoustic pianos manufactured by Yamaha Corpora-
tion starting from 1987 [27]. The typical Disklavier is an acoustic piano inte-
grated with electronic sensors for recording and electromechanical solenoids
for piano-style playback, i.e. it can be described as an automatic motorized
piano. It can be either used to record a performance thanks to sensors which
registers the movements of the keys, hammers and pedals; the performance
data can be then saved according to many formats, mainly according to the
MIDI protocol. It can be also used to perform a playback of a musical per-
formance: solenoids move the keys and pedals to reproduce the specific per-
formance. Generally, non-contact optical sensors detect the movement of the
keys and pedals to get a high level of fidelity, delivering a performance al-
most indistinguishable from that of a real pianist [27]. On top of this, modern
Disklaviers typically include a large set of electronic features, such as a built-in
tone generator , speakers and MIDI connectivity that supports communication
with computing devices and external MIDI instruments. Its usage spans from
a didactic approach, where a student can record daily practice sessions to be
then checked by instructors, to a more engineering approach where a variety
of devices can be adopted to control or operate the instrument, including in-
frared handheld controllers, handheld wi-fi controllers, applications running
on portable devices, etc. Disklaviers are manufactured in the form of upright,
baby grand, and grand piano styles.

2.2 Nodes’ interfaces

The main issue the developing team had to face was to enable the inter-node
communication, in particular the one between Interaction and Communication
nodes. They had to find a reliable way to transfer data asynchronously from
the ad hoc designed board inside the pinball towards the PC, on one side to
move all the computational complexity to the PC’s CPU and to make the ac-
quisition board design as simple as possible in terms of electronic components.
On the other side to provide a sufficiently high bitrate transmission to avoid
delays in the data acquisition process that would eventually lead to a stop of
the sound flow in the end. To comply these requirements, they decided to
adopt the Parallel Port interface also motivated by the fact that Windows 95
Os gave the possibility to access directly the serial and Parallel Ports.

For what concerns the Communication-Playback nodes’s connection, they de-
cided to go with the MIDI interface. That was (and still represents) the most

28 2.2. Nodes’ interfaces

Figure 2.7: Representation of a Parallel Port’s 25-pin female D-sub connector.

suitable communication protocol that connects several electronic musical in-
struments, computers, and related audio devices for controlling, playing, edit-
ing and recording music. The choice was also dictated by the simplicity and
the robustness that such a protocol provides.

2.2.1 DB25 Parallel Port interface

Despite being used in practice for several years, the Parallel Port interface was
fully standardized in 1994 under the IEEE 1284 standard [2]. The main con-
tent of it is the definition of a signalling method for asynchronous, fully inter-
locked, bidirectional parallel communications between hosts and printers or
other peripherals [2]. This means that here the devices don’t share a common
clock, and the timing of events is defined in relation of one event to another.
In addition to that, every control signal is acknowledged with an answering
control signal, ensuring that the transmitting device sends data only when the
receiving device is ready [15]. The interface described in the standard is a bidi-
rectional extension of the already existing PC parallel interface, developed in
the 70’s by Centronics and originally designed as a printer port.

The original PC’s Parallel Port had eight outputs, five inputs and four bidi-
rectional lines but only in [2] IEEE introduced a number of distinct commu-
nication modes for it, using the already-used signals in the Centronics’ inter-
face making the interpretation of such signals depending on the implemented
mode.

About the hardware, most Parallel Ports use the 25-contact D-sub connec-
tor (standardized as the IEEE 1284-A connector) represented in figure 2.7. For
Parallel Ports there is also the possibility to use the 36-pin connectors, i.e. the
IEEE 1284-B and the IEEE 1284-C. For the purpose of the project, only the 25-
contact connector will be considered.

The input and output of the Parallel Port are characterized by TTL logic
levels. The current that can be sunk and sourced varies from port to port.
Most Parallel Ports are implemented in ASIC (Application Specific Integrated
Circuit) and can sink and source around 12 mA [20].

Chapter 2. The original setup 29

Figure 2.8: Pin Assignments of the D-Type 25 pin Parallel Port Connector.

2.2.1.1 The signals involved

Most of the signals used in the Parallel Port and the functions of each one of
the 25 contacts are named according to a convention established by Centronics
when developing the original Parallel Port for dot-matrix printers. Therefore,
all ports’ names reflect that use [15]. The characterization of each pin can be
found in the figure 2.8. In such a table, the letter ”n” is used in front of the
signal name in order to denote that the signal is active LOW and ”Hardware
inverted”, i. e. the signal is inverted by the Parallel Port’s hardware. If +5 V
(Logic 1) is applied to such pins, they would return back a 0 in their corre-
sponding bit.

The standard Parallel Port is composed by three 8-bit port registers: a PC
can accesses the Parallel-Port signals by reading and writing to them. Registers
are defined as the Data, Status and Control registers. The Data register, whose
bits are denoted as (D0-D7), is about the byte written to the data outputs or, in
case of bidirectional communication, the byte read at the connector’s data pins.
The Status register holds the logic states of five inputs, denoted as S3 through
S7 (the bar indicates that the corresponding signal is Hardware inverted). In-
stead, bits defined as S0–S2 don’t appear at the connector. The Control register
collects the states of four bits, named as C0 through C3 while bits named C4
to C7 don’t appear at the connector. The characterization of each pin, in their
conventional use for printers, can be found in [20].

The signalling method standardized in [2] provides five modes of host-

30 2.2. Nodes’ interfaces

peripheral communication, each ones consisting of one or more phases. Addi-
tional phases may be defined in order to cover initialization and transitions be-
tween communication modes. The modes are the Compatibility Mode, the Byte
Mode, the Nibble Mode, the Extended Capabilities Port mode and the Enhanced
Parallel Port mode.

2.2.2 Nibble Mode overview

By inspection of the project’s original code, it is possible to realize how the
communication mode between the pinball and the PC is the Nibble Mode.
Therefore, only this specific mode will be treated in details.

The Nibble mode is one of the modes capable of providing peripheral-to-
host data transfers. It’s also the preferred way of reading 8 bits of data without
using the data lines [20]. In fact it implements the transmission of 4 bits (a
nibble) at a time. In this mode status signals are used to read each nibble while
the data bits are not in general considered, even if there is the possibility for
the host to write or read on them. For what concerns the control lines, IEEE
1284 defines only the usage of pin 14 (bit C1).

Nibble mode’s functionality consists of two parts or phases: the Data trans-
fer phase which includes the writing of a byte from the peripheral to the host
and the Idle phase that defines the signal states for the port when data transfer
is not occurring [15].

The Data transfer phase is made by the following operations [9]:

1. The host (PC) indicates that it is ready to receive the first nibble by setting
the (C1) pin (defined also as HostBusy) LOW;

2. The peripheral places the first nibble on the status lines S3, S4, S5 and S7;

3. The peripheral indicates that the data is valid on the status line by setting
pin (S6) (defined also asPtrClk) LOW;

4. The host reads from the status lines and sets HostBusy HIGH to indicate
that it has received the nibble, but it is not yet ready for another trans-
mission;

5. The peripheral sets PtrClk HIGH as an acknowledgement to the host;

6. Repeat steps 1-5 for the second nibble.

After it receives a byte, the host may bring HostBusy LOW and wait for more
data or it may leave HostBusy HIGH to prevent the peripheral from sending
another nibble.

Chapter 2. The original setup 31

Figure 2.9: Multiplexer representation of the Nibble Mode functionality [20].

In order to construct a byte from the two nibbles, software can then be
used. Despite being simpler than other modes, this technique can be proven
to be slow. This is because of the additional instructions needed to read and
compose the byte that make the aforementioned operations software-intensive
[9].

2.2.2.1 Implementation of the Nibble Mode

Since Nibble mode reads data through the port without setting it in the reverse
mode, i.e. without using the data lines to receive the data, a possible imple-
mentation of its functionality can be done by applying inside the peripheral
a Quad 2 line to 1 line multiplexer like the 74LS157 (depicted in figure 2.9) to
read a nibble of data at a time and then the following nibbles sequentially.

In details, the Quad 2 line to 1 line multiplexer acts as four switches. With
references to figure 2.9, when the A/B input (represented in the hardware by
the Strobe line C0 which is Hardware inverted) is LOW, the A inputs are se-
lected, e.g. 1A passes through to 1Y, 2A passes through to 2Y. When the A/B is
HIGH, the B inputs are selected. The Y outputs are connected up to the Parallel
Port’s status port, in such a manner that it represents the most significant nib-
ble of the status register. The overall exchange of data works as follows: when
A/B is LOW (thus Bit 0 of the Control register must be set to 1 to get a LOW
on the Strobe pin) the host reads the least significant nibble. It then sets A/B to
HIGH in order to read the most significant nibble. Finally the two nibbles are
composed together via software to make a byte (whose bits corresponding to
the Busy line, S7, have to be inverted). It may be also necessary to add delays
in the process, if the incorrect results are being returned.

32 2.2. Nodes’ interfaces

2.2.2.2 Understanding the pinball to PC communication

In order to understand how the communication between the PC and the pin-
ball works, it’s fundamental to analyse the implementation of the electric cir-
cuit inside the original installation and to inspect the corresponding code de-
veloped for the project. As described in subsection 2.1.1.2, only two features
of the pinball are tracked. Firstly, the signals associated to the pinball lights
are monitored in order to determine the level of the game. Secondly, the pin-
ball switches are observed to track the targets hit by the ball and the overall
assessment is made through the ad hoc designed acquisition board.

To acknowledge the operational mode associated with the Parallel Port
communication, an inspection of the software developed to process the in-
formation acquired (found on the PC used to run the overall interactive music
installation) reveals how the operational mode chosen was the Nibble Mode.
More specifically, a multiplexer implementation as described in subsection
2.2.2.1 was developed inside the ad hoc designed circuit for the pinball.

2.2.2.3 Testing the communication

By inspecting the software, it was also possible to find an executable appro-
priately developed to test the communication between the pinball and the PC
and what piece of information is transmitted trough the lines depicted in the
scheme of figure 2.9. Overall, the procedures involved in the communication
are the following:

1. The PC acquires the first nibble (information about lights ”F”, ”I”, ”L”
and ”M”);

2. The PC sets the pin 1 (C0) to HIGH to perform the switch in the multi-
plexer;

3. The PC acquires the second nibble (information about lights ”EX”, ”JK”,
”RE” and ”CS”);

4. The PC read the data lines (D0-D7) to acquire the value corresponding to
the last target hit by the ball;

5. The PC sets the pin 1 (C0) to LOW to perform the switch in the multi-
plexer (for the acquisition of the following first nibble).

It’s worth to notice how the data lines, despite not being involved in the stan-
dard Nibble mode operations, are here used in order to communicate some
values (between 0 and 127) which denote the last target hit by the ball while

Chapter 2. The original setup 33

Figure 2.10: Pinball signals and their function.

the status lines are used to communicate the condition of the considered lights
(”F”, ”I”, ”L”, ”M”, ”EX”, ”JK”, ”RE” and ”CS”). The table in figure 2.10 sum-
marizes all the pins involved and their functions. The inspection of the afore-
mentioned software allows also to understand the way the ”checks” of the
lights are made. In the original code written in C, some bitwise operations like
AND, OR, XOR and RIGHT-SHIFT (and some other functions specific for the
I/O operations with Parallel Ports) were performed to control if each of the
status pins S4-S6 was set to LOW and if the status pin S7 was set to HIGH (due
to the fact it’s Hardware inverted). If a pin verifies its own condition, then it
means that the corresponding light is on.

2.2.3 MIDI interface

As previously described, the PC-Disklavier communication is enabled thanks
to the transmission of MIDI events through the MIDI port interface. In order
to understand what they are, it’s necessary to specify what the MIDI technical
standard is. MIDI technology was standardized in 1983 by the MIDI Manu-
facturers Association (MMA) and is still nowadays the most widely used pro-
tocol allowing the connection between computers, audio devices and musical
equipment. The main feature of the MIDI technology is to provide an opera-
tional representation of music. Music is highly used in multimedia applications
therefore a media type for music is necessary to allow analysis, processing,
storage and transmission of it. Music can be represented by audio samples and
encoded losslessly or lossy according to standards like WAV or MPEG-1 or it
can be described given its structural representations where there is informa-
tion about the internal structure of the music. In this framework, it’s possible
to distinguish two kinds of music representation: the Operational one, which
defines the exact timings for music and physical descriptions of the sounds to
be produced and the Symbolic one which uses descriptive symbolism to de-
scribe the form of the music and allow great freedom in the interpretation [11].
MIDI is an example of the first type.

34 2.2. Nodes’ interfaces

The original MIDI standard specifies a protocol for a digital information
interchange for different types of devices in multimedia applications. In addi-
tion to that it establishes the physical connector and the hardware as well as
the message format for connecting devices and controlling them in real time. It
sets up the electronic circuit for the MIDI interface (the MIDI port), the bitrate
of the information flow and the specification of the byte instructions compos-
ing the protocol. The most important part of MIDI is the Message specification
(or MIDI Protocol). In fact the so called MIDI messages are used inside any
device to generate music and the MIDI protocol allows their transmission be-
tween different musical instruments or PC through the MIDI interface. The
precise meaning of MIDI messages is finally determined by the General MIDI
(GM), a standardized specification for electronic musical instruments gener-
ating or receiving such messages. While the MIDI protocol provides mostly
the interface for the communication, General MIDI requires that all compliant
MIDI instruments meet a given minimal set of characteristics and it sets out
specific interpretations for many parameters and messages (mainly the con-
trol ones) which are left unspecified in the MIDI protocol. For example, GM
can univocally determine a musical stamp.

The final part of MIDI is the Standard MIDI File (SMF) which represents a
format specifying and determining how MIDI messages can be stored in per-
manent supports. It is used to distribute music playable on MIDI players via
the MIDI files (*.mid), containing one or more sequences of MIDI messages to-
gether with their timing information and all the instructions needed to execute
them in an instrument. For the purpose of the work, the SMF won’t be treated.

2.2.3.1 MIDI hardware

From the hardware point of view, the MIDI interface consists on an serial inter-
face of asynchronous type over which data is sent as a bit sequence, enabling
the connection of a group of MIDI devices together. This means that bits are
transmitted via MIDI port only when they are available at the device generat-
ing them. The bitrate that is set through the interface is 31 250 bit s−1 and, since
MIDI messages are made by 10-bits words, 320 µs are required for the single
word transmission. The connectors involved in the MIDI interface are of 5 pin
DIN types, as represented in figure 2.11, whose winding is specifically used
only for the MIDI standard. For what concerns the MIDI ports, the connectors
can be distinguished in: MIDI In ports receiving data as input, MIDI Out ports
generating data as output and MIDI Thru ports, dedicated to the transmission
of a copy of data received in input.

Chapter 2. The original setup 35

Figure 2.11: 5 pin DIN connectors for MIDI ports

2.2.3.2 MIDI messages

MIDI messages are the carrier used by MIDI devices to communicate with
each other. They are not representing the evolution of a waveform but they
are control information composing a one-way connection from the MIDI Out
connector of the sending device to the MIDI In connector of the receiving de-
vice. Each such message represents a common musical performance event or
gesture like picking a note and then striking it or setting typical parameters
available on electronic keyboards. As previously anticipated, MIDI messages
are composed of 10-bit words (known as bytes) whose structure is 1 start bit,
8 data bits, and 1 stop bit. The majority of MIDI messages is characterized by
only three bytes (meaning that only about a thousand messages per second
can be transmitted) but in general a MIDI message can consist of from one to
several thousand bytes of data. The receiving device knows how many bytes
to expect by analysing the value of the first byte of it. This byte is known as
the Status byte, specifying the meaning of the following ones, called Data bytes.
Status bytes always have the most significant bit equal to 1 (as opposed to the 0
of the Data bytes) and it is used to inform the receiver as to what to do with in-
coming data. All messages include in the corresponding Status Byte informa-
tion about the channel number. The channels can be described as ”paths for the
communication” in the message flow and they are used to separate ”voices” or
”instruments”. The MIDI protocol specifies 16 possible channels and it grants
the ability to multiplex 16 channels onto a single wire. This makes it possible
to control several instruments at once using a single MIDI connection. When a
MIDI instrument is capable of producing several independent sounds simulta-
neously (a multi-timbral instrument), MIDI channels are used to address these
sections independently. In addition to that, according to the status byte, MIDI
messages can be classified in System Messages, sent to all channels and received
by all the devices connected through the MIDI connection, or Channel Messages
which apply to a specific channel (included in their status byte) and received
only by devices listening to that channel. With reference to the figure 2.12, in

36 2.2. Nodes’ interfaces

Figure 2.12: Status and Data bytes’ structure.

the Status bytes bits ”x” denote the type of the message while bits ”y” indicate
the destination channel (24 = 16 possible choices) in Channel messages while
in System messages they specify the sub-type of System message represented.
Instead in Data bytes, ”x” bits denote the value of the parameter contained in
it (for a total of 27 = 127 possible choices).

Channel Messages can be further classified as being either Channel Voice
Messages, or Channel Mode Messages. Channel Voice Messages carry musical
performance data, and these messages comprise most of the traffic in a typical
MIDI stream. The messages in this category are the Note On, Note Off, Poly-
phonic Key Pressure, Channel Pressure, Pitch Bend Change, Program Change
and the Control Change messages. In the specific MIDI flow for the Il Caos delle
Sfere artwork, only three types of Channel message are used. They are:

• Note on and Note off: in MIDI systems, the activation of a note and the
release of the same note are considered as two separate events. When a
key is pressed on a MIDI keyboard instrument or keyboard controller, a
Note On message is generated and outputted on the MIDI Out port. Its
Status byte contains the value 1 in the ”x” bits and the selected Channel
number c in the ”y” bits. The Note On status byte is followed by two data
bytes, which specify note number (indicating which note was pressed)
and key velocity (how hard the key was pressed). The note number is
used in the receiving device to select which note should be played, and
the velocity is normally used to control the amplitude of the note. The
note numbers start with 0 representing the lowest C while middle C is
note number 60. A tone with note number (also known as MIDI pitch) p
has frequency

f = 440 × 2
p−69

12 Hz = 440 × sp−69 Hz (2.1)

and a note with frequency f Hz has MIDI pitch

p = 69 + 12 log2
f

440
(2.2)

Chapter 2. The original setup 37

where s = 12
√

2 ≈ 1.059 is the semitone frequency ratio. When the key
is released, the keyboard instrument or controller will send a Note Off
message (0 in the ”x” bits). The Note Off message also includes data
bytes for the note number and for the velocity with which the key was
released. The Note Off velocity information is normally ignored. Note
Off is actually not used very much. Instead, MIDI allows for a shorthand,
known as running status: a MIDI message can be sent without its Status
byte (i.g. just its data bytes are sent) as long as the previous, transmitted
message had the same Status. In the case of Note on, this shorthand is
interpreted as Note off. This allows to save on average 33% of traffic over
the communication [11];

• Control Changes: with Status byte containing the value 11 in the ”x” bits,
this message is used to set a particular controller’s value. A controller is
any switch, slider, knob that implements some function (usually) other
than sounding or stopping notes. Each command has two parts, defining
which control to change and what to change it to. Controllers are num-
bered from 0 to 121, and some of them have defined purposes (e.g. con-
trol n°1 is Modulation wheel, n°7 the volume, etc.) while values 122-127
are reserved for special mode messages which affect the way a synthe-
sizer responds to MIDI data. The controller number is specified in a first
Data byte. In addition to that there is a second Data byte whose value
can be between 0 and 127 for controllers with continuous values while
for switches it can be 0 (OFF) or 1 (ON).

Channel Mode messages instead affect the way a receiving instrument will
respond to the Channel Voice messages.

On the other side System Messages apply to all machines and carry infor-
mation that is not channel specific, such as timing signal for synchronization,
positioning information in pre-recorded MIDI sequences, and detailed setup
information for the destination device.

2.2.3.3 MIDI events

All the previous description about MIDI messages didn’t considered the pres-
ence of timing. Timing in music and therefore in the MIDI protocol is neces-
sary: it specifies when a MIDI message should be sent through a MIDI inter-
face to be then used to produce sounds.

In music, the fundamental time unit is the beat, also defined as the way a
musician counts the note to make them stay in synch with one another. The
tempo is instead defined as the speed of the sequence of beats in a musical
performance and it is measured in BPM (beats per minute). In general notes’

38 2.2. Nodes’ interfaces

durations can be specified in a beat-based manner: a quarter note is normally
one beat long, an half note is 2 beats long while a full note is 4 beats long. When
dealing with timing in MIDI, musical timing is defined in fractions of a musical
beat: the timeline is therefore split into chunks of a beat. Each tiny fraction of a
beat is called a tick (the smallest unit of time in MIDI) and the number of ticks
per beat can be changed. This piece of information is what is considered for
MIDI messages composing a SMF: each MIDI message is equipped with a time
field which tells how many ticks have passed since the last message. Instead,
when dealing with MIDI messages as the ones contained in the pre-written (or
real-time-generated) sequences which don’t compose a SMF, timing is speci-
fied in microseconds. Each message is therefore associated with an additional
field which specifies that it should be played after a given amount of microsec-
onds (named MIDI delta time) after the previous one [11]. The contribution of
delta time and MIDI message composes the MIDI event, which is the basic
building block connecting the gameplay experience to the audible sounds in
the Il Caos delle Sfere. From this argument, as anticipated in subsection 2.1.2.2,
it can be understood how the MidiShare environment is suitable for the MIDI
events handling due to the high time sensitivity it grants.

All the events characterizing the pre-written sequences contained in *.wri
files can be decomposed into four fields: the delta time, the type of message
(for the installation only Channel message are concerned), the pitch (or the
controller number for Control change messages) and the velocity (or the value
for the control in Control change messages). In fact it is possible to see how all
the sequences in *.wri files are made by rows of 4 integers representing exactly
the 4 aforementioned fields. The generation of those field was made thanks
to the Finale tool starting from the compositions developed by the composer
Carlo De Pirro for the artwork.

The way MidiShare treats the events is the following: functions contained in
the library named MidiTask and MidiDTask allow to schedule the transmission
of an event via the MIDI port spacing the events by a quantity given by the
delta time field which, as all the 3 other fields, is an argument passed to those
functions. The two are then used inside custom made functions developed for
the artwork algorithm, to make it possible to read and play both pre-written
and real-time generated-sequences.

Chapter 3

The algorithm and the C code for
the original installation

The core of the artwork is the software that enables the sound generation as
the gameplay evolves. It processes the raw information coming from the pin-
ball machine and outputs a sequence of MIDI events to be reproduced by the
Disklavier. In the aim of minimizing the presence of digital media, the devel-
opers decided to provide the software with almost no graphical user interface
[8].

Also in this case, due to the lack of documentation, it’s not possible to re-
trieve a detail analysis of how the software works and how it produces an
output. This is due to the fact it was developed in direct collaboration with the
composer with a trial-and-error approach and, by consequence, it has been left
mostly undocumented. In fact several variations to the code were carried out
and adjusted for the different exhibitions the artwork participated in. There-
fore, in order to understand its working process, an analysis of the source C
code associated with the software is needed. The problem is that, by inspecting
the PC where the installation was originally running, more than ten different
versions of the same C code can be found, some with minor changes but in
general very different with respect to another. This is what makes the reactiva-
tion of Il Caos delle Sfere complicated from the engineering point of view. This
will be discussed in chapter 4.

Despite several versions of the same code, the artistic concept behind all
of them is that the gameplay evolution and the targets and in-game events
characterizing it are what is used in order to create a musical form. To each
gameplay action (corresponding to the ”F” ”I” ”L” ”M” ”JK” ”RE” ”EX” ”CS”
power on) there corresponds a level for the artwork algorithm characterized
by a different type of melody and sounds, more and more interesting and com-
plex, to be heard by the player (the levels defined inside the algorithm have to

39

40

be not confused with the in-game story levels defined within the Creature from
the Black Lagoon pinball gameplay). This makes the player’s ability fundamen-
tal to have a complete and advanced experience of the artwork performance.

The way the MIDI events are generated in output is handled according to
two approaches. The software makes use of pre-written sequences, contained
in WRI type of files, generated from Carlo De Pirro’s melodic sequences and
associated to different levels for the game. Secondly, it generates also real-time
events called Refractions: they are automatically generated sequences whose
notes’ pitches and durations depends on the actions completed in game and
on the targets hit by the ball. The word Refractions (or Controlled refractions)
refers to a set of musical multiplications of the musician’s gestures performed
in real-time by an installation as the Il Caos delle Sfere case study [19]. The
refractions are represented by: Trillo1, Aeolian harp2, Bordone3, Canon4, Swing
(ventata), Chords5 and Harmonic accents 6.

The algorithm and the source code/software analysed in this chapter are
the ones used most likely in the 2012 and 2014’s exhibition, the last ones prior
to the proposed reactivation. The source code consists on two header files,
arpa.h and flipper.h and a main *.cpp file, arpa.cpp. The first one con-
tains the initialization of all variables present in arpa.cpp as well as all the
functions’ definitions. For example, here there are the names associated to
the different sequences to be outputted at every new level as well as their
characteristics (a flag indicating if a sequence is active, SQNZON, their length,
lenSQNZ, an indicator about the levels the sequences are played at, tipiSQNZ,
etc.).

1 // Gestione altre sequenze
2 char SQNZON;
3 const lenSQNZ=6000;
4 const numSQNZ=43;
5 int aSQNZ;
6 int tipiSQNZ[5][2]={{0,10},{10,8},{18,10},{28,10},{38,5}};
7 char *SQNZName[numSQNZ]={"campbag6.wri","campbag8.wri","catacc1.

wri","catacc5.wri"," catacc6.wri","sofcamp1.wri","soff5.wri","
tril1.wri","trilcam4.wri","vent4.wri",

8

1A trillo is a rapid alternation of few played notes
2In this context, aeolian harp refers to the sounds generated by an aeolian harp instrument,

a stringed instrument producing sounds when a current of air passes through it
3Bordone is an harmonic or monophonic effect where a note is continuously sounded

throughout most or all of a performance
4A canon is a counterpoint-based compositional technique that plays a melody with one or

more imitations of the melody played after a given duration
5A chord is an aggregate of pitches sounded simultaneously
6An harmonic accent is an emphasis or stress on a particular note or set of notes or chords

Chapter 3. The algorithm and the C code for the original installation 41

9 "camplla2.wri","flus1.wri","flus2.wri","schiso1.wri", "schiso15.
wri","schiso9.wri","tril3.wri","trilca2.wri",

10

11 "camplla1.wri","palc4.wri","rit10.wri","rit12.wri", "schiso14.wri"
,"schiso8.wri","soff3.wri","tril5.wri", "vent2.wri","vent4.wri",

12

13 "rib4.wri","rit14.wri","rit20.wri","rit27.wri", "rit28.wri","rit31
.wri","rit32.wri","rit4.wri", "rit9.wri","schi1.wri",

14

15 "rit11.wri","rit13.wri","rit29.wri","schi5.wri","sofgra2.wri"};
16 ...

The second header file, flipper.h, presents instead the initialization of vari-
ables regarding the addresses of the Parallel Port registers and the definition of
two fundamental functions, leggiPorta and scriviPorta. In addition to
that, proceprocessor statements are used in order to define the integers corre-
sponding to each switch inside the pinball to track the evolution of the game-
play.

1 /* Definizione degli elementi interattivi */
2 #define BASE 0x378
3 void pascal leggiPorta(unsigned long,short,long,long,long);
4 void pascal scriviPorta(unsigned long,short,long,long,long);
5 int portaAttiva;
6 const cport=BASE+2;
7 const sport=BASE+1;
8 const dport=BASE;
9 int lastV;

10

11 #define blex 15
12 #define p1 25
13 #define p2 26
14 #define p3 27
15 #define p4 28
16 ...

All the functions’ implementations and the main part of the source code is con-
tained on arpa.cpp. In order to include both header files, include guards are
adopted in the first part of the code. As it can be seen in row 3 of the following
piece of code, two other header files are used, mshare.h and refract.h. The
first one refers to the MidiShare environment described in subsection 2.1.2.2: it
includes all the library functions to be used in the custom-made functions for
the installation. The second one is instead included to incorporate constants
that are need to compile and generate the final software.

1 #include <stdlib.h>
2 #ifndef __MidiShare__
3 #include "mshare.h"

42

4 #endif
5

6 #include "flipper.h"
7 #include "refract.h"
8 #include "arpa.h"
9

10 // Flag principale per attivare il suono
11

12 // Flag per le rifrazioni
13 int fHarm,fBeat,fBordo;
14 // Gestione del tempo
15 unsigned long tmpTime,lastTime,elapsTime;
16 unsigned long pedTime;
17 bool normTime;
18 unsigned long pauseTime=0,playTime=10000;
19 int voci;
20 unsigned long rit[7];
21 unsigned long faCanone=0;
22 unsigned long smettiCanone=0;
23 int canoneOn=0,vai=1;
24

25 struct Seq
26 { int nRow;
27 int nCol;
28 int* data;
29 };
30

31 ...

The initial part of arpa.cpp suggests the structure behind the way the source
code was designed. The developing team decided to mainly instantiate global
variables rather than using local variables for each function or object created.
Most of the variables are used by several types of objects so they need to be
accessible from almost any place in the code. They could go with that strategy
also because there was no memory constraint imposed by the PC used for the
installation. Even if this results in a less efficient code, it simplifies most of
the actions to be performed by the code functions. The second main feature
of the code is a massive usage of object-oriented programming. Each type of
sequence was implemented with a dedicated object, both structure (e.g Seq in
the proposed snippet) and classes. The main features of each type of sequence
is saved in the data members of the corresponding class while the actions (e.g.
set up a sequence, load a sequence, send out MIDI events for that sequence)
are implemented in form of function members. For example, in case of Bordone
type of sequence, a class named bordone has been created. As all the other
classes implemented, it contains a constructor which instantiates the Bordone’s
features as its type, its length and its melodic direction (here represented by the

Chapter 3. The algorithm and the C code for the original installation 43

interv array), a set function to update its features and a perform function
to send its MIDI events via MIDI port.

1

2 // -------
3 // Bordone
4 // -------
5 const NUM_BORDONI=6;
6 const prSB=9;
7 const plSB=4;
8 int pSB[prSB][plSB]={{12,5,11,X},{5,1,10,X},{7,5,8,X},
9 {3,3,3,X},{9,0,10,X},{0,0,8,X},

10 {6,5,5,X},{7,0,8,X},{7,0,6,X}};
11

12 class bordone
13 { int row;
14 int interv[NUM_BORDONI];
15 waitSeq* rSeq;
16 int memo[128];
17 set(int);
18 public:
19 bordone(int);
20 perform(short,MidiEvPtr);
21 };

3.1 The algorithm

The routine the algorithm follows can be summarized in the procedure de-
picted in figure 3.1. All the actions are executed within a loop between two
functions, leggiPorta and scriviPorta. After a first initialization of all
the objects and variables involved in the code, they are in charge of reading
data from the acquisition board’s output and for every new target hit by the
ball they trigger a sequence playback. This depends on the current level of the
algorithm and on the number of balls in game. Sequences can be either pre-
written (and this is the case for the ones played as soon as a game starts) or
automatically generated, starting from some pseudorandom parameters de-
termined by the game and the algorithm.

As it can be seen in the following snippet, the function scriviPorta ex-
ecutes three operations: it reads from the Parallel Port, it writes over it and
it uses the function MidiDTask to schedule a call to leggiPorta. It imple-
ments the first two steps of the procedure presented in subsection 2.2.2.3 to
perform the acquisition of information about which in-game lights are turned
on. The function inportb reads from sport (a variable containing the Status
register address) an integer and it performs a bit-by-bit AND logical operation

44 3.1. The algorithm

Figure 3.1: The algorithm routine

Chapter 3. The algorithm and the C code for the original installation 45

with 0x f 0 to only retain the four bits corresponding to the pins denoted as
Y in the multiplexer representation of figure 2.9. The corresponding integer
representing if F-I-L-M are on is stored on the variable luci. On the con-
trary, outportb writes over cport (a variable containing the Control register
address) the hexadecimal number 0x21 to to perform the switch in the multi-
plexer used in the acquisition board for reading data. Finally MidiDTask is
called with arguments the function leggiPorta, dt+5 and ref. As antic-
ipated in subsections 2.1.2.2 and 2.2.3.2, MidiDTask is a MidiShare’s library
function which can schedule function calls in a given instant of time over a
given MidiShare instance. In this case it is used to call leggiPorta at the
absolute time instant dt+5, where dt is a a variable initialized at the begin-
ning of the routine with the exact time instant (in milliseconds) at which the
software starts running. Therefore, 5 ms have to pass between the execution
of the two functions. The final input parameter is ref, which is the reference
number of the MidiShare instance controlling the scheduling.

1 /* ----------------------------- */
2 /* Lettura dalla porta parallela */
3 /* ----------------------------- */
4 void pascal scriviPorta(unsigned long dt,short ref,long a1,long a2,

long a3)
5 { unsigned char azz;
6 azz = (inportb(sport) & 0xf0);
7 luci=(int) azz;
8 outportb(cport, 0x21);
9 MidiDTask(leggiPorta,dt+5,ref,0,0,0);

10 }
11 void pascal leggiPorta(unsigned long dt,short ref,long a1,long a2,

long a3)
12 { unsigned char azz;
13 int val;
14

15 luci=luci>>4;
16 azz = (inportb(sport) & 0xf0);
17 luci=luci|((int) azz);
18 luciˆ=0x88;
19 val=inportb(dport);
20

21 ...
22 outportb(cport, 0x20);
23 ...
24

25 if(portaAttiva)
26 MidiDTask(scriviPorta,dt+300,ref,0,0,0);
27 }
28 }
29 }

46 3.1. The algorithm

The function leggiPorta executes the remaining 3 steps in the acquisition
process. It firstly performs a right-shift by 4-bit-positions of luci to be then
merged with the second nibble (information about lights ”EX”, ”JK”, ”RE” and
”CS”) read by inportb as before. The merging is done via a logical OR bit-
by-bit operation. In addition to that, a logical XOR with 0x88 is required to
invert the bit corresponding to pin 11 S7 which is hardware-inverted. Another
reading operation is then performed via inportb over dport (a variable con-
taining the Data register address) to acquire the value corresponding to the last
target hit by the ball which is stored in val. Then the multiplexing is switched
via another outportb (with 0x20) operation to prepare for the acquisition of
the following first nibble in the next loop. If the Parallel Port input is still ac-
tive, MidiDTask is called with input the function scriviPorta to restart the
loop. For what concerns the time interval, in this case the delay is of 300 ms to
let the pinball internal processor write the new light bit-values over the input
of the multiplexer. Having such a large time horizon also gives the possibility
for MidiShare to schedule several tasks in the meanwhile, especially the MIDI
events transmission.

1 ...
2 if(val==bll1 && lastVal==bll1)
3 { ++countSW;
4 if(countSW>20)
5 { cambioLivello(0,ref,dt);
6 numBall=0;
7 countSW=0;
8 }
9 }

10

11 if(val!=lastVal)
12 { switch(val)
13 { case sw1: case sw2: case sw3: case sw4: case sw5: case sw6:
14 case sw7: case sw8: case sn1: case sn2: case sn3: case sn4:
15 case p1: case p2: case p3: case p4: case blex:
16 SWITCH=1;
17 countDown=0;
18 STATUS2=0;
19 if(numBall==0)
20 numBall=1;
21 if(gameLev==0)
22 cambioLivello(1,ref,dt);
23 break;
24 case trp1: case trp2: case rpsi: case rpso: case rpsu:
25 case rpdi: case rpdo: case rpci: case rpco:
26 RAMP=1;
27 countDown=0;
28 STATUS2=0;

Chapter 3. The algorithm and the C code for the original installation 47

29 if(numBall==0)
30 numBall=1;
31 if(gameLev==0)
32 cambioLivello(1,ref,dt);
33 break;
34 case bll:
35 if(STATUS1==0)
36 STATUS1=1;
37 break;
38 case bll1:
39 if(STATUS1==1)
40 { STATUS1=0;
41 if(numBall==2)
42 cambioLivello(1,ref,dt);
43 if(numBall>0)
44 --numBall;
45 if(numBall==0)
46 countDown=dt;
47 }
48 break;
49 case sht:
50 countDown=0;
51 if(STATUS2==0)
52 { STATUS2=1;
53 if(numBall<2)
54 ++numBall;
55 if(gameLev==0)
56 cambioLivello(1,ref,dt);
57 }
58 break;
59 case tilt:
60 --numTilt;
61 if(numTilt==0)
62 { numTilt=10;
63 faiTilt(ref,dt);
64 }
65 break;
66 default:
67 SWITCH=0;
68 RAMP=0;
69 break;
70 }
71 lastVal=val;
72 }
73 ...

Prior to scheduling scriviPorta again, leggiPorta performs a control
about which is the last target hit by the ball in order to then progress with the
algorithm level-check. The control is done if and only if the value read (val)

48 3.1. The algorithm

is different from the one read in the previous iteration of the loop (lastVal).
If the ball has hit a ramp or a different type of target (which the developers
defined as switch with an abuse of notation) then some flags are activated to
indicate that such an event happened and the algorithm level is changed to
1 if the game just started. In case the ball has exited the game table (value
read corresponding to bll) a flag indicating that is activated as in the case of a
switch or a ramp. On the contrary, the situation where the value read is bll1
is more complex. It corresponds to the ball being on the so called left trough,
which is tunnel where a ball passes through or is blocked before being sent to
the shooting ramp. What discriminates different events in this case is the vari-
able numBall, representing the number of balls currently active in game. If
numBall is equal to 2 then this corresponds to a ball going out of play during
a multiball event and therefore one ball still in play. The routine to follow is
then to set the algorithm level down to 1 and then to decrease numBall by
one unit. If instead numBall is equal to 1 then this corresponds to a ball ex-
iting the pinball table and nothing is triggered. If bll1 is read consecutively
for at least 21 times, then the algorithm interprets such an event as the end of
the game and reset its level down to 0. The case when val is equal to sht
happens whenever the ball is on the shooting ramp. Apart from some flag
activations, reading sht translates into an increase of numBall by 1 unit and
setting the algorithm level to 1 if the game is about to start. The remaining case
that could happen is when val coincides to tilt, i.e. the pinball has been hit
by the player in a violent manner. The only action triggered here is at the point
when the tilt event has happened for at least 10 times. Only at that point the
algorithm invokes the function faiTilt which reproduces a MIDI sequence
contained in the file CAOS1.wri.

1 ...
2 if(gameLev>0)
3 { controllaLuci(ref,dt);
4 if(countDown>0 && (dt-countDown)>10000)
5 { cambioLivello(0,ref,dt);
6 numBall=0;
7 }
8 }
9 ...

10 }
11

12 void controllaLuci(short ref,unsigned long dt)
13 { char n;
14 int m=1;
15

16 // Controlla se le luci sono stabili
17 n=luciˆ0xff;

Chapter 3. The algorithm and the C code for the original installation 49

18 if(n==lastn)
19 { ++countn;
20 if(countn>7)
21 { countn=0;
22 if(n & 16) ++m;
23 if(n & 32) ++m;
24 if(n & 64) ++m;
25 if(n & 128) ++m;
26 if(m==1)
27 { if(n & 1) m=6;
28 if(n & 4) m=7;
29 if(n & 2) m=8;
30 }
31 if(gameLev==6 && m==1)
32 m=6;
33 if(m!=gameLev)
34 cambioLivello(m,ref,dt);
35 }
36 }
37 else
38 { countn=0;
39 lastn=n;
40 }
41 }

The final main action scriviPorta implements is the light check starting
from the value written in luci. If the level is not 0 and the game has not
ended, the function controllaLuci is called. The latter takes luci and
checks if the value of the variable has been equal for 8 times consecutively
using a counter countn. Only when countn reaches 8, i.e. the lights’ sig-
nal has been stable for a sufficient amount of time, the algorithm level will
be checked. This analysis is needed because during the gameplay evolution
there are targets such that hitting them causes all the lights to blink. Such a
blink may cause an erroneous and misleading reading of the lights so to dif-
ferentiate this by a proper light read, counting the same light value several
consecutive time helps to reach that goal. In particular, since each read action
is performed roughly every 305 ms, it means that luci has to remain the same
for nearly 2 s. This is a much larger duration that the blink duration which is
about less than a second so the events can be discriminated. In order to deter-
mine the algorithm level, an auxiliary variable m is adopted. By doing logical
AND bit-by-bit operations betweenluci and multiples of 2 and checking if
the result is non-zero, m is incremented by one unit every time or set to 6, 7 or
8 whenever the first 4 checks fails. The latter situation means that F, I, L and M
are off so the algorithm level is neither 1, 2, 3 ,4 or 5 but 6 or 7 or 8 which corre-
sponds to EX, RE or JK/CS being on respectively. The final action is to change

50 3.1. The algorithm

the algorithm level based on the one estimated (m) in controllaLuci: this is
done by calling the function cambioLivello given (m) as input.

3.1.1 Evolution over the levels

The function cambioLivello is what defines the output of the algorithm, i.e.
the MIDI events to be sent to the Disklavier, at every iteration of the loop. As it
can be seen in the snippet of code, an action is performed only if the level of the
algorithm is changing with respect to the current one determined previously
stored in the variable gameLev.

1 void cambioLivello(int lev,short ref,unsigned long dt)
2 {
3 if(lev!=gameLev)
4 { ARPAON=0;
5 ARPAON2=0;
6 venON=0;
7 venON2=0;
8 SQNZON=0;
9 TrilloON=0;

10 gameLev=lev;
11 MidiFlushDTasks(ref);
12 ...

If the level has to change, the routine to follow consists firstly on resetting any
flag associated to the status of what was generated or outputted in the previ-
ous level. For example ARPAON= 0 indicates that any Aeolian Harp sequence
played at level 3 has to be stopped in order to let events at the new level to hap-
pen. In addition to that the algorithm’s level is updated with the current one.
The main action of the function is however to invoke the MidiFlushDTasks,
defined in the MidiShare environment. According to the library’s documen-
tation, it flushes all the waiting tasks, both function calling and MIDI repro-
duction, that were scheduled in the MidiShare instance (denoted by the ad-
dress ref) with previous calls of MidiDTask. All the old level’s actions to be
performed simultaneously with the subsequent progression of the routine are
eliminated in order to schedule activities related to the new level.

The main feature of cambioLivello is the activation of flags, variable
setting and function calling and scheduling associated to each new level via a
swith-case statement.

Level 0
1 case 0:
2 numBall=0;
3 aSQNZ=0;

Chapter 3. The algorithm and the C code for the original installation 51

4 ped->set(ref,dt,111);
5 loadSQNZ();
6 sqnzPosSQNZ=0;
7 timeLev0=dt+30000;
8 break;

Case 0 is the algorithm level set by the routine before the game starts which is
however immediately changed as soon as the ball hit a target (a ramp or all the
other types) as can be seen in the scriviPorta’s snippet of code. The action
considered here are the setting of the variable numBall to 0 to establish that
no ball has been still thrown into the game yet. In addition to that, the same is
executed for the variable aSQNZ. It refers to an integer which indicates which
set of sequences out of the ones stored in the SQNZName array has to be consid-
ered for the MIDI events at each level, in this case the level 0. This is the rea-
son why aSQNZ is given the value 0. The function loadSQNZ is then in charge
of randomly picking one sequence out of campbag6.wri, campbag8.wri,
catacc1.wri, catacc5.wri, catacc6.wri, sofcamp1.wri, soff5.wri,
tril1.wri, trilcam4.wri and vent4.wri files. In particular it loads the
MIDI events in a set of arrays, one for each MIDI message field, that are ini-
tialized at the beginning of the routine and are re-written for each sequence
to upload. Apart from sqnzPosSQNZ which is an integer to save the reading
position over the sequence and timeLev0 that is a variable to store a limit
of time over which the game can remain in level 0, the main action executed
at level 0 is a pedal set. The function calls the set function member of the
pedal object. In musical terminology, a pedal is a long-lasting note (or group
of notes), almost always in the low register. The term comes from the pedal
board, a device contained within pianos to reach that effect. The pedal object
is instantiated exactly to guide and set the main parameters for the Disklavier
pedal board. The function set takes as argument 111, which is the integer that
will be the second Data Byte of a MIDI Control Change message, i.e. it indi-
cates how much a MIDI controller is to be pressed down. As the name of the
function suggests, the MIDI controller of interest is the Disklavier pedal board.
Therefore, the main role of this calling is to send to the MIDI port a MIDI Con-
trol Change message to press down (or to move up in other cases) the pedal.
In particular, the Control Change message is made by two Data Bytes: the first
one with value 64 to indicate the pedal MIDI controller and the second one
with value 111 to specify the intensity of the pressing.

By analysing the loop between scriviPorta and leggiPorta, it can be
noticed that the sequence uploaded at level 0 is almost never sent out, this is
because it would require the algorithm level to stay at 0 for a sufficiently long
amount of time. However, such an event cannot happens because even if the
ball remains on the shooting ramp and is not thrown, the level is always set to

52 3.1. The algorithm

1.

Level 1
1 case 1:
2 numBall=1;
3 aSQNZ=1;
4 SQNZON=1;
5 loadSQNZ();
6 sqnzPosSQNZ=0;
7 MidiDTask(playSQNZ,dt+100,ref,0,0,0);
8 break;

After the ball has been shot for the first time and the game has just started,
whenever the ball hits one switch, the algorithm level is switched to level 1.
Apart from setting the variable numBall to 1 to indicate the game is started,
the main result of this level update is the playback of a random sequence out
of the level 1 set of them. In order to do so, firstly aSQNZ is updated with
1 and then the sequence is picked and its event are loaded with loadSQNZ.
Secondly, after having reset the reading sequence index (sqnzPosSQNZ= 0),
the function playSQNZ is scheduled via MidiDTask after 100 ms since the
cambioLivello call (occurred at the absolute time instant dt). playSQNZ
is a function developed with the purpose of sending MIDI events to the MIDI
port to be then played at the Disklavier. In addition to that, if the level is
not changing and a sequence has been read completely, playSQNZ calls again
loadSQNZ to then play another level 1 sequence. The set of potential se-
quences consists of camplla2.wri, flus1.wri, flus2.wri, schiso1.wri,
schiso15.wri, schiso9.wri, tril3.wri and trilca2.wri files.

Level 2
1 case 2:
2 numBall=1;
3 aACC2=0;
4 TRI2ON=1;
5 numTotTri=15;
6 tri->set(0);
7 break;

In case the level is 2 (which corresponds to have just one of the letters F I
L M on) the routine again puts 1 in numBall to indicate that still the game-
play has not entered multiball mode. On top of that, the main action is the
activation of the flag TRI2ON, indicating that trillos sequences randomly gen-
erated in real-time will be outputted. The presence of 2 in the variable name
suggests that these trillo’s MIDI events will be specific of level 2, to distin-
guish them from trillo’s MIDI events characterizing other levels. The com-

Chapter 3. The algorithm and the C code for the original installation 53

mand numTotTri= 15 sets the maximum number of trillo’s sequences to be
played to 15 while tri− >set(0) initializes the characteristics of the trillo
events (established on the trillo object), following the configuration number
0. In particular, in this level a trillo sequence is generated per each switch or
ramp hit respectively. This can be seen in the following snippet of code which
is taken from leggiPorta.

1 ...
2 if(gameLev==2)
3 { if(SWITCH || RAMP)
4 { SWITCH=0;
5 RAMP=0;
6 if(TRI2ON)
7 { if(--numTotTri>0)
8 { numTri2=10+random(20);
9 MidiDTask(playTrillo,dt,ref,0,0,0);

10 }
11 else
12 { TRI2ON=0;
13 }
14 }
15 else
16 { if(ACC2ON==0)
17 ACC2ON=1;
18 initACC2();
19 MidiDTask(playACC2,dt,ref,0,0,0);
20 }

After each ramp or ”switch” is hit, numTotTri is decreased by one. numTri2
represents instead how many repetitions characterize each sequence and such
number can vary from 10 to 30. Finally playTrillo is scheduled and im-
mediately executed (no delay is set since its time reference is dt, the same
one as the leggiPorta call). It sends trillo’s MIDI events in output together
with harmonic accents events, generated with the function member perform
of the object accent. In addition to trillo’s sequences, playTrillo gener-
ates swings MIDI events (invoking the playVentate function) if a ramp is
hit by the ball. Once numTotTri reaches 0, for each switch or ramp a part of
a sequence of chords is outputted. This is obtain by setting ACC2ON to 0. It is
a variable suggesting that parts of a sequence of chords specific for level 2 is
outputted. Such sequence is loaded via initACC2() from the file ACC2.wri
and then outputted thanks to playACC2.

Level 3
1 case 3:
2 numBall=1;
3 aSQNZ=2;

54 3.1. The algorithm

4 loadSQNZ();
5 ARPAON=1;
6 venON=1;
7 arpaFine=dt+15000+50*random(100);
8 MidiDTask(playArpa,dt+100,ref,0,0,0);
9 break;

For level 3 (corresponding to two letters on) the main action is to output an Ae-
olian harp sequence of MIDI events randomly generated in real time. Such a
task is activated by setting the flag ARPAON to 1 and implemented by the func-
tion playArpa, which is delayed by 100 ms. Harp MIDI events are equipped
with six-voice canon events (generated with the playCanone routine inside
playArpa), swings, bordone (generated with the perform function member
of a bordone object named bordoV) and harmonic accents. The overall total
duration of the Harp sequence is set randomly whenever the level changes
and its duration varies from 15 to 20 s as the arpaFine variable suggests.
After its end, a new pre-written sequence associated with level 3 is uploaded
and played if the level stays the same. The sequence is loaded with loadSQNZ
and chosen via aSQNZ= 2 among camplla1.wri, palc4.wri, rit10.wri,
rit12.wri, schiso14.wri, schiso8.wri, soff3.wri, tril5.wri,
vent2.wri and vent4.wri files.

Level 4

1 case 4:
2 numBall=1;
3 aSQNZ=3;
4 loadSQNZ();
5 ARPAON=1;
6 ARPAON2=1;
7 venON=1;
8 arpaFine=dt+25000+50*random(100);
9 MidiDTask(playArpa,dt+100,ref,0,0,0);

10 break;

If the level is equal to 4 (corresponding to three letters on) the same routine as
level 3 is performed with some differences. First of all, the overall harp du-
ration varies from 25 to 30 s as the arpaFine variable indicates. On contrary
with respect to the previous level, harp MIDI events are associated to parts of a
sequence of chords specific for level 4, played for each switch or ramp hit. Such
sequence is loaded via initACC1() from the file ACC1.wri and then out-
putted thanks to playACC1. The sequences considered in level 4 are loaded
with loadSQNZ and chosen via aSQNZ= 3 among rib4.wri, rit14.wri,
rit20.wri, rit27.wri, rit28.wri, rit31.wri, rit32.wri, rit4.wri,
rit9.wri and schi1.wri files.

Chapter 3. The algorithm and the C code for the original installation 55

Level 5
1 case 5:
2 numBall=1;
3 aSQNZ=4;
4 loadSQNZ();
5 MidiDTask(playSQNZ,dt+100,ref,0,0,0);
6 break;

Whenever all 4 letters of the FILM set are o, the algorithm enters level 5.
The only action the routine executes is to upload one or more sequences spe-
cific for this level. As before, loadSQNZ is called for this purpose after hav-
ing set aSQNZ= 4. The playback is performed by the function playSQNZ
which chooses among rit11.wri,rit13.wri,rit29.wri,schi5.wri and
sofgra2.wri files.

Level 6
1 case 6:
2 numBall=2;
3 TrilloON=1;
4 tri->set(0);
5 MidiDTask(playTrillo,dt+100,ref,0,0,0);
6 break;

When the EX (extra ball) event occurs then the algorithm enters level 6. As it
can be seen from the code snippet, this translates into setting numBall= 2. At
this level the routine generates a continuous sequence of trills, differently from
level 2 in which trills correspond to a switch or a ramp being hit by the ball. An
additional feature of level 6 trillos is that their centroid is moved around notes
Sol#6 and Sol#7. In order to distinguish level 6 trillo’s activation from the one
at level 2, another flag, named TrilloON, is used and set to 1. The trillo MIDI
events generated are then outputted by scheduling playTrillo after 100 ms.
If either one of the two ball exits the game table, the level is immediately reset
to 1.

Level 7 and Level 8
1 case 7: case 8:
2 numBall=2;
3 TrilloON=1;
4 tri->set(1);
5 MidiDTask(playTrillo,dt+100,ref,0,0,0);
6 break;

Even if level 7 is entered when the light RE is on and level 8 is entered when
either one of CS or JK is activated, the algorithm follows the same routine

56 3.2. Transmission of MIDI messages

for both cases. It consists of trill sequences that are continuously sent in out-
put, with variations in a upward shift of the centroid with semitone or tone
intervals for each target hit. In addition to that, for these levels there is also
the possibility to have a double transposition for every trill together with the
bordone (in the configurations upper-lower-upper + lower given that some
pseudo-random conditions are verified) or no drone at all. Similarly to level
6, numBall is given the value 2 because when RE, CS or JK are activated the
game must be in multiball mode and the flag TrilloON is set to true. The
main difference with respect to the previous level is that the member function
set of the object trillo is called with parameter 1 instead of 0. This setting
allows the playTrillo function to possibly add bordone (generated with the
perform function member of either the bordone object of type bordoV and
bordoL)

3.2 Transmission of MIDI messages

1 void VidiSend(short ref,MidiEvPtr e)
2 { float v;
3

4 if(EvType(e)==typeKeyOn)
5 { v=Vel(e)/1.6;
6 Vel(e)=(int) v;
7 if((numBall>0 && STATUS2==0) || (gameLev==0 && SQNZON))
8 MidiSend(ref,MidiCopyEv(e));
9 }

10 else
11 {
12 if((numBall>0 && STATUS2==0) || (gameLev==0 && SQNZON))
13 MidiSend(ref,MidiCopyEv(e));
14 }
15 }

Every developed function to send MIDI messages to the MIDI port starting
from MIDI events contained in the pre-written sequences or the ones gener-
ated in real time rely on VidiSend. Apart from the reference to the MidiShare
instance, it takes as input a variable of type MidiEvPtr, a pointer to a MidiShare
event. A MidiShare event is a container defined in the MidiShare environment
to wrap a MIDI event object. In particular, it is composed by several data mem-
bers corresponding to the characteristic of a generic MIDI event, for example
the type of message yield, the date, the channel, the pitch, etc. The main goal
of VidiSend is to check whether the input MIDI event passed by pointer is
of type Note ON. If this condition is verified, it scales the velocity of the event
by a factor 1.6. The motivation behind this action is to reduce how fast a key

Chapter 3. The algorithm and the C code for the original installation 57

is pressed on the Disklavier in order to not overload the internal mechanics
of the instrument. In any case, VidiSend calls a MidiShare library function
named MidiSend, which sends an event to the MIDI port via the MidiShare
instance address.

Chapter 4

Preservation of the human-machine
interaction: Technological migration

Starting from the multilevel preservation approach that was presented in part
I, a technological migration for the Il Caos delle Sfere artwork has been com-
pleted recently by Alessandro Fiordelmondo, Mattia Pizzato and the author of
this thesis at the CSC laboratories. Technology migration is part of the ”adapt-
ed/updated technology approach” of conservation [26], i.e. it refers to the
reactivation of an artwork with new modern technologies. The objective of the
migration was mainly to preserve the identity of the artwork, especially on the
human-machine interaction, rather than a simpler preservation and reproduc-
tion of the sound performance for the artwork. This was also motivated by the
fact that, as described in the previous chapters, it was not possible to identify
the exact source code that was used in the different exhibitions. In addition
to that, the technological migration was needed because of the obsolescence
starting to affect the old original computer used for the installation. Apart late
exhibitions held in 2012 and 2014, Il Caos delle Sfere has never been consistently
presented to the public since the 2004. The original PC has also never been
updated or even used over the years at the CSC laboratories due to fast advent
of better technology. This made the PC obsolete and very unreliable to be pre-
sented in a public exhibitions. As a consequence a technological migration of
it had to be taken into consideration.

4.1 Il Caos delle Sfere DPO records

The preservation and reactivation processes took place between March 2022
and September 2022. The first step was to analyse every document or ele-
ment that could help into define a possible strategy for the reactivation, i.e. to

58

Chapter 4. Preservation of the human-machine interaction: Technological migration 59

Figure 4.1: Il Caos delle Sfere during the Rassegna Finestre sul Novecento at the
Civic museum in Treviso.

assemble the DPOs of the first performances by collecting bits, data and ex-
perience documents. For what concern the first type of item (bit), the original
performative system was still available. Starting from the Biennal of the Young
Artists of Europe and Mediterraneo in 1999, the exhibition toured in other artis-
tic manifestations until year 2004, including at the Rassegna Macchine musicali
(1999) in Zagarolo, at the Rassegna Finestre sul Novecento at the Civic museum
in Treviso (figure 4.1) (1999), in Rome, Milan, Venice, Monselice and Bolzano.
The final exhibitions prior to the reactivation were Visioni del Suono. Musica
elettronica all’Università di Padova in Padua (2012) and Tilt — Disklavier: calco-
lare il pianoforte in Turin (2014). Almost all components, both hardware and
software, remained the same in all the exhibitions the artwork went through,
with modifications only on the source code, as discussed in chapter 3, and the
pre-written sequences stored in *.wri files. The original technological tools in-
volved as the acquisition board, the computer and the pinball have been stored
in the CSC laboratories over the years while the Disklaviers, at least the ones
considered in 2012 and 2014 exhibitions, have been used in the Conservatorio
Pollini in Padua for didactic usage. In addition to that, the Creature from the
Black Lagoon pinball has undergone a process of physical restoration. Conser-
vative copies of all the software, the music sequences to be played at different
levels and an overall copy of the hard disk were all generated. In this case, the
DPO’s set of bits is almost complete. On the contrary, the collection of both
the data and experience documents was more difficult to execute. Both the al-
gorithm and the source code were developed in direct collaboration with the

60 4.1. Il Caos delle Sfere DPO records

composer Carlo De Pirro with a trial-and-error approach for every exhibitions,
however all the versions of them have been left mostly undocumented. No
digitalization of the electric scheme of the acquisition board was found even if
it was carried out over the years [8]. The same goes with the notes of the com-
poser about the installation and the melodic sequences it composed for it. All
these documents are considered DPO’s data items but the set of them is totally
incomplete. For what concerns the experience documentation, several pho-
tos of the exhibitions that report both the original appearance, the actions that
occurred during the performance, the tools placement and the use of technolo-
gies have been collected by the Carlo De Pirro association and they are available
online1. No video or audio recording were found apart from the very last ex-
hibition of 2014. On the other side, in the set of DPO’s experience items the
software testing the pinball-PC communication has to be inserted as well as
several scientific publications describing both the artwork and the multilevel
preservation approach as [8] and [19].

The process of reactivation was conducted by the authors without the artist,
that unfortunately died in 2008. Therefore every choice about what direc-
tion the reactivation had to take was decided by the research group. In the
first step of the reactivation, the performative system’s rehabilitation has been
questioned, fielding the issues of the technological migration and recovery of
analogue tools. In particular, the recovery of original technologies was pos-
sible, as described previously. The main part of the entire performative sys-
tem, the algorithm and the source code for it, were the part that underwent
a migration approach. In particular, they have been rewritten, modified and
migrated from the original PC running Windows 95 and MidiShare to an Ar-
duino Mega board. This means that, given the high level conceptual descrip-
tion of the three nodes presented in chapter 2, the Communication node is then
characterized by a complete change. The decision to perform this migration
was because of the aforementioned unreliability of the original PC while the
Arduino board was selected among a much larger set of potential boards for
reasons that will be described in section 4.2.1. After several tests, it resulted
to be the best one in terms of meeting the technological requirements for the
installation. The remaining hardware characterizing the original performative
system was not altered: the pinball, the acquisition board and the Disklavier
piano were not considered in the migration. This implies that the Interaction
node and the Playback node persist in the proposed reactivation. The motiva-
tion for this is the complexity that a potential improvement in technology for
those components would require. However, the next step in the reactivation

1Associazione Carlo De Pirro, Il Caos delle Sfere, http://csc.dei.unipd.it/depirro/
opere/composizioni/caos-delle-sfere (accessed 1 November 2022)

http://csc.dei.unipd.it/depirro/opere/composizioni/caos-delle-sfere
http://csc.dei.unipd.it/depirro/opere/composizioni/caos-delle-sfere

Chapter 4. Preservation of the human-machine interaction: Technological migration 61

Figure 4.2: Il Caos delle Sfere installation and Mattia Pizzato during the Science4All
scientific dissemination.

of the Il Caos delle Sfere necessarily needs to consider a migration especially for
the acquisition board, as will be analysed in later sections. The algorithm and
the software have been reactivated through the development of an Arduino
sketch written in Arduino programming language. The Arduino Mega and
the updated version of the algorithm and the source code, together with the
remaining old hardware and software items represent the bits of a new DPO
record. With them, there is also the collection of data (relationship between
hardware and software and documentation of the new algorithm, the source
code and the switches mapping) and experience (audio recordings of perfor-
mance in the digital domain, new photos and articles) documents. In the case
of bit-type items, it was possible to apply the multiple belongingness property
(described in section 1.3) to the pinball-acquisition board system because they
were not involved in any migration.

The reactivation of Il Caos delle Sfere has been exhibited during Science4All,
a scientific dissemination festival of the University of Padua held on the 30th
of September (figure 4.2). The new DPO record for the Science4All’ exhibi-
tion together with the DPO record involving the first exhibition, the one in
Zagarolo (1999), the one in Padua (2012) and the one in Turin (2014) are de-
picted in figure 4.3. The chronological representation helps to show how the
main part of the hardware (pinball and the acquisition board) have remained
unchanged from 1999 to the present proposed reactivation. For those DPOs
bit-items the multiple belongingness property holds. On the contrary, changes

62 4.1. Il Caos delle Sfere DPO records

have been made for the PC which has been replaced in the final reactivation
with an Arduino Mega board, a Parallel Port and a MIDI port. For what con-
cerns the WRI files containing the pre-written MIDI sequences, different ver-
sions of them were generated with Finale. However, starting from the Zagarolo
exhibitions, they were not changed: this is underlined with v1 in the proposed
scheme to distinguish them from their original versions made for the first in-
stallation (and some subsequent ones), named v0. This also the reason why in
the scheme, only the DPO record for Zagarolo is depicted. Almost certainly
several other sequences were adopted in previous exhibitions but the ones in
use in 2012 and 2014 were exactly developed for that festival. For the Sci-
ence4all dissemination, they have been stored instead in three *.txt files saved
in a MicroSD card connected to the Arduino board. Another item which has
changed over the DPOs is the Disklavier: according to the availability, a dif-
ferent type of Disklavier was adopted for the artwork. No indication of the
specific type was found therefore in the scheme only the word Disklavier is
present. Finally, the items associated to the algorithm and the source code are
what has been changed for the largest part over the exhibitions. While it’s
possible to determine that more than 10 versions of the same source code were
developed, it’s not possible to associate each version to a specific exhibition.
That’s why in the scheme in figure 4.3, items for algorithm and source code
are named with a generic suffix v0, v1 and v2. Only for the last two artwork
exhibitions, it’s possible to determine that the same version (v2) was taken in
consideration. In the reactivation, an Arduino IDE sketch running the modi-
fied and updated algorithm is considered. Due to the lack of documentation,
DPOs data item set has been instead defined from scratch only for the Sci-
ence4all DPO record. It includes both hardware and software (both algorithm
and sketch) documentation, the setup’s description, i.e. how to interconnect
all the components for an exhibition and an updated version of the mapping
between switches, lights and the corresponding byte value that can be read
via the Parallel Port. DPO’s experience-items instead contain several photos
of the exhibitions until 2012 taken from the archive of the Carlo De Pirro associa-
tion. For the 2014 festival, instead, videos and journal articles have been found
over the internet. Finally, for Science4All’s dissemination, videos, photos and a
scientific article about the reactivation (still to be completed) are considered.

4.1.1 DPO records organization

All the DPO for all the items are contained in a GitLab repository (figure 4.4), in
which DPOs for the 1999, 2012, 2014 and 2022 exhibitions can be found inside
the ”DPO” folder. ”BIT”, ”DATA” and ”EXPERIENCE” folders are character-

Chapter 4. Preservation of the human-machine interaction: Technological migration 63

Figure 4.3: Approximate chronological representation of Il Caos delle Sfere through
the multilevel preservation model.

ized by all items of corresponding type for both records. The creation of DPOs
is a process still being in development. No prior indication about how Digital
Preservation Obejcts should be created from the engineering point of view has
been set. It needs to be digital but no specific format was developed. Over the
reactivation of artwork, the decision the research group decided to take was to
create DPOs and the corresponding items digitally in the Dublin core format, a
metadata schema designed to enable description of any resource [21] together
with any type of file related to the resource. Resource is defined as “potentially
informative object”, something about which a statement is being made. The
statement contains the description of the resource, what needs to be specified
about an object in a subjective manner, i.e. the nature of the object. A state-
ment about a potentially informative object is called metadata. In the context
of the preservation model, the resource refers to any item composing a DPO
record and the DPO record itself. A metadata schema can be referred as a set of
rules about what sorts of statements (composed by subject-predicate-object) can
be made about a resource [21]. For a metadata schema, any predicate is called
element. An element in a metadata schema is a category of statement that can be
made about a resource; an element names an attribute of a resource. The data
that is then assigned to an element is named value. Together, an element-value
pair constitutes the totality of a single statement about a resource. If metadata

64 4.1. Il Caos delle Sfere DPO records

Figure 4.4: Organization for Il Caos delle Sfere DPO’s items.

is statements about a potentially informative object, the element-value pair is
the irreducible unity of metadata [21]. The Dublin Core was developed in 1996
as a metadata schema with the intention of making it widely adopted and ubiq-
uitous for eveety resource on the web [21]. The authors wanted to develop a
core set of descriptive metadata elements that could be applied to any and all
resources on the Internet. In the end 15 elements emerged in the core [21]:

• Contributor: it refers to an entity responsible for making contributions
to the resource;

• Coverage: it refers to the spatial or temporal topic of the resource, the
spatial applicability of the resource, or the jurisdiction under which the
resource is relevant;

• Creator: it refers to an entity primarily responsible for making the re-
source;

• Date: it refers to a point or period of time associated with an event in the
life cycle of the resource:

• Description: it refers to an account of the resource;

Chapter 4. Preservation of the human-machine interaction: Technological migration 65

• Format: it refers to the file format, physical medium, or dimensions of
the resource;

• Identifier: it refers to an unambiguous reference to the resource within a
given context;

• Language: it refers to a language of the resource;

• Publisher: it refers to an entity responsible for making the resource avail-
able;

• Relation: it refers to a related resource;

• Rights: it refers to a piece of information about rights held in and over
the resource;

• Source: it refers to a related resource from which the described resource
is derived;

• Subject: it refers to the topic of the resource;

• Title: it refers to a name given to the resource;

• Type: it refers to the nature or genre of the resource.

A modified scheme consisting only a part of the elements of the Dublin Core
model is adopted to create each DPO record and the corresponding items re-
spectively. For example figure 4.5a represents the metadata description for Sci-
ence4all DPO, consisting on Title, Type, Date, Language, Description, Creator,
Contributor and Source elements and the corresponding data.

The figure also shows two other tables named DATA and BIT where link
to the items composing the DPO are contained. By clicking on the links one
can access the metadata schema for the items. For example, figure 4.5b contains
all the statement description for the item associated with the Creature from the
Black Lagoon pinball machine and a PDF file with its data-sheet. The way of im-
plementing a DPO record proposed is still under study and several variations
will be considered, especially in the set of elements composing the metadata
scheme description

4.2 Reactivation of the Il Caos delle Sfere

The following sections describe all the main components of the reactivation
and the technological migration together with a deep insight on the algorithm

66 4.2. Reactivation of the Il Caos delle Sfere

(a)

(b)

Figure 4.5: Modified Dublin Core scheme examples .

Chapter 4. Preservation of the human-machine interaction: Technological migration 67

and the source code developed for the Science4All dissemination. In addition
to that, a presentation on the research for future installation of the artwork will
be presented.

4.2.1 The Arduino Mega board

The core of the reactivation is the Arduino board, in the Mega version. Ar-
duino is an open-source electronics platform developed since 2005 by the Ar-
duino company that designs and manufactures single-board microcontrollers
and microcontroller kits for building digital devices [4]. Arduino boards are
able to read inputs via sets of digital and analog input/output (I/O) pins that
may be interfaced to various expansion boards or breadboards. They also pro-
vide serial communication including USB on some models, which is also used
for loading programs, i.e. sending a set of instructions to the microcontroller
on the board. The microcontrollers can be programmed using the Arduino
programming language (based on Wiring) using the Arduino Software (IDE),
inspired by the Processing language and used with a modified version of the
Processing IDE. The Arduino project provides an integrated development en-
vironment (IDE) and a command line tool developed in the programming lan-
guage Go.

The Arduino boards are characterized by offering a simplification in the
process of working with microcontrollers mainly for didactic usage. In fact
they are inexpensive compared to other microcontroller platforms and they
are equipped with a simple programming environment, easy-to-use for begin-
ners, yet flexible enough for advanced users to take advantage of as well. In
addition to that Arduino boards are provided with open source and extensible
software, available for extension by experienced programmers: the language
can be expanded through C++ libraries. Finally the hardware is open source
and extensible too: the plans of the Arduino boards are published under a Cre-
ative Commons license so experienced circuit designers can make their own
version of the module, extending it and improving it [4].

For the reactivation of the installation, the Arduino Mega 2560 board (figure
4.6) is considered. It was developed for applications that require large num-
ber of input and output pins, which is the case for the proposed technological
migration, and the use cases which need high processing power. The Arduino
Mega accommodates the ATmega2560 microcontroller, which operates at a fre-
quency of 16 MHz. The board also contains 54 digital input/output pins, 16
analog inputs, 4 UARTs (hardware serial ports), a USB connection, a power
jack, an ICSP header and a reset button [4]. From the computational point of
view, the primary processor of Arduino Mega 2560 board is the ATmega2560

68 4.2. Reactivation of the Il Caos delle Sfere

Figure 4.6: Arduino Mega 2560

chip: thanks to the large number of input and output lines it operates with, it
gives the provision of interfacing many external devices. At the same time the
operations and processing is not slowed due to its significantly larger RAM
than the processors concerning the other Arduino boards. The board also fea-
tures a USB serial processor ATmega16U2 which acts an interface between the
USB input signals and the main processor. This increases the flexibility of in-
terfacing and connecting peripherals to it.

The choice of this board for the technological migration was motivated by
the constraints involved in the way the reactivation has been performed. The
Interaction node has been left untouched, i. e. no change has been implemented
in the acquisition board inside the pinball and therefore in the Parallel Port in-
terface through which data is outputted. In this context, considering that the
DB25 port has TTL-logic-levels pins, there is therefore the need to use either
a board whose input/output pins work in the range 0 to 5 V or a logic-level
shifter circuit (also known as voltage level translator) to translate signals from
one voltage domain to another. The latter allows the compatibility between the
DB25 pins and integrated circuits with different voltage requirements, as the
Raspberry Pi boards or the ESP32 microcontrollers working with 3.3 V volt-
age domain pins. Originally the reactivation project considered the usage of
a Raspberry Pi 3 board, a small single-board computer (SBC) providing a set
of GPIO (general purpose input/output) pins, together with a DB25 to USB
connector to acquire data from the acquisition board via Parallel Port inter-
face. Despite the USB input was correctly detected by the Raspberry Pi, no
data coming from the Interaction node could be received successfully. In fact
several tests conducted using the pyUSB and pySerial libraries (allowing USB

Chapter 4. Preservation of the human-machine interaction: Technological migration 69

and Serial access) for Python failed in this scope. The motivation for this is the
way the aforementioned converter was designed for: it grants USB commu-
nication for old printers whose output port is the Parallel one only, according
to the modes contained in the IEEE 1284 standard as described in the subsec-
tion 2.2.1.1. However, the Nibble Mode considered for the Il Caos delle Sfere
installation is a modified version of the standard one causing the impossibility
to translate data correctly for any Parallel port-to-USB converter. In addition
to that, starting from a DB25 Male Solder Connector inserted in the Female
DB25 connector outputted by the acquisition board, an attempt to interface
its pins and the GPIO pins of the Raspberry PI via a logic-level shifter failed
too. That was motivated by problems on the current values sourced by the
Parallel Port that were not sufficient to successfully change the Voltage level
on the output side (the one towards the Raspberry) of the voltage level trans-
lator. Even if a signal coming from the acquisition board ramped down from
0 to 5 V, the corresponding 3.3 V signal was not doing the same. The exact
same problem occurred while trying to interface the Parallel Port pins with
the GPIO pins of a ESP32 microcontroller, a low-power system on a chip with
integrated Wi-Fi and dual-mode Bluetooth. The only board allowing a correct
reading (and writing) of the Parallel Port pins was the Arduino one. In par-
ticular the choice was to use a Mega version, both due to the high number of
digital input/output pins available (54, as can be seen in figure 4.7) compared
with the 25 required by the DB25 port and due to the computational capability
the ATmega2560 processor provides.

4.2.2 The replication of the pinball data acquisition

Given the considerations presented in the previous section, a replica of the
communication test between pinball and PC can be performed by acting on
each of the pins of the 25-pin D-sub connector separately. This has been done
by using a DB25 Male D-Sub solder type Connector connected to the parallel
cable of the pinball on one side and to an Arduino Mega’s breadboard on the
other side.

To perform the communication test, similar operations with respect to the
one computed by the PC in the original installation are implemented. In details
they are:

1. The board reads the state of the pins connected to the status lines of the
port and inverts the one associated to S7 (first nibble read);

2. The board sets all the pins connected to the control lines of the port to
LOW (except for C0 which is set to HIGH) and waits in an idle state for
5 ms;

70 4.2. Reactivation of the Il Caos delle Sfere

Figure 4.7: Arduino Mega 2560 pinout.

3. The board reads again the state of the pins connected to the status lines
of the port and inverts the one associated to S7 (second nibble read);

4. The board reads the state of the pins connected to the data lines of the
port and compose an integer out of them;

5. The board sets all the pins connected to the control lines of the port to
LOW ;

6. The board performs the check of the states of the status lines (over both
reading phases) and computes the integer associated to the last hit target
and the name of the lights that are on; it finally waits in an idle state for
3 ms.

4.2.3 The hardware of the proposed reactivation

As previously anticipated, the hardware considered in the reactivation consists
on an Arduino Mega board which acquires raw data coming from the pinball
via the Parallel Port. Arduino’s pins are interfaced pin-by-pin to the ones of a
DB25 male connector. Since the input and output of the Parallel Port are in TTL
logic levels, it is enough to use just the ground and the digital pins of the Ar-
duino Mega board to implement the connection. Figure 4.8 shows this connec-

Chapter 4. Preservation of the human-machine interaction: Technological migration 71

Figure 4.8: Schematic representation of the hardware composing the installation.

tion. All the ground pins of the DB25 connector have been short-circuited via
Breadboard, a solder-less construction base used for developing an electronic
circuit and wiring for projects with microcontroller boards, to a ground pin of
the Arduino board. With reference to the Parallel Port and Arduino respec-
tively, the pin association is 1 (C0)-31, 2(D0)-22, 3(D1)-24, 4(D2)-26, 5(D3)-28,
6(D4)-30, 7(D5)-32, 8(D6)-34, 9(D7)-36, 10(S6)-46, 11(S7)-48, 12(S5)-44, 13(S4)-
42, 14(C1)-33, 16(C2)-41 and 17(C3)-39. Pin 15 is not considered in the process.
The hardware also consists on a microSD card reader, in which a microSD card
containing three file *.txt for pre-written sequences can be inserted, and a MIDI
port through which MIDI events generated by the Arduino board can be sent
via MIDI cables to the Disklavier.

The choice of storing sequences on an external memory device as a mi-
croSD card is because of the size of those MIDI messages’ sequences. Most
part of them contains over 6000 messages made by 4 integers so even using
the most efficient way to store all fields makes it impossible to store sequences
in the limited internal Arduino memory. The Arduino Mega board has 256 kB
of flash memory for storing code: saving all MIDI events as global variables
(i.e. arrays of integers) would cause a memory overflow. The only way to ac-
cess such sequences is to store them in an external source as a microSD card. In

72 4.2. Reactivation of the Il Caos delle Sfere

order for the Arduino board to read from the card, an SD card module is used.
The module interfaces with the board in the Serial Peripheral Interface SPI pro-
tocol. The SPI bus is a synchronous serial interface data bus with full duplex,
few signal lines and fast transmission speed [22]. It consists on a master-slave
communication mode, i.e. the SPI specifies that the communication between
two devices must be controlled by the master device. A master device can
control multiple slave devices by providing a clock and Slave Select for the
slave device. The SPI protocol also stipulates that the slave device’s clock is
provided by the master device to the slave device through a pin named SCK.
In particular, master and the slave devices are connected by four signal lines,
named SCK, MOSI, MISO, CS. SCK (Synchronous clock signal) is used to syn-
chronize data transmission between master and slave. The host controls the
output while the slave receives and transmits data on the edge of SCK. MOSI
(master output, slave input signal) is the line where the master sends data to the
slave and the slave receives the data through it. On the contrary, MISO (mas-
ter input, slave output signal) is used for the slave to transmit data and for the
master to receive it. Finally, the CS (Chip Select) is a signal used by the master
device to select the slave device to communicate with [22]. This connection
has been implemented via the following SD module- Arduino pins interface
via the breadboard. The pin association is CS-53, SCK-52, MOSI-51, MISO-50
and both VCC and ground of the module have been short-circuited with the
Arduino ones. The choice of these specific pins of Arduino is because they are
the ones designed to implement the SPI protocol.

For what concerns the transmission of MIDI events to the Disklavier, a
MIDI connector has been considered. As described in section 2.2.3, MIDI is a
serial protocol that operates at 31 250 bit s−1 while the transmission occurs via
5 poles DIN connectors and cables. In order to make this communication be-
tween Arduino and any MIDI controller possible, the board built-in serial port
and a 31 250 bit s−1 baud rate have to be used. However, since MIDI events are
just sent by the Arduino, only the pin for serial transmission has to be consid-
ered, named pin 1 (TX). With reference to figure 2.11, the board is wired to the
MIDI port (via breadboard) according to the following structure: MIDI pin 5
(MIDI data) is connected to pin 1 of Arduino through a 220 Ω resistor, MIDI
pin 2 (Shield) is connected to ground and MIDI jack pin 4 is connected to +5V
generator pin of the Mega board.

As can be seen in figure 4.8, the last component of the hardware is a pair of
leds coupled with two 220 Ω resistors connected to pins 7 and 8 of the Arduino
board. While they have no specific role in the final performance for the Il Caos
delle Sfere reactivation, they have been placed to perform a control. The control
is about a problem which has been showed up during the reactivation process,

Chapter 4. Preservation of the human-machine interaction: Technological migration 73

i.e. it consists on some switch values’ errors. The first problem is that the value
read by the Arduino via Parallel Port is not the one corresponding to the last
target hit by the ball but the same with a decrease of 2. In order to assess if this
problem is occurring, one led turns on if when the ball is on the shooting ramp
the value read is 64 rather than the correct one, 66. Such a led is activated by
setting the voltage level on the pin 8 ”HIGH”. The same led is used to reveal if
the ball is on the trough, i.e. the tunnel through which a ball passes prior to be
prepared on the shooting ramp. Therefore the led lights up if the value read
is the one associated to the trough switch, number 58. The second problem
is the fact that the value 27 is continuously read by the Arduino. The cause
of this error is the circuity inside the pinball, which sets that the switch of the
letter ”I” in the ”PAID” group active even of it’s not activated by the ball. To
observe if this situation happens, the second led activates as soon as the value
27 is read. The same led is also used to evaluate whether the value associated
to the ball being on the shooting ramp is 66.

4.2.4 Multithreading requirement in MIDI sequences genera-
tion

The main problem in the technological migration is the way MIDI events can
be outputted with the right timing in order to make the playback temporal dis-
tance between MIDI messages (either contained in the pre-written sequences
or generated in real-time) to be equal to the delta time field composing the
corresponding MIDI events. In the original source code, as anticipated in the
chapter 3, such task was accomplished by the MidiShare environment using
the functions MidiTask and MidiDTask which allows to send an event over the
Parallel Port. The characteristic of these and the other library’s functions is
that they can schedule such a transmission in any given instant of time, ful-
filling the requirement of getting a perfect playback temporal distance. This
was possible because all the events’ transmission tasks are scheduled and are
executed on a separated thread with respect to the main one where the main
part of the source code runs, i.e. all the functions to be called are executed.

In programming terminology, an activity potentially executed concurrently
with other activities is called a task. Instead, a thread can be described as the
system-level representation of a computer’s facilities for executing a task. A
thread is an abstraction of the computer hardware’s notion of a computation.
In most programming languages, included the C one used by the MidiShare
environment, there are the so called library threads, intended to map one-to-
one with the operating system’s threads. Threads are considered when several
tasks in a program need to progress concurrently. The point is that, on a sys-

74 4.2. Reactivation of the Il Caos delle Sfere

tem with several processing units (known as cores), threads allows us to use
those units [25]. For what concerns the source code, there is a main thread,
that acts as a manager of the other thread, dedicated to the execution of all the
main routine of the algorithm and the scheduling of functions and MIDI events
transmissions to the MidiShare instance’s destination which in turns schedules
the execution of them in a secondary more important thread. The latter is in
charge of either perform the transmission of MIDI events at the correct timing
or to execute the scheduled functions or to schedule new events transmission
or function calls. This is possible only if a given processor is multicore, i.e. it
can support multiple threads running at the same time in parallel, and that is
the case of the PC used for the original installation and the MidiShare environ-
ment. For Arduino the previous statement doesn’t hold. Arduino, especially
in its Mega version, cannot support multi-threading because the ATmega 2560
microcontroller has only one core and it is only capable of executing one in-
struction at a time. There is still the need to manage work on only a single core,
but still to do multiple things at once as calling and scheduling functions and
transmit MIDI events. In order to accomplish this concurrency requirement,
needed to make the technological migration work as the original installation,
an approach close to multiple threads can be implemented with some software
though.

The routine flow characterizing the source code for the algorithm of the in-
stallation is an example of Event-Driven programming, a programming paradigm
in which the flow of the program is determined by events such as messages
passing from other programs or threads, user actions or sensor outputs. It is a
common programming model for memory-constrained embedded systems, as
sensor networks. In an event-driven application, there is generally a main loop
that listens and waits for events and then triggers a callback function when one
of those events is detected or occurs [12]. For the Il Caos delle Sfere case study,
the events correspond to the outputting of a MIDI event or the execution of a
function that was scheduled previously. Event-driven models does not sup-
port a blocking wait abstraction. Therefore, programmers of such systems fre-
quently need to use state machines, i.e. programming architectures that allow
dynamic flow to depend on values from previous states or user inputs, to im-
plement control flow for high-level logic that cannot be expressed as a single
event handler. In general the need for explicit state machines to manage con-
trol flow makes event-driven programming complex [12]. A solution to it is
to adopt a programming abstraction called Protothreads that makes it possible
to write event-driven programs in a thread-like style. Protothreads simplify
programming by providing a conditional blocking wait operation, thereby re-
ducing the need for explicit state machines. They provide sequential flow of

Chapter 4. Preservation of the human-machine interaction: Technological migration 75

control without complex state machines or full multi-threading [12].

For what concerns Arduino, there are different implementations of pro-
tothreading, different ways of performing what would normally be a multi-
tasking operation. In general, it consists on breaking work down by the ’loops’
or ’lines’ of code being executed by a sketch. The concept is, if more stuff is
to be done, Arduino loops would take longer, so each task will have vastly
different ’loops per second’ durations. In addition to that, each loop there is
no other work to do, some less-demanding or less-frequent work is performed
in the main loop (or nothing at all). When there is no main routine work to
be done, then the routine checks to see if it’s time to do one of those other
pieces of work yet. If so, it branches off and goes do it. It’s important to no-
tice that tasks that are ”blocking”, meaning they have to be completed all at
once without interruption, will still block other protothreads from occurring
”on time”, but for simple things like two loops executed simultaneously and
performing quick actions like variable changes or changing output values, this
approach is very suitable [3]. The library allowing this simple implementation
of protothreading is the TimedAction one. The idea is to create global variable
for objects of type TimedAction to be initialized with the TimedAction() func-
tion. The latter takes as parameters a time value, corresponding to how many
seconds have to pass between a function call and the subsequent one and the
name of the function itself. In the loop, the attribute .check() will be then called
in each of the allocated TimedAction objects to see whether the corresponding
task has to be executed [3].

A second way to implement and simulate multi-threading with an Arduino
is to use something similar to a state machine. Most of the times the processes
to be executed require a lot of different actions and a given amount of time to
wait between 2 actions. In this context, it’s better to separate this process into
several small functions and create a state machine in the main program to call
them one by one, when needed. This allows to also execute any other part of
the program between these functions of the process. This is more suitable than
protothreading in cases where the execution time of almost all the functions
is very short and using explicit state machines to manage the flow of actions
is not complex. This is the case for the Il Caos delle Sfere artwork, where tasks
to be performed are reading and writing over arrays, generation of random
numbers and transmission of MIDI messages. For this reason, in order to han-
dle multithreading in the technological reactivation the choice is to use state
machines rather than protothreading. Even if the number of functions and ob-
jects to be considered in the algorithm is large, the number of states machines
to use is small. The states involved in Il Caos delle Sfere are about verifying if
a real-time generated or pre-written sequence is playing or not so introducing

76 4.2. Reactivation of the Il Caos delle Sfere

a limited amount of state machines is not increasing the overall complexity.
The rationale behind the approach is that the code should be such that Ar-
duino doesn’t hang to wait for something. If the algorithm is listening to an
input, for example a text message over serial communication, then it means
that it doesn’t control when this event will happen. The trivial way to get the
input is to wait for it and then continue the execution of the program as data
arrives. However this is not efficient and, more importantly, destroys the ob-
jective of simulating multiplexing and multithreading. There should be ways
to keep external communication non-blocking for the rest of the algorithm. For
the reactivation this translates into the need to find a way to keep the execu-
tion of the routine of the algorithm while continue on reading or generating
sequences and outputting MIDI events with the right timing.

The implementation of state machines in the code has been done via the
presence of multiple status variables, defining if a sequence is currently repro-
duces, i.e. its MIDI events are being reproduced, and, more importantly, via
some time tracking techniques to trigger an action when it’s the right time. For
example, a MIDI event is sent to the MIDI port only if the time passed since
the transmission of the previous event is larger or equal to the delta time field
characterizing it. The key tool to enable this possibility is to call the millis()
function for every iteration of the loop function in the Arduino. Millis() returns
the number of milliseconds passed since the Arduino board began running the
current program loaded in it. This is then used to compute the time difference
between a current instant of time and the last time an action was triggered and
if the duration is greater or equal than the interval required the task can be
completed. If not, a block has to be inserted to not make the execution of an
action possible before the time interval has not passed. Such a control requires
the comparison between a delta-time, which is repeatedly updated at every
loop iteration using the millis() function, and the period required; as soon as
a sufficient amount of time has passed, the delta-time variable need to be re-
set down to 0 in order to then wait for the next time period to be completed.
In the meanwhile some other actions can be done by the Arduino: provided
that all the operations are fast from a computational point of view and the
code is properly divided into small blocks or functions, this strategy results
to simulate very well the multithreading required, apart from some negligible
delays that for the Il Caos delle Sfere reactivation do not change the final per-
formance. It’s important to note that the delay() function cannot be used. This
function completely blocks a program and destroy any attempt to simulate
multi-tasking.

Chapter 4. Preservation of the human-machine interaction: Technological migration 77

4.2.5 The algorithm and the Arduino sketch

In order to replicate the same musical performance that the original instal-
lation considers, the algorithm presented in section 3.1 has to be adapted to
follow the characteristics that the Arduino board provides. The main difficul-
ties to assess are on one side the absence of any multithreading capability and
on the other side the limited amount of memory available in the board. For
the first issues, as presented in the previous subsection, using multiple status
variables leads to an efficient simulation of multitasking. Not so many tasks
have to be executed therefore the result is almost as accurate as with the usage
of MidiShare in the original computer. Regarding the strict Arduino memory
requirement, every MIDI events sequence to be uploaded cannot be saved in-
side the board as anticipated in subsection 4.2.3. Therefore there is the need
to consider an external memory device as a microSD card to interface with the
board. Every *.wri file in the original computer is to be saved inside the mi-
croSD. However, to simplify the reading process, three *.txt files are generated
out of all the WRI files. All the sequences characterizing the different levels are
contained continuously in a unique file, named SQNZ.txt while the chord se-
quences are contained in acc1.txt and acc2.txt respectively. On the con-
trary, the Tilt sequence has not been implemented in the reactivation. Merg-
ing every sequence in a *.txt file firstly allows a fast reading over the board
because no large amount of overhead is contained within such type of text
file. Secondly, it is the most suitable way to store sequences according to the
manner sequences are read in the proposed source code. Another constraint
involving the memory is the need to keep the amount of global variables the
smallest possible to not overload every task that the Arduino board executes.
Therefore, in the modification of the algorithm for the reactivation, the major
part of variables considered in the original code were dropped. Most of them
is about libraries that cannot be imported in the board so no inefficiency was
introduced in the modification of the code.

Every part of the code, excluded the MIDI sequences files, are contained
in one Arduino sketch named Science4All.ino to be then uploaded in the
board. The approach that was followed in modifying the original source code
was to use still an object-orienting programming approach but much more
simplified especially in the sequences handling. This translates into only two
classes or structures developed (named Seq and waitSeq) that provide the
basis to generate any other not pre-written MIDI sequence. For all the other
types no object was implemented and functions to initialize, set and update
the parameters and to send the MIDI events to the MIDI port were developed.
In this way the code gets simplified conceptually but it gets very inefficient
from the coding point of view. Despite that, the code proved to work and not

78 4.2. Reactivation of the Il Caos delle Sfere

to overload the Arduino board tasks execution.

1 //--------------------
2 // SD MANAGEMENT
3 //--------------------
4
5 #include <SPI.h>
6 #include <SD.h>
7
8 ...

Inside the sketch, only two external libraries are considered: SPI.h which en-
ables the Arduino board to communicate according to the SPI protocol with
the Micro SD reader and SD.h which makes available all the functions to ac-
cess the card, read and write data over it. The main part of the sketch consist
on global variables and function definitions. Since the code was not devel-
oped using a massive object-oriented approach, several variables have to be
accessed by multiple functions and all over the loop section of the sketch.
That’s why the majority of them is defined at the beginning of the file.

1 /*******************************/
2 /* IL CAOS DELLE SFERE */
3 /*******************************/
4
5 #define blex 15
6 #define p1 27
7 #define p2 26
8 #define p3 27
9 #define p4 30

10
11 ...
12
13 //--------------------
14 // Arduino active pins
15 //--------------------
16
17 int pin_data_bit0 = 22; //pin 2
18 int pin_data_bit1 = 24; // pin 3
19 int pin_data_bit2 = 26; // pin 4
20 int pin_data_bit3 = 28; //pin 5
21 int pin_data_bit4 = 30; // pin 6
22
23 ...
24
25 int led_27 = 7;
26 int led_64 = 8;
27
28 ...

Chapter 4. Preservation of the human-machine interaction: Technological migration 79

In the snippet reported, it’s worth to underline what enables the board to in-
terface with the Parallel Port. As in the original code, it’s necessary to specify
the integer value corresponding to the targets hit by the ball. However by im-
plementing a pin-by-pin connection and due to errors in the acquisition board
inside the pinball, the resulting integers present some mismatch with respect
to the mapping that was used in the original code and the one contained in
the data-sheet. A new mapping was therefore drafted in order to make the
new modified version of the algorithm follow the original routine for what
concerns the musical performance. All the updated associations are included
in the code as pre-processor statements for efficiency reason with the keyword
define. On the other side, the Parallel Port-to-Arduino connection has to be
implemented according to the scheme present in figure 4.8. At software level,
this translates into setting an integer variable containing the Arduino pin used
to read or write data into a Parallel Port pin. For example, with reference to
line 17 of the previous snippet of code, the pin designed to interact with pin
number 2 of the DB25 connector is the number 22 and this is saved in a vari-
able named pin_data_bit0 to suggest that pin 22 is the one which will read
from bit 0 of the Data register. led_27 and led_64 are instead variables that
specify the pins that light on the leds according to the problem presented in
subsection 4.2.3.

1 ...
2 //--------------------
3 // GESTIONE MIDI
4 //--------------------
5
6 // MIDI
7
8 #define noteON (uint8_t)144
9 #define noteOFF (uint8_t)131

10 #define allNoteOFF (uint8_t)123
11 #define controlChange (uint8_t)176
12 #define ctrlPedal (uint8_t)64
13
14 ...
15
16 // MIDI ARRAY
17 int a_time[986]; // MILLISENCONDS
18 byte a_note[986]; // MIDI NOTE
19 byte a_velo[986]; // MIDI VELOCITY
20 int W_IDX = 0; // IDX MIDI ARRAYS (WRITE)
21 int R_IDX = 0; // IDX MIDI ARRAYS (READ)
22
23 ...

One of the most important set of variables defined at the beginning of the

80 4.2. Reactivation of the Il Caos delle Sfere

sketch is made by MIDI events handling variables. Exactly as the source code
presented in section 3.1, some integers are used to specify the type of MIDI
message considered. For example, 144 is the Status byte indicating a Note ON
message while 123 is the value of the second Data byte of a Control Change
message of type all Note OFF. The latter is a fundamental type of control for
the proposed reactivation. It turns off all notes that were turned on by received
Note ON messages, and which haven’t yet been turned off by respective Note
OFF messages. Without relying on the MidiShare environment, all Note OFF
is the only instruction which can flush all previous Note ON MIDI messages
and stop the playback of every sound in the Disklavier. Arrays of integers
as a_time, a_note and a_velo are instead structures defined to load MIDI
events’ fields (delta time, key and velocity) to be then sent to the MIDI port.
Every pre-written sequence, both for the levels or for the chords, relies on those
arrays to be loaded and sent out. The size of the arrays is 986, which is much
less than the average length of MIDI sequences that is around 6000 events.
However this is a design choice: instead of loading every event of the MIDI
sequence, only 986 are considered at a time. The motivation under this choice
is to avoid a full upload of every set of events, both for memory and time
requirements. Loading 6000 events may take a large amount of milliseconds
and may overload the limited storage capability of the board. In addition to
that, the specific value of 986 was estimated by analysing several *.wri files.
For efficiency reason, it’s more efficient to load events which are spaced apart
by 100 ms one with respect to the next one because they will be sent in output
almost continuously. Thus avoiding that the board keeps on waiting the right
time for them to be played. Therefore the task of sending them to the MIDI port
will be completed in few loop iterations. The average number of consecutive
MIDI events spaced by 100 ms is exactly 986. This strategy helps also for the
final musical performance which results to be as if all the MIDI events in a
sequence were processed consecutively. W_IDX and R_IDX are instead indexes
to keep track of the position inside the three arrays for uploading events and
for playing events respectively.

1 ...
2
3 unsigned long sqnz_pos_idx[45] = {0, 5231, 16405, 20670,

24204, 31954, 42555, 52729, 60959, 72708, 85857, 103721, 126219,
140139, 160672, 192948, 235794, 261305, 10792, 318987, 336964,
367230, 427277, 436946, 447776, 467912, 488943, 500688, 513837,
548104, 559242, 579711, 606732, 652785, 682766, 696332, 724519,
748100, 788763, 829426, 848125, 873006, 923437, 961662,988399 };

4 int acc1_pos_idx[13] = {0, 306, 510, 869, 1236,
1396, 2029, 3867, 4172, 4712, 5388, 6366, 6717};

5 int acc2_pos_idx[21] = {0,156, 2085, 2479, 3279,

Chapter 4. Preservation of the human-machine interaction: Technological migration 81

6004, 8675, 14764, 16617, 19953, 22511, 26740, 32908, 36564,
37202, 38845, 40072, 42077, 44381, 46211, 52115};

6
7 ...

Having all the level’s sequences in one *.txt file raises another problem, which
is how to read one specific sequence. In the original code there was no such is-
sue: all sequences were indexed with their filename; this setup instead makes
it impossible. However, even the *.wri files, each sequence ends with a row
of four zeros in each MIDI event field (considering also the type of message),
acting as a delimiter. This feature has also been considered when merging
all the set in one file. In addition to that, the SD handling library included
as header provides an API for reading files stored in the card byte by byte.
Using such a function, it’s possible to find out the position (intended as in
number of bytes) of the first element of a row immediately after one ending
row for a sequence. In other terms it’s possible to find the starting point (in
byte) for every sequence. Such positions were calculated and saved in an ar-
ray named sqnz_pos_idx. The reading function and the loading function
use sqnz_pos_idx to move across the sequence files. For the two chords se-
quences (named acc1.txt and acc2.txt) something similar was done to
determine each part of the sequences to be played alone.

1 ...
2
3 //--------------------
4 // TIME VARIABLES
5 //--------------------
6
7 unsigned long t; // TIME FROM LOOP BEGINNING -

milliseconds
8 int t0 = 0; // TIME -> LAST MIDI CMD
9 int te = 5; // ERROR TIME

10 unsigned long tp = 0; // TIME PORT READING
11 unsigned long tluci = 0;
12
13 int t0s; // lAST TARGET CONTROL
14
15 int t0t; // LAST MIDI CMD FOR TRILLO
16 int t0v; // LST MIDI CMD FOR VENTATA
17 int t0p; // t0 pedale
18 unsigned long checkFine; // counter per fine gioco
19 ...

Time handling to simulate multithreading is the fundamental aspect of the
code that makes it possible to hear a musical performance in the end. As de-
scribed in section 4.2.4, the simplest way to implement multitasking is to use
state variables and to keep track of the amount of time passed since the last

82 4.2. Reactivation of the Il Caos delle Sfere

activity. Variables that contain such time instants are instantiated for the dif-
ferent tasks to execute. For example t is a global time variable which is up-
dated at every loop iteration to count how many milliseconds passed since the
Arduino board was turned on. It’s the time variable each function refers to
when deciding to change a state variable to enable an action. t is an unsigned
long integer to account for the fact that, if the installation is presented in an
exhibition, probably it has to stay active for a large amount of time. This im-
plies that the number of milliseconds passed since the activation of the board
quickly diverges and assumes very large values. Variables like t0t are instead
relative time quantities. It represents the instant of time at which the playback
of the last trillo sequence occurred.

1 ...
2
3 /*FLAGS*/
4
5 bool trilON = false; // TRILLO IS PLAYING
6 bool SWITCH = false; // HIT A "SWITCH" TARGET
7 bool RAMP = false; // HIT A "RAMP" TARGET
8 bool venON = false; // PLAY VENTATA DURING ARPA
9 bool venON2 = false; // VENTATA IS RUNNING

10 bool playSQNZ = false; // PLAY A SEQUENCE
11 bool arpaON = false; // ARPA IS RUNNING
12 bool arpaON2 = false; // CHORDS DURING ARPA
13 bool flagVal = false; // Se luci sono stabili
14 bool startcountFine = false; //flag per inizio count fine
15 bool game = false; // flag inizio gioco
16 ...

To implement state-machine programming, several flags are considered as can
be found in the snippet of code above. Depending on the type of sequence to
play, flags like trilON or arpaON indicate whether the corresponding events
are active or not. As will be discussed later, they are fundamental both to
activate a specific task only at a given level but, above all, to avoid that the
routine of the algorithm calls functions that require a time check to trigger (or
not) any action. In other terms, they act as blocking variables for the functions
that should be excluded from multi-threading simulation. This reduces the
complexity involved in using state-machine programming by a large amount.

1 ...
2 /*--------------
3 Gestione Trillo
4 --------------*/
5 uint8_t myNote; // nota del trillo
6 uint8_t maxTri; // massimo numero di trilli (da 3 a 7)
7 uint8_t actTri; // ennesimo trillo ()
8 uint8_t actTri2; // ennesimo trillo (numTri2)

Chapter 4. Preservation of the human-machine interaction: Technological migration 83

9 char varTri; // variazione pitch (note)
10 uint8_t velTri; // velocity trillo
11
12 ...

The rest of the global variables saved in Arduino memory are secondary vari-
able used for example to save the level, the value read over the Parallel Port,
etc. However, there is a large amount of variables used to represent sequence
characteristics that in the original code were data members of ad hoc devel-
oped classes to wrap every type of sequence. In the snippet of code, for ex-
ample, myNote is a global variable storing the note to be played about a trillo
sequence. Having a lot of global variables like that is an inefficiency of the
code but it’s not a big issue because the amount of memory they occupy is
very limited. Most of them can be saved as a uint8_t integer, i.e. a integer
value taking just 8 bits of storage.

4.2.5.1 Reading the Parallel Port

1 ...
2 void readPort(){
3 if (port_phase == 0 and t-tp>10){
4 tp = t;
5 bit_0 = digitalRead(pin_status_bit4);
6 bit_1 = digitalRead(pin_status_bit5);
7 bit_2 = digitalRead(pin_status_bit6);
8 bit_3 = (1-digitalRead(pin_status_bit7_n));
9

10 digitalWrite(pin_control_bit0,HIGH);
11 digitalWrite(pin_control_bit1,LOW);
12 digitalWrite(pin_control_bit2,LOW);
13 digitalWrite(pin_control_bit3,LOW);
14
15 port_phase = 1;
16 } else if (port_phase == 1 & t-tp>10){
17 tp = t;
18
19 bit_4 = digitalRead(pin_status_bit4);
20 bit_5 = digitalRead(pin_status_bit5);
21 bit_6 = digitalRead(pin_status_bit6);
22 bit_7 = (1-digitalRead(pin_status_bit7_n));
23
24 val = digitalRead(pin_data_bit0)*1 +digitalRead(pin_data_bit1)*2

+ digitalRead(pin_data_bit2)*4 +digitalRead(pin_data_bit3)*8 +
digitalRead(pin_data_bit4)*16 + digitalRead(pin_data_bit5)*32 +
digitalRead(pin_data_bit6)*64 + digitalRead(pin_data_bit7)*128;

25
26 if(val==27 or val==66){

84 4.2. Reactivation of the Il Caos delle Sfere

27 digitalWrite(led_27,HIGH);
28 } else {
29 digitalWrite(led_27,LOW);
30 }
31
32 if(val==64 or val==58){
33 digitalWrite(led_64,HIGH);
34 } else {
35 digitalWrite(led_64,LOW);
36 }
37
38 digitalWrite(pin_control_bit0,LOW);
39 digitalWrite(pin_control_bit1,LOW);
40 digitalWrite(pin_control_bit2,LOW);
41 digitalWrite(pin_control_bit3,LOW);
42
43 if (val!=last_switch_val){
44 switch(val){
45 case sw1: case sw2: case sw3: case sw4:
46 case sw8: case sn1: case sn2: case sn4:
47 case p1: case p2: case p4: case blex:
48 SWITCH = true;
49 t0s=t;
50 last_switch_val = val;
51 if(lev==0){
52 gameLev=1;
53 cambioLivello();
54 }
55 break;
56 case trp1: case rpsi: case rpsu:
57 case rpdi: case rpci: case rpco:
58 RAMP = true;
59 t0s=t;
60 last_switch_val = val;
61 if(lev==0){
62 gameLev=1;
63 cambioLivello();
64 }
65 break;
66 case 58: // Quando la pallina cade
67 if(numBall==2){
68 last_switch_val = 100; // 100 non esiste come valore
69 }else{
70 last_switch_val = val;
71 }
72 if(numBall>0){
73 numBall--; // Diminuisci di uno il numero di

palline
74 gameLev = numBall; // Se hai multiball torni al livello 1,

Chapter 4. Preservation of the human-machine interaction: Technological migration 85

se hai
75 }
76 cambioLivello();
77
78 default:
79 break;
80 }
81 }
82 port_phase = 0;
83 }
84 }

In the code presented in section 3 reading and writing over the Parallel Port
was executed through scheduling of scriviPorta and leggiPorta with
a time difference of 300 ms. scriviPorta reads the first nibble of data and
switches the multiplexer input, while leggiPorta reads the second nibble,
the integer value for the target and resets the multiplexer. In the proposed
reactivation’s code, the two phases are contained within the same function,
readPort. It represents the first example of state machine programming, in
order to move in time between one phase and the other. Phases are distin-
guished with values 0 and 1 (saved in the variable port_phase) while tp is
the time instant at which the last phase was executed and entered. As it can be
seen in lines 3 and 16 of the above code, the if statements are true only for one
phase and if a sufficient amount of time since the last phase has passed. The
routine can’t enter the if statements for the wrong phase and if the difference
in time is not larger than 10 ms. If conditions are verified then tp is set to t, the
global time of the routine. The reason why the time to wait between one phase
and the other is much smaller than the one considered for the original code is
that Parallel Port-Arduino communication and lights checks are decoupled in
time. The light check to estimate the algorithm level is executed less frequently,
to avoid situations in which a possible blinking may destroy the correctness of
the light reading and, consequently, the algorithm level. From the snippet of
code it’s possible to notice how the Arduino board sets voltage levels (HIGH
or LOW) to every Parallel Port pin connected to it. Functions digitalRead
and digitalWrite fulfil the accomplishment. The result of this action is to
save the value read for the lights (0 if a light is OFF, 1 if on) in variables named
bit_0, bit_1, etc. The integer corresponding to the last target hit is instead
written in val, composed starting from the voltage levels read over the Par-
allel Port’s Data register. Lines 27 and 32 are instead the routines followed to
asses if some problem in the reading occurs. Finally in the second phase, a
check for val is executed, similar to what is done in leggiPorta. Firstly val
has to be different from its previous value saved in last_switch_val. Sec-
ondly, according to if val indicates a ramp, the ball being on the left trough,

86 4.2. Reactivation of the Il Caos delle Sfere

etc. the number of balls is decreased or a new level is estimated and saved in
gameLev. The function cambioLivello then assesses if the algorithm level
has to change according to the estimated one.

4.2.5.2 Loading and Playing a pre-written sequence

1 /*** READ TEXT FROM TXT FILES ***/
2
3 void loadSQNZ(){
4 SQNZ = SD.open("SQNZ.txt");
5 is_reading = true;
6
7 if (pos){
8 SQNZ.seek(pos);
9 }

10 while (is_reading){
11 String s = SQNZ.readStringUntil(’\n’);
12 splitString(s);
13 if (arr[0]<100 or W_IDX==0){
14 if (arr[1]!=3){
15 a_time[W_IDX] = arr[0];
16 a_note[W_IDX] = arr[2];
17 a_velo[W_IDX] = arr[3];
18 W_IDX++;
19 } else {
20 a_time[W_IDX] = arr[0];
21 a_note[W_IDX] = X;
22 a_velo[W_IDX] = arr[3];
23 W_IDX++;
24 }
25 pos = SQNZ.position();
26 } else {
27 is_reading = false;
28 SQNZ.close();
29 }
30 }
31 }

In order to upload a set of MIDI events from SQNZ.txt, one spaced from the
successive one by 100 ms, the function loadSQNZ is considered. It opens the
file from the SD reader via the API open of the library. After having sought
the current reading position pos (always expressed in number of bytes) and
having activated the flag is_reading to indicate that the reading is on, it
starts reading the txt file line by line starting from pos. It derives the 3 integer
fields of the MIDI event contained in each line and stores them inside arrays
a_time, a_note and a_velo distinguishing if they are of type Note ON /

Chapter 4. Preservation of the human-machine interaction: Technological migration 87

Note OFF or Control change (this indication is saved on the second element
composing each line of the file containing the sequence as indicated in line 14).
Reading and writing over the arrays continues only up to when a MIDI event
is spaced from the successive by more than 100 ms. At this point is_reading
is set as false and the file can be closed, according to SQNZ.close(). Note
that throughout the entire reading, the position inside the file pos is constantly
updated. In this way, in the successive reading activity it’s possible to restart
from the point where the current reading action stopped. W_IDX is instead a
reading index that is incremented by every unit per reading but its main role
is to preserve the length of the part of the sequence uploaded when it will be
played.

1 /*** READ MIDI SEQUENCE ***/
2
3 void readSQNZ(){
4 int deltT = t - t0;
5 while(deltT > a_time[R_IDX]-te and a_note[R_IDX]!=0){
6 if(a_note[R_IDX]==X){
7 pedalSet(a_velo[R_IDX]);
8 } else{
9 outMIDI(noteON, a_note[R_IDX], a_velo[R_IDX]);

10 }
11 R_IDX++;
12 t0 = t;
13 deltT = t - t0;
14 }
15 if (a_note[R_IDX]==0) {
16
17 endSQNZ = true;
18 }
19 }

To send to the MIDI port the events stored in the arrays, readSQNZ has to be
considered. It represents the best example of dealing with state machines to
implement multi-threading simulation. Given that t0 is the time instant when
the function is actually called, another variable named deltT is calculated
from the difference between t and t0. It represents the time elapsed since
either the first function call or the last MIDI event transmission. Using the
reading index R_IDX (initialized at the beginning with 0) a while cycle is used
to span all the events saved and transmit them only if the time elapsed between
the last transmission and the current time is greater than the delta-time field of
each corresponding MIDI event. This translates into the checking of deltT>
a_time[R_IDX]−te. In this context te is a tolerance quantity used in order
to anticipate a little bit the reproduction of an event. In the same while cycle,
it’s also verified if the current event is corresponding to the row which delimit

88 4.2. Reactivation of the Il Caos delle Sfere

the sequence to be played, i.e. if a_note[R_IDX] is not 0. If the time check
doesn’t hold the function ends; if instead an event can be sent to the MIDI
port and if it’s not carrying a Control change about the Pedal, outMIDI is
called. outMIDI is in charge of transmitting the MIDI event to the MIDI Port,
given its velocity, its type and its note. In addition to that, every time the
transmission action is executed, R_IDX is incremented, t0 is updated to the
current time value and deltT is reset to start another time counter for the
subsequent transmission.

4.2.5.3 Midi Event transmission

1 /*** SEND MIDI MESSAGE ***/
2
3 void outMIDI(int cmd, int n, int vel) {
4 if(cmd == noteON){
5 vel = (int) vel/1.6;
6 }
7
8 Serial.write(cmd); // send Note ON, note OFF or

control change command (Status Byte)
9 Serial.write(n); // send pitch (Data byte 1)

10 Serial.write(vel); // send velocity (Data byte 2)
11 }

Starting from the MIDI events, MIDI messages have to be sent via the MIDI
port to the Disklavier for the final musical performance. The Arduino board
can communicate with the MIDI port only using the Serial communication
protocol given the baud rate of 31 250 bit s−1. Therefore any MIDI data has
necessarily to be sent out via pin 1, designed in the Arduino Mega board to
enable Serial transmission. The function that is called every time MIDI trans-
mission is required is outMIDI. It takes as input parameters three integers
cmd, n and vel. They are parameters defining univocally a MIDI message:
cmd represents the type, either Note ON, Note OFF or a Control change, n
represents the pitch in a Note ON/OFF message and the type of control in a
Control change message and vel is the velocity for a Note ON/OFF message
and the intensity of the control in Control change message. outMIDI trans-
mits such integers using the serial communication and for this purpose the
Serial.write API. Whenever the message is either Note ON or Note OFF,
an additional rescaling by a factor 1.6 is applied over the velocity exactly as
what is done on VidiSend for the original code.

Chapter 4. Preservation of the human-machine interaction: Technological migration 89

4.2.5.4 The main routine

Exactly as the algorithm for the original installation, even in the code for the
proposed reactivation the routine is based on a loop generated by the loop
function inside the Arduino sketch. The path the routine follows can be found
in figure 4.9.

1 loop() {
2 ...
3 t = millis();
4 readPort();
5 if (game){
6 if(t-tluci > 300){
7 if(gameLev>0){
8 controlloLuci();
9 }

10 if(flagVal){
11 cambioLivello();
12 }
13 tluci = t;
14 }
15 ...

The loop executes operations starting from two main tasks: the control about
the pinball game being off and the readPort function which enables the same
tasks the original algorithm goes through. In order to maintain the multi-
threading capability for the board, at every iteration the time reference vari-
able t is updated with the current amount of millisecond that passed since the
activation of the board. After the time update, readPort, as previously an-
ticipated, executes the steps to acquire information about lights and the target
hit every 10 ms and implements the level switch based on the available esti-
mation. As opposite to the function leggiPorta in the original installation,
the light check is mismatched with respect to the acquisition of the target value
information. Checks are delayed in time by 300 ms and to block any additional
light check a blocking if statement is considered. Using tluci, a variable that
stores the instant of time of the previous check, the routine disables any ac-
tion if the time difference between the actual instant of time for the loop t and
tluci is smaller than the threshold. If the condition is verified the lights are
controlled to estimate the new level and if flagVal is true then the level is
actually updated via cambioLivello. flagVal is a indicator that is set to
true if the lights are stable, i.e. if their value stays constant over more than
7 checks. It follows the same rationale behind controllaLuci function as
seen in section 3.1. The choice to perform the light check less frequently than
the target value reading is to protect the routine from misleading reading. As
anticipated, blinking of all the lights inside the pinball occurs whenever some

90 4.2. Reactivation of the Il Caos delle Sfere

Figure 4.9: The modified algorithm routine

Chapter 4. Preservation of the human-machine interaction: Technological migration 91

specific targets are hit in game. Potentially this could result in a wrong esti-
mate of the algorithm level. To avoid that flagVal is set to true, the lights
are controlled every 300 ms and this cause them to not be stable for more than
seven readings since a blinking lasts around 1 or 2 seconds. After the reading
tluci is updated with t.

1 void cambioLivello(){
2 if(lev!=gameLev) {
3 venON=false;
4 venON2=false;
5 trilON = false;
6 endSQNZ = true;
7 playSQNZ = false;
8 arpaON=false;
9 arpaON2=false;

10
11 lev=gameLev;
12
13 ...

The following snippet of code shows the function cambioLivello which is
in charge of changing the level if the estimation of it is different from the cur-
rent one. The actions to be performed are the same as the original function.
The first action to take is to set to false any flag or status variable to stop any
event reproduction or MIDI events generation. Secondly it updates the algo-
rithm level lev to the estimated one gameLev. Thirdly it enters a switch case
statement to set flags and executes the same actions as the original routine. The
actions are not going to be treated in details. It’s worth to described instead
some common tasks the routine goes through for every level. The main task in
levels that require a MIDI event playback starting from pre-written sequences
is to set the values of i_min and i_max. They are indexes that are used in the
loop function to indicate a set of byte indexes in the array sqnz_pos_idx. In
other terms, i_min and i_max are used to select a set of MIDI sequences in
the SQNZ.txt file to then randomly pick any one. i_min and i_max are dif-
ferent from level to level following the MIDI sequences distribution over the
five indicated levels in the original routine.

1 ...
2 switch(lev){
3 case 0:
4 i_min = 0;
5 i_max = 10;
6 if(game){
7 pedalSet(111);
8 outMIDI(controlChange, allNoteOFF, 0);
9 pedalSet(111);

10 }

92 4.2. Reactivation of the Il Caos delle Sfere

11
12 numBall = 0;
13 break;
14 case 1:
15 t0 = t;
16 i_min = 10;
17 i_max = 18;
18 playSQNZ = true;
19
20 numBall = 1;
21 outMIDI(controlChange, allNoteOFF, 0);
22 break;
23 case 2:
24 trilON = true;
25 setTrillo(0);
26 t0t = t - 75;
27 numTotTri = 15;
28 trilSQNZ = false;
29 acc2_i = 0;
30 numBall = 1;
31 outMIDI(controlChange, allNoteOFF, 0);
32 break;
33 case 3:
34 i_min = 18;
35 i_max = 28;
36
37 arpaInitialize();
38 arpaON = true;
39 arpaFine=t+15000+50*random(100);
40
41 venON = true;
42 numBall = 1;
43 outMIDI(controlChange, allNoteOFF, 0);
44 break;
45 case 4:
46 i_min = 28;
47 i_max = 38;
48
49 arpaInitialize();
50 arpaON = true;
51 arpaFine=t+25000+50*random(100);
52
53 arpaON2 = true;
54
55 venON = true;
56
57 numBall = 1;
58 outMIDI(controlChange, allNoteOFF, 0);
59 break;

Chapter 4. Preservation of the human-machine interaction: Technological migration 93

60 case 5:
61 i_min = 38;
62 i_max = 43;
63 playSQNZ = true;
64
65 numBall = 1;
66 outMIDI(controlChange, allNoteOFF, 0);
67 break;
68 case 6:
69 numBall = 2;
70 t0t = t - 75;
71 trilON = true;
72 setTrillo(0);
73
74 outMIDI(controlChange, allNoteOFF, 0);
75 break;
76 case 7: case 8:
77 numBall = 2;
78 t0t = t - 75;
79 trilON = true;
80 setTrillo(1);
81
82 outMIDI(controlChange, allNoteOFF, 0);
83 break;
84 default:
85 break;
86 }
87 }
88 }

Each level setting is also characterized by outMIDI function call. It’s exe-
cuted to end any key pressing that possibly may be dangling while changing
level. An allNoteOFF type of control change MIDI event is sent invoking the
outMIDI function. Apart from that, levels over which trillos sequences are
generated require also settings for their time reference variable as t0t=t−75.
In this way the trillos can start immediately as soon as a switch or a ramp or a
generic target is hit. Associated to each case there is an additional flag activa-
tion task according to what has to be reproduced at the level. For example at
level 1, one out of the MIDI sequences for it has to be loaded, played and sent
out to the Disklavier. For that purpose, a flag named playSQNZ is set true
to enable the execution of the subroutine to send out MIDI sequence events
inside the main loop function of the sketch.

1 ...
2 /*******************************/
3 // SQNZ
4 /*******************************/
5 if (playSQNZ){

94 4.2. Reactivation of the Il Caos delle Sfere

6
7 // PLAY SQNZ
8
9 if (endSQNZ){

10
11 // OR INITIALIZE OR END SQNZ
12
13 W_IDX=0;
14 R_IDX=0;
15 int i = random(i_min, i_max);
16 pos = sqnz_pos_idx[i];
17 loadSQNZ();
18 endSQNZ = false;
19 } else {
20 if (W_IDX>R_IDX){
21 readSQNZ();
22 }
23 else {
24 W_IDX = 0;
25 R_IDX = 0;
26 loadSQNZ();
27 }
28 }
29 }
30 ...

The piece of code reported above shows all the actions executed whenever
a sequence has to be played provided that playSQNZ is activated. If a pre-
vious sequence MIDI events transmission ended (endSQNZ=true) both read-
ing and writing indexes W_IDX and R_IDX are reset to restart all the proce-
dures. Then a byte index is randomly picked, given the proper interval and
saved in the variable pos that will be then used to upload the correct part of
SQNZ.txt inside loadSQNZ. In the next loop cycle, the if statement just de-
scribed wont’ be entered because of endSQNZ set to false which denotes how
the sequence-reading has to start. Every set of MIDI events (up to a total of
986) that was loaded with loadSQNZ is gonna be transmitted in output at the
correct time instant following readSQNZ. As was previously presented, if the
correct amount of time between two consecutive MIDI events playback has
not elapsed, readSQNZ stays silent and no action is performed. The second
if statement in line 20 of the code snippet is therefore entered but no action is
performed indeed. Only when the entire part of MIDI events is reproduced,
W_IDX and R_IDX are reset and the routine proceeds with another loadSQNZ
call to upload the subsequent part of events composing the sequence to be
played at that given time instants.

Similar routines are followed for trillos sequence and aeolian harps gener-

Chapter 4. Preservation of the human-machine interaction: Technological migration 95

ation and transmission. Each type of newly-generated MIDI event sequence
presents the same characteristics as the one generated in the original code. So
bordone, chords, harmonic accents and canone are generated every time they
are required. As it can be seen in figure 4.9, the sketch for the reactivation
doesn’t include any Tilt sequence. Its absence is only due to a practical rea-
son: there is a very low probability that a player smashes the pinball so hard
to activate the tilt indicator. This was in fact verified during the Science4all
dissemination.

4.2.5.5 The ending of the game

One major issue that was encountered during the development of the code was
that some MIDI events were sent out even if no game was on. The problem
was that some blocking variables had to be established to avoid that reading
of values by the Arduino board resulted in MIDI event generation whenever
no ball was in game. To solve this issue, as anticipated in subsection 4.2.5.4,
the controllaLuci function and any other action are enabled only if a flag
named game is true. As its name suggests, it indicates whether the actual game
in the pinball is on or not. Determining this condition is rather complex to be
implemented in software. The following piece of code is a working solution
for this issue.

1 ...
2 if (numBall==0){
3
4 if (startcountFine){
5
6 if (t-checkFine>9000){
7 game = false;
8 startcountFine = false;
9 outMIDI(controlChange, allNoteOFF, 0);

10 }
11
12 if (val == 66){
13 startcountFine = false;
14 checkFine = 0;
15 }
16 } else {
17 // FIRST 58
18 if (val==58){
19 checkFine = t;
20 startcountFine = true;
21 }
22 }
23 }
24 } else {

96 4.2. Reactivation of the Il Caos delle Sfere

25 outMIDI(controlChange, allNoteOFF, 0);
26
27 if (startcountFine){
28 if (val!=66){
29 startcountFine = false;
30 }
31
32 if (t-checkFine>200){
33 game = true;
34 startcountFine = false;
35 }
36 } else {
37 if(val == 66){
38 checkFine = t;
39 startcountFine = true;
40 }
41 }
42
43 }
44 }
45 ...

Whenever numBall is set to 0, i.e. the ball goes out from the board, the algo-
rithm has to check whether this event is the end of the game or if a new ball is
gonna be shot over the shooting ramp and the game goes on. As soon as the
first value 58 is read, the routine initializes a time variable named checkFine
with the current time reference t and starts counting the amount of millisec-
onds passed since a new value 66 is gonna be read. In other terms, the time
elapsed from the first time instant the ball enters the left trough to the first
time instant the ball enters the shooting ramp. startcountFine is a flag
that indicates the start of the count and it’s set to true for this purpose. In the
successive loop iterations, if the value 66 is verified then the counter is imme-
diately stopped and checkFine is reset. Instead, according to line 6, if 9 sec-
onds passed since the beginning of the count and no value 66 is read over the
successive loop iterations then the game is considered as finished. The vari-
able game is set to false and it inhibits all the functions routine since no light
checks will be performed. The level stays 0. Once this situation is established,
the action to be performed is just the transmission of allNoteOFF message at
every loop iteration. Even if some MIDI events are erroneously transmitted in
output, no sound will be heard. The only action that reactivate the game so
the light check and the level change is when the value 66 is read consecutively
in input for more than 200 ms. This helps discriminate a proper game restart
(a complete new game or a new ball injected after one exited the board) from a
blink of that value which lasts for fewer seconds. The entire game check rou-
tine is executed only whether numBall is 0 which implicitly excludes every

Chapter 4. Preservation of the human-machine interaction: Technological migration 97

cas in which during a multiball event one ball exits the pinball table.

4.3 Possible future improvements for the techno-
logical migration

The proposed technological migration is just a first step into a complete reac-
tivation of the Il Caos delle Sfere artwork. Several improvements can be set up
in order to have a more reliable and efficient reactivation. The main feature to
be upgraded is the acquisition board, developed originally for the project. All
the connections from the pinball switches and from the switch matrix circuit
contained within the pinball circuit board to the acquisition circuity should be
controlled. The aim has to be to check whether the resulting 8-bit-value asso-
ciated to a generic switch corresponds to the value that can be found in the
pinball data sheet. In addition to that, the action the acquisition board exe-
cutes should be moved from an acquisition task only to acquisition and pro-
cessing of data coming from the pinball. This means that the acquisition board
should be integrated with a microprocessor which runs an algorithm exactly
as what the Arduino Mega used in the proposed reactivation performs. The
DB25 Parallel Port, being an old standard not present in any modern device,
has to be removed in order to avoid possible problems in the pin-by-pin in-
terfacing (as in the proposed hardware) with the port. The board should also
contain a MIDI port: the microprocessor should generate MIDI events to be
then transmitted via MIDI cable to the Playback node. In this way the Inter-
action and Communication nodes would be both contained within the Creature
from the Black Lagoon pinball, eliminating any external hardware required for
the installation. In the current setting there is the Parallel Port cable exiting the
pinball, in the future it should be replaced with a MIDI OUT cable.

Apart from hardware substitution which may require a large amount of
modifications, the very next improvement should be to make the Arduino
sketch more efficient than what has been developed for the Science4all dissem-
ination. The coding approach doesn’t follow the object-oriented programming
paradigm completely. Only two structures are considered an no class was de-
veloped for every type of sequence. In this way there is also the possibility to
reduce the amount of global variables contained within the sketch. For that
purpose, recently at CSC a fully object-oriented programming code was writ-
ten by Alvise Bolzonella and Federico Pilotto. It considers objects not only
for the type of sequences and the corresponding attributes or functions but
also for any event-handling variable or function. For example, the following
snippet of code is about a time object whose data members are the absolute

98 4.3. Possible future improvements for the technological migration

time variable to, the time associated to Parallel Port phases tp and the one for
light checks tluci. Only a member function is part of the class, updt which
updates the absolute time instant t via the function millis.

1 #include "Arduino.h"
2 #include "Variabili.h"
3
4 Time::Time(){
5 t = millis();
6 t0 = t;
7 tp = t;
8 tluci = t;
9 }

10
11 /* Aggiorna il valore della variabile t all’inizio di ogni loop
12 Input: void
13 Output: void
14 */
15 void Time::updt(){
16 t = millis();
17 }

A similar class was developed for the MIDI event transmission.

1 #include "Arduino.h"
2 #include "Midi.h"
3 #include "Variabili.h"
4
5 Midi::Midi(){}
6
7 /* Invio di un messaggio MIDI attraverso la porta seriale
8 Input:
9 cmd = MIDI Status Byte

10 n = MIDI Data byte 1
11 vel = MIDI Data byte 2
12 Output: void
13 */
14 void Midi::outMIDI(int cmd, int n, int vel){
15 if(cmd == noteON){
16 vel = (int) vel/1.6;
17 }
18 Serial.write(cmd); // invia il comando note on, note

off o control change (status byte)
19 Serial.write(n); // invio tono della nota da

suonare (Data byte 1)
20 Serial.write(vel); // invio velocita’ della nota (

Data byte 2)
21 }

Another improvement should be to migrate and modify all the remaining

Chapter 4. Preservation of the human-machine interaction: Technological migration 99

versions of the source code and to implement them. Together with a more
accurate research about every exhibitions the artwork went through, it could
help in not only assessing the evolution of the installation from the artistic
point of view but also to define in detail every DPO record introduced in sec-
tion 4.1.

Conclusion

The thesis has addressed the topic of preservation of interactive multimedia
artworks with a focus on the multilevel preservation model developed by the
CSC group. Its importance in preservation and reactivation is that it consid-
ers artworks through a process of transformation rather than a fixed object. It
defines a way to organize the multiple and heterogeneous components of art-
work into a set of digital preservation objects. An approach to construct DPOs
from the elements of an existing artwork has been presented for the case study
of Il Caos delle Sfere. The artwork was the result of the artistic production of
Carlo De Pirro collaborating with the CSC researchers in 1999. The multilevel
preservation model has been applied for the reactivation of this artwork that
was not presented in public since 2014. The setting of the original installation
has been analysed in detail. The main hardware components and the software
were all stored in the CSC laboratories for years. However, due to the obso-
lescence in the original components and the lack of a detailed documentation,
a technological migration became necessary. The reactivation was carried out
for the first exhibition after years of the artwork at the Science4All dissemina-
tion of 2022 in Padua. In this context, the thesis has discussed the main steps
executed in the reactivation. The main difficulty was to interface the acquisi-
tion board inside the pinball machine via Parallel Port to a modern microcon-
troller board, the Arduino Mega, to replicate the same installation’s acquisition
routine. All the reasons why the Arduino board was selected among multi-
ple potential boards to replace the old PC had been considered. A deep focus
has been given also to the code and the software modification for the Arduino
capability adaptation. From a very object-oriented programming relying on a
external environment named MidiShare – a MIDI event time handler – all the
algorithm has been redesigned to run over a microcontroller board. The the-
sis has also underlined how memory and multithreading issues arose over the
research for the reactivation together with solutions that in the end allowed
an efficient event handling. Both the algorithm defined for the original in-
stallation and for the reactivation have been analysed, especially in how the
in-game actions translate into different algorithm levels and a different final

100

Conclusion 101

musical performance played on the Disklavier. In addition to a more practi-
cal description, the thesis has also considered a new way to implement digital
preservation objects for Il Caos delle Sfere records still in research that will be
refined for future reactivations. It involves a metadata schema as the Dublin
Core which needs however to be refined for the reactivation of interactive mul-
timedia artworks.

Lots of work still needs to be executed, especially to make the reactivation
of the artwork truly complete. A new electronic board should be interfaced
with the pinball circuity. As it was explained in the thesis, a new acquisi-
tion board should be developed to perform pinball data collection, algorithm
processing and MIDI events reproduction. Overall it should be included in-
side the pinball so that the only external piece of instrument would be the
Disklavier. Only after this step, this brilliant artistic production by Carlo De
Pirro would be finally at its real potential.

Bibliography

[1] Midishare: A real-time operating system for musical applications. www://
midishare.sourceforge.net/. Online, accessed: 2022-08-16.

[2] Ieee standard signaling method for a bidirectional parallel peripheral interface for
personal computers, IEEE Std 1284-1994, (1994).

[3] D. ALDEN, How to ”multithread” an arduino (protothreading tuto-
rial). www.create.arduino.cc/projecthub/reanimationxp/
how-to-multithread-an-arduino-protothreading-tutorial-dd2c37,
2016. Online, accessed: 2022-10-23.

[4] ARDUINO S.R.L., Arduino MEGA 2560 Rev3 Product Reference Manual,
2022.

[5] H. BESSER, Longevity of electronic art., in ICHIM (1), 2001, pp. 263–275.

[6] F. BRESSAN AND S. CANAZZA, A systemic approach to the preservation of
audio documents: Methodology and software tools, Journal of Electrical and
Computer Engineering, 2013 (2013).

[7] , The challenge of preserving interactive sound art: a multi-level approach,
International Journal of Arts and Technology, 7 (2014), pp. 294–315.

[8] F. BRESSAN, S. CANAZZA, A.RODÀ, AND N. ORIO, Preserving today for
tomorrow: A case study of an archive of interactive music installations, Pro-
ceedings of WEMIS-Workshop on Exploring Musical Information Spaces,
(2009).

[9] W. J. BUCHANAN, Parallel Port, Springer US, 2004, pp. 641–664.

[10] B. E. CASTRIOTA, Securing a futurity: artwork identity and authenticity in the
conservation of contemporary art, PhD thesis, University of Glasgow, 2019.

[11] G. DE POLI, Standards for audio and music representation, 2020, ch. 10,
pp. 196–205.

103

www://midishare.sourceforge.net/
www://midishare.sourceforge.net/
www.create.arduino.cc/projecthub/reanimationxp/how-to-multithread-an-arduino-protothreading-tutorial-dd2c37
www.create.arduino.cc/projecthub/reanimationxp/how-to-multithread-an-arduino-protothreading-tutorial-dd2c37

104 BIBLIOGRAPHY

[12] A. DUNKELS, O. SCHMIDT, T. VOIGT, AND M. ALI, Protothreads: Sim-
plifying event-driven programming of memory-constrained embedded systems,
in Proceedings of the 4th International Conference on Embedded Net-
worked Sensor Systems, SenSys ’06, New York, NY, USA, 2006, Associa-
tion for Computing Machinery, p. 29–42.

[13] R. EDMONSON, Memory of the world: general guidelines to safeguard docu-
mentary heritage, 2002.

[14] INTERNATIONAL COUNCIL ON ARCHIVES (ICA), ISAD(G): General Inter-
national Standard Archival Description, 2000.

[15] J.AXELSON, Parallel Port Complete: Programming, Interfacing & Using the
PC’s Parallel Printer Port, Lakeview Research, 1996.

[16] MIDWAY MANUFACTURING COMPAMY, Creature From The Black Lagoon, 1
1993.

[17] M. MILIANO, The IASA cataloguing rules: a manual for the description of
sound recordings and related audiovisual media, no. 5, International Associa-
tion of Sound and Audiovisual Archives, 1999.

[18] S. NAHAVANDI, Industry 5.0—a human-centric solution, Sustainability, 11
(2019), p. 4371.

[19] N. ORIO AND C. DE PIRRO, Controlled refractions: A two-levels coding of
musical gestures for interactive live performances., in ICMC, 1998.

[20] C. PEACOCK, Interfacing the standard parallel port, (1998).

[21] J. POMERANTZ, Metadata, MIT Press, 2015.

[22] J. QIANG, Y. GU, AND G. CHEN, Fpga implementation of spi bus communi-
cation based on state machine method, Journal of Physics: Conference Series,
1449 (2020), p. 012027.

[23] C. G. SABA, Media art and the digital archive, Preserving and Exhibiting
Media Art, (2013).

[24] K. STILES, Performance art, Oxford University Press, 2014.

[25] B. STROUSTRUP, The C++ Programming Language, Addison-Wesley Profes-
sional, 4th ed., 2013, pp. 1209–1210.

BIBLIOGRAPHY 105

[26] G. WIJERS, 7.4 obsolete equipment: Ethics and practices of media art conserva-
tion. preserving and exhibiting media art., Preserving and exhibiting media
art, (2014).

[27] YAMAHA CORPORATION, Diskalvier ENSPIRE Owner’s manual, 2016.

	Abstract
	Introduction
	I Preserving Interactive Multimedia Artworks
	1 The multilevel preservation approach of the CSC research group
	1.1 Interactive multimedia artworks and preservation
	1.2 The challenge of preserving and reactivating
	1.3 The multilevel preservation model
	1.4 Application of the model to The time consumes by Michele Sambin

	II A case study: Il Caos delle Sfere by Carlo De Pirro
	2 The original setup
	2.1 Technical description: the nodes characterizing the artwork
	2.1.1 Interaction node
	2.1.2 Communication node
	2.1.3 Playback node

	2.2 Nodes’ interfaces
	2.2.1 DB25 Parallel Port interface
	2.2.2 Nibble Mode overview
	2.2.3 MIDI interface

	3 The algorithm and the C code for the original installation
	3.1 The algorithm
	3.1.1 Evolution over the levels

	3.2 Transmission of MIDI messages

	4 Preservation of the human-machine interaction: Technological migration
	4.1 Il Caos delle Sfere DPO records
	4.1.1 DPO records organization

	4.2 Reactivation of the Il Caos delle Sfere
	4.2.1 The Arduino Mega board
	4.2.2 The replication of the pinball data acquisition
	4.2.3 The hardware of the proposed reactivation
	4.2.4 Multithreading requirement in MIDI sequences generation
	4.2.5 The algorithm and the Arduino sketch

	4.3 Possible future improvements for the technological migration

	Conclusion

