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Abstract

Ballistic capture is a natural phenomenon with important potential for the
saving of propellant in interplanetary orbits and for exploration of asteroids.
It exploits the interactions of two celestial bodies (Sun and a planet) to insert
in an orbit around the planet and spend there a period more or less long. In
this work the circular restricted three body problem (CRTBP) is analyzed us-
ing curvilinear coordinates for the synodic frame. A trajectory is considered
ballistic captured when it spends a significant period with negative keplerian
energy with respect to the planet. Thanks to these simple considerations, a
detailed analysis of trajectories leading to capture is developed when Jacobi
constant has a high value, that is to say when zero velocity curves are only
slightly open around the planet and therefore around Lagrangian points L1
and L2. An algorithm implemented in MatLab is developed to perform what
said above and to compute peculiar features of the trajectories obtained,
such as orbital keplerian elements of the orbit of origin. A large number of
examples, important considerations and typical patterns of the capture are
obtained from this study, where cases with one between Jupiter, Mars and
Earth as the planet orbiting the Sun are analyzed. Finally, a preliminary
investigation into the potentialities of the use of these trajectories for inter-
planetary missions is conducted, which shows possible savings of propellant
to reach Jupiter or Mars.



Abstract

La cattura balistica è un fenomeno naturale con potenzialità importanti per il
risparmio di propellente in orbite interplanetarie e per l’esplorazione di aste-
roidi. Essa sfrutta le interazioni di due corpi celesti (Sole e un pianeta) per
inserirsi in orbita del pianeta e restarvi per tempi più o meno lunghi. In que-
sto lavoro è analizzato il problema circolare ristretto dei tre corpi (CRTBP)
utilizzando delle coordinate curvilinee per il sistema di riferimento sinodico.
Una traiettoria viene considerata catturata balisticamente quando trascorre
un tempo notevole con energia kepleriana negativa rispetto al pianeta. Con
queste semplici considerazioni viene svolta una analisi dettagliata delle tra-
iettorie che conducono a cattura quando la costante di Jacobi ha un valore
elevato, cioè quando le zero velocity curves sono solo leggermente aperte in-
torno al pianeta e quindi ai punti Lagrangiani L1 e L2. Un algoritmo viene
implementato in MatLab per svolgere quanto detto sopra e per calcolare le
particolari caratteristiche delle traiettorie ottenute, come gli elementi orbitali
dell’orbita di origine. Un gran numero di esempi, importanti considerazioni
e schemi tipici della cattura sono ricavati dal presente studio, dove sono ana-
lizzati i casi in cui il pianeta che orbita intorno al Sole è uno tra Giove, Marte
o la Terra. Infine viene condotta una ricerca preliminare sulle potenzialità di
queste traiettorie per le missioni interplanetarie, che mostrano un possibile
risparmio di propellente per raggiungere Giove o Marte.



Contents

Introduction 5

1 Third body perturbation 7

1.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2 Initial material . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3 Ode45 e ode113 . . . . . . . . . . . . . . . . . . . . . . 8
1.1.4 New implementations . . . . . . . . . . . . . . . . . . 10

1.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Jacobi variation changing the integration tolerance . . 12

1.3 Examples of results . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Orbit around the second primary (Earth) . . . . . . . 13
1.3.2 Orbit around the first primary (Sun) . . . . . . . . . . 13
1.3.3 Other orbits . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Flyby at Mars . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.1 Analysis of external flyby . . . . . . . . . . . . . . . . 19
1.4.2 Analysis of the internal flyby . . . . . . . . . . . . . . 20

1.5 Copenhagen Problem . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.1 Flyby in the Copenhagen Problem . . . . . . . . . . . 25

2 Implementation of curvilinear coordinates for CRTBP 27

2.1 Parametrization of curvilinear coordinates . . . . . . . . . . . 27
2.2 Motion in curvilinear coordinates . . . . . . . . . . . . . . . . 29

2.2.1 Equations of motion . . . . . . . . . . . . . . . . . . . 29
2.2.2 Jacobi constant in curvilinear coordinates . . . . . . . 30
2.2.3 Jacobi constant in orbital parameters . . . . . . . . . . 30
2.2.4 From keplerian elements to curvilinear coordinates . . 31

2.3 Comparison between curvilinear and Cartesian . . . . . . . . 31
2.3.1 External flyby at Mars . . . . . . . . . . . . . . . . . . 32

1



CONTENTS

2.3.2 Jacobi in curvilinear and Cartesian coordinates . . . . 35

3 Definition of ballistic capture 37

3.1 Keplerian energy from Vis Viva equation . . . . . . . . . . . . 37
3.1.1 Keplerian energy with respect to the second primary . 38
3.1.2 Keplerian energy with respect to the first primary . . 38

3.2 Conditions of the ballistic capture . . . . . . . . . . . . . . . . 38
3.3 Examples of ballistic captures . . . . . . . . . . . . . . . . . . 39

3.3.1 Example of external flyby at Mars . . . . . . . . . . . 39
3.3.2 Example of ballistic captured trajectory . . . . . . . . 40

4 Search algorithm for ballistic captures 45

4.1 Zero velocity curves and Lagrangian points . . . . . . . . . . 45
4.2 Jacobi constant in Lagrangian points . . . . . . . . . . . . . . 46
4.3 Examples of ballistic captures . . . . . . . . . . . . . . . . . . 46
4.4 Algorithm for the search of ballistic captures . . . . . . . . . 47
4.5 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Symmetry of the problem . . . . . . . . . . . . . . . . . . . . 52

4.6.1 Additional possible symmetry . . . . . . . . . . . . . . 57
4.7 Relations between capture and initial velocity . . . . . . . . . 57

5 Ballistic captures for nearly closed ZVC in Jupiter 61

5.1 Definition of critical velocity, given a value of CJ . . . . . . . 61
5.1.1 New steps of the algorithm for critical velocities . . . . 62
5.1.2 Analytical, simplified and numerical solution . . . . . 63

5.2 Results of the search for Jupiter . . . . . . . . . . . . . . . . . 65
5.3 Results obtained by varying Jacobi constant . . . . . . . . . 67
5.4 Topology of the structures obtained . . . . . . . . . . . . . . . 67
5.5 Analysis of generatrix orbits of the capture structures . . . . 69

5.5.1 Method and initial parameters . . . . . . . . . . . . . 70
5.5.2 Diagrams and duration of the internal generatrix orbit 71
5.5.3 Variation of orbital elements for internal generatrix . . 74
5.5.4 Diagrams and duration of the external generatrix orbit 79
5.5.5 Variation of orbital elements for external generatrix . . 83

5.6 Keplerian orbital elements in the capture structure . . . . . . 84
5.7 Examples of trajectories . . . . . . . . . . . . . . . . . . . . . 90

5.7.1 Example of trajectory of a long capture . . . . . . . . 90
5.7.2 Example of a capture exploiting symmetries . . . . . . 90
5.7.3 Example of brief ballistic capture . . . . . . . . . . . . 93
5.7.4 Example of relative motion around L1 . . . . . . . . . 93

2



CONTENTS

5.7.5 Example of relative motion distant from the planet . . 93
5.7.6 Example of trajectory inside the drop of the "bubble" 93

6 Results of the search for Mars 99

6.1 Capture structures for various values of high CJ . . . . . . . 99
6.2 Topology of the structures obtained . . . . . . . . . . . . . . . 101
6.3 Analysis of generatrix orbits of the capture structures . . . . 101

6.3.1 Method and initial parameters . . . . . . . . . . . . . 101
6.3.2 Diagrams and duration of the internal generatrix orbit 104
6.3.3 Variation of orbital elements for internal generatrix . . 108
6.3.4 Diagrams and duration of the external generatrix orbit 109
6.3.5 Variation of orbital elements for external generatrix . . 116

6.4 Keplerian orbital elements in the capture structure . . . . . . 118
6.5 Similarities and differences between Jupiter and Mars . . . . . 122

7 Results of the search for Earth 123

7.1 Capture structures for various values of high CJ . . . . . . . 123
7.2 Topology of the structures obtained . . . . . . . . . . . . . . . 125
7.3 Analysis of generatrix orbits of the capture structures . . . . 125

7.3.1 Method and initial parameters . . . . . . . . . . . . . 125
7.3.2 Diagrams and duration of the internal generatrix orbit 128
7.3.3 Variation of orbital elements for internal generatrix . . 128
7.3.4 Diagrams and duration of the external generatrix orbit 132
7.3.5 Variation of orbital elements for external generatrix . . 139

7.4 Keplerian orbital elements in the capture structure . . . . . . 142
7.5 Similarities and differences between Jupiter, Mars and Earth . 146

8 Advantages of the ballistic capture 147

8.1 Orbital dynamics of interplanetary orbits . . . . . . . . . . . 147
8.2 Considerations over orbital elements . . . . . . . . . . . . . . 148
8.3 Saving in the ∆V . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.3.1 Considerations on orbits obtained . . . . . . . . . . . . 152

Conclusions 155

Bibliography 159

3



4



Introduction

Ballistic capture is a natural phenomenon that was developed in literature
mostly by Belbruno and Topputo [5, 7], but also by other authors [2, 8].
This phenomenon is important because it can bring a body orbiting the Sun
to an orbit linked temporarily to a planet. An event like this is important
for many reasons:

• A spacecraft could exploit these trajectories for an interplanetary trans-
fer, saving a certain amount of propellant necessary to introduce itself
in a stable orbit around the arrival planet [9];

• An asteroid could be ballistic captured by a planet as it happened
to 2006 RH120 [10]. Answering to questions related to this event is
an important step for a further comprehension and exploiting of this
phenomenon [11];

• Finding an asteroid that will be captured in future could be an occasion
to prepare a mission capable of reaching and exploring it. Thanks to
events like this also the mining of an asteroid could be planned;

• This phenomenon could be the cause of deflection of asteroids (mainly
by Jupiter) and also of the moon and planet formation [3].

In literature, the definition and the nature of ballistic capture was ad-
dressed in mainly two different ways to date: the first is by using the defini-
tion of Belbruno of weak stability boundary [5] which involves the revolutions
of a body around the second primary in the synodic frame; the second is by
individuating captures starting from periodical orbits [13] or from invariant
manifolds [4].

The method developed in this work is based on a simplified definition
of ballistic capture and on a different method implemented to find orbits
that could be interested by this phenomenon. In fact, this work wants to
find trajectories spending a relevant period with negative keplerian energy
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Introduction

relative to the second primary. This is done analysing a vast number of
initial positions near the planet of interest.

The environment of simulation is the circular restricted three body prob-
lem (CRTBP) [6] that uses curvilinear coordinates [12].

The fundamental aim of the thesis is the comprehension of astrodynam-
ics phenomena linked to the interactions of more than one body at the same
time. In particular of bodies that change significantly their orbits and behave
in peculiar ways that could be exploited as stated above. So the research
and the characterization of trajectories that are captured by a planet is the
main goal.

This document is developed in the following way. In chapter 1 the imple-
mentation of the orbital mechanics of the three bodies is introduced starting
from the two body problem and validation is conducted, together with some
introducing examples. The implementation and verification of the curvilin-
ear coordinates will be addressed in chapter 2. In chapter 3 the ballistic
capture will be defined as will be used in this work and a couple of examples
will be shown to introduce it. Zero velocity curves and other examples will
be introduced in chapter 4. Then, the preliminary search algorithm will be
developed and preliminary results will be shown with some useful consider-
ations. In chapter 5 the search will be improved to get simpler results in
order to make possible a better interpretation and examine trajectories with
similar features to each other. Results will be then shown when the second
primary is Jupiter and an important analysis on orbits obtained will be con-
ducted. Finally, orbits will be catalogued according to the duration of the
capture obtained and examples of the outcome will be shown. In chapter 6
and 7 the same study made for Jupiter will be conducted for respectively
Mars and Earth. An application of a trajectory exploiting ballistic capture
is shown in chapter 8, where possible saving of propellant for interplanetary
missions are discussed.
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Chapter 1

Third body perturbation

The first step to implement the three body problem must be to consider the
classical orbital problem with two bodies and add the third body perturba-
tion.

In this way, it will be considered the three body problem in an inertial
frame, where the most important body in terms of mass is the main body,
while the second body is the satellite and has a negligible mass. The third
body has not negligible mass, but lower than the first primary. It is impor-
tant to define the third body perturbation as the gravitational influence that
this body has over the satellite, which could be artificial or natural, like an
asteroid.

Alternatively, the main body could be named first primary, the third
body could be named second primary, while the second body satellite, space-
craft, asteroid or simply body. This recalls the usual vocabulary for the TBP:
Three Body Problem.

In this first part of this first chapter, the values of the constants cor-
respond to the ones characteristics to the Sun-Earth system, but in next
chapters will be changed, accordingly to the system of celestial bodies con-
sidered.

The work of this first chapter consisted in the implementation of the
trajectory of the third body around the main body (second primary around
first primary in a circular orbit), with a simple propagation of the two body
problem. Then, the perturbation will be added to the simulator, in this
way all the three bodies will be considered properly. Verification of the code
implemented will be conducted and finally a large number of examples will
be analyzed.
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CHAPTER 1. THIRD BODY PERTURBATION

1.1 Code

1.1.1 Introduction

Tho whole Matlab code is written in order to have all dimensionless param-
eters. Space is adimensionalized with respect to the characteristic distance
between the primaries, which is the semi-major axis of the orbit of the planet
around the Sun, in the Solar System. This distance will be also named ref-
erence radius. Time is adimensionalized with respect to the mean motion of
the same orbit. In fact, it is easy to link this quantity, measured in rad/s,
with semi-major axis. In this way, it is possible to obtain dimensionless posi-
tion and velocity in the desired frame. This is particularly useful because the
position and velocity of the second primary will always be unitary, regardless
the mass of the celestial bodies considered.

1.1.2 Initial material

Firstly, the work began with a Matlab script recalling an ODE function.
The last one uses the given initial conditions and integrates the differential
equations, calculating dimensionless gravitational acceleration given by the
main body in every instant. This procedure is propagated over time, with
the classical procedure of the ODE functions used in Matlab.

Other two functions are used every time that the 6 orbital keplerian
elements will be transformed in position and velocity vectors (3 plus 3 pa-
rameters), and vice versa.

1.1.3 Ode45 e ode113

Ode functions are pre-implemented routines for the solution of differential
equations (or systems of differential equations, written as matrices). Various
kind of them could be chosen, but the most used is without any doubt Ode45.
This one is based on Runge-Kutta (4,5) relations and it’s a single step solver,
which means that it calculates new values (at the following time step) basing
only on the values at the very previous instant. For this reason, it is versatile
and used as a first attempt, even if in some cases another Ode could be a
more appropriate choice.

Another example of Ode function is Ode 113, a PECE Adams-Bashforth-
Moulton, variable-step, variable-order (VSVO) solver. It could be more effi-
cient of Ode45 when stricter tolerances are necessary or when the differential
equation is heavy in computational terms. Being a variable step solver, it re-
quires solutions at different previous times to calculate the current solution.
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Figure 1.1: Comparison of the Jacobi constant in an inertial reference frame using
Cartesian coordinates for Ode45 and Ode113, with different integration tolerances.

According to the developers of the software MATLAB®, these characteris-
tics make Ode 113 a suitable solver exactly for orbital dynamics, where the
solution is smooth and great precision in fundamental.

Retrospectively, a comparison between these two tools will be made, but
results and conclusions about this topic are already shown here. For both
the frames used in the propagation and, hence, in the differential equations,
the resulting Jacobi constant (equation 1.4) was analyzed. To the contrary
of the expected, Ode45 gave a lower error in the Jacobi constant, keeping it
more steady than Ode113, as can be seen in figure 1.1 and 1.2. From now
on, Ode45 will be used as the only solver for differential equations.

A peculiarity stays in the difference of the number of iterations (or steps)
made automatically by Ode45, which are from 6 to 10 times the ones of the
other solver, for a fixed tolerance. This is surely a disadvantage when long
times of simulation are considered, because having a better precision will cost
in terms of memory storage space needed and heaviness of the simulation.
For a better understanding of this phenomenon, a simulation with a forced
step was run with both solvers. The steps were the ones given by the Ode113,
so with a number of step much lower than the ones automatically given by
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Figure 1.2: Comparison of the Jacobi constant in an synodic reference frame using
curvilinear coordinates for Ode45 and Ode113, with different integration tolerances.

Ode45. The result, in figure 1.3, shows only few changes in the precision of
the method.

On the contrary, in some cases further explored in the end of this chapter,
Ode113 seems to give better precision: all these cases have in common the
fact that they orbit durably one of the massive bodies, or in the case of
Copenhagen Problem, see section 1.5.1.

1.1.4 New implementations

Modifying the code described in section 1.1.2, in the Ode function was added
the third body perturbation, inserting its component in the acceleration
term, together with the fictitious centrifugal acceleration of the third body.

ap = −µ
(

d

d3
+ r2

)

(1.1)

where
µ =

m2

m1 +m2

(1.2)
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Figure 1.3: Comparison of the Jacobi constant in an synodic reference frame using
curvilinear coordinates for Ode45 with different number of integration steps.

is the mass ratio of the two massive bodies, r2 is the dimensionless vector of
the position of the third body (or second primary) and d is the dimensionless
vector of the position of the satellite respect to the third body (or second
primary). This last vector, in our simplified case of circular orbit of the
perturbing body, is defined as the difference between the position of the
satellite in the inertial frame centered in the main body (or first primary)
and the position of the second primary r2. Instead, this last position is
obtained through goniometric functions that describe a unitary circle in the
reference period of the orbit in the inertial frame of the first primary.

On the whole, acceleration comes from the following equation and has to
be decomposed on the three axes

a = −
ρ

ρ3
− µ

(

d

d3
+ r2

)

(1.3)

with ρ position vector of the satellite in the inertial reference frame.
After the assignment of reference parameters for the circular orbit of the

Earth around the Sun, the script mainly uses the function for the transfor-
mation between keplerian elements and position-velocity. Then, recalled the
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CHAPTER 1. THIRD BODY PERTURBATION

Ode function, it makes plots in different frames and fashions.

1.2 Verification

As said before, to verify the solutions gained, it was used the Jacobi constant:

Cj =
1− µ

a
+ 2
√

a(1− µ)(1− e2) cos i+ 2Rd (1.4)

with a, e, i semi-major axis, eccentricity, inclination of the orbit, while

Rd = µ

(

1

|| r − r2||
−

r · r2
r3
2

)

(1.5)

is the disturbing function, which takes into account the third body pertur-
bation. In fact, it is the inverse of the potential associated to the perturbing
force (for mass unity) of the third body. In other words, it is the potential of
the gravitational force and the fictitious force associated to the acceleration
of the centre of the reference system (of the second primary, which generates
this force) with respect to an inertial frame. Jacobi constant should result
steady in the three body problem and it was verified that in various configu-
rations of the three bodies it did so. The absolute variation of the constant
was considered and all the diagrams contain this variation. Its change is in
the order of 10−12 and it maintains this value for almost every configuration
taken in consideration. In some cases it could be higher, but never over 10−9,
which is totally acceptable. As a consequence, the procedure implemented
will be considered correct.

1.2.1 Jacobi variation changing the integration tolerance

Results for the following examples are compared here, paying attention
mostly on the Jacobi constant. As shown in figure 1.4, the error follows
consistently the variation of the integration tolerance applied in the ode45.

1.3 Examples of results

For the sake of simplicity, all the configurations analyzed here have initial
position aligned with the conjunction of the primaries, so that perigee argu-
ment, argument of ascending node and true anomaly are all equal to 0° (or
at most 180°). Should be noted that all diagrams are always displayed in
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dimensionless coordinates with X and Y (uppercase) that indicate inertial
coordinates, while x and y (lowercase) indicate coordinates relative to the
second primary aligned with the inertial frame of the first primary.

1.3.1 Orbit around the second primary (Earth)

Here is simulated an orbit very close to the second primary, so this body will
have a predominant contribution in the forces at stake, while the main body
will be only a disturbance.

In fact, the orbit in the frame of the first primary is continuously modified
by the interactions given by the Earth. With respect to it, the keplerian
elements of the orbit are semi-major axis a = 7392.3 km, eccentricity e =
0.05307, inclination of about i = 7.5◦. The maximum error obtained for the
Jacobi constant is in the order of magnitude of about εr,max = 10−12.

Propagating the same problem with Ode113, it can be obtained the result
in figure 1.8, slightly better than the other one above, despite the fact that
this one presents almost 10 times less steps than Ode45.

1.3.2 Orbit around the first primary (Sun)

Another case analyzed is the one of an orbit very near to the Sun, where the
perturbation of the third body will be surely negligible. A circular orbit with
radius a = 106 km was studied, obtaining an error in the Jacobi conservation
of the order of magnitude of 10−9. This is also due to the fact that the
propagation was protracted for a longer time equal to 2 years. In this way,
the evolution of the constant for a long time could be displayed, highlighting
its variation, much more important than in all the other cases studied.

Propagating the same problem with Ode113, it can be obtained the result
in figure 1.11, which is much better than the other one above, despite the
fact that this one presents almost 10 times less steps than Ode45. Also in
this case, the trajectory stays very close to the primary with the mass that
reach quite the total one.

1.3.3 Other orbits

For a generic orbit distant from both primaries, the maximum error in the
conservation of the Jacobi constant stays in the order of magnitude of 10−12.
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Figure 1.4: Comparison of Jacobi constant for different values of the integration
tolerance.

Figure 1.5: Relative motion of the satellite around the Earth (or second primary)
in the ecliptic plane.
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Figure 1.6: Motion of the satellite and the Earth (or second primary) in the
inertial frame centered in the Sun (or first primary).
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Figure 1.7: Jacobi constant for the orbit around the second primary (Earth). Its
value is CJ = 3.060743.

15



CHAPTER 1. THIRD BODY PERTURBATION

0 0.2 0.4 0.6 0.8 1 1.2 1.4

dimensionless time [ ] 10
-3

-1.5

-1

-0.5

0

0.5

1

V
a
ri
a
ti
o
n
 o

f 
th

e
 J

a
c
o
b
i 
c
o
n
s
ta

n
t 
[ 
]

10
-12

Figure 1.8: Jacobi constant with Ode113 for the orbit around the second primary
(Earth).
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Figure 1.10: Jacobi constant for the orbit around the Sun (or first primary).
Value of Jacobi constant is CJ = 20.520589.
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Figure 1.11: Jacobi constant with Ode113 for the orbit around the first primary
(Sun).
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1.4 Flyby at Mars

From now on, a different problem will be considered involving the Sun as
first primary and Mars as the second primary (or perturbing body). For this
system µ = 3.227 10−7.

To obtain a flyby at the planet in the inertial frame centered in the Sun,
an orbit with perihelion in proximity of the Earth will be considered, so with
rp = 1AU , and aphelion at Mars. The satellite needs to have nearly the
same position of the planet in the same instant, when the last one crosses
the line of apsides of the satellite orbit. To set up this configuration, in
the first steps the gravitational attraction of Mars will not be taken into
consideration (NonPerturbed). The distance between aphelion and planet
will be given by a parameter called α, but there will be also distinction
among internal (between Sun and Mars) and external transfer:

1. External Flyby. In this case, aphelion will be equal to

ra,ext,NonPerturbed = Rref + (1 + α)RM (1.6)

with ra,ext,NonPerturbed the non-perturbed aphelion in external flyby,
Rref the reference radius of the system (radius of the circular orbit of
Mars around the Sun) and RM the radius of the planet itself.

2. Internal flyby.

ra,int,NonPerturbed = Rref − (1 + α)RM (1.7)

In this way, keplerian elements such as semi-major axis a and eccentricity e
are computed, knowing from the supposed configuration that the argument
of perihelion will be forced to be equal to ω = 180◦.

e =
ra − rp

ra + rp
(1.8)

a =
rp

1− e
(1.9)

Given the values described above, only from now on will be considered
the gravitational attraction of the second primary.

Besides, it was implemented a control over the eventuality of collisions:
for every value of α the script says whether there is a collision or not, with an
additional range of distances of the radius of the planet plus a contribution of
the atmosphere of nearly 200 km. In case of acceptable trajectory, minimum
distance from the planet, error in the Jacobi conservation and keplerian
elements after the gravity assist will be computed.
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Table 1.1: Preliminary results for external flyby varying α parameter.

α distance from Mars [km] a [ ] e [ ]

0.140 197.71 0.966719 0.114403

0.150 224.18 0.965839 0.114638

0.160 250.69 0.964966 0.114877

0.170 277.24 0.964100 0.115118

0.180 303.85 0.963242 0.115363

0.190 330.50 0.962390 0.115612

0.200 357.19 0.961545 0.115863

0.210 383.94 0.960707 0.116117

0.220 410.72 0.959876 0.116374

0.230 437.55 0.959052 0.116633

0.240 464.43 0.958234 0.116896

0.250 491.35 0.957423 0.117160

0.260 518.31 0.956619 0.117428

Table 1.2: Comparison of keplerian elements of the orbit before and after the
external flyby with Mars, for the value of α chosen.

a [ ] e [ ] i [ ] ω [ ] Ω [ ] ν [ ]

Pre-Flyby 0.828231 0.207433 0.000000 3.141593 0.000000 0.000000

Post-Flyby 0.966718 0.114404 0.000000 1.980508 0.000000 2.501879

1.4.1 Analysis of external flyby

The analysis of different initial configurations leads to the following results:
A minimum value αmin = 0.14 was found to avoid collision and at the

same time to give an efficient gravity assist in terms of semi-major axis of
the final orbit. In figure 1.12 and figure 1.13 are reported trajectories and
the detail of the flyby. Note how the satellites passage near the planet is
"behind" it.

In the following tables are shown parameters of the chosen orbit, which
is the one obtained with α = 0.14. The maximum value for the variation of
the Jacobi constant stays, as usual, in the order of 10−12. In figure 1.14, this
trend of the Jacobi constant is shown for the time of a period of the orbit.

In table 1.2, keplerian elements of the orbit before and after the flyby
are compared, respectively: semi-major axis (dimensionless), eccentricity,
inclination, perihelion argument, right ascension of the ascending node and
true anomaly.
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Figure 1.12: Motion of the satellite and of Mars in the case of external flyby. The
reference system is inertial and centered in the Sun.

1.4.2 Analysis of the internal flyby

Analogously to the previous case, here will be analyzed some internal con-
figurations varying the parameter α.

A minimum value of αmin = 2.30 was found to avoid collision and at the
same time to give an efficient gravity assist in terms of semi-major axis of
the final orbit. In figure 1.15 and figure 1.16 are reported trajectories and
the detail of the flyby. Note how the satellites passage near the planet is "in
front" of it.

In the following tables are shown parameters of the chosen orbit, which
is the one obtained with α = 2.30. The maximum value for the variation of
the Jacobi constant stays, as usual, in the order of 10−13. In figure 1.17, this
trend of the Jacobi constant is shown for the time of a period of the orbit.

In table 1.4, keplerian elements of the orbit before and after the flyby
are compared, respectively: semi-major axis (dimensionless), eccentricity,
inclination, perihelion argument, right ascension of the ascending node and
true anomaly.
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Figure 1.13: Detail of the external flyby.

Table 1.3: Preliminary results for the internal flyby in function of the parameter
α.

α distance from Mars [km] a [ ] e

2.30 203.41 0.968093 0.113949

2.31 229.87 0.967211 0.114176

2.32 256.37 0.966336 0.114406

2.33 282.93 0.965468 0.114640

2.34 309.53 0.964608 0.114878

2.35 336.18 0.963754 0.115118

2.36 362.87 0.962907 0.115362

2.37 389.61 0.962067 0.115608

2.38 416.39 0.961234 0.115858

2.39 443.21 0.960407 0.116110

2.40 470.08 0.959587 0.116365

2.41 496.99 0.958774 0.116623

2.42 523.94 0.957967 0.116883
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Figure 1.14: Variation of the Jacobi constant for an entire period of the orbit, in
the case of external flyby. Value of the constant is CJ = 2.987953.
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Figure 1.15: Motion of the satellite and of Mars in the case of internal flyby. The
reference system is inertial and centered in the Sun.
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Figure 1.16: Detail of the internal flyby.

Table 1.4: Comparison of keplerian elements of the orbit before and after the
internal flyby with Mars, for the value of α chosen.

a [ ] e [ ] i [ ] ω [ ] Ω [ ] ν [ ]

Pre-Flyby 0.828180 0.207385 0.000000 3.141593 0.000000 0.000000

Post-Flyby 0.968094 0.113949 0.000000 -1.975526 0.000000 5.764664
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Figure 1.17: Variation of the Jacobi constant for an entire period of the orbit, in
the case of internal flyby. Value of the constant is CJ = 2.987978.
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Figure 1.18: Motion in a general flyby case of the Copenhagen Problem.

1.5 Copenhagen Problem

Copenhagen Problem is a particular case of the CRTBP where primaries have

the same mass, so that µ =
m2

m1 +m2

= 0.5.

1.5.1 Flyby in the Copenhagen Problem

With general initial conditions for position and velocity in the inertial frame
centered in the first primary, motion tends to get forced near to one of
the primaries, as shown in figure 1.18. Instead, in figure 1.19 it is shown
the limited variation of the Jacobi constant, which proves the goodness of
the simulation implemented, also in this particular case of the three body
problem.

Propagating the same problem with Ode 113, it could be obtained figure
1.20, which is better than the previous diagram, mostly because here the
peaks of figure 1.19 (caused by flybys) are softened.
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Figure 1.19: Variation of the Jacobi constant for the Copenhagen Problem. Value
of the constant is CJ = 3.489608.
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Figure 1.20: Variation of the Jacobi constant with Ode 113 for the Copenhagen
Problem.
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Chapter 2

Implementation of curvilinear

coordinates for CRTBP

Once implemented of the circular restricted three body problem (CRTBP) in
Cartesian coordinates, it was considered a system of reference in curvilinear
coordinates very similar to the cylindrical ones.

From now on, the three bodies will be referred as first primary, second
primary and satellite or body. As listed here, they are in decreasing order of
mass with the last body (the satellite) with negligible mass. From this last
peculiarity comes the word restricted in the name of the problem, because
it exerts negligible gravitational influences over both massive bodies.

The work summarized here consists on the implementation of equations
with curvilinear coordinates in the synodic reference frame and in the ver-
ification of results, nonetheless in the study of coordinate transformations
between curvilinear, inertial and keplerian elements.

2.1 Parametrization of curvilinear coordinates

The second primary m2 moves on a circular orbit around the first primary
m1 and the satellite is subjected to the gravitational force of both of them.

All the parameters of the problem are adimensionalized using the distance
between the primaries Rref and their mean motion n. It should be now
introduced the parameter µ, mass ratio between the primaries and, in figure
2.1, the reference system used.

µ =
m2

m1 +m2

(2.1)
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The three coordinates used in the new reference frame are: ρ, which
versor always follows the satellite (indicated in figure with m3) and whose
module "starts" from the circumference marked by the second primary; θ
(angle sweeped from the position of m2 to m3); z, perpendicular to the other
two and, as a consequence, also to the ecliptic plane. Those parameters are
obviously function of dimensionless time τ and they rotate with respect to
the inertial reference frame (i, j in figure) by an angle τ + θ.

Finally, relations indicating the position r of the satellite in this frame
are now introduced,

r = rρuρ + zk (2.2)

together with the position r′ of the same body m3 with respect to the
second primary m2

r
′ = (rρ − cos θ)uρ + sin θ uθ + z k (2.3)

where rρ = 1 + ρ , e {uρ, uθ, k} are the orthonormal versors of the
synodic (rotating) reference system centered in the first primary.

Figure 2.1: Rotating reference system in curvilinear coordinates ρ, θ and z. Cred-
its reference [12]
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2.2 Motion in curvilinear coordinates

2.2.1 Equations of motion

Equations of motion are obtained from the acceleration with respect to the
rotating reference frame with the versors introduced above.

d2r

dτ2
= −(1−µ) r

|r|3
−µ r

′

|r′|3
−arel−2ωrel×

dr

dτ
−ωrel×(ωrel × r)− dωrel

dτ
×r

(2.4)
with fictitious acceleration arel given by the motion of the second primary

around the first one (centripetal relation), while ωrel is the angular velocity
in the new frame with respect to the inertial system.

arel = µ cos θ uρ − µ sin θ uθ (2.5)

ωrel = ωrel k =
(

1 + θ̇
)

k (2.6)

The following equations of motion to be implemented in Matlab could be
obtained by developing equation 2.4 and the previous ones, then projecting
them in the 3 axes of the curvilinear frame.











































ρ̈ = rρω
2

rel −
(1− µ)rρ

r3
−
µ (rρ − cos θ)

r′3
− µ cos θ

θ̈ = −
2ρ̇ωrel

rρ
+
µ sin θ

rρ

(

1−
1

r′3

)

z̈ = − (1− µ)
z

r3
− µ

z

r′3

(2.7)

with

r =
√

r2ρ + z2 (2.8)

r′ =

√

(rρ − cos θ)2 + sin2 θ + z2 (2.9)
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2.2.2 Jacobi constant in curvilinear coordinates

To verify that the implementation was correct, the Jacobi constant was used.

Cj = −2
(

ρ̇2 + θ̇2r2ρ + z2
)

+ r2ρ + 2
1− µ

r
+ 2R (2.10)

with

R =
µ

r′
− µrρ cos θ (2.11)

the disturbing function, which takes into account for the third body pertur-
bation (given by the planet, or second primary), as described in chapter 1.
This constant should result fixed in time in the three body problem.

Maximum variation of this value is in fact in the order of magnitude of
10−12 and it is maintained so in most configurations studied. Said so, the
procedure implemented will be considered correct.

2.2.3 Jacobi constant in orbital parameters

It is also possible to compute the Jacobi constant by using orbital parameters.

Cj =
1− µ

a
+ 2
√

a(1− µ)(1− e2) cos i+ 2Rd (2.12)

with disturbing function

Rd = µ

(

1

|| r − r2||
−

r · r2
r3
2

)

(2.13)

To obtain the keplerian elements of the orbit, the relations 2.8 and 2.9
could be used. These express the position r of the satellite with respect to
the first primary (which is the center of the frame) and the relative position
r′ with respect to the second primary. The following relations are obtained
projecting these position vectors in the inertial coordinate system.











x = rρ cos (θ + τ)

y = rρ sin (θ + τ)

z = z

(2.14)











x′ = (rρ − cos θ) cos (θ + τ)− sin θ sin (θ + τ)

y′ = (rρ − cos θ) sin (θ + τ) + sin θ cos (θ + τ)

z′ = z

(2.15)
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So, the velocity in the desired frame simply derive from these ones.















ẋ = ρ̇ cos (θ + τ)− rρ sin (θ + τ)
(

1 + θ̇
)

ẏ = ρ̇ sin (θ + τ) + rρ cos (θ + τ)
(

1 + θ̇
)

ż = ż

(2.16)

It is now possible to use routine rv2equinoctial (seen in chapter 1), using
as input position and velocity in the Cartesian inertial frame and getting as
outputs the keplerian elements, with the possibility of verifying the Jacobi
constant with equation 2.12.

The following system of equations for velocity is also derived from the
previous ones.















ẋ′ = ρ̇ cos (θ + τ)− rρ sin (θ + τ)
(

1 + θ̇
)

+ sin τ

ẏ′ = ρ̇ sin (θ + τ) + rρ cos (θ + τ)
(

1 + θ̇
)

− cos τ

ż′ = ż

(2.17)

In reality, velocity relative to the second primary could be expressed also
subtracting − sin τ e cos τ (which are the components of the velocity of the
second primary in the ecliptic plane of the inertial frame centered in the first
primary) to velocities of equation 2.16.

2.2.4 From keplerian elements to curvilinear coordinates

A way to transform keplerian elements into curvilinear coordinates is to do
it passing through position and velocity in the inertial frame centered in the
first primary (RV ).

Using equinoctial2rv with the keplerian elements as input, position and
velocity (RV ) could be get as output. Finally, curvilinear coordinates could
be computed simply by reversing equations 2.14 and 2.16, with τ = 0 when
computing the initial conditions of the problem.

In this way the correct curvilinear initial coordinates could be obtained.
In fact, results are almost identical to the ones obtained in the previous
chapter and Jacobi remains fixed, as will be shown below.

2.3 Comparison between curvilinear and Cartesian

As was done in chapter 1, all trajectories were studied with the same initial
conditions, using the relations above to transform them in curvilinear ini-
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Figure 2.2: Motion of the satellite and of Mars in the inertial frame centered in
the Sun, in the case of external flyby.

tial conditions. Here, only one example will be shown to demonstrate the
matching with the results found out previously.

2.3.1 External flyby at Mars

In the case of external flyby at Mars with αmin = 0.14, the initial conditions
are exactly the same presented in the previous chapter. The trajectory and
the detail of the passage near the planet are shown in figures 2.2 and 2.3.

The conservation of Jacobi constant is respected, because the maximum
variation is in the order of magnitude of 10−12. In figure 2.4,its variation
during a period of the orbit is shown for both equation 2.10 and 2.12. The
first one is the equation which uses curvilinear coordinates to compute Ja-
cobi constant, the second one is the one that uses orbital parameters, as
introduced in the previous chapter. Results are clearly coincident.

In addition to the same trajectory, this procedure gives the same keple-
rian elements obtained for the orbits after the gravity assists for this external
flyby and for all the orbits in the different planetary systems discussed in
chapter 1. All these results are not presented here for conciseness.
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Figure 2.3: Detail of the external flyby.
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Figure 2.4: Variation of the Jacobi constant during a period of the orbit of the
satellite, in the case of external flyby. Results given by equations 2.10 and 2.12 are
shown here. The value of the constant is CJ = 2.987953 .
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Figure 2.5: Comparison of the Jacobi constant in the two coordinate systems
analyzed.

2.3.2 Jacobi in curvilinear and Cartesian coordinates

In figure 2.5 results obtained in curvilinear and Cartesian coordinates are
compared and, thanks to this, it will be clear which one is the more precise.

The conclusion is that the two methods of propagation obviously coincide,
but curvilinear coordinates give a slightly better precision, even though the
variation of the constant is in the same order of magnitude.
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Chapter 3

Definition of ballistic capture

After the introduction of the rotating frame in curvilinear coordinates for
CRTBP and the evaluation of its precision (higher than inertial frame in
Cartesian coordinates), only this preferable system of reference will be used
for propagation. In some cases, also the inertial frame will be analyzed
afterwards for its more recognizable representation axes.

In this chapter the keplerian energy (kinetic plus potential) will be intro-
duced in the inertial reference frame. This could be computed with respect
to the first primary or to the second primary. Obviously, the last one will
be considered to analyze the capture of the body by the planet. Conditions
for the ballistic capture will be briefly discussed and, finally, some examples
regarding these capture will be given.

3.1 Keplerian energy from Vis Viva equation

Orbital keplerian energy could be obtained from the sum between kinetic and
potential energy of a body. This must be done in a dimensionless form coher-
ently to all the computations seen so far, considering parameters evaluated
in an inertial frame centered in a primary.

First of all, keplerian energy with respect to the first primary will be
studied, using Vis Viva equation with dimensional parameters. The following
equation is called Vis Viva and contains the first term which is the kinetic one
proportional to v2 and the second term which represents the gravitational
potential. This one depends on µ, the gravitational constant of the first
primary, and r, the relative distance between the body and the primary.

ε =
v2

2
−
µ

r
(3.1)
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3.1.1 Keplerian energy with respect to the second primary

Making dimensionless the previous equation 3.1 and considering the param-
eters relative to the second primary, it becomes

ε =
v′ 2

2
−
µ

r′
(3.2)

where r′ and v′ are the norm of, respectively, the vector of position and
velocity of the satellite relative to the second primary in the inertial frame
centered in the same second primary (system of equations 2.15 and 2.17)
and µ is the mass ratio given in equation 2.1 (already referred to m2).

3.1.2 Keplerian energy with respect to the first primary

Making dimensionless the previous equation 3.1 with parameters relative to
the first primary, it becomes

ε =
v2

2
−

1− µ

r
(3.3)

where r and v are the norm of, respectively, the vector of position and velocity
of the satellite relative to the first primary in the inertial frame centered in
the same first primary (system of equations 2.14 and 2.16) and µ is the mass

ratio given in equation 2.1 (1− µ could also be arranged as
m1

m1 +m2

).

3.2 Conditions of the ballistic capture

In this section, the method implemented in this work to measure the time
spent in a ballistic capture is briefly discussed and is shown in a couple of
examples that are displayed at the end of this chapter.

Using the relations already introduced, the main criterion is to identify
the moments when the keplerian energy with respect to the second primary
is null. These moments will be considered as transitions between the ballis-
tic capture of a body (when keplerian energy with respect to the planet is
negative) and escape trajectories or classic orbits around the first primary
(for example, flybys and gravity assist).

Another criterion, of less importance and used only when the first is
devious, employs the distance from the planet exploiting the peculiarity of
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the value of the Hill radius rHill.

rHill =

(

µ

3

)

1

3

(3.4)

This parameter is defined as the distance from the second primary where the
influence of the planet itself is as important as the one of the first primary.
However, even if the satellite is more distant than a Hill radius, it could
be affected by a non negligible influence determining a temporary capture.
If this distance is of less than 4 Hill’s radii and it is maintained for a long
time, the orbit will be considered captured. It must be underlined that this
criterion is not used in this work and for this reason has not been further
analyzed.

Instead, as it will be shown in next chapters, sometimes even a trajectory
which spends a brief time with negative keplerian energy with respect to the
second primary and quite near to it (distant less than 2 Hill’s radii) could
not be in a capture at all.

3.3 Examples of ballistic captures

For all the configurations analyzed in chapter 1, the study of the keplerian
energy parameter was developed at this point. Variations of this energy will
be shown in a couple of examples, illustrating two cases: the first one of a
mere flyby; the second of a real ballistic capture.

3.3.1 Example of external flyby at Mars

In this section, the case of external flyby at Mars, analyzed also in the previ-
ous chapter, will be studied in figures 3.1 and 3.2, showing the characteristics
of the keplerian energy with respect to the second primary.

Figure 3.2 in particularly represents this feature and it could be noted
that the value of the energy never reaches zero, hence it is never negative.
This indicates that this trajectory is a mere flyby, as it has been called since
the beginning. In other words, it is a gravitational assist that passes near
the planet with a hyperbolic orbit. In fact, in these kind of orbits the energy
is always positive. Even if the satellite gets in the Hill’s sphere, there is no
ballistic capture.

Finally, in figure 3.3 is shown the trend of the other energy, the one
relative to the first primary. Even this one changes over time and its variation
is focused in the instant of the gravity assist. Indeed, the energy increases
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Figure 3.1: Trajectory of the flyby orbit at Mars and of the planet itself. The
value of the Jacobi constant is CJ = 2.987978.

after this moment indicating that the orbit after this event is less strongly
linked to the Sun.

3.3.2 Example of ballistic captured trajectory

Here will be shown an example of ballistic capture found with the method
discussed in the next chapter. This trajectory takes place in the Sun-Jupiter
system.

The simulation of this example begins in the moment when the keplerian
energy relative to the second primary is null. The trend of the energy could
be seen in figure 3.4, where it goes negative indicating a ballistic capture long
almost 2 Jupiter’s years. The motion of the satellite in the synodic reference
frame is represented in figure 3.5, while in figure 3.6 the system of reference
is the inertial one still centered in the Sun. The movement of the satellite
and of the planet are both represented because Jupiter is not fixed in this
last frame. It is important to underline that zero velocity curves (ZVC) are
not present in this particular trajectory because the Jacobi constant is too
low for them to appear. They will be introduced in the next chapters.
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Figure 3.2: Keplerian energy with respect to (wrt) the second primary in the case
of flyby orbit at Mars. The satellite is in the Hill’s sphere in the dimensionless time
interval τ : [2.3232, 2.4078].
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Figure 3.3: Keplerian energy with respect to (wrt) the first primary in the case
of flyby orbit at Mars.
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Chapter 4

Search algorithm for ballistic

captures

In the previous chapters the synodic frame in curvilinear coordinates for
CRTBP was introduced, validation of its better accuracy than Cartesian
coordinates was developed and keplerian energy in the inertial frame was
introduced. This formula was used to define ballistic capture.

In this chapter, a huge amount of trajectories with different initial con-
ditions will be analyzed in order to find ballistic captures of bodies by the
second primary. Results presented here are for Sun-Jupiter system. Par-
ticular attention will be paid to the features linked to the initial condition
propagated and the peculiarity of the trajectory.

4.1 Zero velocity curves and Lagrangian points

Using the formulation for the Jacobi constant, zero velocity curves were im-
plemented and displayed in every diagram for the trajectory in the synodic
frame. This is a locus of points having null velocity for a fixed Jacobi con-
stant. It represents the contour of the accessible zone with a limited energy,
while the zones beyond these curve can not be reached with this energy and
are called "forbidden regions".

It is important to remind that low energy is directly linked to a high
Jacobi constant. Typical values for this constant will be given in the next
section. Examples of zero velocity curves could be seen in figures 4.1 and 4.2.
Zones prohibited to the motion for a fixed Jacobi constant always include
triangular Lagrangian points L4 and L5. They are always represented in
figures too and are computed using well-known formulas [6].
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4.2 Jacobi constant in Lagrangian points

Here, equations for the calculus of Jacobi constant in the Lagrangian points
and their results will be shown. Afterwards, values could be considered
correct: they are very precise and a minute correction (using trial and error
search) will be used only in the generatrix trajectory (section 5.5).

In increasing order of energy in the synodic frame, therefore in decreasing
order of Jacobi constant, the following results could be obtained for Sun-
Jupiter system. Also the curvilinear coordinates of the Lagrangian points
are shown.































































L1 : ρ = −0.0667, θ = 0; CJ,L1 ≈ 3 + 9

(

µ

3

)

2

3

− 10

(

µ

3

)

= 3.0387

L2 : ρ = +0.0698, θ = 0; CJ,L2 ≈ 3 + 9

(

µ

3

)

2

3

− 14

(

µ

3

)

= 3.0375

L3 : ρ = −0.0006, θ = π; CJ,L3 ≈ 3 + µ = 3.0010

L4 : ρ = 0, θ = +
π

3
; CJ,L4 = 3− µ = 2.9990

L5 : ρ = 0, θ = −
π

3
; CJ,L5 = 3− µ = 2.9990

(4.1)

4.3 Examples of ballistic captures

During the development of this work for the implementation of an algorith-
mic search for ballistic captures, some examples of them were found. They
are presented here in order to introduce their peculiarities. Various param-
eters were used to locate the initial conditions for these trajectories.

The first example was introduced also in the previous chapter in figures
3.4, 3.5 and 3.6. This is an orbit beginning at 1.1 rHill of distance from
Jupiter, with relative velocity relative to it v2,0 such that the keplerian energy
with respect to the planet is null. Initial position is located at 150° from x-
axis (conjunction of both primaries, counterclockwise) and initial velocity
relative to Jupiter v2,0 is located in a direction at 125° in the same reference
frame of position.

The second example is shown in figures 4.1, 4.2, 4.3 and 4.4. It was
obtained for a initial position in x2,0 = −0.117 and y2,0 = −0.004. These
coordinates are referred to the Cartesian inertial frame centered in the second
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Figure 4.1: Motion of the satellite in the synodic frame around Jupiter. Zero

velocity curves (ZVC) are present but they are not an essential limit to the motion
of the satellite.

primary. Initial velocity is computed so that the Jacobi constant is equal
to CJ = 3.0274702. All the characteristics introduced here will be further
analyzed in the next chapters. Propagation time is of 5 Jupiter’s years.
In this example are present also zero velocity curves (ZVC) introduced in
section 4.1.

4.4 Algorithm for the search of ballistic captures

The target is to find ballistic captures in any system composed by two ce-
lestial bodies.

Firstly, the Sun-Jupiter system will be considered, but then also other
systems like Sun-Mars or Sun-Earth will be addressed. A satellite with initial
keplerian energy null with respect to the second primary will be considered:
in this way energy will only be able to raise, escaping the capture; or energy
will diminish, sketching an orbit linked (and therefore near) to the planet.
This last one is the scenario that will be searched.
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Figure 4.2: Motion of the satellite in the synodic frame in a whole view. Here
ZVC are displayed in full.
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Figure 4.3: Motion of the satellite in the inertial frame centered in the Sun, where
also Jupiter moves in a circular orbit.
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Figure 4.4: Keplerian energy with respect to (wrt)the second primary. Zoom in
the first 2 years of propagation, where the ballistic capture takes place.

Here, the algorithmic definition will be exposed. An important feature of
this work is that all the analysis are developed for a 2D space, therefore only
the ecliptic plane of the orbit of the planet around the Sun will be studied.
All variables along z axis are always null.

1. A fixed distance from the second primary r2,0 is chosen (360° around
the planet) using ψ variable. Depending on how many positions are to
be considered, a variable number of ψ are contemplated. Successively,
initial conditions are computed using simple trigonometric relations
and transformed in Cartesian coordinates in the inertial system of the
first primary and then also in curvilinear coordinates.

{

x2,0 = r2,0 cosψ

y2,0 = r2,0 sinψ
(4.2)

{

x0 = x2,0 + 1

y0 = y2,0
(4.3)
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ρ0 =
√

x2
0
+ y2

0
− 1

θ0 = arctan

(

y0

x0

)

(4.4)

2. Computation of the velocity of the body relative to the second primary
in order to set the energy with respect to the same primary to null.

v2,0 =

√

2µ

r2,0
(4.5)

3. Transformed the velocity from the previous point in the current curvi-
linear frame, it will be pointed in all directions. Discretization is made
using α, developing a vector of possible velocities in every direction, us-
ing a fixed number of alternative conditions. Initial velocities are com-
puted in the Cartesian frame of the first primary and also in curvilinear
coordinates using simple relations. In this way every initial positions
considered has a large number of initial velocities which all guarantee
that keplerian energy relative to the planet is null.

{

ẋ2,0 = v2,0 cosα

ẏ2,0 = v2,0 sinα
(4.6)

{

ẋ0 = ẋ2,0

ẏ0 = ẏ2,0 + 1
(4.7)











ρ̇0 = ẋ0 cos θ0 + ẏ0 sin θ0

θ̇0 =
ẏ0 cos θ0 − ẋ0 sin θ0

1 + ρ0
− 1

(4.8)

4. For every velocity in every point considered it must be verified that
Jacobi constant is lower than its value in the Lagrangian point L1
Cj < Cj,L1. This means that the total energy is higher than the limit
value when a trajectory can not pass from the area near a primary to
the area near the other one. In this way the passage is open and ZVC
do not contain at least the Lagrangian point L1. This relations was
introduced previously in equation 2.10 and the successive one.

5. Propagation of the orbit with given initial conditions. Every orbit
obtained is evaluated for 2 years in the future (forward propagation,
FW) and 2 in the past (backward propagation, BW). In this way, it
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could be verified if the trajectory is feasible or if it collides with a
primary and it could be analyzed the origin of the orbits that lead to
a ballistic capture.

6. Symmetries will be exploited to reduce the computational cost and for
a better understanding of the problem. This study is developed in
section 4.6. Thanks to this symmetry it is possible to propagate only
half trajectories

7. For every trajectory the time spent with negative keplerian energy
relative to the second primary is calculated, together with the time
spent within 4 Hill’s radii of distance from the planet. In every case,
the criterion of negative energy is much more important, as described
in section 3.2.

8. Using an event function integrated in the ode function it is possible to
consider also collisions with the planet, while collisions with the first
primary are not important for this study. When the distance from the
second primary is lower than the radius of the planet, the simulation
is interrupted and all parameters are saved in order to be catalogued
as collisions and represented coherently in the results.

4.5 Preliminary results

A simulation was developed using an angle spacing of 1/6 degrees ( 0.167°)
for both discretizations of position and velocity. Results are shown in figures
4.5 and 4.6, where in the vertical axis represents the duration time of the
capture up to a maximum of 2 years. In the horizontal plane are present
the discretizations mentioned previously. Figures are obtained exploiting
the symmetry discussed in section 4.6, therefore using only the first 180°
in the discretization of the position and developing two separated diagrams
respectively for a forward (FW) propagation and for a backward (BW) prop-
agation.

4.6 Symmetry of the problem

Study of the presence of symmetries verified afterwards. The following sym-
metry property was expected, being based on the equations of motion.

(

ρ, θ, ρ̇, θ̇, t
)

→
(

ρ,−θ,−ρ̇, θ̇,−t
)

.
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Figure 4.5: Results of the forward (FW) simulation for the search of ballistic
captures with an initial position distant 1.1 rHill from Jupiter. Horizontal axis
represent the angles analyzed in position and velocity and are measured in degrees
starting from the x-axis of the inertial frame centered in the Sun which connects the
two primaries. In the vertical axis is represented the total time spent with negative
keplerian energy relative to Jupiter, with an overall simulation time of 2 years. Red
stars indicate collisions with the planet.
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Figure 4.6: Results of the backward (BW) simulation for the search of ballistic
captures with an initial position distant 1.1 rHill from Jupiter. Horizontal axis
represent the angles analyzed in position and velocity and are measured in degrees
starting from the x-axis of the inertial frame centered in the Sun which connects the
two primaries. In the vertical axis is represented the total time spent with negative
keplerian energy relative to Jupiter, with an overall simulation time of 2 years. Red
stars indicate collisions with the planet.
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will reduce and become negative, indicating a ballistic capture.
This analysis was examined but it did not conduct to any relevant result,

even if some of them were promising. A further study of it is surely an
important step for a future additional work.
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Chapter 5

Ballistic captures for nearly

closed ZVC in Jupiter

In addition to the algorithm defined in the previous chapter, here only initial
conditions that guarantee a fixed Jacobi constant will be found and analyzed.
All other aspects are unaltered.

In this way only some of the configurations will be analyzed, in particular
the ones where ZVC (zero velocity curves) delimit clearly the accessible zone
and the forbidden zones in the vicinity of the planet. ZVC will be considered
quite closed in proximity of the Lagrangian points L1 and L2, making possi-
ble the evaluation of particular orbits that are stable and easily recognizable
due precisely to the presence of forbidden zones which are a useful indicator
for captures.

5.1 Definition of critical velocity, given a value of

CJ

In this section the algorithm presented in the previous chapter will be inte-
grated with the search of critical velocities. In other words, in addition to
the norm of initial velocity making null the keplerian energy relative to the
second primary, this initial velocity has to make the Jacobi constant equal
to a wanted value. This is done by addressing the fixed value of the initial
velocity in the right direction.

This last condition is linked also to the shape of ZVC and therefore to
forbidden regions for the motion.

To do so, three systems of reference will be used: two of them are inertial
Cartesian frames centered in both primaries and the third one is the synodic
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frame in curvilinear coordinates.

5.1.1 New steps of the algorithm for critical velocities

Through the definition of the initial distance of the satellite from the second
primary r20 and of the Jacobi constant, the following relations will be used.
As said previously, it is important to underline that the Jacobi constant will
be imposed with a value near the ones of CJ,L1 and CJ,L2, so that ZVC are
partially or totally closed around the planet.

r2,0 =
√

(rρ − cos θ)2 + (sin θ)2 (5.1)

Therefore, the following steps are implemented next to the ones presented
in section 4.4.

Primarily, it is important to note that the value for the Jacobi constant
CJ is chosen arbitrarily as suggested above. Even more important is that
now all the relations must be expressed in function of the parameter α, which
indicates the direction of the velocity relative to the second primary v2,0. In
fact α will be exactly the unknown quantity to be obtained in this analysis.

1. Inserting the relations mentioned in the previous chapter in the relation
for CJ and fixed a value for this parameter, α will be the only unknown
in the following equation:

Cj = −2
(

ρ̇2 + θ̇2r2ρ + z2
)

+ r2ρ + 2
1− µ

r
+ 2R (5.2)

where

R =
µ

r′
− µrρ cos θ (5.3)

is the "disturbing function".

2. It is obtained a value for α numerically using properly the Symbolic
Math Toolbox of Matlab, as shown in the next section.

0 = −2
(

ρ̇2 + θ̇2r2ρ + z2
)

+ r2ρ + 2
1− µ

r
+ 2R− CJ (5.4)

And with initial position conditions set as ρ = ρ0 , θ = θ0 , z = 0 and
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initial velocity v2,0, the following relation is found.

0 = −2

[

(

v2,0 cosα cos θ0 + (v2,0 sinα+ 1) sin θ0

)

+

(

(v2,0 sinα+ 1) cos θ0 − v2,0 cosα sin θ0

rρ
− 1

)2

r2ρ

]2

+r2ρ + 2
1− µ

r
+ 2R− CJ

(5.5)

α angle computed with this procedure has two possible results, but in
some cases no solutions could be extracted.

5.1.2 Analytical, simplified and numerical solution

From equation 5.5, using the Symbolic Math Toolbox of Matlab, the following
simplification was obtained.

(

1 + ρ0
)2 −

(

ρ0 − cos θ0 − sin(α− θ0) v2,0 + 1
)2 − CJ −

(

sin θ0 + cos(α− θ0) v2,0
)2

−
2(µ− 1)

1 + ρ0
−

2µ(r2,0 cos θ0 + r2,0ρ0 cos θ0 − 1)

r2,0
= 0

(5.6)
Given the complexity of this relation, it was reduced using general condi-

tions adopted in this analysis which approximate well also all other solutions.
In fact, the satellite could be found nearby the conjunction of the primaries.
So it is possible to set θ0 = 0 and ρ0 < 0 and at least an initial position will
always be in this configuration. So equation 5.6 becomes

(

1+ρ0
)2−CJ−

(

ρ0−sinα v2,0
)2−

2(µ− 1)

1 + ρ0
−
2µ(ρ2

0
+ ρ0 + 1)

ρ0
+
2µ cos2 α

ρ0
= 0

(5.7)
and resolving for α the following relation could be obtained.

sinα =

√
2
(

CJ + 4µ− 3ρ0 + CJ ρ0 + 4µρ0 + 2µρ2
0
− 2ρ2

0
− 3
)

4ρ0

√

−
µ

ρ0

(

1 + ρ0
)

(5.8)
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Capture timeCapture time

Figure 5.1: Morphology of solutions obtained with algorithm exposed in sections
4.4 and 5.1.1. As said previously, there are no acceptable initial conditions for
this particular configuration near the gap of ZVC in L1. Solutions exist only for
x2,0 ≤ −0.0858. Besides, the domain of function 5.8 influences also the other
acceptable initial positions, giving a shape of half moon colored in blue. For the
most part of it there are no ballistic captures, except in a "bubble" colored in
yellow, color that indicates a long time spent in capture.

In this way it is possible to solve analytically that for a value of CJ '
3.0378 it is necessary that ρ0 ≤ −0.0858 in order to have real solutions. As
a matter of fact, the domain of the function sinα in equation 5.8 forces the
condition given above.

In figure 5.1 is represented the morphology of possible solutions using
the complete equation 5.6. For these configurations there are real solutions
that corresponds to initial condition for which fixed Jacobi and null kep-
lerian energy are respected. This solution is computed by the use of the
aforementioned Toolbox Matlab, but it is not displayed here for brevity.

Given the shape of ZVC for high values of the Jacobi constant CJ it is
clear that acceptable conditions exist only in the conjunction of the primaries
of near there, but never in the regions at 90° and 270° from it (above and
under the planet, where ZVC mark the forbidden regions).

Trajectory inside the colored region of figure 5.1 includes different kind
of orbits. There are casual motions relative to the second primary, passages
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Table 5.1: Approximated values of the Jacobi constant evaluated in the La-
grangian points. These are obtained by the previously introduced formulas 4.1

Lagrangian point L1 L2 L3 L4 L5

Jacobi constant CJ [ ] 3.0387 3.0375 3.0010 2.9990 2.9990

in proximity of L1, fast captures that are more probably gravity assists and
finally real captures. Respectively the colours are dark blue, light blue, green
for the contour of the bubble and yellow for the bubble itself. Examples of
everyone of them will be exposed in section 5.7.

It has to be underlined that equation 5.8 has always two solutions, when
the domain is respected. The only exception is when the second term is
exactly unitary. This takes the study to consider two initial velocities for
every initial position. But in every case considered one of these solutions
never conducts to capture, so all the following figures and results will be
displayed for the "correct" velocity. This parameter is almost always the
one obtained resolving "directly" the equation, in other words finding the
value of α that stays in the first or fourth quadrant. The other possible
solution for inverse function of sine and tangent is π− α, which in the cases
studied takes never to a ballistic capture, but it is a mere relative motion as
in section 5.7.5.

Another noteworthy point is that there are no collisions with the planet
when high Jacobi constant are considered, therefore with quite closed ZVC.

5.2 Results of the search for Jupiter

For a better understanding of the data and of results, table 5.1 is presented.
It contains characteristic values of the Jacobi constant evaluated in the La-
grangian points.

The first simulation analyzed will be the one with a Jacobi constant equal
to the mean value of the one in L1 and L2 CJ = (CJ,L1+CJ,L2)/2 =' 3.0383.

Research has been developed starting from an high number of initial
conditions. In particular, the discretization grid was parameterized with the
Cartesian coordinates relative to the second primary x2,0 e y2,0, as repre-
sented in figure 5.2. These parameters are then introduced in equation 5.9
(seen also in previous chapters), and finally using relations presented in sec-
tion 5.1.1. Initial conditions for the propagation in curvilinear coordinates
for the synodic system are obtained from this procedure.
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Figure 5.2: Results of the search for ballistic captures by Jupiter. The X20 - Y20
plane represented is referred to the Cartesian inertial frame centered in the second
primary. All and only the capture are found in the yellow bubble, which includes
the initial positions of trajectories that spend a long time with negative keplerian
energy with respect to the planet. The measure of time is represented with the
side "colorbar". On the contrary to figure 5.1, here all solutions with short or no
capture were cut off. Only captures with duration of 0.5 Jupiter’s years (6 Jupiter’s
months) or more are represented. In this graphic also ZVC (zero velocity curves)
are present, evaluated for CJ ' 3.0383. They have a gap near L1 and are closed in
proximity of L2, leaving no chance for the satellite to escape in this direction. Also
position of Jupiter and Lagrangian points L1 and L2 are represented with stars.

r2,0 =
√

x2
2,0 + y2

2,0

ρ0 =
√

(

1 + x2,0
)2

+ y2
2,0 − 1

θ0 = atan2
(

y2,0 , 1 + x2,0
)

(5.9)

At the end, for every trajectory simulated various parameters are com-
puted, such as the time the satellite spend being captured by the second
primary (with negative relative energy or particularly near to it) and other
parameters for the verification of the procedure. In this way it is possible to
verify its correctness and extract data to plot figure 5.2.

The symmetry introduced in section 4.6 was used to simplify the simu-
lation and solutions with positive keplerian energy relative to Jupiter were
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cut off. This could be improved if an analytic relation could be determined
to find out whether a direction conducts to capture or not.

5.3 Results obtained by varying Jacobi constant

Figure 5.3 contains different plots for initial conditions internal (between the
primaries) and external (on the right of the planet in the synodic frame)
evaluated with different Jacobi constants CJ . In order from left to right
and from above to the bottom: CJ = 3.0386, CJ = 3.0381, CJ = 3.0375
and CJ = 3.0370. All and only the captures are found in the yellow area,
which includes the initial positions of trajectories that spend a long time
with negative keplerian energy with respect to the planet. The measure of
time is represented with the side "colorbar". On the contrary to figure 5.1,
here all solutions with short or no capture were cut off. Only captures with
duration of 0.5 Jupiter’s years (6 Jupiter’s months) or more are represented.
In this graphic also ZVC (zero velocity curves) are present, evaluated for
the corresponding value of the Jacobi constant. Also position of Jupiter and
Lagrangian points L1 and L2 are represented with stars.

From figure 5.3 it is clear that when CJ decreases the gaps of ZVC and as
a consequence the bubble get bigger. Also the colour of this last one changes.
For high Jacobi it is completely yellow indicating a long capture, while for
lower values of the Jacobi constant it becomes mostly blue indicating shorter
captures or even trajectories of flybys.

It is easy to find out that generally the more the gaps are closed, the
longer are captures.

A particular case is found for the area with a shape of a drop inside the
bubble for low Jacobi. A trajectory of this kind is shown in section 5.7.

5.4 Topology of the structures obtained

Bubbles obtained with this method have always an elliptic shape and it is
interesting to analyze the change of this shape as a function of the Jacobi
constant. This comparison in shown in figure 5.4, where all structures stretch
out from a central point that is contained in all of them. Characteristics of
the central point will be further analyzed in section 5.5.

For what concerns structures, they enlarge with the reduction of Jacobi
constant and therefore with the increase of the gaps in the ZVC near La-
grangian points. This result is visible thanks to the fact that ZVC are plotted
in the same colour of the bubble obtained with a fixed value of CJ .
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Figure 5.3: Results of the search for ballistic captures by Jupiter with different
values of the Jacobi constant. The X20 - Y20 plane represented is referred to the
Cartesian inertial frame centered in the second primary.
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Figure 5.4: Analysis of the topology of "bubble" structures containing the initial
positions that conducts to ballistic capture. Their dimensions increase and ZVC
gaps grow bigger with the reduction of CJ . This trend is shown using the black
colour fading into light gray. The gap of the ZVC in L2 opens up and the external
bubbles appear only with the last two values of the Jacobi constant.

5.5 Analysis of generatrix orbits of the capture struc-

tures

An interesting study is to characterize the orbit that will be named "gener-
atrix". This is the orbit obtained by finding the maximum value of CJ for
which ZVC are still open. In this case ZVC will be almost closed, leaving
only a little hole for the entrance in proximity of the second primary. This is
obviously possible in both internal and external region, when the value of the
Jacobi constant tends to CJ,L1 or CJ,L2 respectively. In this last case ZVC
on the right will be almost closed, but on the left they will be completely
open. However, this fact will not influence at all the analysis, because the
region of interest is the one on the right near L2.
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Table 5.2: Keplerian orbital elements (semi-major axis a, eccentricity e, perigee
argument ω and true anomaly ν) of the internal and external generatrix orbits and
relative numerical value of the Jacobi constant for these values.

a [ ] e [ ] ω [ ] ν [ ] CJ [ ]

Internal
orbit

0.7613758 0.1926487 -2.7509869 2.7195346 CJ,L1 + 0.0000129294

External
orbit

1.4339814 0.2338906 0.4655995 5.8508003 CJ,L2 + 0.0000126762

Table 5.3: Initial coordinates used in Matlab simulations for internal and exter-
nal generatrix orbits. On the left, the first two columns are taken in the inertial
reference frame centered in the second primary. On the right, the following two
columns are taken in the synodic frame in curvilinear coordinates. The last two
columns are the distance of the initial point of these orbits from Jupiter, respectively
dimensionless and measured in Hill’s sphere radii.

X2,0 [ ] Y2,0 [ ] ρ0 [ ] θ0 [ ] d2 [ ] d2 [rHill]

Internal
orbit

-0.111010 -0.027970 -0.110570 -0.031452 0.114479 1.6774

External
orbit

0.117475 0.037130 0.118092 0.033214 0.123203 1.8052

5.5.1 Method and initial parameters

The keplerian orbital elements summarized in table 5.2 (together with the
relative value of the Jacobi constant used in the Matlab scripts) are evaluated
in the inertial reference frame of the first primary. They are the elements
of the orbit around the Sun in the instant when the satellite is captured by
Jupiter, hence the keplerian energy relative to the planet is null.

In table 5.3 initial coordinates used in Matlab simulations for the gener-
atrix orbits are shown. These coordinates are taken in the inertial system of
reference centered in the second primary or in the synodic centered in the
first primary for both internal and external case. In this case and in the re-
search previously exposed Ode113 was used due to its lighter computations
(as shown in chapter 1) with absolute and relative tolerances set to 10−12.
Other parameters (masses and reference radius) used in the simulations are
summarized in table 5.4.

• It has to be underlined that the orbit presented here is the one obtained
not considering (only in this moment) the gravitational attraction given
by Jupiter. Obviously, the propagation on the whole requires this
contribution to find the moment when the ballistic capture begins.

70



CHAPTER 5. BALLISTIC CAPTURES FOR NEARLY CLOSED ZVC
IN JUPITER

Table 5.4: Parameters used in the simulations for Jupiter: mass of the Sun MSun,
mass of Jupiter MJup and radius of its orbit around the Sun Rref .

MSun [kg] MJup [kg] Rref [km]

1.988499251 · 1030 1.898190000 · 1027 778.4 · 106

However, in this way results represent only conditions at the instant of
beginning of the capture, not the effective provenience of the trajectory,
which is deflected also before this moment. In the next sections this
point will be discussed separately for internal and external orbits.

• Being in a planar case it is not useful to consider right ascension of
ascending node Ω and inclination i of the orbits, so they will be con-
sidered always null. In the results only the other four parameters will
be shown.

• In this particular case the conditions of capture are particularly strict
and only a representative orbit will be analyzed. Regardless how much
the value of CJ,L1 is accurate, there are always infinite orbits all con-
centrated around a single point.

The distinctive feature used to show the resulting characteristics is that
everyone of the infinite orbits obtained has the same parameters of the
one displayed in the following section, that is with an accuracy up to
the seventh decimal point.

5.5.2 Diagrams and duration of the internal generatrix orbit

In this section interesting figures and parameters for the internal generatrix
orbit will be shown. The initial conditions for this orbit were presented in
tables 5.2 and 5.3.

In figure 5.5 it is represented the keplerian energy relative to Jupiter for a
time span of 50000 Jupiter’s years. All along this energy is negative and this
indicates a very important capture, longer than 50000 years. That could be
explained by considering the very small gap existing in the ZVC, which quite
impede to enter or exit from the area in proximity of the planet. To prop-
agate this huge time span, a diminution of integration tolerances to 10−10

is fundamental. In this way the necessary accuracy for the computation of
the trajectory could be lost. In fact, the error in the propagation (measured
with the absolute variation of the Jacobi constant) increases up to 10−5, as
shown in figure 5.6.
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Figure 5.5: Internal generatrix Keplerian energy with respect to the planet for a
time span of 50000 Jupiter’s years from the beginning of the capture. The dimen-
sionless energy is computed in the inertial reference frame centered in the second
primary and it remains negative for the whole duration of the simulation
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Figure 5.6: Internal generatrix variation of the Jacobi constant for a time span
of 50000 Jupiter’s years from the beginning of the capture. Despite the use of
integration tolerances of 10−10, the variation of the constant in the huge time span
accumulates a notable error, in the order of magnitude of 10−5.
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Figure 5.7: Internal generatrix trajectory in the synodic reference frame centered
in the Sun. On the left, the overall view; on the right, a zoom of the area containing
Jupiter. The trajectory propagated backward in time (BW) is dashed and the
trajectory propagated forward in time (FW) is solid. They are linked in the initial
point of the propagation (square).

In figures 5.7, 5.8, 5.9 and 5.10 is represented the trajectory of this pe-
culiar orbit. First two figures (5.7 e 5.8) are taken in the synodic frame: the
first is a complete view and a zoom around the planet; the second shows a
detail of the passage of the trajectory near the gap at L1 and an ulterior
zoom of the gap. The last two figures (5.9 e 5.10) represent the orbit in the
Cartesian inertial reference frame centered respectively in the first and the
second primary.

Total duration of the simulation is 4 years, 2 in backward propagation
(BW) and 2 in forward propagation (FW).

The transition to entry in the area near the planet lasts about a Jupiter’s
year. This feature is particularly visible in figure 5.10, where the trajectory
covers quite an entire circle near the Hill’s sphere. Here relative velocities are
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Figure 5.8: Internal generatrix trajectory in the synodic frame centered in the
Sun. From left to right, detail and additional zoom of the passage between the
ZVC near L1.

very small and for this reason in the synodic frame the trajectory is almost
still in proximity of the Lagrangian point L1.

In the inertial frame centered in the Sun (figure 5.9) this feature is vis-
ible between the square of the initial position and the moment when the
trajectory begins to be diverted by the planet. In fact, between these two
moments there is an entire circle in which the orbit slowly gets nearer to
Jupiter’s orbit.

5.5.3 Variation of orbital elements for internal generatrix

In figures 5.11, 5.12 and 5.13 orbital elements a, e and ω are presented as a
function of the distance of the body from the second primary. Besides, here
semi-major axis a, eccentricity e and perigee argument ω are given for the
internal generatrix orbit: a = 0.7412, e = 0.1918 and ω = −2.9259. These
values are taken in the figures mentioned above, where the plotted parame-
ters tend to be steady. They have a modest difference with the ones presented
in table 5.2 obtained in the instant of beginning of the capture. Since they
continuously change, they can not be considered reference parameters for
the analysis, if not when some criteria are specified.
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Figure 5.9: Internal generatrix trajectory in the inertial frame centered in the
Sun.
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Figure 5.10: Internal generatrix trajectory in the inertial frame centered in
Jupiter.
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Figure 5.11: Semi-major axis of the internal generatrix computed in the inertial
system of reference centered in the Sun. Its variation is shown as a function of
the distance from the second primary in Hill’s radii. The square indicates the
moment when the capture begins. On its left there are the values for the FW
propagation, nearer to the second primary; on the right there are the values for the
BW propagation, where the body gets further from the planet.
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Figure 5.12: Eccentricity of the internal generatrix in the inertial system of ref-
erence centered in the Sun. Its variation is shown as a function of the distance
from the second primary in Hill’s radii. The square indicates the moment when the
capture begins.
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Figure 5.13: Perigee argument of the internal generatrix in the inertial reference
centered in the Sun. Its variation is shown as a function of the distance from the
second primary in Hill’s radii. The square indicates the moment when the capture
begins.
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Figure 5.14: External generatrix Keplerian energy relative to the second primary
for 3.8 Jupiter’s years from the beginning of the capture.

5.5.4 Diagrams and duration of the external generatrix orbit

In this section interesting figures and parameters for the external generatrix
orbit will be shown. The initial conditions for this orbit were presented in
tables 5.2 e 5.3.

In figure 5.14 is represented the keplerian energy relative to Jupiter for
a time span of 4 Jupiter’s years. All along this energy is negative and this
indicates a very important capture, long about 3.7 Jupiter’s years. In figure
is also shown the trajectory in the proximity of the planet with the detail of
closed ZVC in L2 and wide open in L1.

In figures 5.16, 5.17, 5.18 and 5.19 is represented the trajectory of this
peculiar orbit. First two figures (5.16 and 5.17) are taken in the synodic
frame: the first is a complete view and a zoom around the planet; the second
shows a detail of the passage of the trajectory near the gap at L2 and an
ulterior zoom of the gap. The last two figures (5.18 and 5.19) represent the
orbit in the Cartesian inertial reference frame centered respectively in the
first and the second primary.

Total duration of the simulation is 4 years, 2 in backward propagation
(BW) and 2 in forward propagation (FW).

The transition to entry in the area near the planet lasts about a Jupiter’s
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Figure 5.15: External generatrix trajectory in the synodic frame near to Jupiter.
Capture lasts about 3.7 Jupiter’s years and exits from the wider gap in L1.
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Figure 5.16: External generatrix trajectory in the synodic reference frame cen-
tered in the Sun. Left: overall view. Right: zoom on the area containing Jupiter.
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Figure 5.17: External generatrix FW trajectory of the satellite in the synodic
reference frame centered in the Sun. From left to right, detail and additional zoom
of the passage between the ZVC near L2.
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Figure 5.18: External generatrix trajectory of the satellite in the inertial reference
frame centered in the Sun.
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Figure 5.19: External generatrix trajectory in the inertial reference frame centered
in Jupiter.

year. This feature is particularly visible in figure 5.19, where the trajectory
covers quite an entire circle near the Hill’s sphere. Here relative velocities
are very small and for this reason in the synodic frame the trajectory is
almost still in proximity of the Lagrangian point L2. In the inertial frame
centered in the Sun (5.18) this feature is visible between the square of the
initial position and the moment when the trajectory begins to be diverted
by the planet. In fact, between these two moments there is an entire circle
in which the orbit slowly gets nearer to Jupiter’s orbit.

5.5.5 Variation of orbital elements for external generatrix

In figures 5.20, 5.21 and 5.22 the values of keplerian orbital elements a, e
and ω are presented as a function of the distance of the body from the
second primary. Besides, here semi-major axis a, eccentricity e and perigee
argument ω are given for the external generatrix orbit: a = 1.4695, e =
0.2308 and ω = 0.2768. These values are taken in the figures mentioned
above, where the plotted parameters tend to be steady. They have a modest
difference with the ones presented in table 5.2 obtained in the instant of
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Figure 5.20: Semi-major axis of the external generatrix orbit computed in the
inertial system of reference centered in the Sun. Its variation is shown as a function
of the distance from the second primary in Hill’s radii. The square indicates the
moment when the capture begins. On its left there are the values for the FW
propagation, nearer to the second primary; on the right there are the values for the
BW propagation, where the body gets further from the planet.

beginning of the capture. It has to be highlighted that they continuously
change and cannot be considered reference parameters for the analysis, if
not when some criteria are specified.

5.6 Keplerian orbital elements in the capture struc-

ture

In the same way for keplerian orbital parameters of the generatrix orbits,
in this section keplerian orbital elements for orbits in section 5.3 will be
studied. For everyone on the captures inside the structures of figure 5.3,
semi-major axis a, eccentricity e, perigee argument ω and true anomaly ν
were computed. These results are shown in figures 5.23 and 5.24. The first
one is for initial position between the primaries and CJ = CJ,L2 + 0.0003,
while the second is for external initial position and CJ = CJ,L2.

It has to be underlined that this second case reveals the approximation
of the formulas for the Jacobi constant in the Lagrangian points. In fact, the
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Figure 5.21: Eccentricity of the external generatrix orbit computed in the inertial
system of reference centered in the Sun. Its variation is shown as a function of the
distance from the second primary in Hill’s radii. The square indicates the moment
when the capture begins.
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Figure 5.22: Perigee argument of the external generatrix orbit computed in the
inertial system of reference centered in the Sun. Its variation is shown as a function
of the distance from the second primary in Hill’s radii. The square indicates the
moment when the capture begins.
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value used here is precisely the one computed in L2, but this underestimates
the real value giving ZVC still slightly open and not closed as it would be
expected to be with such a value.

It has to be noted that these values are equally distributed around the
values given in table 5.2.

Besides, the elements of perigee argument and true anomaly are strictly
linked between them for all the orbits. In the internal case ω and ν are quite
opposites: it is the situation sketched in figure 5.25, where ballistic capture
occurs usually when the satellite reaches about 25° before the apoapsis. In
the external case ω and ν are quite explementary (the sum is slightly more
than 360°): it is the situation sketched in figure 5.26, where ballistic capture
occurs usually when the satellite reaches about 25° before the periapsis.
Considerations made previously on computations of angles, semi-major axis
and eccentricity are still valid.

These results are logical, but they highlight how the ballistic capture
could take place only with these particular characteristics, which in all the
cases analyzed diverge of only a few degrees from the configurations exposed
here. In particular, a rotation of the red orbit in figure occurs, but the
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Figure 5.25: Schematic representation of the position of the body in its orbit
around the Sun in the moment of the capture for the internal case. The red tra-
jectory would be the one obtained not considering Jupiter’s attraction. Coloured
signs are linked to the sketched elements in the same colour.
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Figure 5.26: Schematic representation of the orbit around the Sun in the moment
of the capture for the external case. The red trajectory would be the one obtained
not considering Jupiter’s attraction. Coloured signs are linked to the sketched
elements in the same colour.

position of the beginning of the capture with respect to the apoapsis and
periapsis remains substantially fixed.

Obviously, diminishing CJ and so enlarging ZVC and captures structures,
the orbits get more variable but they remain meanly the ones analyzed pre-
viously. For example, it could be seen that in the internal case where there
is a higher number of orbits propagated thanks to the higher dimensions of
the gap in ZVC and therefore of the "bubble", also the orbital elements have
a wider range of values.

Finally, it has to be underlined that as expected the initial position
(where capture begins) for an internal orbit is delayed with respect to the
planet. In fact, Jupiter is about 5° forward counterclockwise in the reference
frame of the Sun. In addition, the velocity of the satellite is slightly lower
(around 5%) than the one of the planet, but the minor length of the path will
allow it to recover the lacking phase, entering in proximity of Jupiter. On the
contrary, for external orbits initial position is in advance with respect to the
planet of about 2° and this difference will be recovered when the keplerian
energy relative to the second primary is already negative. The velocity of
the satellite is slightly higher (around 5%) than the one of the planet, but
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the advantage will be lost thanks to the longer path of the external orbit.

5.7 Examples of trajectories

As introduced at the end of section 5.1.1, in figure 5.1 and in section 5.3,
there are different kinds of trajectories found with this search algorithm.
Obviously, the most interesting ones are the one which spend a lot of time
in capture. The capture structure, also named as "bubble", was computed
by selecting only orbits that spend more than 6 Jupiter’s months (0.5 years)
captured.

5.7.1 Example of trajectory of a long capture

In this section an example of long capture is shown. It lasts about 8.6
Jupiter’s years. In figure 5.27 are represented the trajectory in the synodic
frame and the keplerian energy relative to the second primary.

5.7.2 Example of a capture exploiting symmetries

Another example of ballistic capture will be represented in figure 5.28, where
the property of spatial and temporal symmetry introduced in section 4.6 will
be exploited.

In this case, symmetry is applied to an initial position inside the yellow
"bubble" of figure 5.3 for CJ = 3.0378. In this way it is obtained an initial
position mirrored with respect to the x-axis and a reversed time. In other
words, changing the sign of y2,0 (coordinate of the initial point relative to the
second primary) and propagating backwards, a perfectly symmetric orbits
to the one with y2,0 and forward propagation could be obtained. Therefore,
in figure 5.28 the portion of trajectory near Jupiter is obtained by backward
(BW) propagation, while the other branch departing from the initial position
(square) is obtained by propagating forward (FW) in time. Initial position
has y2,0 > 0.

So a symmetric trajectory (spatially and temporally) to the one in figure
5.28 will give a ballistic capture when propagated forward (FW) and will
originate (BW) from a trajectory orbiting the first primary.

These symmetry properties are reminded here because they are consid-
ered important to compact the discussion and reduce importantly the num-
ber of trajectories to be computed. This halves the computational cost of
the search, making possible to study both past and future behaviour of the
body by studying a same number of simulation.
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Figure 5.27: Example trajectory in the synodic reference frame where initial
position is x2,0 = −0.1178 and y2,0 = −0.031. Upper left: trajectory with initial
position outside the field of view. Upper right: zoom of the trajectory near the
planet. Below: keplerian energy relative to the second primary, which remains
negative for almost 8.6 years.
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Figure 5.28: Example of symmetric properties. Upper left: detail of trajectory
in the synodic frame near the planet. Upper right: overall view of the trajectory
in the synodic frame. The branch going from the initial position towards left and
orbiting the Sun is the one obtained with FW propagation. Below: keplerian energy
relative to the second primary, which remains negative for more than 2 Jupiter’s
years in negative time. In the positive time it escapes from the capture and after
2 years it returns negative for a short time (relative motion that will be illustrated
in the following examples).
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5.7.3 Example of brief ballistic capture

An example of a brief ballistic capture is shown in figure 5.29 and it lasts
0.85 Jupiter’s years. This trajectory enters the Hill’s sphere and has negative
keplerian energy with respect to the second primary, but only for a relatively
short time. In this case, the orbit could be considered a mere flyby.

5.7.4 Example of relative motion around L1

An example of a very short capture is shown in figure 5.30 and it lasts
0.49 Jupiter’s years. This trajectory barely enters the Hill’s sphere and
has negative keplerian energy with respect to the second primary, but only
for a very short time. In fact, it makes only a revolution around L1 and
immediately leaves, so it could be excluded from the ballistic captures. This
is the reason why ballistic captures are found only for capture times higher
than 0.5 years.

5.7.5 Example of relative motion distant from the planet

Another example of relative motion very brief is the one shown in figure 5.31
and it lasts only 0.24 Jupiter’s years. Here the trajectory does not enter in
the Hill’s sphere, but it has negative keplerian energy relative to the planet
for a very short time. In fact, it is a trajectory that has nothing to do with
a ballistic capture, because the relative velocity is low only when the body
is too far from the gaps in the ZVC near the Lagrangian points.

It is important to underline that this particular motion occurs also further
away from the planet than represented here. The result is the one obtained
in figure 5.1, where the majority of the half moon area is coloured in dark
blue representing this kind of orbits.

5.7.6 Example of trajectory inside the drop of the "bubble"

An example of a trajectory beginning inside the capture structure (or "bub-
ble") of figure 5.3 with CJ = 3.0357 (hence a low value of the Jacobi constant)
is shown in figure 5.32.

This is a very short capture that lasts only 0.47 Jupiter’s years. The
trajectory enters Hill’s sphere and has a negative keplerian energy relative to
the planet, but only for a brief time span. In fact, it revolves only once around
the planet in the synodic frame and it is immediately expelled. Hence, it is
not considered in the ballistic capture found with the presented algorithm
because it is under the imposed limit of 0.5 Jupiter’s years.
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Figure 5.29: Example trajectory where ballistic capture is brief, of about 0.85
Jupiter’s years. Above: detail of the trajectory near the planet with initial position,
projection of the Hill’s sphere, ZVC and Lagrangian points L1 and L2. Below:
keplerian energy relative to the second primary.
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Figure 5.30: Example trajectory where ballistic capture is very short, of about
0.49 Jupiter’s years. In fact it will not be considered as a ballistic capture, but a
mere peculiar relative motion around L1. Above: detail of the trajectory near the
planet with initial position, projection of the Hill’s sphere, ZVC and Lagrangian
points L1 and L2. Below: keplerian energy relative to the second primary.
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Figure 5.31: Example trajectory where keplerian energy lasts about 0.24 Jupiter’s
years. In fact it will not be considered a ballistic capture, but a mere relative motion
far from the planet and its Hill’s sphere. Above: detail of the trajectory near the
planet with initial position, projection of the Hill’s sphere, ZVC and Lagrangian
points L1 and L2. Below: keplerian energy relative to the second primary.
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Figure 5.32: Example trajectory inside the capture structure ("bubble") of figure
5.3 where keplerian energy lasts about 0.47 Jupiter’s years. In fact it will not be
considered a ballistic capture, but a mere relative motion far from the planet and its
Hill’s sphere. Above: detail of the trajectory near the planet with initial position,
projection of the Hill’s sphere, ZVC and Lagrangian points L1 and L2. Below:
keplerian energy relative to the second primary.
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Chapter 6

Results of the search for Mars

In the same way as developed for the Sun-Jupiter system, in this chapter the
Sun-Mars system will be analyzed.

For a better understanding of the search and of results obtained, table 6.1
is presented. It contains the values of the Jacobi constant in the Lagrangian
points.

Analogously to Sun-Jupiter system, collisions are never found for high
values of the Jacobi constant.

6.1 Capture structures for various values of high CJ

Diagrams for the search of the captures obtained with both internal and
external initial position for different values of Jacobi constant CJ in figure 6.1
are ordered from left to right and from above to below: CJ = 3.00020259 =

CJ,L1−10−7, CJ = 3.00020228 =
CJ,L1 + CJ,L2

2
, CJ = 3.00020196 = CJ,L2−

10−7 and CJ = 3.00020156 = CJ,L2 − 5 10−7. Last two values create both
"bubbles" internal and external to the conjunction of the primaries.

From figure 6.1 it is clear that when CJ decreases the gaps of ZVC and as
a consequence the bubble get bigger. Also the colour of this last one changes.

Table 6.1: Approximated values of the Jacobi constant in the Lagrangian points.
Values are obtained with equation 4.1.

Lagrangian point L1 L2 L3 L4 L5

Jacobi constant CJ [ ] 3.00020249 3.00020206 3.00000032 2.99999968 2.99999968
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Figure 6.1: Results of the search for ballistic captures by Mars with different
values of the Jacobi constant. The X20 − Y20 plane represented is referred to the
Cartesian inertial frame centered in the second primary
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For high Jacobi it is completely yellow indicating a long capture, while for
lower values of the Jacobi constant it becomes mostly blue indicating shorter
captures or even trajectories of flybys.

6.2 Topology of the structures obtained

Bubbles obtained with this method have always an elliptic shape and it is
interesting to analyze the change of this shape as a function of the Jacobi
constant. This comparison in shown in figure 6.2, where all structures stretch
out from a central point that is contained in all of them. Characteristics of
the central point sill be further analyzed in section 6.3. For what concerns
the structures, they enlarge with the reduction of the Jacobi constant and
therefore with the increase of the gaps in the ZVC near the Lagrangian
points. This result is visible thanks to the fact that ZVC are plotted in the
same colour of the bubble obtained with the same value of CJ .

For what concerns the structures, they enlarge with the reduction of the
Jacobi constant and therefore with the increase of the gaps in the ZVC near
the Lagrangian points. This results is visible thanks to the fact that ZVC
are plotted in the same colour of the bubble obtained with the same value
of CJ .

6.3 Analysis of generatrix orbits of the capture struc-

tures

An interesting study is to characterize the orbit that will be named "gener-
atrix". This is the orbit obtained by finding the maximum value of CJ for
which ZVC are still open. In this case ZVC will be almost closed, leaving
only a little hole for the entrance in proximity of the second primary. This is
obviously possible in both internal and external region, when the value of the
Jacobi constant tends to CJ,L1 or CJ,L2 respectively. In this last case ZVC
on the right will be almost closed, but on the left they will be completely
open. But this fact will not influence at all the analysis because the region
of interest in the one on the right near L2.

6.3.1 Method and initial parameters

The keplerian orbital elements summarized in table 6.2 (together with the
relative value of the Jacobi constant used in the Matlab scripts) are evaluated
in the inertial reference frame of the first primary. They are the elements
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Figure 6.2: Analysis of the topology of "bubble" structures containing the initial
positions that conducts to ballistic capture. Their dimensions increase and ZVC
gaps grow bigger with the reduction of CJ . This trend is shown using the black
colour fading into light gray. The gap of the ZVC in L2 opens up and the external
bubbles appear only with the last two values of the Jacobi constant.

of the orbit around the Sun in the instant when the satellite is captured by
Mars, hence the keplerian energy relative to the planet is null.

In table 6.3 initial coordinates used in Matlab simulations for the gener-
atrix orbits are shown. These coordinates are taken in the inertial system of
reference centered in the second primary or in the synodic centered in the
first primary for both internal and external case. In this case and in the re-
search previously exposed Ode113 was used due to its lighter computations
(as shown in chapter 1) with absolute and relative tolerances set to 10−12.
Other parameters (masses and reference radius) used in the simulations are

Table 6.2: Keplerian orbital elements (semi-major axis a, eccentricity e, perigee
argument ω and true anomaly ν) of the internal and external generatrix orbits and
relative numerical value of the Jacobi constant for these valued.

a [ ] e [ ] ω [ ] ν [ ] CJ [ ]

Internal
orbit

0.9790033 0.0146810 -2.7174643 2.7151963 CJ,L1 + 2 10−9

External
orbit

1.0218821 0.0149045 0.4295923 5.8558549 CJ,L2 + 5 10−10
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Table 6.3: Initial coordinates used in Matlab simulations for internal and exter-
nal generatrix orbits. On the left, the first two columns are taken in the inertial
reference frame centered in the second primary. On the right, the following two
columns, are taken in the synodic frame in curvilinear coordinates. The last two
columns are the distance of the initial point of these orbits from Mars, respectively
dimensionless and measured in Hill’s sphere radii.

X2,0 [ ] Y2,0 [ ] ρ0 [ ] θ0 [ ] d2 [ ] d2 [rHill]

Internal
orbit

-0.00795 -0.00225 -0.008097 -0.002520 0.008477 1.78243

External
orbit

0.00798 0.00228 0.007983 0.002262 0.008299 1.74506

Table 6.4: Parameters used in the simulations for Mars: mass of the Sun MSun,
mass of Mars MMars and radius of its orbit around the Sun Rref .

MSun [kg] MMars [kg] Rref [km]

1.988499251 · 1030 6.41714114 · 1023 227.9 · 106

summarized in table 6.4.

• It has to be underlined that the orbit presented here is the one ob-
tained not considering (only in this moment) the gravitational attrac-
tion given by Mars. Obviously, the propagation on the whole requires
this contribution to find the moment when the ballistic capture begins.

But in this way results represent only conditions at the instant of
beginning of the capture, not the effective provenience of the trajectory,
which is deflected also before this moment. In the next sections this
point will be discussed separately for internal and external orbits.

• Being in a planar case it is not useful to consider right ascension of
ascending node Ω and inclination i of the orbits, so they will be con-
sidered always null. In the results only the other four parameters will
be shown.

• In this particular case the conditions of capture are particularly strict
and only a representative orbit will be analyzed. Regardless how much
the value of CJ,L1 is accurate, there are always infinite orbits all con-
centrated around a single point.

The distinctive feature used to show the resulting characteristics is that
everyone of the infinite orbits obtained has the same parameters of the
one displayed in the following section, that is with an accuracy up to
the seventh decimal point.
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Figure 6.3: Internal generatrix Keplerian energy with respect to the planet for
a time span of 689 Martian years from the beginning of the capture. The dimen-
sionless energy is computed in the inertial reference frame centered in the second
primary and it remains negative for the whole duration of the simulation

6.3.2 Diagrams and duration of the internal generatrix orbit

In this section interesting figures and parameters for the internal generatrix
orbit will be shown. The initial conditions for this orbit were presented in
tables 6.2 and 6.3.

In figure 6.3 it is represented the keplerian energy relative to Mars for
a time span of 689 Martian years. All along this energy is negative and
this indicates a very important capture, long about 689 years. That could
be explained by considering the very small gap existing in the ZVC, which
quite impede to enter or exit from the area in proximity of the planet.

In figures 6.4, 6.5, 6.6 and 6.7 is represented the trajectory of this peculiar
orbit. First two figures (6.4 e 6.5) are taken in the synodic frame: the first
is a complete view and a zoom around the planet; the second shows an
additional zoom near the planet and a detail of the passage in the gap of L1.
The last two figures (6.6 e 6.7) represent the orbit in the Cartesian inertial
reference frame centered respectively in the first and the second primary.

Total duration of the simulation is 4 years, 2 in backward propagation
(BW) and 2 in forward propagation (FW).

The transition to entry in the area near the planet lasts about 6 Martian
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Figure 6.4: Internal generatrix trajectory of the satellite (sat) in the synodic
frame centered in the Sun. On the left, the overall view; on the right, a zoom of
the area containing Mars. The trajectory propagated backward in time (BW) is
dashed. Initial point of the propagation is represented by a square.
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Figure 6.7: Internal generatrix trajectory in the inertial frame centered in Mars.

months. This feature is particularly visible in figure 6.7, where the trajectory
covers quite half a circle near the Hill’s sphere. Here relative velocities are
very small and for this reason in the synodic frame the trajectory is almost
still in proximity of the Lagrangian point L1.

In the inertial frame centered in the Sun (figure 6.6) this feature is vis-
ible between the square of the initial position and the moment when the
trajectory begins to be diverted by the planet. In fact, between these two
moments there is half circle in which the orbit slowly gets nearer to Mars’
orbit.

Unfortunately, these details are barely visible in the case of Mars, because
of the less importance in terms of mass of this second primary body. This
feature takes to a packing of the characterising points near the planet and
so they are not visible without any zoom in the diagrams.

6.3.3 Variation of orbital elements for internal generatrix

In figures 6.8, 6.9 and 6.10 the values of keplerian orbital elements a, e
and ω are presented as a function of the distance of the body from the
second primary. Besides, here semi-major axis a, eccentricity e and perigee
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Figure 6.8: Semi-major axis of the internal generatrix computed in the inertial
system of reference centered in the Sun. Its variation is shown as a function of
the distance from the second primary in Hill’s radii. The square indicates the
moment when the capture begins. On its left there are the values for the FW
propagation, nearer to the second primary; on the right there are the values for the
BW propagation, where the body gets further from the planet.

argument ω are given for the internal generatrix orbit: a = 0.97702, e =
0.01456 and ω = −2.9048. These values are taken in the figures mentioned
above, where the plotted parameters tend to be steady. On the contrary to
Jupiter’s case, they have a negligible difference with the ones presented in
table 6.2 obtained in the instant of beginning of the capture.

6.3.4 Diagrams and duration of the external generatrix orbit

In this section interesting figures and parameters for the external generatrix
orbit will be shown. The initial conditions for this orbit were presented in
tables 6.2 e 6.3.

In figure 6.11 is represented the keplerian energy relative to Mars for a
time span of 26.5 Martian years. All along this energy is negative and this
indicates a very important capture, long longer than 26 Martian years. In
figure is also shown the trajectory in the proximity of the planet with the
detail of closed ZVC in L2 slightly more open in L1.

The difference between the gap in L1 and the one in L2 depends on the
mass ratio µ. In this case it is very small, hence this difference is very tiny.
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Figure 6.9: Eccentricity of the internal generatrix in the inertial system of ref-
erence centered in the Sun. Its variation is shown as a function of the distance
from the second primary in Hill’s radii. The square indicates the moment when the
capture begins.
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Figure 6.10: Perigee argument of the internal generatrix in the inertial reference
centered in the Sun. Its variation is shown as a function of the distance from the
second primary in Hill’s radii. The square indicates the moment when the capture
begins.
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Figure 6.11: External generatrix Keplerian energy relative to the second primary
for 26.5 Martian years from the beginning of the capture.

For this reason and thanks to the particular value of CJ studied, a trajectory
entering by the gap of L2 stays longer in orbit near the planet. It is more
difficult for it to exit from the narrow gap in L1.

In figures 6.12, 6.13, 6.14 and 6.15 is represented the trajectory of this
peculiar orbit. First two figures (6.12 and 6.13) are taken in the synodic
frame: the first is a complete view and a zoom around the planet; the second
shows an additional zoom near the planet and a detail of the passage in the
gap of L2. The last two figures (6.14 and 6.15) represent the orbit in the
Cartesian inertial reference frame centered respectively in the first and the
second primary.

Total duration of the simulation is 4 years, 2 in backward propagation
(BW) and 2 in forward propagation (FW).

The transition to entry in the area near the planet lasts about half Mar-
tian year. This feature is particularly visible in figure 6.15, where the trajec-
tory covers about half circle near the Hill’s sphere. Here relative velocities
are very small and for this reason in the synodic frame the trajectory is
almost still in proximity of the Lagrangian point L2.

In the inertial frame centered in the Sun (6.14) this feature is visible be-
tween the square of the initial position and the moment when the trajectory
begins to be diverted by the planet. In fact, between these two moments
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Figure 6.12: External generatrix trajectory of the satellite (sat) in the synodic
reference frame centered in the Sun. On the left, the overall view; on the right, a
zoom of the area containing Mars. The trajectory propagated backward in time
(BW) is dashed. Initial point of the propagation is represented by a square.
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Figure 6.16: Semi-major axis of the external generatrix orbit computed in the
inertial system of reference centered in the Sun. Its variation is shown as a function
of the distance from the second primary in Hill’s radii. The square indicates the
moment when the capture begins. On its left there are the values for the FW
propagation, nearer to the second primary; on the right there are the values for the
BW propagation, where the body gets further from the planet.

there is half circle in which the orbit slowly gets nearer to Mars orbit.
Unfortunately, these details are barely visible in the case of Mars, because

of the less importance in terms of mass of this second primary body. This
feature takes to a packing of the characterising points near the planet and
so they are not visible without any zoom in the diagrams.

6.3.5 Variation of orbital elements for external generatrix

In figures 6.16, 6.17 and 6.18 the values of keplerian orbital elements a, e
and ω are presented as a function of the distance of the body from the
second primary. Besides, here semi-major axis a, eccentricity e and perigee
argument ω are given for the external generatrix orbit: a = 1.0239, e =
0.0148 and ω = 0.2414. These values are taken in the figures mentioned
above, where the plotted parameters tend to be steady. On the contrary to
Jupiter’s case, they have a negligible difference with the ones presented in
table 6.2 obtained in the instant of beginning of the capture.
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Figure 6.17: Eccentricity of the external generatrix orbit computed in the inertial
system of reference centered in the Sun. Its variation is shown as a function of the
distance from the second primary in Hill’s radii. The square indicates the moment
when the capture begins.

0 5 10 15 20

Distance [r
Hill

]

0

0.5

1

1.5

2

2.5

3

A
rg

u
m

e
n
t 
o
f 
p
e
ri
g
e
e
 [
 ]

Figure 6.18: Perigee argument of the external generatrix orbit computed in the
inertial system of reference centered in the Sun. Its variation is shown as a function
of the distance from the second primary in Hill’s radii. The square indicates the
moment when the capture begins.

117



CHAPTER 6. RESULTS OF THE SEARCH FOR MARS

6.4 Keplerian orbital elements in the capture struc-

ture

In the same way for keplerian orbital parameters of the generatrix orbits, in
this section keplerian orbital elements for orbits in section 6.1 will be studied.
For everyone on the captures inside the structures of figure 6.1, semi-major
axis a, eccentricity e, perigee argument ω and true anomaly ν were computed.
These results are shown in figures 6.19 and 6.20. The first one is for initial

position between the primaries and CJ = 3.00020228 =
CJ,L1 + CJ,L2

2
, while

the second is for external initial position and CJ = 3.00020196 = CJ,L2 −
10−7.

It has to be noted that these values are equally distributed around the
values given in table 6.2.

Besides, the elements of perigee argument and true anomaly are strictly
linked between them for all the orbits. In the internal case ω and ν are quite
opposites: it is the situation sketched in figure 6.21, where ballistic capture
occurs usually when the satellite reaches about 24.5° before the apoapsis. In
the external case ω and ν are quite explementary (the sum is slightly more
than 360°): it is the situation sketched in figure 6.22, where ballistic capture
occurs usually when the satellite reaches about 24.5° before the periapsis.
These results completely agree with the one found for Jupiter.

These results are also logical, but they highlight how the ballistic capture
could take place only with these particular characteristics, which in all the
cases analyzed diverge of only a few degrees from the configurations exposed
here. In particular, a rotation of the red orbit in figure occurs, but the
position of the beginning of the capture with respect to the apoapsis and
periapsis remains substantially fixed.

Obviously, diminishing CJ and so enlarging ZVC and captures structures,
the orbits get more variable but they remain meanly the ones analyzed pre-
viously. For example, it could be seen that in the internal case where there
is a higher number of orbits propagated thanks to the higher dimensions of
the gap in ZVC and therefore of the "bubble", also the orbital elements have
a wider range of values.

Finally, it has to be underlined that as expected the initial position
(where capture begins) for an internal orbit is delayed with respect to the
planet. In fact, Mars is about 0.1° forward counterclockwise in the reference
frame of the Sun. In addition, the velocity of the satellite is slightly lower
than the one of the planet, but the minor length of the path will allow it to
recover the lacking phase, entering in proximity of Mars. On the contrary,
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Figure 6.21: Schematic representation of the position of the body in its orbit
around the Sun in the moment of the capture for the internal case. The red tra-
jectory would be the one obtained not considering Mars attraction. Coloured signs
are linked to the sketched elements in the same colour.
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Figure 6.22: Schematic representation of the orbit around the Sun in the moment
of the capture for the external case. The red trajectory would be the one obtained
not considering Mars attraction. Coloured signs are linked to the sketched elements
in the same colour.
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for external orbits initial position is in advance of about 0.1° with respect to
the planet and this difference will be recovered when the keplerian energy
relative to the second primary is already negative. The velocity of the satel-
lite is slightly higher than the one of the planet, but the advantage will be
lost thanks to the longer path of the external orbit.

These characteristics are consistent with the ones observed in Jupiter
case, but they present minor values for advance and delay. The reason is in
the much lower mass ration, as indicated also previously.

6.5 Similarities and differences between Jupiter and

Mars

The mass ratio µ for Mars is much lower than the one obtained considering
Jupiter. This influences several aspects of the developed analysis.

• Jacobi constants of the Lagrangian points are more close to each other
in Mars and also diagrams are more compact near Mars. Zooms will
be needed to examine the behaviour for these cases.

• The previous point influences also capture structure. They are smaller,
nearer to the planet and more influenced by a little change in the CJ .

• Also orbital keplerian elements are influenced. Semi-major axis and
eccentricity are more modest (nearer respectively to 1 and 0), while
angular parameters are less affected as they are similar to the ones
obtained considering Jupiter. The only difference concerns the advance
and the delay, which are considerably less important for Mars.

• The internal generatrix orbit for Mars is shorter and has a chaotic
motion (see figure 5.10), but the external one lasts for a longer time
then the one obtained with Jupiter. This is due to the fact that here
the gap near L1 is less vast than the case studied considering Jupiter.

• Other features are consistent with the cases of Jupiter.
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Chapter 7

Results of the search for Earth

In the same way as developed for the Sun-Jupiter and Sun-Mars system, in
this chapter the Sun-Earth system will be analyzed.

For a better understanding of the search and of results obtained, table 7.1
is presented. It contains the values of the Jacobi constant in the Lagrangian
points.

Analogously to Sun-Jupiter and Sun-Earth system, collisions are never
found for high values of the Jacobi constant.

7.1 Capture structures for various values of high CJ

Diagrams for the search of the captures obtained with both internal and
external initial position for different values of Jacobi constant CJ in figure 7.1
are ordered from left to right and from above to below: CJ = 3.00088968 =

CJ,L1−10−6, CJ = 3.00088868 =
CJ,L1 + CJ,L2

2
, CJ = 3.00088568 = CJ,L2−

10−6 and CJ = 3.00088168 = CJ,L2 − 5 10−6. Last two values create both
"bubbles" internal and external to the conjunction of the primaries.

From figure 7.1 it is clear that when CJ decreases the gaps of ZVC and as
a consequence the bubble get bigger. Also the colour of this last one changes.

Table 7.1: Approximated values of the Jacobi constant in the Lagrangian points.
Values are obtained with equation 4.1.

Lagrangian point L1 L2 L3 L4 L5

Jacobi constant CJ [ ] 3.00089068 3.00088668 3.00000300 2.99999700 2.99999700
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Figure 7.1: Results of the search for ballistic captures by Earth with different
values of the Jacobi constant. The X20 − Y20 plane represented is referred to the
Cartesian inertial frame centered in the second primary
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For high Jacobi it is completely yellow indicating a long capture, while for
lower values of the Jacobi constant it becomes mostly blue indicating shorter
captures or even trajectories of flybys.

7.2 Topology of the structures obtained

Bubbles obtained with this method have always an elliptic shape and it is
interesting to analyze the change of this shape as a function of the Jacobi
constant. This comparison in shown in figure 7.2, where all structures stretch
out from a central point that is contained in all of them. Characteristics of
the central point sill be further analyzed in section 7.3. For what concerns
the structures, they enlarge with the reduction of the Jacobi constant and
therefore with the increase of the gaps in the ZVC near the Lagrangian
points. This result is visible thanks to the fact that ZVC are plotted in the
same colour of the bubble obtained with the same value of CJ .

For what concerns the structures, they enlarge with the reduction of the
Jacobi constant and therefore with the increase of the gaps in the ZVC near
the Lagrangian points. This results is visible thanks to the fact that ZVC
are plotted in the same colour of the bubble obtained with the same value
of CJ .

7.3 Analysis of generatrix orbits of the capture struc-

tures

An interesting study is to characterize the orbit that will be named "gener-
atrix". This is the orbit obtained by finding the maximum value of CJ for
which ZVC are still open. In this case ZVC will be almost closed, leaving
only a little hole for the entrance in proximity of the second primary. This is
obviously possible in both internal and external region, when the value of the
Jacobi constant tends to CJ,L1 or CJ,L2 respectively. In this last case ZVC
on the right will be almost closed, but on the left they will be completely
open. But this fact will not influence at all the analysis because the region
of interest in the one on the right near L2.

7.3.1 Method and initial parameters

The keplerian orbital elements summarized in table 7.2 (together with the
relative value of the Jacobi constant used in the Matlab scripts) are evaluated
in the inertial reference frame of the first primary. They are the elements of
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Figure 7.2: Analysis of the topology of "bubble" structures containing the initial
positions that conducts to ballistic capture. Their dimensions increase and ZVC
gaps grow bigger with the reduction of CJ . This trend is shown using the black
colour fading into light gray. The gap of the ZVC in L2 opens up and the external
bubbles appear only with the last two values of the Jacobi constant.

the orbit around the Sun in the instant when the satellite is captured by the
Earth, hence the keplerian energy relative to the planet is null.

In table 7.3 initial coordinates used in Matlab simulations for the gener-
atrix orbits are shown. These coordinates are taken in the inertial system of
reference centered in the second primary or in the synodic centered in the
first primary for both internal and external case. In this case and in the re-
search previously exposed Ode113 was used due to its lighter computations
(as shown in chapter 1) with absolute and relative tolerances set to 10−12.
Other parameters (masses and reference radius) used in the simulations are
summarized in table 7.4.

• It has to be underlined that the orbit presented here is the one obtained
not considering (only in this moment) the gravitational attraction given
by the Earth. Obviously, the propagation on the whole requires this
contribution to find the moment when the ballistic capture begins.

But in this way results represent only conditions at the instant of
beginning of the capture, not the effective provenience of the trajectory,
which is deflected also before this moment. In the next sections this
point will be discussed separately for internal and external orbits.
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Table 7.2: Keplerian orbital elements (semi-major axis a, eccentricity e, perigee
argument ω and true anomaly ν) of the internal and external generatrix orbits and
relative numerical value of the Jacobi constant for these valued.

a [ ] e [ ] ω [ ] ν [ ] CJ [ ]

Internal
orbit

0.9567533 0.0306770 -2.7194328 2.7147090 CJ,L1 + 9.4 10−9

External
orbit

1.0470573 0.0315388 0.4333722 5.8545779 CJ,L2 + 9.3 10−9

Table 7.3: Initial coordinates used in Matlab simulations for internal and external
generatrix orbits. On the left, the first two columns are taken in the inertial refer-
ence frame centered in the second primary. On the right, the following two columns,
are taken in the synodic frame in curvilinear coordinates. The last two columns
are the distance of the initial point of these orbits from the Earth, respectively
dimensionless and measured in Hill’s sphere radii.

X2,0 [ ] Y2,0 [ ] ρ0 [ ] θ0 [ ] d2 [ ] d2 [rHill]

Internal
orbit

-0.016700 -0.004645 -0.016689 -0.004724 0.017334 1.73273

External
orbit

0.016835 0.004845 0.016847 0.004765 0.017518 1.75115

• Being in a planar case it is not useful to consider right ascension of
ascending node Ω and inclination i of the orbits, so they will be con-
sidered always null. In the results only the other four parameters will
be shown.

• In this particular case the conditions of capture are particularly strict
and only a representative orbit will be analyzed. Regardless how much
the value of CJ,L1 is accurate, there are always infinite orbits all con-
centrated around a single point.

The distinctive feature used to show the resulting characteristics is that
everyone of the infinite orbits obtained has the same parameters of the
one displayed in the following section, that is with an accuracy up to
the seventh decimal point.

Table 7.4: Parameters used in the simulations for the Earth: mass of the Sun
MSun, mass of Earth MEarth and radius of its orbit around the Sun Rref .

MSun [kg] MEarth [kg] Rref [km]

1.988499251 · 1030 5.972430327 · 1024 149.6 · 106
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7.3.2 Diagrams and duration of the internal generatrix orbit

In this section interesting figures and parameters for the internal generatrix
orbit will be shown. The initial conditions for this orbit were presented in
tables 7.2 and 7.3.

Keplerian energy relative to the second primary is negative for a time
longer than 5000 years and this indicates a very important capture. That
could be explained by considering the very small gap existing in the ZVC,
which quite impede to enter or exit from the area in proximity of the planet.

In figures 7.3, 7.4, 7.5 and 7.6 is represented the trajectory of this peculiar
orbit. First two figures (7.3 e 7.4) are taken in the synodic frame: the first
is a complete view and a zoom around the planet; the second shows an
additional zoom near the planet and a detail of the passage in the gap of L1.
The last two figures (7.5 e 7.6) represent the orbit in the Cartesian inertial
reference frame centered respectively in the first and the second primary.

Total duration of the simulation is 4 years, 2 in backward propagation
(BW) and 2 in forward propagation (FW).

The transition to entry in the area near the planet lasts quite a year.
This feature is particularly visible in figure 7.6, where the trajectory covers
quite an entire circle near the Hill’s sphere. Here relative velocities are very
small and for this reason in the synodic frame the trajectory is almost still
in proximity of the Lagrangian point L1.

In the inertial frame centered in the Sun (figure 7.5) this feature is vis-
ible between the square of the initial position and the moment when the
trajectory begins to be diverted by the planet. In fact, between these two
moments there is an entire circle in which the orbit slowly gets nearer to
Earth’s orbit.

Unfortunately, as in the case of Mars, these details are barely visible in
the case of the Earth, because of the less importance in terms of mass of this
second primary body. This feature takes to a packing of the characterising
points near the planet and so they are not visible without any zoom in the
diagrams.

7.3.3 Variation of orbital elements for internal generatrix

In figures 7.7, 7.8 and 7.9 the values of keplerian orbital elements a, e and ω
are presented as a function of the distance of the body from the second pri-
mary. Besides, here semi-major axis a, eccentricity e and perigee argument
ω are given for the internal generatrix orbit: a = 0.9527, e = 0.0304 and
ω = −2.9056. These values are taken in the figures mentioned above, where
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Figure 7.3: Internal generatrix trajectory of the satellite (sat) in the synodic
frame centered in the Sun. On the left, the overall view; on the right, a zoom of
the area containing the Earth. The trajectory propagated backward in time (BW)
is dashed. Initial point of the propagation is represented by a square.
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Figure 7.6: Internal generatrix trajectory in the inertial frame centered in the
Earth.

the plotted parameters tend to be steady. On the contrary to Jupiter’s case
and analogously to Mars, they have a modest difference with the ones pre-
sented in table 7.2 obtained in the instant of beginning of the capture. It has
to be highlighted that they continuously change and can not be considered
reference parameters for the analysis, if not when some criteria are specified.

7.3.4 Diagrams and duration of the external generatrix orbit

In this section interesting figures and parameters for the external generatrix
orbit will be shown. The initial conditions for this orbit were presented in
tables 7.2 e 7.3.

In figure 7.10 is represented the keplerian energy relative to Earth for a
time span of 5.4 years. All along this energy is negative and this indicates
a very important capture, longer than 5 years. In figure is also shown the
trajectory in the proximity of the planet with the detail of closed ZVC in L2
and slightly more open in L1.

Analogously to the case of Mars, the difference between the gap in L1
and the one in L2 depends on the mass ratio µ. In this case it is very small,
hence this difference is very tiny. For this reason and thanks to the particular
value of CJ studied, a trajectory entering by the gap of L2 stays longer in
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Figure 7.7: Semi-major axis of the internal generatrix computed in the inertial
system of reference centered in the Sun. Its variation is shown as a function of
the distance from the second primary in Hill’s radii. The square indicates the
moment when the capture begins. On its left there are the values for the FW
propagation, nearer to the second primary; on the right there are the values for the
BW propagation, where the body gets further from the planet.
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Figure 7.8: Eccentricity of the internal generatrix in the inertial system of ref-
erence centered in the Sun. Its variation is shown as a function of the distance
from the second primary in Hill’s radii. The square indicates the moment when the
capture begins.
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Figure 7.9: Perigee argument of the internal generatrix in the inertial reference
centered in the Sun. Its variation is shown as a function of the distance from the
second primary in Hill’s radii. The square indicates the moment when the capture
begins.
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Figure 7.10: External generatrix Keplerian energy relative to the second primary
for 5.4 years from the beginning of the capture.

orbit near the planet. It is more difficult for it to exit from the narrow gap
in L1.

In figures 7.11, 7.12, 7.13 and 7.14 is represented the trajectory of this
peculiar orbit. First two figures (7.11 and 7.12) are taken in the synodic
frame: the first is a complete view and a zoom around the planet; the second
shows an additional zoom near the planet and a detail of the passage in the
gap of L2. The last two figures (7.13 and 7.14) represent the orbit in the
Cartesian inertial reference frame centered respectively in the first and the
second primary.

Total duration of the simulation is 4 years, 2 in backward propagation
(BW) and 2 in forward propagation (FW).

The transition to entry in the area near the planet lasts quite a year.
This feature is particularly visible in figure 7.14, where the trajectory covers
quite an entire circle near the Hill’s sphere. Here relative velocities are very
small and for this reason in the synodic frame the trajectory is almost still
in proximity of the Lagrangian point L2.

In the inertial frame centered in the Sun (7.13) this feature is visible be-
tween the square of the initial position and the moment when the trajectory
begins to be diverted by the planet. In fact, between these two moments
there is quite an entire circle in which the orbit slowly gets nearer to the
Earth’s orbit.
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Figure 7.11: External generatrix trajectory of the satellite (sat) in the synodic
frame centered in the Sun. On the left, the overall view; on the right, a zoom of
the area containing the Earth. The trajectory propagated backward in time (BW)
is dashed. Initial point of the propagation is represented by a square.
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Figure 7.12: External generatrix trajectory in the synodic frame centered in the
Sun. From left to right, additional zoom near the Earth and detail of the passage
between the ZVC near L2.

137



CHAPTER 7. RESULTS OF THE SEARCH FOR EARTH

-1 -0.5 0 0.5 1

X [ ]

-1

-0.5

0

0.5

1

Y
 [

 ]

Sun Earth Trajectory

BW/FW Earth position BW trajectory

Present position BW position

FW trajectory FW position

Figure 7.13: External generatrix trajectory in the inertial frame centered in the
Sun.
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Figure 7.14: External generatrix trajectory in the inertial frame centered in the
Earth.

Unfortunately, these details are barely visible in the case of the Earth,
because of the less importance in terms of mass of this second primary body.
This feature takes to a packing of the characterising points near the planet
and so they are not visible without any zoom in the diagrams.

7.3.5 Variation of orbital elements for external generatrix

In figures 7.15, 7.16 and 7.17 the values of keplerian orbital elements a, e
and ω are presented as a function of the distance of the body from the
second primary. Besides, here semi-major axis a, eccentricity e and perigee
argument ω are given for the external generatrix orbit: a = 1.0515, e =
0.0313 and ω = 0.2444. These values are taken in the figures mentioned
above, where the plotted parameters tend to be steady. On the contrary
to Jupiter’s case and analogously to Mars, they have a negligible difference
with the ones presented in table 7.2 obtained in the instant of beginning of
the capture.
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Figure 7.15: Semi-major axis of the external generatrix orbit computed in the
inertial system of reference centered in the Sun. Its variation is shown as a function
of the distance from the second primary in Hill’s radii. The square indicates the
moment when the capture begins. On its left there are the values for the FW
propagation, nearer to the second primary; on the right there are the values for the
BW propagation, where the body gets further from the planet.
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Figure 7.16: Eccentricity of the external generatrix orbit computed in the inertial
system of reference centered in the Sun. Its variation is shown as a function of the
distance from the second primary in Hill’s radii. The square indicates the moment
when the capture begins.
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Figure 7.17: Perigee argument of the external generatrix orbit computed in the
inertial system of reference centered in the Sun. Its variation is shown as a function
of the distance from the second primary in Hill’s radii. The square indicates the
moment when the capture begins.
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7.4 Keplerian orbital elements in the capture struc-

ture

In the same way for keplerian orbital parameters of the generatrix orbits, in
this section keplerian orbital elements for orbits in section 7.1 will be studied.
For everyone on the captures inside the structures of figure 7.1, semi-major
axis a, eccentricity e, perigee argument ω and true anomaly ν were computed.
These results are shown in figures 7.18 and 7.19. The first one is for initial

position between the primaries and CJ = 3.00088868 =
CJ,L1 + CJ,L2

2
, while

the second is for external initial position and CJ = 3.00088568 = CJ,L2 −
10−6.

It has to be noted that these values are equally distributed around the
values given in table 7.2.

Besides, the elements of perigee argument and true anomaly are strictly
linked between them for all the orbits. In the internal case ω and ν are quite
opposites: it is the situation sketched in figure 7.20, where ballistic capture
occurs usually when the satellite reaches about 24.5° before the apoapsis. In
the external case ω and ν are quite explementary (the sum is slightly more
than 360°): it is the situation sketched in figure 7.21, where ballistic capture
occurs usually when the satellite reaches about 24.5° before the periapsis.
These results completely agree with the one found for Jupiter and Mars.

These results are also logical, but they highlight how the ballistic capture
could take place only with these particular characteristics, which in all the
cases analyzed diverge of only a few degrees from the configurations exposed
here. In particular, a rotation of the red orbit in figure occurs, but the
position of the beginning of the capture with respect to the apoapsis and
periapsis remains substantially fixed.

Obviously, diminishing CJ and so enlarging ZVC and captures structures,
the orbits get more variable but they remain meanly the ones analyzed pre-
viously. For example, it could be seen that in the internal case where there
is a higher number of orbits propagated thanks to the higher dimensions of
the gap in ZVC and therefore of the "bubble", also the orbital elements have
a wider range of values.

Finally, it has to be underlined that as expected the initial position
(where capture begins) for an internal orbit is delayed with respect to the
planet. In fact, Earth is about 0.3° forward counterclockwise in the reference
frame of the Sun. In addition, the velocity of the satellite is slightly lower
than the one of the planet, but the minor length of the path will allow it to
recover the lacking phase, entering in proximity of Earth. On the contrary,
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Figure 7.20: Schematic representation of the position of the body in its orbit
around the Sun in the moment of the capture for the internal case. The red trajec-
tory would be the one obtained not considering Earth attraction. Coloured signs
are linked to the sketched elements in the same colour.
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Figure 7.21: Schematic representation of the orbit around the Sun in the moment
of the capture for the external case. The red trajectory would be the one obtained
not considering Earth attraction. Coloured signs are linked to the sketched elements
in the same colour.
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for external orbits initial position is in advance of about 0.3° with respect to
the planet and this difference will be recovered when the keplerian energy
relative to the second primary is already negative. The velocity of the satel-
lite is slightly higher than the one of the planet, but the advantage will be
lost thanks to the longer path of the external orbit.

These characteristics are consistent with the ones observed in Jupiter
case, but they present minor values for advance and delay (like the case
with Mars). The reason is in the much lower mass ration, as indicated also
previously.

7.5 Similarities and differences between Jupiter, Mars

and Earth

The mass ratio µ for Mars and Earth is much lower than the one obtained
considering Jupiter. This influences several aspects of the developed analysis.

• Jacobi constants of the Lagrangian points are more close to each other
in Mars and Earth and also diagrams are more compact near Mars and
Earth. Zooms will be needed to examine the behaviour for these cases.

• The previous point influences also capture structure. They are smaller,
nearer to the planet and more influenced by a little change in the CJ .

• Also orbital keplerian elements are influenced. Semi-major axis and
eccentricity are more modest (nearer respectively to 1 and 0), while
angular parameters are less affected as they are similar to the ones
obtained considering Jupiter. The only difference concerns the advance
and the delay, which are considerably less important for Mars and
Earth.

• The internal generatrix orbit for the Earth has a longer duration than
the one for Mars, but the external one is shorter due to the fact that
the gap in L1 in slightly more open for the Earth. This is the only
behaviour where Earth and Jupiter are similar, with longer internal
capture and shorter external ones. All the other characteristics are
similar to the ones obtained for Mars.

• Other features are consistent with the cases of Jupiter and Mars.
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Chapter 8

Advantages of the ballistic

capture

In this chapter the orbits analyzed so far will be addressed, to find out when
and how they could be exploited for interplanetary trajectories.

8.1 Orbital dynamics of interplanetary orbits

Interplanetary orbits are generally divided into three parts using the patched
conics method [1]: hyperbolic orbit in the reference frame of the departure
planet; elliptic orbit in the heliocentric reference frame linking the departure
and the arrival planet; hyperbolic orbit in the reference frame of the arrival
planet.

Ballistic capture could be exploited to avoid the impulsive maneuver
mandatory in the case of a general interplanetary transfer. In fact, using
patched conics method the "breaking" ∆V at the arrival planet must be
considered and computed. This is to transform the hyperbolic orbit to an
elliptic orbit in the frame of the arrival planet. Different considerations will
be discussed in the following sections.

Therefore, the saving of a ballistic capture trajectory stays in the third
part of the interplanetary trajectory. Equations and parameters for it will
be detailed in the next section.

The characteristic of long duration of the ballistic capture will be con-
sidered equal to a permanent capture just like the one obtained with an
impulsive burn. As it was shown in the previous chapters, also internal gen-
eratrix orbits give long time spent in capture sufficient for a mission involving
a spacecraft.
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In reality, a large number of long orbits with initial conditions inside the
"bubbles" were propagated, giving similar results in terms of duration of the
capture. So, the considerations discussed in this chapter are valid for a large
number of orbits similar to each other.

An analogous discussion could be made for the time spent by the tra-
jectory to reach the first close transit. As it was shown in the previous
chapters, generatrix orbits spend a long time (from half to an entire planet
year) to pass through the gap near the Lagrangian point. This could be a
great disadvantage, but enlarging the "bubble" (therefore diminishing CJ)
these periods drop to only a couple of planetary months or less. Hence, also
from the point of view of the necessary time to reach the arrival planet the
characteristics of ballistic capture and impulsive capture will be considered
totally similar.

8.2 Considerations over orbital elements

It is important to begin this section underlining that keplerian elements of the
generatrix orbit and similarly the ones for all the other orbits analyzed are
normally much different from the ones of an interplanetary transfer departing
from the Earth to Mars or Jupiter. On the contrary, keplerian elements
computed in the previous chapters are always very similar to the ones of
the planet such that when made dimensionless they are more or less near to
a = 1 and e = 0.

This fact will take to three considerations:

• The orbit analyzed needs additional maneuvers to be able to link Earth
to Jupiter or any other couple of planets. These additional maneuvers
will not be accounted in this preliminary study.

• Indirect and less onerous interplanetary trajectories than the ones de-
parting from Earth will be studied.

• Consequently hyperbolic excess velocities v∞ at the arrival planet will
be much lower than the ones usually obtained. For example, for an
interplanetary orbit departing from the Earth v∞ = 5.64 km/s against
v∞ = 1.755 km/s when the generatrix orbit is considered.

Classical equations of the orbital dynamics are often used to compute
the necessary ∆V to slow down the satellite and permit the insertion in an
elliptical orbit. They are resumed in the following one [1]
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∆V =

√

v2
∞

+
2µ

r0
−

√

µ(1 + e)

r0
(8.1)

where µ is the gravitational dimensional constant of the planet, e is the
eccentricity needed after the maneuver and r0 is the periapsis where the
impulsive burn occurs.

To analyze it deeply, this equation it has to be studied as a function
of the three variables v∞, e and r0. The last one is obviously the most
important one, because the optimal distance for the breaking maneuver has
to be found. But also the other two variables have an influence on the ∆V
requested by this burn. In particular v∞ is important: if the hyperbolic
excess velocity is negligible with respect to the term µ/r0 which represents
the velocity given by the planet during the approach to the periapsis, then
the trend of the burn is monotone decreasing as a function of the distance
from the periapsis. At high distances the behaviour becomes asymptotic
to a minimum ∆V and here is where the burn is more convenient. The
opposite behaviour could be obtained for much larger v∞ where the cost of
the maneuver is monotonically increasing. Hence, burns more near to the
planet will be more convenient. For an intermediate value of v∞ also the
eccentricity of the required orbit will acquire importance. This is the case
that will happen in the case studied here. The trend is similar to the ones
described above, but it will vary very rapidly even if v∞ is fixed. In figures
8.1, 8.2 and 8.3 these trends are shown. Additional analysis of this topic will
not be object of this study.

Obviously, the cost of the burn decreases when the eccentricity of the
requested orbit around Jupiter increases.

Instead, an example with a much higher excess velocity v∞ = 5.64 m/s is
shown in figure 8.4. In this case the influence of the excess velocity is clear.
A trend like this with lower v∞ could be obtained only for quite parabolic
orbits.

For every second primary considered (Jupiter, Mars and also Earth),
conclusions are analogue to the ones presented here.

8.3 Saving in the ∆V

The saving that could be reached by avoiding the breaking ∆V thanks to a
ballistic capture will be considered equal to the estimation of the cost of the
impulsive maneuver at the arrival planet.
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Figure 8.1: Insertion ∆V in an elliptic orbit with e = 0.95 and v∞ = 1.755 km/s
(coming from the generatrix orbit) as a function of the distance of the periapsis
from the planet in Jupiter’s radii. The trend is monotone decreasing. For the
indicated distance from the periapsis the vertical black line says that the apoapsis
is too far from the planet and near the Hill’s sphere. So, orbits on its right will not
be stable and must be discarded.
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Figure 8.2: Insertion ∆V in an elliptic orbit with e = 0.99 and v∞ = 1.755 km/s
(coming from the generatrix orbit) as a function of the distance of the periapsis
from the planet in Jupiter’s radii. There is a minimum, so a optimal distance for
the burn. As in the previous figure, orbits far on the right will must be discarded.
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Figure 8.3: Insertion ∆V in an elliptic orbit with e = 0.99 and v∞ = 1.755 km/s
(coming from the generatrix orbit) as a function of the distance of the periapsis
from the planet in Jupiter’s radii.
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Figure 8.4: Insertion ∆V in an elliptic orbit with e = 0.969 and v∞ = 5.64 km/s
(coming from the orbit of the Galileo probe) as a function of the distance of the
periapsis from the planet in Jupiter’s radii. There is a minimum of the function.
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To obtain an eccentricity of 0.95 the following ∆V has to be applied at
the periapsis of the arrival hyperbolic orbit: for Jupiter it is of about 300
m/s; for Mars of about 36 m/s.

Considering a specific impulse Isp = 250 s (typical value for hydrazine)
respectively nearly the 13% and the 1.5% of the final mass of the satellite
could be saved. For a net mass of the spacecraft of 1000 kg this is equal to
a saving of nearly 130 additional kg for the insertion in Jupiter and nearly
15 kg in Mars.

It is worth to underline that in this case represented in figure 8.1 the
trend is substantially decreasing (or asymptotic to a minimum value), so
maneuvers have a minor cost if the burn is made when periapsis is distant
from the planet. This distance can not get bigger than a certain value which
will give an apoapsis too distant from the planet. This is due to the high
eccentricity and could take the the satellite as far as the Hill’s sphere taking
to a significant perturbation of the Sun.

8.3.1 Considerations on orbits obtained

Results obtained from the present analysis show that ballistic captures for
high values of the Jacobi constant keep always distant from the planet. Even
the nearest point of the trajectories is quite far from the second primary, let
alone the mean distance or the furthest points when the body is inside the
capture phase. On the contrary, these last points are so distant that they
are considerably deflected by the first primary as seen in the examples and
genetrices examined.

This feature of the ballistic capture could be a severe drawback. In fact,
for a mission that needs a passage near the planet, this trajectories could be
not convenient at all.

Instead, this could be an advantage for orbits that need to stay for a
period or for the entire mission at a great distance from the arrival planet.
This is almost compulsorily the case of Jupiter, where the planet and the
moon Io emit a huge quantity of radiations that could place at risk a probe.
So, for this planet a ballistic capture could be interesting and cheaper than
classic missions.

In particular, a ballistic capture as studied in this thesis hardly reaches a
distance of less than 40 planet radius, that is to say about 3 ·106 km. This is
equal to almost 5 times the semi-major axis of Europa and 2 times the one
of Callisto. With these characteristics the trajectory stays always far from
the zone near Jupiter and Io’s orbit, where the important magnetic field of
the planet ionizes particles coming from itself and the moon.
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The conclusive deduction is that for ballistic captures radiations will be
surely very low. Magnetic field will be weak, density of neutrals to be ionized
will be low and the distance from sources of ionization is always consider-
able. Hence, calculus of the quantity of radiations typical for an orbit from
a ballistic capture is far beyond the aim of this thesis. This aspect is let for
a further improvement of the work.

Ballistic capture presents the classic feature of an orbit with the aim of be
cheaper in terms of propellant needed than a normal interplanetary transfer.
It is slower and therefore it will spend more time in the transfer orbit. In
particular the time spent for classical missions to Jupiter is of nearly 5 years.
Therefore a ballistic capture will be necessarily longer, but cannot take too
long either.

When the internal generatrix orbit was taken into consideration, it was
described the time spent from the point of beginning of the capture (which is
relatively near to the planet) and the time when the trajectory went beyond
the Lagrangian point L1. This was quantified in nearly 1 Jupiter’s year,
which means 12 years. A period like this is not suitable at all for a transfer,
let alone for only a small portion. So it could be deduced that generatrices
are not useful in practice, even if they are significant to understand the
features in common to all the ballistic captures obtained for high Jacobi
constant values.

Instead, for other cases obtained with lower Jacobi constant values the
following periods were calculated:

• For CJ = CJ,L1 a trajectory takes nearly a Jupiter’s year to reach a
close encounter with the planet.

• For CJ = (CJ,L1 +CJ,L1)/2 this period decreases to nearly 6 Jupiter’s
months.

• For CJ < CJ,L2 this time falls neatly up to 2 Jupiter’s months, which
means up to 2 years.

• Inferior values of the Jacobi were not taken into consideration as they
are out of the range studied here, but it is expected that they follow
the trend and therefore the time span gets even lower.

As far as it could be seen, a period of 2 years spent from the beginning of
the capture and the first close encounter could be considered satisfactory
for a probe mission. This time is to be compared to the time spent by
a classical orbit to reach the planet starting from a similar point and this
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time span is nearly of 1 Jupiter’s month (or nearly 1 year), so the difference
is remarkable but not too great. In addition to both, more years had to
be considered for the portion of the trajectory from the departure point or
planet to the beginning of the capture.

It has to be underlined that the period of time necessary for the gener-
atrix is useless because this orbit is obtained by taking the limit case. Just
broadening a little the values of the Jacobi constant considered and therefore
ZVC it is possible to reach suitable values for the period after the beginning
of the ballistic capture.

The study stops here, as it wants only to give an idea of the time spans
at stake and show that they could be suitable for a mission.
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Conclusions and further

improvements

The aim of this thesis was to implement a proper simulator for the circular
restricted three body problem (CRTBP) capable of finding ballistic captures.
These ones were defined and found by an algorithm developed to study
trajectories coming from a point where keplerian energy relative to the planet
is null. In fact, it is the planet itself the one which captures bodies freely
orbiting around the Sun. In addition, a condition over the Jacobi constant
was added for a more linear and simpler study of the problem. In particular,
high values of the constant were considered, making the shape of ZVC only
slightly open around the second primary and the Lagrangian points L1 and
L2.

The analysis showed the following results:

• A locus of points leading to ballistic capture was discovered and studied
as a function of the Jacobi constant.

• The time spent in capture by the planet in every trajectory considered
was measured and orbits were catalogued by using this feature.

• Examples of different peculiar trajectories were studied for a better
comprehension of the problem.

• Characteristics and orbital elements of these orbits were computed,
showing that for high Jacobi there is always the same pattern for the
orbit to be captured.

• A special orbit called "generatrix" was analyzed as it is the one that
could resume common features of ballistic capture, and other special
trajectories useful for the study were addressed.
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• Jupiter, Mars and Earth were analyzed as second primaries. Similar-
ities and differences were exposed, in particular regarding the orbital
elements and the peculiarities of the pattern of capture in each case.

• An example of the application of this study was presented, showing
how a ballistic capture could be used to save mass of propellant in an
interplanetary trajectory. This is done by avoiding the maneuver of
"breaking" at the arrival planet thanks to the exploitation of ballistic
capture. A saving of ∆V of about 300 m/s and 36 m/s for respectively
Jupiter and Mars was found for an orbit like the generatrix, which can
not come directly from the Earth.

• The only drawback of a ballistic capture is an obvious increase of the
transfer time. But it was shown that this time span could be reduced
if an orbit with CJ < CJ,L2 was considered.

• All orbits obtained for high values of the Jacobi constant kept distant
from the arrival planet. This feature could be an advantage if the
target is an orbit with high semi-major axis like is usual in Jupiter,
where radiations are important near to the planet.

Further improvements

Deepening the study from the perspective of the usefulness of ballistic cap-
tures for interplanetary orbit is surely important.

More interesting results could be obtained by extending this study for
lower values of the Jacobi constant. In particular, a preliminary study was
developed and the structure deflects from the shape of the "bubble" increas-
ing a lot the computational cost of the analysis.

Another object of a further improvement could be to find analytical rela-
tions between the initial conditions and in particular initial direction of the
velocity and whether the trajectory will be captured or not, as introduced
in section 4.7.

It is well known that CRTBP is not enough accurate for the predictions
of real systems [10]. A further improvement could be developed with the
introduction of the elliptic problem (ERTBP) which is essential for better
simulations of bodies in the Solar system. Even this could not be enough
accurate, so eventually it could be considered the four body problem, other
perturbations or the whole ephemeris model.

Another potential use of the results obtained here is the study of the
ballistic capture of asteroids, finding out from where they are likely to be
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captured and how the could be detected. Maybe also interesting results
could be found in the field of planet and moon formation in the Solar system
or deflection of asteroids and comets thanks to the interactions of Jupiter.

In addition, an analysis of the a well known example of ballistic capture
could be conducted. The asteroid 2006 RH120 is emblematic and it could be
interesting to verify if it belongs to a pattern found with this work. Prefer-
ably, for a wise study the analysis should be conducted after the extension
of the values of CJ examined (it has a value of CJ much lower than the ones
examined in this thesis) and the implementation of a more accurate model,
as said before.
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