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Introduction

The precise determination of the bb̄ pair-production asymmetry is important not only as a test of the
Standard Model of Particle Physics but also to investigate possible sources of New Physics. At the
LHCb experiment, that takes data at the LHC proton-proton collider at CERN, where b-quarks are
copiously produced, the Forward-Central asymmetry in the bb̄ pair-production, AFC

bb̄
, has been mea-

sured at the center of mass energy of
√
s = 7 TeV. The result is consistent with the Standard Model

expectation within the experimental error. However, additional measurements of such an observable
need to be performed at higher energies and with an increased number of events, in order to reduce the
uncertainties and to put constraints on New Physics models. The final uncertainty on AFC

bb̄
is strongly

related to the ability of identifying the flavor (u,d,s vs c vs b) and the charge (b vs b̄) of the quark
producing the jet in the detector (jet tagging). At the LHCb experiment, jet tagging exploits the
excellent capability of the detector to precise reconstruct vertices displaced with respect to the inter-
action point, which allow to distinguish the long-lived heavy quarks from light quarks jets. A standard
technique, called Muon Tagging, performs charge tagging by exploiting the charge correlation between
the b-quark and the muon produced in the semi-leptonic decay. However, the small branching ratio of
this decay strongly limits the efficiency of the algorithm. For this reason other inclusive algorithms,
based on Machine Learning techniques, are being developed, which aim to exploit the full jet particles
substructure.
In this thesis, I present new approaches to the charge tagging of b-jets, based on Quantum Machine
Learning techniques: as a general paradigm, data are embedded in a quantum circuit through a quan-
tum feature map; then the initial state gets processed by a variational quantum circuit with trainable
parametrized gates; finally, measurements of observables on the final state are mapped to a binary
classification label (b-jet or b̄-jet). The models are trained on official LHCb simulated data (

√
s = 13

TeV) and the tagging performance is compared with the Muon Tagging algorithm and a classical Deep
Neural Network model.
Finally, the precision on the Forward-Central asymmetry, AFC

bb̄
, is evaluated applying the different

tagging algorithms on a sample of simulated data corresponding to the integrated luminosity 6 fb−1

of the Run2.

The results of this brand new technique are presented and discussed in this thesis, which is struc-
tured as follows:

• Chapter 1: a brief overview of the quark sector of the Standard Model (SM), the Electroweak
theory and of the Quantum Chromodynamics is given. The b-quark production mechanisms at
colliders are presented as well as the hadronization process, that generates jets. Then, the origin
of the asymmetries of heavy quarks production withing the SM and their relationship with New
Physics are discussed. Finally, the state of the art of the measurements of bb̄ pair-production
asymmetries at colliders is presented.

• Chapter 2: the LHCb experiment is presented. I start describing the LHC accelerator facility,
then I describe the LHCb detector and its sub-systems. Then, the jets reconstruction algorithm is
described. I conclude with the discussion of the problem of jet identification: standard algorithms
for flavor and charge tagging of b-jets are described.

• Chapter 3: this chapter introduces the concept of quantum computations. In the first place,
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I give a theoretical overview of the qubit and entanglement concepts. Then, I introduce quan-
tum circuits, defined as collection of linked quantum gates. After a brief introduction to the
concepts of Supervised Machine Learning, I introduce the topic of Quantum Machine Learning:
Parametrized Quantum Circuits are defined and proposed as Machine Learning models.

• Chapter 4: I describe how I propose to solve the charge tagging problem, encoding it into a
Quantum Machine Learning model. I explain how I chose the data-set used for the analysis in
terms of variables and selections. Then, I discuss in details several quantum models, including the
software implementation which makes intensive use of the Python libraries Pennylane, PyTorch
and Tensorflow. A classical model, based on a Deep Neural Network, is also presented and
used as a reference. Finally, the performance of my implementation of the quantum models is
evaluated and compared to the Deep Neural Network and the classical Muon Tagging algorithm.

• Chapter 5: here, I measure the Forward-Central bb̄ pair-production asymmetry on Monte Carlo
simulated data, by using the algorithms discussed in Chapter 4. I present the method I chose
to check if biases are introduced by the tagging methods. Then I compute the asymmetry using
the taggers I implemented. The performance of the quantum models is compared with the
those of the Muon Tagging and the Deep Neural Network models by comparing the statistical
uncertainties achieved.

• Chapter 6: in the last chapter, a summary of the results I obtained on the asymmetry accuracy
is presented and some final consideration on the Quantum Machine Learning approach to the
b-tagging problem are made. Moreover, I discuss my ideas on the current state of the art of this
technique, including limits, advantages a possible perspectives. Finally, I conclude with what
I learnt on the feasibility of Quantum Machine Learning tasks, involving large and complex
data-sets, and the actual usage of the current quantum hardware in the near future.
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1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

which are the only colour-charged fermions in the particle content of the SM. The QCD Lagrangian
density is the following

L = −1

4

8
∑︂

i=1

F i µνF i
µν +

nf
∑︂

j=1

qj̄(iDµγ
µ −mj)qj

where qj are quarks of nf = 6 different flavor with masses mj . The covariant derivative Dµ encodes

the interactions between quarks qi and gluons gjµ

Dµ = ∂µ + ies

8
∑︂

j=1

tjgjµ

where tj are the generator of the SU(3) group in the triplet representation of quarks. The commutation
algebra is [ti, tj ] = iCijkt

k, where Cijk are the completely anti-symmetric structure constants of the
SU(3) algebra. The interaction is weighted by es, that is the gauge coupling of the strong interaction,
and in analogy with the QED, we can define αs = e2s/4π.
The kinetic terms of the gauge vector bosons are defined as follow

F i
µν = ∂µg

i
ν − ∂νg

i
µ − esCijk g

j
µg

k
ν

The non-abelian structure of the SU(3) group results in three-gluons and four-gluons vertices.

Confinement The property that no colored particle is observed is called confinement. More pre-
cisely, only particles which are colorless or color singlets can be observed. This peculiar behaviour of
the QCD has been studied by mean of lattice QCD methods [70], which showed, for example, that
the effective potential of a q̄q system has the following form, known as the Cornel’s potential [31]

Vq̄q ∝
αs(r)

r
+ ...+ σr

The linearly increasing term of the potential makes energetically impossible to separate the two quarks.
For example, if the two quarks are produced in the same point in the space-time, like in a proton-
proton collision, in the center-of-mass frame, they start moving away from each other. At some point,
it becomes energetically favorable to extract pairs of quarks from the sea which neutralize the color
charge and allow the detection of the initial two quarks as a jet of colorless hadrons. This process is
called hadronization.

1.1.2 Electroweak theory

The Electroweak (EW) theory [39, 63, 71] provides a unified description of the electromagnetic and
weak interactions as a manifestation of the same force. It is built upon the gauge group GEW =
SU(2)L

⨂︁

U(1)Y . Contrary to the QED case, in which the U(1)EM current couples to fermions
independently from the chirality, the SU(2)L current only couples to left-handed fermions (and right-
handed anti-fermions), defined as follows

ψL = PLψ =
1 + γ5

2
ψ ψR = PRψ =

1− γ5

2
ψ ψ = ψL + ψR

Where PL and PR are, respectively, the left and right projector operators acting on Dirac spinor fields.
The Lagrangian of the EW theory can be expressed as

LEW = Lgauge + LHiggs

Lgauge is the Lagrangian associated to the Yang-Mills theory over the GEW group

Lgauge =− 1

4

3
∑︂

i=1

F i µνF i
µν −

1

4
BµνBµν+

q̄Liγ
µDµqL + l̄Liγ

µDµlL+

ūRiγ
µDµuR + d̄Riγ

µDµdR+

ēRiγ
µDµeR + ν̄Riγ

µDµνR

4



CHAPTER 1. THEORETICAL INTRODUCTION

In this case we have

Bµν = ∂µBν − ∂νBµ W i
µν = ∂µW

i
ν − ∂νW

i
µ − gϵijkW

j
µW

k
ν

Where Bµ is the vector boson associated to the generator of U(1)Y abelian symmetry group, therefore
Bµν does not contain self-interaction terms, while W i

µ are three vector bosons associated with the
SU(2)L non-abelian symmetry group, therefore having a self-interaction term weighted by the SU(2)L
coupling constant g and by the completely anti-symmetric tensor ϵijk. The two fermionic chiralities
behave differently under the GEW group: the left-handed fermions behave like SU(2) doublets

lL =

(︃

e
νe

)︃

L

,

(︃

µ
νµ

)︃

L

,

(︃

τ
ντ

)︃

L

qL =

(︃

u
d

)︃

L

,

(︃

s
c

)︃

L

,

(︃

t
b

)︃

L

while the right-handed fermions behave like SU(2) singlets

uR = uR, sR, tR dR = dR, cR, bR eR = eR, µR, τR νR = νeR, ν
µ
R, ν

τ
R

Finally, the covariant derivative is given by

Dµ = ∂µ + ig

3
∑︂

i=1

tiW i
µ +

1

2
ig′Bµ

where ti are the generator of SU(2)L, obeying the commutation relations [ti, tj ] = iϵijktk and g′ is the
U(1)Y coupling constant.

Yang-Mills gauge theories introduce massless gauge bosons associated to generators of the symmetry
group, as mediators of the interaction. However, experimentally, the weak interaction appears to be
short-ranged (that suggests a massive mediator) while the electromagnetic interaction appears to be
long-ranged, mediated by the massless photon. This issue is solved by the Higgs mechanism [32]: the
Higgs sector of the Lagrangian LHiggs, is defined as

LHiggs = (DµΦ)
†(DµΦ)− V (Φ†Φ)

Φ =
1√
2

(︃

ϕ1 + iϕ2
ϕ3 + iϕ4

)︃

Φ is a complex scalar field, behaving as an SU(2)L doublet, which induces a Spontaneous Symmetry
Breaking (SSB) of the GEW group

Φ =
1√
2

(︃

ϕ1 + iϕ2
ϕ3 + iϕ4

)︃

−→ ΦSSB =
1√
2

(︃

0
v +H

)︃

GEW = SU(2)L ⊗ U(1)Y −→ GSSB
EW = U(1)Q

where U(1)Q is the symmetry group associated to the electromagnetic charge, which is left unbroken
by the SSB: the massless vector boson associated to this residual symmetry is the photon Aµ, while
the other vector bosons acquire masses proportional to the vacuum expectation value v of the Higgs
field. The exact relations between the initial gauge bosons and the EW bosons are the following

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ) mW =

1

2
vg

Zµ = cos θW W 3
µ − sin θW Bµ mZ =

1

2
v
√︁

g2 + g′2

Aµ = sin θW W 3
µ + cos θW Bµ mA = 0

where θW is the Weinberg angle, related to the coupling constants by the following relations

sin θW =
g

√︁

g2 + g′2
cos θW =

g′
√︁

g2 + g′2

5









CHAPTER 1. THEORETICAL INTRODUCTION

heavy quarks at leptons colliders at the Z0 resonance have allowed to put important constraints on
EW coupling in the heavy flavor sector of the SM. Analogously, hadron colliders allow for differential
measurements of the same observables in extended range of invariant mass of the produced quarks
system, giving the possibility to search for new physics also in the strong coupling of heavy flavors.

A brief overview of the measurement of bb̄ pair-production asymmetries at high-energy colliders is
now provided.

1.4.1 bb̄ asymmetry measurement at e+e− colliders

In the SM, the Z0 boson couples to both left- and right-handed chiral states with different strengths
depending on the weak-isospin and the electromagnetic charge. The vector and axial-vector Z0 cou-
plings for a fermion f are

vf = If3 − 2Qf sin2 θW af = If3

where If3 is the third component of the weak isospin of the fermion f and Qf its charge, while θW
is the Weinberg angle. The mixed Z0 vector and axial-couplings induce asymmetries in the angular
distributions of fermions produced in e+e− → ff̄ processes. In the case of b-quarks, the Born level
differential cross-section of the process e+e− → Z/γ → bb̄, summed over the final-state helicities,
assuming an unpolarized positron beam but allowing a polarization Pe of the electron beam, taken
positive for right-handed beam helicity and negative for left, is

dσbb̄
d cos θ

=
3

8
σtotbb̄

[︁

(1− PeAe)(1 + cos2 θ) + 2(Ae − Pe)Ab

]︁

(1.2)

where σtot
bb̄

is the total bb̄ production cross-section, while Ab and Af are called asymmetry parameters
and incorporate the dependence on the fermion couplings

Af = 2
vf/af

1 + (vf/af )2

Designating the integrals of 1.2 over the forward and backward hemispheres with subscripts F and B,
and cross-section for right and left electron helicities with subscripts R and L, two basic asymmetries
can be measured

Abb̄
FB =

σF − σB
σF + σC

∝ AeAb (Forward-Backward asymmetry) (1.3)

Abb̄
FBLR =

1

|Pe|
(σF − σB)L − (σF − σB)R
(σF − σB)L + (σF − σB)R

∝ Ab (Forward-Backward Left-Right asymmetry) (1.4)

The SLD experiment at SLAC has used polarized e+e− beams at the Z0 resonance to measure forward-
backward-left-right asymmetry Abb̄

FBLR as a function of the polar angle θ formed by the b-quark with
respect to the beam-axis

Abb̄
FBLR(cos θ) = |Pe|Ab

2 cos θ

1 + cos2 θ

A fit of experimental data allows the extraction of the asymmetry parameter Ab

Ab (SLD) = 0.923± 0.020

This result is consistent with SM predictions obtained by the EW fit [60].

On the other hand, the ALEPH, DELPHI, OPAL and L3 experiments at LEP used unpolarized
e+e− beams at the Z0 resonance to measure the forward-backward asymmetry Abb̄

FB as a function of
of the polar angle θ

Abb̄
FB(cos θ) = AeAb

2 cos θ

1 + cos2 θ

9



1.4. B-QUARK PAIR-PRODUCTION ASYMMETRY

The combined result of the four experiments is the following

Abb̄
FB (LEP) = 0.0992± 0.0016

This value shows a large discrepancy of 2.8σ with respect to the theoretical prediction, obtained from
the EW fit Abb̄

FB|th = 0.1037± 0.0008 [60].

1.4.2 bb̄ asymmetry measurement at pp̄ colliders

The production of b-quark pairs at hadron colliders is much more complex compared to e+e− colliders.
The two main SM strong pair-production processes are qq̄ → bb̄ and gg → bb̄, neither of which induce an
asymmetry at LO. However, when higher-order corrections are included, several sources of asymmetry
appear. Near the Z0-pole, the main contribution to the asymmetry is given by Z0-bosons decaying
to a b-quark pair Z0 → bb̄. The production of a Z0-boson in pp̄ collisions can occur at LO via
the annihilation of a valence quark of the proton with a valence anti-quark of the anti-proton: the
direction of the quark and of the anti-quark pair in the initial state are always known and coincide
with the proton direction and the anti-proton direction respectively. Therefore, assuming “forward”
the direction of the proton and “backward” the direction of the anti-proton, pp̄ colliders are able to
measure the forward-backward asymmetry of the bb̄ pair-production, counting the number of event
where the quantity ∆y is positive and negative

Abb̄
FB =

N(∆y > 0)−N(∆y < 0)

N(∆y > 0) +N(∆y < 0)

where ∆y = yb − yb̄ is the difference between the rapidity of the two b-quarks. The rapidity of a
particle with four-momentum (E,p) is defined as

y =
1

2
ln
E + pz
E − pz

where E is the energy of the particle, while pz is the component of three-momentum along the beam
direction, assuming positive the versus of the proton beam. In the ultra-relativistic limit where the
quark 3-momentum p is much larger than its mass mb, the rapidity can be related to the polar angle
between the particle and the beam axis θ, through the pseudo-rapidity η

y
|p|≫mb≈ − ln tan

θ

2
= η

The CDF experiment at Tevatron has performed a measurement of the Abb̄
FB produced at pp̄ collisions

at the center of mass energy of
√
s = 1.96TeV, in a low invariant mass region (including the Z0-peak)

[20] and in a high invariant mass region [4], with the following result

Ab
FB (CDF low mass) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0.83± 0.83%, 40 < mbb̄ < 75GeV/c2

1.54± 0.73%, 75 < mbb̄ < 95GeV/c2

0.92± 0.87%, 95 < mbb̄ < 130GeV/c2

2.08± 1.10%, mbb̄ > 130GeV/c2

Ab
FB (CDF high mass) =

⎧

⎪

⎨

⎪

⎩

−6.6+9.4
−9.7%, 150 < mbb̄ < 225GeV/c2

−7.4+8.7
−8.9%, 225 < mbb̄ < 325GeV/c2

−6.1+15.3
−11.7%, 325 < mbb̄ < 1960GeV/c2

A similar measurement has been performed at the D∅ experiment, measuring the inclusive production
asymmetry of the B± mesons (which is sensitive to Ab

FB) [5], with the following result

AB±

FB (D∅) = −0.24± 0.41 (stat)± 0.17 (syst)%

The computation of SM theoretical prediction is far more complex than the e+e− case and involves
the inclusion of NLO contributions, especially far from the Z0-pole.
The comparison between the experimental results and the theoretical predictions provided by C.W.
Murphy [54] has shown that while CDF measurements are compatible with SM predictions, D∅

estimation shows a ≈ 3σ discrepancy.

10
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1.4.3 bb̄ asymmetry measurement at pp colliders

The production of bb̄-quark pairs at pp colliders is similar to the pp̄ case. However, in this case, the
Z-boson production via quark anti-quark annihilation need for an anti-quark to be extracted from
the quark sea and since the initial state of the collision is symmetric, it is not possible to know which
of the two proton is providing the valence quark and which is extracting the sea anti-quark. As a
consequence, “forward” and “backward” directions cannot be unambiguously defined and therefore
Ab

FB cannot be measured. Anyway, the forward-central bb̄ pair-production asymmetry, which probes
angular asymmetries between the central and the forward regions, can be measured counting the
number of events where the quantity ∆|y| is positive and negative

Abb̄
FC =

N(∆|y| > 0)−N(∆|y| < 0)

N(∆|y| > 0) +N(∆|y| < 0)

where ∆|y| = |yb|−|yb̄| is the difference between the absolute value of the rapidity of the two b-quarks.

The LHCb experiment at LHC has performed a measurement of Abb̄
FC in pp collisions, using 1 fb−1

acquired at the center of mass energy of
√
s = 7 TeV, in three invariant mass bins, producing the

following results [2]

Abb̄
FC (LHCb) =

⎧

⎪

⎨

⎪

⎩

0.4± 0.4 (stat)± 0.3 (syst)%, 40 < mbb̄ < 75GeV/c2

2.0± 0.9 (stat)± 0.6 (syst)%, 75 < mbb̄ < 105GeV/c2

1.6± 1.7 (stat)± 0.6 (syst)%, mbb̄ > 105GeV/c2

Within the experimental uncertainties, results are compatible with SM predictions[54], in particular
the asymmetry in the high invariant-mass region is also consistent with 0.

1.4.4 New Physics in b-quark asymmetry

The study of b-quark production asymmetries at lepton and hadron colliders is, up to now, a great
channel for the search of New Physics in the heavy flavor sector of the SM. Deviations from SM
predictions, observed at LEP and D∅ are yet to be fully explained: it is not clear if they are caused
by statistical fluctuations and/or by inaccurate theoretical predictions of the observables or, instead,
if new processes beyond the SM are at play.
Several models extending the SM have been proposed to solve the discrepancies:

• A new scalar boson interfering at tree level with the EW bosons exchange (Figure 1.3a) and the
gluon exchange (Figure 1.3b) [14].

• A composite Higgs model, where the EW gauge group is broken by new strong interactions [9].

• Light axigluon as a mediator of a chiral color theory that splits the SU(3) group of QCD into
left and right part SU(3)L

⨂︁

SU(3)R [45].

More accurate measurements of the b-quark pair-production asymmetry are required to properly
disentangle possible new physics processes from statistical fluctuations: in particular, a differential
measurement in finer bins of invariant mass of the two quark system could help to get insights near
the Z0-peak region, where the LO EW contribution to the asymmetry is dominant, as well as at high
invariant masses where QCD NLO contributions represent the only source of asymmetry predicted by
the SM.
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Chapter 2

The LHCb experiment and jet
identification

2.1 The Large Hadron Collider

The Large Hadron Collider [33] consists of a circular accelerator around 27 km long, located 100 m
underground at the CERN.
Inside LHC, two counter-rotating proton or heavy-ion beams circulate into two separate beam pipes
where hard-vacuum has been obtained: the two pipes intersect in four interaction points where
detectors are located. Protons are produced ionizing hydrogen atoms and go through several pre-
acceleration stages before entering LHC (see Figure 2.1): the first acceleration stage, up to 50 MeV,
is provided by the Linear accelerator (Linac). Then they get successively accelerated by the Proton
Synchrotron Booster (PSB), up to 1.4 GeV, by the Proton Synchrotron (PS), up to 28 GeV, and by
the Super Proton Synchrotron (SPS), up to 450 GeV. Finally, they get injected into the LHC where
each of the two beam can reach the final energy of ≈ 7TeV, consequently reaching a center of mass
energy at the collision of

√
s ≈ 14TeV. Protons are accelerated by mean of 16 radio-frequency (RF)

cavities located inside 4 cylindrical refrigerators, working in superconducting regime.
The beams are not continuous: they are made of bunches of ≈ 1011 protons, around 30 cm long and
with a transverse dimension of the order of 1 mm which gets squeezed to around 16 µm at the collision
points. In the nominal configuration, each beam contains 2808 bunches, spaced by around 25 ns each
other, reaching a collision frequency of 40 MHz and a peak luminosity of L = 2× 1034 cm2 s−1.
The four main experiments are located at the four collision points of LHC: ATLAS (A Toroidal
LHC ApparatuS)[23] and CMS (Compact Muon Solenoid)[24] are the two General Purpose Detectors,
designed with a cylindrical structure around the collision point. ALICE (A Lead Ions Collision Exper-
iment)[22] is dedicated to the study of phases of matter where quark and gluons are free, in heavy ions
collisions. Finally, LHCb, which is devoted to the study of b- and c-quarks properties in the forward
region of the collision.

2.2 The LHCb detector

LHCb[25] is a single-arm spectrometer with a forward angular coverage from approximately 10 mrad
to 300 (250) mrad in the bending (non-bending) plane: this corresponds to a pseudo-rapidity1 coverage
between 1.8 and 4.9. The LHCb detector is composed of several sub-detectors. Its layout is presented
in Figure 2.2. The standard LHCb coordinates system is the one with the z-axis parallel to the beam
direction and the y-axis parallel and opposite to the gravitational acceleration; the x-axis is orthogonal
to the yz-plane, forming a right-handed system. The main sub-detectors are now listed, starting from
the interaction point:

1The pseudo-rapidity is defined as η = − ln tan θ
2
, where θ is the polar angle formed by the particle momentum and

the beam axis.
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Figure 2.1: Schematic representation of accelerator facilities at CERN

• a VErtex LOcator (VELO) system located close to the interaction point;

• a system of four tracking stations: one called Trigger Tracker (TT) is located upstream of the
magnet, while the other three (T1, T2 and T3) are located downstream of the magnet;

• two Ring Imaging Cherenkov (RICH) detectors located one upstream and one downstream of
the magnet, that are used for particle identification, in particular to achieve a good pions versus
kaons separation;

• a calorimeter system composed of a Scintillator Pad Detector and Preshower (SPD/PS), an
electromagnetic calorimeter (ECAL) and an hadronic calorimeter (HCAL);

• finally, a muon detection system in the outer part of the detector.

The optimal LHCb luminosity is such that a maximum of 2.5 proton-proton interactions per bunch
crossing can occur. In order to achieve this requirement the luminosity provided by LHC is reduced
using a luminosity levelling technique [36]: the two beams do not collide head-on but the beam axes
are tilted obtaining a larger interaction area; this allows to reach a constant luminosity level of around
4.5 × 1032 cm−2 s−1. In Table 2.1 the integrated luminosity for each year of the Run II campaign is
shown, with Center of Mass (CoM) energy of 13 TeV.

year Lint [fb
−1]

2015 0.33
2016 1.67
2017 1.81
2018 2.19

Total 6.00

Table 2.1: Integrated recorded luminosity at LHCb for each year of the Run II campaign at the CoM energy of
13 TeV. [25]

2.2.1 The tracking system

The LHCb detector includes a high-precision tracking system made of sub-detectors exploiting different
technologies. It consists of a silicon-strip VELO surrounding the pp interaction region, provides precise
measurements of tracks coordinates close to the interaction region; and four tracking stations: the TT,

14
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Figure 2.2: Schematic representation of the LHCb spectrometer, showing each sub-system. The z-axis is parallel
to the beam direction while the y-axis is parallel to the gravitational acceleration. [25]

which is a large-area silicon-strip detector, located upstream of a dipole magnet; and three tracking
stations (T1-T3), which are placed downstream of the magnet. In T1-T3, silicon micro-strips are used
in the region close to the beam pipe (called Inner Tracker, IT) while straw-tubes are employed in the
outer region of the stations (Outer Tracker, OT). The tracking sub-systems are now briefly described.

Vertex Locator

The VELO[1] is the sub-system devoted to the measurement of tracks coordinates near the interaction
point. This is crucial to identify secondary vertices associated to b- and c- hadrons decays. The VELO
consists of a series of silicon modules, each providing a measure of the r (from 8 mm to 42 mm) and ϕ
(from 15 mrad to 390 mrad) coordinates. The r and ϕ sensors only differ for the geometry of the strips
segmentation, while having both a diameter of 84 mm and a thickness of 300 µm. The rϕ geometry
is shown in Figure 2.3.
The VELO system consists of 21 stations of these semi-circular sensors, placed along a distance of
1 m, parallel to the beam axis, as shown in Figure 2.3. The sensors are mounted in a vessel that
maintains the vacuum and are separated from the machine vacuum by a thin aluminum sheet called
called RF-foils. This is done to minimize the material traversed by a charged particle before it crosses
the sensors, while providing a good geometrical coverage. The sensors operates at a distance of 8 mm
from the beam axis which is smaller than the beam width during the injection phase: for this reason
the sensors are retractable and the VELO stays in the open configuration until the beam conditions
are stable. The individual hit resolution of the sensors have been measured during the test beams and
the best raw resolution obtained is around 7 µm.

Tracking stations

The tracking system is composed of four planar stations perpendicular to the beam axis: the TT is 150
cm wide and 130 cm high and it is placed upstream of the dipole magnet, covering the full geometrical
acceptance of the experiment; the T1-3 stations are placed downstream the magnet: the inner part of
the T1-3 station is 120 cm wide and 30 cm high, and together with the TT forms the Inner Tracker
(IT), shown in purple in Figure 2.4. The IT is composed by 200 µm wide silicon micro-strip sensors,
displaced in four layers of three different type:
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guish particles with a momentum range between 1 and 60 GeV/c and its active media are silica aerogel
and C4F10. It covers an angular acceptance range from ±25 mrad up to ±300 mrad horizontally and
up to ±250 mrad vertically.
The RICH2 is located downstream of the magnet, between the T3 station and the first muon station
M1. It detects particles with momentum between 15 and 100 GeV/c. Its active medium is CF4 and
its angular acceptance range goes from ±15 mrad up to ±120 mrad horizontally and up to ±100 mrad
vertically.

2.2.5 Calorimeters

The calorimeter system has the following roles:

• Selects hadrons, electrons and photons with significant transverse momentum;

• Provides PID for electrons, photons and hadrons;

• Measures the energy of neutral particles such as photons, π0 as other neutral hadrons.

Located downstream of the RICH2 detector, the LHCb calorimeter is composed by a Scintillating
Pad Detector (SPD), a Pre-Shower detector (PS), an Electromagnetic Calorimeter (ECAL) and an
Hadronic Calorimeter (HCAL). Their structure and granularity is represented in Figure 2.8.
The SPD/PS system allows for the identification of electrons and photons: it is made by two almost
identical scintillator, coupled to Photo Multipliers (PMT) via Wavelength-Shifting (WLS) fibers, with
a 15 mm lead converter in between, covering and angular acceptance range from ±30 mrad to ±300
mrad horizontally and ±250 mrad vertically. Particle identification can be done since in the SPD
photons do not produce any signal before triggering a shower, while the electrons do. On the other
hand, photons passing the lead layer of the SPD produce showers on the PS. This allow for e/γ
separation. Hadrons do not trigger showers on the PS, therefore they can be distinguished from
electrons.
In the ECAL, electrons and photons deposit the major part of their energy. ECAL has the same
geometrical acceptance as the SPD/PS system and it is composed by 66 layers of alternating 4 mm
lead tiles and scintillators coupled to PMT via WLS fibers, resulting in a total length of 42 cm
(corresponding to 25 radiation lengths). The granularity of the ECAL allows for the achievement of
a good energy resolution of

(︂σE
E

)︂

ECAL
=

10%√
E

⊕ 1%

Where E is the energy of the particle (in GeV) and ⊕ indicates the “squared sum”.
Finally, the HCAL collects the remaining energy of charged and neutral hadrons. Its structure is very
similar to ECAL: 1 cm iron tiles and scintillators alternates for a total of 5.6 radiation lengths. HCAL
is able to reach an energy resolution of

(︂σE
E

)︂

HCAL
=

69%√
E

⊕ 9%

again E is the energy of the hadron (in GeV).
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2.4 Jet reconstruction

The LHCb detector has been designed to study b-hadrons physics. However, thanks to its unique
forward geometry and excellent tracking performance, also jet physics can be studied efficiently, pro-
viding a complementary phase space with respect to CMS and ATLAS.
Jets are produced at collider experiments as the result of the hadronization and fragmentation of
quarks and gluons produced in the hard-scattering processes at the interaction point. They manifest
at the detectors as collimated sprays of charged particles in the tracking system and as concentrated
clusters of energy in the calorimeters. Although the LHCb detector has excellent tracking performance
(97% of track reconstruction efficiency for particles with momentum greater than 5 GeV/c, with a
resolution of 0.5%), calorimeters are not equally well performing in the forward region. Therefore,
contrary to CMS and ATLAS, which strongly rely on calorimeters for jet reconstruction, the LHCb
experiment make use of both calorimeter clusters and tracking information to efficiently reconstruct
jets.
The LHCb jets reconstruction algorithm is made of the following steps:

1. Particle Flow provides a list of particles at the input of the clustering algorithm;

2. Anti-kt algorithm [17], which performs the clustering of particles, providing a list of output jets;

3. E-recombination scheme, namely jet’s four-momentum is computed as a function of the particles
momenta;

4. Jet Energy Correction, which finally apply a correction to the final energy of the jets, based on
Monte Carlo simulations.

The Particle Flow algorithm selects particles based on criteria that depend on the type of particle:

• Charged particles are selected depending on the category they belong (long, downstream, up-
stream or VELO tracks), then requirements are applied to the following quantities

– the track transverse momentum pT ;

– the χ2 of the Kalman fit;

– the probability for a track to be reconstructed wrongly by the algorithm Pghost;

– the momentum resolution σ(q/p)
q/p where q is the particle charge and p its momentum.

The following table show the applied requirements for each particle category:

long downstream upstream VELO tracks

pT [MeV/c] - - > 100 -

χ2 < 5 < 1.5 < 1.5 < 10

Pghost < 0.5 - - -
σ(q/p)
q/p > 10 > 10 > 2 -

Moreover, thanks to the information coming from the RICH detectors and calorimeters, a mass/-
type information can be associated to particles (p/p̄, π±, µ±, e± and K±).

• Isolated neutral particles are particles that show clusters in calorimeters but are not associated
to tracks. In the ECAL, these are mainly photons and π0s that decay in two photons. Their
discrimination relies on the shape of the calorimeter clusters, therefore a likelihood for the
photon or π0 hypothesis is computed. π0s are divided in two categories: merged π0, when
the two photons are almost collinear and show as a single cluster, and resolved π0, when the
two photons are detected as two separate clusters. Requirements are applied to the following
quantities:

– likelihood for the photon hypothesis, PhotonID ;

– transverse energy of the cluster ET ;
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– χ2
track-cluster associated to the probability that a cluster is associated to a track.

The following table show the applied requirements for each particle category:

merged π0 resolved π0 photons

ET [MeV] - - > 200

PhotonID - > −2 -

χ2
track-cluster > 25 > 25 > 25

For the HCAL there are no particle identification requirement, while different χ2
track-cluster re-

quirements are applied for different energy thresholds: E < 10 GeV a χ2
track-cluster > 25; E > 10

GeV a χ2
track-cluster > 15.

• Non-isolated neutral particles are particles showing as clusters and are associated to tracks. The
selection of this category of particles is done through the following steps:

1. The following requirements on ECAL and HCAL χ2
track-cluster are applied:

– ECAL: χ2
track-cluster < 25

– HCAL: E < 10 GeV a χ2
track-cluster > 25; E > 10 GeV a χ2

track-cluster > 15

2. clusters in ECAL and HCAL are grouped such that groups do not share tracks;

3. the expected energy released in the calorimeters Eexp is estimated using an empirical
parametrization of E/p as function of p, being E; the cluster energy released by charged
particles and p the track momentum;

4. if the expected energy Eexp is larger than 1.8 times the measured energy Emeas then the
cluster group is discarded;

5. it Emeas > 1.8Eexp then Eexp is subtracted from Emeas: Esub = Emeas − Eexp;

6. finally, if ET > 2 GeV then Esub is selected as a non-isolated neutral particle and used as
input of the anti-kT algorithm.

The anti-kt algorithm proceeds with the following steps:

1. For each pair of particles (i, j) of the input list, the following distance dij is evaluated

dij = min(k−2
t,i , k

−2
t,j )

∆2
ij

R2
∆2

ij = (yi − yj)
2 + (ϕi − ϕj)

2

where kt,i, yi and ϕi are, respectively, the transverse momentum, the rapidity and the azimuthal
angle of the particle i, and R is a tunable parameter of the algorithm called radius.

2. A similar distance is computed between each particle and the beam axis

diB = k−2
t,i

3. The smallest distance dij or diB is found:

• If the smallest distance is dij , namely, between the particles i and j, then they are combined
into a single particle, summing their four-momenta. The particles i and j are removed from
the list of input particles.

• If the smallest distance is diB, namely, between the particle i and the beam, then the
particle i is considered as a jet and removed from the list of particles.

4. The algorithm restarts from step 2, unless no particles are left to be clustered.
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The anti-kt algorithm tends to cluster soft particles with hard particles instead of producing jets
composed only of soft components. The parameter R can be tuned, depending on the experimental
environment, the detector properties or the process under study: in order to optimize the jet energy
resolution, at LHCb the optimal range has been found to be 0.5 ≤ R ≤ 0.7; within this thesis the
value has been fixed to R = 0.5.

E -recombination scheme After the clustering process, the four-momenta (Ejet,pjet) of the recon-
structed jets can be evaluated using the E-recombination scheme

Ejet =
∑︂

i

Ei pjet =
∑︂

i

pi

At this point, the reconstructed jet energies can be validated using Monte Carlo simulation samples. In
these samples both jets and MC jets are reconstructed. The main difference between MC jets (jetMC)
and reconstructed jets jetreco is that jetMC are clustered by the anti-kT algorithm using all the stable
truth-level particles which have the true kinematical values, while for jetreco, reconstructed particles are
used (invisible particles like neutrinos are removed from the list not to bias the reconstructed energy).
To associate a jetMC with a jetreco, the distance in the η-ϕ plane between them ∆R =

√︁

∆η2 +∆ϕ2

has to be smaller than 0.4; if more than one compatible jet is found in this range, the one with the
closest distance is chosen. As expected, jets reconstructed with charged particles show an excellent
accord with MC simulation due to the great LHCb tracking performance. On the other hand, in
the case of neutral particles, the accord with MC jets is much worse due to the fact that tracking
information is not available and only data coming from the calorimeters can be used.

Jet Energy Correction A correction is applied to the energy of the reconstructed jets Ereco
jet to

match one of the associated MC jets EMC
jet . This is done by mean of a multiplicative factor kMC, called

Jet Energy Correction

EMC
jet = kMCEreco

jet

The kMC factor takes into account the integrated effect of pile-up, noise and non-uniformity of the de-
tector and the same correction is applied to each component of the four-momenta of the reconstructed
jets. kMC is evaluated using MC simulations of b-, c-, light quarks and gluons jets and it is found to be
non-uniform with respect to the jet η and ϕ, and to the fraction of charged particles in the jet (cpf ).
Moreover, kMC may depend on the jet flavor.
An additional multiplicative correction should be applied to take account of possible differences be-
tween the jet energy real data and MC simulations: this correction is called Jet Energy Scale.

Jet identification efficiency As final step of the reconstruction process, requirements are applied
to reject jets originated from noise or high energy isolated leptons:

• number of tracks pointing to the PV nPVtracks ≥ 2

• fraction of transverse momentum carried by a single Particle Flow particle mpf < 0.8

• transverse momentum carried by a track mpt > 1.2 GeV/c

• fraction of charged particles in the jet cpf > 0.1

Finally, the jet identification efficiency ϵjet is evaluated. It is defined as

ϵjet =
N [reconstructed jets]

N [true jets]

ϵjet has been measured using Z0 → µµ+ jet MC events at
√
s = 7 TeV. As shown in Figure 2.11, the

jet identification efficiency is increasing with respect to the jet pT .
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Figure 2.11: Jet identification efficiency as function of the jet pT

2.5 Heavy-Flavor jet identification

Identification of jets that originate from the hadronization of heavy quarks is crucial for studying Stan-
dard Model processes, allowing the search of New Physics. The measurement of charge asymmetries
in the pair-production of b-quarks requires, in the first place, the ability to efficiently identify b-jets
with a minimal mis-identification of c- and light jets, and then the ability to determine the charge of
the b-quark associated to the jet, namely determining if it has been originated from a b- or a b̄-quark.
This two tasks are accomplished by two categories of jet identification algorithms:

• Jet-flavor tagging: this type of algorithms are used to determine the flavor of the heavy-quark
that originated the jet, identifying b-jets, c-jets and light quark jets, with low mis-identification
rates.

• Jet-charge tagging: this kind of methods are able to identify the charge of the heavy-quark
that originated the jet, discriminating b-jets from b̄-jets or c-jets from c̄-jets.

These algorithms usually exploit peculiar features of the events to perform the identification, such as,
the presence of a long-lived b- or c-hadron that carries sizable fraction of the jet energy. In the next
section, the following tagging algorithms are described in details:

• Secondary Vertex tagging: these algorithms exploits the fact that, since b- and c- hadrons
are long-lived, they travel a sizable distance before decaying, producing a Secondary Vertex (SV)
detached from the PV, from which the products of the decay originate. This algorithm is able
to identify b- and c-events, distinguishing them from light-partons events. Additional techniques
allow the b versus c discrimination. Therefore, SV tagging only perform jet-flavor tagging but
not jet-charge tagging.

• Muon tagging: this algorithm exploits the semi-leptonic decays of b-hadrons into muons. These
muons usually have a sizable transverse momentum pT as well as a large transverse momentum
relative the the jet axis prelT , due to the large mass of the b-quark. Moreover, the charge of the
muon is related to the charge of the decaying b-quark. Therefore, the muon tagging algorithm is
able to perform both flavor-tagging and charge-tagging; however, the efficiency of this method
is strongly limited by the branching ratio of the decay.

• Jet Charge: this jet-charge tagging method consists in estimating the charge of the quark from
a jet-based observable defined as the momentum-weighted sum of the charges of the particles
inside the jet, called Jet charge. However, this method alone is not able to identify heavy-flavor
jets, therefore is usualy coupled to a different jet-flavor tagging algorithm.
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2.5.1 Secondary Vertex tagging

b- and c-hadrons produced at LHCb at
√
s = 13 TeV collisions travel an average distance ⟨d⟩

⟨d⟩ = βγcτ ≈ 7 mm β =
v

c
γ =

1
√︁

1− β2

where c is the speed of light, v is the speed of the hadron and τ is the average lifetime of the hadron.
Therefore, b- and c- events shows a SV, displaced from the PV, where the tracks of the decay products
of the heavy quark originate. If a SV is found inside a jet it is tagged as a heavy-flavor jet. The SV
tagging algorithm[26] works with the following steps:

1. Tracks selection:

• long tracks;

• p > 5 GeV/c and pT > 0.5 GeV/c ;

• χ2/ndof of the track fit < 3 ;

• χ2
IP, defined as the variation of the χ2 of the PV fit when the track is removed > 16 ;

• Pghost < 0.3 .

2. The selected tracks are used to build all possible 2-body SVs in the 3D space. Fits are performed
to determine the SV position. The two tracks associated to a SV are combined to form a particle
where flight direction is defined as the vector that points to the SV from the PV. Its four-
momentum is defined as the sum of tracks four-momenta, assuming the π mass. These 2-body
particles must satisfy the following requirements:

• Distance Of Closest Approach (DOCA) between two tracks < 0.2 mm ;

• χ2 associated to the SV fit < 10 ;

• Invariant mass 400 < m < 5279.4 MeV/c2 (B0 mass): the lower cut removes strange-
hadrons decays, while the upper cut keeps most of the b-hadrons since the mass of the pion
is assumed.

3. A 2-body particles is assigned to a jet if ∆R < 0.5, with ∆R =
√︁

(ηjet − ηSV)2 + (ϕjet − ϕSV)2.
At this stage 2-body particles inside the same jet that share at least one track are associated
together, creating a list of n-body particles that do not share tracks. This is repeated for each
jet in the event, including all the tracks with ∆R < 0.5, even if they have been associated to a
different jet. The resulting n-body particles are called tagSV: the tagSV position is the average
of the 2-body SV positions, weighted with the χ2 of the SV position fit; the tagSV flight direction
is the vector that points to its position from the PV; the tagSV four-momentum is the sum of
the tracks four-momenta, again, assuming the pion mass.

4. To reduce the light quark jets contamination, the following selection requirements are applied
to the tagSVs:

• pT > 2 GeV/c

• z-position of the jet must be < 200 mm

• flight distance/p < 1.5 mm/(GeV/c)

• the flight distance χ2, defined as the χ2 obtained from the PV fit if the tagSV tracks are
added to the fit result, must be > 5σ

• if tagSV is formed by only two tracks with invariant mass compatible with KS it is rejected

• tagSV must have at most one track with ∆R > 0.5
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1. At least one of the two jets of the event must have a particle identified as a muon inside (tagging-
muon)

2. To reduce the charge asymmetries due to the detector biases, the tagging-muon is required to
satisfy the following kinematic requirements

• pT > 2 GeV/c

• p > 10 GeV/c

3. The decay chain b → c → µ contaminates the purity of the tag. To further mitigate this effect,
the tagging-muon is required to be the particle with highest momentum among all the displaced
tracks.

4. Finally, if the tagging-muon satisfies all the requirements, the jet is classified as an heavy-flavor
jet and the charge of the tagging-muon is related to the charge of the b-quark.

The three main sources of dilution of this charge tagger are the following:

a. B0 − B̄
0
and B0

s − B̄
0
s oscillations: the known B-meson oscillation frequencies and the lifetime

acceptance at LHCb can be used to estimate the expected dilution.

b. Decays of the form b → cX, c → µ ν X: the measured values of b-hadrons production fractions
and branching ratios can be used to evaluate the contribution of this dilution channel.

c. Muon mis-identification: kinematic requirements on the tagging-muon make this contribution
negligible.

Combining all the effects, the integrated purity of the muon tagging algorithm is expected to be
73 ± 4%. This value can be validated directly measuring the purity on the fraction of events where
both jets present a muon of opposite charge, thus producing an unambiguous tag: this analysis gives an
integrated purity of 70.3± 0.3%. Furthermore, selecting events with one jet and a fully reconstructed
B+ → J/ψK+ or B+ → D̄

0
π+, one can exploit the unambiguous tag provided by the B+ to obtain

another validation channel, which provide a measured integrated purity of 73± 3%.
Even though the muon tagging achieve good charge tagging purity, it strongly limits the available
statistics due to the intrinsic constraint put by the branching ratio of the b decaying semi-leptonically
into a muon, which is around 10%.

2.5.3 Jet Charge tagging

This inclusive technique consists in evaluating the momentum-weighted average of the charge of the
particles associated with each jet, called jet charge

Qjet =

∑︁

i qi(pi · pjet)
0.5

∑︁

i(pi · pjet)0.5
(2.1)

where the two sums are extended over all the tracks in the jet, qi and pi are the charge and the
3-momentum of the particle and pjet is the 3-momentum of the jet; the exponent 0.5 is chosen to
maximize the discriminating power of the tagger. The algorithm make a decision using the difference
between the charges of the two jets of an event ∆Q = Q1 −Q2:

• if ∆Q > 0, jet 1 is considered to be the b-jet;

• if ∆Q < 0, jet 2 is considered to be the b-jet;

Although being an inclusive method, the jet charge tagging is not able to achieve a good b versus b̄
separation.
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2.7. DATA-SET SELECTION

The data-set comes split in different ROOT files, depending on the the momentum exchanged in the
hard collision p̂ (for QCD events), the polarization of the magnet (up or down) and the production
mechanism (QCD or Z0/γ). Here is shown a list of the files and the number of generated events Ngen

inside each:

Filename Processes Magnet p̂ [GeV/c] Ngen

Dijet bb pt10 15 dw.root QCD down [10,15] 1 005 945

Dijet bb pt10 15 up.root QCD up [10,15] 1 004 373

Dijet bb pt15 20 dw.root QCD down [15,20] 1 005 555

Dijet bb pt15 20 up.root QCD up [15,20] 1 000 166

Dijet bb pt20 50 dw.root QCD down [20,50] 1 037 292

Dijet bb pt20 50 up.root QCD up [20,50] 1 038 062

Dijet bb pt50 dw.root QCD down > 50 1 009 737

Dijet bb pt50 up.root QCD up > 50 1 040 583

Dijet Z dw.root Z0/γ down All 117 623

Dijet Z up.root Z0/γ up All 118 199

Table 2.2

The number of generated events is almost the same for all the QCD files (around 1 000 000) and for
the two Z0 files (around 120 000).

The SV-tagging algorithm has been applied to the reconstructed jets for flavor identification and
events with at least two b-tagged jets are selected. No event in the simulated data presents more the
two reconstructed jets tagged as b-jets from the SV-tagger, therefore this analysis neglects this type
of events, assuming that they occur with a very low probability: in fact, the fraction of events having
multiple dijet candidates has been estimated at LHCb, in an analysis for the measurement of the the
bb̄- and cc̄-dijet cross sections, and was found to be 0.4% [3].
Each of the two reconstructed jets is associated with the closest Monte Carlo jet, according to the

distance in the η-ϕ plane ∆R =
√︂

(ηMC
jet − ηrecojet )2 + (ϕMC

jet − ϕrecojet )2, which is required to be < 0.4.

The data-set is publicly available on the CERN Open Data Portal[21].
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than one part in a billion), while still incorporating the Classical Mechanics as a limit case. However,
despite of the uncontested superiority of the Quantum Theory, non-quantum theories are still widely
used: this apparent paradox is justified by the fact that the complexity of quantum theories behaves
badly with the size of the system. For example, a quantum system made of one spin 1/2 particle can
be described exactly, in the density matrix formalism, using 2× 2 complex matrix, that fits in 64 B of
memory, assuming double-precision; on the other hand, a quantum system of 100 spin 1/2 particles
requires dealing with a 2100 × 2100 complex matrix that requires around 2.57 × 1046 PB of memory,
again assuming double-precision. It is easily understood that an exact description of such a system
is impracticable with current technologies and that the study of many-body quantum systems cannot
avoid dealing with approximations. Luckily, intrinsic quantum effects only shows up at very small
scales and in most of the cases they are negligible with respect to the higher order classical behaviors.
Moreover, highly efficient approximation techniques have been developed for studying many-body
quantum systems.

A natural question arises from these simple considerations: can we exploit the intrinsic complexity of
quantum systems to perform calculations? Since the debate about the non-locality of the Quantum
Theory, questions aroused about the possibility of an information theory of quantum systems:

• What is quantum information?

• Can we build a quantum computer?

• How can we encode data inside a quantum system?

• How can we formulate algorithms for such devices?

• How can a quantum computer give an advantage with respect to a classical computer?

These are the questions that the Quantum Computing and Quantum Information fields try to answer.
The research on these fields has gained a great boost in 1994 when P. Shor proved that a quantum
algorithm can solve the factorization problem in polynomial time [66]. Soon after, in 1996, L. Grover
developed a quantum algorithm that can perform an unstructured search in a database of size n using
only O(

√
n) evaluations (when a classical algorithm needs at least O(n)) [40]. Despite of the large

improvements in the field, the exact domain of this new technology is still unclear and a lot of research
is necessary to try to provide answers to previous questions.

The following sections will provide an overview of the theoretical framework behind Quantum Com-
puting, presenting the basic concepts of qubit and entanglement.

3.2 The Qubit

In the Classical Information theory, the information unit is the bit which represents a logic state
that can have only two possible values: 0 (or false, off, etc.) or 1 (or true, on, etc.). Bits must be
concatenated into strings to be able to represent a larger number of different states: an n-bits string
can represent a maximum of 2n different states, e.g. the task of counting integers from 0 to 1000 can
be accomplished using at least 10 bits, since 210 = 1024.
In Quantum Computing, the elementary information unit is the qubit, a two-levels quantum system
that can be measured in two states |0⟩ and |1⟩, which form an orthonormal basis, called computational
basis, of the 2-dimensional Hilbert space H where all the possible states of the qubit are defined. The
most general pure state |ψ⟩ of a qubit can be written as

|ψ⟩ = α0 |0⟩+ α1 |1⟩ (3.1)

where α0, α1 ∈ C, satisfying the normalization condition |α0|2 + |α1|2 = 1.
H is isomorphic to the C2 vector space, so we can conveniently associate the canonical basis of C2 to

32





3.2. THE QUBIT

The density matrix framework allows us to define amixed state ρmix: let {pi} be probabilities (summing
the 1) associated to a set of pure state {|ψi⟩}, then the following density matrix represents a mixed
state:

ρmix =
∑︂

i

pi |ψi⟩ ⟨ψi|

ρmix does not satisfy the same properties of ρpure, in particular:

• ρ2mix ̸= ρmix

• Tr ρ2mix < Tr ρmix = 1

Multi-qubit states The description of a multi-qubit quantum system can be easily gained using
the concept of tensor product between Hilbert spaces. An n-qubit quantum system is described by
the tensor product of n single qubits:

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ ...⊗ |ψn⟩ |ψ1⟩ , |ψ2⟩ , ... |ψn⟩ ∈ H |ψ⟩ ∈
n

⨂︂

i=1

H

A completely generic n-qubits state is described by 2n complex coefficients:

|ψ⟩ = α1 |0...00⟩+ α2 |0...01⟩+ α3 |0...10⟩+ ...+ α2n |1...11⟩ αi ∈ C

Generalizing density matrices of pure and mixed states is straightforward: let |ψ⟩ be an n-qubits state,
then

|ψ⟩ =
2n
∑︂

i=1

αi |i⟩ ρpure = |ψ⟩ ⟨ψ| ρmix =
∑︂

i,j

αij |i⟩ ⟨j| αi, αij ∈ C

Quantum measurements The state of a quantum system can be accessed only through measure-
ments operated on the qubits of the system: measurements often occurs in the computational basis,
therefore it is useful to precisely define what is the exact meaning of performing a measurement on a
quantum state. For the seek of simplicity, let us assume to deal with a generic 1-qubit state as in the
expression 3.1. In this case, the two possible outcomes of a measurement on the computational basis
(0 or 1) are associated to the two projectors on the eigenspaces

P0 = |0⟩ ⟨0| P1 = |1⟩ ⟨1|

Therefore, the probabilities associated to the two measurement outcomes are:

p(0) = ⟨ψ |P0 |ψ⟩ = |α0|2 p(1) = ⟨ψ |P1 |ψ⟩ = |α1|2

Then, the quantum state collapses into the eigenstate associated to the measurement outcome: say
that a 0 has been obtained, the quantum state after the measurement is the following

|ψ⟩ → P0 |ψ⟩
√︁

⟨ψ |P0 |ψ⟩
= |0⟩

So, the final quantum state gets destroyed and it has to be rebuilt if repeated measurements are
needed. This type of measurements on a system of qubits are called projective measurements on the
computational basis.
For an n-qubits system, the generalization is straightforward: a computational basis measurement can
be seen as sampling a binary string of length n from the distribution defined by quantum state. To
each one of the 2n possible outcomes is associated a projector that defines the eigenspace on which
the state collapses after the measurement.
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3.3 Entanglement

The study of multi-qubits systems allows for the introduction of fundamental concept of quantum
computing which has no classical counterpart: the entanglement. Let A and B be two quantum
systems (e.g. they can be two qubits or, more in general, two groups of qubits), then a state of the
composite system is called separable if it can be written as a classical probability distribution pi over
uncorrelated states of the two subsystems ρA and ρB:

ρ =
∑︂

i

piρ
A
i ⊗ ρBi

A non-separable state is called an entangled state: an example of non-separable pure state is provided
by the Bell states

|ϕ±⟩ = 1√
2
(|0⟩A ⊗ |0⟩B ± |1⟩A ⊗ |1⟩B)

|ψ±⟩ = 1√
2
(|0⟩A ⊗ |1⟩B ± |1⟩A ⊗ |0⟩B)

These states are also called maximally entangled states, since the outcome of a measurement on the
subsystem B can be exactly determined by a measurement on the subsystem A. This means that the
two subsystem are maximally correlated, but this kind of correlation is purely quantum and cannot be
achieved by mean of some sort of classical operations, as Bell proved in 1964[10]. This phenomenon
points toward the incompatibility of locality and realism in Quantum Mechanics and represent the
most unique feature of the Quantum Information theory.

3.4 Quantum circuits

Classical computers operate on bit-strings by means of logical function. Formally, a logical function
is function f : {0, 1}n → {0, 1}m that receives a n-bits string as input and gives an m-bits string
as output, which is completely determined by its truth-table, defining the output bit-string for every
possible input bit-string. Every logical function can be decomposed in elementary logical function,
called logical gates, such as the AND gate, the OR gate, the NOT gate or the XOR gate. Elementary
logical gates can be combined in logical circuits that can be implemented electronically.
In analogy with the classical computing, qubits can be manipulated by mean of quantum gates that
are realised by unitary operators1 acting on the quantum state.

1-qubit gates are described by 2 × 2 complex unitary matrices. Among these, some of the most
important are the Pauli operators :

X =

(︃

0 1
1 0

)︃

Y =

(︃

0 −i
i 0

)︃

Z =

(︃

1 0
0 −1

)︃

(3.3)

The X gate is also called NOT gate since its action flips the qubit in the computational basis: X |0⟩ =
|1⟩ and X |1⟩ = |0⟩. Other commonly used quantum gates are the Hadamard gate (denoted H), the
phase gate (denoted S) an the π/8 gate (denoted T ):

H =
1√
2

(︃

1 1
1 −1

)︃

S =

(︃

1 0
0 i

)︃

T =

(︃

1 0

0 ei
π
4

)︃

(3.4)

The common symbols representing these gates are show in Figure 3.3: wires represent qubits and a
chain of linked gates has to be read from left to right.

1An operator O on an Hilbert space is called unitary if OO† = O†O = 1, where 1 is the identity operator.
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model. This is followed by the estimation of a set of expectation values {⟨Mk⟩x,θ}Kk=1 from
measurements on the final quantum state.

3. Post-processing: the measured expectation values {⟨Mk⟩x,θ}Kk=1 get mapped to a model pre-
diction by a post-processing function y = f({⟨Mk⟩x,θ}Kk=1)

All the component of the model, including the pre-processing and the post-processing, can be parametrized
and optimized during the training phase.

Data encoding is the first step of the quantum stage of a QML model based on PQC: it consists in
mapping a vector of classical data x into an n-qubits quantum state x→ |x⟩. This can be accomplished
in several different ways. In this work we make use of the Amplitude Encoding and the Angle Encoding
techniques that are defined in this way

• Amplitude Encoding: it encodes up to 2n features into the amplitudes of the state vector of
an n-qubits system, or, equivalently, a vector of n features can be encoded using log2 n qubits.
This means that amplitude encoding provides an exponential advantage when scaling to large
number of features. If the number of features to encode is smaller than 2n it is possible to
pad the remaining amplitudes with constant values. With exactly 2n features, the amplitude
encoding maps the feature vector x into |x⟩ in this way

|x⟩ =
2n
∑︂

i=1

xi |ni⟩ (3.11)

where xi refers to the ith feature and |ni⟩ is the ith vector of the computational basis. This
definition requires the x vector to be normalized, i.e.

∑︁

i |xi|2 = 1.

• Angle Encoding: it encodes up 3n data features into an n-qubits state. Each qubit can
encode up to 3 features encoded as the angle of rotation around one of the three axes, i.e. with
i = 0, ... n− 1 the ith qubit state is prepared as:

|ψ⟩i = Rx(x3i+1)Ry(x3i+2)Rz(x3i+3) |0⟩i (3.12)

where Rx, Ry and Rz are the rotation gates defined in (3.5 - 3.7). The full n-qubits state |x⟩
that represents the feature vector x is constructed as the tensor product of the single |ψ⟩i states:

|x⟩ =
n−1
⨂︂

i=0

|ψ⟩i (3.13)

Rotational gates are periodic unitary operator with respect to the parameter θ: Ri(θ) = Ri(θ+
4π). Therefore, each feature value must be scaled to the [0, 4π] range; however, more restricted
ranges could improve the training performance.

Variational circuits represents the core of PQC circuits. Similar to the universal approximation
theorem in neural networks[12], there always exists a quantum circuit that can represent a target
function within an arbitrary small error: however such a circuit may be exponentially deep and
impractical to implement on current quantum hardware. Therefore, often the circuit design follows a
fixed structure of gates (circuit ansatz ). Even if the dimension of the Hilbert space grows exponentially
with the number of qubits, the number of free parameters to be optimized scale usually as a polynomial
of the qubit count.
Figure 3.8 shows the structure of a commonly used variational ansatz for QML model: this circuit
presents a first stage of tunable rotational gates applied to the single qubits and a second stage
of controlled gates which provide entanglement between the qubits. This circuital structure can be
repeated multiple time increasing the number of parameters and therefore the complexity of the model.
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Chapter 4

Results on b-tagging with Quantum
Machine Learning

4.1 Training data-set selection

A list of jets is extracted from the data-set, with the following requirements:

• Jet transverse momentum pT > 20 GeV;

• Jet pseudo-rapidity η in the range [2.2, 4.2];

• Jet must be coming from a QCD event.

After the selection criteria, the data-set includes around 700 000 jets which have been split in training
and testing subsets, in 60/40 proportion.
Data have been processed extracting 16 features coming from the reconstructed jets to be used as the
input of the QML models. The following charged particles (and anti-particles) have been considered
inside each jet: muons, pions, kaons, protons and electrons. For each type, the one reconstructed with
the largest transverse momentum has been selected, considering the three following quantities:

• prelT : transverse momentum of the particle with respect to the jet axis;

• ∆R =
√︁

(η − ηjet)2 + (ϕ− ϕjet)2: distance on the η-ϕ plane between the particle (η, ϕ) and the
jet axis (ηjet, ϕjet);

• q: charge of the particle.

If the jet does not contain particles of a certain type, the relative features are fixed to 0. Also, the
weighed jet charge Qjet, defined in (2.1), is included as a global feature of the jet. Each jet carries
the Monte Carlo truth about the quark that originated it (coming from the matched Monte Carlo
jet), namely if it is b-quark or a b̄-quark: this variable represents the target feature for the tagging
algorithms and is called Jet Label.

Additionally, a reduced data-set has also been considered: it consists of around 100 000 jets where
only the 3 features associated to the muon have been selected (if found inside the jet), plus the global
jet charge. Due to its reduced dimensionality, this data-set has been used to test the behavior of QML
on simpler data structures.
Each bb̄ event in the data-set contains two jets of opposite charge associated to the same pp collision,
which show particles and charge correlations due to this fact. However, a jet tagging algorithm must
be able to give a prediction on a jet based only on its particle content. Therefore, for training purposes,
a shuffled list of jets has been produced, cancelling any correlation.
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These features are encoded into an 8-qubits quantum circuit (for the seek of simplicity, Figure 4.4
shows a 4-qubits version of the circuit: however, the 8-qubits model is analogous), using the Quantum
Approximate Optimization Algorithm (QAOA) encoding, introduced by Farhi et al. for the solution
of combinatorial problems with quantum algorithms[34]. This encoding stage contains trainable pa-
rameters that are supposed to improve the quality of the embedding and must be trained together
with the other parameters of the circuit. The variational stage of the circuit has a tree structure that
aims to process the information coming from the 8 features, gradually reducing the number of qubits
involved, until finally reaching a single qubit that gets measured identically to the previous models.
This model has no hyper-parameter to adjust its complexity since the tree structure is fixed by the
number of qubits involved. The total number of trainable parameter is Npar = 104.

4.2.5 Quantum Support Vector Machine classifier

The last model consists in a quantum version of the Support Vector Machine (SVM) algorithm, which
is now briefly described.
SVM is ML model for binary classification of a vector x into one of two classes y = ±1, given D
training data points of the form {(xi, yi) : xi ∈ RN , yi = ±1}. The SVM finds a maximum-margin
hyperplane with normal vector w that separates the two classes: the margin is given by two parallel
hyperplanes that are separated by a maximum possible distance 2/|w|, with no data points inside the
margin; the two hyperplane are defined so that w · xi + b ≥ 1 for the +1 class, and w · xi + b ≤ −1
for the −1 class. This problem is equivalent to the maximization of the following function

L(α1, ... , αD) =

D
∑︂

j=1

yjαj −
1

2

D
∑︂

j,k=1

αjKjkαk (4.4)

over the D coefficients αi, under the constraints
∑︁

j αj = 0 and yjαj ≥ 0; Kjk is called kernel matrix.
The parameters of the hyperplanes b and w can be recovered from the optimized coefficients α̃i

w =

D
∑︂

j=1

α̃jxj

b = yj −w · xj

Kjk is defined by a kernel function k(xj ,xk), such that

Kjk = k(xj ,xk)

In the simplest case, k(xj ,xk) could be a scalar product k(xj ,xk) = xj · xk, giving rise to a linear
kernel. Non-linear kernel function can enhance the separation of the two classes. Under appropriate
conditions defined by the Mercer’s theorem, even non-linear kernel function can be written in terms
of a feature-map function ϕ : RN → X, as a scalar product in a feature space X on which data get
mapped by ϕ

k(xj ,xk) = ⟨ϕ(xj), ϕ(xk)⟩X

Fixed the kernel matrix, the maximization of the function L is a linear optimization problem for which
optimal and efficient solutions are well known. Therefore, the most computational expensive task is
the evaluation of the kernel: however, thanks to the feature-map method, the kernel evaluation can
happen on the feature space X given by ϕ, involving only scalar products: this procedure is known as
the kernel trick. Once the SVM is been optimized, the class prediction y for a new data vector x can
be obtained as

y(x) = sign

⎛

⎝

D
∑︂

j=1

αjk(xj ,x) + b

⎞

⎠ (4.5)
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first line loads the PennyLane framework, while the second one defines a quantum device, choosing an
execution back-end (default.qubit, in this case, is a simple quantum simulator coming built-in in
PennyLane) and the number of qubits (called wires). This example consists of a simple 1-qubit circuit
made of a Rx gate and a measurement the expectation value of σz: the circuit is described inside the
Python function circuit decorated with the qml.qnode(dev) decorator which assigns the circuit to
a device, creating a quantum computation node (QNode). From this point on, calling the function
circuit results in the evaluation of the quantum circuit on the selected device. The cost functions
defines a classical computation node with some weight parameters, which calls the quantum circuit.
The last three rows of the code performs an optimization step of the cost function with respect to
the weight parameters, using a simple Gradient Descent optimizer.
PennyLane supports several type of devices including quantum simulator and hardware devices:

• Simulators:

– default.qubit: a simple state-vector simulator written in Python that comes built-in with
the framework

– default.qubit.tf: similar to default.qubit but written using the TensorFlow[7] library.

– default.qubit.autograd: similar to default.qubit but written using the Autograd li-
brary for automatic differentiation.

– lightning.qubit: fast state-vector simulator written in C++

– Qulacs: an high-performance quantum circuit simulator written in C/C++ supporting Graph-
ical Processing Units (GPUs)[69].

– IBM Qiskit Aer: a quantum circuit simulator developed by IBM and included in the IBM
Qiskit[8] library.

• Hardware:

– IBM Quantum Experience: an online platform to access cloud-based quantum computing
services provided by IBM.

– Amazon Braket: an Amazon Web Services (AWS) solution providing cloud-based access to
different types of quantum simulators and hardware devices.

– Rigetti Forest: cloud-based quantum computing solutions provided by Rigetti.

All the models have been deployed on simulators: during the tests, the lightning.qubit and the
default.qubit.tf devices have shown to have the best performance overall. PennyLane supports
the following types of automatic differentiation methods

• Simulation-based differentiation, such as the back-propagation or the adjoint method[46]. These
methods are not compatible with hardware devices since they requires the manipulation of the
quantum state vector, which is not accessible in real quantum devices.

• Hardware-compatible differentiation, such as the finite differences method or the parameter-shift
rule. These method can be executed on both simulators and hardware devices.

• Device gradients, provided by some devices (such as AWS Braket devices) which perform the
evaluation of the gradient on their own.

Integration with PyTorch and TensorFlow One of the most attractive feature of the Penny-
Lane framework is its integration with PyTorch[57] and TensorFlow[7] (and its high-level ML library
Keras[19]), two well known and widely used ML libraries. Both frameworks provide powerful high-level
tools for developing ML models, automatically handling the evaluation of gradients for optimization.
PennyLane provides the two classes KerasLayer and TorchLayer that are able to convert a QNode to
a neural network layer that can be used inside a Keras/PyTorch model. The main advantages of this
feature are the following:
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• A quantum layer could be easily added to an existing neural network model, and hybrid quantum-
classical models can be studied.

• The optimization of the PQC can exploit of the solid framework of tools provided by the Keras
and PyTorch frameworks.

• default.qubit.tf can be employed within a Keras model to get an end-to-end differentiable
TensorFlow model that can exploit GPU computational power for the training.

4.4.2 IBM Qiskit

IBM Qiskit is an open-source Python framework for developing quantum algorithm and testing them
on quantum simulators or quantum hardware provided by the IBM Quantum Experience cloud plat-
form. Qiskit is made up of elements that work together to allow quantum computing developing:

• Qiskit Terra provides the tools to create quantum circuits at the level of quantum logical gates.
It also allow for device-specific optimization of each circuit.

• Qiskit Aer provides high-performance quantum simulators with realistic noise models, emulating
the quantum hardware available on the IBM Quantum Experience platform.

• Qiskit Ignis provides tools for quantum hardware verification, noise characterization and error
correction.

• Qiskit Aqua provides a list of general-purpose quantum algorithm that can be used to develop
domain-specific applications. Aqua includes modules for Optimization, Machine Learning and
Quantum Physics

The QSVM model has been developed using the module QSVM from Qiskit Aqua, providing the custom
feature-map shown in Figure 4.5. The model was trained and tested using the Qiskit Aer state-vector
simulator.

4.5 Training

The training part is the most computational demanding phase of the development of a PQC both on
quantum hardware and quantum simulators: gradient descent methods requires a lot of steps to reach
convergence and each step requires a number of evaluations of the quantum circuit per data point,
which depends on the optimization algorithm and on the differentiation method: usually, this number
is a polynomial of the number of parameters of the model. GPUs provide the ideal solution to this
problem in classical ML tasks, allowing the optimized execution of the model in parallel for a faster
evaluation of the gradient.
Unfortunately, no available quantum simulator is able to exploit GPU computational power for the
training of QML models like classical ML models. However, parallelism over several CPU cores is
easier to implement making use of the PyTorch framework: each of the PennyLane model was trained
implementing a Distributed Data Parallel (DDP) strategy [51]. This training strategy implements
parallelism at the model level. It is properly intended for distributing a training process across several
different machines, each one with its own GPU, to provide a speed up; however, the same technique can
be employed to achieve parallelism over multiple CPU cores on the same machine spawning multiple
processes, each one running on a different core (see Figure 4.8 for a diagrammatic description). Each
process evaluate the gradient on a different slice of the training data-set, working in parallel with the
other processes; at the end of each optimization step, gradients are synchronized, an average gradient
is computed and used to update the parameters of the model. The main downside of this strategy is
memory occupation: in fact, DDP requires that each process keep its own copy of the model and the
training data, putting a practical limit on the number of processes that could be spawned and on the
dimension of the training data-set. It was found an optimal configuration with 8 000 training events
split across 20 processes which was kept fixed for each model to obtain comparable results.
The DNN has been developed under the Tensorflow framework and trained using a GPU accelerated
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4.6 Results

In this section, the performance of the tagging algorithms is presented and compared. The analysis
of the performance has been done using the testing data-set (40% of the full data-set) containing jets
that were not used for training. The different models are compared, from a ML point of view, in
terms of the Receiver Operating Characteristic (ROC) curve[30], evaluating also the Area Under the
Curve (AOC). In addition the performance is studied from the Physics point of view by comparing
the distributions of the mis-tag ω and the tagging power ϵtag bins of the jet pT .

4.6.1 Muon events

Firstly, the performance on the reduced muon data-set is presented. Figure 4.11 shows the ROC
curves of the three algorithms which suggest that both the ML algorithms perform better than the
Muon Tagging, while showing similar performance between them. The same is suggested by the AUC,
which are listed below:

Model AUC

Angle Embedding 0.75

DNN 0.75

Muon Tagging 0.60

A more quantitative comparison emerges from the Figures 4.12 and 4.13, which show the mis-tag
and the tagging power of the models evaluated in bins of jet transverse momentum pT in the region
[20, 100] GeV/c. The tagging efficiency ϵeff required to evaluate the tagging power has been calculated,
in each jet pT bin, as the fraction of jets where a muon is reconstructed. Both the figures of merit
show that the ML methods outperform the simple Muon Tagging algorithm: as expected, this analysis
suggests that they are able to extract useful information from the ∆R, prelT of the muon and the jet
charge Qtot, with respect to the muon tagging, that only uses the muon charge to infer the jet charge.
Instead, the Angle Embedding model and the Muon DNN show equal performance within the margin
of error on the mis-tag and on the tagging power.
Moreover, this analysis shows that, despite of the much less trainable parameters (a 104 factor), the
QML Angle embedding model performs just as well as the classical DNN model, within the margin of
error. This has been observed in a low-dimension data-set containing only 4 features.
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4.6.2 Full data-set

The five tagging algorithms performance is evaluated on the full data-set: Figure 4.14 shows the ROC
curves while the AUCs are listed below:

Model AUC

Amplitude Encoding 0.67

Data Re-Uploading 0.65

Tree-Topology (8 features) 0.66

QSVM 0.64

DNN 0.69

ROCs and AUCs suggest that all the quantum algorithm perform similarly, while the DNN performs
slightly better. Figures 4.15 and 4.16 allow for a quantitative comparison showing the mis-tag and
the tagging power in bins of jet transverse momentum pT in the region [20, 100] GeV/c. In this
case, every algorithm is able to produce a jet charge prediction for every jet, so the tagging efficiency
is ϵeff = 100%: as a consequence, the tagging power is directly related the the mis-tag of the algorithm.

The following considerations can be made:

• Among all the quantum models, the Amplitude Encoding model shows the best performance in
terms of the mis-tag and the tagging power. The Tree-Topology model shows similar perfor-
mance, being compatible within the uncertainty with the Amplitude Encoding model in most of
the jet pT bins.

• The QSVM and Data Re-Uploading models show the worst performance in terms of mis-tag and
tagging power, among all the quantum algorithms, performing consistently worse than the other
two models in every jet pT bin. However, these algorithms almost double the tagging power
provided by the Angle Embedding and the DNN on the muon data-set. This means that both
the algorithms are still able to exploit the additional information from the complete 16-variables
data-set, compared to the reduced 4-variables muon data-set.

• The DNN outperforms all the quantum models, showing an advantage of around 1% on the
tagging power with respect to the Amplitude Encoding model. This result is expected since:

– The DNN has much more trainable parameters with respect to the other models (around
100 000 parameters versus 72 parameters of the Amplitude Encoding model);

– The DNN has been trained using the full training data-set, containing 400 000 events, while
the quantum model were constrained to 8 000 jets by computational limits of the quantum
simulators.

Additional considerations on this comparisons are provided in Chapter 6.
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Chapter 5

Asymmetry measurement and
estimation of its uncertainty

In this chapter, the models previously described and analyzed, are used to perform an estimation of
the bb̄ Forward-Central asymmetry on the Monte Carlo simulated data-set in order to evaluate the
precision achievable with the use of these new methods. The main purpose of this analysis is to compare
the results obtained with the tagging algorithms in terms of the expected statistical uncertainty that
they reach when the full data-set of 6 fb−1 of integrated luminosity of the Run2 is used.

5.1 Data selection

The events described in Chapter 2 Section 2.7 are re-weighted by the weight wi

wi =
L · σi
N i

gen

where L = 6 fb−1 is the Run2 integrated luminosity, N i
gen is the number of generated events of

each files and σi is the production cross section of a bb̄ pair, within the LHCb geometrical acceptance
(2 < η < 5), via the processes and the p̂ range relative to the i-th file. The cross sections are computed
using PYTHIA8. The expected total number of bb̄ pairs produced during Run2 can be written as

N bb̄,Run2
tot =

∑︂

i

N i
genw

i ≈ 5.4× 1010 events

where the sum extends over all the files of the data-set.
The bb̄ events, reconstructed with the algorithm described in Sections 2.4 and 2.5, are selected applying
the following criteria on the transverse momentum of the jets pjetT and pseudo-rapidity η jet, and on
the angular separation between the b-jets and the b̄-jets ∆ϕjj :

• pjetT > 20 GeV/c

• 2.2 < ηjet < 4.2

• ∆ϕjj > 2.6

The requirements on the transverse momentum and the pseudo-rapidity ensure that the jets are
reconstructed, in a phase space region where reconstruction and identification efficiencies are uniform
with respect to pjetT and ηjet[26]; moreover, the requirement on ηjet ensures that the entire jet is inside
the fully instrumented LHCb acceptance. The requirement on the angular separation between the two
jets ensures that the two b-jets are well separated[38]. Figure 5.1 shows the distributions of the most
relevant kinematic variables after the data selection process:

• (a): jet transverse momentum pjetT

61



5.2. ASYMMETRY MEASUREMENT AND DILUTION CORRECTION

• (b): jet pseudo-rapidity ηjet

• (c): jet rapidity y

• (d): angular separation between the two jets ∆ϕjj

• (e): dijet invariant mass Mjj =
√︁

(E1 + E2)2 − (p1 + p2)2, where (E1,p1) and (E2,p2) are the
four-momenta of the two reconstructed jets.

Figure 5.1(f) shows also the distribution of Mjj on the Z0/γ subset of events, which has a peak on
the Z0 resonance.

5.2 Asymmetry measurement and dilution correction

In order to measure the Forward-Central bb̄ production asymmetry, defined in 1.4.3, one needs to
count the number of events where the quantity ∆|y| = |yb| − |yb̄| is positive and negative. The sign of
∆|y| is determined by the charge of the jet measured by the b-tagging algorithms. The fact that the
mis-tag of the tagger is not 0 causes a dilution of the asymmetry. Let Abb̄

FC be the true asymmetry,

namely the one measured with a perfect tagger, and Abb̄
FC, Raw be the asymmetry measured with a

tagger with mis-tag ω, called raw asymmetry

Abb̄
FC =

N+ −N−

N+ +N−
Abb̄

FC, Raw =
Ñ

+ − Ñ
−

Ñ
+
+ Ñ

− (5.1)

where N+ = N(∆|y| > 0) and N− = N(∆|y| < 0) for simplicity, while the tilde ones are the same
quantities but measured with the non-ideal tagger. The two denominators represent the total number

of events that does not depend on the mis-tag, so N++N− = Ñ
+
+ Ñ

−
= Ntot. Since the probability

of mis-identification of the charge of the jet is ω, Ñ
+

and Ñ
−

can be rewritten in terms of the true
quantity N+ and N−

Ñ
+
= (1− ω)N+ + ωN− Ñ

−
= (1− ω)N− + ωN+ (5.2)

Therefore, the raw asymmetry can be written as

Abb̄
FC, Raw = (1− 2ω)

N+ −N−

Ntot
= (1− 2ω)Abb̄

FC = DAbb̄
FC (5.3)

The quantity D is called dilution and quantifies the discrimination power of the tagging algorithm,
ranging from 0% for a random tagger (ω = 50%) to 100% for a perfect tagger (ω = 0%).
Therefore, the true asymmetry Abb̄

FC can be obtained dividing the raw asymmetry Abb̄
FC, Raw by the

dilution D of the tagger (dilution correction)

Abb̄
FC =

Abb̄
FC, Raw

D

In this work, the asymmetry has been computed in six bins of dijet invariant mass: [60, 75], [75, 85],
[85, 95], [95, 105], [105, 150] and [150, 200] GeV/c2. This range has been chosen to include most of the
Z0/γ events, with a finer binning near the Z0 resonance, where they are mostly concentrated (see
Figure 5.1f).

5.2.1 Uncertainty on the asymmetry

Two types of uncertainties are associated to the asymmetry measurement:

• The statistical error, given by:

σRun2[A
bb̄
FC] =

1

D

√︄

1−Abb̄
FC

2

N
(5.4)
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where N is the total number of Run2 bb̄ events used for the measurement, and D is the dilution
of the tagging algorithm. (5.4) shows how the tagging performance is strongly related to the
uncertainty on the measurement of the asymmetry: a bad-performing tagging algorithm with
a small dilution D boosts by a factor 1/D the statistical uncertainty given by the number of

available events

√︂

(1−Abb̄
FC

2
)/N .

• The systematic error, which is dominated by the tagging performance showed in Figures 5.4 and
5.7. The discussion of this error goes beyond the scope of this thesis.

5.2.2 Asymmetry in the Monte Carlo simulated data

Since we are working with simulated events generated at LO, QCD events do not have any asymmet-
rical contribution in the bb̄ production and therefore the difference (N+ −N−)QCD cancels out up to
statistical fluctuations, as shown in Figure 5.2a. In order to evaluate the precision on the asymmetry
it is assumed that the QCD contribution is zero and it is known with infinite precision. Only the Z0/γ
events contribute to the asymmetry as shown in Figure 5.2b. Figure 5.2c shows the ∆|y| distributions
of Z0/γ events (in orange), which is clearly asymmetric w.r.t 0, and of QCD events (in light blue),
which is symmetric.

Figure 5.2d shows the asymmetry evaluated on the full set of events, keeping only Z0/γ events in
the difference (N+−N−) in the asymmetry definition. The numerical values obtained from MC truth
in each bin of dijet invariant mass are showed in Table 5.1 and are used as reference values to check
for possible biases introduced by the tagging algorithms.

Mjj range [GeV/c2] Abb̄
FC ± σMC[A

bb̄
FC]

[60, 75] (0.46± 0.03)%

[75, 85] (1.07± 0.08)%

[85, 95] (0.87± 0.10)%

[95, 105] (0.42± 0.11)%

[105, 150] (0.11± 0.05)%

[150, 200] (0.08± 0.13)%

Table 5.1: Asymmetry values in eachMjj bin, computed on the full data-set, using the Monte Carlo truth. The
error reported is the Monte Carlo statistical error.

5.3 Comparison among methods

In this section the results of the evaluation of the accuracy on the asymmetry using the proposed
tagging methods are presented. The analysis has been performed on

1. the subset of events, where at least one of the two jets has a muon inside (called muon data-set).
This data-set has been analyzed using the Angle Embedding model, the DNN model and the
classical Muon Tagging algorithm;

2. the complete data-set where the Amplitude Embedding model and the DNN model have been
tested.

5.3.1 Results on the muon data-set

Selecting events with at least a muon inside a jet could, in principle, introduce biases in the distri-
bution of the kinematic variables shown in Figure 5.1. To evaluate each bias, the same distributions
shown in Figure 5.1 are done for the muon data-set and compared to the complete ones, as shown in
Figure 5.3, and these do not show off any relevant bias. Figure 5.4a, shows the tagging efficiency of
the tagging algorithms, as a function of the dijet invariant mass, defined as the number of events with
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at least a jet containing a muon divided by the total number of events.

For the asymmetry measurement, the Muon Tagging algorithm has been implemented with the fol-
lowing rules:

• If only one jet of the event (say Jet1) contains a muon and the other (say Jet2) not, then Jet1

is tagged with the charge of the muon and to Jet2 is given the opposite charge.

• If both jets contain a muon, then the muon with the highest transverse momentum relative to
the jet axis prelT is chosen (say the muon in Jet1) and used to tag Jet1, while Jet2 is tagged
with opposite charge. This choice maximize the probability of selecting the correct muon coming
from a semi-leptonic decay of the b-hadron.

The Angle Embedding model and the DNN have been handled in a slightly different way. ML models
produce two tagging probabilities Pb and Pb̄ that are used to tag events:

• If the event has only one muon, then the jet containing the muon is tagged with the highest
probability charge, the other jet is tagged with the opposite charge.

• If both jets contain a muon, then the jet associated with the largest tagging probability is chosen
and tagged accordingly, while the other is tagged with the opposite charge.

The mis-tag ω and the tagging power ϵtag of the three tagging algorithms are evaluated per dijet pairs,
in bins of dijet invariant mass Mjj . The results are shown in Figure 5.4b and 5.4c, and exhibit similar
behaviors compared to the results obtained on the per-jet analysis presented in Chapter 4 (Figure
4.12, 4.13). This is expected since most of the events contains only one muon, therefore the mis-tag
probability on the dijet pair coincides with the mis-tag probability on the single jet.

The raw asymmetry is computed as a function of the dijet invariant mass, using the three tagging
algorithms; the results shown in Figure 5.5 (on the left) are compared with the Monte Carlo truth.
As expected, in most of the bins, the raw asymmetry values differs significantly from the Monte
Carlo truth, since no dilution correction has been applied yet. Note that the Monte Carlo statistical
uncertainties on the raw asymmetry evaluated with the three different tagging methods are roughly
comparable, since they depend only on the available statistics on the Muon data-set.
On the right of Figure 5.5, the dilution-corrected asymmetries are shown which are now compatible
with Monte Carlo truth within the Monte Carlo statistical error. This demonstrates that the tagging
methods or the selection criteria do not create any bias on the measurement. Note that, Muon Tag-
ging algorithm (in green) shows significantly larger uncertainties with respect to the Angle Embedding
quantum method (in orange) and the classical DNN (in blue); since all the three methods have the
same tagging efficiency ϵeff, this is a consequence of the large mis-tag ω rate of the Muon Tagging
with respect to the other two tagging methods, which results in a larger tagging power ϵtag for the
ML methods, as clearly shown in Figure 5.4.

Figure 5.6 shows the expected Run2 statistical uncertainties achievable by each one of the three tag-
ging methods. The bar plot clearly shows that both the ML methods outperform the Muon Tagging
algorithm, while showing similar performance between them.

5.3.2 Results on the full data-set

The complete data-set is analyzed by using the Amplitude Embedding, the best QML model among
the tested ones, and the classical DNN model.
The algorithms produce independent tag prediction probabilities for both jets of each event; this im-
plies that the tagging efficiency is ϵeff = 100%, and therefore the tagging powers ϵtag only depend
on the mis-tag rates. The dijet pair of each event is unambiguously tagged by choosing the jet asso-
ciated with the largest tagging probability as b- or b̄-jet and assigning to the other the opposite charge.

The tagging performance of the two methods has been evaluated and is shown in Figure 5.7. The DNN

67















5.3. COMPARISON AMONG METHODS

74



Chapter 6

Conclusions and future developments

6.1 Conclusions

In this thesis, I presented the first proof-of-concept of the application of QML algorithms to solve the
problem of charge identification of b-jets on LHCb simulated data. I have studied several QML models
and compared them to classical ML algorithms in terms of tagging performance. Then, I computed
the Forward-Central asymmetry on simulated data aiming to estimate the statistical uncertainty that
each tagger is able provide on it when the full integrated luminosity acquired during the Run2 of
LHCb is used. The results can be summarized as follows:

• Both quantum and classical ML algorithms outperform the Muon Tagging method, as shown
in Figures 5.4, 4.12, 4.12 and 5.6. This result is expected since the performance of the latter
is strongly limited by the branching ratio of the semi-leptonic decay of b-hadrons into muons,
which keeps the tagging power at ≈ 1%. Even when restricted to the reduced Muon data-set,
ML algorithms have better performance of the Muon Tagging, being able to exploit additional
information of the muon properties and of the global jet charge.

• The quantum Angle Embedding model and the classical DNN model, both trained on 4-variables
of the Muon data-set, using the same number of jets, show similar mis-tag rates and tagging
powers within the errors (Figures 4.12-4.13). As a consequence, both tagging algorithms are
able to provide similar uncertainties when used to estimate the bb̄ asymmetry (Figure 5.6).

• Results on the complete 16-variables data-set show that the classical DNN algorithm performs
slightly better than any tested QML model, reaching an average tagging power of≈ 7% compared
to ≈ 5% of the Amplitude Encoding model (Figure 4.16). This performance gap gets enhanced
when the tagging power is evaluated on bb̄ dijet pairs, as shown in Figure 5.7. However, due
to computational limitations, quantum models have been trained on a reduced number of jets,
while the DNN has been trained using the complete Monte Carlo statistics (see discussion on
the next paragraph).

6.1.1 Final considerations on Quantum Machine Learning

The computational constraints of current quantum simulators put hard limits on the execution of
ML tasks using quantum circuits, forcing to work with simple quantum models and small data-sets.
This makes very challenging a “fair” comparison between quantum and classical methods, in terms of
number of trainable parameters, size of the training data-set and number of variables. In this work, I
have compared QML and classical ML algorithms in two configurations:

• Reduced data-set: models trained on the muon data-set (Angle Embedding model and Muon
DNN model) have been fed with the same number of jets (60 000), but with a simplified data
structure, containing only 4 variables. In this case, although the QML model requires only 48
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parameters to be trained versus ≈ 180 000 parameters of the Muon DNN, the two models show
the same tagging performance within the errors.

• Complete data-set: this data-set features 16 variables and a total of ≈ 420 000 jets for training.
With nowadays quantum simulators, the training of a QML model under these conditions is
unfeasible in a reasonable time (training the Data Re-Uploading classifier on the full data-set
would require approximately 20 days). On the other hand, a large number of training jets is
mandatory for the training of a DNN model, which can benefit from GPU acceleration, due
to the large number of parameters to be optimized. For these reasons, I decided to train the
DNN with the full available data to exploit its capabilities, while reducing the training size
of QML models to 8 000 jets. With this choice, each model is tested in the best conditions
compatible with the practical working environment determined by the execution time. The
DNN shows better performance of all the QML algorithms, however the quantum Amplitude
Encoding model perform worse just by 2% on the tagging power, which is a notable result.
Furthermore, in this case, quantum algorithms are able to achieve this performance with much
smaller number of trainable parameters: the DNN requires around 100 000 parameters, while
the Amplitude Encoding algorithm, only 72.

Despite of the computational constraints, this first proof-of-concept suggests that even simple QML
models are able to achieve performance comparable with much more complex DNN models.

6.2 Future Development

6.2.1 New quantum models and use of large data-sets

The comparison of the performance of different quantum algorithms on the complete data-set has
shown that an higher tagging power is not necessarily associated with a larger number of parameter of
the circuit, instead, the circuit structure seems to play a major role: the Amplitude Encoding model
with 72 trainable parameters performed better than the Data Re-Uploading model which requires 216
parameters to be optimized, and comparably with the Tree-Topology model featuring 104 trainable
parameters. Future analysis should include the exploration of new quantum models, further investigat-
ing the relationship between the quantum circuit ansatz and structure of the input data-set. Possible
biases on the physics measurements have to be controlled even thought from the tests I performed in
this thesis it seems not to be a critical point.

As previously stated, current computational constraints of quantum simulators strictly bound the
possibility to explore quantum models featuring more qubits, more trainable parameters and more
complex structures. Even if nowadays quantum simulators are able to deal with 30-qubits systems,
usually they are not optimized for ML tasks which require a large number of evaluation of the quantum
circuit in parallel (batch execution), to estimate the gradient during the training phase. Classical ML
models, such DNNs, efficiently exploits batch execution via the GPUs processing power which provide
a large speed-up during the training, allowing to process large data-sets in reasonable time.

When more efficient quantum simulators will become available, an extension to this analysis can con-
sist in testing quantum models on the complete data-set, making use of the full number of available
training jets, in order to produce fair comparisons with classical ML methods.

6.2.2 Quantum noise

In this work, I tested the proposed quantum algorithms using noiseless quantum simulators. However,
measurements on quantum circuits are always affected by noise originating from the interaction of the
n-qubits system with the environment.

There exist several quantum simulators that allow for noise-aware simulations of quantum circuits: as
an example, the IBM Qiskit Aer simulator offers the possibility to use realistic quantum noise models,
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tuned on real quantum hardware available via the IBM Quantum Experience.

I have performed a preliminary test consisting in training the simple Angle Embedding model with
the noise-aware Qiskit Aer quantum simulator. Unfortunately, the training procedure cannot be com-
pleted even with small training data-sets because of the too high RAM occupation (the test was
executed on a system with 32 GB of memory and it crashed before completing the first optimization
epoch because it ran out of RAM). This is expected, since noise simulators require a density matrix
description of the quantum state instead of a simple state vector, in order to properly express mixed
states. Moreover, at the moment, noise-aware simulators are not optimized for ML tasks which require
a large number of evaluation of the quantum circuit for the estimation of the gradient.

As software libraries and simulators are quickly improving over time, the use of noise-aware simu-
lators can be considered for future studies about how quantum noise can affect this kind of models.

6.2.3 Quantum hardware

At the moment, quantum hardware is publicly available via quantum computing cloud solutions such
as:

• IBM Quantum Experience: this platform provide free cloud-access to several quantum de-
vices with a variable number of qubits, ranging from 1 to 65. The concurrent access to the
systems by multiple users is managed via a fair-share queue system that is supposed to avoid
the monopolization of a device by a single user, this causes that multiple circuits executions
require queue waiting times of the order of several seconds/few minutes, that allows the other
users to make use of the same resource. This solution is highly unfeasible for ML training tasks
since they require a large number of circuits evaluations to perform an optimization step.

• Amazon Braket: this solution is included in the Amazon Web Services (AWS) and provides
cloud-access to different quantum hardware and simulators. The available simulators are:

– SV1 is a noise-less simulator that is able to simulate a quantum circuit up to 34-qubits in
around 2 hours.

– TN1 is another noise-less simulator that uses tensor-network model, optimized to simulate
some kind of quantum circuits up to 50 qubits.

The available hardware devices are:

– IonQ is a 11-qubits general-purpose circuit-based quantum device based on ion trap tech-
nology.

– Rigetti Aspen-9 is a 32-qubits general-purpose circuit-based quantum device, based on
superconducting qubits.

– D-Wave is a quantum annealer which is a specific-purpose machine designed to solve prob-
lems belonging to the class of Quadratic Unconstrained Optimisation (QUBO). This device
does not support quantum gates and quantum circuits.

Hardware devices are not always available, but they can be used only for a limited amount of
time during the day, then they need to undergo a new calibration before being available again
the next day.

Thanks to an agreement between INFN and Amazon AWS, I have been able to test the training of
a simplified Angle Embedding model with a reduced data-set containing only few events, running on
the Rigetti Aspen-9 device, via the Amazon Braket platform. Unfortunately, I was unable to complete
the training for the following two reasons:

• Even if the execution of the quantum circuit on the hardware takes time of the order of 1 ms,
the access time to the hardware resource was found to be of the order of several seconds. This
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Figure 6.1: IBM Quantum road-map for the next 5 years. [44]

represent a bottleneck for the training procedure that requires the execution of a large number
of circuits.

• Since hardware devices are available only a fraction of the full 24 hours a day, the total run-time
required for a training procedure reaches the order of centuries. Moreover, the code must be
carefully adapted to automatically handle the daily maintenance stops of the hardware.

Current publicly available quantum hardware has proved to be unfeasible for the execution of our
QML algorithm. However, the availability of quantum resources is expected to grow quickly in the
near future. Figure 6.1 shows the IBM road-map in the development of quantum devices for the
upcoming years. According to this figure, by the 2022, devices with several hundred of qubits should
become available, and by the 2026 devices with several thousands or even millions of qubits could
appear. Devices with a large number of qubits can provide a large speed up in the training proce-
dure, since multiple copies of a quantum circuit can be executed in parallel querying the device only
once. Therefore, in the next years, current hardware limitations can be overcome and the algorithms
proposed in this work can be tested directly on quantum devices.

6.2.4 Search for particles correlations inside jets

The internal structure of jets is the result of non-perturbative QCD mechanisms occurring in the
hadronization process. Therefore, the information on the parton that initiates it, is diluted in the
sea of the final state particles. The ability of detecting correlations among these particles is unique
to quantum algorithms and opens new possibilities in building up new methods of jets reconstruction
and identification, which then reflect in new physics measurements, see for example [35].
In addition to that, other possibilities are offered by quantum models. The Grover’s quantum algo-
rithm[40] (also known as quantum search algorithm) is able to solve the problem of unstructured search
in a database using only O(

√
N) queries; a classical algorithm cannot solve the same problem using

less then O(N) database queries, which proves the quantum advantage of the Grover’s algorithm.
The Grover’s algorithm has inspired several other algorithms for quantum pattern searching[50] and
quantum feature selection[18, 43].

Future employment of these new techniques could, for example, help tracks reconstruction in fu-
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ture experiments at future colliders where the hits multiplicity is very difficult to manage. Moreover,
this approach could suggest new, more optimized, parametric circuits that may change the way physics
object will be reconstructed the future HEP experiments.
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