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Abstract

In the field of computational electromagnetism, Integral Equation Methods (IEM)
represent a valid alternative to Finite Element Methods (FEM), implemented in most
commercial software. The peculiarity of IEM lies in the fact that discretization of elec-
tromagnetically inactive domains, such as the volume of air in which the studied device
can be immersed, is not required, thus reducing the number of degrees of freedom of
the problem (DOFs). This characteristic becomes particularly interesting for analyz-
ing open boundary problems, for example involving antennas, where mesh generation
would be particularly demanding. IEM are subdivided into Volume Integral Meth-
ods (VIE) and Surface Integral Methods (SIE). In particular, the second type results
advantageous in physical cases where currents are located in surficial regions, thus re-
quiring the discretization only of the surfaces of the device. This situation applies, for
example, to the analysis of high-frequency interconnections in which current density
naturally distributes on the surfaces of the conductors due to a marked skin effect. A
limitation for integral methods compared to FEM, however, is the generation of dense
matrices, coming from Galerkin formulation, rather than sparse ones for solving the
problem. In this way, given the quadratic growth of the matrix dimensions with the
DOF's, the computational load for memorization and inversion of the matrices could
become onerous. Therefore, compression techniques based on the geometry of the prob-
lem are necessary, where elements distant from each other in space and experiencing
weak mutual interactions are stored within a convenient way. An interesting technique
which implements this condition is based on Hierarchical Matrix method (H-matrices).
In this context, the thesis work focuses on the development of integral methods for the
analysis of electromagnetic problems with specific attention to SIE. In particular, the
state of art of the techniques presented in the literature is analyzed from both a theo-
retical and experimental point of view through the development of codes in MATLAB.
Furthermore, the aforementioned compression techniques (H-matrices) are applied to

large-scale problems to demonstrate their validity.






Chapter 1

Introduction

The Finite Element Method (FEM) is probably the most known and the most
important numerical approach for solving partial differential equations and integral
equations. Thanks to its generality, it can be applied to a wide number of problems,
including static or dynamic problems, linear or less, and treating homogeneous or het-
erogeneous domains with complex geometries. Thanks to its ease of application, it
can be implemented through many programming languages also making codes easily
comparable. Thanks to its structure, it can be conveniently stored using sparse matri-
ces which allows to save a lot of CPU memory and to consistently reduce CPU time
demand even for large-size problems. In the field of application of electromagnetism,
this is in general not different. When small components which keep the electrical field
or the magnetic one confined in a small region (e.g. a capacitor or a solenoid having
small dimensions) are involved, the FEM results in the best way to solve the formulated

problem. The FEM is also implemented in the main commercial software for solving

electromagnetic problems such as COMSOL(®), and ANSYS®).

However, there are many situations in which the FEM approach turns out to be
non-optimal. Some main examples concern the electric or magnetic field generated by
a distribution of current charge, the study of propagation fields due to e.g. antennas,
and the study of the behavior of fields at high frequencies. The first condition results
particularly demanding when we look for the solution in a specific point of the domain,
but the searched solution is difficult, if not even impossible, to be computed from
the analytical point of view. On the other hand, the second eventuality requires the
discretization of the whole domain in which the field is defined and so it can make the

process very onerous from the computational point of view.

To overcome such issues, another kind of approach was introduced. This method
is known as the Integral Equation Method (IEM) and it exploits a reformulation of
the original problem based on the introduction - as the name itself states - of integral
equations expressed as a function of alternative unknowns which are defined concerning

equivalent sources.

The IEM started to be introduced around the ‘40s, aiming to solve problems re-
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lated to Maxwell’s equations as an alternative to solvers based on partial differential
equations such as the FEM itself or the Finite Difference Method (FDM). Indeed, such
techniques are based on the research of the direct solution for the aforementioned kinds
of problems. Conversely, IEMs are based on the reformulation of the statement as a
function of alternative sources and boundary conditions. Then, similarly to FEM, the
discretization of the domain is required to approximate the solution of the problem.
This way IEM provides a very convenient way to reach the result, overcoming the is-
sues discussed above or e.g. related to complex open-boundary region scattering and
radiation problems: on one hand IEM are very general and flexible and they give an
alternative way to solve problems whose analytical solution is not computable. More-
over, they allow consistent reduction of the load associated with the discretization of
the domain when open-boundary problems are involved, e.g. when the study of the
propagation of fields is required: indeed, IEM asks for the discretization of the only
active part of the domain, while the mesh of the air or of the medium in which the field
propagates is not necessary, thus considerably reducing the load for the computation

and the application of the mesh.

Among the IEM, two main categories can be identified: Volume Integral Equations
(VIE) and Surface Integral Equations (SIE). The first type is based on the discretiza-
tion of the whole three-dimensional domain over which the problem is defined. Such
a method maintains all the advantages listed above and it results particularly conve-
niently when the three sizes of the involved domain are comparable to one another. On
the other hand, SIE shows its effectiveness when one of the dimensions of the domain is
negligible concerning the other two when the charge density is concentrated along the
surface of the domain, or again when an electromagnetic scattering signal at very high

frequency localizes along the external walls e.g. of a conductor because of an important

skin effect.

The skin effect is an electromagnetic phenomenon that occurs when an electromag-
netic field penetrates a conductor. For high-frequency conductors current flux concen-
trates primarily in the outer part of the conductor, generating a sort of "skin” through
which the current flows. Such behavior is due to the induction of eddy currents flow-
ing in the opposite direction inside the core of the conductor, thus reducing the area
through which the current effectively moves. The skin effect is even stronger at high
frequencies, as at low frequencies the field would have penetrated more uniformly into
the conductor. The result is an increase in the apparent resistance of the conductor at
high frequencies compared to what one would expect based solely on the resistivity of
the material. The approximate formula for the depth of penetration (or “skin depth”,
Fig.1.1) 4 in a conductor is given by:

b= (1.1)

where w is the angular frequency of the wave, p is the magnetic permeability of the



Figure 1.1: Graphical representation of the skin depth in a circular conductor.

Figure 1.2: Skin effects on the rectangular copper coil with w = 6-107* m and t = 7-10~°
m.

conductor’s material, and o is the electrical conductivity of the conductor’s material.
More in detail the skin effect increases in the equivalent resistance of the conductor at

high frequencies due to the redistribution of the currents.

The skin effect is encountered in various applications where electromagnetic fields
and high-frequency currents play a crucial role. Some important examples include high-
voltage power transmission lines, especially at radio frequencies (RF), where the skin
effect influences the distribution of current in the conductors; microwave systems, for
which the skin effect affects the behavior of conductors and transmission lines, impact-
ing signal integrity and power distribution; antennas whose design and performance
are influenced by the skin effect, particularly in high-frequency communication sys-
tems; high-frequency electronics, telecommunication systems, submarine communica-
tion cables, and electromagnetic shielding. It is important to understand why complete
knowledge in terms of theory and managing the skin effect is crucial to optimize the

performance and the efficiency of systems that involve high-frequency electromagnetic

fields.

A graphical example of the skin effect over the rectangular cross-section of a con-
ductor is depicted in Fig. 1.2. This way it directly becomes clear why for the skin effect
the discretization of the domain along one of the dimensions would require the adop-
tion of very small elements to accurately capture the distribution of the current density,
thus making the process quite demanding. Alternatively, it is also possible to highlight
this issue when a mesh with constant size along the three directions is adopted: if this

was the case when the small size is taken into account, small elements would have been
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defined to obtain an acceptable solution, but the total number of elements along the
other two dimensions would have become very huge. In this perspective, SIE allows
to neglect the discretization along the highlighted dimension and they look for the so-
lution of a new problem whose statement has a domain coincident with the surface of
the considered body or electrical component. This way also the number of unknowns
is dramatically reduced. However, nowadays SIE has not found a well-defined field of
application because of some theoretical questions specifically related to functions that
present singularities of any kind and which have to be properly discussed. The SIE

approach is available in commercial software such as FEKO®).

Furthermore, despite all the advantages presented by IEM, one important issue
regards the storage of matrices describing the problem. Differently from what happens
when FEM is applied, IEM generates dense matrices having several entries which scale
as O(N?) where N is the number of the degrees of freedom (DOFs) of the problem. We
can consider as an example Maxwell’s equation expressing the electric field, for which

the Green function
etkllr—r’||

T amfr— 1|

G(r,r") (1.2)

is strongly involved. We can suppose to consider a matrix whose entries are defined by
such expression, where r and r’, which are vectors identifying two points in the space,
now describe the indices of the matrix itself, respectively along its rows and columns.
Even if the Green function can assume very small values, it always provides positive
results (a much in-depth analysis of its singular values which appear for self-interacting
elements, i.e. elements along the diagonal, will be carried out in the following chapters),
and this makes the entries of the matrix not vanish even when the denominator ap-
proaches infinity. Another direct consequence of such an issue concerns the CPU time
required: indeed, from this point of view, the greater the number of entries different
from zero is, the greater the cost for the inversion of the matrix will be, as well as the
one for the application of the solver. Indeed, it was shown that the time for matrix

inversion can scale even with order O(N?)).

Just for clarity, an example of the patterns of the system matrices arising from FEM
and IEM discretization approaches are illustrated in Fig. 1.3. Here it can be noticed
that, keeping constant the number of DOF's, the null-entries stored by the FEM method
is much higher, so that the matrix in Fig. 1.3a can be considered as a sparse matrix,
while the one obtained from IEM (Fig. 1.3a) can be not.

Even if questions related to the density of the matrix can be neglected for small-
order problems having only a few unknowns, when the number of DOF's increases such
issues must be properly treated. Indeed, if the CPU time and memory requirements
become too large, the convenience of IEM concerning the FEM would vanish. That’s
why specific techniques for the compression of matrices and the consequent memory
saving should be adopted, bringing also the reduction of the computation time. Among

these methods, two main families can be distinguished. The first one is based on the



2000 [ 1}

2500 5L

] 500 1000 1500 2000 2500 ] 500 1000 1500 2000 2500
Monzeros = 18441 {0.251%) Monzeros = 7360368 {100.000%)

(a) FEM. (b) IEM.

Figure 1.3: Example of the pattern of matrices from FEM (a) and IEM (b) approaches.

decomposition of the function expressing the entries of the matrix, while the second one
is based on the concrete relation between the elements obtained from the discretization.
If we refer to the first approach as mathematical or physical approach since the function
is analyzed with a theoretical perspective, the second one is denoted as geometrical be-
cause it allows exploiting such kind of considerations, i.e. the mutual distance between
elements, so that if they are close to each other their respective interaction is, in gen-
eral, stronger, while the contribution of elements far from each other can be neglected

inside the entries of the matrix if properly treated.

From this perspective, this thesis work was developed. The main scope is to provide
a general survey about the IEM, with specific attention to both theoretical and numer-
ical analysis for the SIE, which should give the majority of the tools for choosing which
of the methods for solving linear problems is the best option, case by case. The work
is divided as follows: Chapter 2 provides a general analytical overview of Maxwell’s
equation. The respective integral equations that arise from them after the application
of the Galerkin method for the solution of the Method of Moments are described as
well. Finally, the matricial version of the problem obtained from the application of
numerical reasoning is introduced. This formulation is fundamental in the treatment of
the Integral equations. Chapter 3 is split into two sections: the first one focuses on the
application of SIE, describing one by one many possible alternatives to suitably treat
the singularities that appear inside the problem; the second one compares the results
obtained using each method - with particular attention to the modified line integral one
- and a fully numeric approach to verify the consistency of the adopted formulations.
Examples whose analytical solutions are known from the state of the art are adopted in
this second section, to check how well the SIE can approximate the results. Chapter 4
is finally fully dedicated to methods for matrix compression and model order reduction.
First, a theoretical analysis of many distinct methods with their pros and cons will be
reported. Then, the importance of such techniques, and in particular of the Hierarchical

matrices method, will be stressed by their application to concrete numerical examples.
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About the notation that is adopted in the following chapters, square brackets in
general indicate the matricial behavior of the component. The bold character is adopted

to refer to a vector (small letter) or a matrix (capital letter).



Chapter 2
Integral Equation Methods

In this chapter, the Integral Equation Method (IEM) for the solution of electro-
magnetic (EM) problems is introduced. The purpose of the discussion is to give a brief
overview of the mathematical formulation of the IEMs, indeed, a detailed discussion
of this topic can be found in many books, such as [1]. The starting point of the dis-
cussion, is the well-known Maxwell's equations, governing the physical behavior of the

electromagnetic field in the domain 2 C R3, here written in the frequency domain:

VX E=—iwB (2.1)
V x H =J, +iwD (2.2)
V.D =g (2.3)
V-B=0 (2.4)

where E is the electric field, B is the magnetic flux density field, D is the electric
displacement field, H is the magnetic field, J. is the conduction current density, g, is
the free volume charge density, and w = 27 f is the angular frequency. The constitutive
relations that allow connecting field intensities and flux densities and which close the
problem from the mathematical point of view involve electric permittivity € = €,&g and

magnetic permeability p = ppo:
D=c¢E, B=_uH. (2.5)

In the most general case, i.e. for an inhomogeneous and anisotropic body, these quan-
tities are 3x3 matrices, but in this work, we assume to treat homogeneous and isotropic
materials, so that € and p are assumed to be scalar constants multiplied by the Identity
matrix which is neglected in the following. The current density and the electric field

are related through the constitutive relation for the current field:

J.=0E, (2.6)
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where o is the electric conductivity. Thanks to the fact that B is divergence-free,
focusing on the quantities which are related to the electric field, it’s also possible to

introduce the magnetic vector potential or simply vector potential A such that:
B=V XxA. (2.7)

By inserting this equation into Faraday’s law (2.1) and employing the vector calculus
identity stating V X V[e] = 0, it’s also possible to introduce the electric scalar potential

e, which makes the following equality hold:

E = —iwA — V. (2.8)

2.1 Electric and Magnetic Field Integral Equations

Starting from Faraday’s law (2.1) rewritten in terms of magnetic and scalar poten-
tials (2.8), the foundations of integral equations are briefly described in this section.
This analysis aims to define an integral form involving the fields A and ¢, linking
them with their physical sources. From these expressions, it will be also possible to
obtain an integral equation for E as a function of its sources. The analysis starts by
coupling Maxwell-Ampere’s law (2.2) with the first of the constitutive laws (2.5), and
noticing that H =1/pyV X A we end up with the formula:

ﬁiv x (V x A) = J, + iweoE. (2.9)
0

Then we can apply the vector identity V X (V X [¢]) = V(V-[¢]) — V?[e] to the left-hand
side of the equation, while we substitute equation (2.8), getting the formula:

1
‘u—(V(V -A) — V?A) = J. + iweg(—iwA — Ve). (2.10)
0
Finally the Lorenz gauge V - A = —iwegpuope allows to separate A from ¢, in order to

conclude:

pode = (iw)*pocoA — VZA = 0A, (2.11)

where [ := (iw)?c3—V? is the d’Alembertian operator. The solution of such an equation

can be derived from a well-known partial differential equation:
V2G(r,r") + BG(r,r') = —4(r,1"), (2.12)

where §(r, ') is the Dirac delta and G(r,r’) is the Green’s function given by the formula:

eltkR

G(r,x') = AR’

(2.13)
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where again 7 is the imaginary unit, R is defined as the distance between the observation

and source points, R = ||r — r’||, and the complex wavenumber has the form:
k=wyep=Fk +ik", (2.14)
which, for the case of non-magnetic materials (i.e., when p, = 1), is usually expressed

k= Jep +i— (2.15)
co Eqw

where ¢p is the speed of light in vacuum, approximately of 3 - 10® m/s. Based on these

as:

assumptions, we get the integral form for the magnetic vector potential A:
A(r) = ,uﬂ/ J.(r)G(r,x")dr, (2.16)
Qe

where {2, here stands for the “conductive” domain, i.e., the subset where the conduction
current density J. is non-zero. There exists also a simplified version which holds when
the frequency-dependent terms are negligible, i.e. when w?uoeg — 0 and the dynamic

version of Green’s equation is substituted by its static form:

A(r) = ,uof Jo(r")Go(r,x")dr’, (2.17)
Qe
where the static Green function is defined as:

Go = (2.18)

1
E.

Recalling the Lorenz gauge, we can exploit this formula aiming to develop an integral
equation for . To do that we also introduce a vector calculus identity stating that for
a vector field A and a scalar field a, V- (@A) = aV - A+ Va - A. Therefore the result
we get is:

V-A(r)

—iwpe(r) = o =g5! L V- (J(r)G(r,x"))dr’

= —¢5" / V- J3.(x') - V'G(r,x)dr, (2.19)
Qe

where in the last equality we have applied the vector identity presented above and we
have noticed that V - J.(r') = 0 and VG(r,r') = —V'G(r,r') meaning that the V
operator acts no longer on r but on r’. Finally the continuity equation for J. should
be introduced. Let’s define ¢, as the free surface electric charge density laying on a
surface over which J. is discontinuous and let’s denote with J* the two sides of the

discontinuity surface, while the outer normal is described as n; then

V' Jo(r)) = —iwpe.(r'), (JF() = I () - n = —iwe(r'). (2.20)
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As we mentioned before, our reasoning is focused on the case of an homogeneous
medium, so that the only discontinuity surface that can be identified is the bound-
ary of the domain Q., 9, = I'. and the second equation in (2.20) has components
J¥(r') = 0 (indeed this side of the surface belongs to €2.) and

J-(r) - n=1iwe(r) =J.(r') - n. (2.21)

Applying the divergence theorem to the first term on the right-hand side of equation
(2.19) and substituting equation (2.21) into the resulting one, we end up with the final

form of the integral equation for the scalar potential :
we(r) = g5 [/ gc(r')G(r,r’)dF'—l—/ Qc(r’}G(r,r"}dr’] : (2.22)
S Qe

Finally, it’s possible to adopt the two integral equations (2.16) and (2.22), and sub-
stitute them into equation (2.8) to develop an equation which will be fundamental
in electromagnetic problem’s formulation. Such equation is known as FElectric Field

Integral Equation, or simply EFIE:

E(r)=— z'w,ug/ J.(r")G(r,r")dr

(+

-5V [/chc(r)’c(r,r’)drwrfﬂc 0.(r')G(r,r")dr'| , (2.23)

which can be also rewritten as a function of the only J, using the respective continuity
equation (2.20):

E(r) =— iw,uﬂfg J.(r)G(r, )
v

e 0

[[ (J;F(r"}.];(r'))-ﬁG(r,r')dI"'—l—/ V' J()G(r,x)dr'| . (2.24)
T, Qe

The integral equations object of the thesis arises from the coupled electromagnetic
problems, i.e. when the electric field interacts with a magnetic one. In this case, the
EFIE shown in (2.23) should be modified with the introduction of a new term due to
the presence of the magnetic field itself. Moreover the current density should now be
identified trough a subscript which verifies wether we are referring to the electric or to

the magnetic current density. Therefore the following equations hold:

V-E:%, VX E=Jp + iwpoH (2.25)
0
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E(r) =— iw,u()/ Je(r)G(r,x")dr’

€

_ E / ge(r")G(r,r")dI"' + / Qe(r")G(r, r')dr'
€o LJT. Qe
V ! ! !

- — X Jn(2)G(x,r")dr'. (2.26)
=) Qm

At the same time, we need to introduce a corresponding Magnetic Field Integral Equa-
tion, or briefly MFIE, which can be formulated in an analogous way to the EFIE. The
final result is:

H(r)=-— z'w&‘o/ I (r)G(r,x")dr’

m

_ Z [/ sm(r)G(r,r")dl” + / om(r")G(r,r")dr’
Ho LJTo, m
V ! ! !

- — X Je(r")G(r,r")dr'". (2.27)
Ho Qe

In summary, in this section a brief introduction concerning the mathematical foun-
dations of the Integral Equation (IE) approach was given. The expressions for the
electric field and the magnetic field integral equations, EFIE and MFIE, are reported
at the end of the section. EFIE and MFIE usually are the starting point for the anal-
ysis of the electromagnetic problem in Q C R? [2], however, the analytical solution of
the fields is unfeasible in the majority of situations, thus computer-aided engineering
(CAE) tools are required.

2.2 Discretization of integral equations

The analysis is then moved to the search of a solution for the described problem.
As very efficient and general solver for partial differential equation or integral equation
problem, Galerkin’s testing method is usually applied. Such a procedure consists of
choosing two different functions: the first one, called basis function, is the one that
should approximate the exact solution of the problem so that Galerkin’s method is
based on minimizing the error between them. The second is the testing function which,
once applied to the analyzed equation, should provide an orthogonality condition with
the basis functions, i.e. the inner product between the differential or integral equation
and the testing function must be zero. Each function belongs to a suitable vectorial
space which must be a priori defined. After both the basis and the testing function
are properly identified, a new formulation in terms of the basis and testing function
for the examined problem should be developed. Finally, a numerical approach, such
as the discretization for the finite element method or the numeric integration, must be
applied to solve the outcoming equation. About such discretization, it can be shown -
and it will be assumed in the following - that there exists an empirical law which holds

in the case of electromagnetic scattering processes and which relates the dimension of
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the mesh h and the wavelength A as follows:

maxh < A/5 (2.28)

The Galerkin method specifically applied to electromagnetic scattering problems is
discussed in detail in many articles such as [3, 4]. To quickly summarize these concepts,
we have to introduce the electric field integral operator (EIFO) and the magnetic field
one (MFIO):

cﬁmq:msumg—ivvuaﬂu) (2.29)

K(f)(r) = V x 8(f)(r) (2.30)

where S represents the surface of the domain over which we are acting and
S(f)(r) = / dr'G(r,r")f(x') (2.31)
S

This way the integral equations we are looking for can be expressed in terms of the scat-
tered tangential electric field and of the scattered surface current, which are respectively

defined over S as a function of the surface electric current j:
e*(j) = 7 (L(J)) (2.32)

30 = 5 A+ (KG)) (233)

where 7,(u) = n X u|g is the twisted tangential trace operator and 7;(u) =n X (u X
n)|s = r(u) X n is the tangential trace operator. Moreover two equations involving
the incident electric (Einc) and magnetic field (Hin) on S should be introduced:

jt‘nc =T (Hmc) (2-34}

€ine = Tr (Et‘nc) (2'35}
Therefore specific formulations for the EFIE and the MFIE can be obtained by coupling
(2.32) and (2.33) with (2.35) and (2.34) and have validity over S:

j = jz’nc +js (j} (2-37}

The second step for the application of the Galerkin method (also known as weak formu-
lation) involves the discretization of the domain we are considering into non-overlapping
elements S; such that S = 571 US,...,USN. Such decomposition allows to find an ap-

proximation of the unknown current value j as a function of the current over each
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sub-element S;,, m € {1,...,N}

_ N
=P im(r) (2.38)
m=1

The trial function is chosen from the L2(.S) space so that they are defined with elemen-
twise compact support and it is possible to adopt such trial function to best approxi-
mate the current locally. Specific considerations about the basis and testing functions
for the integral equations object of the thesis are discussed later. For the moment
we choose as an example vector polynomials so that we get local trial functions Ay,
which are continuous inside the element S, and which are allowed to be discontinuous
across element boundaries. Summarizing, we can define the basis function over m as
b, = spa,ILé{A?q”’p } where p is the degree of the polynomial, the local approximation

for the current is formulated as:
m(r) = Zam,@A;n’p(r) (2.39)
i

Thus the scattered electric field must satisfy the following EFIE formulation:

N
€ine;m = — Z T (ﬁ(jn, Sn)) on Sy, (2.40)
n=1

and we can estimate the error committed in such approximation by evaluating the

surface residual which can be also interpreted as the tangential error electric field:

N
R':(frlz) = €ine;m T Z W'r(’c(jn: Sn)) on Sp, (2‘41)

n=1

where the index (1) suggests that we are dealing with the first iteration of the process.
If we choose the same function space adopted above also for expanding the testing

function, i.e. A}, € ®,, the outcoming Galerkin formulation assumes form:

N
(A RY) . = (A;,einc,m>sm+<A;,Zm(£(jn,sn))> , (2.42)
m n=1

Sm

with the surface integral term defined by the scalar product for vector spaces as:

(A’,u)sm = / drA’ - u. (2.43)

m
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Finally it is possible to further expand (2.42) thanks to EIFO (2.29) getting:

m

N
<A;711R£71)>S = (A;n;emc,m>sm + <A;n;ni=:177'r(£(jnasn))>

Sm

N
= (A;memc,m>sm +ikg <A;n: Z W'r(‘s(jna Sn)}>
n=1

Sm

N
]‘ ! .
~ <Ama > 7 (VY - (i, Sﬁ.))>s

n=1

N
= (A;n;emc,m>sm + ikﬂ Z (A;m WT(S(jn; Sn))>3m

n=1

1

N
T D (Ap 7 (VV - S(in, Sn)))g, - (2.44)
1

n—=

The result presents issues related to the presence of hyper-singular terms which should
be properly discussed. A solution proposed in [3] consists in applying Green’s identity
aiming to reduce the order of the singularity. However, since the objective of this
discussion is to present an example of the application of the Galerkin method to EFIE,

such proceed is not reported here.

The same idea at the base of the Galerkin method applied and the same procedure
discussed for EFIE can be similarly extended also to the MFIE in order to extract an

analogous result.

Coming back to the general formulation of integral equation problems, the matricial
version of the electromagnetic scattering problem we are describing arises exactly from
the application of Galerkin’s method to both the augmented formulations. The basis
functions that are adopted to apply this method should verify some important proper-
ties in order not to generate approximation problems when the numerical approach is
applied. Specifically, a divergence-conforming Rao-Wilton-Glisson (RWG) is needed as
both a test and basis function, otherwise, fictitious line charges for both the electric and
magnetic current cases could be generated. Such basis functions are particularly suit-
able for analyzing numerical problems that exploit elements having small dimensions
for the discretization of the domain. On the other hand, when the Method of Mo-
ments (MoM) is coupled with Galerkin’s one to look at magnetic and electric inducted
currents, these basis functions could generate double integrals presenting singularities

which have to be appropriately treated.

The matricial analysis of the general problem is presented in many different papers
with a variety of notations, involving [5, 6, 7]. Since we want to briefly describe the
main points of such analysis, a unique notation is here reported to uniform all the
considerations. In particular, two formulations are discussed here, each treating one
specific situation of electromagnetic problems. The first and simplest case regards

Perfect Electric Conductors (PEC), i.e. no mutual influence of the magnetic field on
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the electric one and vice versa is considered. Under this condition, the augmented
version of the EFIE (AEFIE), i.e. the EFIE coupled with the continuity equation of
the current density, is also needed to avoid low-frequency breakdowns (LFB) problems
that can arise because of the unbalance of the operators inside the simple EFIE. From
here on we consider a sort of simplified version of the AEFIE applied to the SIE. In this
specific case such formulation essentially differs from (2.26) for the surficial term, since
when planar mesh is performed it completely loses its meaning. This way the AEFIE

we are talking about states:

_% = piy [g! dr'J.(v")G(r, ') - —I—Eal \/S, dr’ e (r')VG(r, 1), (2.45)

€

and the continuity equation for the current is given by (2.20) described above. Before
proceeding, it is necessary to briefly mention the fact that the basis and the testing
functions should be different to avoid convergence issues under specific conditions; in
our case, they are assumed to be coincident for simplicity of analysis since the error
committed is indeed small. A more in-depth analysis concerning divergence-conforming

functions which suit very well for solving this problem is presented below.

Now, adopting the Galerkin method and the RWG functions A for both the basis
and the testing ones, defining the quantities kg = w/co (cp is the speed of light in
vacuum cp = 1/(gopo)) and ¢ the pulse basis function

L ifres;
gi(r) = { A ’ (2.46)

0 otherwise ?

the matrix-block version of the problem can be expressed as:

. !iko-i] _ l_”_lb*’] , (2.47)
CoPe 0

where I is the identity matrix, D is the incidence matrix defined as:

L DT.P
D kI

0 if patch m does not belong to RWG n
[D],,, =41 if patch m is the positive part of RWG n (2.48)

—1 if patch m is the negative part of RWG n

Equation (2.48) comes out from the application of the method of cells for the dis-
cretization of the domain in the specific case of RWG functions applied to surficial
electromagnetic integral or finite element problems. This process is based on the sub-
division into cells of the surface so that the distribution of the current density inside
each cell is much easier to analyze through the RWG basis function itself. Moreover,
the method of cells is very useful for dealing with complex geometries since it simplifies

a lot the geometry of the scattering surface. The method of cells is described in detail
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in [8], where it is also clear that the sparse incidence matrix D comes as the discrete

counterpart of the divergence operator.

Finally, the remaining blocks are formulated as follows:

L] = pr [S‘ drAm(r) - /S’ dr'G(r,r' )An(r’), (2.49)
Plon =<7 [ dion(e) - [ dr'Gle.r)pute), (2.50)
b, = [gdrAm(r) - Eipe(r). (2.51)

At very low frequencies, charge neutrality still causes rank deficiency for the above
formulation. It is possible to present such an issue by noticing that inside the matricial
formulation, the vector of length p is the null space of the matrix DT and for multiple
object problems the dimension of the null space is equal to the number of disconnected
objects. This way it is possible to define a normalized vector a € R(¢tP)X1 guch that
the first e elements are zeros and the last p are 1/,/p:

1 T
—p(O...Ol...l) . (2.52)

7

It can also be proved that such a is an eigenvector having very small eigenvalues k2:

a—

AT . a = k2a, (2.53)

and in the DC case a becomes the null space of AT. Moreover, because of the charge
neutrality, the smallest eigenvalue makes the condition number of the matrix very
large. One possible way to cancel the singularity that arises, in this case, is the deflation
method described in [9, 10]. A simpler one which is also taken into account here is based
on the reduction of the number of unknowns by the direct application of the charge
neutrality into (2.47). In particular, we assume that there are ¢ disconnected objects
for a problem so that there are also ¢ spanning trees, each containing p; triangular
patches such that ZE:] p; = p. The concept of charge neutrality can be expressed by
the fact that the total charge of each spanning tree is zero. To enforce this condition
we drop one charge for each spanning tree and we reduce the vector of charge to
or € CP~1)X1 A convenient way to express this new vector is to introduce two highly
sparse matrices, F € RP™)XP which maps the full vector to the reduced one and the
inverse one B € RPX(P~1);

or=F - p,, (2.54)

0. =B - p,. (2.55)
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This way the final form of the matricial problem is expressed by:

L DT.P.-B ikoj —n~ b,
N (2.56)
F " D kg:[qn C{]Qr 0
where the identity matrix I, has now dimensions (p — ) X (p — t). This formulation is
also very important since it ensures full rank down to DC and it will be adopted for the

computations regarding the Perfect Electric Conductor (PEC) sphere in the following

chapters.

The second condition analyzed in this thesis work involves dielectric media. In
this specific situation, the solution for both the problems formulated concerning the
external region - where we assume the losses are very small or completely negligible -
and the internal one have to be computed. In particular, it is possible to describe the
problem in the external region by adopting the EFIE formulation, while the internal
problem for the conductor is represented by the MFIE formulation:

ext ext

X [Ling(Te,s) + Kine(Im,s)] =0 res, (2.58)

A X [£3,4(Tes) + Ko(Ims)] = 7 X By res, (2.57)

where S represents the surface of the conductor, 7 is it’s outer normal, and Je s and
Jm,s are respectively the equivalent electric and magnetic current densities which are
defined by the equivalence principle for integral equations in electromagnetic scattering
problems. Finally, the formulation for £ and X considered here is slightly different
from the one described by (2.29) and (2.30), since we want to adopt a notation which

is consistent for both the internal and the external region:

L(f)(r) =t; [/S dr'G; - f(r') + %[gdr’VGj(r,r’}V' . f(r’)] ) (2.59)

J

K(f)(r) = (—1}f+11ﬁ, x f£(r') + ][dr’f(r’) X VGj(r,1’), (2.60)
2 S

where f(r') is either J. g(r') with ¢; = iwp; or Jpm s(r’) with ¢t; = iwe; and j = 0
stays for the external region while 7 = 1 identifies the internal one. In particular, K
matrix presents ill-conditioning problems if non-suitable test and basis functions are
chosen, so a proper discussion will be introduced later. Finally, coming back to the
AEFIE formulation in the dielectric case, it’s possible to expand both the electric (J)
and magnetic current (M) by the respective basis functions A7 e AM and testing the
equation with the function T.

Adopting the extinction theorem and again the augmentation technique to minimize
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the LFB phenomenon, the final matrix expression of the problem becomes:

Ly, DT.P n_le 0 ikoje,s Mo Ih
D k21 0 0 0
-1 0 v T 1. C‘{Qe = . (261}
o Kint 0 L‘int D' - Py Zkﬂ.]m,S 0
0 0 D k21 Co0Om 0

The blocks adopted in this formulation are defined in analogy with the aforementioned
(2.49), (2.50) and (2.51) apart for the constants in front of the integrals. In fact when
the external region is considered, j = 0 and p, = pj/po = 1, &, = €o/ej = 1, while
when the internal region is taken into account we have j = 1 and then mu, = pqpug,
er = €p/€1. Furthermore, the Green function should be identified with a subscript
index, Gy, since k which appears at the exponent of the numerator now depends on

which region is considered. Finally, the new blocks appearing in (2.61) are defined as:

K], = / drAm(r) - + dr'Gj(r,r') X An(r'), (2.62)
S S’

N
Jn, S = m,s,An, (2.63)

n=1

N

om(r) = omna(r). (2.64)

n=1

An alternative version of the matricial formulation above is adopted in [6, 11]. It

states:
Lest —%ﬁ xI+K.,: DT.P., B tkoj —’q‘;lb
Line 1axI+Kip DT -Py-Bl-|pp'm|=| 0 |, (2.65)
F-D 0 k%I copr 0

where again

A xT1, = [q deAp(r) - (A(r) x AM(r)). (2.66)

However for this thesis work the formulation in (2.61) is considered in the following
numerical analysis. Indeed (2.61) expresses a sort of symmetry between the electric field

component and the magnetic field one so that it should be easier to be implemented.

In this work, the Rao-Wilton-Glisson (RWG) basis functions are used for the expan-
sions of the surface current density. The RWG basis functions, firstly introduced in [12]
are here briefly summarized by considering the two triangles illustrated in Fig. 2.1. Re-
ferring to these triangles, the RWGQG basis function associated with the shared edge is

written as:

1 A if !es-l—
A= J T —d) i (2.67)

—=('—q7) ifr'es”
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Figure 2.1: General behavior of Rao-Wilton-Glisson (RWG) basis functions

L ifrest
VAR =p() =4 A T (2.69)

— ifres”

where the indices + identify the sign of the charge over each of the two patches. It
is important to note that usually, the trial and testing basis functions are defined in
different spaces. Indeed, by using A both for the test and trial spaces, matrix K turns
out to be poorly tested and ill-conditioned. Aiming to solve this issue, different testing
functions can be used, for example, the nX RWG, as highlighted in [13]. The div-
conforming and quasi-curl conforming Buffa-Christiansen (BC) basis functions, similar
to RWG’s are usually adopted to improve the conditioning of the resulting matrices [14,
15, 16]. The BC’s basis functions are defined on the barycentric refinement of the mesh,
and their detailed construction can be found for example in [15]. Strictly speaking,
the BC’s basis functions are expressed as a linear combination of the div-conforming
RWG's basis. A graphical example of the shape of the BC basis function is illustrated
in Fig. 2.2.

Since the results presented in this thesis work are almost theoretical and since the
numerical implementations described in the following can be easily extended to any
basis function once it is properly defined, the RWG basis functions are adopted for

both basis and testing functions for simplicity.

Concerning the solution of the problem in the dielectric case, for the external region
the formulation is given by the first equation of the system (2.65) and can be simply
solved thanks to the singularity subtraction method. For what concerns the internal
one the discussion is slightly more complicated. We will see in the following chapters
that the singularities cannot be treated with the singularity subtraction method so four

different types of integrals involving the Green function will be introduced to simplify

I = / P (2.69)
R

the analysis:
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Figure 2.2: Graphical example of Buffa-Christiansen (BC) basis function. Figure taken
from [15].

ctkR
I = [9! dr’ i (r' —q) (2.70)

ez’kR
Iazjldr’V( 7 ) (2.711)

L= /S 'V (ezR) x (r' — q) (2.72)

Summarizing, this chapter is dedicated to the general theoretical introduction of

the main tools we will adopt in next sections for the description of the SIE. In par-
ticular an overview of how the Surface Integral Method arises is given, starting from
the general Maxwell’s equations and applying the Galerkin method. The required
divergence-conforming functions are properly described as well. Then, integral equa-
tions expressing both the electric and the magnetic fields are derived from the theo-
retical point of view, as well as their augmented version obtained from the coupling
with continuity equations. As a result, the block-matrix formulation of the problem is
obtained for both PEC elements and dielectric media.



Chapter 3

Evaluation of Singular Integrals
in SIE

In the previous chapter the mathematical foundation of the Integral Equation
Method (IEM) for the solution of electromagnetic problems, is given. The well-known
Galerkin method allows for the translation of the continuous mathematical problem
into a discrete system, for example, the one shown in (2.61), which can be solved nu-
merically. As explained in the previous chapter, the matrices appearing in the system
require the evaluation of double integrals, showing a singular behavior. As an example,
the inductance matrix L, whose elements are given in (2.49), requires the integration
of the basis function A together with the Green’s kernel (2.13). It is worth noting that
such kinds of integrals do appear for every Integral Equation (IE) method, that is both
for the Volume Integral Equation (VIE) approach and the Surface Integral Equation
(SIE) method. To solve this issue sophisticated mathematical procedures are required
especially when the dynamic part of the Green’s kernel (2.13) cannot be neglected.
Generally speaking, the mathematical procedures aim to evaluate the inner integrals
of the form:

Jo G(r,r)Adx', [, VG(r,r') x Adr’, (3.1)

with analytical formulas [17], so that, the entries of the fully populated matrices L, P,
and K can be constructed via a semi-analytical formula.

Summarizing, one of the most crucial issues that has to be solved when we try
to build the matrices that compose the integral methods regards the singularity ap-
pearing inside both the static and the dynamic version of Green’s function and the
non-evaluability of the first derivative of eq (2.13). In the following sections, some
approaches that try to analyze this question will be described, in the context of the
Surface Integral Equation (SIE) method. Section 3.1 is dedicated to the approach
proposed by Fabbri which looks for an analytical solution to the static version of the
Green function while Section 3.2 and Section 3.3 discuss methods for the analysis of
its dynamic version. Section 3.4 regards the theoretical description of an alternative

fully numeric approach for getting the exact solution to the problem we are analyzing.

21
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Finally Section 3.5 and Section 3.6 present the numerical results obtained from the

application of all the considered methods.

3.1 Fabbri’s analytical method for static Green’s function

One of the first important methods that try to solve singularity issues inside a
function of the form 1/R was introduced by Fabbri in 2008 [18]. This method is here

described even if it concerns only a static version of the Green function, i.e.:

1

GD(I‘?I‘,) - H:

R=|r—r| (3.2)

Its validity is therefore limited to the only case of low frequencies and the analysis is
reported only with a didactic scope since it will be adopted as a comparison tool to
check the results obtained from the other approaches. This method is in general known
as Fabbri’s method from the name of its developer and it tries to find an analytical

expression that allows to rewriting of the integral:

dr’
Wy(r) = /sf Te—v] (3-3)

over a 2-dimensional triangular surface Sy, to not consider a singular formulation.
The final expression which will be discussed is very important in fundamental integral

evaluation. First, we should introduce the identity:

!

L= ¥ x (g x i) - 0 (3.4)

e —r'| o — x|

where ny is the value of the unit vector normal to Sy surface, r is the target point
we are considering and (r’ —r) - Ay can be considered constantly equal to (ry —r) - iy
where ry is an arbitrary point of the triangular surface. It’s also necessary to define

the version of W; applied to an edge of the triangle:

dr’

_® (3.5)
e e —1'||

we(r) =
Here [, is the edge concerning which we are making the computations and r; 5 are

the vertices of the e-th edge. The solution of such an integral is known from the

literature [19]:
we(r) = In lro — x|l + [[r1 —r|| + [fr2 —rq|

_ (3.6)
[[r2 = rl[ 4 [lr1r —rf] = [lrz — ]

Using the equations (3.6) and (3.4) inside (3.3) it’s possible to obtain the final form of
Wy:

Wi(r) = ) g X (re —r) - uewe(r) — [(rg — ) - if]Qy(r) (3.7)
1.€8S;
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where r, is an arbitrary point on the e-th edge, u, is the unit vector along the edge [,

and:

Qy(r) =2atan [(rl —r) - (r2 Br) X (rs - r}] ) (3.8)

D = |r1 —r|/|lr2 — xfl[[r3 — x|
+ [[r3 —r|/(ry — 1) - (r2 — 1)
+ [lr2 — rf[(r; — 1) - (r3 — 1)
+ [[ry = rf/(ra —x) - (r3 —1). (3.9)

3.2 Singularity subtraction method

From the chronological point of view, one of the first methods which tried to solve
the presence of singularity inside the dynamic Green’s function was the Singularity Sub-
traction method [13, 20, 21, 22, 23, 24]. Recalling the definition of (2.13), the method
looks for, as the name itself explains, a way to approximate this function avoiding the
denominator to disappear. One of the simplest and most famous approaches having
these characteristics is the Taylor expansion, which was adopted to express the required

function. More in detail, the exponential part was expanded using the Taylor series:

o0 . .
kR (ikR)? B . E2R? k3RS
e —E p =1+4+ikR — 5 + 6 (3.10)
gq=0
so that the Green’s function became:
o0 . .
k)‘Hqu 1 1 2R  ik?R?
G N = (17:— — 4+ ik — — — ... 3.11
(rx) =2, (g+1)! 411'(R_H 2 TG (3-11)

q=—1

The main issue regarding such formulation involves odd terms which are the singular
ones. Indeed, as introduced above, the first derivative of Green’s function cannot
be evaluated when R = |r — r’|| — 0. Luckily when the product kR is very small
high powers having such a product at the exponent decreases very quickly and can be
finally neglected, so that odd terms of the expansion are not needed to be computed
analytically.

In conclusion, the singularity subtraction method is based on the subdivision of
the Green’s function expressed by eq.(3.12) into two terms: on one hand we have a
smooth part G (3.13), on the other one the non-smooth functions are collected. If Gg,
which coincides with the initial Green’s function deprived of non-smooth terms, can
be integrated straightforward, e.g., using the Gaussian quadrature rule, the remaining

non-smooth terms must be evaluated analytically.

! ! I ! ! ! i i ruf r.f _ k_Q ruf r.f
/SG(r,r}F(r )dr —[gGs(r,r)F(r )dr +4W[gRF( )d 81“\_\/SB’,F( )dr' (3.12)
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1 kE_1 k'R
/Gs(rr) me (e —+ = )dr' (3.13)

3.3 Line integral method

The third crucial method for the analysis of singular integrals is the Line Integral
Method [25]. It is based on the equations shown at the end of Chapter 2, which express
the integrals obtained through RWG basis functions [26] and which are fundamental in
the exstimation of the matrix components (2.69), (2.70), (2.71) and (2.72). The validity
of such method can be shown by the evaluation of these integrals in both conditions of
lossless and lossy medium through geometrical considerations. In particular, we should
consider the projection of the source point on the target triangle, ro, and we have to
divide the initial polygon in 3 sub-triangles whose edges are identified by two vertices
of the triangle and by ry. Elements inside each sub-triangle that will be useful for later
computations are stressed in figure 3.1. We have to pay attention also to the order in
which the vertices of the sub-triangles are assumed: in fact it must be consistent and

we assume e.g. to move clockwise.

Figure 3.1: Sub-triangles identification and components denominations

The name of the method is indeed due to the fact that a surface integral is decoupled
into three line integrals which are evaluated separately, thanks to this subdivision of
the target triangle. We first focus on the integral I; which is the fundamental one. The
integration over the triangular element is converted through a change of variables into
a double integral over the vertex angle # and p = r’ — rg. Notice also that from the
definition of R = ||r —r'||, we have that R = /p2 + d2 and then RdR = pdp. Therefore

the integral can be rewritten as:

3 ot p(8) eikR 3 6 R(6)  ikR sz(a) ikd
1122/_ .sw] dop =3 [ an [ ar Zf
i i i=1 i 0
- 2 -
k Z] h2 _|_ 9’_: (ei‘k a‘,ﬂ-i—h;' +x2 _ eikd) (314}

Moving on, we can define some important vectorial quantities that will be useful in the
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evaluation of the remaining main integrals:

’e‘ik‘R ,
Iz = . dr 7 p(r") (3.15)
kR —1
I, =d é v e (3.16)
kR —1
I = /’ dr'zTeszp(r') (3.17)

This way, the final form of the the equations (2.70), (2.71) and (2.72) respectively

become:

In=(r—qy)li +1z (3.18)
=1, -1, (3.19)
I,=1; x (I‘O — q} + (I‘ — q) X I” (320)

To make Iz and I} easier to be evaluated we have to apply a further subdivision of
the three sub-triangles by using the arc of radius h; as in figure 3.2. The reasoning we

Figure 3.2: Sub-triangle subdivision into A,B,C areas

have to apply can be extended to any function f(R) which has to be integrated over

the three regions. Concerning a generic function, the results here state:

hi sin@; —sin@;
[ ax' sy = [ p2dpf(p)( O —sinf; ) (3.21)
A 0

cosfl; — cos 9:

i sinf — st — h?
[ sEo) = [ s ("’ b sy ”*), (3.22)

hi — pcos@;
= - — h2 — psin6;
[ @pte) = [ pdpsp) (SVZ IO g
c hi pcost; — h;

where we have defined:

+
) = at; +bv; and s;}: = 9% (3.24)
b |65
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We can apply some simplifications noticing that some terms have the same value and
opposite sign when evaluated on the common edge of two sub-triangles. This way the

surviving can be summarized as:

- (_gqﬁlﬂ:ﬁf)mwﬂRnhﬂ—hE

L (3.25)
) S (e P

The last remaining step requires to substitute the functions f(R) = ¢’*£/R and f(R) =
(ikR—1)e*R / R? inside the general formulation. This way, defining R = y/d? + (IF)2,

we end up with:

> =i 22 _ikR(x)
—Jp e dzx
= 2 hfr P (3.26)
i=1,h; 720 ﬁ(esz,. _ (ikR; )
+ -
3. [~ 7 gy (kR (x) — 1)eHF@dg
I“ = Z ¢ . E:‘kR?' e:’kRi_ s (327}
e # ("

In conclusion, concerning I, it can be modified in analogy with the considerations

exposed for I . This way it finally provides:
3 x ikd ik+/d2+h2 422
t huj BT' [ i
I, =— E / do——— | — - ——————
_ 2
i=1,h;#0 " i hi+= d \/d2 + hZ + 22

Unfortunately the line integral method, and in particular I; and I |, shows a singularity

(3.28)

when h; — 0, and so both the integrand functions are not smooth. Moreover, the
behavior of such a method is particularly similar to the exact value in the case of lossy
media, losing its effectiveness in the lossless case. To solve these remaining issues,
a change of variable was applied to the initial function. The new arising method is
therefore called Modified Integral method [11].

Such method is bases its formulation on the substitution of the function R(z) =

\/d2 4 hg + 2 with an alternative version:
h2
R(O) =&+ —L, (3.29)

changing the previous equations into two new statements:

2% de
IS /_ E(ez‘kR(e) _ ¢ikdy, (3.30)
i=1,h; 0" %i

3 9;1- d
I =d ) / dg (—e‘”‘R“’) - e"‘“‘*) . (3.31)
i=1,h;#£0" 5 R(6)
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An important question to be discussed arises when the projection of the target point is
located in a critical position, i.e. outside of the total triangle. To analyze this situation
we have to figure out the fact that when we integrate a constant function, e.g. f(f) =1,
over the sum of the sub-triangles the final result is the total area of the triangle if the
point is inside the triangle, while it provides nulla value if the point is outside of the
triangle. In particular, such value can be obtained if we think to reverse the order
in which we take the vertices of the sub-triangles which lay completely outside of the
bigger one, or again it coincides with swiping the sign of 9; >0 and 0; <0.

For the sake of completeness, a quick analysis of the factor e**¢ of the integrand
function between 6, and 9;" is also reported. This function is constant concerning 8,
hence it can be brought outside of the integral. Moreover, we can notice that if h; — 0

the integral becomes null. Thus if we define:

3 9;"
= ). /  dfe™, (3.32)

i=1,hi#0" Y

e if 1 is inside the triangle, Iy = 2me*?

e if ro is on an edge of the triangle, Iy = me'*d

e if rp is outside the triangle, Ip =0

However for the computations reported in the following sections the equations (3.30)
and (3.31) were adopted. These formulations are generally valid and they evaluate the
situation also for (rg) coincident with a vertex of the triangle, whose value in terms of
vertex angles cannot be apriori defined.

Last, a fundamental situation that needs to be discussed carefully regards the target
point lying on the test triangle, i.e. the situation when d = 0. For such condition both
the first term of (3.30) and (3.15) provide null contribution, so that I; and I are
directly proportional to Ip:

1 1
L =——1I d ILb=——I — 3.33
1 %0 an 2 ik o(ro —q) ( )
We can also make the same considerations for the components generating I3 and 14:
I}| completely vanishes, as well as the part of I linearly dependent on d inside equation
(3.31). Thus the only contribution to the integrals I3 and Iy becomes proportional to

Ip and it follows the formulas:
I3 = :FIQ?:L and I, = :Ffoﬁ X (I‘o — q}, (3.34)

where the negative sign is chosen when r resides on the surface of the triangle where
7 points to. We can also notice that from these results I3 is directed along the outer
normal to the surface of the triangle, while, noticing that (ro — q) lays on the plane of

the triangle, I, lays on such plane as well.
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3.4 Fully numerical algorithm: DIRECTFN

One last method discussing the singularities of the Green function is presented
in this section. Such a method was presented in detail in [27], it is based on a fully
numeric approach and we refer to it from now on as DIRECTFN. This section is simply
presented for the sake of completeness from the theoretical point of view, but it will
not be adopted in the following analyses. As it will be explained at the end of this

section, they provide a very general approach at the expense of efficiency.

The analysis presented in this section is carried out in the case of singular integrals
resulting again from the application of SIE through the Galerkin method. In particular,
we discuss the SIE formulations arising from the Mazwell single layer potential and the

Mazwell double layer potential, namely:
1
L(A)(r) =ikS(A)(r) — EVS(V; - A)(r) (3.35)

K(A)(r) = V x S(A)(r) (3.36)

where A identifies the suitable basis or testing function and the following definitions

hold for the single layer (acoustic) potentials:

S(A)(r):[gdr’G(r,r’}A(r') (3.37)

S = [ G fw) (3.38)

Moreover, the integration is only implemented over edges [ of the triangles which are
either shearing a vertex (Vertex Adjacent, VA), an edge (Edge Adjacent, EA), or coin-
cident with themselves (Self Term, ST). Therefore, after the application of the Galerkin

method, the singular integrals we want to solve become:

(I%) = ik / drA,, - dr’GA’n-k% f drVs-Ap | dr'GVY-A',  (3.39)
S_p SQ ¢ SP SQ

(I mn = 1 / drA,, - A, + ] dr i Xx A, | dr'VG x A/, (3.40)
T2 /s, Sp So

where m,n identify the appropriate divergence conforming basis or testing functions
and P, () are respectively the observation and the source triangles. An interesting ob-
servation regards both the integrals, which turn out to be weakly singular in the specific
case of curvilinear elements, and in particular, the second term of (3.40) vanishes when
we consider planar elements. Moreover, the basis and the testing functions that are
taken into account for this method are respectively the RWG and the BC, for the same

considerations expressed in section 2.2.

The main idea behind the DIRECTFN method is to introduce a series of variable

transformations to cancel the singularities that appear in previous integrals. Such
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transformation consists in the introduction of an equilateral parameter space for each
triangle, {n,£}, such that —1 < 5 < 1 and 0 < ¢ < v/3(1 — ||) and the governing

transformations from the original space are:

r1+T2 Iro—Iq 2$3—:I?1—:1‘2
: 2 matvew | [7 n
e || 4 fmpu 2ecion | |7 (a] 4 (Q @341)
zZ1+29 za—21 223—21—29 ‘f ‘f
2 2\/§

with a constant Jacobian J = A/v/3 and A is the area of the original triangle. This
way the integrals in (3.39) and (3.40) can be evaluated by:

1 &(m) 1 (')
I = (Jp,Jq)/ dn/ df/ dn’/ d¢’' (3.42)
-1 0 -1 0

where £(1) = V/3(1 — |n|), Jp, Jq are the associated Jacobians and the kernels we have

are only functions of the geometrical data so that they can be expressed as:

_VB31-mn) ¢

G W
2 —2\/5
(3= £ (3.43)

V3

The toolbox for the immediate implementation of this method is available online
at [28]. Finally, regarding the efficiency of fully numerical methods such as DIRECTFN,
it could be observed that they provide an approach that is less efficient than methods
that involve analytical integrations. On the other hand, they can be generally applied
to compute both weakly and strongly singular integrals, meaning that they have a

wider range of validity.

3.5 Comparison of integration methods

In this section, we will discuss some remarkable results concerning the formulations
developed above. In particular, we will first show the behavior of each single inte-
grals (2.69), (2.70), (2.71), (2.72) computed through all the methods presented in the
previous chapter to observe that the block components of the matrices are computed
suitably concerning the theoretical results. We also take into account a fully numeric
integration method implemented using the Gaussian quadrature rule applied to the

general integrated functions and with a variable number of points of integration points.
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3.5.1 Behaviour of integrals with frequency

The first proposed analysis concerns the trends of the fundamental integrals as a
function of the frequency. Here the source triangle S’ is identified with the vertices
with coordinates (0,0,0), (0,1,0), (1,0,0), in mm, while the target point is located at
r = (0.49,0.5,0) mm.

The complex wavenumber shown in (2.15) is considered in this analysis, where
o =106 S/m and &, = 1. The absolute value of the real part of I; for the frequency
range [106 — 10'?] Hz is reported in Fig. 3.3.

It is worth noting that by increasing the number of Gauss points for the numerical
quadrature, both the fully numeric evaluation of I and the singularity subtraction
method increase their accuracy. For the former, the reason is trivial, while for the
latter the increased accuracy can be traced back to the improved numerical integration
of the smooth Green’s kernel part G (3.13).

—— Singularity Subtraction (63 k)
—e— Modified Circle

===Fully Numeric (63 k)
===Singularity Subtraction (250 k)
—=-Fully Numeric (250 k)

108 | —— Singularity Subtraction (1 M)
Fully Numeric (1 M)

|/ exp(ikR)/R|

108 108 1010 102
Freq [Hz]

Figure 3.3: Absolute value of the real part of I; as a function of frequency and number
of integrations points.

The same kind of analysis is presented for I in Fig. 3.4 but with fewer considered
methods. Specifically the modified line integral method and the numerical quadrature
rule with an increasing number of Gauss points are considered. The former is assumed
as a representative of the semi-analytical methods since it is the one which seems not
to break or show strange behavior at high frequencies. The same test triangle, target
point, and input parameters for the wavenumber as above are adopted for this analysis.

About the outcoming results, we can notice that the two methods show very similar
behavior in the frequency range [10° — 10%], even with a, relatively if we compare to the
analysis of Fig. 3.3, low number of Gauss points. However, as f approaches 10'° Hz,
the numerical approach starts to spread from the result provided by the modified line
method. In any case, it was verified that in agreement with what is shown above for I,

by increasing the number of integration points the order of accuracy of the numerical
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(b) Imaginary component of Io.

Figure 3.4: Norm of I, obtained by modified line integral method and fully numeric
approach with 63k Gauss points.

rule improves as well.

To conclude the analysis about I7 and I obtained with the modified integral method,
we show here one last case study. Since these integrals can be obtained from the sim-
ple evaluation of the three quantities Iy, I, and Ig, we perform this analysis in order
verify the effectiveness of their value. In particular, we focus on the argument and
the phase of such results, computed through the application of a fully numeric method
with a variable number of Gauss points. Indeed these integrals can be computed in
two different ways: the first one is based on a numerical technique that is already im-
plemented in MATLAB(®), for which an absolute error tolerance should be provided as
an input. This approach is the one adopted e.g. for the computation of I;. Differently,

the second one is based on adopting a variable number of Gauss points for applying



32 CHAPTER 3. EVALUATION OF SINGULAR INTEGRALS IN SIE

the Gaussian quadrature rule to the function over the triangle. This method is applied

here to compare the behavior of each of the two integrals with the increment of the
number of points.

1.5 210"
: ::""00000o.oocoocoooo.ooooocaooo.
_19- 4
_‘- lll’
= 485 ! |—e—Modified Line Method
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- | 00000cescsssssssssssssssssssee
> 068 |
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0.67 ' '
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Number of Quadrature Points

Figure 3.5: Argument and phase of I, obtained by a fully numeric approach and by

the modified integral method whose components were computed by quadrature rule
with an increasing number of Gauss points.
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Figure 3.6: Argument and phase of Iy (y-component), obtained by a fully numeric
approach and by the modified integral method whose components were computed by
quadrature rule with an increasing number of Gauss points.

The input parameters which were adopted for such analysis are again the position
of the vertices of the triangle (0,0, 0), (0,1,0), (1,0,0), and the position of target points
(0.49,0.50,0), both assumed in mm. The complex wavenumber in (2.14) is obtained
considering o = 10° S /m, &, = 1 and f = 30 MHz. The number of Gauss points for the

general numerical approach is approximately 800k, so we can assume such a function to
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be very similar to the analytic value. The number of points for computing I, I, and
I3, increases from 2 to 40, showing an increment of the degree of accuracy as well. The
final values are collected into Iy and I, and then split into the argument and the phase
of such quantities. The graphical results are reported in Fig. 3.5 and Fig. 3.6, where
their validity is indeed shown when compared to the fully numeric value computed with
a huge number of integration points.

The results developed for I; and I, can be then used to extend the same kind of
analysis also to I3 (2.71) and I4 (2.72). Since here the integrated functions present a
singularity of order greater than one, they have to be treated with much more attention.
Therefore we discuss the behavior of such integrals computed with Modified Line Inte-
gral Method from Section 3.3 and their numerical counterpart. The input parameters
we adopt here almost coincide with the analysis proposed above, apart from the target
point which is moved to position (0.49,0.50,0.10) mm. Thanks to the brief discussion
at the end of the same section about the situation that arises d = 0, we wish to move
the attention to a more general situation for which all the three components of the
integral are different from zero to verify the validity of the adopted method.

Observing the graphs we can easily notice how the Modified Line Integral method
provides a good approximation for the numerical values. In particular, we can focus
on the behavior at very high frequencies: differently from what happened for I; and I,
for which the correspondence broke down, here the oscillations are captured very well
by the method we have implemented.

Finally, the analysis of I, as a function of the frequency is reported. The same
input parameters of the first analyses and the same target point of the analysis of I3
are assumed for this study case. The point q (which should be associated with the
vertex of the target triangle opposite to the edge to which the RWG basis function is
applied) is arbitrarily identified with the vertex (0,0,0). The range of variation of the
frequency is reduced to [10° — 10'2] to better appreciate the frequencies at which the
differences between the analyzed approaches become more pronounced.

The graphical results are reported in Fig. 3.8, where we can notice that, as happened
for I3, the behavior of the integral as a function of the frequency and computed by
adopting the numerical approach is closely followed by the one computed through
Modified Line Integral method. Moreover, thanks to the reduction of the range of
frequencies, it is possible to notice that even at very high values of f in [Hz| the

oscillations of the function are well captured by the Modified Line Integral method.

3.5.2 Behaviour of integrals with target point position

Now we move to the analysis of the same main integrals as a function of the position
of the active point in the space, keeping the frequency fixed. The input parameters
that were implemented are the coordinates of the vertices of the test triangle (0,0, 0),
(0,1,0), (1,0,0), and the positions of target points, which are a total of 2500 uniformly
distributed in the squared domain [—1.5,1.5] X [—1.5,1.5] at a constant height z = 0.
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Figure 3.7: Real and imaginary components of I3 obtained by modified line integral

method and fully numeric approach with 63k Gauss points.

Notice that all the units of the coordinated points are in mm. The complex wavenumber

described by (2.14) is again considered here, adopting the same parameters as in the

previous section, but keeping the frequency constant. A comparison between the values

of I with the greatest part of the methods illustrated in the chapter above is given.

The fully numeric analysis is performed with about 10k points for each active point

in order not to make heavy from the time CPU point of view the numerical analysis.
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Figure 3.8: Real and imaginary components of I3 obtained by modified line integral
method and fully numeric approach with 63k Gauss points.

As a starting point, the low-frequency behavior of the integral is analyzed, and f =
100 Hz is adopted. We can notice that the numerical approach provides a very good
approximation even with a quite small number of Gauss points. Furthermore, it can
be observed that in such cases Fabbri’s approach, which neglects the exponential term,
is a good approximation for Iy, indeed, the real parts shown in Fig. 3.9 agree very well

with the value provided by the other three methods. The imaginary parts, given in
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Fig. 3.10, are different since Fabbri’s integral is only real.

Two further observations can be made: the first one verifies when increasing the op-
erational frequency e.g. to f = 107 Hz. In this way, the contribution of the exponential
terms increases and the low-frequency Fabbri’s method starts to provide a no longer
valid approximation for the Green dynamic function. The imaginary part highlights
the same reasoning as above so it is not reported here while the real part of I; in such

conditions is printed in Fig. 3.11.
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Figure 3.9: I real values as a function of the position computed by methods in previous
sections with a frequency of 100 Hz.

The second observation regards the behavior of I, I3 and I4. A direct parallelism
can be made between between integrals I; and I3 and between integrals I and 1. In
fact the latter present an integrand function which is expressed in terms of the point
q. At the same time I; and I, share the same integrand function apart for the cross
product inside I, as well as for what happens between I3 and I4. Then, in order
to simplify the analysis, the differences among the four methods can be summarized
into two main cases, i.e. the analysis of Iy and I3, which can be considered as the
respective simpler counterparts. This way, once we have verified that the behavior of
such integrals computed through any of the semi-analytical methods and by the fully
numeric one are similar to each other, we can also assume that the values obtained
for Iy and I, follow this regularity thanks to the fact that the cross product provides
the same factor both when computed with a semi-analytical or fully numeric approach.
Therefore, in analogy to what discussed also at the end of the previous section, since
such techniques do not showed significant differences when studying I» as a function of
the frequency, the results are not reported. Despite of all these considerations which

allowed to lighten the thesis work, all the checks were performed to assure the correct



3.5. COMPARISON OF INTEGRATION METHODS

]
Singularity subtraction_* 10

=107

1
c/)
0.5

%107

& [exp(ikR)/R, freq: 100 Hz

Modified line
x10_5
e (-
\/.)
a7
0.5,
96
O,\\ -
9.5 2 -
e O N 0
%1073 * P
i . Numeric
x10
1,
0.5 < . '
0.5 v
0
0.5 2\ h N
A -3 <0
107 =10 2

37

Figure 3.10: I, imaginary values as a function of the position computed by methods in
previous sections with a frequency of 100 Hz.
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previous sections with a frequency of 107 Hz.

behavior of each integral.

I, real values as a function of the position computed by methods in

Finally the analysis of (2.71) as a function of the position of the source point is per-

formed. The argument of the integral now involves the divergence of the Green function

and so the behavior is in principle different from what computed for I;. The inputs

assumed here are similar to the previous analysis, i.e. the vertices of the triangle are
located (0,0,0), (0,1,0), (1,0,0) mm, the active point assumes one of the possible 2500
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Figure 3.12: I imaginary values as a function of the position computed by methods in
previous sections with a frequency of 107 Hz.

discrete positions inside the area [—1.5,1.5)mmX[—1.5,1.5|mm at a constant height of
z = 0.lmm. The complex wavenumber described by (2.14) is taken into account here,
adopting the same parameters as in the previous paragraph, apart from the (high)
frequency which is kept constant at f = 10°. Fig.3.13 and Fig.3.14 respectively show

FReal component
Meifiedline  Numanke

Figure 3.13: I3 real values as a function of the position computed by methods in
previous sections with a frequency of 10° Hz.

the comparison between the real and the imaginary parts of the solution computed via
modified line integral method and fully numeric approach, making us observe that the
SIE method provides a very good approximated result. Finally, extending what stated
above, we can assume (and it was indeed verified) that the behavior of the solution
computed for I4 by the modified line integral method and the fully numeric one are
very similar to each other.

Summarizing, in this section the performances of the different methods proposed



3.6. NUMERICAL SOLUTION OF RCS OF PEC SPHERE 39

Imaginery companent
uuuuuuuuuuuuuuuuu

; H ! h

Figure 3.14: I3 imaginary values as a function of the position computed by methods in
previous sections with a frequency of 10° Hz.

in the literature for the evaluation of the singular integrals (2.69)-(2.72) are compared.
The well-known analytical method proposed by Fabbri works well for the static or very
low-frequency regime, indeed the oscillating part carried by the exponential term in
Green’s function (2.13) is completely neglected. In the literature, singularity subtrac-
tion was the first proposed approach to analytically compute the singular integrals,
however, as highlighted in [11], it may fail under certain operational conditions, em-
bedded in the complex wavenumber k. This limitation is overcome by exploiting the
modified line integral method. It is worth noting that a fully numeric approach for the
evaluation of the integral may be conceived, as shown in Fig. 3.3, a huge number of
Gauss points are required to reach the convergence, making this solution practically

unfeasible.

3.6 Numerical solution of RCS of PEC sphere

In this section, the numerical solution of the Perfect Electrical Conducting (PEC)
sphere is performed. The PEC sphere is a canonical structure used in the study of
electromagnetic scattering phenomena since its Radar Cross Section (RCS) formula is
well known from the analytical point of view. Some examples of papers adopting such
a model as a reference are given by [29, 30, 31]. A couple of papers discussing the RCS
behavior of specific objects involving the PEC sphere are [32, 33, 34, 35]. In our test,
following the academic benchmark, the PEC sphere is excited by a plane wave of the
form:

Ei(z) = exp(—tkz)X, (3.44)

where in this case k = kp is the vacuum wavenumber.

The analytic form of the excitation of electrical eddy current for a sphere is described
in [36]. The solution is obtained in analogy to what one can get from the analysis of a
cylinder subjected to a field deployed along a transversal direction from its axis, after a

proper change to spherical coordinates. To show that, let’s consider Maxwell’s equations



40 CHAPTER 3. EVALUATION OF SINGULAR INTEGRALS IN SIE

introduced at the beginning of Chapter 2. The total magnetic field is obtained from
the linear superimposition of two contributions: B = B; + B,, where the first term
comes from the application of arbitrarily imposed external sources, while the second
one is given by eddy field which arises from the charges moving inside any conductive
material. Since B; is generated by external agents beyond the region of interest, it is
possible to assume that it has null curl V x B; = 0, while for the second term, it simply
holds:

V X B¢ = pode (3.45)

Considering Ampere’s law V X B = pgoE and applying to it the curl operator to both
sides of the equations, as well as all the considerations seen in this paragraph and the

vectorial identity shown in Chapter 2, the result we get states:
V?B. + k’B, = —k’B; (3.46)

where k is the usual complex wavenumber. Once the solution for B, is computed from
such equation, the induced current density J. can be obtained straightforward from
(3.45). Now, since the cylinder does not show any symmetry concerning which the
solution of the problem is easy to compute, we need to recall the Gauss’ law V-B =0

so that the vector potential field A can be associated to the magnetic field through:
B=VXxXxA (3.47)

In analogy to what is seen again in the theoretical introduction, we can recall the
definition of the electric scalar potential coming from Faraday’s law (2.8). Following
the already seen procedure which considers the application of Ampere’s law, of Ohm’s
law, and of the gauge V - A = pgop, the final formulation we want to take into account
is expressed by:

VZA +K*A =0 (3.48)

The importance of such an equation can be highlighted by noting that A exactly

expresses the nonhomogeneous source term B; = BpX in cylindrical coordinates as:

Ai(p, ¢) = Bopsin(¢)z (3.49)

where ¢ is the azimuthal coordinate and p is the radial one. Let’s also notice that the
orthogonality of A and B makes the first to be directed along Z, imposing that the final
solution coming from the Helmholtz equation will be expressed along the same axis. In
particular the functional form of the solution is A = A(p, ¢)Z and the corresponding
Helmholtz equation should satisfy:

ZA
T2

204 A

ez TP, +k2p*A = (3.50)



3.6. NUMERICAL SOLUTION OF RCS OF PEC SPHERE 41

whose solution can be found by the application of the separation of variables. From
the outcoming solution, it is possible to notice that the current density satisfies the
relation:

Je = —iwoA (3.51)

and then, by solving for the total eddy current density we get the solution for the case

of a cylinder subjected to a transverse excitation:

. —2iwo By R .
Ie.9) =2 | criae gy | (ko) in(d) (3:52)

where J; is the Bessel function of order 1 and R is the radius of the base of the cylinder
so that p < R. The extension of such analysis can be carried out for the sphere by

applying a change of coordinates so that (3.48) is expressed as:
10 dA 1 0 dA A
( 2 ) + (sin 9—) — - +kA=0 (3.53)
T

2ar \" ar r2sin @ 90 sin? 6

where # is the elevation angle, r is the radial coordinate, and ¢ is again the azimuth,

and hence the final solution is:

—3iwoByR
2kRJ|(kR) + 4J,(kR)

erd) =10 | | Atko)sin(s) (3.5

In the following, the monostatic RCS of the 1-meter radius PEC sphere is defined

RCS = 4||r4yq||*Es - EZ, (3.55)

where E, is the scattered field, Ef its conjugate, and ry,, is the observation point,
which must be sufficiently distant from the object. The scattered field E; is evaluated
analytically with the MIE series [37] for the target point located at r;,, = [200, 200, 200].

The analytical solution (3.55) is thus compared with the implemented SIE approach,
based on the modified line integral method, over the frequency range 5-10" —5-10° Hz.
Such a frequency range is selected to capture several oscillations of the RCS and verify
the capability of the numerical approach in following them. The results are reported in
Fig. 3.15, where it can be seen that the accuracy of the numerical approach decreases
for high frequencies. This is a well-known problem in SIE formulation, which can be
reduced by increasing the quality of the mesh, following for example the empirical rule
(2.28). Indeed for f = 5-10® the mesh-size h > \g/5 so a mesh refinement must be
performed. The RCS with the refined mesh of 2800 triangles is highlighted in Fig. 3.15

with the magenta marker.

The current density distribution induced on the surface of the PEC sphere, at
the frequency of f = 500 MHz, is then analyzed with different numerical approaches.
Fig 3.16 shows the magnitude of real and imaginary parts of J; with the SIE method

described in this work. The resulting trend agrees very well with the solution obtained
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Figure 3.15: Monostatic RCS of the unit sphere over the range 5 - 107 — 5 - 10® Hz.
Comparison between the analytic formula (3.55) and the numeric solution, by using a
coarse mesh (in red) and a fine mesh only for f = 500 MHz.

with a reference integral equation solver, illustrated in Fig 3.17.

It’s important to highlight a significant distinction that emerges when assessing
singular integrals through a fully numeric approach as opposed to the semi-analytical
method outlined in Section 3.3. To demonstrate this, three distinct domain discretiza-
tions, labeled as mesh 1, mesh 2, and mesh 3 with 2800, 6500, and 12000 elements,
respectively are executed. The resulting surface current density magnitudes are re-
ported in Fig. 3.18. By using a Gauss quadrature with 9 points, as expected, the
solution differs considerably concerning that illustrated in Fig. 3.16, and Fig. 3.17, es-
pecially for the mesh 1. The last mesh, with 12000 triangles, has a similar shape of
the surface current density, however, the computational burden both for the storage
and the solution of the linear system rapidly increases. This behavior suggests that
both the meshing procedure and the evaluation of singular integrals, so the matrices of
the system of equations, must be carefully addressed in the context of surface integral

equation methods.

To conclude the section, the surface current density distribution evaluated with the
commercial FEM software COMSOL(®) Multiphysics is reported. The PEC problem
is solved in COMSOL®) with the Radio Frequency (RF) module. To capture the
oscillation on the sphere surface, a huge number of DOF's is required in this case, over
7M. This considerably increases both the memory requirements and the computational
time for the solution as reported in Table 3.1. It is worth pointing out that a direct
method is used in this case, indeed the suggested iterative solver is not able to reach the
desired tolerance for the solution. The large computational time for the SIE based on
the semi-analytic formulas described in Section 3.3, is due to a non-optimized numerical

procedure. Indeed, the semi-analytical formulas are required only for near source and
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Solver DOFs Number | Memory [GB] | Time
FEM (COMSOL®) ™ = 250 ~3h
SIE (fully numeric) 30k (mesh 3) ~ 8 04h
SIE (semi-analytic) 7k (mesh 1) ~ 0.5 1.5h
Table 3.1: Comparison of computational resources for PEC sphere problem.
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Figure 3.16: Norm of surface current density evaluated with the SIE approach developed
in this work. The domain is discretized with 2800 triangles.
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Figure 3.17: Norm of surface current density evaluated via a reference integral equation
solver.

target points, where the singularities arise. If the points are sufficiently far apart, the
fully numerical approach can be used. However, the decomposition between near and

far points is not performed.
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(c) Real part mesh 2 (6500 triangles).(d) Imaginary part mesh 2 (6500 tri-
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Figure 3.18: Norm of surface current density for different meshes evaluated with the
fully numeric integration approach.

(a) Real part. (b) Imaginary part.

Figure 3.19: Norm of surface current density evaluated via the FEM software
COMSMOL®) Multiphysics.



Chapter 4
Accelerating integral equations

The block matrices we have described above are in general sparse, except for the
ones depending on the Green’s function. Indeed, even in the static case and even for
points very far from each other, such an expression always provides a term different
from the null one. This way the total cost for storing each matrix is of order O(N 3,
where NV is the number of degrees of freedom of the problem. For small-order problems,
this question can be simply neglected since the computational cost for storing matrices
is still sustainable. But when N starts to become very large, the total cost in terms
of CPU memory required could be not enough, or, even when it is, the convenience of
integral methods such as SIE in terms of computational time cost with respect e.g. to
FEM fails to meet. In summary, the purpose of the techniques presented in this section
is to express conveniently the matrices whose terms depend on the Green function, to
make them have a total number of elements that scale with N with an order smaller
than 2.

Nowadays many important techniques can be adopted: one first example is given by
the speed-up of the methods for the computation of near-optimal matrices, i.e. matrices
that share the same rank of another starting matrix. In particular, once the initial dense
block, e.g A, is approximated through the application of methods for rank-reduction
e.g. with Agpproz, it could be useful to substitute such result with a third matrix, e.g.
C in such a way that

|A = Cll < 1A = Agpproall + 6 (4.1)

where § represents the tolerance for the error committed. The main advantage shown
by this method concerns the fact that the A is first sparsified and then quantified,
considerably reducing the memory needed to store it and the CPU time required for
the computations. These steps are discussed in detail in [38] where a further speed-
up of the method based on the use of orthogonal iterations or Lanczos iterations is
implemented.

A second remarkable way to proceed is the Tensor Train (TT) decomposition pre-
sented in [39] and then extended and applied in [40]. The idea behind this approach

consists of decoupling the function expressing the entries of a tensor .4 having elements

45
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A(iq,...,1q), where i; € I; = {1,...,N;}, by:
A(it,. .. id) = Gi(i1) - Ga(i2) - . .. - Ga(iq) (4.2)

where Gi(ix) is an r_; X 1 matrix and r is the rank of the tensor. This way the out-
coming product is itself a matrix of size rg X rq and -under suitable boundary conditions
e.g. rp = rq4 = 1- it can be noticed to be a straightforward block generalization of the
N),

with 7,4, the maximum rank of the decomposition. Thus, the decomposition is ex-

rank-1 tensor. The tensor train approach allows to store the tensor A with O(dr2,,,
tremely convenient for small 7,,,., as is usually the case. T'T shows its efficiency in the
specific case of systems of linear algebraic equations involving purely Toeplitz matri-
ces, meaning that the mesh expressing the problem should be regular enough. Under
such conditions, both the memory and CPU time scale with O(logN). To make this
approach more general and applicable to arbitrarily shaped inhomogeneous objects,
an iterative conjugate gradient-TT method was also developed [41], having CPU and
memory scaling respectively as O(N) and O(r2NlogN), being r the effective rank of
the matrix. However following works such as [42] it can be shown that T'T loses its effec-
tiveness when the surface of the domain, and hence the mesh, is not regular. Therefore
the validity of the TT method is not completely proven and its field of application is
nowadays quite limited.

One last procedure that will be mentioned regards the VINCO framework which
was developed in the last years [43]. VINCO is briefly introduced since it is a method
for specifically solving large-dimension VIE eddy-current problems. The main char-
acteristics that make VINCO peculiar concerning other methods regard the use of
element-wise uniform basis functions to approximate the continuous current density.
Then the MAGICA factorization [44] allows the decomposition of the stiffness matrix
representing the problem as a product of a dense matrix and a set of sparse matrices.
An important advantage given by VINCO concerns the fact that it provides efficient and
accurate results when adopted for solving problems having the properties introduced
above and for any arbitrarily shaped geometry.

Nevertheless, this thesis work focuses on two approaches which are probably the
most known and implemented thanks to their generality and because of their efficiency
in the field of application of integral equations. In particular, two different methods
will be presented, which differ from each other in the path they adopt to store in a
convenient way large-size dense matrices. The first one is the Fast Multipole Method
(FMM), arising from the analysis of the Green function which is decoupled into two
different sub-functions to split the dependence from r and r’. The second method looks
instead for a way to conveniently store the matrix by exploiting the mutual distance
between the elements composing the domain; specifically, the hierarchical matrices
method (briefly #-matrix) will be discussed in this thesis work.

On one hand, the first approach will be presented with a didactic scope to have a

general overview of the compressibility method for dense matrices based on the study
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of the Green function, i.e. from the analytical point of view. Differently, the second
section is dedicated to methods based on the geometry of the domain, which has to be
analyzed in depth. Only the latter method will be investigated from the numerical point
of view, comparing the results with the case where no storing technique is implemented,

in terms of accuracy and memory saving.

4.1 Fast Multipole Method

An important method that is usually taken into account for solving issues of ele-
ment storing for huge dimensional scale problems is the FMM. Here we focus on the
particular field of application of electromagnetic scattering. The general formulation
of the problem is presented in many different papers, such as [45, 46, 47, 48]. A point
of view more related to the SIE is instead treated in [49].

As we have briefly introduced above, the main idea of the FMM consists of splitting

the dependence of the Green function from r and r’, so that the resulting one becomes

G(r,r') =Y h(r)f(x) (4.3)

where r and r’ in this situation identify the central point of elements coming from
the discretization of the domain and the summary is intended over all the elements.
However, the separability of the Green function cannot be given for granted, so a more
in-depth analysis is carried out.

The first proposed formulation is carried out in [45] and was obtained as an adap-
tation of the FMM developed for acoustic scattering problems [50] to exterior Dirichlet
electromagnetic scattering problem. Since we aim to provide a simple overview for such
a method, for simplicity a two-dimensional conducting body having an axis aligned with
the z coordinate direction is considered. We also consider an electromagnetic wave in-
cident to such a body with an electric field vector parallel to the axis of the body. This
way both the incident and the scattered fields satisfy the equation:

V2E, + k’°E, =0 (4.4)

where k = 27 /) is the wavenumber and A is the wavelength of the incident field in the
exterior region. The boundary condition for the problem states that the total field E

vanishes on the surface of the conductor, namely:
E;Ot = Ez,'_::nc + Ez,gcat = 0 on F (4.5)

where I' represents the boundary of the conductor. Then we can also consider n nodes
on the boundary of the scatterer and divide the boundary itself into p equal segments
in such a way that each part contains n/p nodes and, being the total length of the
boundary L, each segment’s length is p/L. Let’s finally denote the center of each
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segment as z;. Considering each segment as a cluster of n/p sources and considering
the sources in each segment as a single aggregate source, the radiation field of the
equivalent source is approximated using the first N multipoles located at the center of
the segment. This way the radiation field at any particular node on the boundary is
the sum of the contribution of NV multipoles of each of the far-away segments and the

direct contribution of the nearby segments.

To express these considerations from a mathematical point of view, we introduce
the incident and the scattered electric field formula in the transverse magnetic (TM)

case:

—2F; ine(r) = ¥+ 2 /F dzfac(ka;gz)_ 1J”)w(r’) (4.6)
Ez,scat(r} :Adlxac(ka:ly:;)_ r!”}%b(l") (4'7}

and the scattered one can be seen as a fictitious source function K(p), being p(p, ) a
point on I'. It is worth noting that in our two-dimensional case such K(p) has only
a component on the zy plane. We can also notice that the current satisfying (4.6)
radiates the scattered field in the exterior region so that on the outside surface of I' we
have that F, ¢yt = —E; in. and the scattered electric field is in the three-dimensional

case is given by:

Euclp) ==V x_[ dlG(kp~ ¢ K(7) (4.8)

which indeed coincides with (4.7) if we consider the two-dimensional case and we make
K = 7). Another important consideration allows rewriting the Green function for the

two-dimensional case as:
G(k|r —r'|) = aHV (k||r — r'|]) (4.9)

where the right-hand side of the equation is defined by the Hankel function of the first
kind of order zero. Now, the crucial point of the FMM method comes. Considering

a sub-segment I of I', the Hankel function can be expanded in terms of higher-order

Hankel and Bessel functions:

o0

HPY (ke =) = Y HY (kp)Jm(kp'Jexp(im(8 — 8')) (4.10)
m=—o0o
and, for a discretized source at r points located at z/; = (p},ﬂ;:.-}, 7 =12,...,r, the

scattered two-dimensional field is therefore rewritten as:

2 I~ 0 Tm(kp))exp(—imb),
> D (pél(ng 2D (kpexp(imo)K )AL (211

m=—oo j=1

Ez,soat(ﬁ: 9)

where AI; is the discretized element of arc length containing the source K (;t:;.) and it

is possible to truncate the infinite summation over m at N for a given accuracy, i.e.
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to calculate only N multipole of the sources. As a result of the application of this
method, the order of the number of operations is reduced from the usual quadratic one
to O(N3/2). Moreover, it could be shown that if this process is applied iteratively the
order can be further reduced to O(N3/4).

An alternative approach focused on the application of the FMM to the EFIE and
the MFIE is described in [46]. Similarly to what was seen in the previous paragraph,
we start from the subdivision of scatterers into groups, and then a representation of the
scattered field as a wave emitted by the center of the union of a scatterer group is pro-
posed by exploiting the addition theorem of Bessel functions. The interactions between
groups can therefore be calculated, basing computations on the mutual geometrical
distance. Finally, the addition theorem is again used to translate the scattered fields
around the group center to its group members. Even in this case, the resulting formulas
provide matrices whose memory-storage load is not quadratic as the original one, but
it is of order O(N 3/2). Moreover, a further method that considers the ray-propagation
can be applied to the result of the FMM, making such a method even more efficient

in terms of memory saving, thus finally obtaining a total number of stored elements of

order O(N*/3).

4.2 Hierachical matrices

The H-matrix method belongs to the set of geometrical approaches. Differently from
the FMM, it is based on the rework of the structure of the matrix we are analyzing.
This approach is discussed in detail in many papers, both from the analytical and from
the empirical point of view. A wide contribution is given by [51, 52, 53, 54, 55, 56,
57]. Here a summary of the theory at the base of H-matrices is reported. Then, the
theoretical discussion is applied to verify the difference in terms of the accuracy of the
final result as a function of the reduction of the memory used for storing elements. For
simplicity, we start the discussion with the analysis of the singular values of a function

having the structure:
1

=i e

where 7, j can be seen as the elements a matrix A;; which discretizes a domain [0, 1] X

(4.12)

[0, 1] expressed by the matrix entries and « is an arbitrarily small constant. To deter-
mine the required singular values, we could proceed by applying the classic Singular
Value Decomposition (SVD) to A or we could adopt a randomized version of it [58].
The standard SVD decomposition of a m X n matrix A provides a factorization of the
form A = USVT where U is a m X m orthogonal matrix of left singular values, S is an
m X n diagonal matrix having entries coincident with the singular values of A in de-
creasing order and V is an n X n orthogonal matrix. The most important issue related
to the application of this standard version concerns large-size matrices for which the

computational cost could make the process unfeasible. In this sense, it is sometimes
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Figure 4.1: First 32 singular values of for a matrix A discretizing a domain [0, 1] X [0, 1]
with 250 elements on each side and whose entries are of the form 1/[(i — 7)% + o] with
a=0.1.

convenient to proceed with the decomposition of near-best rank matrix approximation.
In this context, random SVD technique is adopted. Such a method is based on the
standard Gaussian random vectors and on the matrix-vector product theory. We start
by computing the products:

f

Y1 = Axy

X : (4.13)

(Yk+p = AXpip

where X1,...,Xk4p are the standard Gaussian random vector named above with iden-
tically and independently distributed entries and p > 1 is an oversampling parameter.
The second step requires the economized QR factorization [y, ..., yr+p] = QR. Last,
the approximant QQT A having rank < k + p can be computed. Two observations
about such structure should be reported: the first one concerns the fact that if A is
symmetric, QQT A can be simply computed by application of matrix-vector product
involving A. The second one regards the fact that the quality of the quality of the
approximation is given by the Halko theorem [59] which states that, given A with the
structure described above, k > 1 and p > 4, if we define Q € R"X(¥+P) 4 standard Gaus-

sian matrix such that the economized QR decomposition is expressed by QR = Af2,
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then, Yu,t > 1:

VET
3" o%A) +ut - lpgkﬂ (A)  (4.14)
j=k+1 p

A -QQTA| < (1 +t ;—k)

where the norm at the left-hand side is a Frobenius norm, the failure probability is at
most 2t~ + e~** and the best rank k approximation error to A in Frobenius norm
is given by the squared tail of the singular values of A itself, i.e. the component of
the right-hand side /> 7 1., 0'32 (A). Two generalizations of the randomized SVD to
multivariate Gaussian random vectors and to Hilbert-Schmidt operator allow to extend
the field of application of such technique [58]. However, since these methods will not

be taken into account in this thesis work.

Coming back to the analysis of the A whose entries are expressed by (4.12), since
the modulus of its singular values decreases very fast (Fig. 4.1), we can hypothesize
to introduce an alternative decomposition of A for which only a fewer number of
elements of S are stored while small ones are neglected. Thus, supposing N the size
of the problem and » < N the number of elements we store, the final decomposition

states:

A-0S8V' (4.15)

where the dimensions of the sub matrices are S=r x r, U= N X r, \N/—T =7r X N.
In many reference papers, r is also known as the effective rank of the matrix, i.e. the
number of non-negligible singular values, but it is not a priori defined and it has to
be determined by specific procedures. An example involves the adoption of a rank
revealing method. Such approaches consist of the computation of the effective rank of
a matrix by choosing only singular values that overcome a certain threshold. A more

specific example of a rank-revealing technique is well described in [60].

A different procedure for the determination of the effective rank of a matrix can
be introduced in analogy to the Adaptive Cross Approzimation method (ACA), which
aims to memory saving during matrix storing proceeds. In particular, ACA belongs to
the category of algebraic methods for the reduction of computational costs. Differently
from physics-based methods which are in general more efficient in terms of both memory
and CPU time, algebraic methods can be applied in general contexts and require only
linear algebra to be applied, making it expressible by modular parts and easy to couple
with the applications of the Method of Moments. Moreover, ACA in general does not
require complete knowledge of the integral equations kernel, basis functions, or integral
equation formulation. Concretely, ACA’s CPU time requirements scale as N*/31log N.
The essential code describing ACA, which is presented in [61] is here reported with the

purpose of clarifying all the steps involved. Let’s start from the introduction of the
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matrix Z™*™ which ACA aims to approximate by the matrix:

r
Zan _ Umx-rVTrxn _ Z u;n)(lvzxn (4.16}
i=1

where r is the effective rank of the matrix Z and U, V are rectangular matrices coming

Z™X™ provides a good approximation for the

from its decomposition. To assure that
initial matrix, a test based on the error matriz R is adopted, meaning that for a given

tolerance £ it must hold:

IR = || zmxn — zmxn|| < ez (417)

where the norm symbol indicates the Frobenius one. Finally, to understand the passages
of the pseudo-code in algorithm 1, four more definitions have to be introduced, namely
I={L,...,I;} and J = {J1,...,Jr} which identify respectively orderly selected row
and column indexes of Z™X" w,, which is the kth column of U and v which is the kth
row of V. Therefore the ACA algorithm is described (adopting MATLAB(®) notation
for vectors and matrices) by the following steps: It is worth noting that the algorithm
requires only a partial knowledge of the original matrix, making this approach very
efficient. Finally, since each step inside the kth iteration contains a O(r(m + n))

operations and a total of r iterations have to be applied, the memory needed is O(r(m-+

n)) while the CPU time scales as O(r(m + n)).
We can then come back to (4.15), in order to check that the matrix A provides a

good approximation for A, the following inequality should be verified:

|4 - 4]

LB Y 4.18)
TA] (

where ¢ is an arbitrarily small parameter that should reflect the precision threshold the
operator desires. Thus, if the inequality is not verified, the number of stored singular
values should be increased and the check should be applied again to the outcoming

decomposition.

Now, the object of the analysis moves to the study of which blocks of the matrix can
be saved in memory in the “convenient” way described above. In particular, we aim to
determine which of the blocks of a matrix can be assumed to be low-rank. First, we can
make an intuitive assumption: considering the element i, it’s reasonable to hypothesize
that the ones associated with a close index (e.g. i+ 1) are also the ones close to i from a
geometrical point of view, i.e. the ones feeling strongest mutual interaction according to
formula (4.12). That’s why we can also expect to find the highest values of the matrix
along the diagonal blocks. However real situations almost always present a numeration
of the elements which does not accomplish this consideration, meaning that the distance
of the entries of the matrix A from the diagonal does not reflect the geometric distance

between elements in the space and e.g. the index 7 + 1 can be associated to an element
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Algorithm 1 ACA algorithm:

10:

11:

12:

13:

14:

15:

16:

Initialization:

. initialize the first row index: I; and set Z = 0;

initialize the first row of the approximate error matrix: R(Iy, ) =Z(11,:);
find the first column index .J; such that |R(I1, Jl}‘ = maxj(‘f{(fl,j)b;

v :fl(Il,:)/f{(Il,Jl);

. initialize the first column of the approximate error matrix: R(:, J;) = Z(:, J;);

- up = R(;, J1);

-2 ~ o |12
o] = o+ et

find the second row index I3 such that |fl(I2, J1}| = max;(|R(3, J1)|), ¢ # L;

kth iteration

update (Ix)th row of the approximate error matrix: R(Ig,:) = Z(Ix,:) —
St (W) v

find kth column index .J; such that |f{(1k,Jk)‘ = maxj(‘f{(fk,j) ), 7 F#
Ji, oo Je—1;

vie = R(I, 1) /R(Ix, Ji);

update (Jg)th column of the approximate error matrix: R(:,Jix) = Z(:, Jp) —
S (V) s

u, = R(:, Ji);

_ o2 - 2 B
|20 = |20+ 2528 [ we| - v vi| + el i

check convergence: if ||ug||||ve| < E”Z(k) , end iteration;

find the next row index Ip;; such that |]§~l(Ik+1,Jk}| = max.i(‘R(zf, Ji)
I,... I.

), it #
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(a) Original index set.

(b) Reordered index set.

Figure 4.2: Example of reordering of DOFs indices for an inductor with the bisection
algorithm.

which is far from the one associated to i. Hence a preprocessing operation aiming
to reorder the number of elements should be implemented before proceeding with the

identification of the low-rank blocks.

At the same time, thanks to such preprocessing, we can assure the diagonal blocks
of the matrix to be high-rank. Finally the preprocessing not only makes the analysis
much easier and faster, but it is fundamental in making the compression process work
because otherwise, it is not possible to identify a regular scheme in the position of the
entries of the matrix. Fig. 4.2 shows a detailed example of how a reordering process
reorganizes the numeration of DOFs. Intuitively, elements having similar color tones

are also associated with close indices.

Once the renumbering of the elements is performed, the purpose of the analysis is
to understand how the low-rank blocks should be saved. Hence we start implementing
a bisection algorithm so that the rows and the columns of the matrix are split into
two halves, I1 = {1,...,N/2}, I = {N/2,...,N} along the vertical direction and
Ji={1,...,N/2}, Jo = {N/2,...,N} along the horizontal one, so that a total of
four blocks are obtained. Moreover, the off-diagonal blocks, i.e., the ones which are
in principle low-rank, are the ones associated with the Cartesian product Is X J; and

I, X J5. It is worth noticing that calling e.g. M = I3 X J; the decomposition performed
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M =UVT (4.19)

provides two matrices having one of the dimensions whose number of elements is very
small, hence reducing the total cost for storing both of them. In some reference works
a matrix built as M is denoted as Rr-matrix and is considered as the main low-rank

structure of an H-matrix.

In principle, a subdivision of each single cluster can be iteratively performed until
the smallest block possible is obtained, i.e. the one constituted by a single entry of
the original matrix. Such a scheme is summarized in Fig. 4.3, where a tree structure is
obtained from the application of the bisection algorithm. The last step of the process

provides the leaves of the tree.

J=1{1,..,N}
z
" I X] Level 0 (root)
I J2 /\
I x]; Iy xJ; I, X J; I, x]J, Level 1
Ii1 %11 g XJi2 Ii2 % J11 Lz %[22 Level 2
Leaves

Figure 4.3: Example of the application of a bisection algorithm following a block-tree
decomposition for the subdivision of the original matrix.

We wish to find out at what level of the tree we can assume a block to be low-rank.
Let’s suppose to associate the subset I; or J; (i.e. a discrete subset of entries of the
original matrix, obtained at any iteration of the bisection process) with an element
coming from the discretization of the domain. Specifically, looking at Fig. 4.4, I;
represent the indices of geometric entries in {2, and J; represent the indices of geometric
entries in §0;. The admissibility criterion for low-rank matrices is based on the definition
of functions that evaluate the diameter of considered elements, i.e. the maximum
distance between points belonging to that element e.g., diaml;, diam.J;. Since such
points are all contained inside the cluster representing the element itself, the problem
can be expressed as a function of the cluster instead of the element. Moreover, we have
to introduce also the distance between elements, that is dist(/;, J;), which is considered

as the distance between the central points of the elements themselves. Finally, the
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above-mentioned criterion states:
min{diam(I;), diam(J;)} < ndist(l;, J;) (4.20)

where 7 is an arbitrary parameter that is chosen by the user and which defines “how
much” each block has to be low-rank. Such criterion should then be applied to each
block obtained from the cluster-tree subdivision. When a block does not satisfy it,
a further bisection of the block itself has to be performed. In this way, we ensure
the storage of more elements for blocks providing a greater contribution to the total
matrix, i.e. high-rank blocks. That’s the reason why diagonal blocks, in general, do not
satisfy the admissibility criterion at the first iterations: since they are the ones with the
highest rank, the user should want to store as many elements as possible from them,
trying to neglect as many as possible from off-diagonal ones. Obviously, as 7 increases,
the criterion is less restrictive and so it is easier for a block to accomplish it, making
the method store much fewer elements, but obtaining a less precise approximation of

the total matrix.

Figure 4.4: Graphical representation of the admissibility criterion between a source
element (2; and a target one €.

The method described until now is also known as Cluster Tree Partitioning because
of its structure based on progressive bisection of the elements along rows and columns.
In summary, the function implementing such method has a total of three main param-
eters which have to be defined by the user and which determine the order of accuracy
of the model. The first one is € which is needed to impose how much the approximated
matrix is different from the initial one. The second parameter is 7 and is related to the
admissibility criterion for knowing if a block has a low rank. The last one is the block
size the user wishes to have at the end of the process.

One final consideration regards the computation of the entries of the reduced matrix.
Indeed, if they were computed at the beginning of the process or during each iteration of
the cluster-tree subdivision, the computational cost would be dramatically increased.

On the other hand, following this reasoning, only the last step is dedicated to this
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process and it requires the definition of a simple function handle whose variables are
the indices of the source and of the target elements. This way the computational cost
is consistently reduced.

Many different libraries for the implementation of hierarchical matrices were writ-
ten for many different coding languages. Two important examples are HLIBpro and
Strumpack, which are both written using C and C++ but both provide a good in-
terface for MATLAB®) or Fortran. About MATLAB®) written libraries, the most
important one is hm-toolbox which computes H matrices adopting three different

approaches for the construction of the cluster-tree structure:

e hierarchically semi-separable or HSS, based on the idea of identifying low-interacting

terms inside each block;

e hierarchically off-diagonal low-rank or HODLR, based on the bisection only
of diagonal terms, while off-diagonal elements are assumed to have low mutual

interaction and so to have also low enough rank;

e hierarchically adaptive low-rank or HALR, very similar to HODLR but applying
the cluster tree subdivision to all the blocks, independently of their position inside
the matrix. They are more general than HODLR. because they can be applied to

any kind of matrix, independently of the way they were composed.

These methods will be adopted in the following section to perform numerical analysis
which aims to compare the differences in terms of memory and CPU time requirements
and in terms of the accuracy of the representation of the initial matrix. Some general
considerations that regard the H — matrixz approach involve the number of elements
of the final matrix, which scales no longer quadratically with the number of DOFs,
but it can be reduced to O(Nlog N). Another remarkable observation regards the
canonical operations for matrices. Indeed a whole new algebra for H-matrices needs
to be introduced. [62]. This way the summation between matrices, the matrix-vector
product, and the matrix inversion are still well defined. A brief theoretical discussion
about these algebraic operators is reported here. A more in-depth point of view can be
found in [63, 64].

First, we need to talk about the matrix-vector product involving an Rr-matrix,
suppose M = UVT. We aim to define an operator such that x — y := Mx. This
operation is simply split into two steps: the first computes a dummy vector z = V'x

while the second provides the searched result
y = Uz (4.21)

Secondly, the addition for Rr-matrices should be introduced. Hence, let’s consider
M; = UIVI and My = U2V;— . The summation is a R2r-matrix defined as:

M, + M, = [U; Uy][V; Vo T (4.22)
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In a similar way we can also define a formatted addition between two distinct Rur-
matrices and associated to the symbol & as the best approximation in both spectral
and Frobenius norm of their sum, meaning that it satisfies (4.18).

Finally, the last basic operation we need to define is the multiplication between an
Rr-matrix and a general one A. The solution is again an Rr-matrix and is obtained

by the succession of two following steps as before:

MA =UV'TA=UQA™V)T (4.23)
AM =AUV' = (AU)BT (4.24)

Once all the basic operations are defined for the low-rank clusters, we can extend
such considerations also to H-matrices. In fact an H-matrix is in general obtained from
sub-blocks which can be either represented as Rr-matrices or as leaves of the graph
which do not need specific structure, in the algorithms denoted as “unstructured”. We
proceed with the description of the same operations presented for the low-rank clusters
following an identical sequence, so the first one is the matrix-vector multiplication.
Let’s assume H to be an H-matrix and let’s define the set of the sons of a subset of
indices J as S(J). The matrix-vector product y := y + Hx is then defined by the
algorithm 2 which provides the searched product in each leaf of the block tree.

Algorithm 2 Matrix-vector product for H-matrix:

if S(JxI)#0
if J/ x I' e S(J x I)
MVM(H,J' x I x,y);
end
else

v|s :==y|s + H|sx1x|r (unstructured or Rr-matrix)
end

The addition operation requires instead the assumption of three different H-matrices,
H, HY, H® | such that the summation H := HV + H® is still an H-matrix with
block-wise rank 2r. Alternatively, if we need the formatted version seen above, the
formulation states H := H®) @ H® and the implementation is described in algorithm

3, where the formatted summation described for Rr-matrices was adopted.

Algorithm 3 Addition between H-matrices:

if S(JxI)#0
if J'xI'e S(J xI)
sum(I:I,J” x I', HD H®);
end
else
I:I|JXI = H(1)|JXI @ H(2)|ijx|; (unstructured or Rr-matrices)
end
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To introduce the multiplication between matrices we need again three distinct H-
matrices H, HY), H®). About the usual dot product (), the formulation H = H +
H® .H® is defined under moderate assumptions and it turns out to give again an H-
matrix with complexity O(rlog(/N)). On the other hand, about the formatted product,
the relative expression states H = H @ H()) ® H®). This operator is defined starting
from the formatted addition for Rr sub-blocks and is applied to three distinct cases:

° H} = H} @ H}: all the blocks are subdivided and the addition is performed
inside the sub-blocks;

. HH = D ® BE‘: the target matrix is subdivided and (at least) one of the factors
is not; then one of the factors has rank equal to the maximum between r and
the maximum rank of the leaves of the tree. The low-rank products have to be
computed adopting the multiplication between matrices defined for Rr blocks

and then it must be summed to the target matrix;

° D = BE‘ ® Hﬂ: the target matrix is not subdivided; then a specific algorithm

(5) must be implemented.

All these cases are summarized in algorithm 4, where K is assumed to be another subset
of indices just like J and I.

Algorithm 4 Multiplication between H-matrices:

if S(JXK)#0and S(K xI)#0
{Case 1: All matrices are subdivided :}
if J'eS(J),K'e S(K),I' e S(I)
MulAdd(H, J", K', I',HV H®);
end
ifS(JIxI)#0
{Case 2: Target matriz is subdivided :}
Compute H' := HW| 7, g H® | gy 1
Sum H’ to I:IIJXI
end

else

{Case 3: Target matriz is not subdivided :}
Follow algorithm 5

end

In any of the presented situations which can verify for the formatted multiplication
the order of complexity is O(Nr2log(N)2.

One further important operation which was not treated for Rr-matrices is necessary
to complete the outlining of the algebra for ‘H-matrix, i.e. the inversion of a 2 X 2 block
‘H-matrix. The stardar inverse can be computed when through the Schur complement
when the matrix is e.g. positive definite. About the formatted counterpart, the exact

sums and products are substituted by the respective formatted operators &, ® and the

algorithm 6 holds.
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Algorithm 5 MulAddRk for H-matrices:

if S(JXK)=0or S(KXxI)=0
Compute H' := H(1)|JXKH(2J|KXI
Sum H’ to H|jx (formatted addition)
end
it JJeS(J), I'e S(I)
Initialise H'|» = 0
if K' € S(K)
MulAdde(H’L}r,p,J’,K’,I’,H(l),H(2) (H'|j» r is smaller than H and
extended by zeros)
H:=H®) yesu) Xresa Hlixi

end

end

Algorithm 6 Inverse of 2 X 2 block ‘H-matrices:
it S(IxK)=10

Compute the exact inverse of H' := H™! (for small matrices)
else

{50 = 1,20, = 1y 1 [H0 B

Hy Hy
Invert (Y, Ji, [1H| 5, x1,)
S :=H22© (L21 © (Y ©® H12))
Invert (H|j,x15, J2,125) .
I:I|J1X11 =Y & (Y © (I—IIQM® (th xIy © (H21 © Y))))
Hlnxn =-Y © (Hi2 © H|j,x1,)
H|;,x, =Hi20(Ha10Y)

end
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One last fundamental operation which has to be defined in analogy with its counter-
part for the classic matricial algebra involves the LU factorization, which can be indeed
performed also for H-matrices. Such decomposition allows both to compute the direct
solution of linear systems through substitutions, as well as constructing an incomplete
preconditioner to speed up the resolution of the problem. The latter can be effectively
utilized in iterative solvers like the Generalized Minimal Residual (GMRES) method.

It can be observed that for each named operation the requirement in terms of
both CPU time and memory is consistently diminished when implemented for an H-
matrix concerning the corresponding dense matrix. The following section will be fully
dedicated to investigate these aspects.

In conclusion, a graphical example of the framework of an H-matrix obtained using
the HALR approach is represented in Fig.4.5. The red blocks represent fully-populated
non-admissible blocks, which need either to be further decoupled or to be stored with
a considerable number of elements since they are high-rank. Light green blocks, satisfy
the admissibility criterion and hence they can be assumed as low-rank blocks and they
can be stored using an exiguous number of entries. The integer value printed inside

each of them is the effective rank of the resulting decomposition (4.19).

10]11]10
150 a [12]10

a [10[12[11
200 10109

250

300

350

400

450
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Figure 4.5: Example of H-matrix pattern.

4.2.1 Numerical comparison of data-sparse representations

We want to analyze the behavior of the H-matrices generated by HSS, HODLR and
HALR methods. The example we will implement considers a sphere subjected to an
external magnetic induction field. The solution of the induced current over the surface

is solved by the magneto-quasistatic, i.e. by coupling the EFIE formulation with the
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null divergence of the electric current. The problem is described by the linear system:

Je Us
-9 2

where the resistance value is p = 1/5.6 - 107 and the unknowns of the problem are

R+iwL DT
D 0

the potentials ®. and the surface current DOF's j.. This test case was chosen since
the exact solution is known from the analytical point of view, as described in detail
in Section 3.6. In particular, this analysis is performed to verify if the adoption of
any of the H-matrix shows an overall convenience or less. The comparison is made
only between the analytical and the obtained current density. It is reported that the
total number of DOF's for j. is 4212 while for ®. is 2808. Hence the upper-left block
is 4212 x 4212, the lower-right block has dimension 2808 X 2808 and the off-diagonal
rectangular clusters have dimension D = 2808 x 4212. The total time needed for the
computation of the exact solution using the dense matrix and the simple backslash
solver is = 225 seconds.

First, the necessary preprocessing involving the reordering of the DOF's is performed
as described in the previous section. The result of such a procedure is summarized in
Fig.4.6. Such reordering has to be implemented for each block L, R and D, indepen-
dently of their properties.

DoF index before reordering DoF index after reordering

Figure 4.6: Preprocessing of reordering of DOF's for the examined problem.

The second step considers the computation of the H-matrix for L. adopting each
method named in the first paragraph. We focus on such block since both R and D turn

out to be very sparse so the compression is not needed. Furthermore, it is worth noting
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that in general, it is much inconvenient to compute the full dense matrix and then to
compress it. Such an approach is here adopted only because the size of the problem is
particularly small and we aim to analyze a problem whose analytical solution is well
known. Indeed, as we have highlighted in the previous section, only the last step of the
construction of an H-matrix is dedicated to the computation of the entries from a given
function handle, and we do not start from a pre-constructed dense matrix. The lines of
code for calling each type of method belonging to the hm-toolbox are reported in the

Algorithm 7. Indeed, many different ways for calling each method are implemented in

Algorithm 7 H-matrix call:
HL = hss(L);

HL = hodlr("handle’, A fun, M, N);

HL = halr("handle’, A fun, M, N, cluster’, . . .);

the hm-toolbox. They are based on the knowledge we have about the original matrix
(e.g. if it is symmetric or less if its entries can be expressed by a Cauchy distribution...)
and on the characteristics we want to impose on the final H-matrix (e.g. its maximum
or minimum dimensions). Furthermore, we always could define the cluster structure
that has to be followed, otherwise, the default one is assumed by the software. In our
case, HODLR and HALR exploit the definition of a handle function A fun to construct
the final matrix by the ACA strategy. M, N are the number of rows and columns
of the initial matrix. In the particular case of HALR, the cluster structure is also
specified as an input of the function. About the HSS, it is implemented using the
standard call of the hm-toolbox after the proper reordering of the entries of L. Let’s
note once again that the structure implemented for the HSS method is never used in a
practical context since it would require the full structure of the dense matrix. However,
because of the impossibility of adopting the same structure as the other two methods,
this analysis is performed for the sake of completeness. Finally, for each method, four
additional options should be properly introduced. The first one consists of the definition
of the sizes of the reduced blocks. The second one requires a threshold for off-diagonal
truncation and we arbitrarily assume it as equal to 10™°. The third one consists in the
definition of the adopted compression method which can be either the QR factorization
or the SVD one; for the solution of our test case, we opt for the latter one. Finally, the
fourth option asks for the definition of the norm for the truncation, which in our case
coincides with the Frobenius one.

As anticipated in the theoretical section, a completely new algebra should be defined
for H-matrices, and this case is no different. The solution of the linear problem is
computed thanks to the application of the GMRES method (whose input will be briefly
introduced later), after a proper introduction of a new kind of matrix-vector product.

It can be proved that the matrix-vector product is indeed much faster if it involves
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Figure 4.7: Cluster final structure for matrix L. In this representation the number
printed inside each block is not related to their effective rank r, indeed only the shape
of the blocks partition is important for the clustering.

a matrix obtained after the compression proceeds. However, the operations defined
for the new algebra require, as for the canonical one, the matching of the sizes of the
tensorial quantities involved. As a consequence, a proper product rule is introduced,
which is based on the multiplication of matrices and vectors block-by-block.

About the results obtained from the application of the methods, we can observe
that the compression of the matrix L of dimension 4212 X 4212 provides leaves having
a minimum dimension equal to 16 entries of the original matrix, while the maximum di-
mension corresponds to 17 of them. The cluster structure obtained from such reasoning
is presented in Fig. 4.7. Here, the squares identified with a zero are intuitively assumed
as total zero blocks. Blue-filled squares are instead considered high-rank blocks and
saved with a proper number of entries.

Before solving the system with the reduced block L, a preconditioner is implemented
for the total matrix, aiming to make the computation of the solution much faster. In
particular, it was verified that a preconditioner based on the LU factorization of the
Schur complement of the block matrix is the most effective. In this specific case, such

a factor assumes the form:
S=-DR+iwL)'DT (4.26)

One further simplification was implemented by considering the components in brack-
ets: if we can hypothesize that the main contributions for HL. and R are disposed along
the diagonal, we can also suppose to identify both of them with their respective diag-

onal. In this way, we can refer to the whole upper-right block with a simple vector,
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Method HSS HODLR | HALR
Compression [%)] 21.81 49.94 92.23
Compression time [s] 52.73 19.33 10.40
Solution time|[s] 4.16 2.45 1.24
Relative error [%] | 48-107%1|4.8-107%| 1.05

Table 4.1: Comparison of memory saved and CPU time gained adopting computation
of H-matrix and solution of the problem with the reduced matrix.

which does not require a huge quantity of memory to be stored, even for big-size prob-
lems. Furthermore, this operation makes the computation of the inverse much easier
and faster. Omne further consideration that is taken into account before proceeding
with the resolution of the problem regards the fact that the incidence matrix D is in
general composed of linearly dependent rows and columns. To solve this issue, one
potential is removed from the right-hand side vector described in (4.28). At the same
time also a row of the incidence matrix itself is deleted to avoid the singularity which
otherwise would characterize the total matrix. The solution to the problem is com-
puted by adopting the GMRES solver implemented with a tolerance of 107, 80 inner
iterations/restart iterations, and a total maximum of iterations equal to 20. Two more
inputs are given by the matrix expressing the problem, which is obtained from the
vector-product multiplication block-by-block involving the four main clusters, and by
the preconditioner.

The final results are summarized in table 4.1. The percentage of compression of the

L block is computed as:

size(HL)

compression ratio = (1 —
and we can deduce that it is increasing from 0 to 99% as the number of entries of the
cluster diminishes. About the relative error committed in estimating the solution by

solving the system with HL, the formulation which describes its value is:

_ ||X - Xemact”

||Xemct||

€re (4.28)
where x is the total solution of the system, but we focus in particular on the current
term J.. Again, we can notice that its value lies inside the range [0 —99]% (0 associated
with the exact analytical solution, and increasing as we move away from it). Finally, the
times reported in table 4.1 is computed adopting the function “tic-toc” of MATLAB®).
At first sight, it is immediately noticed that each method requires a total CPU time
(sum of the one for the compression of L and the one for solving the system) which
is remarkably lower than the one required for solving the fully dense system. This
convenience is also stressed by observing that the relative error concerning the analytical

solution is very small (at most ~ 1%) despite the reduction of the number of stored
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Method HSS HODLR
Threshold (g) 1077 10~° 1073 1077 10~° 1073
Compression [%] 51.87 74.00 89.10 59.75 73.56 82.15
Compression time [s] 32.52 17.77 8.83 11.60 2.47 1.70
Solution time [s] 2.24 1.01 0.42 1.88 1.26 0.76
Relative error [%] 48-107% | 14-10° [ 1.9-107" | 48-107* | 1.1-107° | 8.7-10"

Table 4.2: Comparison between methods adopting different values for the thresholds.

entries. If we analyze in more detail in table 4.1, we can notice that the most efficient
method turns out to be the HALR. Indeed, once we adopted the same threshold for
the cluster-tree decomposition, such an approach provides a much more consistent
compression of matrix L, also requiring less time to perform both the compression and
the computation of the solution of the linear system. That’s why, supposing 1.05%
a sufficiently small relative error, we can state that HALR offers in general the best
performances.

It is then reasonable to ask how much the threshold impacts this analysis. Therefore
one more analysis is carried out, varying both HSS and HODLR. thresholds in the range
[1077 — 1073] to try to come closer to the order of compression of HALR. The results
are summarized inside table 4.2. As we could expect from the theoretical analysis of
the H-matrices in the previous section, when we increase the value of the threshold
we also allow the ratio in (4.18) to be larger, and then approximation matrix to verify
It directly follows why the

total percentage of compression increases as we increment the threshold. It is also

the inequality even storing a lower number of entries.

interesting to notice that the order of increment of the percentage of compression for
the HSS is greater than the one of the HODLR, at the expense of the CPU time needed
for computing both the compression of the matrix and the solution of the problem.
Finally, it is immediate to deduce that, as we increase the order of the approximation
of L, we also increase the error in estimating the analytical solution. Therefore, despite
the certain advantage that the implementation of an H-matrix provides, it is necessary
to find a compromise between the memory and the CPU time saved by adopting any
of the presented methods, and the total committed error, compatibly with the required
degree of precision one desires. This section then works as an investigation of the
various possibilities that could be adopted, with their respective pros and cons.

Some final considerations regard the implementation of some alternative techniques
which are discussed for completeness only from the theoretical point of view and will
not be considered in the following numerical analysis. First, about the adopted precon-
ditioner, many different - and possibly more efficient than the LU factorization - ones
could be adopted. It’s e.g. the case of the Algebraic Multigrid preconditioner (AMG)
[65, 66]. Introduced at the start of the '80s, during the years the AMG was improved
many times, to search for a way to make it as “scalable” as possible. This adjective is
associated with methods whose required time for solving a problem remains essentially

constant with the increment of both the problem size and the computing resources.



4.2. HIERACHICAL MATRICES 67

Nowadays AMG provides a very fast alternative among all the preconditioners. Differ-
ently from standard Multigrid methods for which the central idea is to make the relative
error as small as possible by refinement of the grid, the AMG constructs the reduced
matrix only using information about from the original matrix.

Another interesting consideration regards the application of the H-matrices ap-
proach itself. In principle, it would have been possible to consider the whole matrix
summarizing the problem as the input for any of the methods assumed from the hm-
toolbox. Such proceed would have dramatically reduced the total time for the com-
putation of the solution thanks to the definition of the new algebra, specifically the
LU decomposition. Nevertheless, the compression through H-matrix technique of the
whole 2 X 2 total matrix would have sparsified blocks that were already sparse, thus
reducing the effectiveness of the reduction method. Since the analyzed problem is small
and the compression of the only L-block is assumed to be overall convenient in terms

of CPU time required, this approach was then avoided.
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Chapter 5

Conclusions

This thesis work had the main scope to investigate the advantages of the application
of Integral Equations, with specific attention to Surface ones, concerning the classic
Finite Element Method. After a suitable introduction of all the tools we needed, a
theoretical description concerning how to solve the problem was given, stressing the
pros and cons of this technique. Then, many different semi-analytical approaches were
introduced to provide some useful and different tools to solve the theoretical issues
related to the singularities appearing in the formulation of the problem. These methods
were first tested against a classic fully numeric approach based on the definition of an

increasing number of Gauss points.

The most recent technique that was implemented regarded the Modified Line In-
tegral method, which showed its effectiveness in approximating the exact results. In
particular, this method turned out to be an optimal alternative to fully numeric ap-
proaches, which otherwise require a huge number of quadrature points to reach a sat-
isfying approximation degree concerning the exact solution, making the computation
load too heavy. The results computed with the Modified Line Integral method were
tested against the solution of a PEC sphere subjected to a specific electric field. Such a
test case is well known from the state of the art since the RCS solution of a PEC sphere
is known analytically. It was observed that such a semi-analytic method replicates very
well the behavior of the exact solution. However, it was also noticed that the problem
expressed in terms of Surface Integral FEquations should be properly addressed if we

want to keep bounded the load for solving it.

Last, a section fully dedicated to the acceleration of integral equations was reported.
Here, different methods for the compression of dense matrices were described from the
theoretical point of view. The core of such a section is the discussion of Hierarchical
matrices, with the definition of a proper new algebra associated with them. To ver-
ify the effectiveness of such a method, the final part of the section was dedicated to
its implementation through different codes. In particular, it was observed how, inde-
pendently of the adopted code, the initial dense matrix was reduced to a sparse one.

Furthermore, it was also stressed how the total CPU time required for solving a simple

69
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small-size problem was consistently reduced.

We can conclude that the application of well-addressed and properly accelerated
Surface Integral Equations constitutes an optimal alternative - if not the best option -
for solving some specific electromagnetic problems, such as the aforementioned open-
boundary problems or related to conductors subjected to marked skin effect which

verifies at very high frequencies.
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