
University of Padova

Department of Information Engineering

Master degree in Computer Engineering

HIGH PERFORMANCE AND BIG DATA COMPUTING

Curricula

Design and development of a continuous

integration and continuous delivery

system for a cloud based web application

Supervisor Candidate

Prof. Carlo Ferrari Sandy Pivato

September 5, 2023

Academic Year 2022-2023

Abstract

The purpose of this work is to describe the process used in order to design

and develop a continuous integration and continuous delivery system for a

cloud based web application in a company scenario. Given the problem of

automatising certain actions the developer had to take, this work show a

solution to this task with different solutions for both testing and deploying

automatically code to a cloud provider setting.

ii

Contents

Abstract . i

List of Figures . vi

1 Background 1

2 Introduction and context 3

2.1 Context . 3

2.2 The Devops methodology . 4

2.3 The tools used . 5

2.3.1 Gitlab CI . 5

2.3.2 Terraform . 6

2.3.3 Kubernetes . 7

2.3.4 Azure . 8

3 The architecture 9

3.1 Summary . 9

3.2 The project scope and description 9

3.3 The Architecture . 12

3.3.1 Front Office Architecture 12

The login system . 13

3.3.2 Back Office Architecture 13

iv CONTENTS

4 Continuous Integration 17

4.1 Summary . 17

4.2 The repository . 17

4.3 The CI . 19

4.3.1 Frontoffice CI . 19

4.3.2 Backoffice CI . 24

5 Continuous Delivery 27

5.1 Summary . 27

5.2 The cloud architecture . 27

5.3 Deployment configuration . 30

5.3.1 Terraform structure . 30

5.3.2 Configuration a microservice deployment 31

5.3.3 Configuration for other resources Deployment 34

5.3.4 Development and Production environment 35

5.4 CD for Infrastructure . 36

5.5 Deployment of a microservice 38

6 Conclusions 41

References 43

Acknowledgements 45

List of Figures

2.1 DevOps chain diagram. 5

3.1 Manager view . 10

3.2 Activity request . 11

3.3 Back office interface . 11

3.4 Front office architecture schema 12

3.5 Login system schema . 13

3.6 Back office high level schema 14

3.7 Back office’s core system schema 15

4.1 Frontend for frontoffice . 17

4.2 Repository for backoffice . 18

4.3 Monorepo for frontoffice backends 18

4.4 Stages of frontoffice’s frontend CI 19

4.5 Test stage for frontoffice’s frontend 20

4.6 Test stage for frontoffice’s frontend in the pipeline 21

4.7 Build stage for frontoffice’s frontend 22

4.8 Build stage for frontoffice’s frontend for dev and prod 23

4.9 Build stage for frontoffice’s backend 24

4.10 Test stage for backoffice’s frontend 25

4.11 Build stage for backoffice’s frontend 25

vi LIST OF FIGURES

4.12 Test stage for backoffice’s backend 26

4.13 Build stage for backoffice’s backend 26

5.1 Cloud Architecture . 29

5.2 Terraform Code structure . 30

5.3 Backoffice backend deployments templates 33

5.4 Application.tf file for Backoffice backend 34

5.5 CD for Infrastructure . 37

5.6 Pipeline for Infrastructure . 38

5.7 CD for Backoffice backend . 39

5.8 Full pipeline for Backoffice backend 39

1 | Background

Web application development and deployment in today’s fast-paced digital

landscape requires efficient and flexible design. The advent of cloud com-

puting has changed the way applications are developed, deployed and man-

aged. The rise of software development projects has necessitated the adoption

of agile methodologies and the automation of development life cycle stages

Continuous Integration (CI) and Continuous Delivery (CD) have emerged as

important practices in software development, and enables teams to quickly

deliver high-quality applications

This thesis aims to describe the design and development of a system for

continuous integration and continuous delivery of cloud-based web applica-

tions in a corporate environment, developed in an internship program

Continuous Integration tackles problem of having coherent and qualitative

codebase by automating the process of merging code changes and running

a series of tests to detect any issues at an early stage. By integrating code

frequently, teams can identify and fix bugs quickly, resulting in more stable

and reliable software.

On the other hand, Continuous Delivery takes the concept of Continu-

ous Integration a step further by automating the deployment process. This

ensures that the application is constantly updated with the latest codebase

integration, allowing teams to deploy updates to production or other envi-

2 Background

ronments with minimal effort. This eliminates the need for manual steps

and reduces the risk of human error, making the deployment process more

efficient and reliable . This also allows the application to be released in devel-

opment and production environments, removing implementation responsibil-

ities from developer. For cloud-based web applications, the benefits of adopt-

ing a CI/CD framework are essential to ensure a well-managed application

release. In particular, manually managing deployments and infrastructure

configurations can be time consuming and error prone. By implementing

a CI/CD framework tailored to specific cloud environments, manufacturers

can provide applications for cloud deployment robust and easy to operate

and maintain.

2 | Introduction and context

2.1 Context

The work for this thesis is the result of an internship program I did during

the time of six months inside a software development company. The goal of

the program was to build an internal tool for employees management starting

from scratch, using the latest and most modern technologies and methodolo-

gies for web development. The team was composed by 8 interns, supervised

by a senior architect and a project manager. The whole project was developed

in an agile environment, following the DevOps methodology. Every intern

had his specific field of expertise, both functional and technical. The func-

tional roles had the goal of understanding and develop functional solutions

starting from the client functional requirements. The technical team, which

I was part of, had the goal of understanding the functional solutions pro-

posed by the functional team, and translate them into technical and working

solutions. The technical team had several back-end and front-end develop-

ers. My role in the team was the architectural and devops engineering tasks.

In particular, I was in charge of design and develop of the architecture and

CICD for the project. The main tools used for this purpose were: Gitlab

CI, Terraform and Azure cloud. Gitlab CI is the core tool for the project,

since is the trigger for the whole CICD. In chapter 4, I’m going to explain

4 Introduction and context

detail the continuous integration strategy which was used in the project. In

Chapter 5, I am going to explain the continuous deployment part, which will

trigger the Terraform tool to deploy on Azure cloud

2.2 The Devops methodology

As mentioned above, my role in the team was to apply the DevOps method-

ologies to the project. To better understand and present my role, it is useful

to give a brief introduction to the role of the DevOps and the aforementioned

methodologies. DevOps is a combination of software development (dev) and

operations (ops). It is defined as a software engineering methodology which

aims to integrate the work of development teams and operations teams by

facilitating a culture of collaboration and shared responsibility. [1] There

are differente key principles of the DevOps culture and methodology, but

the most important is the concept of automation: This includes automating

testing, builds, releases, the provisioning of development environments, and

other manual tasks that can slow down or introduce human error into the

software delivery process. In figure 2.1 ,are shown the important steps of

the DevOps methodology. The first part, namely the ”Dev” part, is related

to the integration of code to the codebase. The code must be build and

tested properly. The release is the conjunction between the Dev and the Ops

part: the validated code, must be put in production with a coherent release

schedule. The second part, the ”Ops” part, ensure the correct deployment

of the code into the infrastructure, check if everything works fine during the

life cycle of the release and monitor the performance. In the end, a new plan

of features restarts the chain. This methodology is widely used in modern

software development teams, and was therefore chosen a a methodology for

2.3 The tools used 5

the internship I took part into.

Figure 2.1: DevOps chain diagram.

2.3 The tools used

2.3.1 Gitlab CI

The whole project used Gitlab as versioning tool to store and manage the

repositories of the code. The choice was made to leverage it’s powerful inte-

grated CICD tool: other versioning tools needs the use of third party tool like

Jenkins or Chef, while Gitlab provides a strong native integration with the

CICD. In particular, as I will describe in later chapters, Gitlab CI provides

the ability to run the whole CICD within the codebase with ease and a lot

of customization possibilities. Some notables examples, used in the project,

are:

• The possibility to write the configuration file directly in the codebase,

with automatic recognition of it, without the need of connecting it in

complex ways.

6 Introduction and context

• The possibility to modify the configuration directly from the Gitlab

interface and to have a quick feebdack about errors.

• The possibility to store variables useful directly in the repository and

modify them.

• A great native kubernetes compatibility.

2.3.2 Terraform

Infrastructure as Code (IaC) is the managing and provisioning of infras-

tructure through code instead of through manual processes. [2] HashiCorp

Terraform is an infrastructure as code tool that lets the user define cloud

resources in human-readable configuration files that you can version, reuse,

and share. [3] The tool was used to provision and manage the whole CD part

of the CICD. As I am going to explain in more detail in chapter 5, the Gitlab

CI triggers a Terraform application which has several roles:

• Check the current state of the infrastructure by retrieving information

about it through APIs.

• If it detects changes at the cloud resource level, compare the current

version to the newly created.

• Apply the incoming changes and assures the correct deployment.

A Terraform core concept are the ”providers”. Each cloud provider has

it’s own APIs and needs a tailor made IaC connection, with keywords and

properties. Inside each provider, are defined the ”resources”, which are the

possible piece of infrastructure which can be built through the use of the

said provider. The resource management and creation is the main feature

2.3 The tools used 7

of an IaC tool and is has been used extensively in the project. Terraform

was chosen instead of other competitors because it has a wide community

to support it, an official Azure support for the provider and it’s open source

design. The main drawback of using Terraform is it’s steep learning curve:

other competitors let the user use the IaC tool with know programming

languages like Python and Go, while Terraform has it’s own programming

language (HCL), which can be cumbersome when learning it.

2.3.3 Kubernetes

Kubernetes (k8s for short) is an open-source container orchestration plat-

form that automates the deployment, scaling, and management of container

applications. [4] Originally developed by Google, it is now managed by the

Cloud Native Computing Foundation (CNCF). Kubernetes provides a frame-

work for managing the deployment and performance of application containers

across hosts. It pulls out the underlying components and provides a unified

API for container management, allowing developers and operations teams to

focus on application logic rather than infrastructure issues

Applications in a Kubernetes environment are executed through contain-

ers (usually using Docker) with their dependencies and runtime environ-

ments. Kubernetes then takes care of distributing these containers across

a cluster of machines, ensuring high availability, scalability and optimal re-

source utilization. It performs functions like container scheduling, load bal-

ancing, scaling, rolling updates and self-healing. In the project, kubernetes

service is provided by Azure and it’s responsible for managing the containers

of our different microservices

8 Introduction and context

2.3.4 Azure

A cloud service provider is an IT company that provides on-demand, scalable

computing resources like computing power, data storage, or applications over

the internet. [5] Microsoft Azure is a public cloud computing platform widely

used in the industry which can provide all the needed tools for a develop-

ment team to host applications without the need of building a architecture

of servers and resources locally. [6] In the project, Azure was chosen as

the cloud provider instead of other competitors because of internal company

agreements for usage licenses.

3 | The architecture

3.1 Summary

In this chapter I will present the architecture of the project by showing

different aspects and choices made to design the core feature of the project,

to satisfy the needed requirements.

3.2 The project scope and description

As mentioned in the introduction, the project had the goal to create from

scratch an internal employee management tool. I will now explain in more

detail the structure of the project, to better understand the choices made

during the design of the architecture part. In brief, the final product devel-

oped by team was divided in two parts: front office and back office. The

front office is the part where the final user interacts. There are different kind

of users, each with its own view and restrictions. In particular, is useful to

describe some roles:

• The consultant: is the least powerful user. The said user does hot have

the visibility on other consultants and can only manage certain parts of

the tool. The consultant can insert certain activities on the tool, each

with a specific value, to the request some reward. This system was one

10 The architecture

of the core requirements of the project and it took the name of ”Alten

grains”.

• The manager: the manager has the visibility on all the consultants in

its team. The manager can approve or deny the grain requests and gets

notified with an email when a new request is created.

• The system administrator: has the same visibility and restriction as a

normal consultant but has a special access to the back office part of the

tool

Figure 3.1: Manager view of the front office dashboard

3.2 The project scope and description 11

Figure 3.2: Request of an activity from a consultant

The back office on the other hand is only accessible and managed by the

system administrator. The purpose of this part of the tool is to monitor the

performances of the platform and to manage the different agencies of the

company, ”Tenants”, by initializing and populating the users. The system

administrator can also create and mange the roles of the users.

Figure 3.3: Back office interface

12 The architecture

The architecture for front office was a work of multiple people which I

was part of, at the start of the internship, so I am going to briefly describe it

as it is needed to understand the rest of the architecture. On the other hand,

I was in charge of design the architecture for the back office part, which I am

going to explain in detail in this chapter.

3.3 The Architecture

3.3.1 Front Office Architecture

Figure 3.4: Front office architecture schema

This schema is fairly complex and alone would be worthy a lot of time and

explanation, which are outside the scope of this work. Something worth

noticing is that each and every system present in the image contains one or

more micro services connected with each other trough APIs. In particular is

in the interest of this work to explain with more attention the login system,

since it is shared between front office and back office.

3.3 The Architecture 13

The login system

In the requirements for the project, it was required that the tool must be

accessed with the company’s credentials, which are store in a Microsoft Active

Directory. This has been proven as a challenging problem. Our login system

was therefore based on MSAL (Microsoft Authentication Library) [7]. The

protocol works as shown in the picture below. When performing the login,

the application sends the autorization request with, username and password,

to the Microsoft auth service which, if the credentials are present in the active

directory, sends back an encrypted access key, named JWT token. This token

then gets converted to a new format specific for the application and used by

other micro services to perform their duties.

Figure 3.5: Login System schema

3.3.2 Back Office Architecture

Let’s now focus on the architecture for the back office, which will be essential

to understand better the steps behind the automation of the processes thanks

to the CICD. To better comprehend the architecture, which schema is in

14 The architecture

figure 3.7, let’s describe before the high level schema of the back office.

Figure 3.6: Back office high level schema

A system administrator, which gets its role defined manually in company’s

active directory, needs to interface, through the UI shown in figure 3.3, with

the Core system I am going to describe in depth below. The Core System

then, interacts through RestApi with the Front Office to provide the needed

information.

Let’s dive deeper into the Core System to better understand how the

architecture is designed, as shown in figure 3.7

3.3 The Architecture 15

Figure 3.7: Back office’s core system schema

The System administrator, trough the UI, connects to the frontend, which

was developed in Angular. This is the entry point of the schema. The fron-

tend, communicates through RestApi with the Tenants backend, which is the

backend responsible for the CRUD operations for the different tenants of the

company, and the monitoring backend, which is responsible to retrieve and

process statistics and for the whole system and produce the output shown in

figure 3.3. The Tenant’s backend is also connected to a PostgreSQL database,

made to store the information provided by the backend, and the Azure stor-

age account. The Azure storage account is a particular kind of database

which stores ”blob” files. This file are binaries, and its purpose is to let us

store images for the tenants and the logs from the statistics. The storage

is also connected to the Azure function, a particular code developed using

Azure integrated tools, which let us read and manipulate the logs and inject

16 The architecture

SQL to the database to save chunks of logs useful for the backend. This latest

part will be described more in depth in chapter 5 while describing the cloud

architecture for the project. This explanation concludes the description of

the architecture designed for the project. In the next chapter, I am going to

focus on the automatisation and the CICD, the core of this elaborate.

4 | Continuous Integration

4.1 Summary

The importance continuous integration has already been discussed in previous

chapters of this work. In this chapter, after a brief description of the codebase

structure, I will describe in depth how I design and integrate a fully functional

continuous integration system and show some remarks of this task.

4.2 The repository

Before describing the continuous integration of the code, is important to take

a quick look at the project structure to understand better how the code is

actually integrated in the codebase. There are conceptually 3 projects: the

front office project, the back office project and the infrastructure project.

Being two different and separated websites, both front office and back office

include a frontend and a backend each.

Figure 4.1: Frontend for frontoffice

18 Continuous Integration

Figure 4.2: Repository for backoffice

There is an important difference between frontoffice and backoffice struc-

ture. Both projects are microservice based but, being a complex and big

architecture project, frontoffice used a different approach for backend called

monorepo. In the context of microservice based applications, a monorepo

[8] is a repository which contains multiple microservices, sharing the same

CICD. This opposes to the multirepo strategy, in which every microservice

has its own repository, with its own CICD. The choice has been made to ease

the collaboration between the team, to ease and standardise the implementa-

tion of unit and integration tests through a single CICD and to make easier

to see the contribution of each member of the team to the project.

Figure 4.3: Monorepo for frontoffice backends

4.3 The CI 19

4.3 The CI

As already presented, Continuous integration (CI) is the practice of automat-

ing the integration of code changes from multiple contributors into a single

software project. [9] In projects we have two different CIs, one for frontoffice

and one for backoffice. Conceptually the two are similar, but they present

some differences which will be explained in this chapter. The definition of

CIs jobs are all contained in a .gitlab-ci.yml file.

4.3.1 Frontoffice CI

For frontoffice project, two pipelines needed to be built, one for frontend

and one for backend. Let’s start analyzing the CI for frontend. The CI is

composed in different stages, shown in figure 4.4

Figure 4.4: Stages of frontoffice’s frontend CI

In this sections I will describe the test and build stages, while the others will

be described in depth in the next chapter as the core of the CD.

The test stage, as shown in figure 4.5 is used to perform unit tests and

produce a document in xml format which contains information about tests,

reporting the percentage of code covered by unit tests. The higher this value,

the better. For our intership, we decide to keep the code coverage higher than

20 Continuous Integration

85% but not to refuse a merge request if that would put the percentage lower

than the threshold. This is risky and in production conditions should be

avoided, but for the sake of simplicity we decided just to deliver a warning

in the page and keep the 85% threshold as a good practise rule.

Figure 4.5: Test stage for frontoffice’s frontend

The core command to launch tests is the ”npm run test:ci” command.

This command, under the keyword ”script” of the .gitlab-ci.yml file, is set

by the frontend developers to do multiple actions,: the check of code linting,

security tests, end to end tests and unit tests. Some of the test, in particular

the end to end, are allowed to fail with a warning to the developer.

4.3 The CI 21

Figure 4.6: Test stage for frontoffice’s frontend in the pipeline

Let’s continue with the build stage. This stage has the goal of test the

correct build of the application code. The main challenge is to ensure envi-

ronment variables are correctly injected into the application, which is done

directly through the pipeline itself. This stage also add a new challenge. In

the project we set up two different environment: development and produc-

tion. In this stage of the CI is important to test the integration of both

environment. As a design choice, every development variable, link and URL

needs to contain the .dev string. In this case, we just need to append the

string for dev environment and omit it for production. From the CI point of

view, that translates into using the ENV URL TAG where needed. The one

shown in figure 4.7 is a template shared between development environment

and production environment, while in figure 4.8 is shown the implementation

of the difference between the two enviroments. In this stage, is also notewor-

thy to check the rule

- if: $CI COMMIT BRANCH == $CI DEFAULT BRANCH

This is the first example of a design choice that will be used multiple time in

22 Continuous Integration

the CICD of this elaborate. The rules uses some native environment variables

of gitlab and the meaning of this rule is the following: ”run this stage only if

the branch where the code is pushed is the main branch”. In other words, we

want to run this stage only if the feature is fully developed and merged with

the main branch to be deployed in production. This is a common practise

to avoid developers to push their feature branch in production environment

before passing the needed quality checks.

Figure 4.7: Build stage for frontoffice’s frontend

4.3 The CI 23

Figure 4.8: Build stage for frontoffice’s frontend for dev and prod

This concludes the CI for frontend application for the frontoffice. Con-

ceptually all the other CIs are very similar so I’ll focus on the differences

between them. For the backend microservices of the frontoffice, as stated

before, I develop have one single CI for all the different microservices. The

test stage is very similar, just using different commands to comply with the

language requirements. The build stage too is very similar, but needs a tweak

in order to work with the monorepo approach. When merging a new branch

to the main, the system detects if there are changes in the common folder

for all microservices, which contains shared utilities between them. If there

are changes, that will trigger a build for all the microservices. If there are no

changes in that folder, it’ll only build the microservices modified. The code

is shown in figure 4.9

24 Continuous Integration

Figure 4.9: Build stage for frontoffice’s backend

4.3.2 Backoffice CI

Being two similar project, I develop the CI for the backoffice is a similar

fashion. The programming languages here are different so the tools used are

different too, but the same concepts remains valid. There are two stages, the

test and the build, which follow the same logic described before. One note-

worthy change is that, in the build stage for frontend, there is no difference

between development and production anymore. This is justified by the fact

that, being a smaller project, there are no difference in terms of variables be-

tween development and production environments.4.11 Another noteworthy

change is the addition of a separate code coverage stage in backend pipeline.

This change is due to the decision of putting a hard limint to the code cover-

age: using a tool named ”jacoco” I decided to limit the coverage to 85% . The

merge request will fail if the code coverage il below that threshold. Figure 4.12

4.3 The CI 25

Figure 4.10: Test stage for backoffice’s frontend

Figure 4.11: Build stage for backoffice’s frontend

26 Continuous Integration

Figure 4.12: Test stage for backoffice’s backend

Figure 4.13: Build stage for backoffice’s backend

This concludes one of the two main parts of this elaborate. In the next

chapter I will describe the second part, the continuous delivery system I

design for this project.

5 | Continuous Delivery

5.1 Summary

In this chapter I will explain in details the continuous delivery system I

implemented for the project. After explaining in depth the cloud architecture,

I will explain how I used the gitlab CICD to automate the process of deploying

new features in cloud provider.

5.2 The cloud architecture

In chapter 3 I described the architecture of the whole prject, focusing more

on the important microservices and communication between them. The goal

of this paragraph is to describe the architectural decisions taken for the cloud

part of the infrastructure. A schema of the architecture is shown in figure

5.1. The whole architecture is contained in Azure Cloud as stated in the in-

troduction. All the microservices for both backoffice and frontoffice are man-

aged through an orchestrator, Azure Kubernetes Service (AKS) provided by

Azure itself to be fully compatible with the Cloud platform. AKS manages

the workload, the network and the availability of the containers for appli-

cation’s microservices. The docker images for the microservices are stored

in the Azure Container Registry (ACR). As I will describe later, the CICD

28 Continuous Delivery

pushes the new code versions to the ACR directly, and the microservices

fetch the new images from the registry. Frontoffice saves the data in a non

relational database, CosmosDB. CosmosDB is a database managed by Azure

platform which mantains and provides noSQL structure dabatase to Azure

services. [10]. CosmosDB has been chosen because of the need of a noSQL

database for frontoffice. This needs comes from having a lot of different kind

of data which do not fit well the SQL structure. Instead, the noSQL structure

gave us the possibility to manage in a cleaner and quicker way the different

entities for the project. Having this need, CosmosBD was chosen over more

known noSQL databases because of it’s native integration with Azure Cloud.

Another core component of the architecture is the Azure Storage Account.

An Azure storage account contains all Azure Storage data objects: blobs,

files, queues, and tables. [11]. In particular, in this project, we used two

feature of Storage Account: Azure Blob Storage and Azure Queue Storage.

Azure Blob Storage is Microsoft’s object storage solution for the cloud. Blob

Storage is optimized for storing massive amounts of unstructured data. Un-

structured data is data that doesn’t adhere to a particular data model or

definition, such as text or binary data [12] . The need for this particular way

of storing data came from the amount of images present in the back office

project. Each tenant has multiple images associated to it and therefore the

need to store them in the most appropriate way. The images are stored in

Blob Storage as binaries and retrieved by tenant’s backend to associate them

to each tenant. LogBuilder, as the name suggests, is the function responsible

of managing the log of the application. This function is developed trough a

cloud native tool, Azure Function, which natively communicates with other

Azure components to make easier to build, read and post meggages to the

message brokes, which in this case is Azure Queue Storage. Messages are sent

5.2 The cloud architecture 29

to microservices by this message broker and saved to a PostreSQL database,

also managed by Azure Cloud.

Figure 5.1: Cloud Architecture

This concludes the description of Cloud architecture for the project. In the

next session I’ll explain how this architecture is automatically managed with

Terraform and how the code is finally made available to the cloud using the

CICD.

30 Continuous Delivery

5.3 Deployment configuration

5.3.1 Terraform structure

When deploying a cloud architecture, there are two choices. The first one, the

more classical, is managing the architecture manually. This creates various

problems, like synchronization problems, versioning and less control over the

evolve of the infrastructure. The second choice, the one made for the project,

is to use an infrastructure as a code (IaaC) tool. In this case, as described

in chapter 2 , Terraform has been chosen as the core tool to manage our

infrastructure.

To understand how the infrastructure is managed through Terraform let’s

take a look to its configuration. I will describe in depth one microservice to

not stretch the dissertation, since the deployment of each microservice fol-

lows the same logical approach.

Figure 5.2: Terraform Code structure

I briefly explain each folder and file to focus more on the key ones.

• .terraform folder contains all the terraform files needed for the correct

usage of the tool

5.3 Deployment configuration 31

• charts contains all the Helm Charts for the microservices. I’ll explain

in more details what a helm chart is in the following paragraph

• deployments contains the deployments value for the microservices

• function-app contains the binaries for the afore mentioned LogBuilder

service

• .gitlab-ci.yaml is the CICD for infrastructure file, which will be describe

in depth in the next session

• each .tf file contains the definition of different parts of the infrastructure

suggested by the name.

• default.tfvars prod.tfvars files contain the definition f the different vari-

ables needed for production and development environment.

As previously said, in the next session I’ll take a microservice as example

and describe how its deployment works.

5.3.2 Configuration a microservice deployment

When a microservice is developed in local and needs to be put in the cloud,

the first step is to create a Helm Chart for it. Helm is a tool that automates

the creation, packaging, configuration, and deployment of Kubernetes appli-

cations by combining the configuration files into a single reusable package.

[13].A chart is a collection of files that describe a related set of Kubernetes

resources [14]. In particular, here I’m using helm Charts to create the re-

sources templates needed for the microservice.

The helm chart contains the definition of the microservice used by other files

32 Continuous Delivery

metadata to correctly deploy the application. Each microservice needs the

following kubernetes resources to be deployed:

• A ConfigMap, which is where the needed values of the environment

variables are set

• A Deployment which is the file setting the values of the image for the

container and connecting the ConfigMap to it.

• An Ingress which specifies how to setup the external access to the clus-

ter and the containers

• A Secret where the sensitive data are stored

• A Service which exposes needed network ports to the containers.

The Helm chart for this configuration contains the template for each of these

resources. The template for the values is also present in the Helm chart. This

is used to populate the chart with the right variables values, specified in the

application.tf file. The following figure 5.3 contains an example of the files

needed for the deployment of the backoffice backend microservice.

5.3 Deployment configuration 33

Figure 5.3: Backoffice backend deployments templates

The application.tf file is a particular file that uses the integration between

Terraform and Helm to provide the Helm chart the right values for the vari-

ables 5.4. To deploy different parts of the infrastructure, Terraform uses the

”resource” type. The Helm release resource is a resource which, by specifying

34 Continuous Delivery

the templates, let’s the developer manipulate helm variables by giving them

Terraform provided values. This is very convenient because it creates an in-

ternal link between the dinamically allocated variables by Terraform and the

templates

Figure 5.4: Application.tf file for Backoffice backend

The procedure is the same for each microservice created for the project.

5.3.3 Configuration for other resources Deployment

In the previous section I described how to prepare the configuration to deploy

a microservice,but there are plenty of other resources needed for the cloud

system to work. Terraform lets the developer manage all the resources trough

itself. Once connected to the Azure Cloud through the azurerm backend

configuration, with the storage account and the key to access it, by creating

resources I managed to create the architecture present in the previous chapter

using the Azurerm provider [15]. The following resources are used to create

the Azure Cloud environment:

5.3 Deployment configuration 35

• azurerm container registry to connect the ACR to Terraform and re-

trieve information for the microservice image

• azurerm public ip, azurerm dns a record, azurerm virtual network, azur-

erm subnet, azurerm private dns zone are used to create and manage

the network for the project.

• azurerm kubernetes cluster is used to create the kubernetes cluster on

top of the requested physical machines.

• azurerm cosmosdb account, azurerm postgresql server, azurerm storage container,

azurerm storage queue and azurerm function app to manage the databases,

the blob storage, the queue storage the and the azure function deploy-

ment

Through the modification of these files and usage of these providers, is

possible to create a fully functional cloud infrastructure by using Terraform.

5.3.4 Development and Production environment

While developing a web application is fundamental to have at least two dif-

ferent environments:

• A development environment where developers can see their features

hosted directly in the cloud, instead than see them in their local ma-

chines. This step is crucial for testing purposes as it allows to test the

new feature integration with the other parts of the application. This

environment is prone to bug and can sometimes have some down time

• A production environment where the final users navigate and use the

features developed. It is important to have a stable and bug less en-

36 Continuous Delivery

vironment so only carefully tested features can be deployed in this

environment.

To achieve this goal, I used Terraform Workspaces. Workspaces in Terraform

are simply independently managed state files. A workspace contains every-

thing that Terraform needs to manage a given collection of infrastructure, and

separate Workspaces function like completely separate working directories.

It is possible to manage multiple environments with Workspaces. [16] In par-

ticular, I have implemented two different workspaces, the Default workspace

and the production workspace. These two workspaces are essentially the

same but use different variables, default.tfvars and production.tfvars.

In the next section, I’ll explain how all the changes of the infrastructure

are automatically managed by the infrastructure CICD.

5.4 CD for Infrastructure

Being conceptually very different from the other microservices, the Infras-

tructure repository is separated from the others described in chapter 4. For

the same reason, the infrastructure needs a different pipeline for continuous

deployment. Again, the behaviour of the pipeline is set in the .gitlab-ci.yaml

file. The pipeline has two steps: Terraform plan stage, Terraform apply stage.

The Terraform plan stage is essential to setup the Terraform environment by

starting the Terraform backend. In this stage, the Terraform Workspace is

also chosen. The logic behind the workspace choice is the following:

• If the commit is made a code branch, the workspace is the default

workspace

• If the commit is in the master branch, two different jobs are created,

5.4 CD for Infrastructure 37

the terraform:dev:plan and the terraform:prod:plan, each using the re-

spective variables.

The Terraform plan stage goal is to retrieve information about the current

state of the infrastructure and to show the user the future possible changes

that the next stage would apply. By design choice, the terraform:dev:plan is

always executed while being in the master branch, while the terraform:prod:plan

must be executed manually from the Gitlab UI. The choice is made to make

sure that a developer wants to push new code in production. An output

file using the naming convention COMMIT SHA.plan is produced to be re-

viewed and kept. A similar strategy is used for the other stage, the apply

stage. The goal of this stage is to apply the new configuration to the infras-

tructure. Again, for terraform:dev:apply the procedure is automatic, while

for terraform:prod:apply the developer must perform a manual action.

Figure 5.5: CD for Infrastructure

38 Continuous Delivery

There is also a third stage, the rollout stage. This stage, even if its technically

part of the infrastructure pipeline, only gets triggered by the deployment of

a new microservice, which I am going to describe in the next section.

Figure 5.6: Pipeline for Infrastructure

5.5 Deployment of a microservice

As anticipated in chapter 4, in this section I will describe how a microservice

is deployed on the infrastructure. As stated before, there are two stages

missing from image 4.4, the docker and the deploy stage. The Docker stage

is the stage responsible for the docker actions needed to successfully deploy

an image. In this stage, the code gets built into a docker image with a

specific naming convention given by the name of the microservice and a

tailor made image tag, which gets defined by the commit number to identify

it. Then, after automatically login to the image registry, the image gets

pushed to the aforementioned ACR, where it will be stored to be retrieved

in the next stage. At this point, the image is successfully saved into the

container registry, but the infrastructure is still not using the current image,

since it needs to be updated from the previous one. To perform this action,

the deploy stage performs an action which is called ”kubernetes rollout”. As

stated before, this action is performed by the infrastructure pipeline, which,

after being referenced by the deploy stage, triggers a restart of the newly

pushed microservice and a fetch for the new image in the registry.

5.5 Deployment of a microservice 39

At the end, a check of the status is performed to confirm the success of the

action.

Figure 5.7: CD for Backoffice backend

Figure 5.8: Full pipeline for Backoffice backend

40 Continuous Delivery

6 | Conclusions

The goal of this project was to provide a solution for the task of developing

an automated pipeline composed by an continuous integration and a contin-

uous delivery parts in a enterprise environment. The proposed solution uses

multiple industries well known methodologies and tools and uses them to de-

velop a tailor made solution to follow the needs of a project developed from

scratch. After studying and creating the design of the architecture, using

the pipeline described in this work, the team was able to reach the goal of

developing a fully functional web application hosted and deployed on Azure

cloud. The application is currently used as a management tool by hundreds

of employees every day, showing the solidity of the chosen architectural solu-

tions. The solidity of solution adopted can be quickly and easily reproduced

in future works expanding it to multiple and different clients, thanks to the

success obtained by this project.

42 Conclusions

Bibliography

[1] Atalassian, “Key devops principles.”

[2] RedHat, “What is iac.”

[3] HashiCorp, “What is terraform.”

[4] RedHat, “What is kubernetes?.”

[5] C. provider, “What is a cloud provider.”

[6] Microsoft, “What is azure.”

[7] Microsoft, “What is msal.”

[8] T. Fernandez, “Release management for microservices.”

[9] Atalassian, “What is continuous integration?.”

[10] Microsoft, “Welcome to azure cosmos db.”

[11] Microsoft, “Storage account overview.”

[12] Microsoft, “Introduction to azure blob storage.”

[13] CircleCI, “What is helm? a complete guide.”

[14] Helm, “Helm charts.”

44 BIBLIOGRAPHY

[15] Azure, “Azure provider.”

[16] A. Patel, “Terraform workspaces overview.”

Acknowledgements

With the conclusion of this work, my academic journey comes to an end. I

would like to show appreciation towards my supervisor Prof. Ferrari Carlo

for the help and the patience. I’d like to thank my company tutors Mas-

simo Gengarelli and Nicolas Launay for the daily sustain both technical and

personal they gave me during the internship program and Virginie Prion

for giving me the opportunity to participate to this experience. A special

thanks goes to my fellows interns: Alessandro, Amedeo, Charly, Elisa, Gre-

gory, Maxime, Saurav, Sirine and Tommy. A special thanks to Alessandro,

Sirine and Tommy, being the best team members one could desire.

I must thank my parents for the unconditional support and for belivieng in

me during these sometimes rough years. Thanks Giorgia for being not only

a partner but also a friend, family and a pillar during these long years we

spent together in Padova. Thanks to my friends, Noemi, Alessandro, Memes

group, life lasting friends and all the rest whom I am grateful to have had by

my side all these years.

Thank you.

46 BIBLIOGRAPHY

ITA

Voglio ringraziare i miei genitori per il supporto incondizionato e per aver

creduto in me durante tutti questi, a volte complicati, anni. Grazie a Giorgia

per essere non solo una partner, ma anche amica, famiglia e pilastro durante

tutti questi anni che abbiamo passato assieme a Padova. Grazie ai miei am-

ici, Noemi, Alessandro, gruppo Memes, amici di una vita e tutti gli altri. Vi

sono grato per avervi avuti al mio fianco durante tutti questi anni.

Grazie.

”A man’s dream, will never end!”

	Abstract
	List of Figures
	Background
	Introduction and context
	Context
	The Devops methodology
	The tools used
	Gitlab CI
	Terraform
	Kubernetes
	Azure

	The architecture
	Summary
	The project scope and description
	The Architecture
	Front Office Architecture
	The login system

	Back Office Architecture

	Continuous Integration
	Summary
	The repository
	The CI
	Frontoffice CI
	Backoffice CI

	Continuous Delivery
	Summary
	The cloud architecture
	Deployment configuration
	Terraform structure
	Configuration a microservice deployment
	Configuration for other resources Deployment
	Development and Production environment

	CD for Infrastructure
	Deployment of a microservice

	Conclusions
	References
	Acknowledgements

