

UNIVERSITÁ

Dipartimento di Ingegneria Industriale DII

Dipartimento di Tecnica e Gestione dei Sistemi Industriali DTG

Corso di Laurea Magistrale in Ingegneria

SIMULATION

OF TRADITIONAL AND MOBILE RACKS PICKING SYSTEMS

Relatrice Ch.ma Prof. Battini Daria

Correlatore Ch.mo Prof. Sgarbossa Fabio

Correlatore Ch.mo Dr. Grosse Eric

UNIVERSITÁ DEGLI STUDI DI PADOVA

Dipartimento di Ingegneria Industriale DII

Dipartimento di Tecnica e Gestione dei Sistemi Industriali DTG

Corso di Laurea Magistrale in Ingegneria Meccanica

SIMULATION-BASED EVALUATION

AND MOBILE RACKS PICKING SYSTEMS

Relatrice Ch.ma Prof. Battini Daria

Ch.mo Prof. Sgarbossa Fabio

Ch.mo Dr. Grosse Eric

 Lucchini Giacomo

Anno Accademico 2018/2019

Dipartimento di Ingegneria Industriale DII

Dipartimento di Tecnica e Gestione dei Sistemi Industriali DTG

Meccanica

EVALUATION

AND MOBILE RACKS PICKING SYSTEMS

Lucchini Giacomo 1156523

To my mum,

for having been close to me at all times

and for having made me become the man I am today.

A mia mamma,

per essermi rimasta vicino in ogni momento

e per avermi fatto diventare l'uomo che sono oggi.

I

Ackowledgements

Within this whole piece of research, this is the page where I get express my

personal gratitude to all those people who had been an important part of my life

and this work, wouldn't have been possible without their support and constant

motivation.

I would like to thank my Italian and German supervisors, Prof. Battini Daria,

Prof. Sgarbossa Fabio and Dr. Grosse Eric, for their advice and support during

the work. The gave my freedom to pursue my ideas, work at my own pace and

look for solution to the problem through my approach. I enjoyed spending time

learning and gaining experience under them. A special thanks to Prof.

Sgarbossa Fabio who gave me the possibility to work for six months in

Darmstadt, where I learned how to work harder and where I had a great time.

An other special thanks to Dr. Grosse Eric who has closely followed this work. I

am highly indebted to him for clarifying my doubts and for providing suggestions

and criticisms on my work.

Thanks to all online plantsimulation forum and in particular to Steffen who

taught me to use the program with which I performed my work.

A big thanks goes to my parents and my girlfriend, who have always supported

me in good and bad times, both with advice and finance. They have always

believed in me and they have never made me feel alone.

Thank to my friends Cristian, Paolo, Giorgio, Federica, Giulio, Andrea and all

the others. I would like to thank my batchmates Soumya, Martin, Min, Ceren,

Abdel, Mark, Sumit and Parastoo from my language course. I have learnt a lot

about different nations and their cultures through them. Learning in this course

wouldn't have been so fun without them. Although our friendship was just a brief

time, I shared some greatest moments of my life with them.

II

To finish it up, I would like to thank myself. Because of all the sacrifices I have

made, for every weekend of four years to work to be independent. Nobody sees

all the work behind a result, but the result is always worth it.

III

Abstract

In the operation procedure of distribution center, picking is considered as the

primary field to improve operation efficiency of warehousing. The growth in

online retailing has fuelled the order fulfilment business, where thousands of

orders are now picked in warehouse largely by human pickers. This has

inevitably changed the way in which the orders processing is performed by

suppliers, who are face the need to respond very rapidly and flexibly. This trend

strongly affects the configuration of picking warehouse and of the activity that

have to be carried out within them, with larger pick volumes that have to be

satisfied within shorter time windows.

The order picking is the most labour-intensive, time and cost consuming activity

in warehouse, it includes 55% of the whole warehouse operating costs.

Obviously, the travel and search times of pickers are an unproductive parts of

the order picking process, then to improve performance and at same time

reduce costs, these times must be reduced. We need to use strategy to obtain

some benefits in this sense. A paperless picking system is constituted of a set

of device designed and adopted to facilitate the work of the operators, mostly in

terms of getting information on the product to be picked and finding the

corresponding storage location. Another method to increase productivity, at the

expense of reducing the times involved in picking activity, is to adopt a picking

system different from the traditional one (picker-to-parts) and precisely a parts-

to-picker method. The basic aim of these system is to automatically move the

stock keeping units to the pickers, so that they can concentrate on the

productive part of their employment. A new frontier of parts-to-picker system is

the mobile racks method in robotic environment, also called robotic mobile

fulfilment system (RMFS). This is a more recent AGVs application method.

Then, to reduce the search time can be used support systems to drive and

control the pickers during their work or to reduce both the search and

displacement time have been changed the type of order picking system from

picker-to-parts to parts-to-picker. Moreover, to reduce the travel time, keeping

IV

the same picking system, can be modified the number of orders picked

simultaneously, using the batching policy linked to a time window, or can be

changed the routing method of pickers.

The aim of this work is compare, through simulations, the performance and

economic evaluation of three different picking systems: the traditional one, the

traditional one with the help of the paperless support system, precisely with

pick-to-light support, and the mobile racks system, precisely the most famous

called Kiva system.

V

Table of contents

ACKOWLEDGEMENTS ... I

ABSTRACT ... III

TABLE OF CONTENTS ... V

LIST OF FIGURES ... IX

LIST OF TABLES AND CHARTS ... XI

INTRODUCTION ... 1

1. WAREHOUSE PICKING DESIGN .. 5

1.1. WAREHOUSE FLOW .. 5

1.1.1. RECEIVING .. 6

1.1.2. PUT AWAY .. 7

1.1.3. CHECKING AND PACKING ... 7

1.1.4. SHIPPING .. 7

1.1.5. ORDER-PICKING ... 8

1.2. ORDER PICKING SYSTEM CLASSIFICATION .. 9

1.2.1. "PICKER-TO-PARTS" SYSTEM .. 11

1.2.2. "PICK-TO-BOX" SYSTEM ... 12

1.2.3. "PICK-AND-SORT" SYSTEM ... 12

1.2.4. "PARTS-TO-PICKER" SYSTEM .. 13

1.3. LAYOUT DESIGN .. 13

1.4. STORAGE ASSIGNMENT .. 14

1.4.1. FORWARD-REVERSE ALLOCATION ... 14

1.4.2. STORAGE ASSIGNMENT POLICIES .. 15

1.4.3. CLASS-BASED STORAGE ... 16

1.5. BATCHING ... 16

VI

1.6. ROUTING METHODS ... 17

1.7. WAREHOUSE MANAGEMENT SYSTEM (WMS) ... 18

2. SYSTEMS DESCRIPTION ... 21

2.1. STATE OF ART OF THE SYSTEMS SUPPORTING PICKING ACTIVITIES ... 21

2.1.1. BARCODE HANDHELD SYSTEM ... 23

2.1.2. PICK-TO-LIGHT SYSTEM .. 24

2.2. MOBILE RACKS SYSTEM IN ROBOT ENVIRONMENT .. 24

2.2.1. KIVA SYSTEM CONFIGURATION ... 24

2.2.2. KIVA SYSTEM RESOURCES .. 25

2.2.3. KIVA SOFTWARE ... 29

3. ASSUMPTION AND PARAMETERS.. 33

3.1. GENERAL ASSUMPTION FOR ALL SYSTEMS ... 33

3.1.1. NUMBER AND DIMENSIONS OF SHELVES .. 33

3.1.2. NUMBER AND TYPE OF SKUS ... 36

3.1.3. NUMBER AND TYPE DAILY ORDERS ... 37

3.1.4. PICKING TIME AND OTHER TIME COMPONENTS ... 38

3.2. ASSUMPTION OF THE PICKER-TO-PARTS SYSTEMS ... 38

3.3 ASSUMPTION OF THE PARTS-TO-PICKER SYSTEM ... 40

4. OVERVIEW OF PLANT SIMULATION ... 45

4.1 WHAT IS SIMULATION? .. 45

4.2 BASIC OBJECTS OF PLANT SIMULATION ... 46

4.2.1 MATERIAL FLOW ... 46

4.2.2. RESOURCES .. 48

4.2.3. INFORMATION FLOW ... 48

4.2.4. USER INTERFACE .. 49

4.2.5 MOBILE UNITS ... 50

VII

5. SIMULATION MODELS ... 51

5.1. GENERAL PARTS FOR ALL SYSTEMS .. 52

5.1.1. CREATION OF STORED SHELVES AND FILLING WITH ASSOCIATED ITEMS 52

5.1.2. PLACING ORDERS IN THE STATION .. 54

5.1.3. DATA COLLECTION ... 56

5.2. CHOICE OF THE SHELVES AND PICK UP ITEMS IN PICKER-TO-PARTS SYSTEMS 57

5.3. CHOICE OF THE PODS TO BRING TO THE STATION IN KIVA SYSTEMS .. 60

5.4. CHOICE OF THE AGV AND PICK UP ITEMS IN THE STATION IN KIVA SYSTEMS 63

6. RESULTS .. 67

6.1 VALIDATION OF THE MODELS .. 71

6.2. DISPLACEMENT TIME .. 72

6.3. PICKER UTILIZATION .. 78

6.4. THROUGHPUT ... 82

7. ECONOMIC EVALUATION ... 85

8.CONCLUSION ... 95

APPENDICES .. 97

A.1. INIT METHOD .. 97

A.2. FILLPODS METHOD ... 98

A.3. SETORDERINSTATION METHOD ... 99

A.4. END SIM METHOD (FOR KIVA SYSTEM) .. 100

A.4. END SIM METHOD (FOR PICKER-TO-PARTS SYSTEM) ... 101

A.6. METH_ASSEMBLY ... 104

A.8. STATION SENSOR METHOD .. 114

REFERENCES .. 117

VIII

IX

List of figures

Fig. 1.1. - Warehouse flow. Circled in red its most demanding part, that requires

most of the time and cost ..6

Fig. 1.2. - Division of costs in order-picking. (from Bartholdi and Hackman,

2017)..9

Fig. 1.3. - Classification of order picking system..10

Fig.1.4. - Empirical analysis of investigated order picking system (Dallari et al.,

2017)..11

Fig. 1.5. - Typical layout decision in order picking system design.....................14

Fig. 1.6. - Illustration of two ways to implement class-based storage................16

Fig. 1.7. - Example of heuristic routing methods..18

Fig. 2.2. - Pros and cons for picker-to-parts and parts-to-picker........................21

Fig. 2.2. - Two different configuration for Kiva system. Red line indicates robot

carrying inventory pod from storage area t the picking station and back to the

picking area. Violet indicates robot carrying pod for replenishment. Blue line

indicates order pod being carried from induction station to picking station and

finally to the shipping station. Green line indicates robot again carries empty

order pod from shipping station to induction stations...25

Fig. 2.3. - An inventory pod being carried by a Kiva system..............................26

Fig. 2.4. - An sample Kiva picking station..27

Fig. 2.5. - Robot in Kiva system...29

Fig. 2.6. - Logical system relationships..29

Fig. 2.7. - Multi-agent architecture of Kiva system...29

Fig. 2.8. - Navigation system of Kiva system (with control markers).................31

Fig 3.1. - Left: forward area with return routing; right its top view......................39

Fig 3.2. - Example of class distribution in warehouse with return routing..........39

Fig 3.3. - Left: forward area with traversal routing; right its top view..................40

Fig 3.4. - Example of class distribution in warehouse with traversal routing......40

Fig. 3.5. - Example of class distribution in Kiva storage area............................41

Fig. 3.6. - Forward area of Kiva system by PlantSimulation14..........................41

Fig 3.7. - Top view of forward area of Kiva system by PlantSimulation14.........42

X

Fig 5.1. – In order from left to right: the base for picker-to-parts system with

return routing, the base for picker-to-parts system with traversal routing and the

base for parts-to-picker system..52

Fig 5.2. – Screenshot: commands to create shelves and fill them with

associated articles...53

Fig 5.3. – Screenshot: commands to create order and send them in the

station...55

Fig 5.4. – Screenshot: commands to Choice of the shelves and pick up items in

picker-to-parts systems..57

Fig 5.5. – Screenshot: commands to Choice of the most suitable in Kiva

systems..60

Fig 5.6. – Graphic example..62

Fig 5.7. - Shortest route...62

Fig 5.8. – Screenshot: commands to choice and movement AGVs...................64

XI

List of tables and charts

Tab. 3.1. – Research number of shelves...34

Tab. 3.2. – Research number of SKUs and total order lines.............................36

Chart 3.3. - Class distribution..37

Tab. 3.4. - Time components...38

Tab 6.1 – BarcodeHandheld system results..68

Tab 6.2 – PicktoLight system results..69

Tab 6.3 – Kiva system results..70

Tab 6.4 – Literature and simulation throughput...71

Chart 6.5 – Rappresentation of the division of time in the barcode system, with

traversal path and 1(left) or 3 (right) batch orders...72

Chart 6.6 – Rappresentation of the division of time in the barcode system, with

return path and 1(left) or 3 (right) batch orders..73

Chart 6.7 – Rappresentation of the division of time in the pick to light system,

with traversal path and 1(left), 3 (middle) and 5(right) batch orders..................73

Chart 6.8 – Rappresentation of the division of time in the pick to light system,

with return path and 1(left), 3 (middle) and 5(right) batch orders.......................74

Chart 6.9 – Rappresentation of the division of time in the Kiva system, with 3

batch orders and 3,4,5 and 6 robots..74

Chart 6.10 – Rappresentation of the division of time in the Kiva system, with 5

batch orders and 3,4,5 and 6 robots..74

Tab 6.11 – Detail percentage displacement time...75

Chart 6.12 – Difference between displacement times compared to the number

of batch orders...76

Chart 6.13 – Difference between waiting times compared to the number of

AGVs..77

Chart 6.14 – Percentage picker utilization..78

Chart 6.15 – Picker utilization of Barcode system..79

Chart 6.16 – Picker utilization of Pick to Light system......................................80

Chart 6.17 – Picker utilization of KIva system...81

Chart 6.18 – Throughput of the picking systems..83

XII

Table 7.1 – Hourly cost function components and notation..............................86

Table 7.2 – Picking technology main cost...87

Table 7.3 – Cost components values..88

Table 7.4 – Hourly cost function for system with return path............................91

Table 7.5 – Hourly cost function for system with traversal path........................92

Table 7.6 – Hourly cost function changing CF...93

1

Introduction

In the operation procedure of distribution center, picking is considered as the

primary field to improve operation efficiency of warehousing, this has become

more and more true with the beginning of the era of e-commerce and the

evolution of customer orders. The growth in online retailing has fuelled the order

fulfilment business, where thousands of orders are now picked in warehouse

largely by human pickers (Bozer and Aldarondo, 2017). This has inevitably

changed the way in which the orders processing is performed by suppliers, who

are face the need to respond very rapidly and flexibly. This trend strongly

affects the configuration of picking warehouse and of the activity that have to be

carried out within them, with larger pick volumes that have to be satisfied within

shorter time windows (De Koster et al., 2007; Bartholdi and Hackman, 2011).

The order picking is the most labour-intensive, time and cost consuming activity

in warehouse, it includes 55% of the whole warehouse operating costs

(Tompkins et al., 2010). This cost can be divided further: travelling takes the

55% of the time, searching takes the 15%, picking the 10% and paperwork and

other activities the 20%. Searching items and travel may account for 70% of the

time required to fill orders (Franzelle, 2002). Obviously, the travel and search

times of pickers are an unproductive parts of the order picking process, then to

improve performance and at same time reduce costs, these times must be

reduced.

According to De Koster et al. (1998) paperless order picking systems can be a

useful strategy to obtain some benefits in this sense. A paperless picking

system is constituted of a set of device designed and adopted to facilitate the

work of the operators, mostly in terms of getting information on the product to

be picked and finding the corresponding storage location (Battini et al. 2014). A

new frontier of paperless picking is represented by the use of important devices

that have been developed to speed up picking activities and to avoid picking

errors, such as LED display or digital screens, voice-activated devices (voice

picking), wireless appliances and lighting systems (pick-to-light). Picker and

2

warehouse staff are connected online with the warehouse information system,

enabling updated stock information, immediate reactions to particular situations

and the real-time monitoring of operational status, leading to an overall

productivity increase.

Another method to increase productivity, at the expense of reducing the times

involved in picking activity, is to adopt a picking system different from the

traditional one (picker-to-parts) and precisely a parts-to-picker method (Boysen

et al., 2016). The basic aim of these system is to automatically move the stock

keeping units to the pickers, so that they can concentrate on the productive part

of their employment. A new frontier of parts-to-picker system is the mobile racks

method in robotic environment, also called robotic mobile fulfilment system

(RMFS). This is a more recent AGVs application method (Lamballais et al.,

2017).

Then, to reduce the search time can be used support systems to drive and

control the pickers during their work or to reduce both the search and

displacement time have been changed the type of order picking system from

picker-to-parts to parts-to-picker. Moreover, to reduce the travel time, keeping

the same picking system, can be modified the number of orders picked

simultaneously, using the batching policy linked to a time window, or can be

changed the routing method of pickers (De Koster et al., 2006).

The aim of this work is compare, through simulations, the performance and

economic evaluation of three different picking systems: the traditional one, the

traditional one with the help of the paperless support system, precisely with

pick-to-light support, and the mobile racks system, precisely the most famous

called Kiva system. The results that determine the performance of the work

systems were found with a 6-month simulation created on PlantSimulation14, a

Siemens program. The picking systems have been implemented in a

warehouse with dimensions suitable for being able to use also a parts-to-picker

method. In order to have as realistic as possible simulation, these dimensions

and other parameters, such as the number of SKUs and daily orders, were

searched in the literature (Lamballais et al., 2015; Liernet et al., 2017; Bozer et

3

al., 2018; Zou et al., 2017; Merschformann et al. 2017; Merschformann et al.

2018; Bahrami et al., 2017; Petersen and Aase, 2003; De Koster et al., 2011;

Horvat, 2012) and then assumed the average values.

An important characteristic of this work is the field of application of picking

system, the randomly created orders, equal for each system, are meant to be

online food retailing orders. Then with a large number of order lines per order.

The performances calculated at the end of the simulation for each configuration

of the picking systems are:

• Elapsed time to complete daily order

• Picker throughput calculated in order line per hour

• Average time for order

• Number of shelves visited to complete an order

• Times and percentages for each activity of the picker (getting

information, searching, picking, confirm and travel)

• Picker utilization

• Times and percentages for each activity of the Kiva robot (waiting and

working)

• Kiva robot utilization

The economic evaluation has been calculated following the procedure proposed

in the article “A comparative analysis of different paperless picking system”

performed by Battini et al.,2014. The result of the economic evaluation is an

hourly cost in function of number pick for hour, calculated also with the variation

of some parameters.

4

5

1. Warehouse picking design

The aim of this chapter is to give the reader the basic knowledge on warehouse.

Here, the steps that the items must pass before being shipped to the customer

will be listed and explained, focusing on the phase that requires the greatest

effort and cost. This phase is the picking activity. After that, will be defined the

different policies that could be used to determine order picking system, layout

design, storage assignment, batching orders and routing methods.

1.1. Warehouse flow

In general, warehouse reorganize and repackages products. The products

typically arrive packaged and leave the warehouse packaged, but in a smaller

scale. The reason why the products arrive in a warehouse in lot is that it is

faster and simpler to handle lot than each. A golden rule, suggested by

Bartholdi and Hackman (2017) is "the smaller is the handling unit, the greater is

the handling cost".

More or less in every warehouse there is a common flow of materials: receive

bulk shipments and store them for quick retrieval; then, in response to a

costumer's order, products are picked automatically or by an operator and they

are shipped to the customer as soon as possible. The flow of material in a

warehouse can be summarised in two parts: inbound and outbound processes.

In inbound processes the two main activities are receiving and put-away. In

outbound processes the main activities are order-picking, checking, packaging

and shipping. Between inbound and outbound processes there is storage,

where products are stocked. This material flow is summarized in figure 1.1.

6

Fig. 1.1. - Warehouse flow. Circled in red its most demanding part, that requires most of the time and cost

A process must flow as fast as possible and without interruptions, because each

time a product is put down, it means it has to be picked up again later: double-

handling is a loss of time, energy and money. The effect of double-handling is

wider if we think that we have to handle thousand of SKUs1 per hour. Then if it

is possible to avoid double handling, it is better to do it to save money and

therefore gain more.

From here on, will be explain widely four part of flow mentioned before. After

that, will be focus more on picking, which is the most labour-intensive activity in

warehouse.

1.1.1. Receiving

Material is received after an order has been done. Receiving begins with a list,

which shows the schedule of arrivals; this list lets the warehouse to know

exactly when the trucks are arriving and in which order. As soon as a product

arrives, it is registered in the database, it is checked and stocked. Products are

usually shipped in pallets: it means they are held together on a platform

800x1200 (European pallet) or 1016x1219 (American pallet) or 1165x1165

(Australian pallet); the main advantage to use pallet is that loads and unloads of

1 A stock keeping unit, or SKU, is the smallest physical unit of a production that is tracked by an
organization.

7

trucks are faster. Along the flow these pallets will be disassembled in smaller

groups of products.

The cost of receiving is around the 10% of the whole cost.

1.1.2. Put away

Put away is a very important issue in warehouse. Before doing it, is very

important to decide the location to stock it. The place where they are stocked

determines how quickly products can be reached and the later cost of product

handling. The location of products is essential to write the picking list, which

shows to the pickers where retrieving the product. As soon as a product is put

away, it has to be registered on a software, which creates the picking list.

Put away typically accounts the 15% of the warehouse costs, but this cost can

be reduced if the locations to stock pallets are chosen well.

1.1.3. Checking and packing

In general, after all the products of an order have been picked, every order has

to be checked to control if it is complete and accurate. Order accuracy is one of

the most useful indicator to measure the level of service given to a customer.

Inaccurate orders lead to problems: the customers can be annoyed and they

could send the products back, generating a return, which is very expensive to

handle (up to 10 times the costs of normal shipping). After the control, is always

better to pack all the parts of an order together. The customer often requires it,

because he can shorten the time of shipping, unloading and handling.

1.1.4. Shipping

When the products are ready and packed together, they can be shipping. In

general, shipping works with larger units than picking, because all the items are

consolidated in few containers. Depending on the type of pallet and the type of

truck, a different number of pallet can be shipped. As soon as the truck leaves

the factory, the departure is register and customer is warned.

8

1.1.5. Order-picking

Order picking is the most labour-intensive activity in warehouse. It also

determines the service seen by the customers. It must be flawless and fast. It

can be done by a person or by a machine. Once a customer orders some

products, it is checked if these products are available in the warehouse; if they

are, the order can be accepted. As soon as the order is accepted, a software

called warehouse management system (WMS) creates a picking list to guide

order-pickers. The software produces all the shipping documentation and the

shipping schedule and coordinates all the different activities in the warehouse.

The action of picking can be divided in three phases:

• Travel to the storage location: the operator, thanks to the picking list,

has to reach the right storage location.

• Local research: once the operator has reached the right location, he has

to find the exact position of the product. The smaller is the product, the

more difficult is the operation. That is the part of picking in which is

simpler to make mistake, so the operator has to pay a lot of attention,

not to pick the wrong SKU.

• Reach, grab and put: it is when the operator takes and put in the

container the products requested by the customer. It is only part of

picking which is value-adding.

Order picking includes 55% of the whole warehouse operating costs. This cost

can be divided further: travelling takes the 55% of time, searching take the 15%,

picking the 10% and paperwork and other activities the 20%. The division of the

cost is show in Fig. 1.2.

9

Fig. 1.2. - Division of costs in order-picking. (from Bartholdi and Hackman, 2017)

The object that catches the eye immediately is the cost of travelling, which is

then major cost. This means that, to reduce dramatically the cost of a

warehouse, the first thing to do is to reduce the travelling cost, because it is the

biggest one. To reduce the travelling cost it is important to optimize the layout of

the warehouse and to have an efficient picking list. All the actions that are not

adding value to the product can be considered waste and they have to be

reduced a minimum or eliminated.

With the picking list, pickers know the number of products they have to pick,

where to go and in which order pick products.

1.2. Order picking system classification

Within a warehouse, order picking is the process of clustering and scheduling

the customer orders, and of consequently picking the articles from the various

storage locations to fulfil such customer orders. An order picking system can be

different types, each type having peculiar characteristics which make it more or

less suitable for different fields of application. To better identify the application

field for each order picking system, is proposed a classification that focuses

chiefly on the operational policy rather than on the specific equipment type

adopted (Dallari et al., 2007). Classification of order picking system (fig. 1.3.):

• "Picker-to-parts" system

• "Pick-to-box" system

• "Pick-and-sort" system

• "Parts-to-picker" system

10

• "Completely automated picking" system

Fig. 1.3. - Classification of order picking system

Order picking system are classified accordingly with four main decisions: who

pick goods (humans/machines), who moves in picking area (pickers/goods), if

conveyors are used to connect each picking zone and which picking policy is

employed (pick by order or by item). Automation level increases, ranging from

the "picker-to-parts" system to the "completely automated picking" one.

From the research of Dallari (Dallari et al., 2007) can be found a field of use for

every order picking system, considering the number of items stored and the

number of daily picking of a warehouse (fig.1.4.). Collected data represent

average values and not distributions, as it has been difficult to obtain data with

higher detail level.

11

Fig.1.4. - Empirical analysis of investigated order picking system (Dallari et al., 20017)

Each order picking system will be briefly described on the basis of both the

equipment component and the resource requirements, the "completely

automated picking" system will not be considered because it is employed in

very limited contexts.

1.2.1. "Picker-to-parts" system

"Picker-to-parts" system represents the very large majority of picking systems in

warehouse. It can be considered as the basic system for the picking activity. In

such system, pickers walk or drive along the aisles to pick items, completing a

single order or a batch of multiple orders, depending on the order picking policy.

In the batch picking policy, the picked items are immediately sorted by the

picker. We can distinguish two types of picker-to-parts systems: low- and high-

level picking. In low-level customer orders are small, urgent and different from

each other. Therefore, it is normal that items are picked from picking location

while the picker walks along the aisles. In high-level customer orders are

typically large and of similar products. Each picker makes a lot of picks in a

short distance, then picking location are visited by pickers on board of an order-

pick truck.

12

In the "picker-to-parts" system, further optimisation can be carried out by means

of routing algorithms, items allocation policies and paperless operations using

support systems to drive and control the pickers during their work, like:

• Barcodes handheld

• RFID tags handheld

• Voice picking

• Pick to light

• RFID pick to light

Some of these support systems will be used within this work and explained in

the next chapter.

1.2.2. "Pick-to-box" system

"Pick-to-box" system, also known as "pick-and-pass" system, divides the

picking area in zones, each of them assigned to one or more pickers. All the

picking zones are connected by a conveyor on which boxes filled up with picked

items are placed, each of them corresponding (partially or completely) to a

customer order. Customer orders are sequentially picked zone by zone.

Therefore, a line-end sorting per each order is not necessary, as the orders

have already been prepared in boxes. The resulting advantages of separating

the forward area in multiple picking zones mainly lay in the reduction of the

overall picker travel time. The costs and complexity are related to workload

balancing among the multiple picking zones.

1.2.3. "Pick-and-sort" system

Operators in the picking area retrieve the amount of each single item resulting

from the batching or multiple orders and put it on a takeaway conveyor

connecting the forward area with sorting area. A computerised system then

determines the destination bay for each item, each destination bay refers to an

individual customer order. This system, typically, works with pick waves, where

all of the orders in a pick wave are completely sorted before releasing the

13

following pick wave. The batch size is consistently high, at least 20 customer

orders per pick wave.

1.2.4. "Parts-to-picker" system

In "parts-to-picker" system, an automatic device brings unit loads from the

storage area to the picking station, where the pickers select the required

amount of each item. Afterward, the unit loads, if not empty, are conveyed back

to the storage area. The basic aim of these systems is to automatically move

the stock keeping units (SKUs) to the pickers, so that they can concentrate on

the productive part of their employment. Unproductive travel times reduce

productivity per picker, so that picker-to-parts system require a larger workforce

for realizing the same output compared to parts-to-picker system. Potential

equipment types for this storage area are:

• Carousels

• Modular vertical lift modules

• Miniloads

• AS/RS

• Mobile racks in robot environment (this will be used within this work and

explained in the next chapter)

1.3. Layout design

In the context of order picking, the layout design concerns two sub-problems:

the layout of the facility containing the order-picking system and the layout

within the order-picking system. The first problem concerns the decision of

where to locate various department (receiving, picking, storage, sorting, etc.).

The common objective is minimising the handling cost, which in many cases is

represented by linear function of travel distance. the second problem is usually

called internal layout design (fig. 1.5.) or aisle configuration problem. It concerns

the determination of the number of blocks, and the number, length and width of

aisles in each block of picking area. The common goal, again, is the travel

distance.

14

Fig. 1.5. - Typical layout decision in order picking system design

1.4. Storage assignment

Products need to be put into storage locations before they can be picked to fulfil

customer orders. A storage assignment method is a set of rules which can be

used to assign products to storage locations. Before such an assignment can

be made, however, a decision must be made which pick activities will take place

in which storage system.

1.4.1. Forward-reverse allocation

In order to speed up the pick process, it is in many cases efficient to separate

the bulk stock (reserve area) from the pick stock (forward area). The size of the

forward area is restricted: the smaller the area, the lower the average travel

times of the order pickers will be. It is important to decide how much of each

SKU is placed in the forward area and where in the area it has to be located.

Dividing a SKUs inventory over multiple areas implies regular internal

replenishments from the reserve to the forward area. One of the trade-offs to be

made is then to balance additional replenishment efforts over extra pick effort

savings. It may even be advantageous to store some of the SKUs only in the

reserve area, for example if demand quantities are high or if demand

15

frequencies are low. Furthermore, replenishments are often restricted to times

at which there is no order picking activity, which gives additional constraints.

A concept closely related to the forward-reverse problem is dynamic storage. It

aims at making the pick area very small in order to reduce travel time and

bringing the SKUs to the storage dynamically, just in time for the pick (like "part-

to-picker" system). The number of locations available in the forward are is

usually smaller than the total number of SKUs. As these systems are capable of

achieving very high picker productivity, they are becoming more and more

popular.

1.4.2. Storage assignment policies

There are numerous ways to assign products to storage locations within the

forward storage areas. Five, frequently, used types of storage assignment are:

• random storage: every incoming pallet is assigned a location in the

warehouse that is selected randomly from all eligible empty locations

with equal probability;

• closest open location storage: the first empty location that is encountered

by the employee will be used to store the products;

• dedicated storage: each product has a fixed location;

• full turnover storage: this policy distributes products over the storage

area according to their turnover, the products with the highest sales rates

are located at the easiest accessible locations and near the depot;

• class-based storage (policy used in this work, it will be explained in the

next paragraph)

All storage assignment policies discussed so far have not entailed possible

relations between products. For example, customers may tend to order a

certain product together with another product. In this case, it may be interesting

to locate these two products close each other. An example of this is called

family-grouping, where similar products are located in the same region of the

16

storage area. Clearly, grouping of products can be combined with some of the

previously mentioned storage policies.

1.4.3. Class-based storage

The concept of class-based storage combines some of the methods mentioned

so far. In inventory control, a classical way for dividing items into classes based

on popularity is Pareto's method. The idea is to group products into classes in

such a way that the fastest moving class contains few percentage of products

stored but contributes to high percentage of the turnover. Each class is then

assigned to a dedicated area of the warehouse. Storage within an area is

random. Classes are determined by some measure of demand frequency of the

products. Fast moving items are generally called A-items. The next fastest

moving category of products is called B-items, and so on. Often the number of

classes is restricted to three (fig 1.6.).

Fig. 1.6. - Illustration of two ways to implement class-based storage

1.5. Batching

When orders are fairly large, each order can be picked individually (one order

picking tour). This way of picking is often referred as the single order picking

policy (or discrete picking or pick-by-order). However, when orders are small,

there is a potential for reducing travel times by picking a set of orders in a single

picking tour. Order batching is the method of grouping a set of orders into a

number of sub-sets, each of which can then be retrieved by single picking tour.

There are basically two criteria for batching: the proximity of pick locations and

17

time windows. Proximity batching assigns each order to a batch based on

proximity of its storage location to those of other orders.

Under time windows batching, the orders arriving during the same time interval,

called time window, are grouped as a batch. These orders are then processed

simultaneously.

1.6. Routing methods

The objective of routing policies is to sequence the items on the pick list to

ensure a good route through the warehouse. The problem of routing order

pickers in a warehouse is actually a special case of travelling salesman

problem. A salesman, starting in his home city, has to visit a number of cities

exactly once and return home. He knows the distance between each pair of

cities and wants to determine the order in which he has to visit the cities such

that the total travelled distance is as small as possible. Clearly, the situation of

the travelling salesman has many similarities with that of an order picker in

warehouse. The order picker starts at the depot, where he receives a pick list,

has to visit all pick locations and finally has to return to the depot.

In practice, the problem of routing order pickers in a warehouse is mainly solved

by using heuristics. Some heuristic routing order are (fig. 1.7.):

• S-shape or traversal method: routing order pickers by using the S-shape

method means that any aisle containing at least one pick is traversed

entirely. Aisles without picks are not entered. From the last visited aisle,

the order picker returns to the depot;

• Return method: where an order picker enters and leaves each aisle from

the same end. Only aisles with picks are visited;

• Midpoint method: essentially divides the warehouse into two areas, picks

in the front half are accessed from the front cross aisle and picks in the

back half are accessed from the back cross aisle;

18

• Largest gap strategy: is similar to the midpoint method except that an

order picker enters an aisle as far as the largest gap within an aisle. The

gap represents the separation between any two adjacent picks, between

the first pick and the front aisle, or between the last pick and the back

aisle

Fig. 1.7. - Example of heuristic routing methods

1.7. Warehouse Management System (WMS)

A warehouse management system or WMS primarily aims to control the

movement and storage of materials within a warehouse and process the

associated transaction, including shipping, receiving, put-away and picking. A

warehouse management system is a database driven computer application,

which is used by logistics personnel to improve the efficiency of the warehouse

by directing cutaways and to maintain accurate inventory by recording

warehouse transactions. The system also direct and optimize stock based on

real-time information about the status of bin utilization. It often utilizes auto ID

data capture technology, such as barcode scanners, mobile computers,

19

wireless LANs and radio-frequency identification (RFID) to efficiently monitor

the flow of products. Once data has been collected, there is either batch

synchronization or a real-time wireless transmission, with the central database.

The database can then provide useful reports about the status of goods in the

warehouse.

The primary function of a warehouse control system is to receive information

from the upper level host system, most often being the warehouse management

system, and translate it for the daily operations. Warehouse control system is

usually the interface that is used to manage processes, people and equipment

on the operational level.

Based on warehouse control system, literature distinguishes three types of

warehouse management system (Ramaa et al., 2012):

• Basic WMS: this system is apt to support stock and location control only.

It is mainly used to register information. Storing and picking instruction

may be generated by the system and possibly displayed on terminals.

The warehouse management information is simple and focuses on

throughput mainly.

• Advanced WMS: above the functionality offered by a basic WMS, an

advanced WMS is able to plan resources and activities to synchronize

the flow of goods in the warehouse. The WMS focuses on throughput,

stock and capacity analysis.

• Complex WMS: with a complex WMS the warehouse can be optimized.

Information is available about each product in terms of where it is located

(tracking and tracing), what is its destination and why (planning,

execution and control). Further, a transportation, dock door and value

added logistics planning which help to optimize the warehouse

operations as a whole.

Warehouse management system can be stand alone systems or modules of an

ERP (Enterprise resource planning) system or supply chain execution suite.

20

21

2. Systems description

In this chapter are described the picking systems that will be used in this work.

They are, for the picker-to-parts category, barcode handheld system and pick-

to-light system, while for the parts-to-picker category is mobile racks system in

robot environment. The following figure 2.1. represents the main pros and cons

for picker-to-parts and parts-to-picker order picking.

Fig. 2.1. - Pros and cons for picker-to-parts and parts-to-picker

2.1. State of art of the systems supporting picking activities

As warehouse manual picking is considered one of the most critical warehouse

activities, many support systems have been developed, able to drive and

control pickers during the work. One of the first devices adopted to facilitate

picking process and one of the most widespread, too, is the handheld barcode

scanner. All the stock keeping units are tagged with barcode, that are scanned

by the operator during the picking of the particular SKU. In this way, the picking

information are immediately communicated to the warehouse information

system. Handhelds are often able to emit acoustic signal, too. This feature

generally helps to understand whether the scanner has correctly read the

barcode, but it could be used also to notify that the product scanned is exactly

what the picker has to take. Such system can be combined with paper picking

list. Once an item has been picked, the screen of the handheld shows the

22

following product to take. Recently, Handhelds RFID scanners are also

available. The operating principle is similar to what just presented, except that

the SKUs are tagged with RFID passive tags instead of barcodes. The working

frequency is LF (low frequency) or HF (high frequency), with small reading

distances of the handhelds.

RFID (radio frequency identification) system is a wireless communication

system in which the radio link between the base station and the transponders

are provided by the modulated back-scattered waves. A basic RFID system

consist of an antenna or coil, a transceiver and a transponder tag. Such tags

consist of an antenna and a chip, electronically programmed with unique

information, that are often attached to object in order to allow their identification.

In fact, they can store data related to the products but also, more simply, a

unique serial number that creates the connection to actual data in database.

According to their application, the transponders can be of two types: active or

passive. The first ones have an own power supply that enables them to transmit

at higher power levels, hence to be read and written at greater distances (also

over 100 m). They are typically larger and more expensive. On the contrary,

passive tags obtain their energy from electromagnetic field of the reading

device, so they are very small and economic. In warehouse and manufacturing

passive tags are the most widespread. A RFID system can be different in terms

of the frequency large in which it operates, too. In particular, there are three

worldwide established frequencies: low frequency (LF), high frequency (HF) and

ultrahigh frequency (UHF). Every working frequency is more suitable for some

applications than for others. Low frequency system is well-suited to industrial

use, above all when working near metals and water is needed. High frequency

system are characterised by greater ranges and higher reading speeds, the

simultaneous reading of multiple tags is possible. UHF system are more

suitable for warehousing and good tracking.

The most widespread techniques are pick-to-voice and pick-to-light. A pick-to-

voice system is a voice-directed system that uses speech recognition to allow

warehouse operators to communicate with warehouse management system.

23

Pickers are equipped with a headset and microphone to receive instruction of

picking by voice, and to verbally confirm their actions back to the system. The

warehouse operator reads back the last digits of the item he has picked so that

the system can check whether the correct item has been selected, then it can

give the following instruction. On the other hand, in a pick-to-light- system

operators are guided by lights that are installed on the warehouse shelving.

Each stock location has one light that turns on if the operator has to pick the

corresponding product. In order to complete every single pick, the picker has to

press the button of the interested stock location. If the simultaneous work of

more than one piker in the same warehouse are is needed, such system has to

be integrated with paper picking list, so that every picker can understand which

are the lights turned on for his order. An example of pick-to-light using RFID has

been presented in 2011. In the reported test case RFID readers are installed in

some points beneath the conveyor belt, while RFID passive tags are attached to

the plastic buckets in which workers place the products required to fulfil the

orders. When the bucket reaches a RFID reader point, this sends the signals of

turning on of the lights of the required products, so that the operator can easily

and quickly identify them. Another frontier for picking is represented by special

glasses worn by the operator reporting on the lenses all the information he

needs.

2.1.1. Barcode handheld system

The barcode handheld system is one of the first devices adopted to facilitate the

picking process and also one of the most widespread. All the stock keeping

units or also just the stock locations are tagged with a barcode that is scanned

by the operator during the picking of the SKU corresponding to the items on the

picking list. In this way, the picking information is immediately communicated to

the warehouse information system. Handhelds are often able to emit acoustic

signals, too. This feature generally helps the user to understand whether the

scanner has correctly read the barcode, but it can also be used to provide

notification that the product scanned is exactly what the picker was expected to

take. Such a system can be combined with paper picking lists, but picking lists

24

can also be integrated directly into the handheld. Once an item has been picked

the screen of the handheld shows the next product to be taken. This method

requires low investment costs therefore easily applicable, but the research time,

picking confirmation time and time to obtain information are among the highest

compared to the other picking systems.

2.1.2. Pick-to-light system

In a pick-to-light system operators are guided by lights that are installed on the

warehouse shelving. Each stock location has one light that turns on if the

operator has to pick a corresponding product from that location and a display

that shows the quantity of parts to be taken. In order to complete every single

pick, the picker has to press the button of the relevant stock location. If more

than one picker in the same warehouse area needs to work simultaneously,

such system has to be integrated with paper picking list so that every picker can

understand which lights are turned on for his or her order. The visual

identification of the storage location and the display for the quantity of parts lead

to a reduction of dead-times and therefore to a higher picking performance.

Disadvantages are the high investment costs, the need for a superior

management system and a high organizational effort.

2.2. Mobile racks system in robot environment

The specific parts-to-picker system treated in this work is based on quite simple

mobile robots, which are able to lift a rack and transport them directly to a

stationary picker. Alternative descriptions of this system, which is known as the

Kiva system.

2.2.1. Kiva system configuration

Kiva system can be configured in two different ways as shown in fig. 2.2.:

• Item fetch configuration: in this configuration Kiva robots are responsible

for carrying inventory pods from storage area to the picking station. The

25

packed order is carried by conveyor for the shipment. Robots also carry

the pod to the replenishment station.

• Order fetch configuration: in this configuration robots have additional

responsibility to carry the order pods for the shipment. The human

operator picks the order from inventory shelves and put it to another

order pod pointed by laser put to light. After all the order in a pod are

fulfilled the robot transports the pod for the shipment.

Fig. 2.2. - Two different configuration for Kiva system. Red line indicates robot carrying inventory pod from
storage area t the picking station and back to the picking area. Violet indicates robot carrying pod for
replenishment. Blue line indicates order pod being carried from induction station to picking station and
finally to the shipping station. Green line indicates robot again carries empty order pod from shipping
station to induction stations.

2.2.2. Kiva system resources

Kiva system consist of several resources which are useful to accomplish the

goal of order picking.

26

• Inventory: inventories are the products available in the warehouse. Each

product is described by its dimensions, packing quantity and its velocity.

All the items are assigned unique barcode.

• Pods (Fig. 2.3.): pods are the logically storage locations for the

inventories in the warehouse. One robot can carry a pod at a time but it

can be scheduled to visit many picking stations. Pods can consist of

hundreds of bins, that are filled by human at replenishment station and

emptied at the pick station. In between these two process they are stored

in the parking areas of the warehouse. A bin does not have to be filled

with the same inventory that it previously contained. Pods come in two

standard sizes with the most commonly deployed unit size at 1x1 and 1,8

of height. The larger pod is 1,2x1,2x1,8. In general smaller pods are

used in application where the weight requirement is up 500 kilograms

and the larger pod used in applications where requirements are up 1500

kilograms. The pods are designed to prevent goods from falling off of the

shelf levels in transit.

Fig. 2.3. - An inventory pod being carried by a Kiva system

27

• Parking spaces: there are the spaces where the inventory pods are kept.

Every pod is assigned a space park. Once a pod is removed from a

space, that space is available for any other pod to be stored in it. Then

the space is not fixed and the position of the pods could change every

time, typically if the pod location changes the pod remains in the same

area of its frequency class (A, B or C). If the frequency, in which an

article is requested, does not change then the pod may also maintain its

position.

• Stations (Fig. 2.4.): The picking and the replenishment station are placed

in the perimeter of the warehouse. Each inventory has unique bar code

and the pods are facilitated with pick to light and put to light system.

When item is picked, the operator scans the item's barcode, then the

place for the item to place for the fulfilment of the order is again indicated

by the laser light. This innovation station-based pick-to-light and

scanning increases the accuracy of the system. The robots buffer in a

queue in the station for the picking. Operators interacts with the pods in

the station. The time of interaction depend upon the number and type of

the item to be picked. Work station are the ergonomically designed.

Stations can be strictly used for inbound restocking or for outbound

picking. For flexibility reasons, the stations can be configured to support

both.

Fig. 2.4. - An sample Kiva picking station

28

• Robot (Fig. 2.5.): robots are shared and scheduled resources of the Kiva

system. They are used to carry the inventory pods and order pods. The

robot performs the task in the following steps:

1. Robot receives the massage from central server to pick the specific

pod from the picking area;

2. Robot move from its current location to the pod's location;

3. Robot lift the pod and carry it to the specified picking or shipping

station;

4. If there are other robots then robots stay in queue until they have their

turn to pick the items from the human operator;

5. After the operator picks the items the robot move gets back to some

parking space and keep the pods back

There are two basic models that handle different weight capacities. The most

commonly deployed robot handles up to 500 kilograms. The more expensive

heavy-duty models handles up to 1500 kilograms of weight. The smaller robots

measure about 0,6x0,75 and 0,3 of height and weight about 100 kilograms.

They are equipped with a corkscrew type lifting mechanism to elevate the pods

off the floor prior to transport. The lifting mechanism is in effect a custom-built

ball screw powered by a single DC drive motor. To keep the pod motionless in

transit, the robot rotates its wheels in the opposite direction and at the exact

speed. The robots travel at a speed of about 1 meter per second, which is

similar to walking speed. The robots run on rechargeable lead-acid batteries

that are charged at frequent intervals throughout the day such that there is no

battery change-out process required. The robots simply travel to designated

charge station every couple of hours where they receive a 5-minute battery

recharge before returning to production. The robots travel around a street and

highway grid that is mapped out with 2D barcode that are placed every meter

along the street grid. The robot is equipped with a camera that looks upward

and one camera that look downward. The cameras detect the stickers which

enables the central computer to know where the robot is within the grid. Every

robot is equipped with sensors that detect if there is an obstacle in the way

which if encountered prevents the robot from moving forward. This is to ensure

that the robot does not hit an operator or a product that may have fallen off of a

pod. The work area where the robots travel is not intended to be accessible by

warehouse associates

that the robots do not crash into each other. One of the hidden benefits of

Kiva´s robots is that they can work in the dark.

Fig. 2.5. - Robot in Kiva system

2.2.3. Kiva software

The Kiva software is integrated with the client's enterprise system, and typically

the primary interface point is a warehouse management system. Kiva system

software is a multi-agent system and can be categorized into three major

agents Job Manager (JM), Drive Unit and inve

Fig. 2.6. - Logical system relationships

Job Manager (JM)

JM is supposed to be the core agent. The responsibility o

customer orders that need to be fulfi

that the robot does not hit an operator or a product that may have fallen off of a

pod. The work area where the robots travel is not intended to be accessible by

warehouse associates in any way so the sensors are really intended to ensure

that the robots do not crash into each other. One of the hidden benefits of

Kiva´s robots is that they can work in the dark.

Robot in Kiva system

. Kiva software

is integrated with the client's enterprise system, and typically

the primary interface point is a warehouse management system. Kiva system

agent system and can be categorized into three major

agents Job Manager (JM), Drive Unit and inventory system.

Logical system relationships Fig. 2.7. - Multi-agent architecture of Kiva system

JM is supposed to be the core agent. The responsibility of JM is to receive the

orders that need to be fulfilled in real time. After receiving the order

29

that the robot does not hit an operator or a product that may have fallen off of a

pod. The work area where the robots travel is not intended to be accessible by

in any way so the sensors are really intended to ensure

that the robots do not crash into each other. One of the hidden benefits of

is integrated with the client's enterprise system, and typically

the primary interface point is a warehouse management system. Kiva system

agent system and can be categorized into three major

agent architecture of Kiva system

f JM is to receive the

lled in real time. After receiving the order

30

JM assigns drive, pods and stations to carry out the tasks. It also keeps the

information of warehouse management system. The prime responsibility of JM

is the resource allocation.

The main objective of the resource allocation is to fulfil large number of orders

within a short time using less number of robot and inventory pods. The

constraint for good resource allocation is to keep the pickers at the station as

busy as possible and use less robots and pods. It is difficult to have optimized

resource allocation in Kiva due to the dynamic nature of the system because

orders are quite large, interaction of vehicles is dynamic and human interaction

response time with the system is unpredictable.

Drive Unit

Drive unit agents are the mobile autonomous robots in the Kiva system. The job

of the mobile robot is to pick up the pods from the storage area. Then the robot

carries pods from the storage to the picking station. The drive unit is also

responsible for optimal path planning, motion planning and obstacle detection.

The robot are equipped with sensor on back and front for the obstacle

detection. The floor of warehouse are placed with fiducial markers. The robots'

navigation system involves a combination of dead reckoning2 and cameras that

look for these markers. When pod has to reach from storage to station then

algorithm is used for the path finding.

2 Dead reckoning is the method of calculating robot's current position by using previously
determined position and advancing that position based upon the estimated speeds over elapsed
time.

31

Fig. 2.8. - Navigation system of Kiva system (with fiducial markers)

Inventory station agent

It is the human being at the picking station. Laser pointers identifies the proper

inventory on the shelving unit to pick up by the human being. The operators pick

the inventory and put it into the outgoing shipping cartons. The workers do not

require to walk around to search for the product like in traditional warehouse.

32

33

3. Assumption and parameters

In this chapter all the parameters assumed in the simulation are listed. Then for

the parameters that require an explanation for their choice, they will be

discussed in the following paragraphs.

3.1. General assumption for all systems

Parameters used on all simulated picking systems are:

• Number of picking station: there is 1 pick station. The pick station may

have single or multiple orders open simultaneously. The replenishment of

items into the shelves is not taken into consideration.

• Number and type of shelves: there are 192 racks/mobile racks. The

shelves have standard dimensions. Each shelf measures 1 meter in

width, 1 meter in depth and 1,8 meters in height. Each shelf has three

trays. Every shelves have an usable volume by goods of 0,8 cubic

meters.

• Number and type of SKUs: there are 650 SKUs. They are divided into

three categories based on their frequency. Each item has its own size

(small, medium or large) in order to fill the shelves keeping in mind their

maximum capacity.

• Number and type of daily orders: as mentioned in the introduction, the

randomly created orders, equal for each system, are meant to be online

food retailing orders. Then with a large number of order lines per order.

There are 150 customer orders and a total of 4500 order lines.

• Picking time and other time components.

3.1.1. Number and dimensions of shelves

To have a realistic comparison, the number of shelves that make up the

warehouse must be adequate. For picker-to-parts picking systems this is not a

problem because they have a low investment cost and so can be implemented

on warehouses of all sizes, obviously with a higher or lower number of

34

operators. Instead for the parts-to-picker system the number of shelves must be

higher than the minimum to allow the systems to function optimally, because the

investment costs are high and therefore it is advantageous to use it in a

warehouse where, in the case of picker-to-parts, the required work force is high.

So as to break down the number of human operators.

In order to find the right size of the warehouse to be simulated, a research was

carried out in the literature. Going to look for scientific articles in which practical

examples of kiva system have been reported. In this work, as written above,

there will be only one picking station, so all the data found were divided by the

number of station to which they were associated (tab 3.1). Finding, in this way,

the number of shelves to associate with a station.

Tab. 3.1. – Research number of shelves

Scientific article
Stored
shelves

Number of
pick station

Stored shelves
associated to one
pick station

“Assignment rules in robotic mobile fulfilment
system of online retailers“ Bipan Zou, Yeming
Gong, Xianhao Xu and Zhe Yuan, 2017

800 4 200

“Simulation based performance analysis in
robotic mobile fulfilmet system“ Thomas
Liernert, Tobias Staab, Christopher Ludwig
and Johannes Fottner, 2017

360 4 90

“Path planning for robotic mobile fulfilment
system“ Marius Merschformann, Lin Xie and
Daniel Erdmann, 2017

795 3 265

550 4 138

1951 16 122

2726 16 171

“ Decision rules for robotic mobile fulfilment
system“ M.Merschformann, T.Lamballais,
M.B.M. de Koster, L. Suhl, 2018

1150 6 192

“Estimating performance in a robot mobile
fulfilment system“ T. lamballais, D. Roy and
M.B.M. de Koster, 2015

1500 5 300

“A simulation-based comparison of wo goods-
to-person order picking systems in an online
retail setting“ Yavuz A. Bozer and Francisco
J. Aldarondo, 2018

924 4 231

Average number of stored shelves associated to one pick station: 190

35

The number of shelves must be around 190, considering the quantity of items to

be stored (subsequently discussed) and the arrangement of the shelves, 192

shelves were used. The dimension of the shelves are actual dimension used by

the Kiva method found in the catalog, 1 meter in width, 1 meter in depth and 1,8

meters in height. From a total volume of 1,8 cubic meters the usable one is 0,8

cubic meters, because it has been removed:

• The space lower than first trays in order to allow the passage of the robot

Kiva system, with a height of 0,3 meters;

• The part occupied by the three trays, with a total height of 0,1 meters;

• And the rest for the space for gaps between items and to allow an easy

grip to the operator.

36

3.1.2. Number and type of SKUs

To calculated the number of SKUs, it was considered that it had to be suitable

for the size of the warehouse and the previous simulation and examples

reported in the literature. From the research results a number of SKUs equal to

see Tab 3.2.

Tab. 3.2. – Research number of SKUs and total order lines.

Scientific article
Number of
SKUs

Number of total
order lines

“Dual-tray Vertical Lift Module for order picking :a
performance and storage assignment preliminary study”
Battini Daria, Calzavara Martina, Persona Alessandro,
Roncari Manuel and Sgarbossa Fabio

1200 10000

“Using simulation to analyse picker blocking in manual
order picking systems” Behnam Bahrami, El-Houssaine
Aghezzaf and Veronique Limere

300 3000

“A comparison of picking, storage and routing policies in
manual order picking” Charles G.Peterson and
Gerald Aase

1000 10000

“Determining the number of zone in a pick and sort order
picking system” Rene´B.M. de Koster, Tho Le-Duc and
Nima Zaerpour

1000 2500

“An approach to order picking optimization in warehouse”
Matic Horvat

100 2500

“Parts-to-picker based order processing in a rack-moving
mobile robots environment” Nils Boysen, Dirk Briskorn
and Simon Emde

1000 500

Average Values: 766 4750

Considering the value obtained, wanting to simplify the simulation to reduce the

calculation times, I decided to round down the number of SKUs to 650.

The articles were created using the Excel program. Each article has:

• an associated dimension size, so as to determine, depending on the

article, how many items can be stored on each shelf.

• its own level of request so as determine three categories based on the

speed that they must have. To share the article into the classes was

used the Pareto method, in which a small part of articles holds a large

part of the request (Chart 3.3). The class A with 20% of items moves

37

50% of the picks, for B class 30% of items moving to further 35%. And

the last 15% of picking line for the C class made up of 50% of the

articles.

Chart 3.3. - Class distribution

To calculated the quantity to be stored in the picking warehouse was

considered a stock of 6 working days and then the request of the articles was

multiplied by the days of stock, thus finding the total number of items in the

warehouse, equal to 72844, and the volume that they occupy, equal to 152.16

cubic meters. From the total volume of the items stored and knowing the

capacity of each shelves, the number of shelves to be used can be calculated,

equal to 192, number previously reported. I assume that there will be not stock

out.

3.1.3. Number and type daily orders

As already mentioned, a batch of 150 customer order is generated randomly for

each day, for a period of six months. All systems are simulated with the same

set of daily order. The orders are meant to be online food retailing orders, so

each order may contain a large number of items from 10 to 60 items, with a total

of 4500 order lines. Most orders contain a large number of items. In one order

for each picked item, the quantity is always one unit. Because in this way there

is the most critical situation, that is the travel time, in the case of picker-to-parts

38

systems, and most probably the number of mobile shelves that must be taken,

in the case of parts-to-picker, will increase.

3.1.4. Picking time and other time components

The following table (Tab 3.4) indicates the times for the different activities

involved in the simulation for each type of system. These times are fixed for

each picked item.

Tab. 3.4. - Time components

 Barcode system Pick to light system Kiva system

Picking time [s] 4.87 2.86 4

Packing time [s] 2 2 2

Search time [s] 7.96 0 0

Get information time [s] 2.98 4.85 0

Confirm time [s] 4.02 0.98 0

3.2. Assumption of the picker-to-parts systems

Parameters used on picker-to-parts systems are:

• Forward area: There are 12 aisles and 2 cross-aisles. The aisles and

crossings have a width of 2 meters in order to allow the shelves to be

filled even with the help of vehicles. The shelves in the storage area are

divided according to the class they belong to. There are 70 pods of class

A, 52 of class B and the remaining 70 of class C. The class positions

vary if is used a return or traversal routing policy.

Return policy (Fig. 3.1)

aisle from the same end. Onl

are on the shelves near the entrance to

class B. Class C items are on the shelves at the end of the aisles. An

example shows in Figure 3.2.

Fig 3.1 - Left: forward area with return routing; right its top view

Fig 3.2 - Example of

Traversal policy

method means that any aisle

entirely. Class A items are on the shelves of the first aisles that can be

visited, followed by those in class B. Class C items are on the shelves of

the aisles that can be visited.

the last visited aisle, the order picker returns to the depot

shows in Figure 3.4.

(Fig. 3.1) : where an order picker enters and leaves e

aisle from the same end. Only aisles with picks are visited.

are on the shelves near the entrance to each aisles, followed by those in

class B. Class C items are on the shelves at the end of the aisles. An

example shows in Figure 3.2.

Left: forward area with return routing; right its top view

of class distribution in warehouse with return routing.

Traversal policy (Fig. 3.3): routing order pickers by using the S

method means that any aisle containing at least one pick is traversed

Class A items are on the shelves of the first aisles that can be

visited, followed by those in class B. Class C items are on the shelves of

the aisles that can be visited. Aisles without picks are not en

the last visited aisle, the order picker returns to the depot

shows in Figure 3.4.

39

: where an order picker enters and leaves each

y aisles with picks are visited. Class A items

aisles, followed by those in

class B. Class C items are on the shelves at the end of the aisles. An

: routing order pickers by using the S-shape

containing at least one pick is traversed

Class A items are on the shelves of the first aisles that can be

visited, followed by those in class B. Class C items are on the shelves of

Aisles without picks are not entered. From

the last visited aisle, the order picker returns to the depot. An example

Fig 3.3 - Left: forward area with

Fig 3.4 - Example of class distribution in warehouse with traversal

• Velocity of picker: his speed is 1 meter per seco

3.3 Assumption of the parts

Parameters used on parts

• Forward area: The pods in the storage area are divided according to the

class they belong to. In the

class A, then those with class B and C. A

3.5.

Left: forward area with traversal routing; right its top view

Example of class distribution in warehouse with traversal routing.

Velocity of picker: his speed is 1 meter per second.

3.3 Assumption of the parts-to-picker system

parts-to-picker system are:

: The pods in the storage area are divided according to the

class they belong to. In the nearest area the pods containing articles of

class A, then those with class B and C. An example is shown in figure

40

: The pods in the storage area are divided according to the

nearest area the pods containing articles of

n example is shown in figure

Fig. 3.5. - Example of class distribution in Kiva storage area

There are 70 pods of class A, 52 of class B and the remaining 70 of

C. There are 12 aisles of 1,10 meter

passage of a robot with shelf. In fact, the operators do not have to enter

in this area to recharge the pods, this operation is done in other stations.

An advantageous feature that

occupied warehouse space.

placed every four pods and between the picking station and storage area

there is a free zone of 3 meters (Fig 3.

Fig. 3.6. - Forward ar

Example of class distribution in Kiva storage area

There are 70 pods of class A, 52 of class B and the remaining 70 of

ere are 12 aisles of 1,10 meter width, enough width to allow the

passage of a robot with shelf. In fact, the operators do not have to enter

in this area to recharge the pods, this operation is done in other stations.

An advantageous feature that allow to increase the percentage of

occupied warehouse space. To minimize congestion, cross ai

placed every four pods and between the picking station and storage area

there is a free zone of 3 meters (Fig 3.6 and Fig. 3.7).

Forward area of Kiva system by PlantSimulation14

41

There are 70 pods of class A, 52 of class B and the remaining 70 of class

width, enough width to allow the

passage of a robot with shelf. In fact, the operators do not have to enter

in this area to recharge the pods, this operation is done in other stations.

allow to increase the percentage of

To minimize congestion, cross aisles are

placed every four pods and between the picking station and storage area

Fig 3.7 - Top view of forward area of Kiva system by PlantSimulation14

• AGVs: the simulations are performed with a number of

to determine how the number of robots change the picker utilization.

size of each AGV is 0,6 in width, 0,8 in length and 0,3 in height and with

a speed of 1 meter per second. The collision between AGVs is not

allowed, each section of route is created so that only one robot can be

present at a time above it.

the shortest path.

located immediately outside the front of the forward area.

The downtime or battery charging and the effects of acceleration or

deceleration are n

• AGV control logic

picking is completed, the AGV travels from the picking station to the

forward area to store the pod in its location, then it travels to the next pod

to be retrieved and subsequen

Top view of forward area of Kiva system by PlantSimulation14

s: the simulations are performed with a number of AGVs from 3 to 6,

to determine how the number of robots change the picker utilization.

size of each AGV is 0,6 in width, 0,8 in length and 0,3 in height and with

a speed of 1 meter per second. The collision between AGVs is not

allowed, each section of route is created so that only one robot can be

present at a time above it. To travel between two points, an AGV follows

the shortest path. At the start of the simulation, all the AGVs are idle and

located immediately outside the front of the forward area.

The downtime or battery charging and the effects of acceleration or

deceleration are not considered.

AGV control logic: Each AGV follows a dual command cycle; when

picking is completed, the AGV travels from the picking station to the

forward area to store the pod in its location, then it travels to the next pod

to be retrieved and subsequently returns to the picking station. When

42

AGVs from 3 to 6,

to determine how the number of robots change the picker utilization. The

size of each AGV is 0,6 in width, 0,8 in length and 0,3 in height and with

a speed of 1 meter per second. The collision between AGVs is not

allowed, each section of route is created so that only one robot can be

etween two points, an AGV follows

At the start of the simulation, all the AGVs are idle and

located immediately outside the front of the forward area.

The downtime or battery charging and the effects of acceleration or

: Each AGV follows a dual command cycle; when

picking is completed, the AGV travels from the picking station to the

forward area to store the pod in its location, then it travels to the next pod

tly returns to the picking station. When

43

there is a retrieval request the first available AGV is used. If no AGVs are

available, the first one to become available is assigned to the request.

44

45

4. Overview of Plant Simulation

4.1 What is simulation?

Simulation modelling is an excellent tool for analysing and optimizing dynamic

processes. Specifically, when mathematical optimisation of complex systems

becomes infeasible, and when conducting experiments within real systems is

too expensive, time consuming or dangerous, simulation becomes a powerful

tool. The aim of simulation is to support objective decision making by means of

dynamic analysis, to enable managers to safety plan their operations, and to

save cost.

Simulation aims to achieve results that can be transferred to a real world

installation. In addition, simulation defines the preparation, execution and

evaluation of carefully directed experiments within a simulation model. As a

rule, you will execute a simulation study using the following steps:

• first check out the real-world installation you want to model and gather

the data you need for creating your simulation model;

• then abstract this real-world installation and create your simulation

model according to the aims of the simulation studies;

• after this, you run experiments. This will produce a number of results;

• the next step will be to interpret the data the simulation runs produce;

• finally, management will use the results as a base for its decision about

optimizing the real installation.

Developing the simulation model is a cycling and evolutionary process. It will

start out with a first draft of the model and then refine and modify. Plant

Simulation is software for integrated, graphic and object-oriented modelling,

simulation and animation. Many complex systems may be modelled and

displayed in great detail closely resembling reality.

In the next chapter the final models, of the three types of picking systems

studied in this paper, will be explained and commented. There will be no

46

intermediate versions or steps to get to the final structure. In the following pages

are listed and defined the most common objects of Plant Simulation, also used

to create models.

4.2 Basic objects of Plant Simulation

Plant Simulation provides a set of basic objects, grouped in different folders in

the Class Library. Now present the most commonly used basic objects from the

standard library.

4.2.1 Material Flow

The Material Flow folder contains objects to serve

for transporting or processing mobile/moving unit

(MUs) objects within models and storing parts and

displaying tracks on which parts are moved. The

most important objects in this folder will be briefly

presented.

 Connector: establishes connections

between MaterialFlow object, such that MUs can

move through the model. An arrow in the middle of

the connector indicates the direction. A single

connection can only point in one direction.

 EventController: PlantSimulation is a

discrete event simulation, so the program only

inspects those points in time, where events take

place within the simulation model. The

EventController manages and synchronises these

event.

47

 Frame: serves for grouping objects and to build hierarchically structure

models. Each new model starts with a Frame where the EventController is

placed on.

 Interface: represents entry and exit interfaces on a Frame. It is used to

connect multiple Frames with each other, such that MUs can flow through them.

 Source: creates MUs and attempts to pass them on. It is used at places

where a MU is created/generated (usually at the start of a process). The time

between the consecutive creations of MUs can be specified by a random

variable.

 Drain: destroys MUs after processing them. It is used at places where

MUs should leave the system.

 SingleProc: receives a MUs, retains it during the processing time and

then attempts to pass it on. For example, a machine with capacity 1.

 ParallelProc: receives a MU, retains it during the processing time and

then attempts to pass it on. Several MUs may be processed at the same time.

Processing times may differ and MUs may pass each other. For example, a

machine with capacity>1.

 Store: receives passive MUs. A MUs remains in the Store until it is

removed by a user control. It can be used for a store shelving system.

Buffer: receives a MUs, retains it during a given dwell time, and then

attempts to pass it on. When the preceding stations are unavailable (occupied

or failure), the MU stays in the Buffer. MUs can exit the Buffer in the same order

in which they entered it (FIFO) or in the opposite direction (LIFO).

48

4.2.2. Resources

The resource objects serve for adding human

workers to a processing station and let workers

move on paths between workstations related to

production stations.

 Workplace: creates a position where a worker

can stop and complete an activity. It must be

placed next to another object in the material flow

folder.

 FootPath: is the path that can be followed by the operator to move from

one workstation to another. It is walkable in both directions.

 WorkerPool: the Workers are created in the WorkerPool and they stay

there when they do not work and are waiting for an order.

4.2.3. Information Flow

The InformationFlow objects serve for exchange

of information between objects. List are provided

to record large amounts of data, to store them

and to make them available during simulation.

They provide the functionality of a database in a

real world installation. Plant Simulation provides

StackFile, QueueFile, CardFile and TableFile.

These lists differ in their dimension and the

Methods provided for accessing them.

 Method: enables the modeller to program

custom logic into the model, using the programming language SimTalk 2.0.

49

 Variable: is a global variable that may be accessed by all objects.

 TableFile: is one of the most important information flow objects in Plant

Simulation. It serves as a two-dimensional data container. Its elements may be

randomly accessed. In addition, a number of search and read functions is

available.

 Generator: allows to call method at predefined times during the

simulation.

4.2.4. User Interface

User interface objects facilitate the interaction

between the user and a model, for example,

Dialog for model input and Charts and Reports for

model output .

 Comment: enables to add additional

descriptions and notes to the model.

 Display: displays values during a simulation run. Values can be displayed

in string form or as bars.

 Chart: can be used to visualise the data generated by a model.

50

4.2.5 Mobile Units

These classes can represent every kind of

product, pallet, container or vehicle that moves

through a logistic system.

 Entity: this is the object or Moving Unit (MU) that gets moved around in a

simulation model. It can represent anything that must pass different stations for

processing orders.

 Container: similar to the Entity, this is a mobile object during the

simulation. It has a loading space that may contain MUs. It represent any kind

of container, pallets and boxes.

 Transporter: similar to the Container, but the Transporter is self-propelled

and its speed is user-defined. It represent any kind of Transporter, AGVs and

forklifts.

51

5. Simulation models

In this chapter the models and algorithms used in each system are explained.

The simulation models were developed with PlantSimulation14, where model

development starts with adding elements to the physical layout and them

identifying the entity that flows through the layout. For the picker-to-parts

systems, the element in the layout are: forward area, routing path and the pick

station. For the Kiva system, the element in the layout are: forward area, path

grid, pick station input buffers and the pick station. The customer orders were

created outside of PlantSimulation14 as an excel file. An extensive number of

runs, equal to six months, were made to validate the models.

The simulations of the picker-to-parts systems are divided into 4 parts:

• Creation of stored shelves and filling with associated items;

• Choice of the next shelf to be visited and pick up items;

• Placing orders in the station;

• Data collection.

The first part is executed before the simulation, the next two parts during the

simulation and the last one executed after the simulation.

The simulation of the parts-to-picker system is divided in 5 parts:

• Creation of stored shelves and filling with associated items;

• Choice of the next shelf to be transported;

• Identification of Kiva robot that will transport the next shelf and pick up

items;

• Placing orders in the station;

• Data collection.

The first two parts are executed before the simulation, the next two are

composed of algorithms that work during the simulation and the last one

executed after the simulation.

52

5.1. General parts for all systems

Before writing the scripts to create the elements mentioned above, the base

was created. The base includes the space for the position of the shelves and for

the tracks. So this base will be different for each model especially for the track

that will be created as described in the previous chapter.

Fig 5.1 – In order from left to right: the base for picker-to-parts system with return routing, the base for

picker-to-parts system with traversal routing and the base for parts-to-picker system.

Below will be explained all common parts of the simulation.

5.1.1. Creation of stored shelves and filling with associated items

The aims of this parts of the model are:

• To create the shelves in specific positions, different for each system

configuration;

• To create all the items to be stored;

• To fill the shelves with the associated items, determined by a matrix

created on excel that considers the capacity of each shelf.

Now we see in detail which commands have been used to achieve the aims

listed above. The commands used for this part are shown below (Fig. 5.2):

53

Fig 5.2 – Screenshot: commands to create shelves and fill them with associated articles

CardFile object (), it is a single column list in which each row corresponds to

an element (object, string, number, etc.). The elements used of this object are:

• StoredTrack: for each row a piece of track (object) will be stored. The

order of the list must respect the class of the shelves, that is first the

positions that contain the shelves of class A then those of B and C. So it

is formed by 192 lines.

• Item: For each row there is an article, listed by class. It is formed by 650

lines.

• Pods: list that contains all the shelves, consisting of 192 lines.

TableFile object (), it is a table with variable number of rows and columns. If

the contents of the boxes are numbers, it can simulate a matrix. The elements

used of this object are:

• QuantityItem: it is a table in which in the first column are listed all the

articles and in the second column there is the number of copies of that

article which must be stored in the warehouse. It needs to know how

many articles to create. Matrix size 650x1.

• PodContents: the x-axis formed from the list of shelves and the y-axis

from the list of articles. Each crossing indicates the number of pieces of

an article n (row) on shelf i (column). It needs to know which and how

many items are on the shelves. Matrix size is 192x650.

54

Buffer object (), it is a container that can accommodate entities, in this case

the articles before being moved to their associated shelves. To reduce the

calculation time, three buffers (ItemClassA, ItemClassB, ItemClassC) were

created that will contain the items according to their class.

Method object (), in this object is possible to write codes, with SimTalk

programming languages. It is therefore possible to create controls that are

called and started by other objects. The elements that used this object are:

• Init: Initial code to create shelves, articles and AGVs, if used in the Kiva

system, and to call a subsequent FillPods method and Choicepod (if

used Kiva system). Code shows in the appendix A.1.

• Fillpods: method used to move items from buffers to associated shelves,

based on the PodContents matrix. Code shows in the appendix A.2.

5.1.2. Placing orders in the station

The aims of this parts of the model are:

• Create orders

• Send them to the station in an adequate number respecting the batching

policy

• Create the picking list

Now we see in detail which commands have been used to achieve the aims

listed above. The commands used for this part are shown below (Fig. 5.3):

55

Fig 5.3 – Screenshot: commands to create order and send them in the station

Source object (), it is used to create incoming entities, in this case it is used to

create orders according to the Source_Order table. This object is connected to

the picking station and therefore, depending on the batching policy adopted by

system, a number of orders are transferred to the station. When an order is

finished, success takes its place, until the orders are completed.

The table objects used in this part of the simulation are:

• Source_Order: list of orders to be created by the Source object. Size of

the matrix is 150x1;

• BillOfMaterial: the x-axis formed from the list of orders and the y-axis

from the list of articles. Each crossing indicates the number of pieces of

an article n (row) in the order i (column). It indicates which items are part

of the order. Matrix size is 150x650.

• OrderInStation: the x-axis formed from the list of articles and the y-axis

from the list of open order in the station, this depending of batching

policy. It indicates which items must be picked up from the station to

complete the order.

The method object used in this part of the simulation are:

56

• SetOrderInStation: method used to assign the pick list to the station, or

pick lists if there is a batching policy, according to the BillOfMaterial

table. Code shows in the appendix A.3.

• ExitBufferAssembly: method that performs a control function for the

simulation. If the operator takes a wrong item, it is sent to a special buffer

to contain the errors.

• EntryAssembly1, EntryAssembly2, EntryAssembly3: methods to view the

orders that are processed in the station.

5.1.3. Data collection

The aim of this part is to collect the data after the end of the simulation. The

data collected are:

• Elapsed time to complete daily order

• Picker throughput calculated in order lines per hour

• Average time for order

• Number of shelves visited to complete an order

• Times and percentages for each activity of the picker (getting

information, searching, picking, confirm and travel)

• Picker utilization

• Times and percentages for each activity of the Kiva robot (waiting and

working)

• Kiva robot utilization

The commands use for this part are:

• EndSim method: to calculate the results of each simulation day, allow

their display on screen and save them in a table and then obtain the

average. Code shows in the appendix A.4.

• TimeWorker: it is a table in which are reported the times of permanence

for each visited shelf.

57

5.2. Choice of the shelves and pick up items in picker-to-parts

systems

The aims of this model part are:

• create a general picking list, which includes all the items requested in the

orders present in the station;

• determine the shelves to visit to complete the picking list;

• create an ordered picking list considering the path of the operator, that is

compared to the shelves that will be visited first, then the items at the top

of the list are also the first ones that will be picked up;

• create the path that the operator must perform, with stops on the shelves

defined for the completion of the picking list.

Now we see in detail which commands have been used to achieve the aims

listed above. The commands used for this part are shown below (Fig. 5.4):

Fig 5.4 – Screenshot: commands to Choice of the shelves and pick up items in picker-to-parts systems

To determine the shelves from which to take the items the method chosen is to

minimize the stops, that is the number of shelves to be visited in a lap. To do

this for each shelf you determine the maximum number of items that can be

taken and then choose the one with the largest number. Once the shelf has

been chosen, the items are removed from the list and the procedure is repeated

until all the items in the picking list (BatchItem table) are taken.

The table objects used in this part of the simulation are:

58

• Pod_item: the x-axis is formed from all the shelves in the storage area

and the y-axis from all the items in the picking list. In each intersection

box indicates if on shelf i (row) there is or not the item n (column). The

size of matrix is variable, it depends from the number of items in the

picking list.

• SumItem_bj: on the y axis all the available shelves are shown, for each

of them the number of items that can be taken is calculated by adding

the values of the respective column of the Pod_Item table. The size of

matrix is variable, it depends from the number of items in the picking list.

This is used to determine the shelf with several removable items and

then insert it into the operator's picking path. Once it is defined, the

picked items are removed from the list.

• NowPodContent and TestPodContent: they are tables that have the

memory function; they memorize, after each withdrawal, the number of

quantities of each item still present on the respective shelves. the x-axis

is formed from all the shelves in the storage area and the y-axis from all

the items. The size of matrix is 192x650.

• Destination: on the y axis are shown all the shelves, next to each shelf

there is the grid section in which it is located.

• PodList: complete list of shelves to visit in the next round to complete the

order. They are ordered from the shelf with the largest number of items

that can be withdrawn to the one with the lowest number, therefore not

ordered with respect to the path of the operator.

The CardFile used in this part of the simulation are:

• BatchItem: is a list of all the items needed to complete the order in the

station. It is a dynamic list, it is modified every time that the next shelf to

be visited changes. Therefore it is a sort of picking list in which the items

already picked are deleted.

• OrderPodList: is a static list, it is a complete list of shelves ordered with

respect to the path of the operator.

59

• PodList1: using a method, explained below, the PodList list is reordered

according to the path of the operator obtaining a series of shelves

ordered from the closest to the furthest in which the operator during his

lap will have to stop to pick up at least one item.

The method used in this part of the simulation are:

• ChoicePod: method used to determine the right shelf, that is the one with

the most items, considering the list of items requested by the station. the

method is activated by the operator at the beginning of his lap and, to

find a solution it uses and modifies the tables SumItem_bj,

TestPodcontent and NowPodContent. Code shows in the appendix A.5

• OrderPodList: method used to change the order of the shelves chosen to

complete the orders in the picking station. Passing from an ordered list

based on the number of possible items to be taken to an ordered list that

follows the path of the operator, ie the first shelves of the list will also be

the first visited. So the method transforms PodList into PodList1.

• GoodsCollected: method that identifies which items the operator must

take when he stops in front of a shelf in the list.

• Meth_Destination: method that moves the operator to move from one

shelf to another.

• DestinationSensor: method inserted in each sensor in front of each shelf.

It starts when the operator stops in front of a shelf. It is used to allow the

operator to physically take the items identified by the GoodsCollected

method.

• Meth_Assembly: method present in front of the station, it is activated

when the operator returns to the station with all the items taken. Here he

discharges the items to complete the order and starts another cycle if

there are still orders in the queue. Code reported in the appendix A.6.

60

5.3. Choice of the pods to bring to the station in Kiva systems

The aim of this model part is:

• define the most suitable shelves to pick up and take to the picking

station.

Below we see, in detail, which commands were used to fulfill the aim. The

commands used for this part are shown below (Fig. 5.5):

Fig 5.5 – Screenshot: commands to Choice of the most suitable in Kiva systems

The choice of the shelf to be taken is taken using a heuristic algorithm in order

to determine the optimal picking list that minimizes travel times and the number

of trips to be performed at the same time. The algorithm used is reported by Li

Z., Zhang J., Zhang H. and Hua G. in the scientific article "Optimal selection of

movables shelves under cargo to person picking mode". The criteria for this

choice are:

• quantity of items that could be withdrawn;

• total distance that the robot must complete, to go to take the shelf and

then take it to the picking station starting from the position occupied in a

certain moment;

61

• possibility of completing an order.

The input that are known are:

• the number of type of goods [M]

• the number of shelves [K]

• the quantity vector of goods stored on a shelf [Rj = a1j, a2j,..,aMj with

j=1,2,..,K], calculated for each shelf.

• the quantity vector of goods in the batch of orders to be picked [Q=qi with

i=1,2,..,M]

• roundtrip time to move shelf j to the picking paltform [wj with j=1,2,..,K]

The algorithm is divided into two phases. First you determine if there is a shelf

that with the goods stored inside it can complete an order and thus free up a

space in the picking station for the next order. This is determined by calculating,

for each shelf, the number of items that can be withdrawn [bj]:

Pj = p1j,p2j,..,pMj where pij = min{aij,qi} with j =1,2,..,K and i =1,2,..,M

bj = ∑ �������

Then comparing this value with the sum of items needed to complete an order

given by ∑ ������ . If exists ∑ ������� = ∑ ������ and it is unique that shelf becomes

the next on the list. If it exists but is not unique, the choice is made based on the

roundtrip time of those shelves. The one with a shorten travel time is the chosen

one. While if it does not exist it goes to the second phase.

In the second phase the choice is made based on the number of items that can

be taken and the distance to be travelled to take the shelf to the picking station.

Therefore the ideal choice would be a shelf with many items and near the

station or an advantageous combination of these two values. So we need a

parameter that defines a ranking of the shelves and leads to the choice of the

most optimal shelf. This parameter is determined by the relationship between

distance and quantity of articles, rate(Pj) =
��
� . The shelf with the lower ratio will

be the optimal one to take j* = arg min{rate(Pj)}.

62

The table elements used in this part of simulation are:

• Distance: table that allow reading only, in which all distances are

reported: both those between any two shelves and those between each

shelf and picking station.

To determine the distance we always follow the shortest route. Below,

the method used to assign these distance is explained through an

example (Fig. 5.6 and Fig 5.7).

Fig 5.6 – Graphic example Fig 5.7 - Shortest route

The general formula for calculating the distance is:

� = � + ���,�� + |��� − ���| + |��� − ���| + ∆��,��

The robot's journey is always straight and each lane has only one

direction of transit. To calculate the route, first must be found the point of

start intersection (Xsi,Ysi), ie the point at which the distance from the

station begins to decrease, this point varies according to the position of

the robot.

The shortest distance can e divided into 4 parts, the first is the exit from

the shelf storage area (u). The second part is the distance ���,�� between

the starting point and the point of start intersection (Xsi,Ysi). The third part

is the Manhattan distance between the point of start intersection and the

picking station, equal to |��� − ���| + |��� − ���|. The fourth and last part

is the section to be travelled inside the picking station in the buffer area.

• Pod_item, SumItem_bj, NowPodContent and PodList perform the same

function as in the picker to parts system, previously seen;

63

• OrderAss1, OrderAss2, OrderAss3 are respectively the lists of first,

second and third order present in the station. In the algorithm are the first

lists used to determine if there is a shelf that completes them. Then if

there is no solution, these lists are merged into the BatchItem list.

Method element used in this simulation part is:

• ChoicePod: method which develops the algorithm described above and

as a result gives the list of shelves to be taken. Method activated

whenever a Kiva robot is free. Code reported in the appendix A.6.

5.4. Choice of the AGV and pick up items in the station in Kiva

systems

Here the commands to control the robot destinations are defined, so the

purposes of this simulation part are:

• start the robots with the arrival of the first order

• drive the Kiva robots to their destination, which can be a shelf or picking

station

• check the movements of the robots within the waiting area of the station,

so as to respect the optimal sequence determined

• stop the robots in front of the pickup area for as long as necessary

• bring the robots to the parking area when the orders are finished

Below we see, in detail, which commands were used to fulfill the aim. The

commands used for this part are shown below (Fig. 5.8):

64

Fig 5.8 – Screenshot: commands to choice and movement AGVs

This part consist mainly of method elements that are inserted in sensor present

in the transit area. Each time a robot activates them, the method sends new

indications to them.

The method elements used in this part of simulation are:

• InitSensor: it is used to start the robots, moving them from their stop

position to their target. It is actived only at the beginning of the working

day when the first order arrives.

• DestinationSensor: method applied to the sensor placed in each shelf

position. When the robot enters, if the robot is empty then the method

allow it to pick up the shelf and direct it to the station. Instead if the robot

is already loaded, the method make it discharge the shelf and launches

the ChoicePod method, seen previously, that allows to find a new goal.

When the new target has been found the method sends indications to the

robot about its position and sends it there.

• ControlSensor methods: they are used to direct the flow inside the

waiting area of the station. If the shelf that arrives is the next one to be

worked, this is sent to the operator's queue. While if it is not the next one

to be worked, it is sent to the waiting area and passed when the time is

right.

65

• StationSensor methods: they are used to stop the robots in front of the

operator to allow manual removal of all the products that are needed.

When the operation is completed the robots can restart and leave the

picking station. Code reported in the appendix A.9. The initial part of the

code serves to unlock the robots that are in the waiting area of the

station and insert them in the operator's queue correctly.

• ReturnSensor: method applied to the sensor at hte exit of the picking

station. Its purpose is to address each robot to the position associated

with the platform that it is transporting. To know this position the sensor

reads the number of the shelf and finds it in the Pod_Track table.

• StopSensor: method that is activated only when all orders have been

completed. It is used to send the robots to their parking area.

66

67

6. Results

As introduced in the previous chapters, there are different types of setup born

from the combination of:

• number of operator (from 1 to 5)

• types of picking systems used (pickers to parts or parts to picker), but

more in detail by the technology used (barcode or pick to light for the first

type and Kiva system for the second type)

• number of open orders in the picking station (1,3 or 5)

• collection path performed by the operator (return or traversal path)

After having processed daily orders for a period of six months, have returned

average values regarding the following items:

• Elapsed time to complete daily order

• Picker throughput calculated in order lines per hour

• Average time for order

• Number of shelves visited to complete an order

• Times and percentages for each activity of the picker (getting

information, searching, picking, confirm and travel)

• Picker utilization

• Times and percentages for each activity of the Kiva robot (waiting and

working)

• Kiva robot utilization

The results are shown below, broken down by type of picking system used. The

results for the Barcode Handheld system are shown in Table 6.1, the results for

the pick-to-light system are shown in Table 6.2 and the results for the Kiva

system are shown in Table 6.3. As you can see from the following tables, the

number of simulated operators for each type of system is different, this choice

was made because on each picking system the total time for the completion of

the orders must be at least lower than a work shift of 8 hour.

68

 Tab 6.1 – BarcodeHandheld system results

C

a
se

s

N

o
.
P

ic
k
e
rs

O

p
e
n

 O
rd

e
r

P

a
th

E
la

p
se

d
 T

im
e
 [

h
]

T
h

ro
u

g
h

p
u

t
[o

rd
e
r

li
n

e
s/

h
]

A

v
e
ra

g
e
 t

im
e
 f

o
r

o
rd

e
r

[m
in

]

P

ic
k
in

g
 t

im
e
 P

ic
k
e
r

[h
]

P

a
c
k
in

g
 t

im
e
 P

ic
k
e
r

[h
]

G

e
tI

n
fo

rm
a
ti

o
n

 t
im

e
 P

ic
k
e
r

[h
]

C

o
n

fi
rm

 t
im

e
 P

ic
k
e
r

[h
]

S
e
a
rc

h
 t

im
e
 P

ic
k
e
r

[h
]

D

is
p

la
c
e
m

e
n

t
ti

m
e
 P

ic
k
e
r

[h
]

P

ic
k
e
r

U
ti

li
za

ti
o

n
 [

%
]

1 1 return 33.51.58 132 13.32 25 06.05.15 02.30.00 03.43.30 05.01.30 09.57.00 06.34.49 25,3

1 1 traversal 32.19.31 139 12.55 25 06.05.15 02.30.00 03.43.30 05.01.30 09.57.00 05.02.16 26,6

2 1 return 16.55.59 133 06.46 25 03.02.37 01.15.00 01.51.45 02.30.45 04.58.30 03.17.24 25,3

2 1 traversal 16.09.45 139 06.27 25 03.02.37 01.15.00 01.51.45 02.30.45 04.58.30 02.31.08 26,6

3 1 return 11.17.19 133 04.31 25 02.01.45 00.50.00 01.14.30 01.40.30 03.19.00 02.11.36 25,3

3 1 traversal 10.46.30 139 04.18 25 02.01.45 00.50.00 01.14.30 01.40.30 03.19.00 01.40.45 26,6

4 1 return 08.27.59 133 03.23 25 01.31.18 00.37.30 00.55.52 01.15.22 02.29.15 01.38.42 25,3

4 1 traversal 08.04.52 139 03.13 25 01.31.18 00.37.30 00.55.52 01.15.22 02.29.15 01.15.34 26,6

5 1 return 06.46.23 133 02.42 25 01.13.03 00.30.00 00.44.42 01.00.18 01.59.24 01.18.57 25,3

5 1 traversal 06.27.54 139 02.35 25 01.13.03 00.30.00 00.44.42 01.00.18 01.59.24 01.00.27 26,6

1 3 return 29.25.06 152 11.46 20 06.04.21 02.29.38 03.42.57 05.00.45 09.55.32 02.12.22 29,1

1 3 traversal 28.35.34 156 11.26 20 06.04.21 02.29.38 03.42.57 05.00.45 09.55.32 01.22.48 30,0

2 3 return 14.42.33 152 05.53 20 03.02.10 01.14.49 01.51.28 02.30.22 04.57.46 01.06.11 29,1

2 3 traversal 14.17.47 156 05.43 20 03.02.10 01.14.49 01.51.28 02.30.22 04.57.46 00.41.24 30,0

3 3 return 09.48.22 152 03.55 20 02.01.27 00.49.52 01.14.19 01.40.15 03.18.30 00.44.07 29,1

3 3 traversal 09.31.51 156 03.48 20 02.01.27 00.49.52 01.14.19 01.40.15 03.18.30 00.27.36 30,0

4 3 return 07.21.16 152 02.56 20 01.31.05 00.37.24 00.55.44 01.15.11 02.28.53 00.33.05 29,1

4 3 traversal 07.08.53 156 02.51 20 01.31.05 00.37.24 00.55.44 01.15.11 02.28.53 00.20.42 30,0

BarcodeHandheld_3BatchOrder_3Worker

BarcodeHandheld_3BatchOrder_4Worker

BarcodeHandheld_1BatchOrder_1Worker

BarcodeHandheld_1BatchOrder_2Worker

BarcodeHandheld_1BatchOrder_3Worker

BarcodeHandheld_1BatchOrder_4Worker

BarcodeHandheld_3BatchOrder_1Worker

BarcodeHandheld_3BatchOrder_2Worker

BarcodeHandheld_1BatchOrder_5Worker

N
u

m
b

er
 m

o
b

ile
 r

ac
ks

 r
eq

u
ir

ed
 f

o
r

o
rd

er
 [m

o
b

ile
 r

ac
ks

]

69

 Tab 6.2 – PicktoLight system results

C

a
se

s

N

o
.
P

ic
k
e
rs

O

p
e
n

 O
rd

e
r

P

a
th

E
la

p
se

d
 T

im
e
 [

h
]

T
h

ro
u

g
h

p
u

t
[o

rd
e
r

li
n

e
s/

h
]

A

v
e
ra

g
e
 t

im
e
 f

o
r

o
rd

e
r

[m
in

]

P

ic
k
in

g
 t

im
e
 P

ic
k
e
r1

 [
h

]

P

a
c
k
in

g
 t

im
e
 P

ic
k
e
r1

 [
h

]

G

e
tI

n
fo

rm
a
ti

o
n

 t
im

e
 P

ic
k
e
r1

 [
h

]

C

o
n

fi
rm

 t
im

e
 P

ic
k
e
r1

 [
h

]

D

is
p

la
c
e
m

e
n

t
ti

m
e
 P

ic
k
e
r1

 [
h

]

P

ic
k
e
r1

 U
ti

li
za

ti
o

n
 [

%
]

P

ic
k
in

g
 t

im
e
 P

ic
k
e
r2

 [
h

]

P

a
c
k
in

g
 t

im
e
 P

ic
k
e
r2

 [
h

]

G

e
tI

n
fo

rm
a
ti

o
n

 t
im

e
 P

ic
k
e
r2

 [
h

]

C

o
n

fi
rm

 t
im

e
 P

ic
k
e
r2

 [
h

]

D

is
p

la
c
e
m

e
n

t
ti

m
e
 P

ic
k
e
r2

 [
h

]

P

ic
k
e
r2

 U
ti

li
za

ti
o

n
 [

%
]

P

ic
k
in

g
 t

im
e
 P

ic
k
e
r3

 [
h

]

P

a
c
k
in

g
 t

im
e
 P

ic
k
e
r3

 [
h

]

G

e
tI

n
fo

rm
a
ti

o
n

 t
im

e
 P

ic
k
e
r3

 [
h

]

C

o
n

fi
rm

 t
im

e
 P

ic
k
e
r3

 [
h

]

D

is
p

la
c
e
m

e
n

t
ti

m
e
 P

ic
k
e
r3

 [
h

]

P

ic
k
e
r3

 U
ti

li
za

ti
o

n
 [

%
]

1 1 return 22.03.40 203 08.49 25 03.34.30 02.30.00 06.03.45 01.13.30 08.42.00 27,5 -- -- -- -- -- -- -- -- -- -- -- --

1 1 traversal 20.20.56 221 08.08 25 03.34.30 02.30.00 06.03.45 01.13.30 06.59.11 29,9 -- -- -- -- -- -- -- -- -- -- -- --

2 1 return 11.04.13 203 04.25 25 01.47.09 01.14.56 03.01.42 00.36.43 04.23.21 27,4 01.47.20 01.15.04 03.02.02 00.36.47 04.23.00 27,5 -- -- -- -- -- --

2 1 traversal 10.12.54 220 04.05 25 01.47.26 01.15.08 03.02.11 00.36.48 03.31.30 29,8 01.47.03 01.14.52 03.01.33 00.36.41 03.32.37 29,7 -- -- -- -- -- --

3 1 return 07.25.15 202 02.58 25 01.11.18 00.49.52 02.00.55 00.24.26 02.59.04 27,2 01.11.47 00.50.12 02.01.44 00.24.35 02.56.48 27,5 01.11.21 00.49.54 02.01.00 00.24.27 02.57.36 27,4

3 1 traversal 06.51.02 219 02.44 25 01.11.35 00.50.04 02.01.24 00.24.32 02.23.45 29,6 01.11.30 00.50.00 02.01.15 00.24.30 02.24.02 29,6 01.11.50 00.50.14 02.01.49 00.24.36 02.22.42 29,7

1 3 return 16.58.01 264 06.47 20 03.33.58 02.29.38 06.02.51 01.13.19 03.37.50 35,7 -- -- -- -- -- -- -- -- -- -- -- --

1 3 traversal 15.47.15 284 06.18 20 03.33.58 02.29.38 06.05.51 01.13.19 02.27.28 38,4 -- -- -- -- -- -- -- -- -- -- -- --

2 3 return 08.18.48 270 03.19 20 01.47.46 01.15.22 03.02.45 00.36.55 01.36.21 36,7 01.46.43 01.14.38 03.00.59 00.36.34 01.38.50 36,4 -- -- -- -- -- --

2 3 traversal 07.53.45 284 03.09 20 01.47.46 01.15.22 03.02.45 00.36.55 01.10.50 38,6 01.46.43 01.14.38 03.00.59 00.36.34 01.13.51 38,4 -- -- -- -- -- --

3 3 return 05.38.45 265 02.15 20 01.11.58 00.50.20 02.02.03 00.24.39 01.09.10 36,1 01.11.44 00.50.10 02.01.39 00.24.34 01.09.48 36,0 01.10.52 00.49.34 02.00.12 00.24.17 01.12.54 35,6

3 3 traversal 05.18.25 282 02.07 20 01.11.50 00.50.14 02.01.48 00.24.36 00.50.05 38,4 01.11.04 00.49.42 02.00.31 00.24.21 00.51.52 38,0 01.11.38 00.50.06 02.01.29 00.24.32 00.48.52 38,4

1 5 return 15.34.39 288 06.13 16 03.34.30 02.30.00 06.03.45 01.13.30 02.12.54 39,0 -- -- -- -- -- -- -- -- -- -- -- --

1 5 traversal 14.52.42 300 05.57 16 03.33.24 02.29.14 06.01.53 01.13.07 01.35.13 40,6 -- -- -- -- -- -- -- -- -- -- -- --

2 5 return 07.48.36 288 03.07 16 01.46.33 01.14.31 03.00.42 00.36.30 01.10.28 38,6 01.47.56 01.15.29 03.03.02 00.36.59 01.03.04 39,3 -- -- -- -- -- --

2 5 traversal 07.28.53 300 02.59 16 01.47.32 01.15.12 03.02.44 00.36.50 00.42.19 41,1 01.46.57 01.14.48 03.01.23 00.36.39 00.45.09 40,9 -- -- -- -- -- --

3 5 return 05.18.58 282 02.07 16 01.10.38 00.49.24 01.59.47 00.24.12 00.54.51 37,6 01.11.57 00.50.19 02.02.01 00.24.39 00.47.09 38,6 01.11.01 00.49.40 02.00.26 00.24.20 00.47.49 38,6

3 5 traversal 05.03.42 297 02.01 16 01.10.58 00.49.38 02.00.21 00.24.19 00.37.31 39,8 01.11.21 00.49.54 02.01.00 00.24.27 00.36.24 40,0 01.12.07 00.50.26 02.02.18 00.24.42 00.33.57 40,3

Pick-to-light_5BatchOrder_2Worker

Pick-to-light_5BatchOrder_3Worker

Pick-to-light_1BatchOrder_1Worker

Pick-to-light_1BatchOrder_2Worker

Pick-to-light_1BatchOrder_3Worker

Pick-to-light_3BatchOrder_1Worker

Pick-to-light_3BatchOrder_2Worker

Pick-to-light_3BatchOrder_3Worker

Pick-to-light_5BatchOrder_1Worker

N
u

m
b

er
 m

o
b

ile
 r

ac
ks

 r
eq

u
ir

ed
 f

o
r

o
rd

er
 [m

o
b

ile
 r

ac
ks

]

70

Tab 6.3 – Kiva system results

C

a
se

s

N

o
.
P

ic
k
e
rs

 O
p

e
n

 O
rd

e
rs

N

o
.
A

G
V

E
la

p
se

d
 T

im
e
 [

h
]

T
h

ro
u

g
h

p
u

t
[o

rd
e
r

li
n

e
s/

h
]

A

v
e
ra

g
e
 t

im
e
 f

o
r

o
rd

e
r

[m
in

]

W

o
rk

in
g
 t

im
e
 P

ic
k
e
r

[h
]

W

a
it

in
g
 t

im
e
 P

ic
k
e
r

[h
]

P

ic
k
e
r

u
ti

li
za

ti
o

n
 [

%
]

W

o
rk

in
g
 t

im
e
 A

G
V

1
 [

h
]

W

a
it

in
g
 t

im
e
 A

G
V

1
 [

h
]

A

G
V

1
 u

ti
li
za

ti
o

n
 [

%
]

W

o
rk

in
g
 t

im
e
 A

G
V

2
 [

h
]

W

a
it

in
g
 t

im
e
 A

G
V

2
 [

h
]

A

G
V

2
 u

ti
li
za

ti
o

n
 [

%
]

W

o
rk

in
g
 t

im
e
 A

G
V

3
 [

h
]

W

a
it

in
g
 t

im
e
 A

G
V

3
 [

h
]

A

G
V

3
 u

ti
li
za

ti
o

n
 [

%
]

W

o
rk

in
g
 t

im
e
 A

G
V

4
 [

h
]

W

a
it

in
g
 t

im
e
 A

G
V

4
 [

h
]

A

G
V

4
 u

ti
li
za

ti
o

n
 [

%
]

W

o
rk

in
g
 t

im
e
 A

G
V

5
 [

h
]

W

a
it

in
g
 t

im
e
 A

G
V

5
 [

h
]

A

G
V

5
 u

ti
li
za

ti
o

n
 [

%
]

W

o
rk

in
g
 t

im
e
 A

G
V

6
 [

h
]

W

a
it

in
g
 t

im
e
 A

G
V

6
 [

h
]

A

G
V

6
 u

ti
li
za

ti
o

n
 [

%
]

KivaSystem_3BatchOrder_3AGV 1 3 3 10.00.56 449 04.00 7 07.30.42 02.29.58 75.0 08.33.51 01.26.06 85.5 08.34.26 01.26.55 85.6 08.30.51 01.28.47 85.1 -- -- -- -- -- -- -- -- --

KivaSystem_3BatchOrder_4AGV 1 3 4 08.34.36 524 03.25 7 07.31.45 01.02.40 87.8 06.28.10 02.05.51 75.4 06.24.50 02.08.32 74.8 06.28.03 02.08.52 75.4 06.23.29 02.10.30 74.5 -- -- -- -- -- --

KivaSystem_3BatchOrder_5AGV 1 3 5 07.59.56 562 03.11 7 07.32.15 00.27.47 94.2 05.08.05 02.52.09 64.2 05.08.34 02.50.59 64.3 05.09.17 02.51.23 64.4 05.07.49 02.52.18 64.1 05.05.56 02.54.02 63.8 -- -- --

KivaSystem_3BatchOrder_6AGV 1 3 6 07.45.37 579 03.06 7 07.32.35 00.12.56 97.2 04.19.56 03.25.25 55.8 04.16.19 03.29.18 55.0 04.17.24 03.28.14 55.3 04.17.14 03.28.35 55.2 04.16.32 03.28.53 55.1 04.18.32 03.27.33 55.5

KivaSystem_5BatchOrder_3AGV 1 5 3 08.39.52 519 03.27 5 07.31.39 01.09.13 86.8 06.57.30 01.43.59 80.3 06.59.11 01.41.47 80.6 06.56.18 01.43.31 80.0 -- -- -- -- -- -- -- -- --

KivaSystem_5BatchOrder_4AGV 1 5 4 07.52.41 571 03.09 5 07.32.23 00.21.07 95.5 05.14.58 02.37.47 66.6 05.11.11 02.40.30 65.8 05.12.09 02.40.14 66.0 05.12.51 02.40.49 66.2 -- -- -- -- -- --

KivaSystem_5BatchOrder_5AGV 1 5 5 07.41.09 585 03.04 5 07.32.53 00.08.10 98.2 04.09.14 03.30.23 54.0 04.10.13 03.31.23 54.3 04.08.43 03.33.29 53.9 04.09.32 03.32.25 54.1 04.08.49 03.30.41 45.7 -- -- --

KivaSystem_5BatchOrder_6AGV 1 5 6 07.39.09 588 03.03 5 07.33.36 00.05.32 98.8 03.31.01 04.08.40 45.9 03.29.36 04.10.57 45.6 03.29.27 04.10.20 45.6 03.28.00 04.10.22 45.3 03.27.37 04.10.50 45.2 03.28.02 04.11.34 45.3

N
u

m
b

er
 m

o
b

ile
 r

ac
ks

 r
eq

u
ir

ed
 f

o
r

o
rd

er
 [m

o
b

ile
 r

ac
ks

]

71

6.1 Validation of the models

After having developed and executed all the models born from the combination

of the various setups, there was the need to know the quality of each model,

that is with what refinement they simulate the real cases. From this it derives

the validity and correctness of the results and only with a positive feedback they

can be compared.

The feature considered to value the correctness of the models is the quantity of

items that one operator can collect in an hour of work. Which corresponds to a

kind of worker's performance, the higher the number the more productive it is.

Getting these values for the types of simulated picking systems is easy, but we

also need to determine the reference values that come from real cases. These

samples have been found in the literature, see the following table:

Tab 6.4 – Literature and simulation throughput

PICKING SYSTEMS
L ITERATURE

THROUGHPUT

SIMULATION

THROUGHPUT
VALIDATED

BARCODE SYSTEM 100 ÷ 200 ≈ 130 YES

PICK TO LIGHT SYSTEM 200 ÷300 ≈ 210 YES

K IVA SYSTEM 600 ÷ 700 ≈ 600 YES

Therefore, assumining what has been said, the models are considered

sufficiently suitable to represent real cases.

72

6.2. Displacement time

The time with greater importance and linked to the quality of the model, which is

found only after the simulations have been processed, is the time dedicated to

travel, called displacement time. The time is also linked to the size and

configuration of the warehouse and to the collection characteristics that the

operator must follow, for example the route and the type of picking system.

While the rest of the times (picking time, packing time, getinformation time,

confirm time and search time) are defined fixed, for each article collected, the

displacement time is variable. More articles you pick up in one lap, more the

time allocated to one article will be less. For the Kiva system, on the other hand,

there is no displacement time but there is a time in which the operator is not

busy, called waiting time.

Below, diagrams are shown (from chart 6.5 to chart 6.10) show the division and

incidence of times in the different picking systems. The times are shown in the

case which only one operator works, because in the case of multiple pickers the

percentages of times are identical but only the value changes. For the Kiva

system times are also seen with the variant of the number of robots, because

these work for one picker and this affects his productivity.

• Times in the barcode system with traversal path and 1 or 3 batch orders

 Chart 6.5 – Rappresentation of the division of time in the barcode system, with traversal path and

 1(left) or 3 (right) batch orders

73

• Times in the barcode system with return path and 1 or 3 batch orders

Chart 6.6 – Rappresentation of the division of time in the barcode system, with return path and

1(left) or 3 (right) batch orders

• Times in the pick to light system with traversal path and 1,3 or 5 batch

orders

Chart 6.7 – Rappresentation of the division of time in the pick to light system, with traversal path

and 1(left), 3 (middle) and 5(right) batch orders

74

• Times in the pick to light system with return path and 1,3 or 5 batch

orders

Chart 6.8 – Rappresentation of the division of time in the pick to light system, with return path

and 1(left), 3 (middle) and 5(right) batch orders

• Times in the Kiva system with 3 batch orders

Chart 6.9 – Rappresentation of the division of time in the Kiva system, with 3 batch orders and

3,4,5 and 6 robots

• Times in the Kiva system with 5 batch orders

Chart 6.10 – Rappresentation of the division of time in the Kiva system, with 5 batch orders and

3,4,5 and 6 robots

To see in detail, the percentages of the displacement time are isolated in a table

(Tab 6.11).

75

Tab 6.11 – Detail percentage displacement time

 PATH 1 OPEN ORDER 3 OPEN ORDERS 5 OPEN ORDERS

BARCODE

SYSTEM

RETURN 20 % 7 % /

TRAVERSAL 15 % 5 % /

PICK TO

L IGHT

SYSTEM

RETURN 40 % 21 % 14%

TRAVERSAL 34 % 16 % 11 %

K IVA

SYSTEM
/ /

3 AGVS 25 % 3 AGVS 13,2 %

4 AGVS 12,2 % 4 AGVS 4,5 %

5 AGVS 5,8 % 5 AGVS 1,8 %

6 AGVS 2,8 % 6 AGVS 1,2 %

For picker to parts systems, we note that a system that uses a return path,

compared to a traversal path, has a longer displacement time. In the case of

only one order in the station this difference is about 5%, if the orders opened at

the station increase the time difference between the routes decreases to 4%

with 3 open orders and 3% with 5. Therefore, it can be deduced, that for this

configuration the traversal path is more advantageous. Now looking at the same

picking system and modifying only the number of batch order, we can see that

the displacement time drastically decrease, in fact for each lap the operator

picks up more items along his route avoiding to go over the same area several

times. A particular thing that can be seen is that passing from 1 to 3 open

orders the reduction of displacement time occurs in a greater way than passing

from 3 to 5 batch orders (Chart 6.12).

76

Chart 6.12 – Difference between displacement times compared to the number of batch orders

For the Kiva system, on the other hand, the operator does not move through the

warehouse to pick up the articles but waits for them to be brought directly to the

station, so in this system there is no displacement time but it is replaced by the

waiting time. Time in which there is no shelf in the picking area and therefore

must wait for the next robot arrive with the next shelf. It can be seen, as with the

same number of AGVs with a greater number of open orders, the waiting time

decreases. It is a normal reaction because on average each shelf brought to the

station has a greater number of picked items, so the operator will take more

time for the pick up, giving more time to the next robot to reach the station.

While observing the value of the percentage of waiting time by varying the

number of AGVs, we note that there is an exponential decrease, passing from 3

to 4 robots the percentage is halved and it is the same thing passing from 4 to 5

and from 5 to 6 robots (Chart 6.13).

10

15

20

25

30

35

40

45

1 2 3 4 5

P
e

rc
e

n
ta

g
e

 d
is

p
la

ce
e

n
t

ti
m

e

Batch orders

Pick to Light with return path Pick to Light with traversal path

77

Chart 6.13 – Difference between waiting times compared to the number of AGVs

Now we move on to compare the percentages shown in table 6.11 also

between the various systems, this is possible thinking of using a different

number of operators for each system so that the total time to process all orders

is at least 8 hours, that is a work shift. The number of operators does not affect

the percentages and, having also a similar total time, they can be compared

with each other. For barcode systems 4 operators are used, for the pick to light

system with 1 open order they are 3 and the rest of the pick to light systems 2

operators are used. We see that for the parts to picker system it is more

convenient to use 5 open orders, while for the other type of system using 3 or 5

batch orders does not have an noticeable effect, so even to facilitate collection I

think it is more convenient to use 3 open orders.

It is evident that if the aim is to reduce the lost time due to the displacement the

best choice is to use the Kiva system which reduces the waiting time up to the

order of 1-2 % of the total time.

0

5

10

15

20

25

30

3 4 5 6

P
e

rc
e

n
ta

g
e

 w
a

it
in

g
 t

im
e

AGVs number

Kiva system with 3 batch orders Kiva system with 5 batch orders

78

6.3. Picker utilization

Reading the data in tables 6.2,6.3 and 6.4, we can see how the percentage of

operator use varies, this values are shown in the following graph (Chart 6.14):

Chart 6.14 – Percentage picker utilization

The percentage of use of the operator represents the time in which the worker

interacts directly with the items to be taken and performs actions that lead to the

conclusion of the order respect to the total work time. The operations

considered to calculate this percentage are the manual pick up activity and the

movement activity of the picked product from the trolley to the order box.

Therefore all other activity, like confirmation, getting information, research and

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

B
a

rco
d

e
_

1
B

O
_

re
tu

rn

B
a

rco
d

e
_

1
B

O
_

tra
v
e

rsa
l

B
a

rco
d

e
_

3
B

O
_

re
tu

rn

B
a

rco
d

e
_

3
B

O
_

tra
v
e

rsa
l

p
ick

-to
-lig

h
t_

1
B

O
_

re
tu

rn

p
ick

-to
-lig

h
t_

1
B

O
_

tra
v
e

rsa
l

p
ick

-to
-lig

h
t_

3
B

O
_

re
tu

rn

p
ick

-to
-lig

h
t_

3
B

O
_

tra
v
e

rsa
l

p
ick

-to
-lig

h
t_

5
B

O
_

re
tu

rn

p
ick

-to
-lig

h
t_

5
B

O
_

tra
v
e

rsa
l

K
iv

a
sy

ste
m

_
3

B
O

_
3

A
G

V

K
iv

a
sy

ste
m

_
3

B
O

_
4

A
G

V

K
iv

a
sy

ste
m

_
3

B
O

_
5

A
G

V

K
iv

a
sy

ste
m

_
3

B
O

_
6

A
G

V

K
iv

a
sy

ste
m

_
5

B
O

_
3

A
G

V

K
iv

a
sy

ste
m

_
5

B
O

_
4

A
G

V

K
iv

a
sy

ste
m

_
5

B
O

_
5

A
G

V

K
iv

a
sy

ste
m

_
5

B
O

_
6

A
G

V

Percentage picker utilization

79

displacement are activity that do not increase the value of the product and do

not increase the operator productivity. From the graph it can be seen at best

which are the ranges of percentages obtained for each picking systems. For the

barcode system we pass from a minimum of 25,3% to a maximum of 30%, view

in chart 6.15, very similar percentages which remain low even with the

modification of the type of route and number of open orders.

Chart 6.15 – Picker utilization of Barcode system

It is important to note that the percentage of use does not depend on the

number of operators.

For the pick to light system the trend is very similar to the one just seen, going

from a minimum use percentage of 27,5 to a maximum of 38,4% considering 1

and 3 open orders as for the barcode system. It reaches a maximum

percentage of 41 if 5 batch orders are used.

24

25

26

27

28

29

30

31

P
e

rc
e

n
ta

g
e

 p
ic

k
e

r
u

ti
li

za
ti

o
n

Type of system

Picker utilization

80

Chart 6.16 – Picker utilization of Pick to Light system

Here we can see better how the passage from 1 to 3 batch orders gives more

pronounced advantage compared to the passage from 3 to 5 batch order and

how the change of the type of path affects only 1-2%.

Moving on to the Kiva system, the percentage of use is very high and to change

it you can act on the number of open orders in the station or on the number of

robots that follow the work of the operator. For systems with 3 batch orders it

goes from a minimum of 75% with 3 robots to a maximum of 97,2% with 6

robots, while for systems with 5 batch orders it passes from a minimum of

86,8% with 3 robots to a maximum of 98,8% with 6 robots, see chart 6.17

27

29

31

33

35

37

39

41
P

e
rc

e
n

ta
g

e
 p

ic
k

e
r

u
ti

li
za

ti
o

n

Type of system

Picker utilization with 1 and 3 BO Picker utilization with 3 and 5 BO

81

Chart 6.17 – Picker utilization of KIva system

Beside the percentage of use of the operator in the Kiva system it is necessary

to speak also of the percentage of use of the single robot. When the number of

robot used is minimum, that is 3, their performance is high around the 80-85%,

so they are often in movement to fulfill their purpose and briefly stuck in the

picking zone. This high percentage is however linked to a discrete use of the

operator, 75% if 3 batch orders are used or 86% with 5, because the operator

must wait for the robots that reach the station. Therefore, to have even greater

use of the operator, the number of AGVs must be increased, passing to a

percentage of their use of 45-50% linked to a maximum use of the operator, 97-

98%.

There are very high percentages compared to those seen for the other systems,

this because the time of displacement has been eliminated and the technology

of the system tends to reset the times to obtain information and for the

research, through the use of a laser pointer, and the confirmation time through a

code reader.

75

80

85

90

95

100

3 4 5 6

P
e

rc
e

n
ta

g
e

 p
ic

k
e

r
u

ti
li

za
ti

o
n

Number of AGVs

Picker utilization with 3 BO Picker utilization with 5 BO

82

6.4. Throughput

As already defined the throughput is the operator's performance. It determines

how many order lines the operator can complete in an hour of work. So this

value depends on how many and what operations the picker has to perform

(like get information, search, confirm, pick up and move) and how long he takes

to do these operations. To give an example, the confirmation time for barcode

system is 4,02 seconds, for the pick to light system it is 0.98 seconds while for

the Kiva system it is not an activity to perform thanks to the technology used.

When two or more operators work in the system, their performance is the same

because they work on different orders and, except for some occasions, their

path is out of phase and different.

In the barcode system there is a throughput of 132 items/hour using one open

order and a return path, this increases to 139 items/hour if the type of path is

modified. Using 3 batch order the throughput is 152 items/hour with return path

and 156 items/hour with traversal path. In the pick to light system there is a

throughput of 203 items/hour using one open order and a return path, this

increases to 220 items/hour if the type of path is modified. Using 3 batch order

the throughput is 264 items/hour with return path and 284 items/hour with

traversal path. Using 5 batch order the throughput is 288 items/hour with return

path and 300 items/hour with traversal path.

In the Kiva system there is a throughput of 449 items/hour using 3 open orders

and 3 AGVs, this increases to 579 items/hour if the number of AGVs is

increased up to 6. Using 5 batch order the throughput is 519 items/hour with 3

AGVs and 588 items/hour with 6 AGVs. (Chart 6.18)

83

 C
ha

rt
 6

.1
8

–
T

hr
ou

gh
pu

t o
f t

he
 p

ic
ki

ng
 s

ys
te

m
s

0
,0

0
2

5
,0

0
5

0
,0

0
7

5
,0

0
1

0
0

,0
0

1
2

5
,0

0
1

5
0

,0
0

1
7

5
,0

0
2

0
0

,0
0

2
2

5
,0

0
2

5
0

,0
0

2
7

5
,0

0
3

0
0

,0
0

3
2

5
,0

0
3

5
0

,0
0

3
7

5
,0

0
4

0
0

,0
0

4
2

5
,0

0
4

5
0

,0
0

4
7

5
,0

0
5

0
0

,0
0

5
2

5
,0

0
5

5
0

,0
0

5
7

5
,0

0
6

0
0

,0
0

Barcode_1BO_return

Barcode_1BO_traversal

Barcode_3BO_return

Barcode_3BO_traversal

pick-to-light_1BO_return

pick-to-light_1BO_traversal

pick-to-light_3BO_return

pick-to-light_3BO_traversal

pick-to-light_5BO_return

pick-to-light_5BO_traversal

Kivasystem_3BO_3AGV

Kivasystem_3BO_4AGV

Kivasystem_3BO_5AGV

Kivasystem_3BO_6AGV

Kivasystem_5BO_3AGV

Kivasystem_5BO_4AGV

Kivasystem_5BO_5AGV

Kivasystem_5BO_6AGV

T
h

ro
u

g
h

p
u

t

84

85

7. Economic evaluation

Starting by defining the cost function, which is useful for conducting an

economic evaluation and comparing the different systems. This function, called

the hourly cost function ��� , where j id to define the type of technology to which

it refers, includes 4 cost components:

• Hourly cost depending on the number of stock locations, ��,�� � ;

• Hourly cost depending on the number of pickers, ��,�� ;

• Hourly fixed cost, ��, � ;

• Hourly cost for the KIva system implementation, ��,!� .

��� = ��,�� � + ��,�� + ��, � + ��,!�
Considering the notation reported in table 7.1, the previous formula can now be

set out as follows:

��� = "#$∗ &#$'
(#$ +)C(,+ + &,,-'

(,.-/ ∗ 0"12' 3 + &4'(4 + &5'(5

86

Table 7.1 – Hourly cost function components and notation

Cost

component
Expression Notation Description

Stock location

hourly cost
��,�� � = 6�� ∗ ����ℎ��

6��
 ���� [€]
 ℎ�� [h]

Number of available stock location

Stock location unitary cost*

Stock location devices total usage hours

Picker hourly

cost
��,�� = ;��,� + �<,��

ℎ<.�= ∗ >6?�� @

 ��,� [€/h]

 �<,�� [€]
 ℎ<.� [h]

 6? [ABCD]
 �� [rows/h]

Picker hourly cost

Picker device cost*

Picker devices total usage hours

Number of requested picking rows

Throughput*

Fixed hourly

cost
��, � = � �ℎ

 � � [€]

 ℎ [h]

FIxed cost*

Fixed elements total usage hours

Kiva system

technology

hourly cost

��,!� = �!ℎ!
�! [€]

 ℎ! [ℎ]
Kiva system technology cost

Kiva technology total usage hours

*Variable according to the considered technology j

 �� is the performance of the system and remains fixed for a given simulated

model, while 6? is the number of order lines and this depends on the daily

orders. Therefore their report indicates the number of operators that must be

used to complete the orders. The hourly cost depends on the number of order

lines, therefore increasing or decreasing the order lines will have a different cost

and the choice of the most convenient system to use will also change.

The table 7.2 reports some of the possible main cost items for each of the

considered picking systems. The costs related to the number of stock locations

generally consist of two main components: the cost of purchase of the required

specific equipment and the cost of installation of such materials. The picker

costs relate to the devices supplied to the picker and the hourly pay. Finally, for

all the technologies the reported fixed costs concern the purchase of the

management server and of the software and about maintenance.

87

Table 7.2 – Picking technology main cost

 ���� �<,�� �! � �

Barcode

handheld

- Barcode cost

- Barcode installation

cost

- Barcode

reader cost

- Picker cart

cost

/

- server and

software cost

Pick to light - Lights cost

- Confirmation device

cost

- lights and

confirmation device

cost

- Handheld

cost

- Picker cart

cost /

- server and

software cost

Kiva system

/ /

- start up kit

- kit

installation

- maintenance

cost

In this chapter, in addition to defining the hourly cost, we also modify some

factors that determine its value, such as fixed costs and the hourly cost of the

operator. Once the new cost has been calculated, it is possible to determine the

impact that these components have on the cost. The table 7.3 reports the

various cost components obtained from specific industry catalogues and from

information derived from the warehouse managers interviews. For the

calculation of ℎ�� , ℎ , ℎ<,� E6� ℎ! ten years were considered, with an eight-hour

work shift for 220 days a years.

88

Table 7.3 – Cost components values

Cost component Factor
Barcode

system

Pick to light

system
Kiva system

��,�� � = 6�� ∗ ����ℎ��

6��
 ���� [€]
 ℎ�� [h]

2000

1,10 €

17600 h

2000

50 €

17600 h

/

��,�� = ;��,� + �<,��
ℎ<.�= ∗ >6?�� @

 ��,� [€/h]

 �<,�� [€]
 ℎ<.� [h]

 6? [ABCD]
 �� [rows/h]

30 €/h

2800 €

17600 h

variable

from 132 to

156

30 €/h

2800 €

17600 h

variable

from 203 to

297

30 €/h

/

17600 h

variable

from 449 to

588

��, � = � �ℎ
 � � [€]

 ℎ [h]

300000 €

17600 h

300000 €

17600 h

300000 €

17600 h

��,!� = �!ℎ!
�! [€]

 ℎ! [ℎ] / / 1000000 €

In the following, the first parameter that has been varied in the plotting of the

hourly cost function for all systems is the number of picked rows 6?. The

systems are divided into two graphs based on their type of collection path,

those with return path are shown in the figure 7.4 and those with traversal path

in the figure 7.5. Both graphs show the trend of the Kiva system, which is

compared to traditional methods. The Kiva system considered is the one with 5

batch orders and 6 AGVs, therefore with a yield of 588 items/hour, this is

because the company does not advertise prices but approximate values are

given for typical warehouse setup with less than 50 robots. Besides the line

charts of the different solutions, in the lower part a bar graph is shown, reporting

the areas of convenience for the various systems; that is, the most convenient

system, according the different numbers of requested picking rows, is each time

reported.

89

From the observation of the graph reported for the different cost values in

figures 7.4 and 7.5 some interesting considerations and comparisons can be

performed. The trend of the curves and the graph below ,that shows the best

strategy to use, are identical. The difference in value of items/hour between the

same system with a return or traversal path is not high enough to modify the

economic evaluation and make that system the best in different area of the

chart. Therefore only one graph will be analyzed, knowing that the results

obtained are the same for the two types of path.

In general it is observed that the increase in the number of picked rows leads to

an increase in the trend observable for all the curves, mainly due to the

increase in the number of pickers needed to satisfy the requested warehouse

performance. Focusing on the different technologies considered, for low values

of nR the most advantageous solution is the barcode system, which can boast a

low cost of the equipment. The picking times for this system, as already seen,

are high which guarantees a limited collection performance. In fact this system

is the best up to a request of 160 items/hour. Increasing the demand, the most

economical system is the pick to light system, which uses a more expensive

technology but guarantees shorter collection times and therefore, with a high

demand, a lower quantity of manpower. These features lead the system to be

the most advantageous up to 780 or 860 items/hour if a system with 3 or 5

batch orders is used respectively. For the Kiva technology, instead, the cost is

absolutely impacting making this picking solution non-competitive for low values

of nR. It begins to be competitive at around 600 items/hour and becomes the

absolute best after 860 items/hour. The system is characterized by much

shorter picking times and therefore higher performance than all other systems.

This last representation is also employed in the subsequent analysis in which

fixed costs have been changed with respect to the starting configurations (see

figure 7.6). For the analysis of the variation of the annual fixed costs it was

decided to find solutions with different modifications of the parameter. The

cases are going to increase first to 60000 and then to 90000 the annual fixed

costs of the most technologically advanced systems, that is the pick to light

90

system and the Kiva system. With these changes you can see a variation in the

area with low values on nR, barcode system becomes the most convenient

solution in several intervals, while the cases in which it was more appropriate to

use the pick to light system decrease. At high values of nR the most convenient

system does not change, the Kiva system always remains the best system for

requests exceeding 850 items/hour.

Table 7.4 – Hourly cost function for system with return path

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

425

450

475

500
€

Pick-to-light_1Batchorder

BarcodeHandheld_1BatchOrder

0 100 200 300 400 500 600

Pick-to-light_3BatchOrder

BarcodeHandheld_3BatchOrder

700 800 900 1000 1100 1200 1300 1400 1500

91

Pick-to-light_5BatchOrder

KivaSystem_6AGVs_1/3Batchorder

1600 1700 1800 1900 2000

Table 7.5 – Hourly cost function for system with traversal path

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

425

450

475

500
€

Pick-to-light_1Batchorder

BarcodeHandheld_1BatchOrder

0 100 200 300 400 500 600

Titolo asse

Pick-to-light_3BatchOrder

BarcodeHandheld_3BatchOrder

700 800 900 1000 1100 1200 1300 1400 1500

92

Pick-to-light_5BatchOrder

KivaSystem_6AGVs_1/3Batchorder

1500 1600 1700 1800 1900 2000

nR

Table 7.6 – Hourly cost function changing CF

Case
Parameter
changed

Barcode system
1 Batch order

1 CF 30000 €/year

2 CF 30000 €/year

3 CF 30000 €/year

0 100 200 300 400 500 600 700

3

2

1

Barcode system
1 Batch order

Barcode system
3 Batch orders

Pick to Light
system - 1 BO

Pick to Light
system - 3 BO

 30000 €/year 30000 €/year 30000 €/year

 30000 €/year 60000 €/year 60000 €/year

 30000 €/year 90000 €/year 90000 €/year

700 800 900 1000 1100 1200 1300 1400 1500

93

Pick to Light
system - 5 BO

Kiva system

30000 €/year 30000 €/year

60000 €/year 60000 €/year

90000 €/year 90000 €/year

1600 1700 1800 1900 2000

nR

94

95

8.Conclusion

Choosing the type of picking system is one o the most critical activities in the

warehouse. Using the simulation we compared the performance of three

different picking systems: barcode, pick to light and Kiva systems. Given the

assumptions and the parameters of the systems, a first conclusion is that the

performance of the Kiva system has a value twice that of the pick to light

system and five times greater than the barcode system. Obviously this is

reflected in a lower use of manpower but with a high percentage of utilization. It

also appears that the number of open orders is an important control parameter

to ensure a high percentage of use.

A second result, obtained from the simulation, is the value of the

displacement/waiting time. Incident time for the picker to parts systems which

therefore this reduces performance, while very reduced for the Kiva syatem with

the possibility of reducing it to 0 by increase the number of AGVs.

While from the economic evaluation, given the configuration of the warehouse,

it is concluded that the Kiva system is the only choice for requests over 850

items/hour, while the other two systems are used for the lower values of the

number of order lines to hour and the intervals of competence depend on the

parameters used, generally barcode system for low values of nR and pick to

light for average values.

96

97

Appendices

A.1. Init method

// variables of the code
var i: integer
var c: integer
var j, n: integer
var fixpods, pod, t, f: object
var num: integer
var buffer: object

//create 192 pod in own position
for i:=1 to 192
 t := StoredTrack[i]
 pod:= .MUs.Pod.create(t)
next

//create type of item (650)
.Mus.Item1.create(ItemclassA)
.Mus.Item2.create(ItemclassA)
.Mus.Item3.create(itemclassB)
.Mus.Item4.create(itemclassB)
.Mus.Item5.create(itemclassB)
.Mus.Item6.create(itemclassB)
.Mus.Item7.create(itemclassC)
.Mus.Item8.create(ItemclassC)
..
.. // until Item650, each in own buffer

// create all items (item for its stored quantity)
for n:=1 to 117

num:=QuantityItem[2,n]
 for j:=1 to num
 QuantityItem[1,n].create(itemClassA)
 next
next
for n:=118 to 292
 num:=QuantityItem[2,n]
 for j:=1 to num
 QuantityItem[1,n].create(itemclassB)
 next
next
for n:=293 to 650
 num:=QuantityItem[2,n]
 for j:=1 to num
 QuantityItem[1,n].create(bufferOrders)
 next
next

//create AGVs (if Kiva system)
.MUs.AGV1.create(root.Track128)
.MUs.AGV2.create(root.Track127)
.MUs.AGV3.create(root.Track126)
..
..

98

//call method for subdivide items
&FillPods.execute

//choice of pod to bring to the picking station (if Kiva system)
&ChoisePod.execute

A.2. FillPods method

// variables of the code
var i, j, k, m: integer
var pod_: object
var item_obj: object
var item_class: object
var item_string: string
var num: integer
var part: string

// move item of class A from buffer (itemclassA) to the respective pod using table PodContents
for k:=1 to 70 //70 is the number of shelves of classA
 pod_:=str_to_obj(Pods.read(k))

//search and select in the column of the pod
 for i:=1 to PodContent.yDim
 if PodContent[k,i]>0

//read quantity of item
 part:= obj_to_str(item[i])
 num:=PodContent[k,i]
 for j:=1 to num

// move the right parts to the pod
 for m:=itemClassA.numMU downto 1
 item_obj:=itemClassA.MU(m)
 item_class :=item_obj.class
 item_string := obj_to_str(item_class)
 if item_string = part
 item_obj.move(pod_)
 exitLoop
 end
 next
 next
 end
 next
next
// move item of class B from buffer (itemclassB) to the respective pod using table PodContents
for k:=71 to 122 // 52 is the number of shelves of classB
 pod_:=str_to_obj(Pods.read(k))
 //search and select in the column of the pod
 for i:=1 to PodContent.yDim
 if PodContent[k,i]>0
 //read quantity of item
 part:= obj_to_str(item[i])
 num:=PodContent[k,i]
 for j:=1 to num
 // move the right parts to the pod
 for m:=itemclassB.numMU downto 1
 item_obj:=itemclassb.MU(m)
 item_class :=item_obj.class

99

 item_string := obj_to_str(item_class)
 if item_string = part
 item_obj.move(pod_)
 exitLoop
 end
 next
 next
 end
 next
next
// move item of class B from buffer (itemclassB) to the respective pod using table PodContents
for k:=123 to 192 // 70 is the number of shelves of classC
 pod_:=str_to_obj(Pods.read(k))
 //search and select in the column of the pod
 for i:=1 to PodContent.yDim
 if PodContent[k,i]>0
 // read quantity of items
 part:= obj_to_str(item[i])
 num:=PodContent[k,i]
 for j:=1 to num
 // move the right parts to the pod
 for m:=bufferOrders.numMU downto 1
 item_obj:=bufferOrders.MU(m)
 item_class :=item_obj.class
 item_string := obj_to_str(item_class)
 if item_string = part
 item_obj.move(pod_)
 exitLoop
 end
 next
 next
 end
 next
next

A.3. SetOrderInStation method

// I want that when an assembly order is finisched an new order come to assign following the
table Source_Orders

@.~.assemblyList.deleteContents

var _BillOfMaterial : object := current.BillOfMaterial
var _OrderInStation : object := current.OrderInStation
var i:integer

for i:=1 to BillOfMaterial.yDim
 if _BillOfMaterial[@.origin,i]>0

 _OrderInStation[_BillOfMaterial[0,i],@.~] += _BillOfMaterial[@.origin,i]
 @.~.AssemblyList.AppendRow(_BillOfMaterial[0,i].name,_BillOfMaterial[@.origin,i])
 end
next

100

A.4. End Sim method (for Kiva System)

var num: real
var num_str: string
var workingtime,endtime_num, a : integer
var endtime: time
var billofmaterialDay : object

// workingtime operator
TotalTime := eventcontroller.simTime
workingtimeWorker:= timeworker.sum({8,1}..{8,*})
workingtime := timeworker.sum({8,1}..{8,*})
endtime := eventcontroller.simtime
endtime_num := time_to_num(endtime)
num := (workingTime / endtime) * 100
num_str := num_to_str(num)
workingtimeworker100 := num_str

//waitingtime operator
waitingTimeWorker := endtime -workingtimeworker
num := (waitingTimeWorker / endtime) * 100
num_str := num_to_str(num)
waitingtimeworker100 := num_str

// throughput and order time
a := timeworker.sum({2,1}..{2,*})
throughput := (a / endtime_num) * 3600
AverageTimeOrder:= endtime_num/150
AverageNumberPodOrder := numpodlist/150

// agv1
waitingtimeAGV1 := timeaGV1.sum({3,1}..{3,*})
num := (waitingtimeAGV1 / endtime) *100
num_str := num_to_str(num)
waitingtimeAGV1100 := num_str
workingtimeAGV1 := endtime - waitingTimeAGV1
num := (workingtimeAGV1 / endtime) *100
num_str := num_to_str(num)
workingtimeagv1100 := num_str
..
.. // agv2,agv3…..agv6

// save data
dati[1,orderday] := orderday
dati[2,orderday] := totalTime
dati[3,orderday] := througput
dati[4,orderday] := workingTimeWorker
dati[5,orderday] := workingTimeWorker100
dati[6,orderday] := waitingTimeWorker
dati[7,orderday] := averageNumberPodOrder
dati[8,orderday] := averageTimeOrder
dati[9,orderday] := workingTimeAGV1
dati[10,orderday] := waitingTimeAGV1
dati[11,orderday] := workingTimeAGV2
dati[12,orderday] := waitingTimeAGV2
dati[13,orderday] := workingTimeAGV3
dati[14,orderday] := waitingTimeAGV3

101

// change order day and restart
orderday += 1
if orderday = 2
 .models.frame.billOfMaterial.deleteContents
 .models.frame.orderDay2.copyrangeTo({0,0}..{*,*},billOfMaterial,0,0)
 eventcontroller.reset
 eventcontroller.start
end
..
.. // for all 6 months

A.4. End Sim method (for picker-to-parts system)

var time_ : time
var num, a, b, n: integer

time_ := eventcontroller.simTime
TotalTime := time_
num := tableerror.sum({4,1}..{4,*})
// picking time worker
// time between pick-to-light and barcode are different
PickingTimeWorker := num * 0:04.8700
Pickingtimeworker100 := num_to_str(time_to_num(Pickingtimeworker / totaltime) * 100)
// packing time worker
PackingTimeWorker := num * 0:02.0000
Packingtimeworker100 := num_to_str(time_to_num(Packingtimeworker / totaltime) * 100)
WorkingTimeWorker := pickingtimeworker + packingtimeworker
Workingtimeworker100 := num_to_str(time_to_num(workingtimeworker / totaltime) * 100)
// getinformation time worker
GetInformationTimeworker := num * 0:02.9800
GetInformationtimeworker100 := num_to_str(time_to_num(GetInformationtimeWorker / totaltime
) * 100)
// confirm time worker
ConfirmTimeworker := num * 0:04.0200
Confirmtimeworker100 := num_to_str(time_to_num(ConfirmtimeWorker / totaltime) * 100)
// search time worker (only for barcode method)
SearchTimeworker := num * 0:07.9600
Searchtimeworker100 := num_to_str(time_to_num(searchtimeWorker / totaltime) * 100)
// displacement time worker
displacementTimeWorker := totaltime - WorkingTimeWorker - Getinformationtimeworker -
confirmtimeworker
displacementtimeworker100 := num_to_str(time_to_num(displacementtimeworker / totaltime) *
100)
// throughput and order time
num:= tableerror.sum({7,1}..{7,*})
averageNumberPodOrder := num/150
averageTimeOrder := eventcontroller.simTime / 150
averagetimelap := eventcontroller.simTime / 50
num:= tableerror.sum({4,1}..{4,*})
througput := (num / time_to_num(totalTime))*3600
// save data
dati[1,orderday] := orderday
dati[2,orderday] := totalTime
dati[3,orderday] := througput
dati[4,orderday] := pickingTimeWorker
dati[5,orderday] := pickingTimeWorker100
dati[6,orderday] := packingTimeWorker

102

dati[7,orderday] := packingTimeWorker100
dati[8,orderday] := workingTimeWorker
dati[9,orderday] := workingTimeWorker100
dati[10,orderday] := getinformationTimeWorker
dati[11,orderday] := getinformationTimeWorker100
dati[12,orderday] := confirmTimeWorker
dati[13,orderday] := confirmTimeWorker100
dati[14,orderday] := displacementTimeWorker
dati[15,orderday] := displacementTimeWorker100
dati[16,orderday] := averagenumberpodorder
dati[17,orderday] := averagetimeorder
dati[18,orderday] := averagetimelap
// change order day and restart
orderday += 1
if orderday = 2
 .models.frame.billOfMaterial.deleteContents
 .models.frame.orderDay2.copyrangeTo({0,0}..{*,*},billOfMaterial,0,0)
 eventcontroller.reset
 eventcontroller.start
end
..
.. // for all 6 months

A.5. ChoicePod method (for picker-to-parts systems)

param SensorID: integer, Front: boolean

var i,n,m,t,b,s :integer
var item,choise_pod : object
var j:integer := 0
var maxi,num: integer
var npodlist :integer
var choise_pod_string:string
var pod, item_obj, buffer : object
var item_str, item_string :string
var item_class: object

if lap > 0 //save time for error checking
 tableerror[2,lap] := eventcontroller.simTime
 tableerror[3,lap] := tableerror[2,lap] - tableerror[1,lap]
end
@.stopped := true
lap += 1
numpod := 0
.models.frame.batchitem.deletecontents
.models.frame.podlist.deleteContents
.models.frame.podlist1.deleteContents
// create batch order
for i:=1 to OrderInStation.YDim
 for n:=1 to OrderInStation.XDim
 if OrderInStation[n,i] = 1
 item := OrderInStation[n,0]
 j += 1
 BatchItem[j]:= item
 end
 next

103

next
num:= batchItem.dim
tableerror[1,lap] := eventcontroller.simTime
if batchItem.Dim = 0
 @.destination := track98
end
// loop: search shelf with more items available
for npodlist:= 1 to num
 .models.frame.pod_Item.deleteContents
 .models.frame.sumItem_bj.deleteContents
 .models.frame.testpodContent.deletecontents
 .models.frame.nowpodContent.copyrangeTo({0,0}..{*,*},testpodContent,0,0)
 for i:=1 to BatchItem.Dim
 Pod_Item[0,i]:=BatchItem[i]
 next
 for n:=1 to Pods.Dim
 Pod_Item[n,0] := Pods[n]
 next
 for n:=1 to testPodContent.XDim
 for t:=1 to BatchItem.Dim
 for m:=1 to testPodContent.YDim

if testPodContent[0,m] = batchItem[t] and testPodContent[n,m]
> 0

 Pod_item[n,t] := 1
 testPodContent[n,m] -= 1
 end
 next
 next
 next
 for n:=1 to pod_item.xdim
 sumItem_bj[0,n] := pod_item[n,0]
 sumItem_bj[1,n] := Pod_item.sum({n,1}..{n,*})
 next
 maxi:= sumItem_bj.max({1,1}..{1,*}) //choice shelf
 if maxi /= 0
 for b:=1 to SumItem_bj.YDim
 if sumItem_bj[1,b] = maxi
 choice_pod:= sumItem_bj[0,b]
 end
 next
 Podlist[1,npodlist]:=choice_pod //save the shelf
 podList[2,npodlist]:= maxi
 Choise_pod_string:=obj_to_str(choice_Pod)
 for n:=1 to NowPodContent.Xdim
 if NowPodContent[n,0] = Choice_pod_string
 for t := 1 to pod_item.ydim
 if pod_item[n,t] = 1
 for s:=1 to nowpodcontent.ydim

if nowpodContent[0,s] = pod_item[0,t]
and nowpodContent[n,s]>0

 nowpodContent[n,s] -=1
 //delete picked items
 end
 next
 end
 next
 for m:=1 to Pod_Item.Ydim
 if Pod_Item[n,m] > 0

104

 item := pod_Item[0,m]
 for b:=1 to BatchItem.dim
 if item = batchItem[b]
 .models.frame.batchItem.remove(b)
 item := void

//delete picked items
 end
 next
 end
 next
 end
 next
 end
next // loop until complete the picking list
//save time for error checking
tableerror[4,lap] := podlist.sum({2,1}..{2,*})
tableerror[7,lap] := podlist.ydim
tableerror[8,lap] := tableerror[4,lap] * 10.6900
@.stopped := false

A.6. Meth_assembly

param SensorID: integer, Front: boolean

var numItem : integer
var time_ : time
var n,m : integer
var item_obj, item_class, item : object

numItem := orderinStation.sum({1,1}..{*,1})
time_ := numItem * 0:02.0000 //packing time
// move item to the station
for n:= BufferOrder.numMu downto 1
 item_obj := BufferOrder.MU(n)
 item_class := item_obj.class
 for m:= 1 to orderinStation.xdim
 if orderinStation[m,1] = 1
 item := orderinStation[m,0]
 if item = item_class
 item_obj.move(assembly1)
 orderinstation[m,1] -= 1
 end
 end
 next
next
track651.startPause(time_)

A.7. ChoicePod method (for Kiva system)

param SensorID: integer, Front: boolean
.models.frame.pod_item.deleteContents
.models.frame.sumItem_bj.deletecontents
.models.frame.batchItem.deletecontents
.models.frame.testPodContent.deletecontents
.models.frame.nowpodcontent.copyrangeTo({0,0}..{*,*},testpodContent,0,0)

105

var track,pod_: object
var pod_str, pod_stringa :string
var s,dist,num: integer
var times: time
var j: integer :=0
var j1: integer :=0
var j2: integer :=0
var j3: integer :=0
var i,b,n,t,m:integer
var choise_pod,item:object
var pod:object
var choise_pod_string:string
var mini:real
var colonna : integer
var maxi,riga , row:integer
var npodlist,colomn:integer
numpodlist += 1
if orderass1.empty = true and orderass2.empty = true and orderass3.empty = true
 podlist[numpodList] := void
 -- when the order are finished
end
if orderass1.empty = false or orderass2.empty = false or orderass3.empty = false
-- find the table indexes pod_item
 for b:=1 to orderass1.dim
 pod_Item[0,b]:=orderass1[b]
 next
 for n:=1 to pods.dim
 pod_item[n,0]:=pods[n]
 next
 -- find the contents of the table pod_item
 for n:=1 to testPodContent.xdim
 for t:=1 to orderass1.dim
 for m:=1 to testpodContent.ydim
 if testpodContent[0,m] = orderass1[t] and testpodContent[n,m] > 0
 -- if it's true can take that article from the pod
 pod_Item[n,t]:= 1
 testpodcontent[n,m] -= 1
 end
 next
 next
 next
 -- define the table sumitem_bj
 for n:=1 to pod_Item.xdim
 sumitem_bj[0,n]:=pod_Item[n,0]
 sumItem_bj[1,n]:= pod_Item.sum({n,1}..{n,*})
 if sumItem_bj[1,n] = 0
 sumItem_bj[1,n] := 0.01
 end
 next
 -- unavable shelves are excluded
 numpodlist -= 3
 pod := podlist.read(numpodlist)
 pod_stringa := obj_to_str(pod)
 for n:=1 to sumItem_bj.ydim
 if sumItem_bj[0,n] = pod_stringa
 sumItem_bj[1,n] := 0.01
 end

106

 next
 numpodlist +=1
 pod := podlist.read(numpodlist)
 pod_stringa := obj_to_str(pod)
 for n:=1 to sumItem_bj.ydim
 if sumItem_bj[0,n] = pod_stringa
 sumItem_bj[1,n] := 0.01
 end
 next
 numpodlist +=1
 pod := podlist.read(numpodlist)
 pod_stringa := obj_to_str(pod)
 for n:=1 to sumItem_bj.ydim
 if sumItem_bj[0,n] = pod_stringa
 sumItem_bj[1,n] := 0.01
 end
 next
 numpodlist +=1
 maxi := sumItem_bj.max({1,1}..{1,*})
 -- know the amount of goods that each pod can give to the order, I have to see if there
 is a pod that can complete the order
 if maxi = orderass1.dim and orderass1.empty = false
 for row:= 1 to distance.ydim
 if distance[0,row] = pod_str
 riga := row
 end
 next
 for n:=1 to sumItem_bj.ydim
 if sumItem_bj[1,n] = maxi
 sumItem_bj[2,n]:= distance[n,riga] / sumItem_bj[1,n]
 end
 if sumItem_bj[1,n] /= maxi
 sumItem_bj[2,n] := 1000
 end
 next
 mini := sumItem_bj.min({2,1}..{2,*})
 for b:=1 to sumItem_bj.ydim
 if sumItem_bj[2,b] = mini
 choise_pod := sumItem_bj[0,b]
 end
 next
 -- if it's true that pod completes the order
 -- if I find a result, that pod is put in the list of pods to be taken
 podlist[numpodlist]:= choise_pod
 choise_pod_string := obj_to_str(choise_pod)
 -- found the pod, but this can also contain items that serve other orders
 -- delete the contents of the pod_item table because it contains only articles per
 order of the station 1
 .models.frame.pod_Item.deletecontents
 -- find the sum of the items requested by the three stations
 j:=0
 for j1:=1 to OrderAss1.Dim
 j+=1
 batchItem[j] := OrderAss1[j1]
 next
 for j2:=1 to OrderAss2.Dim
 j+=1
 BatchItem[j]:= OrderAss2[j2]

107

 next
 for j3:=1 to OrderAss3.Dim
 j+=1
 BatchItem[j]:= OrderAss3[j3]
 next
 -- find the new table indexes pod_item
 for b:=1 to BatchItem.Dim
 Pod_Item[0,b]:= BatchItem[b]
 next
 for b:=1 to Pods.Dim
 Pod_item[b,0] := Pods[b]
 next
 -- find the new contents of the table pod_item
 for n:=1 to NowPodContent.XDim
 if NowPodContent[n,0] = Choise_pod_string
 for t:=1 to BatchItem.Dim
 for m:=1 to NowPodContent.YDim
 if NowPodContent[0,m] = batchItem[t] and
 NowPodContent[n,m] > 0
 Pod_item[n,t] := 1
 nowpodcontent[n,m] -=1
 end
 next
 next
 for m:=1 to pod_Item.ydim
 if pod_Item[n,m] > 0
 item := pod_item[0,m]
 for b:=1 to Orderass1.dim
 if item = orderAss1[b]
 -- delete the order lines of order of station 1
 .models.frame.orderass1.remove(b)
 item := void
 end
 next
 for b:=1 to Orderass2.dim
 if item = orderAss2[b]
 -- delete the order lines of order of station 2
 .models.frame.orderass2.remove(b)
 item := void
 end
 next
 for b:=1 to Orderass3.dim
 if item = orderAss3[b]
 -- delete the order lines of order of station 3
 .models.frame.orderass3.remove(b)
 item := void
 end
 next
 end
 next
 end
 next
 TableError[1,numpodlist] := choise_pod_string
 for n:=1 to pod_item.xdim
 if pod_item[n,0] = choise_pod_string
 TableError[2,numpodlist] := pod_item.sum({n,1}..{n,*})
 end
 next

108

 TableError[6,numpodlist] := orderass1.dim
 TableError[7,numpodlist] := orderass2.dim
 TableError[8,numpodlist] := orderass3.dim
 if TableError[6,numpodlist] = 0 or TableError[7,numpodlist] =0 or
 TableError[8,numpodlist]=0
 TableError[9,numpodlist] := eventcontroller.simTime
 end
 -- if the order of the station 1 has been concluded I will assign another order to
 the station
 if orderAss1.empty
 if nownOrders < 150
 NownOrders += 1
 j1:=0
 for i:=1 to BillOfMaterial.YDim
 if BillOfMaterial[NownOrders,i] = 1
 j1+=1
 orderAss1[j1] := BillOfMaterial[0,i]
 end
 next
 end
 end
 -- if the order of the station 3 has been concluded I will assign another order to
 the station
 if orderAss3.empty
 if nownorders < 150
 NownOrders += 1
 j3:=0
 for i:=1 to BillOfMaterial.YDim
 if BillOfMaterial[NownOrders,i] = 1
 j3+=1
 orderAss3[j3] := BillOfMaterial[0,i]
 end
 next
 end
 end
 -- if the order of the station 2 has been concluded I will assign another order to
 the station
 if orderAss2.empty
 if nownorders < 150
 NownOrders += 1
 j2:=0
 for i:=1 to BillOfMaterial.YDim
 if BillOfMaterial[NownOrders,i] = 1
 j2+=1
 orderAss2[j2] := BillOfMaterial[0,i]
 end
 next
 end
 end
 .models.frame.pod_Item.deletecontents
 .models.frame.batchItem.deletecontents
 -- if I have assigned another order to the station it means that for that station
 maybe there will be articles that can be taken then control
 -- find the sum of the items requested by the three stations
 j:=0
 for j1:=1 to OrderAss1.Dim
 j+=1
 batchItem[j] := OrderAss1[j1]

109

 next
 for j2:=1 to OrderAss2.Dim
 j+=1
 BatchItem[j]:= OrderAss2[j2]
 next
 for j3:=1 to OrderAss3.Dim
 j+=1
 BatchItem[j]:= OrderAss3[j3]
 next
 -- find the new table indexes pod_item
 for b:=1 to BatchItem.Dim
 Pod_Item[0,b]:= BatchItem[b]
 next
 for b:=1 to Pods.Dim
 Pod_item[b,0] := Pods[b]
 next
 -- find the new contents of the table pod_item
 for n:=1 to NowPodContent.XDim
 if NowPodContent[n,0] = Choise_pod_string
 for t:=1 to BatchItem.Dim
 for m:=1 to NowPodContent.YDim
 if NowPodContent[0,m] = batchItem[t] and
 NowPodContent[n,m] > 0
 Pod_item[n,t] := 1
 nowpodcontent[n,m] -=1
 end
 next
 next
 for m:=1 to pod_Item.ydim
 if pod_Item[n,m] > 0
 item := pod_item[0,m]
 for b:=1 to Orderass1.dim
 if item = orderAss1[b]
 -- delete the order lines of order of
 station 1
 .models.frame.orderass1.remove(b)
 item := void
 end
 next
 for b:=1 to Orderass2.dim
 if item = orderAss2[b]
 -- delete the order lines of order of
 station 2
 .models.frame.orderass2.remove(b)
 item := void
 end
 next
 for b:=1 to Orderass3.dim
 if item = orderAss3[b]
 -- delete the order lines of order of
 station 3
 .models.frame.orderass3.remove(b)
 item := void
 end
 next
 end
 next
 end

110

 next
 -- check again if the station 1 order is not empty after picking up the items
 -- otherwise I will assign a new order
 if orderAss1.empty
 if nownOrders < 150
 NownOrders += 1
 j1:=0
 for i:=1 to BillOfMaterial.YDim
 if BillOfMaterial[NownOrders,i] = 1
 j1+=1
 orderAss1[j1] := BillOfMaterial[0,i]
 end
 next
 end
 end
 for n:=1 to pod_item.xdim
 if pod_item[n,0] = choise_pod_string
 TableError[14,numpodlist] := pod_item.sum({n,1}..{n,*})
 end
 next
 TableError[6,numpodlist] := orderass1.dim
 TableError[7,numpodlist] := orderass2.dim
 TableError[8,numpodlist] := orderass3.dim
 if TableError[6,numpodlist] = 0 or TableError[7,numpodlist] =0 or
 TableError[8,numpodlist]=0
 TableError[9,numpodlist] := eventcontroller.simTime
 end
 -- check again if the station 3 order is not empty after picking up the items
 -- otherwise I will assign a new order
 if orderAss3.empty
 if nownOrders < 150
 NownOrders += 1
 j3:=0
 for i:=1 to BillOfMaterial.YDim
 if BillOfMaterial[NownOrders,i] = 1
 j3+=1
 orderAss3[j3] := BillOfMaterial[0,i]
 end
 next
 end
 end
 -- check again if the station 2 order is not empty after picking up the items
 -- otherwise I will assign a new order
 if orderAss2.empty
 if nownOrders < 150
 NownOrders += 1
 j2:=0
 for i:=1 to BillOfMaterial.YDim
 if BillOfMaterial[NownOrders,i] = 1
 j2+=1
 orderAss2[j2] := BillOfMaterial[0,i]
 end
 next
 end
 end
 elseif maxi /= orderass1.dim or orderass1.empty = true
 .models.frame.pod_item.deletecontents
 .models.frame.sumitem_bj.deletecontents

111

 .models.frame.batchItem.deletecontents
 .models.frame.testPodContent.deletecontents
 .models.frame.nowpodcontent.copyrangeTo({0,0}..{*,*},testpodContent,0,0)
 -- check if there is a pod that completes the order 2
 ..
 ..
 -- repeat the commands executed for the station order 1 using order elements 2
 ..
 ..
 -- if there are no pods that complete the order 2
 elseif maxi /= orderass2.dim or orderass2.empty = true
 .models.frame.pod_item.deletecontents
 .models.frame.sumitem_bj.deletecontents
 .models.frame.batchItem.deletecontents
 .models.frame.testPodContent.deletecontents
 .models.frame.nowpodcontent.copyrangeTo({0,0}..{*,*},testpodContent,0,0)
 -- check if there is a pod that completes the order 3
 ..
 ..
 -- repeat the commands executed for the station order 1 and 2 using order
 elements 3
 ..
 ..
 --if there are no pods that complete the order 3
 elseif maxi /= orderass3.dim or orderass3.empty= true
 .models.frame.pod_item.deletecontents
 .models.frame.sumitem_bj.deletecontents
 .models.frame.batchItem.deletecontents
 .models.frame.testPodContent.deletecontents
 .models.frame.nowpodcontent.copyrangeTo({0,0}..{*,*},testpodContent,0,0)
 -- find the sum of the items requested by the three stations
 j:=0
 for j1:=1 to OrderAss1.Dim
 j+=1
 batchItem[j] := OrderAss1[j1]
 next
 for j2:=1 to OrderAss2.Dim
 j+=1
 BatchItem[j]:= OrderAss2[j2]
 next
 for j3:=1 to OrderAss3.Dim
 j+=1
 BatchItem[j]:= OrderAss3[j3]
 next
 -- find the table indexes pod_item
 for b:=1 to BatchItem.Dim
 Pod_Item[0,b]:= BatchItem[b]
 next
 for b:=1 to Pods.Dim
 Pod_item[b,0] := Pods[b]
 next
 -- find the contents of the table pod_item
 if batchItem.dim /= 0
 for n:=1 to testPodContent.XDim
 for t:=1 to BatchItem.Dim
 for m:=1 to testPodContent.YDim
 if testPodContent[0,m] = batchItem[t] and
 testPodContent[n,m] > 0

112

 Pod_item[n,t] := 1
 testpodcontent[n,m] -=1
 end
 next
 next
 next
 -- find the contents of the table sumitem_bj
 for n:=1 to pod_item.xdim
 sumItem_bj[0,n] := pod_item[n,0]
 sumItem_bj[1,n] := Pod_item.sum({n,1}..{n,*})
 if sumItem_bj[1,n] = 0
 sumItem_bj[1,n]:=0.01
 end
 next
 -- delete the pod not available
 numpodlist -= 3
 pod := podlist.read(numpodlist)
 pod_stringa := obj_to_str(pod)
 for n:=1 to sumItem_bj.ydim
 if sumItem_bj[0,n] = pod_stringa
 sumItem_bj.cutrow(n)
 end
 next
 numpodlist +=1
 pod := podlist.read(numpodlist)
 pod_stringa := obj_to_str(pod)
 for n:=1 to sumItem_bj.ydim
 if sumItem_bj[0,n] = pod_stringa
 sumItem_bj[1,n] := 0.01
 end
 next
 numpodlist +=1
 pod := podlist.read(numpodlist)
 pod_stringa := obj_to_str(pod)
 for n:=1 to sumItem_bj.ydim
 if sumItem_bj[0,n] = pod_stringa
 sumItem_bj.cutrow(n)
 end
 next
 numpodlist +=1
 --choice pod
 maxi := sumItem_bj.max({1,1}..{1,*})
 maxi := 0.9 * maxi
 for row:=1 to distance.ydim
 if distance[0,row] = pod_str
 riga:= row
 end
 next
 for n:=1 to SumItem_bj.YDim
 if sumItem_bj[1,n] >= maxi
 pod_stringa:= sumItem_bj[0,n]
 for colomn:=1 to distance.xdim
 if pod_stringa = distance[colomn,0]
 colonna := colomn
 end
 next
 sumItem_bj[2,n] := distance[colonna,riga] /
 sumItem_bj[1,n]

113

 end
 if sumItem_bj[1,n] < maxi
 sumItem_bj[2,n] := 1000
 end
 next
 mini := sumItem_bj.min({2,1}..{2,*})
 for b:=1 to SumItem_bj.YDim
 if sumItem_bj[2,b] = mini
 choise_pod:= sumItem_bj[0,b]
 end
 next
 Podlist[numpodlist]:=choise_pod
 Choise_pod_string:=obj_to_str(choise_Pod)
 -- delete the order lines that are picked up and then update the number
 of the item in the pod
 for n:=1 to NowPodContent.Xdim
 if NowPodContent[n,0] = Choise_pod_string
 for t := 1 to pod_item.ydim
 if pod_item[n,t] = 1
 for s:=1 to nowpodcontent.ydim
 if nowpodContent[0,s] = pod_item[0,t] and
 nowpodContent[n,s]>0
 nowpodContent[n,s] -=1
 end
 next
 end
 next
 for m:=1 to Pod_Item.Ydim
 if Pod_Item[n,m] > 0
 item := pod_Item[0,m]
 for b:=1 to Orderass1.dim
 if item = orderAss1[b]
 -- delete the order lines of order of station 1
 .models.frame.orderass1.remove(b)
 item := void
 end
 next
 for b:=1 to Orderass2.dim
 if item = orderAss2[b]
 -- delete the order lines of order of station 2
 .models.frame.orderass2.remove(b)
 item := void
 end
 next
 for b:=1 to Orderass3.dim
 if item = orderAss3[b]
 -- delete the order lines of order of station 3
 .models.frame.orderass3.remove(b)
 item := void
 end
 next
 end
 next
 end
 next
 end
 end
 end

114

 end

A.8. Station sensor method

param SensorID: integer, Front: boolean

var pod,pod_:object
var pod_string:string
var a,x,y,b,i,n :integer
var item: object
var item_obj:object
var item_class: object
var num,succ:integer
var item_string : string
var times : time

@.stopped:=true
-- the initial part of the code serves to unlock the robots that are in the waiting area of the station
and insert them in the operator's queue correctly
pod:= @.cont
pod_string:=obj_to_str(pod)
for n:=1 to podlist.dim
 if pod = podlist[n]
 num:= n
 num += 1
 succ := num
 end
next
pod_ := podlist.read(succ)
if track139.cont /= void
 if track139.cont.cont = pod_
 track139.cont.stopped := false
 track139.cont.destination := track95
 numpod +=1
 TableError[3,numpod]:= pod_.numMU
 end
end
if track135.cont /= void
 if track135.cont.cont = pod_
 track135.cont.stopped := false
 track135.cont.destination := track95
 numpod +=1
 TableError[3,numpod]:= pod_.numMU
 end
end
if track136.cont /= void
 if track136.cont.cont = pod_
 track136.cont.stopped := false
 track136.cont.destination := track95
 numpod +=1
 TableError[3,numpod]:= pod_.numMU
 end
end
if track137.cont /= void
 if track137.cont.cont = pod_
 track137.cont.stopped := false

115

 track137.cont.destination := track95
 numpod +=1
 TableError[3,numpod]:= pod_.numMU
 end
end
if track145.cont /= void
 if track145.cont.cont = pod_
 track145.cont.stopped := false
 track145.cont.destination := track95
 numpod +=1
 TableError[3,numpod]:= pod_.numMU
 end
end
-- manual discharge
pod:= @.cont
numpod2 +=1
TimeWorker[1,numpod2] := eventcontroller.simtime
num := TableError[2,numpod2] + TableError[14,numpod2]
timeworker[2,numpod2] := num
timeworker[3,numpod2] := timeworker[2,numpod2]*0:05.5000
timeworker[4,numpod2] := timeworker[1,numpod2] + timeworker[3,numpod2]
timeworker[5,numpod2] := timeworker[4,numpod2]-timeworker[1,numpod2]
for y:=1 to OrderInStation.YDim
 for x:=1 to OrderInStation.XDim
 if OrderInStation[x,y] = 1
 item := OrderinStation[x,0]
 for b:= pod.numMU downto 1
 item_obj:=pod.MU(b)
 item_class :=item_obj.class
 item_string := obj_to_str(item_class)
 if item_string = obj_to_str(item)
 item_obj.move(BufferAssembly)
 item := void
 stopuntil Bufferassembly.numMu=0 prio 1
 --exitloop
 end
 next
 end
 next
next
track95.startpause(3.5)
@.stopped:=false

116

117

References

Andriolo Alessandro, Battini Daria, Calzavara Martina, Gamberi Mauro, Peretti

Umberto, Persona Alessandro, Pilati Francesco, Sgarbossa Fabio, "New pick-

to.light system configuration: a feasibility study", XVIII Summer School

Francesco Turco - Industrial Mechanical Plants

Bartholdi John, Hackman Steven T. (2011) "Warehouse and distribution

science", ReseachGate

Battini D. (2018), notes from lectures of the course "Logistica Industriale",

Mechanical Engineering, Università degli studi di Padova

Battini Dari, Calzavara Martina, Alessandro Persona, Fabio Sgarbossa, (2014)

"A comparative analysis of different paperless picking systems", Industrial

Management & Data Systems, 115 (3), 483-503

Battini Dari, Calzavara Martina, Alessandro Persona, Roncari Manuel, Fabio

Sgarbossa, "Dual-tray vertical lift module for order picking: a performance and

storage assignment preliminary study", XX Summer School Francesco Turco -

Industrial Systems Engineering

Behram Bahrami, El-Houssaine Aghezzaf, Veronique Limere (2017) "Using

simulation to analyze picker blocking in manual order picking systems",

Procedia Manufacturing, 11, 1798-1808

Bipan Zou, Yeming Gong, Xianhao Xu, Zhe Yuan (2017) "Assignment rules in

robotic mobile fulfilment systems for online retailers", International Journal of

Production Research

Boysen Nils, Briskorn Dirk, Emde Simon, (2016) " Parts-to-picker based order

processing in a rack-moving mobile robots environment", European Journal of

Operational Research

118

Bozer Yavuz A., Francisco J.Aldarondo, (2018) "A simulation-based comparison

of two goods-to-person order picking systems in an online retail setting",

International Journal of Production Research, 56 (11), 3838-3858

Dallari Fabrizio, Marchet Gino, Melacini Marco, (2008) "design of order picking

system", Springer, 42, 1-12

D'Andrea Raffaello, Wurman Peter, (2008) "Future challenges of coordinating

hundreds of autonomous vehicles in distribution facilities", IEEE

De Koster R., VAn der Poort E. (1998) "Routing orderpickers in a warehouse

between optimal and heuristics solutions", IIE, 30, 469-480

De Koster René, Le-Duc Tho, Roodbergen Kees Jan (2006) "Design and

control of warehouse order picking: A literature review", European Journal of

Operational Research, 182 (2007), 481-501

De Koster René, Le-Duc Tho, Nima Zaerpour (2012) "Determing the number of

zones in a pick-and-sort order picking system", International Journal of

Production Research

Enright John J., Wurman Peter R., (2009) "Optimization and coordinated

autonomy in mobile fulfillment systems", AAAI

Guizzo Erico, (2008) "Kiva Systems: Three Engineers, Hundreds of Robots,

One Warehouse", IEEE

Horvat Matic (2012) "An approach to order picking optimization warehouse",

SemanticScholar

Lamballais T., Roy D., De Koster M.B.M. (2015) "Estimating performance in a

robotic mobile fulfillment system", International Journal of Operational Research

Lamballais T., Roy D., De Koster M.B.M. (2017) "Inventory allocation in robotic

mobile fulfilment systems"

119

Li Jun-tao, Liu Hong-jian, (2016) "Design optimization of Amazon robotics",

Science publishing group, 4 (2), 48-52

Li Z. P., Zhang J. L., Zhang H.J., Hua G.W. (2017) "Optimal selection of

movable shelves under cargo-to-person picking mode", SemanticScholar

Lienert Thomas, Staab Tobias, Ludwig Christopher, Fottner Johannes (2017)

"Simulation-based performance analysis in robotic mobile fulfilment systems"

Merschformann M., Lamballais T., De Koster M.B.M., Suhl L. (2018) " Decision

Rules for robotic mobile fulfillment systems", AAAI

Merschformann Marius, Xie Lie, Erdmann Daniel (2017) "Path planning for

robotoc mobile fulfillment systems", AAAI

Merschformann M., Xie L., Li H. (2018) "RAWSim-O: A simulation framework for

robotic mobile fulfilment systems", BVL

Pareschi A., Ferrari F., Persona A., Regattieri A., "Logistica integrata e

flessibile"

Petersen Charles G., Aase Gerald R. (2003), "A comparison of picking, storage

and routing policies in manual order picking", International Journal of Production

Economics, 92 (2004), 11-19

Petersen Charles G., Aase Gerald R. (2016) "Improving order picking efficiency

with the use of cross aisles and storage policies", Open Journal of Business

and Management, 5 (1)

Poudel Dev Bahadur, (2013) "Coordinating hundreds of cooperative,

autonomous robots in warehouse", AAAI

Riccardo Manzini, Mauro Gamberi, Alessandro Persona, Alberto Regattieri

(2006), "Design of a class based storage picker to product order picking

system", Springer

120

Sgarbossa F., notes from lectures of the course " Impianti industriali",

Mechanical Engineering, Università degli studi di padova

Tompkins James, White John, Bozer Yazur, Tanchoco J.M.A. (2010) "Facilities

Planning", John Wiley & Sons

Wurman Peter R., D'Andrea Raffaello, Mountz Mick, (2007) "Coordinating

Hundreds of cooperative, autonomous vehicles in warehouse", Association for

the Advancement of Artificial Intelligence (AAAI)

www.mwpvl.com, "Is Kiva system a good fit for your distribution center? An

unbiased distribution consultant evaluation"

www.roboticstomorrow.com, "How kiva systems and warehouse management

systems interact"

